

MICROCOPY RESOLUTION TEST CHART NATIONAL DESEASOLUTION TEST CHART

i

T

.

REPORT NADC 81189-60

N

·N

A133

1:2

ELECTROFLUIDIC ANGULAR RATE SENSOR FOR EJECTION SEAT THRUST VECTOR CONTROL

A Test and Evaluation Report of Dynamic Performance and Cross-Axis Sensitivity

D. R. Keyser, P.E.

NAVAL AIR DEVELOPMENT CENTER

Warminster, PA 18974 Code 60134

11 February 1983

Final Report Task Area F41400000 ZA 610

 \mathbb{S}

Approved For Public Release; Distribution Unlimited

Prepared For NAVAL AIR SYSTEMS COMMAND DEPARTMENT OF THE NAVY WASHINGTON, D.C. 20361

83

Ľ

OTIC FILE COPY

NOTICES

BEPORT NUMBERING SYSTEM - The numbering of technical project reports issued by the Naval Air Development Center is arranged for specific identification purposes. Each number consists of the Center acronym, the calendar year in which the number was assigned, the sequence number of the report within the specific calendar year, and the official 2-digit correspondence code of the Command Office or the Functional Directorate responsible for the report. For example: Report No. NADC-78015-20 indicates the fifteenth Center report for the year 1978, and prepared by the Systems Directorate. The numerical codes are as follows:

CODE	OFFICE OR DIRECTORATE
00	Commander, Naval Air Development Center
01	Technical Director, Naval Air Development Center
02	Comptroller
10	Directorate Command Projects
20	Systems Directorate
30	Sensors & Avionics Technology Directorate
40	Communication & Navigation Technology Directorate
50	Software Computer Directorate
60	Aircraft & Crew Systems Technology Directorate
70	Planning Assessment Resources
80	Engineering Support Group

PRODUCT ENDORSEMENT - The discussion or instructions concerning commercial products herein do not constitute an endorsement by the Government nor do they convey or imply the license or right to use such products.

APPROVED BY AGHER J. SALL CAPT. MSC. USN

DATE 15 Guguet 1983

	READ INSTRUCTIONS
1. REPORT NUMBER 2. GOVT ACCESS NADC-81189-60 0133	SION NO. 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtilie) Electro Fluidic Angular Rate Sensor for Ejectro Fluidic Control; A Test and Evalution Report of Dynamic Performance and Cross-Axis Sensitivity	5. TYPE OF REPORT & PERIOD COVER Final 5. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(*) D. R. Keyser, P. E.	8. CONTRACT OR GRANT NUMBER(*)
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TA
Naval Aír Development Center Warminster, PA 18974	62241N, F41400000 ZA610
11. CONTROLLING OFFICE NAME AND ADDRESS AIR-340B	12. REPORT DATE 11 Feb 83
Naval Air Systems Command Washington, DC 20361	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling	Office) 15. SECURITY CLASS. (of this report) UNCLASSIFIED
	150. DECLASSIFICATION DOWN GRADIN SCHEDULE NT / A
17. UISTRIBUTION STATEMENT (of the edefrect entered in Block 20, if dif	rerent from Keport)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse eide if necessary and identify by block Fluidics	k number)
Angular Rate Ejection Seat	
20. ABSTRACT (Continue on reverse eide if necessary and identify by block) Three Hamilton Standard electrofluidic roll measure their dynamic performance and their orthogonal axis. An empirical dynamic mathe- in computer simulation of ejection seat dyna- ported and evaluated. The data were used in for a three-axis angular rate sensor intend an advanced escape system. The predominant is a transport delay of approximately 5 mset	number) rate sensors were tested to sensitivity to rotation about a ematical model is derived for us amics. The test data are re- n part to develop a specification ed for thrust vector control of dynamic response of this sensor
DD 1 JAN 73 1473 & EDITION OF 1 NOV 68 IS OBSOLETE	UNCLASSIFIED
" S/N 0102- LF- 014- 6601	TY CLASSIFICATION OF THIS PAGE (Then Date E

SUMMARY

Background

The need exists for a small, rugged 3-axis angular rate sensor which has an electronic output and has a very short start-up time. The intended application is for ejection seat steering control for the Maximum Performance Ejection System (MPES) Program. Three single-axis electrofluidic roll rate sensors manufactured by Hamilton Standard were tested to measure their dynamic performance and cross-axis sensitivity. This information was used to develop a specification for a combined three-axis angular rate sensor. In addition, the empirical, dynamic mathematical model of a three-axis sensor will be used in NADC computer simulations of seat ejections to refine the system performance requirements and control component design.

Conclusions

The Hamilton Standard design, combined into a three axis sensor, appears to have a high probability of meeting the requirements of advanced ejection seat steering control. The short "readytime", sufficient accuracy, apparently adequate dynamic response, and compatible electrical input/electronic output interfaces make this an excellent candidate for the MPES application.

Recommendations

It is recommended that further research be conducted to develop a three-axis angular rate sensor based on fluidic or fluid dynamic principles. Several such sensors should be fabricated to achieve the performance goals outlined in Ap-

ii

pendix C. These sensors should be tested in NADC Laboratories to validate their suitability for MPES. The tests would include laboratory calibration, dynamic performance, appropriate MIL-STD-810C environmental tests, and ejection seat launches.

TABLE OF CONTENTS

Page

Summary		ii
List of Figu	ures	v
List of Tab	les	vi
Introduction	a	1
Test Plan		2
Dynamic Peri	formance Tests	6
Cross-Axis S	Sensitivity Tests	11
Uncertainty	Estimates	19
Conclusions		21
Recommendat:	ions	22
Appendix A	Dynamic Performance Data	Al
Appendix B	Cross-Axis Sensitivity Data	B1
Appendix C	Preliminary Design and Performance	
	Specification of an Electrofluidic Angular Rate Sensor	C1

LIST OF FIGURES

1.	Superjet Angular Rate Sensor Schematic	2
2.	J_t Alignment for Lateral Velocity Sensitivity Test	4
3.	Jet Alignment for Centripetal Acceleration Sensitivity Test	4
4.	Frequency Response Test Arrangement	7
5.	Frequency Response Analyzer Operational Diagram	8
6.	Gain Responses vs. Frequency of the Three Rate Sensors	9
7.	Phase Responses vs. Frequency of the Three Rate Sensors	9
8.	Gain Response vs. Frequency of the Genisco Rate Table	11
9.	Phase Response vs. Frequency of the Genisco Rate Table	11
10.	Test Installation to Observe Centripetal Acceleration Sensitivity	13
11.	Centripetal Acceleration Sensitivity of SN373	15
12.	Centripetal Acceleration Sensitivity of SN381	15
13.	Error from Centripetal Acceleration vs. "g" Level.	16
14.	Test Installation to Observe Lateral Velocity Sensitivity	17
15.	Lateral Velocity Sensitivity - SN355	18
16.	Lateral Velocity Sensitivity - SN381	18
C1	Rate Sensor Location and Orientation	C3
C2	Sensor Definition	C4

-

LIST OF TABLES

1.	Steady Speed Performance Summary	2
2.	Chain Block Test Plan	5
3.	Dynamic Performance Test Data	12
4.	Uncertainty Estimates	20
A1	Frequency Response Data	A2-A14
A2	Transport Delay Data	A15-A18
B1	Centripetal Acceleration Sensitivity Test Data	B2-B7
B2	Lateral Velocity Sensitivity Test Data	B8-B14

INTRODUCTION

The need exists for a small, rugged 3-axis angular rate sensor which has a very short "readytime" and which has an electronic interface for advanced ejection seat steering control systems. The Hamilton Standard design appears to have a high probability of meeting the requirements of this system.

The "Superjet" electro-fluidic roll rate sensor is manufactured by Hamilton Standard, Farmington, Connecticut, as Part Number 9304100-099. The package includes a pump which directs a stream of helium between two resistive elements. The change in cooling of these elements by the gas stream is sensed to indicate angular rate as shown in Figure (1). The package also includes analog electronics for signal conversion; so all that is required is a ± 15 V.d.c. power supply and a voltmeter to measure the output of the device (± 6 V.d.c.). The only moving mechanical part in the sensor is the vibrating diaphragm pump. This is a ceramic piezoelectric crystal, flexibly mounted around its periphery, which has electrically excited faces perpendicular to the mounting plane. The "Superjet" is exceptionally tolerant to angular rate overranging because such overranging does not produce an internal mechanical force on stops, gimbals, or spin bearings as in conventional rate gyroscopes.

The steady speed and environmental tests were conducted by Martin Marietta and the results have been reported (1)* and summarized in Table 1.

Therein is a recommendation that further investigations of "g-

^{*}Numbers in parentheses denote the corresponding citation in the Reference section.

FIGURE 1 SUPERJET ANGULAR RATE SENSOR SCHEMATIC

sensitivity" or cross-axis effects be conducted. Furthermore, that test program did not include dynamic performance evaluation. The dynamic performance of candidate sensors is required for the computer simulation of seat dynamics currently underway for the Maximum Performance Ejection System (MPES) at NADC. Consequently, it was decided to measure the cross-axis effects and the dynamic performance of these sensors in the Advanced Concepts Laboratory (6013). The three angular rate sensors used during this evaluation were serial numbers 0100355, 0100373, and 0100381, which will be referred to as serial numbers 355, 373, and 381 respectively. This reports presents the results of these tests and evaluations.

TEST PLAN

The tests were organized by a chain block plan as described in chapter 13 of NBS Handbook 91(2). This is an incomplete factorial experimental design in which each sensor is subjected to some of the tests, randomly selected and paired. The pairing allows measurement replication in order to detect unexpected variance in performance. The *ests (treatments) conducted on the sample of 3 single axis angular rate sensors were:

- 1. Frequency response
- 2. Step response
- 3. Transverse Velocity Sensitivity
- 4. Centripetal Acceleration Sensitivity

These tests are described in detail in later sections. Here it suffices to state that frequency and step response are standard techniques for measuring the dynamic behavior of a system. Subsequent analysis of this data results in a

real time mathematical model of the system for use in computer simulation.

The cross-axis sensitivity measurements (tests 3 and 4 above) are designed to detect misinformation. The sensor is mounted on the rate table so that there is in fact no rotation of the sensitive axis. Any output under these test conditions becomes part of the overall error of the device.

In test 3 the sensor is mounted with the jet flow parallel to the axis of rotation and with the sensitive plane tangent to the cylinder of rotation as shown in Figure 2.

Figure 2 Jet Alignment for Lateral Velocity Sensitivity Test

In test 4, the sensor is mounted with the jet flow parallel to the axis of rotation, perpendicular to the rate table surface with the sensitive plane oriented radially so that it is subjected to centripetal acceleration as shown in Figure 3.

Figure 3 Jet Alignment for Centripetal Acceleration Sensitivity Test

These tests may indicate a sensitivity to linear transverse velocity and linear transverse acceleration as well. However, it is the manufacturer's opinion that any observed effects probably result from secondary steady flow patterns established inside the helium vessel. This question could be resolved if necessary by using the ejection tower facility at NADC to conduct linear acceleration tests.

The distribution of the aforementioned tests among the sensors is shown in Table 2.

Test Numl	ber	
355	373	381
1	1	1
2	2	2
3		3
	4	4
	Test Num 355 1 2 3	Test Number 355 373 1 1 2 2 3 4

TABLE 2	2	Chain	Block	Test	Plan
---------	---	-------	-------	------	------

The tests denoted in Table 2 are:

- 1. Frequency response
- 2. Step response
- 3. Transverse Velocity Sensitivity
- 4. Centripetal Acceleration Sensitivity

DYNAMIC PERFORMANCE TESTS

Frequency Response Tests

The frequency response tests were conducted in accordance with ANSI B93.14-1971 (3), using the equipment arrangement shown in Figure 4.

This figure also indicates the data reduction procedures. The sensors were mounted with the centerline of the jet at the center of the table and with the jet flow radially outward.

The SM 2001 frequency response analyser consists of two main sections, a generator and a correlator. The generator section provides the excitation signal to the system-under-test and the correlator section measures the output of the system-under-test and displays the result, as shown in Figure 5. The excitation signal is a voltage sinusoid, digitally synthesized and converted to a continuous signal (1024 points are generated for each sine wave period). The correlator section accepts the analog output from the system under test, converts it to digital form, and multiplies it by in-phase and quadrature references established relative to the generator excitation signal. These products are integrated over a selected number of cycles to produce the Cartesian components of the output signal with respect to the references. Further digital processing is available for conversion to polar form (gain and phase angle) or to log arithmic polar form. The phase angle is always referenced to the nearest principal axis.

The Genisco 1100 series rate-of-turn table (turntable) responds to the analyser generator signal. A built-in tachometer generates a voltage proportional to table speed.

FIGURE 4 Frequency Response Test Arrangement

•

. 4 1

NADC-81189-60

and the second sec

ż

Figure 5 Frequency Response Analyzer Operational Diagram

Data Reduction

Measurements were observed at randomly selected frequencies between 0.5 and 32.0 Hz. The process of extracting sensor gain response and phase lag from the data of the aggregate system is described below.

Gain Response

1. Each measurement was normalized with respect to an average of several readings taken at very low frequency (essentially steady speed).

