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PERFORMANCE CHARACTERISTICS
OF PASSIVE COHERENCE ESTIMATORS

INTRODUCTION

Passive coherent processing is commonly used to detect a target signal present at two sensors
remotely located in a transmission medium. Typically, the target signal at each sensor is contami-
nated by broadband noise, and the received signals are correlated over a two-dimensional ambiguity

H surface to compensate for time-register and doppler differences in the received target signal. Thresh-
olding is employed to detect when and where (over the ambiguity surface) the correlator output
exceeds a preset value. Performance measures for such a system include the detection versus false-
alarm probabilities as a function of the input signal-to-noise ratios.

Modern coherence processors, which are well suited for passive detection, include the
magnitude-squared coherence (MSC) estimator [1-3] and the normalized correlation envelope
(NCE) estimator [4] . These processors are normalized and provide an output signal whose statistics,
for uncorrelated signals, are essentially independent of the input signal levels, Thus, the false-alarm
rate for a given threshold is effectively stabilized, For a given threshold (false-alarm probability),
detection is optimura when the target signal energy required for detection is minimized.

Until recently, the general opinion of researchers was that detection was optimum when the
processor bandwidth was matched to the spectral bandwidth of the target signal, There is good
reason to suspect this to be true, since this condition maximizes the ratio of the mean-peak correla-
tion output to the standard deviation of the output when the signals are uncorrelated [5}. Band-
widths greater than the signal bandwidth, moreover, increase the noise power without increasing
the signal power, (Such a condition is termed “overcontainment’ of the target signal and is
employed to ensure containing the desired signal within the processor bandwidth when its band-
width is unknown or highly nonstationary.) However, recent studies by Joseph LaPointe demon-
strate that overcontainment can actually improve the detection sensitivity of the MSC estimator
under certain conditions [6, 7] . These conditions occur when the number of degrees of freedom (or
time-bandwidth product) of the target signal is less than a critical value, which depends on the input
signal-to-noise ratios. In this report, detection performance is studied in a general context, and opti-
mum design parameters are determined for both the NCE and the MSC estimators when they are
employed as passive target-signature detectors.

SIGNAL DESCRIPTION AND REPRESENTATION

In a passive detection system, the processor input usually consists of signals from two remote
sensors. In general, the signals from the two sensors are uncorrelated until the delay time and
doppler difference of a common narrowband target signal u(t) are properly compensated. After
compensation, the two signal inputs may be expressed as
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81(t) =aju(t) + ny(?) (la)

and

82(t) = azu(t) + ny(t), (1b)

where n4 (t) and ny(t) are the uncorrelated noise-background signals of the two channels. For pur-
poses of this report, it is assumed that the power spectral density of the target signal u(t) is uni-
formly distributed and confined within a narrow bandwidth of W Hz, the power spectral density
of the noise signals is uniformly distributed over the processor bandwidth of B Hz, and the target
signal is completely contained within B (W<B). The resultant power and crosspower of the two
input signals are

<s2 (> = (L +r2)x<ni(e)>, (2a)
<sZ (> =1 +r2/p2)<nf(1)>, (2b)

and
<8y (t)sy(t) =%2 ‘/ <nZ (><nZ (t)>, (2¢)

where

r? = a? <u2(t)>/< n? (t)> (3a)

and
p2 = a? <nd (t)>/a3 < n (t)>. (3b)

In the above relations, r? is the input signal-to-noise power ratio of the one channel and p2 is the
ratio of the input signal-to-noise power ratios in the two channels. (This notation will prove con-
venient in the analysis to follow.)

Normalized Signal Correlation
The normalized correlation (or peak coherence) of the input signals is defined as the ratio of

the peak signal crosspower to the geometric mean of the input signal power {4]. Thus, from
Eq. (2), the normalized correlation of the signals s, () and s,(t) is

r2

Vi +r2)p2 +12)

y(rp) = 4)

The normalization bounds the peak coherence between the limits 0 and 1, regardless of the input ~i
signal levels, thus providing a measure of the correlation coefficient. The problem of thresholding
for a given false-alarm rate is thereby greatly simplified.

