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Estimation of the value of a regression function at a point of continuity

using a kernel-type estimator is discussed and improvements of the technique

by a generalized jackknife estimator are presented. It is shown that the

generalized jackknife technique produces estimators with faster bias rates.

In a small example it is investigated, if the generalized jackknife method

works for all choices of bandwidths. It turns out that an improper choice of

this parameter may inflate the mean square error of the generalized jackknife
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1. Introduction and Background

Let (xl,Y 1), (x2 ,Y2 ) ,... be independent bivariate data following the mechanism

::'.'::'" (1.1) Y. = m(x.) + E. i1,2,...

where x. are fixed design points, the E. are zero mean random variables (rv) and
1 1

m(x) is the unknown regression function. Let us assume that n observations have

been made with 05x<...-<xn=l and that Y. is distributed as a rv with cumulative

distribution function F(y; xi) and with probability density function

f(y; x.) E F ='{f(y; x): Ox_<l}

The nonparametric regression function estimation problem is to estimate

m(x) = f y f(y; x) dy

given n observations (x1 ,Y 1
) ,.... ,Y

Many estimators of m(*) in this "fixed design sampling " model (1.1) have

been considered. (Priestley and Chao, 1972; Reinsch, 1967; Wold, 1974). Most

of these authors assume a "i.i.d. error structure", i.e. f(y; x) = fo(Y-m(x))

for some fixed density f0 " We consider here kernel-type estimators

n
(1.2) mnx) (x)Yi  , O<x<l

n(n)

where the sequence of (concentrating) weights t. = a (n ) are derived from a kernel11

function to be defined later. Nonparametric regression function estimators of

this kind were introduced by Priestley and Chao (1972) and further discussed by

Benedetti (1977). As can be seen from these early papers and more recently from

Gasser and lIler (1979), estimators of the kind, defined in (1.2), are usually

biased. Using a suggestion of Bartlett (1963) for the bias reduction of density

%%.. estimators, Gasser and MWller gave an approximate expression for the bias and

variance of such estimators (see Lemma I).

The purpose of this paper is first to define a generalized jackknife estima-

01% tor of m(x), as introduced by Schucany and Sommers (1977) for kernel-type density

:€ ,,'-.'-.. '-. -.... .-......- .-..... .-.. " i... .. . . . " " " "
." .. ''.'' ', ,... ,- .. '- . - "" . . .. " . .'........... *. ,. .- ; .- '. . .2.iL . . i-. i .
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estimators. Then it is shown that the generalized jackknife, which is a method

of forming linear combinations of kernel regression function estimators, reduces

the bias of mn (x). The generalized jackknife technique, applied to kernel re-
n

gression function estimators, exhibits thus the same properties as in density

estimation: Schucany and Sommers (1977) show that a jackknifed kernel estimator

of a density f(x) reduces (asymptotically) bias in the way of Bartlett's (1963)

original suggestion.

We will also show that for finite sample size in the regression setting

considered here, the jackknifed estimator of mn (x) may have a larger mean square

error (MSE) than the original estimator when the weights ai(x) are impreperly
1

chosen. A proper choice of this parameter is usually impossible in practical

situations, so the experimenter is always confronted with the risk of selectinp

a "wrong" sequence of weights a( n) . Since the MSE is widely accepted as a cri-

terion for measuring the accuracy of nonparametric estimators (Epanechnikov

(1969), Rosenblatt (1971), among others) this (negative) result shows that in

certain situations the generalized jackknife method, applied to kernel regres-

sion function estimators, may actually fail to improve the accuracy of the esti-

mator.

We now present some of the choices of the weight functions a (o) in (1.2).

For instance, Priestley and Chao (1972) suggested to use

(1. 3) a i (x) = hIK((x-xi)/h)rxi-x _ 1

with xo=0, h=h(n) a sequence of bandwidth tending to zero and a kernel function

K(-), to be defined in (1.5). Gasser and Miller (1979) considered the following

weights
S.(14.4 )  

"  
1

(1.4) at.(X) h 1  f K((x-u)/h)du
siI

with a sequence of interpolating points x.s.x. so=O, s =1 .1Ii+I' n="

..........................
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Cheng and Lin (1981) showed that with x1=s1 the weights defined through (1.4)

or (1.3) give asymptotically the same consistency rate. We therefore restrict

for convenience our attention to weights as defined in (1.4). We consider only

even kernel functions K(-) which vanish outside F-A,A! are continuous and satisfy

for some integer r

A

f u-K(u)du 0 j=l,..., r-l
(1.5-A

A

f urK(u)du = r!A(K,r) <
-A

These conditions on K are assumed to hold by sore rrevious authors in the

density estimation setting or in the regression function estimation case (Wegman,

1972a; Gasser and Muller, 1979). The assumption of finite support of K is not

stringent. By reading through the proofs, it will be clear that the results also

hold for kernels with infinite support. We are restricting ourselves on kernels

with finite support only for computational convenience. In practical applications

every kernel will be of finite support, due to lower bounds on machine precisions.

