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SUMMARY
'A Fortran program has been developed for the Maximum Likelihood Estimation of

parameters in non-linear systems. The program structure uses subroutines to describe
the problem and define problem-specific elements, while the main program is designed to
be problem-independent as far as possible. In the present note an application of the program
to compatibility checking of aircraft dynamic flight test data has been studied. Using
simulated time histories of longitudinal manoeuvres, the conditions for satisfactory
performance have been identified. It has been shown that for a practical manoeuvre shape,
record length and sampling rate and for reasonable noise levels on the measured data,
instrument errors can be identified to good accuracy and a set of compatible time histories
reconstructed.
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NOTATION

ax, ay, az Linear accelerations in x, y, z directions, M/s2

bp, bc, br, etc. Offset bias in p, q, r, etc., measurements

. g Gravitational acceleration

- .h Altitude, m

J Cost functional to be minimised, equation (4)

L Likelihood function, equation (3)

m Length of observation vector z

n measurement noise vector, equation (2)

nQ Random noise in q measurement, equation (12)

N Number of time points

p Length of parameter vector, I

p, q, r Angular rates of roll, pitch and yaw, rad/s

R Measurement noise matrix

t Time, sec

u Input vector

u, r, w Velocities in x, y, z directions

V Airspeed, m/s

x State vector

x, y, z Reference body axes system

xa, yo, z, Body axes co-ordinates of angle-of-attack vane

.x, yf, z' Body axes co-ordinates of sideslip vane

z Observation vector

zf Calculated output vector

Angle-of-attack, radians

Sideslip angle, radians

A Increment

'p, Aq, A, etc. Scale factor error in p, q, r, etc., measurements

,0, yu Angle of roll, pitch and yaw, radians

Parameter vector

Gradient with respect to parameter vector, g



.4

Subscripts

i Time point index

j Element of parameter vector, el

m Measured value

out Calculated output value

v Sideslip or angle of attack vane -

Partial derivative with respect to fi element of parameter vector

Superscript

T Matrix or vector transpose
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1. INTRODUCTION

The Aircraft Behaviour Studies-Fixed Wing Group has been actively involved in the
determination of aircraft aerodynamic characteristics from flight test data for a number of years.
Good results have been obtained (e.g. Ref. 1) when the mathematical model describing the
aircraft motion is reasonably well known and linear or almost linear. In this case powerful
methods are available (e.g. Ref. 2) which can identify the aerodynamic parameters in the presence
of both state (or process) and measurement noise including instrumentation biases.

If the model is essentially non-linear then the problem becomes more difficult and is further
complicated by the fact that such models are often not well defined. In particular this applies to
the dynamics of aircraft at high incidence. Reference 3 provides a review of high angle of attack
aerodynamics and points to the substantial effort in this area over recent years. Nevertheless
the present state of knowledge is still largely descriptive. At the same time methods for identi-
fication of aerodynamics in high angle-of-attack regimes are in a relatively early stage of develop-
ment and no standard approach has been established. Reference 4 is an example of one approach
which makes clear the difficulty of the problem due to the presence of noise and instrument
errors in the measurements, and uncertainties in the (non-linear) model structure. Because of
this it would be desirable to separate out these two sources of error. This can conveniently be
done in the aircraft case by separating the kinematics from the full dynamical description of the
motion. The kinematic equations, relating accelerations, velocities and displacements are non-
linear but well defined and, ideally, can be analysed to provide the unknown instrumentation
biases and an optimal estimate of the state and measurement vectors. The resulting "error-free"
records are then used in a full, but not necessarily well-defined, dynamic model. The methods of
regression analysis, for example, can conveniently be applied in attempting to identify the
parameters as well as tWe structure of this model. Regression analysis can be expected to give
good results when measurement bias errors are absent (Ref. 8). This two-stage approach can,
of course, be applied equally well to the linear well-defined model case as outlined in References
6, 7 and 8. In those references an Extended Kalman Filter is used in the first stage, i.e. for
estimation of the aircraft dynamic state and of instrument systematic errors via the aircraft
kinematic equations. Reference 6 obtains good results with a restricted number of variables
while relying on high quality instrumentation. References 7 and 8 present a broader formulation
but do not discuss the requirement for successful implementation such as noise levels and the
need to specify them, record length, sampling rates, etc. Reference 9 points to some doubt on
the suitability of an Extended Kalman Filter as a parameter estimator (for identifying systematic
instrument errors), then proceeds to apply a maximum likelihood method, ignoring process
noise, and presents some preliminary results. The neglect of process noise in the kinematic
equations can be justified on the basis that it is small since instrumentation used for the measure-
ment of the inputs is the most accurate available. Furthermore, modelling errors are absent
since the kinematic equations can be considered to be exact. Reference l0 notes, for their restricted
case and accurate instrumentation, that application of the Maximum Likelihood algorithm (no
process noise) and the extended Kalman Filter/Smoother have been found to yield similar results.

In this note a Maximum Likelihood (ML) program is developed for application to a general
non-linear system with no process noise. The user is required to specify the system under study
via two subroutines, one setting out the differential equations of the system and the other speci-
fying the system sensitivity matrix. Other problem-dependent subroutines are used for initialisa-
tion and for calculation of the output responses. The program has been applied here to the
estimation of states and instrument systematic errors using the aircraft kinematic equations,
as outlined above. The aim of this study is to assess the performance of the ML algorithm for
this problem, to establish the conditions required for its successful implementation and to
provide a baseline for comparison with other methods. To this end the effects of noise levels,
record lengths and sampling rates, manoeuvre shape and the number of time histories matched,
etc., have been studied and the results presented.

| m a a* m . . . . . . . ... . .. ... ... . . . . ..