(-]




NRL REPORT 8729

Correlation Output Signal-to-Background Ratio

In the past, a measure of performance in detection processors has been the ratio of the mean-
peak signal crosspower to the standard deviation of the signal crosspower when the signals are
uncorrelated (5] . This measure is the correlation output signal-to-background ratio and is expressed
as a function of the input signal-to-noise ratios. In the case under consideration, Eq. (2c) gives the
mean-peak crosspower. The uncorrelated signal crosspower is evidenced over remote areas of the
two-dimensjonal ambiguity surface where the time and/or doppler differences between the target
signal inputs are uncompensated. In this area, the variance of the input signal crosspower may be
shown to be [8] i

o2 - < n? (@)><nZ (t)>

Z 2T, [(1+r2)(92+r2) +(%—1)'r4] , (5)

where T is the integration time of the correlation processor. Consequently, from Egs. (2c) and (5),
the mean-peak output signal-to-background ratio may be written as

t

<sy(thsg(tP> _ Y287 ’

o (1+r2)(p2 +12) +(F —1) rt i
VEBT 4 (6)

=‘/1 +(% ——1) y2

The above ratio can vary only between the limits 0 and V 2WT.

o T

Effect of Processor Bandwidth B

The effect of the processor bandwidth B (W<B) on the above relations is not immediately
apparent, since the input signal-to-noise power ratio r2 is a function of B. To study the effect of the
processor bandwidth, the variable rg is defined as the input signal-to-noise power spectral density
ratio. Thus, r2 = r2 /B and Eq. (6) becomes

<8y (t)sp(t)> _ var 13 _ (7

% . ) rd
Bp% +(1+p2)r2 4 Wo

It is obvious, then, that the mean-peak output signal-to-background ratio maximizes for B equal to
W, except when p is zero. In this case, however, the correlation processor becomes a perfect
matched filter (since the signal-to-noise ratio of the second input is infinity), and the noiseless
signal input serves as an optimum (or matched) filter for the processor.

e s

From the above analysis, it would appear that the optimum choice for the processor band-
width would be to make it equal to the target signal bandwidth. However, the story is not yet
complete. The crux of the optimization problem centers around minimizing the expected target
signal energy required to equal or exceed the threshold for a given false-alarm probability. One

{
i
4
i
f
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may readily perceive, from Eq. (5), that the variance of the unnormalized correlation output is
nonstationary and varies with the power of the two input signals. Consequently, some form of
normalization of the processor output is required if the false-alarm rate is to remain fixed for

a given threshold level of the processor output. The following analysis is therefore directed to the
performance of the class of normalized coherence estimators whose idealized performance is given
in Eq. (4).

CORRELATION ESTIMATORS

The correlation estimators to be studied are the normalized correlation envelope (NCE) esti-
mator and the magnitude-squared coherence (MSC) estimator. Both compute the ratio of the
average signal crosspower to the geometric mean of the two averaged signal powers, over an integra-
tion time interval T. The crosspower and signal-power averages are computed after the two input
signals have been bandpass filtered (bandwidth B Hz) and basebanded [4]. Thus the computed ratio
is a measure of the normalized correlation envelope of the two signals and constitutes the sample
statistic for the NCE estimator. The sample statistic for the MSC estimator is simply the square of
the sample statistic for the NCE estimator. In practice, both estimators employ the sectionalized
Fourier transform to accomplish the operations of bandpass filtering, basebanding, and signal
sampling [4]. As a consequence, complex numbers are involved in the processing, and only the
magnitude of the resulting ratio is used in the sample statistics. (This is the reason for the termi-
nology “magnitude-squared” in the case of the MSC estimator, and ‘“‘magnitude coherence’’ as the
NCE estimator is sometimes called.) Details of these estimators may be found in Ref. 4.

Expected Value of the Sample Statistic

Both the NCE estimator and the MSC estimator are biased estimators. Letting ¥ designate
the sample statistic for the NCE estimator, its expected or mean value may therefore be written as

<y> =y +ﬂl’ (88)

where the bias term 8, is a function of both y2 and the processor time-bandwidth product BT.
The square of the mean is simply

<§>2 = y2 +6,(2y +6;). (8b)

The sample statistic for the MSC estimator is the square of the sample statistic for the NCE esti-
mator or 72, The expected value for this estimator is

<§%> = 72 +8, (8¢)

where § represents the bias of this estimator. Since, however, the expected value of the MSC esti-
mator is the second moment of the NCE statistic, it is a simple matter to show that Eq. (8b) may be
written as