2. Each of the gain ratios of the aggregate system (turntable <u>and</u> sensor) was divided by the normalized turntable gain ratio at that frequency.

3. These quotients each were divided by the ratio: rate sensor output scale factor to input scale factor of the rate table (both constant). The re-

sulting gains are plotted in Figure 6.

Figure 6 Gain Responses vs. Frequency of the Three Rate Sensors

Phase Lag (°)

1. The phase lag of the aggregate system shown in Figure 4 was observed at each of the test frequencies.

2. From these values the phase lag of the turntable alone was subtracted at each test frequency.

3. The resulting angular difference is the phase response of the sensor.

The phase response of all three sensors is shown in Figure 7.

Frequency, Hz

Figure 7 Phase Response vs. Frequency of the Three Sensors

Gain

It can be seen in Figure 6 that the gain is nearly constant. The average gain of all three sensors over the frequency range is 1.0. It can be seen in Figure 7 that the phase lag increases linearly with frequency. Such a phase response is characteristic of a transport delay, and the delay time can be determined from the slope of this curve by using equation 1.

$$t_{s}(sec) = \frac{Phase Lag (deg)}{f(Hz) 360(deg/rev)}$$
(1)

The turntable gain and phase responses used in the data reduction procedures are shown in Figures 8 and 9.

Transport Delay Test

To verify that the major characteristic of this sensor is a transport delay, this interval was measured directly. The sensor was mounted the same way as in the frequency response tests above.

The test method is simply to cause a sudden change in table speed, observe the change in the sensor output, and measure the time between the two events. For this reason it is called a step response. In fact the sensor responds so rapidly that it appears as a response to a ramp input on the oscilloscope. Nonetheless the time difference between the beginning of the table speed ramp and the sensor output is a valid measure of the transport delay. The sensor output also appeared to be a linear ramp. This test was conducted in accordance with ANSI B93.41-1971 (3) using published procedures and instruments (4). Both increasing and decreasing speed ramps were used, and there was no detectable difference in the observed transport delays between them.

Gain Ratio

Figure 8 Gain Response vs. Frequency of the GENISCO Rate Table

Figure 9 Phase Response vs. Frequency of the GENISCO Rate Table

Table 3 summarizes the mean transport delay time data observed for each sensor using both tests methods.

	TABLE 3 Dyna	mic Performance Test	Data
Sensor SN	Freq. Resp. Delay(msec)	Direct Transport Delay(msec)	Variation at 95% Confidence(msec)
355	4.23	4.28	±0.55
373	4.87	5.13	±1.6
381	5.85	5.34	±0.95

The complete set of dynamic performance data is presented in Appendix A.

The mathematic description of the average roll rate sensor performance recommended for use in computer simulation of ejection seat dynamics is:

$$\omega_{0}(t) = \omega_{1}(t - .00495) \frac{\text{deg}}{\text{sec}}$$
(2)
The LaPlace transform of which is:
$$\omega_{0}(s) = \omega_{1}(s)e^{-.00495(s)}$$
(3)

CROSS-AXIS SENSITIVITY TESTS

These tests are designed to measure misinformation. In these tests the sensor is rotated about an axis orthogonal to its sensitive axis. The ideal sensor would not produce an output under these conditions. Any observed output then worsens the overall accuracy of the sensor. The reason for conducting these tests derives from the intention to combine three of these sensors into a

3-axis configuration for use in the Maximum Performance Ejection System (MPES). In this configuration, these sensors will be subjected to precisely these conditions.

Centripetal Acceleration Sensitivity Test

In this test the sensor is aligned as shown in Figure 3. This may be visualized also from Figure 1 wherein its right-hand side becomes the upper surface of the sensor and the page is aligned along a radius of the table. Figure 10 shows a pair of sensors installed on the angular rate table for this test.

Figure 10 fest Installation to Observe Centripetal Acceleration Sensitivity

This test also may disclose unsatisfactory performance during the high linear accelerations of an ejection.

Testing and Data Reduction

Observations were made up to 2200 deg/sec at intervals of 100 deg/sec in both clockwise (CW) and counterclockwise (CCW) rotation. The table speed and direction were randomly selected for each observation. Sensor outputs were measured with a Fluke model 8600A digital voltmeter, first during rotation and then at rest. The implied angular rate was computed by comparing the two outputs (equation 4).

Implied Angular Rate (deg/sec) = (Rotating Output - Rest Output) my (Scale Factor, mv . sec/deg) The scale factors were approximately 6.0 mv.sec/deg.

This calculation removes the effect of bias error and electronic drift. A selector switch permitted measuring the output of both sensors sequentially without changing turntable speed.

Centripetal accelerations up to 25 "g" were obtained with the installation shown in Figure 10 and with speeds up to 2200 deg/sec. This "g" level covers the range expected in the MPES application.

Centripetal Sensitivity

The test results for SN373 are shown in Figure 11; Figure 12 presents the same for SN381. There are two distinct curves of error as a function of orthogon, speed for each sensor: one for CW and another CCW rotation.

Angular Rate, deg/sec

Figure 11 Centripetal Acceleration Sensitivity of SN373

Figure 12 Centripetal Acceleration Sensitivity of SN381

Error, deg/sec

Comparing the upper curves of the two sensors, it is noted that the one results from CCW rotation while the other results from CW rotation. This might imply that there is a "heads or tails" orientation probability of the fluidic subassembly when it is installed in the angular rate sensor. Since different sensitivities were observed depending on direction of rotation, nothing conclusive can be said about "g" sensitivity. The same centripetal accelerations are obtained at the same speed regardless of which way the table is turning. The larger error curves of the two shown in Figures 11 & 12 are replotted as a function of "g" level in Figure 13. These results lend some credence to the manufacturer's assertion that such sensitivity results from circulating steady

Acceleration, "g"

Figure 13 Error from Centripetal Acceleration vs. "g" Level flow inside the helium vessel. The maximum centripetal sensitivity observed was 1.2% of orthogonal rate in the range of 100 to 500 deg/sec, which is the range of interest for the MPES.

Lateral Velocity Sensitivity Test

In this test the sensor is aligned as shown in Figure 2. This may be

visualized also from Figure 1 wherein its right-hand side because is somethice of the sensor, the jet flow is upward, and the page localize bendle after to the radius of the table. Figure 14 shows the page installed on the angular rate table for this test. The test 445

Figure 14 Test Installation to Observe Lateral Velocity constants

Equation were identical to those used in the centripetal sensitivity to Equation 4 was used again to reduce the data.

Enteral Velocity Sensitivity

The test results for SN355 are shown in Figure 15, and those of the

given in Figure 16. As in the centripetal sensitivity data, there are two distinct curves-one for CW and one for CCW rotation. As before, the upper curve of SN355 describes the data in CCW rotation while that of SN381 portrays the CW direction. Even more interesting, the two sets of curves seem to be mines images of each other. This observation further bolsters the hypothesis that there may be a "heads on tails" manufacturing or assembly of these sensors. The nace

Figure 15 Lateral Velocity Sensitivity of SN355

Figure 16 Lateral Velocity Sensitivity of SN381

lateral sensitivity observed in the speed range of 100 to 500 deg/sec was 0.5% of orthogonal angular rate.

The cross-axis sensitivity data are presented in Appendix B.

UNCERTAINTY ESTIMATES

Estimates of experimental uncertainties were formulated using the methods of ISO 5168 (5). The elemental uncertainty estimates of each component in the measuring system are presented in Table 4. The measurement uncertainties of each of the results reported herein are:

Measured Gain	U≈[U ² (2001) + (2.09σ ² (1100-5)] ^{*2} ≈±2.7%	(4)
Phase Lag	$U = [U^{2}(2001) + (2.09\sigma)^{2}]^{\frac{1}{2}}$ = ±0.1° %2.7%	(5)

Transport Delay $U = \pm 0.2 \text{ms} \pm 3\%$ (6) = $\pm 5.8\%$

ity $U=\pm 0.2mv$ (7) $\approx \pm 5.5\%$ at 100 deg/sec

Projected Accuracy of a Three-Axis Angular Rate Sensor

An estimate of the overall accuracy was calculated for three of these sensors combined into a three-axis device operating in general three dimensional rotation. This estimate uses the empirical results of the calibration and cross-axis sensitivity tests substituted into equation 8.

$$U= B(null bias) + d[U2(primary) + (8) U2(centripetal) + U2(lateral)]1/2$$

$$U=\pm 2 \text{ deg/sec } \pm 3.11[3.22\%^{2} + 1.2\%^{2} + 0.5\%^{2}]^{\frac{1}{2}}$$
(9)
=±2 deg/sec ±10.8‰

TABLE 4 UNCERTAINTY ESTIMATES

•

.

Error Bruce (Name)	Blas from this Source J (ratio) J	Quality of BlasDoes it Result from: / Measurement(M) Theoretical Calculation(C) Reference Handbook (R) Estimate (E)	Sensitivity Coafficient of this Source J J	Number of Observations during Test N	Value of Student's t for (N-1) Degrees of Freedom t _ t (N-1) j 95	Variance of Observations $\sum_{k=1}^{N} \frac{1}{x-x}^{2}$	Estimate of the Least Upper Bound of this Elemental Error $u = 0$ (b $+t \sqrt{a^2}$) j = j = j = j
SM2001	GAIN-0.27%	, I	-	20	2 093	0562242	±_76 2
SM2001 SM2001 GENISCO 1100 RRS #373 TEK Base Base Base Base Base	GAIN dB+.176 Phase ±.10 +3.06% ±6.25% ±3% ±.2DIV \$5atter \$5atter t0.2 msec	IK IK IK		20 20 40 13 20 20 20 20 20 20 20 20 20 20 20 20 20 20	2.093 2.093 2.179 1.95 1.96	.05522% ² , 1.0% ² 1.562% ² 7.836% ² .134DIV ² 11.64% ² t9% ²	+.176dBt0.5% ±.1 ⁰ t2.09% t5.67% t12.4% t0.90iv ±0.2 msec t3.0%

 ł

This is the overall accuracy that may be expected from 95% of a very large sample of uncalibrated three-axis rate sensors. The factor, d, is a statistical correction for the fact that this projection is based on a sample size of only 3 units. This estimate is probably conservative because these three sensors had been shot from cannon previously and had been subjected to numerous environmental tests which tend to degrade the accuracy relative to their "new" condition.

Sensor Specifications

A design and performance specification for the three-axis MPES angular rate sensor was developed based on the data analysis of the test results and on interface and performance requirements desired by the Life Support Engineering Division. This specification is given in Appendix C. It is subject to revision as the MPES requirements become better defined by future testing.

CONCLUSIONS

Three Hamilton Standard electrofluidic single axis angular rate sensors were tested to measure their steady speed and dynamic performance. This sensor design is a strong candidate for use in ejection seat steering control primarily because of its short "readytime", sufficient accuracy, apparently adequate dynamic response, and compatible electrical input/electronic output interface.

Dynamic Performance

The major characteristic time response of these sensors is a transport delay of 4.95 msec ± 1.0 msec, which is to say that a change in the seat angular rate is not transmitted until 4.95 milliseconds later. The gain of the sensors

is nearly unity.

The second important time consideration bearing on the application of this sensor to an ejection seat is its "readytime", the elapsed time between the application of power to the sensor and the delivery of an adequate signal. The "readytime" data were reported (1) for each of the three sensors throughout the expected range of roll rates. The mean "readytime" was 45 ±14 milliseconds.

Cross-Axis Sensitivity

This measure of error in a three-axis configuration of these sensors is $\pm 1.2\%$ of the orthogonal angular rate in the centripetal orientation and $\pm 0.5\%$ in the lateral velocity orientation.

RECOMMENDATIONS

It is recommended that further research be conducted to develop a threeaxis angular rate sensor based on fluidic or fluid dynamic principles. Several such sensors should be fabricated to achieve the performance goals outlined in Appendix C. These would be delivered to NADC for test and evaluation of their suitability for use in the maximum performance ejection system. The test program would include laboratory calibration, dynamic performance tests, ejection seat tower tests, sled tests, and appropriate MIL-STD-810C environmental tests.

REFERENCES

- 1. "Performance Verification of the "Superjet" Laminar Angular Rate Sensor," Curry, B. W., Rp. NADC-80081-60, May 1980.
- 2. "Experimental Statistics", National Bureau of Standards Handbook 91, Natrella, M. G., 1963, USGPO, Washington, DC.
- 3. "Methods of Presenting Basic Performance Data for Fluidic Devices, American National Standard, ANSI B93.14-1971, reaffirmed 1979.
- 4. NADC Technical Memorandum No. ACSTD-TM-2066, "Transport Delay Test Method for Angular Rate Sensors"; Keyser, D. and Dietz, P.; 18 February 1981.
- 5. International Standard 5168: "<u>Measurement of Fluid Flow-Estimation of</u> <u>Uncertainty of a Flow-Rate Measurement</u>", 1978.

Ì,

APPENDIX A

DYNAMIC PERFORMANCE DATA

1

۰.

I.