A theoretical description of the method including an outline of the ML program is presented
in Section 2 and results of its application to the aircraft kinematic equations, using simulated
data, are given in Section 3.

2. DESCRIPTION OF METHOD

A brief theoretical discussion of the Maximum Likelihood method is followed by a more
detailed discussion of its application to the aircraft kinematic equations. Consideration of pos-
sible strong correlations among some of the parameters leads to several possible alternative
approaches. A description of the computer program ends this section.

2.1 Theory

The system is assumed to be described by a set of non-linear dynamic equations of the form

x(t) = f(x(t),u(t),, (1).

)z(t = g(x(t),u(ti),f)+n(t), (2)

where x is the state vector,
U is the input vector,
z is the observation vector,
n is the measurement noise vector,

is the vector of unknown parameters.

The state equation (I) is assumed to be free from process noise and the measurement noise
is assumed to be zero mean white Gaussian noise. The measurements, z, are made at a finite
number of time points, ti.

In order to estimate the unknown parameters a likelihood function, L(zlj), is defined which
expresses the probability of obtaining the measurements, z, given the parameters, f. The maxi-
mum likelihood (ML) estimate of f is the value which maximises L(zle), evaluated with the
measured responses. The ML estimate has a number of desirable properties, including consistency
and efficiency (see Ref. II). Using the Gaussian assumption for the measurement noise the
likelihood function for the present case can be written (e.g. Ref. 11):

N

L(zlj) = [2-m/RI ]-N'2 exp[- Y (z(ti)-zc(td)VR-(z(t)-z(t)] (3)

, where m is the length of the observation vector, z,
N is the number of time points.

In equation (3) zC is calculated, for a particular f, from equations (i) and (2) neglecting the
measurement noise, n, while R is the covariance of the residuals, z(ti)-zC(t).

Taking the log of equation (3) for simplicity, the maximisation of L is equivalent to the
minimisation of the cost functional

N

J( ,R) = ImNlog2r+ NloglR ] + I (z(t)--z(ti))TR-I(z(t)-zf(t) (4)

For given R the first two terms of J are constant and the following simple cost functional
results:

• . d ) =. Y (Z(j)--Zf(t,))TR 1(Z(t)-zj(tj)) (5).- '

an estimate for R can be obtained by minimising J(f,R) (eqn (4)) with respect to R. This results in

IN
R = I (z(t)-zf(ti))(z(t-z,(t)) T. (6)

Thus the problem splits into two parts. For fixed f equation (6) maximises the likelihood
function with respect to R, while for given R the cost functional given by equation (5) is mini-
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mised to estimate . The optimisation algorithm used to achieve this is the modified Newton-
Raphson algorithm as documented in Reference 12. Starting from an initial estimate for ,

revised estimates are obtained iteratively from

= -[ (7)

The first gradient matrix is obtained directly from equation (5):

N
V, J(f) = (z(t,)-z(t))TR i[Vj(zg(t,))] (8)

and an approximation to the second gradient is given by
N

VN2J() = F. [V(zj(t))]TR-1Vg(z(ti)). (9)

The term Vg(zj(ti)) required to evaluate equations (8) and (9) is the sensitivity matrix to be
obtained from the system equations.

Thus the iterative procedure used can be summarised as follows:

(1) start with initial values for 6, R;
(2) with fixed R use equations (7)-(9) to estimate a new e;
(3) from equation (6) obtain a new estimate of R using the revised 6;
(4) repeat steps 2 and 3 until convergence.
In practice a few iterations are done with R fixed before step 3 is included, since the residual

power can often be quite large in the first iteration or two and hence lead to a worse estimate of R
than the starting value.

For the Gaussian case Reference 11 shows that the maximum likelihood estimator is
asymptotically consistent and efficient, i.e. for large N the estimates for e are normally distributed
about the true value with covariance given by the Cramer-Rao lower bound. Thus a measure of
the accuracy of the estimates is given by (Ref 11):

N R-1

covariance(6) = [(z,(t))]TRlV (zr(ti) (10)

The right-hand side of equation (10) can be seen to be the inverse of the second gradient
matrix as approximated by equation (9).

2.2 Aircraft Kinematic Equations

The kinematic equations are a set of non-linear equations relating the position, velocity and
acceleration of an aircraft with reference to a set of flat earth axes. The system can be defined
as follows:

(i) State rector, x = [uj',wjc O,9b hjT
The state equations written in body axes (x,y,z) fixed in the aircraft with origin at the
centre of gravity can be considered to be exact (e.g. Ref. 13):

= -qw+r,+ax--g sin 0

= -ru+pw+ay+gcos 0 sin"

= qu-pr+az+g cos 0 cos ,

=p+q sin 0 tan 0+r cos 0 tan9 (i ) --

q =qcos , -r sin.

= q sin #/cos O-rr cos ,/cos 0

I - usin 0-.cos0sinO-swcos0cosO

3



where u, v, w are linear velocities in x, y, z directions,

9 , 0, , are roll, pitch and yaw attitudes

h is altitude,

p, q, r are roll, pitch and yaw angular rates,

ax, ay, az are linear acceleration in x, y, z directions,

g is gravitational constant.

Note that the h and equations are not coupled into the other equations.