<y>2 = 42 48— 072, (8d)

where a,;2 is the variance of the NCE statistic. A generalized form for Eqs. (8c) and (8d) may there-
fore be written as y2 + g(y2; BT), where g(y2;BT)is equal to § in the case of the MSC estimator or

8 —a;ﬁ’ in the case of the NCE estimator. Since § is always positive, g(y2;BT) will be smaller for the

NCE estimator.
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False-Alarm Probability
Although the probability density functions for the two sample statistics are highly compli-

cated in the general case [9), when v is equal to zero (input signals are uncorrelated) the probability
density functions reduce to

pyi) = 2M 15 (1 — 322, (9a)
and
p2(7?) = (M 1)1 = 32)M2, (9b)
where M = BT + 1 is the number of degrees of freedom of the estimator [10]. In either case, the

probability that the sample statistic exceeds a threshold level v, (producing a false target or alarm)
is

= 2(+2)dv2 = A~ ¥
Ppor. f2 p2(7%)dy f Pa!(‘r)dT
Yo Yo
BT
=(1-1+2) (9¢)
or 1
12=1-PiF . (9d)

THE DETECTION PROBLEM AND SOLUTION OUTLINE

Detection Criterion

Equating the expected value of the coherence estimator to the threshold level for a given
probability of false alarm provides a reasonable criterion for target detection. Thus, from
Egs. (8) and (9)

12 + g(y2;BT) = 72 (10a)

is to be solved for the input signal-to-noise power spectral density ratio r, as a function of the false-
alarm probability Pp p , the processor parameter BT, and the signal parameter p. Unfortunately, a
straightforward solution to Eq. (10a) is impractical due to the complexity of the bias term
8(v2;BT). On the other hand, for false-slarm probabilities of interest, the influence of the bias term
will be to cause only a second-order effect on the solution to the equation. This allows a novel
approach to the solution to be taken.

To begin, it may be observed that the influence of the bias term is to reduce the value of v2
required for the left-hand side of Eq. (10a) to equal 73 . It therefore proves convenient to let

1
y2 = 42 — g(y2;BT) = 1~ PBT, (10b)
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where P is some probability greater than Pp ; that is dependent on Pg 1, BT, and the bias function
2(v2;BT). The procedure is first to solve the detection criterion in terms of the interim probability
P, and then to determine the relationship between the probability parameters P and Py 1 as a
function of the processor parameter BT'. It turns out that this will involve only minor variations in
the ordinate and abscissa scales of the original solution. This approach is equivalent to first solving
the problem by ignoring the bias of the estimator, and then demonstrating the changes in the solu-
tion required to accommodate the influence of the bias on the resulting solution.

Relationship Between P(x;Pp 1) and Pp 1

From Eqs. (9d) and (10b} the relationship between the probability function P and the false-
alarm probability Pg  is

_.# 1 1 1
P2 = PPT |1—p BT g(l—PBT;BT) (11a)
or
-1 1
logPpr = logP+BTlog|1—P BTg(1—PBT;BT) . (11b)
Letting
x = BT/(—logP), (11c)
and noting that
1 1
pBT = (0.1)", (11d)
relation (11b) becomes
log Ppp = logP{l —xlog[1 —-Z(x;logP)]} , (11e)
where
1 1
Z(xlogP) = 10~ g 1—(0.1)* X logP‘. (11f)

Although quite complicated, it is possible to solve the implicit function in the variable log P, as a
function of x and log Py y (see the appendix).

DETECTION PERFORMANCE RELATIONS
General Solution of Detection Performance

From Eqgs. (4) and (10b) the criterion for detection in terms of the input signal-to-noise
ratios becomes

1
2 = _—rz___ —-PET
Y (1+r2)(p2+r2)>1 (12a)
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or
rt— (P—El'f ~1) [(1 —p2) r2 +p2] > 0. (12b)

This is a simple quadratic inequality in r2 and can readily be solved. Letting r? = BrZ represent the
input signal-to-noise power spectral density ratio, the general detection solution becomes
(~log P)

> a(p)xQ(x) [1 + V1 + b(p)/Q(x) ] , (12¢)

rx

where

ro is the signal-to-noise power spectral density ratio,

r2  is the signal-to-noise power ratio in the bandwidth B,
T  is the processor integration time in seconds,

a(p) = (1+p2)/2,

b(p) = [20/1 + %)),

BT/(—ogP),

R
1]

and
_ 1
Q(x)= P BT —1=10% —1.