TEST OF	HAM	LTON	STAN	DARD	RATO	E SEN	SOR 9	13041	00-09	19 SA	101003
TEST ENGINE	u Rolify	IKEY	SAR	25	A DAT	s Co.	A REC	۵	DATE 2/	20. F /	9 a n
TEST EQUIP						Pou	NER SUPPL	8440	7 7	EKTRON	X
Faco	Mar	Caral	<u> </u>	MJOOIP	SIN 5	<u>wj. m</u> f	Raze	SN255	LACACI	<u>P55</u>	<u>03/A</u>
	OUT OUT	RATION	The second secon	RATIO	MEAS	Anne	TAQLE	PHATE	MICHTYG		,
<i>n</i> .	AMPLIT	ABS. PI	crues	NEAS	dB	0	0	L	55 cm	10-3 GEA	4
.0728	A.D.	RI	10	.607	-4.3	-3.2	80	-2.4	.974	1.08	
1.78	60.	RI	10	.567	-4.8	-12.4	-6.275	-6.125	. 910	1.06	
4.54				,515	-5.7	-16.2	-3.825	-12.38	,827	1.15	
6.79	۰ 			.514	-5.7	-18.5	-1.10	-17.4	.825	1.09	
8.65				.536	-31.6	-21.6	-1.10	-225	.860	1.89	
10.4X				.549	-5.1	-25.6	-2.275	- 23.33	.881	1.09	
11.8			 	.569	-4.8	-29.3	-3.625	-25.68	.913	1.04	
13.3				.593	- 4.5	-33.9	-5:45	-28:45	.952	1.05	
14.3				.612	-4.2	- 37. 2.	-7.20	-30.0	.982	1.04	
16.9				.651	- 3.6	-45.4	-11.425	-33.98	1.045	1.01	
20.4		<u>.</u>		.740	-2.5	-57.7	-18.875	-38.83	1. 188	.99	
23.5				.856	-1.3	-73.4	-28.475	-44.93	1.314	. 94	
27.2				1.009	+0.2	-82.8	-45.375	-37.43	1.620	.95	
30.6	60	R2	10	1.19	+1.5	-120.8	-65.80	-55.0	1.910	.91	
30.6			100	1.14	+1.2	-122.1	65.80	-56,3	1.830		
30.6				1.15	+1.3	-120.5	-65.80	-59.7	1.842		• •=
<u>34.4</u>				1.10	+.9	-/53.8	-9397	-5483	1.765	. 83	
37.5				.90	9	-179.1	715.3	-63.8			
27.5	40	<u> </u>	100	- 22	15	-179.3	-115.3	-64.0			
41.0	40			.60	-4.4	-199.3	-130.95	-6835	•		
44.0	•			.60	-9.4	-2/2.7	-138.48	-74,2			
48	4			.41	-7.8	-224.0	-146.92	-79.1			

Table Al-Frequency Response Data

,

.

?

- ;. .

- <u>A</u>2

•

•

Ł

LABOR 4ND-NAD	ATOR)	TEST 45 (3-71)	SHEE	т		ADV	ANCED	Conc	EPTS	6	0134
7887 64	HAM	ILTON	STAN	DARD	RAT	E SEN	STOR C	13041	00-09	9 51	1373
TEST COUIM	KEY	SER.		70	Ro RA	TE FRE	QUENK VER SUPA	Y RETA	23.	SEP 80	2
FREQ. HA	MEAS. OUT OUT ANPLIT	RATION ABS. PT	# f crues	GAIN RAIN RATIO NEAS	GAIN MEAT JB	PAASE Avale	FACTOR TRUE PHASE	RAI34 MEASG SS GAW (mean)	FACTOR GAIN TABLE GAIN	1	
0.1	60.	RI		.599	-4.4	-4,5	(mean)	<u></u>			
0.1		 		.594	-4.5	-4.0		.9490		·	
0,1	60	RI	1	.592	-4.5	-37	-3.14				
0.412	60	RI	10	.599	-4,4	-5.7	ļ				
0.412				.604	-4.3	-6.0	-3.35	.9593	.9563		
0.824				.592	-4.5	-8.2		 			
0.824				.588	-4.5	-8.6	-4.05	.9410	.9746		
1.65				,546	5.2	12.7					
1.65				.553	-5.1	-12.4	-6.20	.8604	.9722		
3.30	60	RI	too	.515	<u>-5.7</u>	-15.7					
3.30				.518	-5.6	7/5.5	-9.80	8238	.9979		
6.60			•	.490	-6.1	19.4					
6.60				.485	-62	-19.0	-17.6	.7775	1.020		
13.2				.542	-5.2	-36.0					
13.2				545	5.2	35.0	-29.4	.8668	.9756		
15.8				564	4.9	-43.5	-33.6	.9000	.9197		
14.0				,629	-4.0	54.9	-39.6	1.0032	.9303		
22.8				.718	-2,8	-68.6	-4315	1.1451	,8795		
27.4				887	-1,0	-88.6	-43.08	1.405	.8651		
7.4				875	-/, /	-869					
32.8				1.034	+0.4	-139.0	-63.25		18903		
32.8				1.012	+0.2	#18		1.632			
3 <u>9.4</u>				.709	-2.9	194.2	-71.8				

!

L

ı.

Table Al-Frequency Response Data

A3

.903
ND-NAC	C-3960/	45 (3-71)				ADV	ANCED	Conc	EPTS	6	0/34
LET OF	HAM	LTON	STAN	DARD	RATE	E SEM	sor g	13041	00-09	9 51	<i>J</i> 37.
	K	EYSER	2	ZE	RORATE	FREE	ESTERN	re	23	SEP	80
ENSCO	1/00-5.9	N2014	ENI	SN2001	S/N.5	Pou DS <u>, HP</u>	ser Jupa, 151	8 8 A 13 4 8 A 13 4	12 13 <u>DVI</u>	<u>4</u>	
FREQ. Hæ	MEAS. Outlut ANAUT	GAIN RATION ABS. PT	#f. crues	GAIN RATIO MEAS	GAIN MEAS JB	PHASE Avale	Factor True Phase	MEASG SS GAW	FACTOR GAIN TABLE GAIN		
9.4	60 -	RI	100	.676	-3.3	196.5	1	1.104	8364		
13.0				.494	-6.1	-215.	-80.0	. 7879	.7602		
'7				802	-1.8	-180.2	D				
27				.869	-1.1	-17.7					
?7				,759	7.3	183.7		1.279	. 8251		
? 7.				.778	-21	181.8	60.4				
5				,953	30	-161.	(36Hz)				
5				.896	-0.9	-166.8		1.446	.8034		
5				,871		-169.0					
3.0				1.027	+0,3	-191.2					
INGE FOR	lo rea	lags		.992	$\overline{\mathcal{O}}$	-143,5		1.559	.8427		
3.0		5	4	.928	70.6	-152.4					
7.4				.884	-1.0	96.6		1.410			
6.0		·		.794	-1.9	-86.6					
.4				.827	-1.6	-89.1					
			_					. 2			
								-13			
								- (x			
								8			
								20			
								23			
								0			

i.

PLATE NO. 20894

.

Table Al-Frequency Response Data

- A4

•

ND-NAD	IC-3960/4	15 (3-71)				FIDE	<u>INCED</u>	LONC	EPIS	(0)	<u>015 r</u>
ST OF	HAM	ILTON	STAN	DARD	RATE	5 SEAL	SOR C	13041	00-09	<u>9 SN</u>	<u>) 3</u> 81
ST ENGINE	en MITY			F	LEA RE	SAMUN		l	DATE 28 OI	-, C.F., 198	Ż
LET EQUIP	HENT				-4:-	Pow	ER JUPA	18A154	12		,
ENALO	1/00-5 y	NX014	1 TH S	MJ00IM	S/N ST	NJ HM	<u> </u>	<u> </u>	<u>יש געוי</u> ר	1	<u> </u>
HR	OUTPUT ANPLIT	RATIO	crues	RATIO	MEAS	FHASE					
.10	2000	R3		.610		-2.0		<u> </u>			
<u></u>	1			.603		-1.8					
				.611		8					
. 15	2000	Rz		.610		8		ļ			ļ
	ļ!	ļ'	ļ'	.6/2	-4.2	-1.0	 		 '		ļ
	ļ′	ļ'	ļ!	.611	-4.2	-1.0			 '		
.25	2000	R3	10	.609	-4.2	-2.0	 	 	ļ	├ ───'	
.50	<u> </u> '	 '	 '	.606	-4.3	-1.9			<u> </u> '	↓'	
. 75				.607	-4.3	-3.0	ļ	ļ	ļ'	L'	
1.00			[]	.606	-4.3	-3.7	 		ļ'	<u> </u>	
1.50	ļ'	ļ	<u> </u> !	.609	-4.2	-5.1	¦'			<u> </u>	
2.00	1500			.609	-4.2	-6.7	ا ــــــــــــــــــــــــــــــــــــ		7	l	L
3.00	1200			.610	-4.2	-/0.0	ļ 		-5.0		
4.30	900	ļ	ļ'	.612	-4.2	-14.2	 		-11.2		
6.10	710	 	ļ!	.610	-4.2	-21.0	 		-20.0	ļ]	
8.50	400	ļ	ļ!	.608	-4.3	-28.4	ا ا		- 27.4	└─── ┤	<u> </u>
2.00	290	ļ'	<u> </u>	.593	- 4.5	-418	ļ!	<u> </u>	-37.8	L	
8.00	200	<i>R</i> 4	100	.60	-4.4	-60.7			-46. 7		
23.00	140	 	<u> </u> !	.70	-3.0	-74.4		 	-48.4		
10.00	50	<u> </u>	 !	1			I	 	 !	·	<u> </u>
29.00	70	 '	ļ!	1.17	+1.4	-118.9	I	 	-28.9	·	<u> </u>
34.00	70			1.00	+ .	-/69.5			-66.5]	<u> </u>

(

Table Al-Frequency Response Data

. A5

.

.

	ATORY	TEST	SHEET	r 		ADVA	ANCED	Conc	EPTS	6	0134
EST OF	HAM	LTON	STAN	DARD	RATE	E SEM	SOR G	73041	00-0	19 SN	381
MCG1	BONEY			<u>F</u> R	EA. RA	دری ا	En Eine	- 90 191	28	OCT,	1980
hennsco	1/00-55	N2014	EMIS	MJOOLA	SN'S	WS, HA	±15V	8A134	43, DV	M	
FREQ. Hæ	MEAS. OUT OUT ANPLIT	GAIN RATION ABS. POT	#f cruer	GAIN RATIO MEAS	GAIN MEAS JB	PHASE					
.1	400 -	R 3	XI	.597	- 4.4	-1.6					
				.597	- 4.4	-1.6			ļ		
•2	400	R3	1	.594	-4.5	-1.8		ļ	ļ	ļ	
				.597	-4.4	-1.4		ļ	ļ	ļ	
				.598	-4.4	-1.9			 		ļ
.4	400	R3	10	.595	- 4.4	-2.6		 	 	<u> </u>	
	ļ			•593	-4.5	-2.7		 			
Ø.7		<i>R</i> 3	10	.593	-4.5	-3.5					ļ
			· · · · · · · · · · · · · · · · · · ·	.593	-4.5	-3.5		 	 		
1.0				.594	- 4.4	-4.7		<u> </u>			<u> </u>
		ļ		.595	- 4.4	-4.4			 	<u> </u>	
1.5	ļ			.592	- 4.5	-6.3					
	<u> </u>			.593	- 4.5	-6.1					
2.0	· 			.598	-4.4	-7.5					
	<u> </u>			.596	- 4.4	-/.8				ļ	
3.0		ļ		.595	-4.4	-/1.5					
	<u> </u>			.596	_4.4	-//.0					
5, 0	<u> </u>			.598	-4.4	-//.5					
2.0	<u> </u>			.549	~ 4.4	-11.8				 	<u> </u>
				.60/	-4.3	-70.6					
2 .			100	125	-26	-90.6				}	
3.0	<u> </u>		/**		- 2.7	- 17.6					
				. 6 30	- 2.9	- 24.0					I

PLATE NO. 20894

Table Al-Frequency Response Data

· A6

.