(ii) Input vector, u = [ax,ay,az,p,q,rlT

In general measured values for the input vector are corrupted by scale errors, instru-
ment bias errors and random noise. For example, taking the pitch rate, q, we write

q = (i+Aq)qm+bq+nq, (12)

where qm is measured pitch rate,

Aq represents scale factor error,

bq represents instrument bias error,

nq represents random noise,

with similar relations for the other elements of the input vector. If equation (12) and
its counterparts are substituted into equation (11) then the unknown parameters Aq,
bq, etc., appear explicitly in the state equation and in addition the random noise, .q,
gives rise to state, or process, noise. However accelerometers and gyros used in measur-

* ing the input quantities are the most accurate instruments used and random noise
levels are generally small. Thus it is reasonable to assume that the process noise is
negligible. .

(iii) Output vector, z = [Vflv,v,0,O,/,h T

Measurements of the output vector are corrupted by scale factor errors, biases and
random noise. The equations for calculating the outputs are taken as:

Vout = (I +Av)(u 2+ v2+W2)" 2+bv

±(rx, -.pz)l
9vot = (I+ A)tan-1 v + bu6

aVout = (I +A)tan - 1 u -+ (13)

O out = (1 + AO)o + bo ...
Oout = (I +Ao)O+bo

Oout = (!+A 0 )0+b 0

hout = (I +A-)h+bh
where V is airspeed,

a , are incidence and sideslip angles at the sensor (vane).
The term oA -p: .)/u in the /3v equation and t-', equivalent term in the acv equation are

corrections due to known sensor offsets (x,,yo,z8) and (x,,ya,z,) relative to the centre of gravity.
Given the measurements of inputs and outputs the requirement is to estimate the biases

and scale factors introduced in equations (12) and (13). In addition, although the state equation
is noise free, the initial conditions are not known exactly and hence become part of the unknown
parameter vector:

= [bax, bay, baz, bp, bq, br, bv, b,6, b., bo, be,
Aaz, Aay, Aaz, Ap, Aq, Ar, Av, A# A. A0 A9,A h

u(O), v(O), w(O), 0/(o), o(0)]T. (14)

4



The initial values and biases for yaw attitude, g/(O), be, and height h(O), bh can be assumed
to be zero since there is no absolute reference implied in equation (11). The number of para-
meters in equation (14) can be reduced if some of the biases or scale factor errors can be assumed
to be zero. For example, References 7 and 8 neglect all scale factor errors except for A,, A,., A.
while Reference 9 retains only the bias errors.

For the present study, the problem has been scaled down further by considering the subset
for longitudinal motions only and neglecting all scale factor errors. The reduced system can be
summarised as follows:

(i) State vector, x = [u, w, 0, h]T

= -(qm-bq)w+(axm+-ba)-g sin 0 1

= (qm+bq)u+(azm+baz)-+g cos 0 (14)

O = qm+bq

h = usin 0-wcos 0
where [axm, azm, qm]T is the measured input vector. J

(ii) Output vector, zj = [Vout, Vyout, 0out, hout]T 
Vout --- (Uw2)1/2q-bv -

avout = tan-' w (qm bq)xj + b, (15)

0o~t = O+bo"

hout = h+bh

The unknown parameter vector to be estimated is now

= [bax, baz, bq, by, b., bo, u(O), w(O), 0(0)]T. (16)

The initial height, h(O) and the bias bA can be assumed to be zero and hence are not included
in the parameter vector.

2.3 Sensitivity Matrix

The parameter estimation procedure as outlined in Section 2.1 requires the calculation of
the sensitivity matrix, Vj(z(tj)). For a measurement vector of dimension m and parameter vector
of dimension p the sensitivity matrix is of order m by p with the (ij) element being the partial
derivative of the ith component of zj with respect to the jth component of f. For example the
(I, 2) element would be the partial derivative of Vout with respect to baz, Vout.ba From equation
(15) it follows that

Vou t.a = (u . uba+ w . wba)/(u -I-w
2

) (17)

where u, w and the partial derivatives Uba. and wiba are all functions of time. The velocity com-
ponents u and w are obtained directly from the integration of equation (14). At the same time
equations for uba: and W'baz can readily be derived from the state equation (14). Thus, taking -.

partial derivatives of equation (14) with respect to ba= provides the required set (note that
0 .. = 0):

I:":'; ~ ~~Ub.2 = -(qm'--bq)w 0 2 )I)

(18)
-Wb;a- 7m, ibq)Uba,+ 1 "

. with zero initial condition,. .sjatio's (18) have to be integrated simultaneously with
equations (14) to enable Voutba to be evaluated as a function of time from equation (17).

The complete sensitivity matrix for the present system is summarised in Appendix I and the
full system of differential equations requiring to be integrated in order to calculate the elements
of the sensitivity matrix is presented in Appendix 2.

. 5



It is a straightforward process to extend the system to include additional parameters if
desired. Alternatively, if change of altitude is not measured it would be desirable to remove h
from the sytem being considered. Thus the state vector and output vectors would reduce to
dimension three. The sensitivity matrix would reduce from 4 x 9 to 3 x 9 and the total number
of equations to be integrated would reduce from the 23 in Appendix 2 to 16.