For convenience in modifying the ordinate and abscissa scales to accommodate the effects of
the processor bias, given in £q. (10b), a bias-correcting function R(x;Pp 7 ) is defined as

R(x;PF'T.) = log PF'T_/log P. (138)
Thus the abscissa scale may be expressed as

x = R(x;Pg1)BT/(—log Pp.1). (13b)

Figure 1 shows the family of curves represented by Eq. (12c¢); the two axes are expressed in
terms of the bias-correcting function R(x; P 1 ). The derivation of this function for both the NCE
and the MSC estimators is given in the appendix. Figures 2 and 3 show families of curves for the
function and ten times its logarithm, These curves may be used to determine specific numeric values
along the two scales shown in Fig. 1. (An example providing the BT values along the abscissa for
Pp 1 equal to 10-4, when using the NCE estimator, is given at the top of Fig. 1.) It may be noticed
that the influence of the bias on the family of curves (Fig. 1) is to shift the curves to the left and
downward (relative to the scales when R is assumed equal to one), with the shift being larger at the
higher values of the abscissa scale. This shift in the curves decreases with decreasing false-alarm
probability and is relatively small for false-alarm probabilities less than about 10-3. It may also be
noted that the shift of both scales for the MSC estimator is approximately twice that for the NCE
estimator (for a given value of x and Pp ).
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The family of curves (Fig. 1) illustrates that there is a defined minimum, or optimum value of
BT (noted by the small circles and joined with a dashed curve), except when p = 0 (- dB). Thus,
when the target signal bandwidth W is less than the indicated minimum value for BT divided by the
integration time T, optimum detection performance is achieved by overcontainment of the target
signal for a given false-alarm probability. It may also be observed that the gradient of detection
sensitivity (in dB) is rather moderate in the neighborhood of the optimum BT. This means that one
could employ a value BT which is 4 times (or more) the optimum value without suffering a severe
penalty in detection sensitivity. These results are in agreement with those of LaPointe in his study
on the effects of signal overcontainment on cross-correlation detection performance [7].

BT (P, *10™*) FOR THE NCE ESTIMATOR
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Fig. 1 — Detection performance characteristics for normalized coherence estimators as a function of the
signal and processor parameters. The bias correcting function R(x; Pp 1) and 10 times its logarithm, for
the NCE and MSC estimators, are displayed in Figs. 2 and 3. (The abscissa scale, displayed at the top of the
graph, is BT for the NCE estimator when the false-alarm probability is 10~4.) The variable rg is the input
signal-to-noise power spectral density ratio, and r? is the in-band signal-to-noise power ratio. The parameter
p% is the ratio of the two input signal-to-noise power ratios. The dashed curve is the locus of detection
minima.
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Detection Performance in Terms of the Mean Signal-to-Noise
Ratio of the Two Input Channels

The family of curves shown in Fig. 1 defines the detection performance of the correlation
estimator in terms of the signal-to-noise ratio on one of the two signal inputs. Since any excess of
signal-to-noise ratio in one of the two channels can partially offset a depletion of signal-to-noise
ratio in the second channel, it is interesting to study the degree to which an excess of signal-to-
noise ratio in the one channel proves advantageous in target detection. The standard for comparison
is that where the two input signal-to-noise ratios are equal (p = 1 or 0 dB).

The measure of relevance is the geometric mean of the two input signal-to-noise ratios, or the
arithmetic mean of the signal-to-noise ratios when expressed in decibels. For r(x;0) and p expressed
in decibels, the arithmetic mean signal-to-noise ratio of the two input channels, expressed in
decibels, is

Tm(x;p)=[r(x;p) + r(x;-p)]/2
(14)

fi

r(x;p) -p/2.

The family of curves in Fig. 1 has been recomputed in terms of the mean input signal-to-noise
ratio and is displayed in Fig. 4. These curves demonstrate that when the two input signal-to-noise
ratios are unequal, more total signal power (or energy) is required for detection than when the two
input signal-to-noise ratios are equal. The increase in signal power is less at the higher values of x
(large BT), but becomes increasingly larger as the signal-to-noise ratio imbalance (absolute value of
p) becomes larger. It is evident that any signal-to-noise ratio excess (amount greater than that
required for p = 0 dB) in the one input channel is partially offset by a decrease in the signal-to-noise
ratio of the second channel (required for detection). This utility of the signal-to-noise ratio excess
(in the second channel) is explicitly plotted in Fig, 5 as a function of the signal-to-noise ratio excess
and the value of x. These curves demonstrate that initially the trade-off in signal-to-noise ratio is
nearly one-to-one. That is, the detection criterion can be based on the mean signal-to-noise ratio of
the two input channels, provided the signal-to-noise ratio imbalance is sufficiently small. However,
when the imbalance in the input signal-to-noise ratios becomes large, the utility of the signal excess
in the one channel decreases and eventually saturates (see Fig. 5). At this point, the correlation
processor is functioning as a matched filter or replica correlator, and no further improvement in
processing gain can be expected.