We further assume for the remainder of the paper that x. are asymptotically1

equispaced: sup Is.-s. I = O(nI). We then have from Gasser and MUller (1979)
ljn -1

the following result on the mean square error.

Lemma 1

Let m(P)(.) be uniformly bounded with p=2t, t>O and let K be a kernel func-

tion satisfying (1.5) with r_<p. Assume that a 2(x) =f ry-m(x)1 2f(y; x)dy is

uniformly continuous for O<x<l, then the leading term of the MSE of m (x), O<x-l
n

is

(nh) -l Ka2 (X) + F I h2Sm( 2S)A(K,2s)] 2 ,

s=l

where 0k = f K2 (u)du.

' :- '% % % • . * "- '- " "- .",* :' j- ' " " - .. •" _ " , .r " " ' . , , ' . '''' . ' _ ' '. , -
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A similar MSE decomposition in variance and bias parts holds for density

-11estimators fn(x) = (nh) 11%l K((x-Xi)/h) (Parzen, 1962) but with derivatives

of f(-), the density, in the bias instead of derivatives of m(.). The first

part of the following section is therefore quite analogous to Schucany and

Sommers (1977).

2. Does the jackknifed estimate improve the kernel estimate?

We shall construct here combinations of kernel estimators, using the

- generalized jackknife method of Schucany and Sommers (1977). Note that, in the

". context of the generalized jackknife, the "leave-out" techniques, subscribed to

the ordinary jackknife, will not be employed. We first state a lemma giving the

. convergence rate of the bias of the jackknifed estimator and discuss furthermore

an example for which the jackknife estimator fails to improve the MSE of the

original kernel estimate.
Define for t=1,2 , = n ct (x)Y. where

mlk~x i I14~

St S.1 "

ti (x) =h 1 f K1 ((t-u)/h )du, h1=h1 (n), h2=h2 (n)

and h1 denote different sequences of bandwidths and 1l2 kernel functions with

rl=r2=2 respectively. The generalized jackknife estimate of i (x) is then

2 n

defined as

(2.1) -- , -- (x)] = (1-R)' m(x)-Rm (x)_1 RAI
21 ,n  2,n ln 2,n

It is assumed for the remainder of the paper that a 2x), as defined in Lemma 1,

is uniformly continuous for Ocx<l. The proof of the following lemma is evident .-

a in view of Lemma 1.

'- k 2-;**..>K..**j*** :-:2~.~ iK XI-K f 1
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Lemma 2