2.4 Correlated Parameters

Examination of the output equations (15) reveals relationships between the unknown
initial conditions u(0), w(0) and 0(0) and the unknown biases b,, b. and bo:

Vout(O) = (u2(O) + 2(0)). 2 + b, (19)

7 w-- -q()+q . x.
, i=(0) (qm(0)rbq).. +b, (20)

u(O) u(0)

Oo.t(0) = 0(0) + bo. (21)

For initially steady level flight (q(0) = qm(O)+bq = 0) equation (20) is slightly simplified
and in addition a relation between 0(0), bax and baz follows from equations (14):

tan 0(0) = -am( ) + bad (22)

In the absence of measurement noise it is required that calculated outputs are equal to
measured outputs:

V..t(0) = Vm(0)
acovm(0) = avM(0) (23)

0out = om(0)

Thus any change in initial conditions must be accompanied by a change in one or more of
the biases, e.g.,

Abo = -A0(0), etc. (24)

This suggests that if the initial conditions are estimated then the related biases can be
calculated directly without estimating them as independent parameters. The number of parameters
to be estimated is thus reduced. However, at the same time, to be consistent, appropriate elements
of the sensitivity matrix have to be modified. For example equation (24) implies that bo is now
a function of 0(0) rather than an independent parameter and the partial derivative of bo with
respect to 0(0) is -I. Using this with equation (21) gives the result for the sensitivity element
0out,#(o) = 0 rather than the previous value of I. Similar modifications to the sensitivity matrix
result when b, and b. are taken as functions of the initial conditions as implied by equations

!5 (19) and (20). Alternatively it is possible to consider u(0), w(0) and 0(u) to be functions of b",
b. and bo rather than the opposite, thus removing the initial conditions from the parameter
vector in favour of by, b, and h,). Finally, for initially steady level flight equation (22) suggests
the possibility of calculating bax (or baz) as a function of 0(0) and baz (or bax). Modifications to
the sensitivity matrix implied by these options are summarised in Appendix 3.

If, in the noise free case, all the parameters are estimated as though fully independent, the
correlations between initial conditions and biases as expressed in equations (19) to (22) may

*1 well be expected to lead to less accurate or biased results. On the other hand, in the presence
of measurciment noise the relations given in equation (23) do not hold precisely so that the pro-
cedure outlined above may not he justified. The effect of noise will be examined further in
S'.tion 3.

2.5 Computer Program

The basic structure of the program is shown in Figure I. In the first stage the input data
provide all the information necessary to broadly define the problem. Thus, for example, the
number of equations to be integrated and the parameters to be estimated are specified as well
as the a priori, or initial, values for the parameters and for the weighting matrix R. In addition,
fixed data. e.g. incidence vane location (x,. Y;, :,), etc., and data relating to computational aspects

6



such as step size, total number of time points and maximum number of iterations to be performed
are provided at this stage. Finally, time histories of all the measured inputs, u(ti), and outputs,
z(tg), are read in and stored in arrays, since they will be repeatedly called upon during the iteration
process.

The iteration loop is commenced by setting up the arrays and matrices to be used in the
subsequent calculation. For example, arrays representing the state variables and their derivatives
with respect to time are initialised, together with the sensitivity matrix and the first gradient
array and second gradient matrix (equations (8), (9)). The array and matrix formats used follow
that given in Reference 12 thus enabling many of the utility subroutines provided there to be
used in the current program. Much of the matrix manipulation in this block and in the block
labelled "Estimate New Parameters" closely follows that documented in Reference 12. For the
present study, in order to allow for flexibility in changing the number of parameters to be esti-
mated, and hence the number of variables to be integrated (Appendix 2), the subroutine INIT
has been written. Given the parameters to be estimated, INIT works out which equations need
to be integrated and sets the initial conditions. Finally, before entering the time loop, the
integrator is initialised, step size and required accuracy set, etc.

The time loop proceeds to integrate the necessary equations (Appendix 2) and concurrently
evaluates the sensitivities (Appendix 1) and hence the gradients (equations (8), (9)) as well as
the outputs (equation (15)), all based on the current parameter values. Integration is performed
via the fourth order Runge-Kutta routine (subroutine ANINT) although a predictor-corrector
method has also been used. The integration routine calls for derivative values which are supplied
by subroutine DERIVS. When integration to the next time point is complete, sensitivities and
outputs are evaluated via subroutines SENS and RESP respectively before the gradients can be
calculated. The time loop proceeds step by step until the specified number of points is achieved.
Note that on the first iteration, measured values of the states (or values deduced from the
measurements) are used in calculating the gradient. This technique is useful if initial parameter
values are far from the correct values (see Ref. 12).

All the information required for the estimation and updating of the parameters is now
available (equation (7)) and this is now done. At the same time an updated weighting matrix
is calculated using equation (6). As explained in Section 2.1 this step is only carried out after
the first few iterations. The iteration loop proceeds until the specified number of iterations is
complete. Alternatively, it would be possible to set a convergence criterion on the residuals
but this has not been done here.

Finally, the correlation matrix, whose diagonal elements are the Cramer-Rao bounds, are
calculated using equation (10). The output results include an iteration history comprising fit
error (residuals), gradient, determinant of second gradient matrix and new values of estimated
parameters after each iteration. The final values of the parameters and their Cramer-Rao
bounds are then summarised followed by the normalised correlation matrix. A second output
file contains time histories of the inputs and the measured and calculated outputs to be used for
producing time history plots if required.

Since non-linear systems can vary greatly in their structure it is difficult to write a general
program to cater for all possible variations. In the present case, although the main interest has
been in the aircraft longitudinal kinematic equations, an attempt has been made to separate the
problem-specific elements from the more generally applicable program elements. Thus the sub-
routines INIT, DERIVS, SENS and RESP are problem-specific and would have to be altered
for each different system. Some alteration in the problem definition box (Fig. I) would probably
also be necessary. Such modifications are relatively simple and make it possible to apply the
program to estimation of parameters in other non-linear systems of interest. For example, it
could be used for estimating the aerodynamic parameters in a non-linear dynamic model of the
aircraft using the "error-free" responses produced by the present program. However, for that
particular problem, regression analysis would probably be more convenient to apply.