AND. GEN. I								- Carey		20139	
HTAM	ILTON	STAN	DARD	KAT	E SIE	USOR	9300	4100	-099 1 0475	Sh/	3
MG/	RONA	L		Fre	eq res	0,18-	<u>35 H</u>	4	29	Ocr,	1980
FRER	AMPL.	GAIN PUSINM	* S	CAIN PATTO	Смн dB	φ,			MERTY 9,	GENISCI Ø	DIFF
	nv		CYCLE	KONG			<u> </u>			├	<u> </u>
18	95	R2	100	.66		-50.6			50.3	-13.5	37.3
	<u> </u>			.67	-3.4	-5).7		<u> </u>			-37.7
	<u> </u>	 		.67	-3.5	-50.2	│			 	
				.66	-3.5	-9.B			 		ļ
19	90	R2	100	.69	-3.2	-54.4			53.8	-15	37.8
				.68	-3.3	-54.4				<u> </u>	-37.8
		ļ		.69	- 3.2	-54.4			ļ	 	
	<u> </u>	ļ		.69	-3.2	-52./		· · · · ·	ļ	·	ļ
20	90	R2	100	.72	-2.8	-56.8			57.0	-18	39.0
				.71	-2.9	-56.5				ļ	37.2
		<u> </u>		.71	-2.9	-57.5				 	
	<u> </u>	ļ		.72	-2.9	-57.2			 		
21	85	R2	100	.75	- 2.4	-61.2			60.8	-21	-39. 8
		ļ		.15	-2.4	-60.8		<u> </u>	ļ		- 46.4
		ļ		•74	-2.5	-60.8			ļ	ļ	ļ
				.76	-2.3	-60.4		<u> </u>	·		
22	85	R2	100	.77	-2.3	-45.3			65.3	-23.5	-41.8
	ļ	ļ		.77	- 2.2	-64.6	ļ		· · · · · · · · · · · · · · · · · · ·		-42.0
	ļ			.78	-2.1	-65.1		<u> </u>			
	1	ļ		.78	-2.2	-66.1					
23	85	R2	100	.80	-1.9	-69.1			69.5	- 26	-43.5
				.80	-1.9	-69.1	ļ		ļ		- 43.5
				. 80	-1.9	-69.5					

í

•

• 82 -1.7 - 70,4 Table Al-Frequency Response Data

A7

4AMIL	TON .	STAND	VHRD	RAT	E Six	SOR	9304	100 -	0995	11	38
EST ENGINE				Ŕ	EQ RE	<u>sp 18</u>	-35 /	177	29	Oct , (980
									MEAN Ø,		
24	85	R2	100	.83	-1.6	-74.6			-74.9	- 30	44.9
-				.84	-1.5	-74.2				- 29	-45,0
				. 86	-1.3	-76.9					
				.85	-1.4	-74.)					
25	80	R2	100	.87	-1.1	-77.3			81.1	-32	49.1
				.88	-1.0	-80.7				-32.5	-48.6
				.91	7	-84.8					
				. 89	-1.0	-81.7					
26	80	R2	100	.94	5	-88.6		-	-88.0	- 42	-46.0
				.93	6	- 85.1				- 96.5	-51.5
				-94	5	- 89.5					
				.97	2	-88.5					
27	80	R2	103	. 97	2	-92.0		-	93.2	-45	-48.2
				. 96	3	-92.1				-42	-51.2
				.97	1	-92.8					
				.97	2	-95.9					
28	80	R2	100	1.00	+.1	-101.9		-	101.8	- 57	44.8
				1.00	+.1	- 99.5				-475	-54.3
				1.02	+.2	-102,0					
ť				1.02	+.2	-103.9					
29	B 0	R2	100	1.03	+.3	-110.4			112.3	-65	47.3
				1.07	+.7	-114.8				-54.5	-57.8
				1.05	+.5	-1/2.4					

1.09 **†.8** -111.4 Table Al-Frequency Response Data A8

t

MPMILTDW SITEMODIAL 195/1801/69 30 75 30 75 31 70 32 70 33 70 34 70 32 70 34 70 32 70 33 70 34 70 70 70					CALA	= 9 se, 18	304100-0 7-95 Hz	<u>99 50</u> 29 0	ær f	d
		}						MEAN Ø,		<u></u>
30	75	R2	100	1.15	11.9	-116.2		415.3	- 72	- 4
	1			1.08	+.8	-116.2			-63	-5
		1		1.14	+1.2	-115.6				\square
<u></u>				1.13	+1.]	-113.1				
31	20	R2	100	1.16	+1.4	-/28.3		+127.8	-80	-4
				1.14	+1.2	-133.9			-69.3	59
				1.18	+1.5	-126.6				
				1.20	+1.6	-/22.5				
32	20	R2	100	1.16	+1.3	-141.1		-141.9	-82	-5
				1.18	+1.5	-/43.5			-77,5	6
				1.12	+1.0	- 144.4				
		ļ		1.19	+1.5	-138.8				
33	70	RZ	100	1.17	+1.5	-145.3		-147.3	-93	- 57
	ļ	ļ	ļ	1.16	+1.4	- 145.3			-85	6
	<u></u>	ļ	 	1.15	+1.3	-149.6	·			
	ļ	ļ	ļ	1.14	+1.2	-148.9				
34	70	R2	100	1.09	+.8	-161.3		-159.9	-103	-56
		<u></u>	 	.98	<u> 1</u>	-166.2	╡		- 93	-66
				1.09	+.8	-158.3	┟		L	
	+			1.12	+1.0	~153·B				<u> </u>
35	68	K2	100	,88	-1.1	-175.8		+170.5	-1/0	160
			<u> </u>	.08	-1.0	-///.¶	┨		-:::/	61
				1.07	+.7	-164.1				

.

(

•

•

٠

•.

LABOR	ATORY	TEST	SHEET	r		ADVA	NCED CI	NCEPT	5	6013	4	
TEAT OF HAMIL TEAT ENGINE MCG/A	TON S	TANDA	RD K	<u>PATTE</u>	SÆAD BERVERS	SOR	930	4100	- 090 DATE	<u>a sa</u> Diec	V	= <u>3</u> 8 /
TEST EQUIPI	ient								<u> </u>			-
FREQ HZ.	MEAS. Ampl. mV	САЛИ Балтав	+ CYCLES	GAIN RATIO	GAN dB	Po	$(\mathcal{Q}_{5}^{-}\mathcal{Q}_{6}^{-})$ = \mathcal{Q}_{5}^{-}					3
. 5	1000	R4	10	.54	-5.3	-4.)	-3.9					
1.0	1000	R4	10	.53	-5.5	- 3.1	-2.7			1	-	-
1.5	1000	R4	10	.54	-5.3	- 5.7	-3,5					-
2.0	1000	R4	10	.54	-5.3	-5.7	-4.6					-
3.0	1000	R4	10	.56	-5.0	-9.2	-6.7					-
4.6	1000		10	.57	-4.8	-12.0	-8.7					-
50	700	R4	100	.53	-5.4	-9.1						-
5.0	700	R4	100	55	-5.2	-16.9	-11.8					-
6.0	600	R4	100	.57	-4.8	-19.8	-13.8					
7.0	500	RU	100	.59	-4.5	-23.2	-15.7					-
8.0	500	R4	100	. 61	-4.2	-27.4	-17.5					_
9.0	460	R4	100	.60	- 4.4	-29.3	-18.9					_
10.0	400	R4	100	. 60	-4.4	-32.2	-21.4					_
11.0	370	Ry	100	158	-4.7	-36.6						_
11.0	300	Rч	100	.55	- 5.2	- 34.9	-22.5					_
12.00	250	R4	100	.74	-2.5	-38.8					_	_
13.00	250	R4	100	.75	-2.4	-44.6						_
14.00	200	R4	100	.50	-6.0	-44.7	-30.0	·····		 	_	
				. 48	-6.3	-45.3						_
16.00	200	R4	100	.52	-5.6	-49.9	-31.4					_
19.00	150	R4	100	.58	-4.7	-61.5	-41,3		ļ			-
22.00	150	R4	100	.64	-3.8	-74.6	-46.7				-	_
25,00	120	R4	100	1.01		-95.8	-61.7					_

•

÷

Table A1-Frequency Response Data

.

.

. A10

-

LOT OF). (2		2 2	_		\sim	_
HAMI	LTON S	TYNDA	ng K	ATE S	SAISOR		1 304 /	00 - 0	099	5/N	3
19616	BONGY								11	DEC 8	8
EST EQUI	THE RT										
REQ	Mists. AMOL	BAIN' SETTING	#5	GMN	Gois	Ø.	$(\phi_r - \phi_c)$				
H2.	un V		CYCLES	KATTO	an		= Øs				
27	90	Ry	100	1.0	0	-1/0.9	-69.6	 	ļ		
28	80	R4	100	1.2	41.4	-110.2	-60.2				
29	75	Ra	100-	1.1-	+.7	- 109:4					
36	75	R4	100	1.3	+2.3	-/20.3	- 55.1				
32	70	Ry	100	1.4	+2.7	-143.3	- 69.6				
<u>.</u>					ļ			 			
	<u> </u>										
					 						
					ļ	ļ					
		 		 	 						
	<u> </u>	ļ			 	 					
	┨										
	<u> </u>			 	 	 		 	 	 	
	<u> </u>				ļ						
						 				 	
	1	ļ		ļ	 			 		 	
		 		 		ļ					
	ļ			1	[1	1		Ì	1 ł	

Table Al-Frequency Response Data

•

.

A11

.

.

LABOR		TEST	SHEE	r]	ADVA	NCED	CON	CÆPTS	. 1.3" 60,	34
HAMI	LTON S	STANDA	res R.	4TE Se	ASOR	# 9	3041	00 -	099	SN	38
MCGIN	icca BBN/EY			0	SERVERS				DEC	1,198	U
TEST EQUI	PHENT										
FREQ A 2	ATENS. OUTAN AMPL ThV	GAIN SETTUG	# 5 CYCLES	GAIN RATO	GAIN JB	P.	Ψ,	\$7 - \$c = \$\$	GAIN ROTTO	GAN .	.6375
• 5	70	R3	10	.59	- 4.5	- 4.3	-4.2	9	,580	.148	1.016
				.57	- 4.8	-4.4					
	T			.58	- 4.7	-3.9					
1.0				.59	- 4.6	-8.7	-8.26	-3.21	.587	.673	1.056
				.58	- 4.8	-7.4					
				,58	-4.7	-8.7					
1.5.				.54	- 5.3	-9.4	- 8.6	-2.3	.553	.649	1.018
				.55	-5.1	-8.2					
				.57	-4.8	-8.2					
2.0				.61	- 4.2	-13.1	-11.6	-6.3	,557	.678	1.064
				.53	-5.5	-10.9					
				.53	-5.5	-10.9					
3.0				.51	-5.7	-14.5	-14.03	- 8.0	.510	.670	1.051
				.51	-5.7	-14.0					
				.51	-5.8	-13.6					
4.0			100	.51	- 5.8	-14.7	-13.3	-9.05	.513	.643	1.08
				.50	-6.1	-13.8					
				.53	-5.5	-11.4					
5.0	<u> </u>			.52	-5.7	-13.8	-14.9	-12.9	,517	.714	1.12
			 	.51	- 5.8	-14.7	t	 			
			 	.52	-5.6	-16.2					
											<u> </u>

and the second se

Table Al-Frequency Response Data

A12

-

-

:993

HAMIL	RON S	TANDA	es Ri	ATE S	, FNS OR	× #9	30410	00 - 09	9 5/	N	38
MCGIB	DALEY			0	SERVERS	·			DEC	1, 14	<i>î80</i>
FRāR +z	Ampe m V	G AIN RATO SIZITING	#S cyclas	GAW RATO	GAIN dB	¢.	φ _τ	$(\phi_{\tau}-\phi_{c})$	GANN RATIO	GOTUS GAIN G	.637
6.0	70	·R3	100	. 50	-6.0	-15.0	-16.2	- 14.2	.523	.707	1.104
				.55	-5.2	-16.9					
				.52	-5.5	-16.6					
7.0				.53	-5.5	-16.9	-17.5	-15.67	.517	.676	1.010
				. 53	-5.5	-18.5			 		
				.51	-5.8	- 17.6					
8.0				.51	-5.8	-18.8	-20.3	-18.3	.513	.651	1.02
				.52	-5.7	-20.9					
				.51	-5.7	-21.1					
9.0			[.51	-5.7	-22.2	-22.5	.20.5	. 513	.642	1.007
	T			.52	-5.6	-23.0					
				.51	-5.7	- 22.2					
0.0				.52	-5.6	-24.8	-24.6	-22.1	.523	.635	.991
				.52	-5.6	-26.2					
				.53	-5.4	-26.8					
11.0				.53	-5.5	-28.0	-28.9	-25.3	,543	.641	1.003
				.55	-5.0	- 29,2					
				.55	-5.1	-29.5					
12.0				.54	-5.3	-32.6	-31.7	-26.75	.550	.628	.98
	1			.56	-5.0	-30.7					
14.0	1	<u> </u>	1	.59	-4.5	-36.5	-36.7	-29.1	.575	.623	.47
	1			c/	450	-368					

Table Al-Frequency Response Data

.

.

· A13

.

HAMI	L/DK'	STANL	SARI	RAT	= SEA	(S00 1	# 930	4100	-099	SIN	38
CAT ENGIN	BANEL	,		0.0	SERVERS			•	DATE	1.19	80
EST SQUIP	NENT							··			
							Φ _r	(Ø, · 40) · Øs	GAIN ROTTO	GATNE	
16.0	70	·R3	100	.60	- 4.4	- 42.5	-43.7	-33.1	.605	,624	.979
				.61	- 4.2	- 44.9					
18.0	-			.63	-3.9	- 50.6	-50.3		.135		
				.64	-3.7	-49.9					·····
20.0	<u> </u>		 	.68	- 3.3	-57.4	-57.7	-39.3	.180	.581	.911
	L			.68	- 3.3	-58.0					
22.0			ļ 	.75	-2.4	-68.5	-67.9	-45.5	. 740	,572	. 897
		ļ	ļ	.73	-2.6	-67.4					
24.0		ļ	ļ	.80	-1.9	- 78.9	-78.0	-48.65	.810	.559	<u>877</u>
	ļ		ļ	.82	-1.7	-77.2					
26.0	<u> </u>		ļ	.91	7	-87.4	-86.6	-50.0	.895	.556	. 872
	<u> </u>	<u> </u>	 	.88	-1.0	- 85.8					
28.0				.98	/	-100.4	-98.8	-49.8	.975	,551	.864
	<u> </u>		ļ	.97	3	- 9 7.3					
30.0			ļ	1.07	+.7	-/ [9.]	+116.8	-54.0	1.065	.589	.923
	ļ		ļ	1.06	+.5	- [14.5	<u> </u>				
32.0			 	1.09	+.8	-153.5	-148.6	-74.9	1.033	.607	.45%
<u></u>	 			1.03	+.3	- 14-7.0					
	 			.98	<u> </u>	- 145,4					<u> </u>
	<u> </u>	<u> </u>	 							۰ ۱	
		<u> </u>	<u> </u>								<u> </u>
	 	╂	 		 						

Table Al-Frequency Response Data

.