e s ——— e -
o — .
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Fig. 2 — Curves of the bias-correcting function R(x; Pg ) and 10 times its logarithm for the NCE
estimator. These curves may be used to convert the scales in Fig. 1 to relevant numeric values. (See

the appendix for derivation of the curves.)
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Fig. 4 — Detection performance characteristics for normalized coherence estimators in terms of the
geometric mean of the two input signal-to-noise power ratios. The bias-correcting function R(x;Pp 1)
and 10 times its logarithm, for the NCE and MSC estimators, are displayed in Figs. 2 and 3. (The abscissa
scale, displayed at the top of the graph, is BT for the NCE estimator when the false-alarm probability is
10~4.) The variable rozm is the geometric mean of the two input signal-to-noise power spectral density
ratios, and r,ﬁ is the geometric mean of the two in-band signal-to-noise power ratios. The parameter
p2 is the ratio of the two input signal-to-noise power ratios. The dashed curve is the locus of detection
minima.
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Fig. 5 — Curves illustrating the utility of an excess of signal-to-noise ratio in one channel in lower-
ing the signal-to-noise ratio, required for detection, of the second channel. The dB measure, in
either case, is referenced to that required for detection when the signal-to-noise ratios of both

channels are equal (o = 0 dB).

Detection Performance Topology

include the bias function term 10 log R given in Figs. 2 or 3. However

W< B, the illustrated topology is valid only over the area where WT'<B

13

Figure 6 displays another way of illustrating the detection performance of the coherence
estimator. Here the topological contours give the performance degradation (in 0.5 dB steps) relative
to the optimum point in the x, p plane (located at x = 5.04, p = 0 dB). (These contours do not
, for most false-alarm prob-
abilities of interest, this bias function term does not significantly change the contours.) The dashed
curve represents the locus of points of minimum coherence degradation along the p axis. Since

T.Foragiven Wand T, a

horizontal line should be drawn at the appropriate ordinate value on Fig. 6, and only values above
this line are valid. Below this line, the degradation would be more severe than that shown due to the
loss in target signal energy resulting from the decreased processor bandwidth.
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Fig. 6 — Topological contours of peak-coherence degradation, relative to
the optimum performance, over the x, » plane. The contours do not in-
clude the bias-function term 10 log R. However, for most false-alarm prob-
abilities of interest, this bias-function term will not significantly change
the contours. The dashed curve represents the locus of points of minimum
coherence degradation along the o axis.
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OPTIMUM DESIGN CONSIDERATIONS

Parameter Selection Criteria

In practical applications, the user of a correlation processor is interested in achieving detection
at the lowest total input signal power consistent with other considerations outside of his control. A
study of Fig. 4 reveals that the ordinate scale is dependent on the integration time T, the false-
alarm probability Py 1 , the bias-correcting function K(x; Pp 1 ), and the power spectral density
rg. The influence of the bias-correcting function is relatively insignificant. And, although the
detection sensitivity can be enhanced by operating at a high false-alarm probability, the choice here
is limited by the number of false alarms that one is willing to accept in a given application. A more
important consideration is the integration time of the processor. One may readily observe that each
doubling of the integration time will lower the ordinate scale by 3 dB. This rate is sufficient to
offset the maximum 1.5 dB per octave rise in the curves (Figs. 1 and 4) which may result from the
increased value of BT. Consequently, the system designer should use as long an integration time as is
practical from other considerations. For many applications, however, the maximum useful integra-
tion time is limited by factors outside of the control of the system designer. In this situation, one
should compute the value for WT and draw a lower boundary line at the appropriate x value on
Figs. 1, 4, and 5. When this boundary is above the minimum value of the relevant curve it is the
optimum operating point of the processor. That is, the processor bandwidth B should be set equal
to the signal bandwidth W. On the other hand, if the lower boundary is below the minimum value of
the curve, optimum detection performance is achieved when the processor bandwidth B is increased
to the point where BT on the appropriate curve (for the parameter p) indicates 8 minimum.