3. RESULTS AND DISCUSSION
The longitudinal system defined in equations (14)-(16) have been studied in some detail

using simulated data. Measurement time histories were produced by an auxiliary program
which allowed specified biases and noise levels to be set. Process as well as measurement noise
could be specified in order to study the effect that process noise had on the results.

7



The study proceeds systematically by first looking at the no noise case and assessing the
effects of changing the number of measured time histories to be matched and the performance
of the different procedures (Section 2.4) designed to cope with correlated parameters. This is
followed by results with measurement noise and then process noise added. The noise is in all
cases white and Gaussian. The effects of record length, sampling rate and noise levels are investi-
gated and finally the inflence which manoeuvre shape has on the results is briefly examined.

S.Some care has been taken to ensure that integration errors, due to too large an integration step
;" size, are avoided while maintaining step size as large as possible in order to minimise compu-
" tation time. Although a fourth order Runge-Kutta integration is normally used, a variable

order and step size predictor-corrector method (Ref. 14) was also used, when checking integra-
tion accuracy.

3.1 Effect of Number of - ',nses Matched-No Noise

In order to assess the -elativc importance of each of the measured time histories, various
combinations of two anct three elements as well as the full four elements of the output vector
(equation (15)) were matched. In the absence of measurement noise the weightings given to the
records (i.e. the diagonal elements of R) were fixed approximately inversely proportional to the
square of a typical expected noise level. The results are in fact fairly insensitive to variations in
relative weightings.

In order to avoid the correlation problem discussed in Section 2.4 the biases b , b. and bo

were fixed at their correct values thus giving a six-element parameter vector (equation (16)).
The manoeuvre shape used (Manoeuvre 1) is produced by the inputs shown in Figure 2. Starting
from steady level flight the manoeuvre assumes a linear variation of longitudinal acceleration,
ax, and periodic variations of normal acceleration, az, and pitch rate, q. The output airspeed.
incidence and pitch attitude over a 60-second time span are shown in Figure 3, although only
the first 20 seconds, at a sampling rate of 10 per second, was used at this stage. Figure 3 shows
both the "measured" records and those calculated assuming zero biases but with initial values
matched.

A summary of results, each obtained after four iterations and a typical processing time of
60 seconds on the PDPIO computer, is presented in Table 1. An indication of the relative
accuracy of the estimates is provided by the number in parentheses which are the "Cramer-Rao"

*., bounds computed with the fixed R matrix. It is clear from the results that the use of three mat :hed
time histories can produce almost as good results as four matched records. This is particularly
true with the V, a, 0 records which produce results for the estimated parameters, their confidence
bounds and time history match errors (expressed as RMS error) in close agreement with the full
match case. The use of only two time histories leads to a general deterioration of results with the
V, a and V, 0 cases being the least unacceptable.

It is concluded from this study that matching the height, h, record only provides a marginal
improvencnt of the results compared to a V, a, 0 match. Considering also the difficulties of
obtaining accurate height measurements and the favourable reduction in the system equations
when h is neglected (Section 2.3), height has been removed from the system equations in the
t0owing scctiorl.

3.2 Effect of Parameter Correlations-No Noise

In this section all nine unknown parameters are estimated (equation (16)) with measure-
ments assumed to be noise free. Because of the relations between the initial conditions and several
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of the biases, a number of different procedures was tried as discussed in Section 2.4 and
Appendix 3. Six methods used are summarised in the table below.

Method No. Description

I All nine parameters extracted as though independent
2 b6 treated as function of 0(0)
3 b,, b , bo treated as functions of u(O), w(0), 0(0) -.

4 u(0), w(O), 0(0) treated as functions of b,, b2, b,.
5 b, b6o, b., treated as functions of u(O), w(O), 0(0)
6 u(0). w(0), 0(0) obtained from b, b,, b6; sensitivities unchanged

Method I uses the unmodified sensitivities summarised in Appendix I while Methods 2-5
include modifications described in the corresponding sections of Appendix 3. Method 6 proceeds
as in Method I but leaving out the initial conditions from the parameter vector. However,
initial conditions are adjusted at each iteration using the relations in Section 2.4. Thus Method 6
is like Method 4 but without the sensitivity matrix elements being modified. This appears to be
the approach used in Reference 9.

The manoeuvre used is the same as in the previous section (Manoeuvre 1) as are the fixed
elements of the weighting matrix. Twenty seconds of record at 20 samples per second was
analysed and typical computing time was 400 seconds for 20 iterations. For this and all subse-
quent computations the a priori values for the biases were set to zero and those for the initial
conditions u(O), w(O) and 0(0) set to values determined from the "measurements".

A comparison of the performance of the six methods with noise free data is shown in
Table 2. With Method i, although the "Cramer-Rao" bounds are relatively small the estimated
parameter values are clearly biased. Examination of the normalised correlation matrix reveals
a number of highly correlated parameters, as expected, the worst being correlations between
b2-w(O)-O(O) and between bv-u(O). An immediate improvement in parameter values is obtained
with Method 2 when 0(0) is removed from the list of independent parameters. Further improve-
ments are achieved with Methods 3 and 4 which give very similar results, as may be expected,
but Method 5 shows little consistent improvement over the previous two methods. While
estimated parameter values improve going from Method I to Method 5 it is worth noting that
the confidence bounds for Methods 2-5 are worse than that of Method i. Finally Method 6 is
a poor performer giving strongly biased results. The "Cramer-Rao" buunds appear to be very
small in this case but it should be remembered that the problem formulation is inconsistent.

3.3 Effect of Noise, Record Length and Sampling Rate

The effects of both measurement and process noise on the estimation procedures of the
previous section were investigated using different (Gaussian) noise levels. Table 3 below lists
the noise standard deviations on each of the measurement channels for five different noise
lcvels used.