Suppose that m(P)(*) is uniformly bounded with p-2t, t>2 and let K1, K2 be

.9kernels satisfying (1.5) with rr 2 :5p. Then the leading bias term of

G". (x), _M (x)] is
1 n 2,n

, (2.2) (l-R) 1 7 Fh SA(K 1,2s) Rh2 A(K 22s)]m 2 s ) (x)
s=l

The reduction of bias in (2.2) is now made possible by a suitable choice of the

balancing constant R.

~~~2 2 ,2/,
If we set R=Rn=(h /h2)A(K 1,2)/A(K 2,2)

then

h 2 A(gl2) - Rh2A(K2,2) = 0

firs bia ter conainig m(2)
and the first bias term containing m (x), is eliminated. We thus have indeed

an estimator with a faster bias rate and moreover we could have produced

Gr" 1 n1 (x), *2n(x)l with the single kernel

K*(u) = rKl(u) - Vc K(cnU)]IFl - vc 2

where v =&(KI,2)/A(K2,2) and c=cn=h1 (n)/h 2 (n). Note that, in contrast to K1,K2,

the kernel K*(.) may still depend on n, but satisfies (1.5) for all n with r=4 as

',.,

is shown in Schucany and Sommers (1977), p. 421. Note also that the calculations in

that paper, showinR that K* belongs to the class of kernel functions (see (1.5))

with r=4, do not depend on the density estimation setting.

As is shown in Lemma 1 and Lema 2, the bias terms of both mn and GFm lnm2nI

still depend on m() through the derivatives of the regression function. An opti-

meal choice of h with respect to the MSE would thus involve the knowledge of the

derivatives of the regression function. A conservative strategy of the experi-

menter could therefore be to subscribe a small amount of smoothness to m(.). He

could assume, for instance, that the second derivative of M(-) exists and is con-

tinuous. On the other hand, he could do better if even the fourth derivative

. . .. .. . . . . . . . . . ' : -. - . : - . : . : . .,_
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exists by choosing a kernel function K satisfying (1.5) with r=4. This justifies

the use of a generalized jackknife kernel estimator, as defined in (2.1). If, in

- fact, m(.) is smoother than we expected, let's say we started with a kernel K with

-I

A r=2, the generalized jackknife estimator would give us the faster vanishing bias

term with kernel functions K1 and K2 with r=2 in the class defined in (1.5).

We now investigate the properties of G[mn mn I in a small example. For this
ln'* 2n

define K =K where

22

KE(u) = 3/4(1-u 2 ) Iu<l

-0 JuI>l

is the Epanechnikov (1969) kernel. For optimality questions of this narticular

.' kernel, we refer to Rosenblatt (1971). This kernel function obviously satisfies

*: (1.5) with r=2. The following calculations for the variance remain valid also in

the density estimation setting, since BK or aK, occur also as variance factors

there (Parzen, 1962). By straightforward computations it is easy to obtain:

K= f KE(u)du = 3/5

E

A(KE,2) = 1/10

A(KE,4) = 1/280

(2.3) K f K2(u)du

2 2 22 3
= I- f{f K2(u)d +c'f K2(u)du-2c f KE(u)KE(cu)du}

= 21-c] 2{3/5 + 9/10 c - 3/2 c }

= 9/10c 3 + 2c2 +(4/3)c+ 2/31/[c + 112

Note that Sg, U 9/8 as c - 1 which is considerably higher than aK = 3/5. This

behavior of K* can also be drawn from table 1 in Schucany and Sommers (1977) for a nor-

mal density kernel and R=.99. It is therefore apparent that some caution must be

... . . ** -
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exercised in selecting c, which is the same as choosing the balancing factor R

or h and h To compensate on the trade-off between bias and variance, the

faster rate of the bias of G suggests to choose h >h. The calculation of then1

variance factors 0K and K, in (2.3) suggests the choice of h 1 u K,/KElh
E 1 *E-

15h/8 to balance the variance part of the MSE. How does this choice of band-

widths now affect the MSE of mn(X) and Grm (X) m (x)l, given that m (x)
n l,n '2,n

exists and is uniformly bounded. The leading term of the MSE of m (x) is given byn

(2.4) (nh)- + {h2 m(2)x)l0 + h4 m (x)/2801KE

whereas the principal term of the MSE of G[riln(x), m2 ,n(x)] is

- -24(4) 2
(2.5) (nh) + c h m (x)/2801

Assume now that a=m(2) (x)/10 and 8=m(4) (x)/280 are positive and c 1 1, and assume

in addition that by choosing hI - 15h/8, the variance parts of (2.4) and (2.5)

are approximately the same. With this selection of hI , the bias terms now read

bias2 m (x)) = {h2  + h4 B}2

ba2  4 2
bias2 (Grlm 2n]) {-50625ah /40961

152.76a h

Comparing now these bias terms, only depending on h now, shows that with the

"wrong" choice of h1 and h2, the generalized jackknife estimator may fail to

improve m (x) in MSE. More precise computations yield that, if h is chosen to
n

fulfill

2
1(0/a)h 2

- .006581 > .0814 ,

then

. . . .""."" """"

;-.-..-..n ] 1>V Mi; .n .; i-
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Some additional remarks should be made. The example seems to be somewhat

artificially constructed since we restrict our attention to one particular ker-

nel function. This is due to the computations of Rosenblatt (1971), Table 1,

p. 1821, showing the relative insensitivity of the MSE to different kernels.

1.., (2)(See also Wegm n (1972b)). Interesting is the fact that, if m (x0) happens

to be zero for some x0, the new jackknife estimator drastically loses MSE ac-

curacy, provided that h1 was chosen in such a way, that the variance parts of

both mn(x) and G[mln,m2n] are approximately equal (c - 1). A proper choice of

R and hI is in practice not obtainable, since we have no knowledge about the

derivatives of the regression function. It is also not possible in general to

compute the regions of bandwidths, where GFm n'm2nI actually improves m n(x),

since these require the constants a and 8.

3. Conclusion

Under the proper conditions, several of the original type of kernel regres-

sion estimators proposed by Priestley and Chao (1972) can be combined to form

generalized jackknife estimators which have a faster bias rate. The new esti-

mat( . produce an improved rate of the MSE due to cancellations of bias terms.

The generalized jackknife estimator, as defined here for the regression function

estimation setting, achieves thus the same properties as a similar estimator,

introduced by Schucany and Sommers for density function estimation. In a small

example, it is investigated how the new estimator performs when compared to

ordinary kernel regression function estimates. It is shown there, than an im-

proper choice of R, the balancing factor between mn and m may introduce an
In 2n myitouea

inflation effect on the MSE of Gm lm2n 1. A jackknifing technique of kernel

estimators of regression functions should therefore be cautiously performed

with a proper inspection of the involved parameters.

_ -. o
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