Detection Performance Sensitivity to Parameter Selection

To select the processor bandwidth B for optimum detection, in an absolute sense, requires
knowledge of the input signal parameters W and p. Unfortunately, for many applications the signal
bandwidth W is generally not known precisely. And the ratio of the input signal-to-noise ratios is an
uncontrollable parameter which can vary over wide limits. Under these circumstances, the sensitiv-
ity of the detection performance to variations in the parameter BT, about the optimum value for a
given p, becomes important. In theory, it is possible to choose a value of BT which optimizes the
detection performance in a statistical sense. However, to carry out the analysis requires a priori
knowledge of the relevant statistics for p and W over the ensemble of values (for these parameters)
to be expected in a given application. Unfortunately, these statistics are generally not known with
precision, which increases the importance of the detection sensitivity to the selection of an appro-
priate value for the parameter BT.

To demonstrate the sensitivity of detection performance to the selection of BT, the data in
Fig. 6 have been redrawn to reflect the degradation in detection performance resulting from
choosing suboptimal values of BT for a given value of 5. Figure 7 illustrates the resulting curves. The
curve entitled Locus of Detection Minima reflects the optimum value of BT as a function of the
signal parameter p. The dashed curves (on either side of this curve) reflect values of BT which
result in the given performance degradation from that which is optimum. These curves demonstrate
that the detection performance is not highly sensitive to the choice of the parameter BT, and the
sensitivity decreases as | p| becomes larger. For example, the variation in the selection of BT at
p=0dBcanbe4.8to1landatp = t18 dB can be 12.5 to 1, without suffering = loss in detection
performance greater than 0.5 dB. This insensitivity to detection performance is also evident in a
study of the curves shown in Figs. 1, 4, and 6 (from which the curves in Fig. 7 are derived).
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Fig. 7 — Curves reflecting the sensitivity in peak coherence performance to
the deviation of the processor parameter BT from its optimum value. The
curves are applicable only for processor bandwidths B equal to or greater
than the signal bandwidth.

To use the curves (Fig. 7), one should first determine the maximum value of signal bandwidth
W that can reasonably be expected. A horizontal line should then be drawn at the value WT for the
chosen Py and estimator to be employed. This horizontal line, in conjunction with the Locus of
Detection Minima, serves as a lower bound in the selection of the processor parameter BT. One may
then estimate the range of values for the parameter p over which detection may be expected in the
given application. The optimum selection for BT lies somewhere in the neighborhood of the lower
bound over the indicated range of p. The precise selection of BT depends on the probability densi-
ties adjudged for the statistical variables p and W. In any event, it can be observed that consider-
able latitude is available in the selection of BT without seriously degrading the detection perform-
ance of the coherence estimator. As an example, if WT occurs at x = 10 (40 for the NCE estimator
operating at Ppp = 10-4) or below, and p can range over +30 dB, then BT can be between 40 and
72 (for the indicated estimator) without serious performance degradation.

Some caution is warranted in the application of the above procedures. Recall that the
preceding analysis is based on a flat noise or interference signal spectrum over the spectral range in
which B is varied. This is a reasonable assumption for many applications of narrowband detection
processors, However, it does not consider the existence of narrowband interfering signals which can
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radically degrade the input signal-to-noise (interference) ratio when they fall within the processor
bandwidth B. Consequently, when there is a large number of narrowband interfering signals distrib-
uted in the spectral region of the anticipated target signal, this fact would favor a lower-than-
otherwise choice for BT (to reduce the probability of a strong interfering signal from falling within
the processor bandwidth B). The selection of processor design parameters, which are optimum in a
true operational sense, does require a fair amount of human experience and judgment in most
practical applications.

CONCLUSIONS

1. Optimum performance of passive coherence estimators is not necessarily realized by match-
ing the processor bandwidth to the bandwidth of the target signal, even when the target signal band-
width is known a priori. In many practical applications, particularly when the time-bandwidth
product of the target signal is severely limited, detection performance is enhanced by overcontain-
ment of the target signal within the processor bandwidth,

2. The optimum processor bandwidth and the resulting detection performance are functions
of the correlator integration time, the ratio of the two input signal-to-noise ratios, and the false-
alarm probability threshold. For a fixed integration time and false-alarm probability, the optimum
processor bandwidth .acreases as the ratio of the two input signal-to-noise ratios deviates from
1 (0 dB). However, the degradation in detection performance to deviations of the processor band-
width from its optimum value becomes decreasingly less (see Fig. 7).