The first two columns in Table 3 are measurement noise only cases, the first column repre-
senting a fairly high noise level and the second a low noise level similar to that used in Reference 9.
The last three columns include both process and measurement noise. Level 3 is a low process
noise case (Ref. 9) confined with low measurement noise; Level 4 combines low process noise
with high measurement noise and Level 5 has high noise levels in both process and measurement
noise. Even the low noise levels in Table 3 are generally considerably higher than the levels des-
cribed in Reference 10, which correspond to highly accurate instrumentation. Instrumentation
of such accuracy is not yet in common use for flight testing.

10
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TABLE 3

Noise Levels

Measurement noise only Process and measurement noise
Standard -- _

error Level I Level 2 Level 3 Level 4 Level 5

a(ax), m/s 2  0.0 0.0 0-05 0.05 0-1
a(a-), m/s" 0-0 0.0 0"05 0-05 0.1
a(q), rad/s 0-0 0-0 0'001 0'001 0.002
a(V), m/s 1.0 0.1 0. 1.0 1.0
c(), rad 0.002 0.001 0.001 0.002 0-002

(0), rad 0.01 0.001 0.001 0.01 0.01

The effects of measurement noise on the results of the previous section are summarised in
* Table 4. The test details remain the same except that Level I noise has been added to the measure-
. ments and consequently the estimate for the measurement noise matrix, R, is updated in the

course of the analysis as explained in Section 2.1. Thus the Cramer-Rao bound (equation 10)
should be a good estimate of the accuracy of the estimates. The results in Table 4 represent the
average values plus or minus the standard deviation (or scatter) obtained from 8 to 10 separate . _
runs. The scatter should be comparable with the Cramer-Rao bounds shown in parentheses.
In comparing Tables 2 and 4, the results for Method I (all parameters identified) are seen to be
very similar. The scatter is about twice the Cramer-Rao bound for most parameters, indicating
room for improvement. However, the mean values for all the parameters are within about
one Cramer-Rao bound of their true value. The results from Method 6 remain erratic as before
although apparently providing a reasonable fit. The Cramer-Rao bounds in this case give little
indication of the accuracy of the estimated parameter values. The remaining methods all show
a marked deterioration in the presence of measurement noise. The average results no longer
compare favourably with those from Method I and the scatter bands a - considerably worse.
Method 4, not shown in Table 4, provides results very similar to Method 3. The deterioration in
performance of Methods 2 to 5 in the presence of noise is probably linked to the fact, as discussed
in Section 2.4, that the relations assumed by equation (23) no longer hold exactly.

It is concluded that, despite the correlations between severa! of the parameters, Method I
is likely to provide the best results. In order to optimise further the performance of Method I
the effects of record length, sampling time and measurement noise level have been examined
and the results are shown in Table 5. These are average results over 7 to 10 simulations with
the scatter and Cramer-Rao bound (in parentheses) also shown. Record lengths vary from
20 to 60 seconds and the number of samples, N, corresponds to sampling rates of either 20 or
40 samples per second. The first five columns of results are for Level I (high) measurement noise,
the first (reference) column being a repeat of the Method I results from Table 4. Column 2 is
for 40 seconds of record at the same sampling rate and shows a notable improvement in estimated
parameters. The scatter of the results is much reduced and shows good agreement with the
Cramer-Rao bounds in all cases. However, the scatter in some cases, in particular h, is still
somewhat large. Doubling the sampling rate (column 3) produces further improvement in both
estimates and scatter as does an increase in the record length from 40 to 60 seconds (column 4)
at the lower sar pling rate. Column 5 gives results for 60 seconds of record at the higher (40 per
second) sampling ratics. fhe improving results with increasing record length are partly due to
decreasing correlations between parameters, but close examination of the results suggests that
there may still be some bias in b, and perhaps also 0(0).

The last two columns of Table 5 are for lower (level 2) measurement noise. As expected
results are improved for both estimated values and scatter. At this noise level 40 seconds of
record is sufficient to identify all the biases to within about 10% or better.

The addition of process noise can be expected to affect the results adversely, since it has notbeen accounted for, and some results are shown in Table 6. These can be compared directly with
the relevant columns of Table 5. For example columns I and 2 of Table 6 should be compared

the2
,-. 12
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with columns 7 and 5, respectively, of Table 5. While the respective Cramer-Rao bounds remain
the same, the scatter increases markedly. This deterioration is relatively itiuch worse in the case
with low measurement noise (column 1). Nevertheless most of the biases are reasonably well
identified when 60 seconds of record are used, the main exception being b, which has a large
scatter band. When either the record length is decreased (column 3) or the level of process noise
is increased (column 4) the accuracy of estimation of several of the other parameters also becomes

- . unacceptable, but it is clear that bq is always well identified followed probably by baz.