.

.

A14

•

1	HAMIL	TON_	STRA	DARD	RAT	TE SE	ENSOR	93	0410	0-09	9 S	Y 34
-	KEY	SER			T	PANSP ETRON	ORT	751 AV	TIME	230	CT I	981 Deca
Ģ	ENISCO	<u>, 110</u>	0-5.5	W 201	4 =	P +	· Sop	× 3N 5	127 ±4	<u>Aas</u>	1.8A	124
5	S FEE D CHANGE	SLOPE TIME DIV	Soque 'X' TAGLE	scale 'x' RRS	Δχ	SCALE 'X' TABLE	scale 'X' RRS	△X				
- ^د	UP	Ims	2.7	6.8	4.1				TT	TACH	PRED	(5
_	UP		1.2	5.1	3.9				2.	B DIV	SIDNS	_/
_	UP		2.4	6.8	4.4				(2	V/DIV		
	UP_		1.3	5.6	4.3							1
	υP		3.0	7.3	4.3				A 55A	SOR DIVI	510115	\square
y) _	DN		0.8	5.0	4.2	·			34	0-400	Vsec.	\square
	UP		3.5	7.8	4.3				6	20/01	(1	\square
	DN		1.9	6.3	4,4							
-	UP		0.0	4.5	4.5							
_	DN		6.4	10.0	3.6							
-	DN		3.5	8.0	4.5							
_	DN		2.6	6.9	4.2		•	$\overline{\Delta X} =$	4.	283		
	DN		3.5	8.0	4.5			<u> </u>	.27	54	(n-1)	ļ
_	UP		0.1	4.3	4.2			σ =	.26	9	(m)	
_	UP		1.6	6.2	4.6			V =	,072	4		
_	UP		5.0	9.6	4.6			 				ļ
_	DAI		1.0	4.8	3.8			TRAN	PORT	lay=	4.283	±.,
_	UP		4.4	8.6	4.2				95%	inf		ms
	UP		4.9	9.2	4.3				 	±13	20	<u> </u>
	DN		1.5	6.6	4.1			 				ļ
мь ; 	ĎŊ		5.2	9.6	4.4							
	DN		1.8	6.6	4.8		<i>m</i> =	22				

A15

.

LABOR	ATOR) C-3960/	1 TEST 45 (3-71)	SHEET	r		ADVA	NCE) CO	NCEP	15 6	0134
TEST OF HAMIL TEST ENGINE		STRA	DARD	Raz	TE SA	ENSOR	9	30410	0-09	9 SI	1373
TEST EQUIPS	IENT			'// 7E	CTRON /	<u>ori</u>	38	3 1			
GENISCO	> 110	0-5 S	N 201	4 4	P +	<u>^ Sor</u>	S JN S	927 -	BAIM	1.8A	343
	Scope TIME Div	Soque 'X' TAQLE	SCALE 'X' RRS	۵X	SCALE 'X' TARLE	scale 'X' RRS	\$				
1	Ims	3.6	8.5	4.9		 	f				L
Z		1.5	6.0	4.5				1.8	SIGN OIV:		Ll
3		3.8	7.4	3.6				0.40	0 - 55	c	
4		1.2	5.8	4.6				5 14	13/01		
5		4.6	8.5	3.9				SENS	OR SIG	NAL	h
6		5.0	9.3	4.3	·			50	V1510	AIS	
7	1	4.8	9.1	4.3				1 100	-7/51	30- N.	
ê		0.7	5.8	5.1							
9	1	1.5	6.1	4.6							
ĸ		4.3	8.5	4.Z				Ì			
)]		3.6	8.0	<u>4</u> .4				$\overline{\Delta X} =$	5.13	MAEL	
12	ĺ.	4.5	8.7	4.2				= 0-	.80Z		
13		2.2	6.8	4.6				V =	.643		
14		3.8	8.2	4.4				<u> </u>			
15	<u></u>	77	7.0	5.3		TRANS	PORT	DELAY	= 5.13	± 1.57	MSEL
14		3.5	9.0	5.5							
7		·1.4	6.5	5.1							
18		1.2	6.7	5.5							
19		3.4	9.5	6.1							
za		Z,8	9.0	6.2			 				
ZI	ĺ	3.6	4.8	5.2							
ZZ)	3.7	8.9	5.2							
23	1	1.5	7.2	5.7		n=	1.96				

A16

	SER	STRA	DARD	RAT	ZE SE STAVERS PANSO	ENGOR ORT (93 DELAY	0410 TIME	0-09	9 S. DCT. 1	¥ 37 980
TEQUIP		0-E 6	1, 201		ETRON /	× Scot	38	3 H.	P. POWA	A Sul	1347
	Store TIME DIV	Soque 'X' TAGLE	Scale 'X' RRS	Δχ	SCALE 'X' TABLE	SCALE 'X' RRS	۵\$				
24	Ims	0.0	6.1	6.1							
25		2.3	8.Z	5.9							
26		1.5	7.3	5.8							
27		2.1	8.4	6.3					L	<u> </u>	
28		0.8	6.5	5.7					ļ	ļ	<u> </u>
29		2.9	9.5	6.6	•						ļ
30	•	1.4	7.4	6.0							<u> </u>
					 					ļ	_
									<u></u>		ļ
•	· .							ļ			
										 	ļ
						`			 		ļ
	 									 	
							·····				
		ļ			ļ		 				ļ
		ļ					 	 		 	
		ļ					 				
	 						 			 	
			ļ	 				 			┣
	 			 							
		 		 							
		 									

Į

ł

TEST OF HAM		STRA	DARD	Raz	TE SE	Ngor	93	0410	0-09	9 51
KE	4SER_	<u>. </u>			PANSA	ORT () FLAY	TIME	240	
FERIS	CO 110	0-55	IN 201	4	ETRON /	× 507	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	> 4.1 127 ±/4	RAI34	L SOL
	Stope TIME DIV	Scale 'X' TAGLE	SCALE (X) RRS	ΔΧ	SCALE 'X' TABLE	scale 'X' RRS	△X			
VP	Ims	1.6	7.6	5.0				TA	СН	SIGNA
UP		1.4	6.2	4.8				4	יטוס	SIONS
DN		2.0	7.0	5.0				0	9 - 30	1/550
DN		4.5	9.2	4.7					5070	
UP		3.5	8.8	5.3				SA	NCOR	SIGN
DN		4.0	B.8	4.8				3,	6 DI	115100
UP		3.0	9.0	6.0				0-	300 %	SEC
DK'		1.5	6.0	4.5			- <u>-</u>	0.5	1/01	Y
UP		2.0	8.0	6.0						
DN		,5	6.0	5.5			, 			
UP		3.0	8.5	5.5						
DN		0.0	5.5	5.5			JX =	5.35	5.33	
DN		0.0	5.0	5.0			<u>()</u> =	. 479-	7 . 46	Z
UP		2.0	8.0	6.0			σ=	.517	, 504	
DN'		0.0	5.0	5.0	 		V=	. 218	6	
DN		2.0	7.5	5.5			·			
UP		3.5	9.0	5.5	tr	rgartd	eby =	5.34 ±	.95	mec
UP		3.0	9.5	6.5		V	J			
UP		2.0	7.5	5.5					 	
DN		00	6.0	6.0						ļ
<u>DN</u>		0.•	6.0	6.0					 	
_	1					n=	20			

.....

•

_ **A18**

and the second

)

ş

APPENDIX B

CROSS-AXIS SENSITIVITY DATA

.

					·		·····		·	_					
LABOR	ATORY C-3960/4	TEST	SHEET	Г		AQVANC	EN C	ONCE	OTS						
TEST OF				1 P.											
EST ENGINE	ET LE	NTKI	-00/+1		SERVERS	FFCC	1		DATE						
Рн	IL DI	ETZ		SN	1 - 37	3	5N Z -	381	1-2	1-81					
ENISCO	1101-5	SN ZON	1/TECHT	RONIX	BS 50	A/ FL	UKE E	3600A	<u>5N 9</u>	7146					
		SENSE	SR 1	1-101100	6 0015	0.0000 - 00	SEN	ISOR Z		LANDINGS	11055				
ATE OF RATION	KLELER Ft/sec	SIGNAL MV	REST	ROLL RATE	AXIS EFFELT	ROTATION VSEC	ALCELER Ft/SEC2	MV	AT REST	ROLL RATE 0/SEC	ATIS EFFECT				
100	1.78	-4.9	Z. Z	0.99	0.99	100	1.78	3.0	1.3	-0.28	0.28				
200	7.10	-11.6	2.5	2.3	1.1	200	7.10	4, [1.0	-0.50	0.25				
300	16.0	-18.8	2.6	3.5	1.2	300	16,0	5.0	9	-0.67	0.22				
400	ZB4	-25.9	2.6	4.6	1.2	400	78.4	5.3	0.9	-0.72	0.18				
500	44.0	-32.3	z.8	5.7	1.1	500	44.0	4.8	0.7	-0.67	0.13				
600	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
700	87.0	-44	3.0	7.6	1.1	700	87.0	4.1	0.4	-0.60	0.09				
800	114	-49	z .9	85	1.1	800	114	3.7	0.5	-0.40	0.05				
900	144	-55	3.0	9.4	1.0	900	144	Z.6	0.4	-0.36	0.04				
1000	178	-59	z.7	10.1	1.0	1000	178	1.3	0.3	-0.16	3.0Z				
1100	215	-64	2.B	10.9	0.99	1100	715	0.1	0.4	0.05	0 00				
1200	256	-65	. 2.6	11.1	0.92	1200	256	-2,3	0.3	0.42	0.04				
1300	300	-66	Z.7	11.2	0.86	1300	300	-4.1	0.3	0.72	0.06				
1400	ઝાક	-69	2.6	(1.7	0.84	1400	348	-6.4	0.3	1.1	0.08				
1500	400	-72	z .3	12.2	0.81	1500	400	- 8.6	24	1.5	0.10				
1600	455	-76	Z . Z	12.7	0.79	1600	455	- 11.0	0.5	1.9	0.12				
1700	513	-79	z.3	13	0.77	1700	515	- 13.9	0.4	2.3	0.14				
1800	575	-82	2.0	14	0.76	1800	575	-17.1	0.4	2.8	0.16				
1900	લ્મા	-86	Z.0	14_	0.75	1900	લ્મા	- 20 Z	0.6	3.4	0.18				
2000	710	-89	7.0	15	0.74	2000	710	-23.9	0,6	40	0.20				
2100	783	-92	Z.O	15	0.73	2100	783	- 27	0.7	4.6	0.22				
2200	860	-96	1.5	16	0.72	2200	୫୦େ	-31	1.0	5.2	0.24				

Table Bl-Centripetal Acceleration Sensitivity Test Data B2

				-	1	LABORATOR	T			(\mathcal{M}		
4ND-NAD	ATORY C-3960/4	TEST (3-71)	SHEET	r		HOVANC	EDC	LONCE	PTS	•			
TEST OF	ET CE	NTRI	=UGA1		235 F	FFEC	r		<u></u>				
TEST ENGINE	ER N			00	SERVERS	- 7			DATE	- e)			
TEST EQUIP	ALU MENT	151-5		<u> </u> 5N	1 - 3	73 4	<u>5N Z-</u>	381		12.0	• 		
GENISCO	1101-5	SN ZOI	1 / TECHT	RONIX	R 50	3A/FL	UKE E	3600A	<u>9 אז</u>	7146			
RATE OF	INDUCED	JENSE	JK I	IMPLICO	CROSS	RATE OF	INDUCED	SOK Z	SIGNAL	IMPLIED	CROSS		
ROTATION	ACCELER	mV	REST	ROLL	ANS	ROTATION	ALCELER	mV	REST	ROLL RATE 9/4EC	EFFECT		
100	1.78	2.6	-4.2	- 1.1	1.1	100	1.78	10.7	12.7	0.34	0.34		
200	7.10	8.9	-4.3	- z. l	1.1	200	710	7.6	1Z. 0	57.0	0.36		
300	16.0	141.0	-4.2	- 3.0	0.99	300	16.0	5.9	12.7	1.1	0.37		
400	28.4	18.6	- 4.1	-3.7	J.92	400	Z8.4	2.0	12.1	1.6	0.41		
500	44.0	23.1	- 2.6	11.2	2.2	0.45							
600	0 63.9 25.7 -4.4 -4.9 0.82 600 63.9 -6.5 11.3 29 0.												
700	87.0	26.9	-4.2	-5.1	0.72	700	87.0	-9.3	12.2	3.5	0.50		
800	114	28.3	-4.1	-53	0.66	800	114	-14.3	12.0	4.3	053		
900	144	29.1	-4.1	-5,4	0.60	900	144	-18.4	12.5	5.0	0.56		
1000	178	29.5	-4.1	-5.5	0.55	1000	178	-24,2	12.3	5.9	0.54		
1100	215	<u> 289</u>	-4.1	-5.4	0.49	1100	215	- 30	12.1	6.8	0.62		
1200	256	29.0	-4.Z	-5.4	0.45	1200	256	-38	11.8	8.1	0.63		
1300	300	28.4	-4.6	-5.4	0.41	1300	300	-45	11. 2	8.9	0.69		
1400	348	25.4	- 4.0	-4.8	0.34	1400	348	-50	11.9	10.1	0.72		
1500	400	23.3	-4.0	-4.5	0.29	1500	400	-57	12.6	11	0.76		
1600	455	22.7	-4.7	-4.5	0.29	1600	455	-67	11.4	13	0.79		
1700	513	17.6	- 4.0	-3.5	0.21	1700	515	-72	12.7	14	0.81		
1800	575	14.5	- 4.0	-3.0	0.17	1800	575	-BZ	12.3	15	0.85		
1900	641	12	-4,9	- 2,7	0.14	1900	641	- 94	11.6	17	0.91		
2000	710	6	-4.0	-1.6	0.08	2000	710	-100	12.2	18	0.91		
200	783	0	-4.1	-067	0.03	2100	783	-111	12.2	20	0.95		
2200	860	5	-4.5	- 1.5	<u>)</u> . 07	2200	860	-125	<u>U.B</u>	22	1.0		