3. For a given processor time-bandwidth product and false-alarm probability, the minimum
total signal power required for detection is realized when two input signal-to-noise ratios are equal
(see Fig. 4). As the ratio of the two input signal-to-noise ratios deviates from 1 (0 dB), greater total
input signal power is required for detection. However, the required power increase becomes less as
the time-bandwidth product of the process becomes greater. The efficiency of the trade-off in the
two input signal-to-noise ratios, as a function of the processor time-bandwidth product and the
signal-to-noise ratio excess in the one input channel, is given in Fig. 5.

4. The relations developed in this analysis are based on a uniform noise or interference
spectrum over the range of processor bandwidths employed. Therefore, caution is required when
there exists a large number of narrowband interfering signals which are likely to fall within the
selected processor bandwidth. This particular situation would favor a lower-than-otherwise choice
for the processor bandwidth to reduce the probability of a strong interfering signal from degrading
the detection sensitivity of the processor.
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Appendix
BIAS-CORRECTING FUNCTION R(x;Pp )

The relationship between the interim probability P and the false-alarm probability Pp 1
is given in Eq. (11) as
log Pp1 =log P {1 —xlog {1~ Z(x;logP)}} , (A-la)
where
1 1

Z(x;log P) = 10xg {1 —(0.1)3-,—:: logP¢(, (A-1b)
and where g(y2; BT) = § in the case of the MSC estimator or g(y2; BT) =§ — 042 in the case of the
NCE estimator. It is desired to solve the implicit function (A-1a) for P(x; Py 1) and compute the
bias-correcting function

R(x; P 1) =log Pp.1 [log [P(x; Pp1)]. (A-1c)

This requires explicit knowledge of the bias function g and the variance 072 .

The Function R(x;Pg 7 ) for the MSC Estimator

Both the bias and the variance functions of concern involve rather complicated forms of the
generalized hypergeometric function. However, Nuttall and Carter have derived rather precise
approximations to these functions which will be quite suitable for the purpose of this report {Al].
The details of the approximations and their precision may be obtained from Ref. Al.

Expressed in the terminology of this report, the approximation for the bias function g
becomes

B(v2;BT) = 93'7.1_2}3 (1 + 237'{;_{) (A-2a)

Letting p = —log P =log (1/P), the function Z(x; log P) for the MSC estimator is, from Eq. (A-1b),

1 1
zu;mwp%‘}n%l—l)’—]. (A-2b)

By use of this function in Eq. (A-1a), the implicit function has been solved on the computer for
values of Py ranging from 10-1 to 10-10. Graphs of the function R(x; Pr 7. ) and 10 times its
logarithm, for the MSC estimator, are plotted in Fig, 3.
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When x is very large, Z{x;log P) approximates 1/px, and it is easy to show that

. loge -1
Lim. R(x;logP)= |1 + . A-2
pron ( g ) [ log PF.T] ( c)

The Function R(x; Py 1) for the NCE Estimator

.

Expressed in the terminology of this report, the approximation for the variance 072 provided
by Nuttall and Carter [A1] becomes

g A-2)2 1—92 (1—92)2 A (A-3a) '
0:2=—T171 11—3 =1 ,
T 2BT—-1) BT+1 (BT+1)2 " 1+By2+Cy ;
where
A = 0571(BT)2 —0.608BT —1.939 :
B = 0.752BT — 2.508 ;
C = 0.221(BT)2 ~1.218BT —1.439.