TABLE 6

Effect of Process and Measurement Noise-Method I

Para- True 1 2 3 4
meter value

Sb., m/s 2  0.1 0.086±0-006 0"087±0"011 0-051 ±0'020 0"089±0"021
(0-0020) (0"0051) (0"0125) (0"0053)

- baz, m/s 2  O.1 0.099±0-005 0.095±0.003 0.092±0.011 0.092±0-008
(0.0005) (0.0019) (0.0039) (0.0020)

bq, rad/s 0.002 0.0020±0-00002 0-0020±0.00002 0.0020±0"00005 0.0020±0-00005
(000000l) (0.00001) (0.00002) (00000l)

b,, m/s 1.0 1-038 ±0.134 1.132±0.163 1.213±0-526 1.234±0.479
(0"025) (0- 135) (0"230) (0 138)

b,, rad 0.002 0-0019±0.0015 0.0018±0.0026 0.0052±0.0029 0.0017±0.0034
(0.0002) (0.0006) (0.0013) (0.0006)

bo,rad 0-01 0.0114±0.0004 0.0115±0.0011 0.0158±0.0023 0.0111±0.0021
(0-0002) (0.0006) (0.0013) (0-0006)

u(0), m/s 98.48 98.436±0.172 98.315±0.197 98.303±0.520 98-219±0.556
(0"026) (0-147) (0"238) (0"150)

w(0),m/s 17.36 17.360±0.161 17.379±0.306 17-028±0-340 17.505±0.354
(0"020) (0"073) (0 140) (0"075)

0(0), rad 0.175 0.173 ±0.001 0.1728 ±0.001 0.1690±0.002 0-1731 -002
(0"0002) (0"0005) (0"0013) (0-0005)

Time, sec - 60 60 40 60
N - 2400 2400 1600 2400
Noise - Level 3 Level 4 Level 4 Level 5

Only V, a, 0 records matched; R = diag[1 .0, 250000, 100001 initially.
10 iterations-CPU time about 20 min for cases 1, 2, 4 and 14 min for case 3.
A priori parameter vector = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 99.431, 17.734, 0. 185] T .

Results averages of seven runs.
Manoeuvre i.

3.4 Effect of Manoeuvre Shape

All of the results so far presented were obtained using the manoeuvre shape (Manoeuvre I)
shown in Figure 2. It is known that manoeuvre shape influences the amount of information in
the measurements and efforts have been made elsewhere in the development of optimal manoeuvre
shapes (see e.g. Ref. 15). No attempt is made here to develop an optimal shape but in this Section

aresults with changing manoeuvre shapes are reported so as to bring out the effect this can have on
the results.

The shapes used are as follows:
Manoeutre 1.-Shown in Figure 2. the inputs consist of a longitudinal deceleration at

0-1 m/s 2 , an oscillatory normal acceleration with an amplitude of 2 m/s 2 and an oscillatory pitch
rate with an amplitude of 0.2 rad. The frequency of oscillation in each case is 2 rad/s.

-15
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Manoeuvre 2.-Shown in Figure 4, the only difference from the previous inputs being in
the normal acceleration which has now been made symmetrical about the undisturbed value.
The output airspeed, incidence and attitude are shown in Figure 5. Level I (measurement) noise
is shown on the outputs and the calculations assume zero biases. Thus the differences between
the two sets of curves represent the effects of the biases. The major difference between this and
the previous manoeuvre is in the angle of attack which no longer reaches the very high values
caused by the asymmetric normal acceleration input.

Manoeuvre 3.-This manoeuvre is very similar to the previous except that the normal
acceleration amplitude has been increased to 10 m/s 2 thus providing a wider range in angle
of attack.

Manoeuvre 4 (Fig. 6).-This manoeuvre differs from the previous only in having a different
oscillation frequency for the input normal acceleration. The differences in the output records
are shown in Figure 7.

Manoeuvre 5 (Fig. 8).-This is a simulation of a real manoeuvre produced by a pilot applying
stick inputs to produce a roller coaster type of motion, i.e. push-over/pull-up/push-over. The
resulting accelerations and pitch rate are similar to those shown in Figure 8, with the higher
frequency oscillations, particularly in pitch but also in normal acceleration, being due to the

Short Period response. The outputs, both measured (with Level I noise) and calculated (assum-
ing zero biases) are shown in Figure 9.

The results using these five manoeuvre shapes are shown in Table 7. For this study 40
seconds of record at 40 samples per second were used. Consider first the five columns of results
with Level I measurement noise only. For Manoeuvre I the results are a repeat of those in
Table 5, column 3. With Manoeuvre 2 the smaller angle of attack range leads to a general
worsening of results, both in parameter value and Cramer-Rao bound. Of the biases, only bq
and perhaps baz can be taken as satisfactorily identified. With Manoeuvre 3 the larger disturbance
amplitude produces a general improvement in results all round. However, bo and bax still are
strongly biased as indicated by the Cramer-Rao bounds. Manoeuvre 4 introduces two dominant
frequencies, particularly obvious in the angle of attack output (Fig. 7) and this extra information
leads to a further general improvement in the parameter estimates and error bounds. In addition
biases in ba and bo are no longer obvious. Finally, the information content of Manoeuvre 5 is
such as to produce the best results in this Section. Only b, (and the related initial value, w(0))
still appear troublesome.

The last two columns of Table 7 include both process and measurement noise with
Manoeuvre 5. The Level 5 (high process and measurement noise) results are, on average, very
similar to the measurement noise only (Level 1) case although the scatter, based on the standard
deviation over nine runs, is two to three times worse than the Cramer-Rao bound now. The
Level 3 (low process and measurement noise) results produce a marked improvement with all
parameters being well identified. Although the scatter is about five times the Cramer-Rao
bound, it is comparable and in some cases better than the Cramer-Rao bounds obtained with
the higher levels of measurement noise. In particular h. and w(0) are considerably improved.

3.5 Summary of Results

The results for the longitudinal kinematic system studied here have suggested that the use
of the three elements V, a, 0 of the output vector produce results as good as those using the full
vector, including height. Reduced computation time and simplicity also favour a reduced system.

The problem of correlations between the state initial conditions and some parameters was
investigated using several possible methods proposed to account for the correlations. Although
improved performance was obtained from these methods in the noise free case, the addition of
measurement noise led to marked deterioration. Best results, with measurement noise, were
obtained when all parameters including initial conditions were independently extracted.