PLATE NO. 2099 Table B1-Centripetal Acceleration Sensitivity Test Data B3

										$c c \omega$	'
LABOR	ATORY	TEST	SHEET	r	ł	LABORATOR	17	-			ن و ع
4ND-NAD	C-3960/4	45 (3-71)			·	AUVANC	EI	ONCE	PTS		
	ET CE	NTRI	=UGAL	- CR	>>> E	FFEC	<u>r</u>				
TEST ENGINE	PHIL	DIETZ	•	08 5N	servers 1 - 37	83 4	5N Z - '	381	DATE	22-81	1
TEST EQUIP			. /						<u> </u>		
	1101-5	SENSO	DR 1	RONIX	15 501	5 A/ PL	SEN	<u>3600 A</u> 150 R 7	<u>5N 9</u>	7146	
RATE OF	INDUCED	SIGNAL	SIGNAL	IMPLIED	CROSS AXIS	RATE OF	INDUCED	SIGNAL	SIGNAL	IMPLIED	CROSS
ROTATION	Ft/sec	mV	REST MV	RATE	EFFELT	4SEC	ft/sec	mV	REST	RATE %SEC	EFFELT
100	1.78	-8.7	-1.2	1.2	1.2	100	1.78	5.4	3.7	-0.28	0.28
200	7.10	-15.9	-1.0	z.4	1.2	200	7.10	6.3	3.4	-0.47	0.2.1
300	16.0	-23.6	-0.8	3.7	1.2	300	16.0	7.7	3.8	-0.63	0.71
400	28.4	-31.2	-1.0	4,9	1.2	400	28.4	7.5	2,9	-0.75	0.19
500	લન્ ન	- 37.3	-0.3	60	1.2	500	યન. ન	8.5	3.5	-0.81	0.16
600	63.9	-44	-0.7	7.0	1.2	600	63.9	74	2.6	-0.78	0.13
700	87.0	-49	-25	7.B	1.1	700	87.0	6.8	Z. Z	-0.75	0.11
800	114	-54	-0.2	8.B	1.1	800	114	70	3,2	-0.60	0.08
900	144	-60	-0.6	9.6	1.1	900	144	6.1	z.9	-0 52	0.06
1000	178	-65	-0.5	10.4	1.0	1000	178	4.5	z.8	-0.28	0.03
1100	215	-69	-0.B	11	0.99	1100	Z15	2.7	2.6	-0.02	0.00
1200	256	-69	-0.5	11	0.92	1200	256	1.4	27	0.21	0.02
1300	300	-70	-0.7	11	0.86	1300	300	-0.5	2.8	0.54	0.04
1400	348	- 73	-0.3	12	0.85	1400	3HB	-3.Z	7.1	0 86	0.06
1500	400	-76	-0.3	12	0.82	1500	400	-5,1	3.0	1.3	0.09
1600	455	-80	-0.4	13	0.81	1600	455	-8.3	2.3	1.7	0.11
1700	513	-84	-0.3	14	0.80	1700	513	-11.0	1.8	2.1	0.12
1800	575	-87	-0.3	14	0.79	1800	575	-14.0	1.9	2.6	0.14
1900	641	-89	-0,3	15	0.76	1950	6-11	- 17	2.7	3.3	0.17
2000	015	-92	-0.5	15	0.75	2000	710	-z1	2.5	3,9	0.20
2100	783	-95	-0.1	16	0.74	2100	783	-24	25	4.4	0.21
2200	860	-99	-0.Z	16	0.73	2200	860	-27	2.3	4.7	021

• •

PLATE NO. 2099 Table B1-Centripetal Acceleration Sensitivity Test Data B4

	ATOR) C-3960/	f TEST 45 (3-71)	SHEE	Г		LABORATO	(/AL)C	en i	MAC	EPTS
TEST OF	JET	- Cen) TRI F	TUGA	L CR	055	EFFE			
TEST ENGINE	^{En} Ka	Eysel	ى	0	SN 3	73	5N 3	781	DATE /-22	-8121-23
TEST EQUIPH	ENT	DATA	Ren	UCTIO	N		<u> </u>			
RATE of			-ccw-	-373	CW	4 557-555	CCL	J 3	81 cw	
deg/sec	Normal Accel ft/sec	Normal Accel.	deg/sec	deg sec.g	deg/ sec	deg sec.g	deg/		deg/ Sec	
100	1.78	.055	1.2	21.8	- 1.1	20.0	-0.26		.36	
200	7,10	.22]	2.5	11.31	-2.2	-9.95	49	ļ	.73	
300	Ka. Q	.497	3.8	7.64	-3.0	5.03	65		1.1	
400	28.4	.882	4.9	5,55	-3.7	-4.19	80		1.6	
500	44.0	1.37	6.0	4.38	-4.3	-3.13	80	 	2.2	
600	63.9	1.99	7.2	3.6	-4.8	-2.4	-,81		2.8	
700	27.0	2.70	8.1	3.0	-5.1	-1.88	73		3.5	
800]14.	3.54	8,9	2.5	-5.3	-1.49	61		4.2	
900	144.	4.48	9.9	2.2	-5.4	-120	49		5.0	
1000	178.	5.53	10.7	1.93	-5.5	-1.0	29		5.9	
1100	215.	6.68	11.2	1.67	-5.4	-808	05	, 	6.8	
1200	256.	7.96	11.2	1.40	-5.4	-, 67	+.18		7.8	
300	300.	9.32	11.4	1.22	.5.2	-56	+,59		2.9	
1400	348	10.8	12.	1.11	-4.9	45	+,88		10.1	
1500	400	12.4	12.	.97	-4.6	-,38	1.3		11,2	
1600	455	14.1	13.	,92	-3.8	27	1.7		12.5	
1700	513	15.9	14,	.88	-3.6	23	2.2		14.0	
1800	575	17.9	14.	.78	-3.1	-,17	2.7		15.4	
1900	641	19.9	15.	.,5	-2.5	12	3.3		17.0	
2000	710	22.0	15.	.68	-1.7	077	3.9		18.	
2100	783	24.3	16.	.67	-1.0	041	4.4		20.	
2200	860	26.7	16.	.66	-0.16	005	4.9		22.	

A second second second

PLATE NO. 20894 Table B1-Centripetal Acceleration Sensitivity Test Data B5

	ABORATORY TEST SHEET LABORATORY CW ND-NADC-3960/45 (3-71) CW														
4ND-NAD	ATORY C-3960/4	' TEST 15 (3-71)	SHEET	Γ		HOVANO	ED C	ONCE	PTS	. C	-				
TEST OF		NTPIN		<u>C</u> RI	055 E			<u>-</u>							
TEST ENGINE				08	SERVERS				DATE		<u>_</u>				
	L DIE	TE		ISN	1 - 3	13	5N Z-	381	1-2	3-81					
GENISCO	1101-5	SN ZOIL	1/TECHT	RONIX	PS 501	A/FL	UKE E	<u> 6008</u>	<u>9 אז</u>	7146					
ATT OF	NOVED	SENSE	SR 1	IMALIEC	100055	PATE OF	SEN	ISOR Z	SIGN AL	I MAL IFO	CROSS				
ROTATION	ACCELER	SIGNAL	REST	ROLL	ATIS	ROTATION	ALCELE?	SIGNAC	AT REST	RULL	AXIS				
- 9/ TEL	7956	mv	<u> </u>	9/3EC	70	TSEC	170		· ~ ¬	-7326	70				
100	1.78	4.3	- 2.3	-1.1	1.1	100	1.48	63	8.7	.30	0.36				
	7.10	10.7	-2.5	-2.2	1.1	200	7.10	3.8	8.3	73	0.37				
300	16.0	16.1	-2.5	-3.0	1.0	300	16.0	1.0	0.8	-1.1	0.38				
400	28.4	204	-2.2	-3.7	.93	400	28.4	-1.2	8.9	1.6	0.41				
500	44.0	4.0 24.3 -2.3 -4.3 .86 500 440 -5.1 8.3 2.2 0.44													
600	63.9 27.3 - 2 2 - 4.8 .80 600 63.9 - 8.7 8 6 Z B 0.47														
700	87.0	7.0 29.1 -2.4 -5.1 .73 700 87.0 - 13.5 8.0 3.5 0.50													
800	114	30.1	-2.2	-5.3	.65	800	114	-17.4	8.6	4.2	0.53				
900	144	31.0	-2.1	-5.4	.60	900	ानन	-22	8.7	5.0	0.56				
1000	178	31	-2.5	-5,5	.55	1000	178	-28	8.1	5.9	0.59				
1100	215	31	- Z. I	-5.4	.45	1100	215	-33	8.9	6.8	0.62				
1700	256	31	- 2.2	-54	.45	1200	256	-40	8.0	7.8	0.65				
1300	300	30	- z.4	-5.2	.40	1300	300	-47	7.6	8.9	0.69				
1400	348	27.6	-2.0	-4.9	.35	1400	348	-53	8.6	10.1	57.0				
1500	400	25.6	- 2.1	-4.6	.30	1500	400	-61	8.4	11.2	0.75				
1600	455	23.4	-2.1	-3.8	.24	1600	455	-69	8.4	12.5	0.78				
1700	513	1 9 ,9	-2.1	-3.6	. 21	1700	513	-77	8.5	14.0	0.8Z				
1800	575	16.8	-2.3	- 3, 1	.17	1800	575	-87	7.7	15.4	0.86				
1900	८५।	12.8	-7.3	-2.5	.13	1900	641	-96	8.0	17	0.89				
८००८	710	8.5	-2.2	-1.7	.09	2200	710	-105	7.8	18	0.92				
2100	783	4.0	-22	-1.0	. 05	2100	783	-115	7.7	20	0.95				
2200	860	-15	-2.5	16	.01	2200	860	-126	7.9	22	0.99				

PLATE NO. 20394 Table B1-Centripetal Acceleration Sensitivity Test Data B6

LABOR	ATORY	TEST	SHEET	r	ļ		v 	·	074	C	LW -
TEST OF	C-3960/4	45 (3-/1)				HUVANC	ED C	JONCE			
<u> </u>	T CE	NTRI	=JGAL	- <u>CR</u>	>>> E	FFEC	<u>г</u>				
TEST ENGINE	SHIL	DiE	TZ	SN	<u> -3</u>	73	5N Z-	381	DATE -	23-8	1
SENISCO	1101-5	SN ZOIN	1/TECHT	RONIX	BS SOT	A/FL	UKF F	SGOCIA	5N 9	7146	
		SENSE	SR 1				SEN	ISOR Z			
RATE OF	NCUCED	SIGNAL	TIGNAL	ROLL	CROSS AXIS	RATE OF	INDUCE D ALCELER	SIGNAL	SIGN AL AT	ROLL	CROSS AXIS
94EL	Fthect	mV	m V	887 E 9156	EFFELT	%sec	f+/3E22	mV	REST	PATE O/SEC	SERVECT
100	1.78	-10,2	-2.6	1.2	1.2	100	1.78	88	72	-0.26	0.26
200	7.10	-18.0	-2.6	2.5	1.3	200	7.16	9,7	6.7	- 0.49	0.24
300	16.0	-25.7	-2.3	3.B	1.3	300	16.0	11.3	7.3	-0.65	0.22
400	28.4	- 33	-2.7	4.9	1.2	400	28.4	11.3	6.4	-0.80	0.20
500	44.0	- 39	-2.1	6.0	1.2	500	44.0	12.1	7.2	-0.80	0.16
600	63,9	-46	-2.2	7.2	1.2	600	63.9	11.5	6.5	-0.81	0.14
700	87.0	-52	-2.1	8.1	1.2	700	87.0	11.3	6.8	-0.73	0.10
800	114	-57	-1.9	8.9	1.1	800	114	10.8	7.0	-061	0.08
900	144	-63	-2.4	9.9	1.1	900	144	9.7	6.7	- <u>0</u> ,49	0.05
1000	178	-68	-2.1	10.7	1.1	1000	178	8.4	6.6	-0.29	0.03
1100	215	-71	- 2, 0	11.2	1.0	1100	215	6.4	6.1	-0.05	0.00
1200	256	-71	-z.3	11.2	0.94	1200	256	49	6.0	0.18	50.0
1300	300	- 72	-1.8	11.4	0.88	1300	300	3.2	6.8	0.59	0.05
1400	3-18	-76	-2.0	12	0.86	1400	348	0.5	5.9	0.88	0.06
1500	400	- 78	-1.8	12	0.82	1500	400	-1.4	6.7	1.3	0.09
1600	455	-81	-1,9	13	0,80	<u>/6</u> 00	455	-3,9	6.7	1.7	0.11
1700	513	-85	-1.9	14	0.79	0051	513	-7.4	6.4	2.2	0.13
1800	575	-88	- 1.9	14	0.79	1800	575	-10.4	6.4	Z.7	0.15
1900	641	-91	- 2, 0	15	0.76	1900	641	-14	6.3	3.3	0.17
2000	710	-94	-1.9	15	0.75	zwo	710	-18	62	3.9	0.20
2100	783	-98	- 1. 9	16	0.74	2100	783	-21	6.1	4.4	0.21
ZZ	860	-101	-21	16	0.73	2200	860	-24	5.9	4.9	25.0
											1

PLATE NO. 20894 Table B1-Centripetal Acceleration Sensitivity Test Data B7

ł' H LABORATORY TEST SHEET 4ND-NADC-3960/45 (3-71)

.