Again lettering p = —log P = log (1/P), with a little algebraic manipulation the function
Z(x; log P) may be shown to be

1 1
Y7 — x 1
Zx;logP) = DT 1y, 2=@ODT 8 |, g%
2(px +1) px—1  p2x2—1

2 %
_ O1FhEn ] , (A-3b) j
fa(px) — (0.1)% f3(px) + (0.1)= f4(px)

where

f1(px) = 0.071375(px)2 — 0.076px — 0.242375
falox) = 0.221(px)2 — 0.466px — 2.947

f3(px) = 0.442(px)2 — 1.684px — 5.386 ,
f4(px) = 0.221(px)2 —1.218px — 1.439.
By use of this function in Eq. (A-1a), the implicit function has been solved on the computer for

values of Py, p ranging from 10-1 to 10-10. Graphs of the function R(x; Py 1 ) and 10 times its
logarithm, for the NCE estimator, are plotted in Fig. 2.
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The solution of Z(x; Pp p) when x is very large is not simple in the case of the NCE estimator.
However, by employing L’Hospital’s Rule it can be shown that for large x

r
Z(x;log P)= —!— [1 + 0571 . (A-3¢c)
2px 1.1717p2 +1.7315p + 1

Consequently, for p sufficiently large (Pg 1 sufficiently small) a suitable approximation for the
limit of R(x; Py 1) as x becomes very large is

. log e -1
Lim. R(x;Pp )= [1 + ———————] (A-3d)
x oo 2log Py,

A study of the curves in Figs. 1 and 2 reveals that the value of R(x; Py 1 ) for the NCE
estimator is approximately equal to one-half times one plus the value of R(x; Pr 1 ) for the MSC
estimator, over much of the range of x and Py .

Scale Values for P, , =104

To demonstrate the influence of the bias-correcting function on the scales of the graphs pre-
sented in the report, the values of x and 10 log R(x; Py 1 ) have been computed for a false-alarm
probability Pp 1 of 10-4 and BT ranging from 4 to 3000. Table A-1 gives the results. The first
column displays the values of the abscissa x for an ideal unbiased estimator; that is, when
R(x;Pp ) =1.In this case, x is simply equal to BT divided by log (1/Pr ), and no scale correc-
tion is required. The corresponding values of x for the biased estimators may then be compared
with those of the ideal estimator to assess the influence of the bias on the scales. Note that the
influence of the bias increases with the abscissa variable x out to about x = 20, after which it levels
off. The overall effect of the bias (relative to the ideal unbiased estimator) is to slightly shift the
detection-performance curves in Figs. 1 and 4 to the left and downward. The resulting influence on
the scales can generally be ignored for false-alarm probabilities less than about 10-4. Scale markings
of BT, for the NCE estimator and Py 1 = 10-4, have been included on the detection-performance
curves presented in the report.
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Table A-1 — Abscissa Values x and 10 log [R(x; Pr )], as a Function of BT,
for the Coherence Estimators when Pp = 1074

BT Ideal:R(x; Ppp) =1 NCE Estimator MSC Estimator
x | 10logR x 10 log R x | 10logk |
4 1.000 0 1.005 0.02 1.012 0.05
5 1.250 0 1.265 0.04 1.275 0.07
6 1.50 0 1.52 0.05 1.54 011
7 1.75 0 1.78 0.07 181 0.15
8 2.00 0 2.04 0.08 2.08 0.16
9 2.25 0 2.30 0.09 2.34 0.17
10 2.50 0 2.56 0.10 2.62 0.20
15 3.75 0 3.87 0.14 3.99 0.27
20 5.00 0 5.19 0.16 5.38 0.32
30 7.50 0 7.83 0.18 8.16 0.37
40 | 10.00 0 10.48 0.20 10.96 0.40
50 | 12.50 0 13.12 0.21 13.74 041
60 | 15.00 0 15.77 0.21 16.54 0.42
70 | 17.50 0 18.42 0.22 19.34 0.43
80 | 20.00 0 21.07 0.22 2215 0.44
90 | 22.50 0 23.72 0.22 24.95 0.45
100 | 25.00 0 26.37 0.23 27.15 0.45
150 | 37.50 0 39.62 0.23 31.74 0.46
200 | 50.00 0 52.80 0.24 55.60 0.48
300 | 75.00 0 79.30 0.24 83.80 0.48
400 | 100.0 0 105.7 0.24 111.9 0.49
500 | 125.0 0 132.2 0.24 139.9 0.49
600 | 150.0 0 158.7 0.24 167.9 0.49
700 }175.0 0 1855 0.25 196.0 0.49
800 | 200.0 0 211.7 0.25 224.0 0.49
900 | 225.0 0 238.0 0.25 252.0 0.49
1000 | 2500 0 264.6 0.25 280.1 0.49
1500 | 375.0 0 396.9 0.25 420.4 0.50
2000 | 500.0 0 529.3 0.25 560.6 0.50
3000 | 750.0 0 794.0 0.25 841.0 0.50
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