. .

LABORATORY

ł

ł

ADVANCED CONCEPTS 60134

1

JET T	RANSI	ATIO	N CRO	<u>SS EF</u>	FECT	- HAr	n STD	RRS	93041	<u>00-09</u>	19
PHI		IFTE	2	SN		0035	5		1-13	-81	
TEST EQUIPI	4ENT				·		z				
GENISCO	0011	-5 SN	2014	<u>'TECHT</u>	RONIX	P <u>S 503</u>	<u>3A/FL</u>	UKE E	600A	SN 97	7146
DIRECTION	RATE	SIGNAL	REST SIGNAL	SIGNAL	ROLL	CRUSS ALIS EFFECT	DIRECTION	Signal	SIGNAL	ROLL	AXIS
ROTATION	"SEC	٣V	mν	mV	%SEC	%		mV	mV	•/sec	%
دربا	200	4.50	0.6	3.9	64	0.32	ccω	-3.0	-3.6	.54	0,30
	400	9.3	0.7	8.6	-1.42	0.36		-5.2	-5.9	.97	0.24
	600	14.7	ه. نه	14.(- 2.32	0.39		- 6.7	- 7.3	1.2	0.19
	පංර	20.7	0.6	20.1	-3.31	0.41		-7.3	-7.9	1.3	0.16
	1000	Z7.4	0.6	Z6.8	-4.41	0.44		-7.2	-7.8	1.3	0.13.
	1200	35	0.6	34	- 5.6	0.47		-6.0	-6.6	1 ,i	0.09
	1400	44	0.6	43	-7.1	0.51		-4.2	-4.8	.79	0.07
	1600	53	0.7	52	-8.6	0.54		÷1. 4	- 2.1	.35	0.02
1	1800	64	0.8	43	-10	0.56		z.	1.3	, 21	0.01
			<u> </u>								
											<u> </u>
		· · · · ·	ļ								
			DO • • •	anc1 1/-	locity	Sanaiti	vity To	et Dete			
FLAIE NO	J. 2039	- TADLE	: BZ-LAT SEN	SAL A	B8	JEHOILI		Gr Malo			

EST OF												
TET T	RANSI	ATIO	N CRO	<u>55 EF</u>	FECT	- HAN	<u>n. S</u>	TP	RRS	93041	<u>00-00</u>	19
IEST ENGINE	in Di			0 51	SERVERS	00355	-			- -	1-21	
TEST COUIPI	HENT					00		/		·		
ENISCO	<u>0011 00</u>	- <u>5 sn</u>	2014	TECHT	LIMPLICE	PS 503			UKE E	600A	<u>sn 97</u>	7146 CR055
OF	RATE	SIGNAL	SIGNAL	CHANGE	ROLL	ANIS	DIRE	CTION	SIGNAL	SIGNAL	ROLL	AVIS
TATION	"SEC	mV	m٧	mV	RATE SEC	0/5					KAIE	%
دى	200	5.6	1.6	4.0	66	0.33	دە	~	-1.8	- 3.4	.54	0.27
	400	101	1.8	8.6	-1.4	0.35			- 4.2	-6.0	.97	0.25
	600	16.0	1.8	14.2	-2.3	0.38			-5.7	-7.5	1.2	0.20
	800	220	1.8	20.2	- 3.3	0.41			-6.5	- 8.3	1.4	0.18
	1000	29	2.0	27	- 4. 4	0.44			-6.0	-8.0	1.3	0.13
	1200	37	1,9	35	-5.8	0.48			-4,9	-6.8	1.1	0.05
	1-100	415	2.0	43	-7.1	0.51			-3.2	-5.2	.66	0.0
	1600	55	2.0	53	-8.7	0.54			-0.3	-2.3	.38	0.07
	1800	65	2.2	63	-10.4	0.58	1		3.4). Z	20	0.01
											·	
											·	
			·									
·		· · · · ·										Ĺ
					ļ							L
		 		ļ	ļ							
		 	L	ļ	ļ							
												·
· <u></u>				ļ								
				55	NSON	2A						

;

LABORATORY TEST SHEET 4ND-NADC-3960/45 (3-71)

.

.

LABORATORY

ADVANCED CONCEPTS 60134 _

Į,

ij

TEST OF

JET T	RANSI	ATIO	N CRO	<u>55 EF</u>	FECT	- HAN	n. 51	rD.	RRS	93041	00-09	19
TEST ENGINE	tR			on Sn	SERVERS	1003	75			0ATE / - /*	5-81	
TEST EQUIP	AENT				<u>_</u>					i		
GENISCO	0011 00	-5 SN	2014	TELHT	KONIX	PS 503	<u> A / I</u>	FL	UKE E	600A	SN 97	7146
OF	RATE	SIGNAL	REST SIGNAL	CHANGE	ROLL	EFFECT	DIRECT	r KUN	SIGNAL	0 SIGNAL	ROLL	
	"SEC	mV	mν	mV	%SEC	%	ļ	_				
ငယ	200	5.3	1.2	4.1	67	0.34	دد	<u>س</u>	-2.4	-3.6	.59	0.30
	400	10.3	1.2	9.1	-1.5	0.38			- 4.9	- 6.1	1.6	0.25
	600	15.9	1.2	14.7	-2.4	0.40			- 6.6	-7.8	1.3	0.22
	800	22.0	1.3	20.7	-3.4	0.43			-7.3	-8.6	1.4	0.18
	1000	29.9	1.Z	78.7	-4.7	0.47			- 7.2	- 8.4	1.4	0.14
	1200	36	1.1	35	-5.8	0.48			-6.4	- 7.7	1.3	0.11
	1400	45	1.2	44	-7.2	0.51			-4.6	-4.8	.79	0.06
	1600	55	1.2	54	-8.9	0.57			-1.8	- 3.0	.49	0.03
1	1800	66	1.1	65	- 11	0.61			1.5	.ન	07	0.00
				SEN.	SOR	2						
PLATE N	0. 2059	4 Tabl	e B2-La	teral Ve	elocity	Sensit	ivity	Te	st Data			

B10

LABORATORY TEST SHEET

LABORATORY

ADVANCED CONCEPTS 60134

ŀ

TEST (01
--------	----

J	E	<u>г т</u>	RANSI	ATIO	N CRO	SS EF	FECT	- HAN	<u>n. 5</u>	гD	RRS	93041	00-09	9
T		JHIL	- Die	TZ		SN	1-010	038	t l			1-13	-81	
T	257	EQUIPM	IENT			/	_							
G	EN	isco	0011 (<u>-5 SN</u>	2014/	TECHT	RONIX	PS 503	A/	FL	UKE 8	600A	SN 97	7146
DIF	OF	TION	RATE	SIGNAL	REST	SIGNAL	ROLL	CROSS AXIS EFFECT	DIREC	TION	SIGNAL	516NAL	ROLL RATE	CROSS AXIS EFFECT
κQ			"SEC	mV	mν	mV	%SEC	90			mν	mΥ	a/sec	40
-	رر	2	2003	3.7	8.6	-4.9	.80	0.40	ų Š	٤	12.2	3.6	59	0.30
-			400	- 2.5	8.5	-11.0	1.79	0.45			14.5	6.0	98	0.25
_			600	-10.0	છ.ન	-18.4	2.99	0.50			15.5	7.1	-1.2	0.20
-			୫୦୦	-18.0	8.3	-266	4.33	0.54			15.0	6.7	-1.1	0.14
-			1000	-28.6	8.3	-36.9	6.00	C.60			13.7	5.4	89	0.09
-			1200	-40	8.4	-48	7.8	0.65			10.9	2.5	41	0.03
-			1400	-52	8.4	-60	9.8	0.70			7.0	-1.4	.23	0.02
-			1600	-66	8.7	-75	12.2	0.76			Z. Z	-6.5	1.1	0.07
_			1800	-80	8.6	-89	14.5	0.81		Y	- 3.4	-12.0	2.0	0.11
_														
-														
_									i 					
_	_													
-														
_														
-									 					
-														
-														
-														
_														
_														
							SEN	OR B						
	PLA	TE N	0. 2099	4 Table	e B2-La	teral Ve	elocity Bi	Sensit: []	LVIČJ	7 Te	st Data	1		

LABORATORY TEST SHEET

LABORATORY

4ND-NAD	C-3960/4	15 (3-71)			1	<u>AUVA</u>	NCEL	2 CON	CEPT:	<u>5 60</u>	1.34
	RANSI	ATIO	N CRO	55 EF	FFCT	- HAN		RRS	93041	00-04	 19
TEST ENGINEER PHIL DIETZ OBSERVERS SN-0100381 1-13-81											, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
TEST EQUIP	HENT	-5 SN	2014		RONIX	PS 503	A/FL		3600A	SN 97	7146
DIRECTION	RATE	SIGNAL	REST	SIGNAL	IMPLIED ROLL	CROSS AXIS	/				
ROTATION	"SEC	mV	mν	mV	RATE %SEC	EFFET					
Cω	100	.4	2.5	- 2.1	.34	0.34					
	200	- 20	2.6	- 4.6	.76	0.38	SCALE	FACTO	R6	15 -14	·/sec
	300	-4.8	2.5	-73	1.19	0.40					
	400	-7.9	2.6	- 10.5	1.71	0.43					
	500	-11.1	2.7	- 138	2.24	0.45					
	රො	-14.7	2.9	- 17,6	Z.86	0.48					
	700	-189	2.7	- 21.6	3.51	0.50					ļ
	800	-23.3	Z.6	- 25.9	4,21	0.53					
	900	-28.2	2.5	- 30.7	5.05	0.36					
	1000	- 33.2	2.7	- 35.9	5.90	0.97					
	1100	- 28	2,8	- 41	6.7	0.61					
	1200	-44	2.0	- 47	<i>4.4</i>	267					
	1400	-50	3.0	- 59	93	0.70					
	1500	-62	3.1	- 65	10.7	0.71					
	1600	-69	2,9	- 72	11.8	0.74					
	1700	-76	3.0	- 79	13.0	0.76					
	1800	-83	3.1	- 84	14.]	U.78					
	1900	-90	3.0	- 93	15.3	0.80					
	2000	-98	3.0	- 101	16.6	0.83					
	2100	-107	3.0	-110	18.1	0.86					
	2200	-115	3.1	-118	19.4	0.88					
	1		1								i

 Z300 - 123
 3.2
 - 126
 20.7
 0.90

 PLATE NO. 20394
 Table B2-Lateral velocity Sensitivity Test Data B12

LABORATORY TEST SHEET 4ND-NADC-3960/45 (3-71)

ليتدار فالمتناف المأتي يصيار الرا

LABORATORY

ADVANCED CONCEPTS 60134

1

The matrix PHIL DIETZ SN-0100381 I-14-81 The constrain I-14-81 I-14-81 I-14-81 GENISCO IIO0-5 SN 2014/TECHTRAIN \$2503A/FLUKE 8600A SN 97146 Genisco Genisco OF NATE SIGNAL IIO1-11/ECONST AII Genisco OF NATE SIGNAL GENISCO IIO0-5 SN 2014/TECHTRAIN \$2503A/FLUKE 8600A SN 97146 OF NT MV MV MV AII Genisco OF NATE SIGNAL GENISCO IIO0-5 SN 2014/TECHTRAIN \$2503A/FLUKE 8600A SN 97146 Genisco OF MV MV MV MV 95EC AII Genisco Genisco AIII Genisco AIII Genisco AIII Genisco AIIII Genisco AIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Te	γ τ τ	GANCI	ΔΤΙΛ	N CRO		EFOT	- LIAN	~ ~	- 0	PBC	93.041	~~ ~ ~	20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TEST	ENGINE	ER .				SERVERS					DATE	<u>00-0-</u>	
The solution of the second se		<u> </u>	HIL [DIETZ		<u> SN</u>	1-01	0038	<u> </u>			-/4	1-81	
DIRECTION RATE SIGNAL REST SIGNAL IMPLIEDCROSS OF BOTATION RATE SIGNAL REST SIGNAL IMPLIEDCROSS OF BOTATION /SEC MV MV MV 9/SEC % CCW 200 -6.8 -1.1 -5.7 .93 0.47 CCW 2.9 4.065 0.33 - 4800 -13.2 -1.4 -11.8 1.9 0.48 4.7 6.199 0.25 CCW 200 -21.2 -1.5 -19.5 3.2 0.53 5.4 C.9 -1.1 0.18 BOD -30.2 -1.5 -28.7 4.67 0.58 5.3 6.8 -1.1 0.14 1000 -30.2 -1.5 -28.7 4.67 0.58 5.3 6.8 -1.1 0.14 1000 -30.2 -1.5 -28.7 4.67 0.58 5.3 6.8 -1.1 0.14 1000 -30.2 -1.5 -28.7 4.67 0.58 5.3 6.8 -1.1 0.14 1000 -30.2 -1.5 -28.7 4.67 0.58 5.3 6.8 -1.1 0.14 1000 -30.2 -1.5 -28.7 4.67 0.58 5.3 6.8 -1.1 0.14 1000 -30.2 -1.5 -28.7 4.67 0.58 5.3 6.8 -1.1 0.14 1000 -7.6 -1.6 -48 7.8 0.65 1.1 1.2 2.744 0.07 -1 1400 -62 -1.5 -60 9.8 0.70 -2.5 -1.0 .16 0.01 -1 1600 -7.6 -1.6 -7.4 1.2 0.75 -7.4 -5.8 9.4 0.06 -1 1800 -70 -1.4 -88 1.4 0.78 1.1 7.1 -11.7 1.9 0.11 	GEN	KOUIPH ISC.C		-5 5N	2014	TECHT	RONIX	PS 503	AΔ /	FL	UKE P	600A	SN 97	7146
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DIREC	TION	RATE	SIGNAL	REST SIGNAL	SIGNAL	ROLL	CROSS AXIS	DIREC	TION	SIGNAL	4	ROLL	CROSS Axis EFFEC
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ROTAT	10N	1/SEC	۳V	۳V	mV	%SEC	%				JIGNAL	RATE	%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>_</u>	لم ا	ZOU	-6.8	-1.)	-5.7	.93	0.47	ce	ىل	2.9	4.0	65	0.33
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			400	-13.2	-1.4	-11.8	1.9	0.48			4.7	6.1	99	0.25
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			600	-21.2	-1.5	- 19.5	3.2	0.53			5.4	6.9	-1.1	0.18
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			800	- 30.z	-1.5	- 28.7	4.67	0.58			5.3	6.8	-1.1	0.14
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1000	- 40	-1.5	- 38	6.Z	0.67			3.7	5.2	- 85	0.09
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u></u>		1200	-50	-1.6	- 48	7.8	0.65			1.1	2.7	44	0 07
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1400	-62	-1.5	-60	9. 8	0.70			- 2.5	-1.0	.16	0.01
<u>1 1800 - 70 - 1.4 - 88 14 0.78</u> <u>- 13.1 - 11.7 1.9 0.11</u>	<u></u>		1600	-76	-1.6	- 74	12	0.75			-7.4	- 5.8	.94	0.06
	<u></u>	1	1800	-90	-1.4	- 88	ार्च	0.78			-13.1	-11.7	1.9	0.11
PLATE NO. 20994 Table B2-Lateral Velocity Sensitivity Test Data														
PLATE NO. 20094 Table B2-Lateral Velocity Sensitivity Test Data														
PLATE NO. 20894 Table B2-Lateral Velocity Sensitivity Test Data					•									
PLATE NO. 20094 Table B2-Lateral Velocity Sensitivity Test Data														
PLATE NO. 20894 Table B2-Lateral Velocity Sensitivity Test Data														
PLATE NO. 20994 Table B2-Lateral Velocity Sensitivity Test Data														
PLATE NO. 20994 Table B2-Lateral Velocity Sensitivity Test Data														
PLATE NO. 20894 Table B2-Lateral Velocity Sensitivity Test Data														
PLATE NO. 20894 Table B2-Lateral Velocity Sensitivity Test Data														
PLATE NO. 20894 Table B2-Lateral Velocity Sensitivity Test Data					· · · · · · · · · · · · · · · · · · ·									
PLATE NO. 20894 Table B2-Lateral Velocity Sensitivity Test Data														
PLATE NO. 20894 Table B2-Lateral Velocity Sensitivity Test Data														
PLATE NO. 20894 Table B2-Lateral Velocity Sensitivity Test Data														
PLATE NO. 20394 Table B2-Lateral Velocity Sensitivity Test Data							SEN	or 1	2					
	PLA	TE NO	0. 2059	4 Table	B2-Lat	eral Ve	locity	Sensiti	vity	7 Te	st Data			

IST OF									000	<u></u>		
ET T	RANSI	ATIO	N CRO	<u>55 EF</u>	FECT	- HAN	2.5	TD	<u>. RRS</u>	93041 DATE	<u>00-0</u> 9	<u> q</u>
				ISN	1- 010	0038				/-	15-8	1
ST EQUIPS	IENT	-5 SN	2014	TECHT	RONIX	PS 503		FL	UKE S	600A	5N 93	7146
ECTION	DATE	LEIGNAL	REST	SIGNAL	IMPLIED	CR055	7					C2055
OF	KAIE	SIGNAL	SIGNAL	CHANGE	ROLL	AXIS	DIRECTION		SIGNAL	SIGNAL	ROLL	EFFC
ATION	SEC	۳V	mν	mV	%SEC	•/0						%
CL)	200	5.1	9.8	-4.7	.76	0.38	G	ω	13.6	3.8	62	0.31
	400	-1.3	9.7	-11.0	1.79	0.45			15.7	6.0	98	0.25
	තෙ	-8.9	9.7	- 18.6	3.02	0.50			16.4	6.7	- 1.1	0.18
	800	-17.6	9.7	- 27.3	4.44	0.56			16.1	6.4	-1.0	0.13
	1000	- 27.7	9.5	- 37.2	6.05	0.61			14.3	4.8	78	0.09
	1200	-39	9.6	-49	8.0	0.67			11.3	1.7	28	0.02
	1400	-51	9.5	-61	9,9	0.71			7.4	-2.1	.34	0.0 Z
	1600	-65	9.6	-75	12	0.75			2.1	- 7.4	1. 2	0.08
	1800	-79	9.7	-89	14	0.78			-3.5	-13.2	2.1	012
											_	
			L									
:					EASO	nR						

APPENDIX C

Preliminary Design and Performance Specification of an Electrofluidic Angular Rate Sensor

C-1

The following constitute the desired design criteria and performance of the sensor:

1. Size and Mass

1.1 The unit shall be less than 0.85 Kg (30 oz.)

1.2 Dimensions. The shape of the sensor is not defined. The sensor should fit within these maximum envelope constraints: (looking down at the seat)

Height	11	СШ
Width	- 11	cm
Fore and aft Length	8.5	cm

The mounting holes shall be in the 10×10 cm side, so that the sensor can be mounted in the seat as shown in Figure C-1.

- 2. Electrical Interface
 - 2.1 The voltage supply shall be either 5 vdc or 12 vdc.2.2 Power consumption shall be minimized.

 - 2.3 Voltage output shall be linear $\pm 2\%$ of rate ± 2 deg/sec up to ±400 degrees/sec, at which rate the output signal shall be between $\pm(2.5$ to 5.0 volts).
- 3. Performance

After delivery the three sensors will be tested at NADC to determine whether or not the following criteria have been met:

3.1 Maximum Rate. The maximum angular rate expected in service is $\pm 500 \text{ deg/sec.}$

3.2 Linearity. The output signal shall be linear within $\pm 2\%$ of rate and ± 2 deg/sec between -400 and ± 400 deg/sec.

3.3 Bias. The sensor shall indicate less than ±2.5 deg/sec on each axis when zero actual rate is applied regardless of seat velocity and accelerations up to 18 "g".

3.4 Cross-Axis Sensitivity shall be less than 1.5% of angular rate. That is, the rate indicated on either axis perpendicular to the axis of rotation shall be less than 1.5% of the rotating speed.

3.5 Frequency Response

a. The gain shall be constant $\pm 3\%$ in the range of 0 to 10 Hz. b. The phase lag response shall be less than 1.8 deg/Hz.

3.6 Readytime. The sensor shall indicate the actual rate, $\pm 5^{\circ}$, within 100 milliseconds after switching in the power supply to it.

C-2

4. Environmental Conditions

The production model will be subjected to the following tests, decribed in MIL-STD-810C:

500.1	508.1	513.2
501.1	509.1	514.2
502.1	510.1	515.2
507.1	512.1	516.2
		518.2

5. <u>Built-in Test Equipment (BITE)</u>

The sensors shall be provided with hardware test points and test procedures to ascertain whether or not the sensor will operate satisfactorily - to provide an "operational check". These test points conveniently can be wired to an external connector on the outside of the seat to facilitate pre-test and post-test checks without removing the sensor from the seat.

6. <u>Sensor Definition</u>

<u>Note</u>: Research conducted by NADC has shown that only a sensor using fluid dynamic principles to measure rotation rate can meet the start-up and operational requirements of this application.

Figure C-2 - Sensor Definition

C-4

REVISED TECHNICAL REPORT STANDARD BASIC DISTRIBUTION LIST AS OF 6-24-75

Distribution List

Report No. NADC-81189-60

Airtask No. <u>F41400000</u> Work Unit ZA610

No. of Copies 6 (2 for AIR-516268) (2 for retention) (1 for AIR-340B) (1 for AIR-340C) *12 NAVAIRDEVCEN, Warminster, Pennsylvania 18974 23 (3 for 813) (1 for 60)(1 for 601)(2 for 30023) (1 for 301)(1 for 602)(1 for 03)(1 for 302)(1 for 603)(1 for 20)(1 for 303)(1 for 604)(1 for 30)(1 for 304)(1 for 605)(1 for 40)(1 for 305)(1 for 606)(1 for 50)(1 for 60B)

* Number of copies depends on Distribution Control Statement appearing on report. When Statement A is used (i.e., "Approved for public release; distribution unlimited") DDC receives 12 copies of the report. When Statement B appears on the report, (i.e., "Distribution limited to U.S. Government agencies only; (reason); report issue date; other requests must be referred to COMNAVAIRDEVCEN") DDC receives 2 copies.

Enclosure (1)

DISTRIBUTION LIST (con't) Report No. NADC-81189-60

No. of Copies

ŧ

Edgewood Arsenal, Aberdeen, MD (SAREA-MT-T)
U.S. Army ARRADCOM, Dover, NJ (SARPA)
U.S. Army ARRADCO#, Dover, NJ (DRDAR)
U.S. Army ARRADCOM, Dover, NJ (PBM)
U.S. Army TARCOM, Warren, MI (DRDTA-RKT)
White Sands Missile Range, NM (Library)
USA ERADCOM, White Sands Missile Range (DELAS-AS)
Office of Naval Research, Arlington, VA (438)
Office of Naval Research, Arlington, VA (211)
Navy R&D Plane Division, Pentagon (OP-987P4)
U.S. Naval Postgraduate School, Monterey, CA (Code 69)
Naval Air Engineering Center, Lakehurst (ESSD/9314)
Pacific Missile Test Center, Point Mugu (3123)
Naval Surface Weapons Center, White Oak, MD (413)
Naval Ordnance Station, Indianhead, MD (5123C)
Naval Ship R&D Center, Bethesda, MD (1619)
Naval Research Laboratory, Washington, DC (117)
Naval Weapons Center, China Lake (533)
Naval Weapons Center, China Lake (3636)
AFSC Aero Propulsion Laboratory, WPAFB (AFWAL/POTC)
AF Avionics Laboratory, WPAFB (AARA-2)
AF Office of Scientific Research, Bolling AFB (NE)
AF Flight Dynamics Laboratory WPAFB (AFFDL/FGL)
AFSC Weapons Laboratory, Kirtland AFB (SUL)
Armament Development and Test Center, Eglin AFB (DLOSL)
Armament Development and Test Center, Eglin AFB (DLMA)
AF Flight Test Center, Edwards AFB, (Library)
NASA Lewis Research Center, Cleveland, OH
NASA Langley Research Center, Hampton, VA (Library)
NASA Ames Research Center, Moffett Field, CA
NASA Scientific & Tech Info Facility, MD (Acquisition Br)
Hamilton-Standard Div., Farmington, CT 06032

PLATE NO. 2089 Table Bl-Centripetal Acceleration Sensitivity Teg B7

[;

DATE

)

ED

No. of Copies

1	
1	
2	
2	
2	-
1	
2	
1	
1	
1	
2	
1	
2	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	