Correlations decreased as record lengths increased with consequent decrease in the bias in
some estimates and decrease in the scatter band. Reasonable accuracy could be obtained with a
record length of 40 seconds at 40 samples per second. Reduction of measurement noise levels
was also found to lead to marked improvement in parameter estimates. The main effect of process
noise was an increase in the scatter of results. Also bias in some estimates appeared where previ-
ously absent with measurement noise alone.
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It was clear that the manoeuvre shape had an important influence on the results. A practical
push-over/pull-up manoeuvre was found to provide satisfactory results for most parameters
with a record length of 40 seconds, particularly for lower noise levels (both measurement and
process). Further improvements may well be attainable by developing a manoeuvre specially
suited to the purpose of identifying instrument biases.

4. CONCLUSIONS

A general Maximum Likelihood program, suitable for estimation of parameters in non-
linear systems, has been described. For successful application to a particular system, process
noise levels should be small. A summary of the theoretical background has been given and the
program structure has been developed via subroutines to allow ready modification to suit the

* problem in hand.
The program has been applied here to a study involving longitudinal aircraft kinematics.

In this case the kinematic equations, treated separately from a dynamic representation of air-
'- craft motions, are free from process noise to a good approximation. This separate treatment
.. of the kinematics can be used for checking the compatibility of measurements and for estimating

instrument systematic errors. Such an approach is useful for reconstructing "error-free" records
prior to dynamic analysis aimed at estimating aerodynamic parameters, and is particularly
valuable when the dynamic model is uncertain and/or non-linear.

The study, using simulated data, has aimed at establishing the conditions under which the
Maximum Likelihood algorithm can successfully extract the instrument biases, and to set a

, baseline for comparison with other methods. It has been found that the present method is feasible
" provided record lengths and sampling rates are adequate. The importance of using high quality

instrumentation to minimise noise has also been brought out. Further, it has been shown that
the manoeuvre shape can have a considerable influence on the quality of results and an effort
to develop an optimal manoeuvre shape may be worthwhile. For the present system, using a
practical manoeuvre shape, 40 seconds of record at 40 samples a second with reasonably low
measurement and process noise levels was successful in extracting most parameters to within
10% or better of their true values. The precise levels of accuracy acceptable would depend, to
some extent, on the requirements of the subsequent analysis and would need to be investigated
further. Finally, the performance needs to be checked with real, as opposed to simulated, flight
test data.

18'
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APPENDIX 1

Sensitivity Matrix (Subroutine SENS)

The parameter vector has dimension 9:

[ bax, b.,, bg, b~, b., be, u(O), w(O), 0(0)]T -

* and the output vector has dimension 4:

ZC= tVout, OCOUt, 0 houtlT.

Using the output definition in equation (15), the transpose of the 4 x9 sensitivity matrix
* becomes:

ZC ru O* Ou Ot hout

baz Vout~bb,. O Vout.bax 0.0 hout~bax

baz Voutb. OVout.baz 0.0 hu~a

bg Voutf, OgVout.bq O0ut ,bq hout.bq

v 1-0 0-0 0.0 0-0

b 0.0 1.0 0.0 0-0

be 0.0 0.0 1.0 0.0

t40) Vout.w~o) CLVOUI.U(1) 0.0 hout u(o)

w(0) Vout'w(O) aVout.W(O) 0-0 otw)

0(0) Vouteco,) OCVo.e"(O) 0OoUt.6() houteo)

where

Voutj (U . Ufj+ W.l)(2 212

=l~tf (u. wr,- [w -(qm+ be) x.jUj)I(U2 +[w -(qm-+bg)x,,I 2),

hout.fj = hi

The above relations hold for those elements fj of the parameter vector as listed above in
the sensitivity matrix. The only exception is

OCVOUJbq =(U. Wf'q-[w-(qfl+bq)x~ijuq-u. x.)/(U2 + [w-(qm+bq)x,j'2).



APPENDIX 2

Differential Equations (Subroutine DERIVS)

In order to calculate the state (equation (14)) and the elements of the sensitivity matrix
(Appendix 1) the following system of ordinary differential equation needs to be integrated with
respect to time:

z= -(qm+bq*w+(axm-lbax)-g sin 0

v= (qm + bq)U+(azm +bazz) + 9gCOS9

6= qmn-'- bq

It = u sinO -- w cos 9

iUbax = (qm+bq)Ub.-,

ilbar, sin9. Ubax -CO0 0.

1ba, -(qm1bq)isbj.z

h = (q + bq)u~z+I
t,~ = sin 0 - Ub0 -co 11'b

Z~ (qm +bq);Ibq -1-9g COs S 0 Obq

'bq = (qm-i-bq)ubqu-g sin 9. 9
bq

dbq = 1 O

hbq = sin 0. Ubq -cos 9. 14bq±(u cos 0+)t sin 9
)
9

bq

*.UU(O) = -(qm+bq)mu(o)

% u(o) = (qm~bq)Uuj0)

It u(o) = sin 09. uu(o) -cos 9.i~~

6ilCo) = -qib)Vc0

i ,(o) =(qm-+bq)uu.(o)

hto sin 0 uu,(O) -cos 9 . i,-o

60~(o) =-(qm +bq)ivto) -g cos 9

=~~o (qm +bq)u,(o, -g sin 0

h =o sin 9. UO(o, -cos 90. wo(o)+U cos 6±w sin 9



In deriving these equations use has been made of the fact that 00(0) = 1. The initial con-
ditions for the above set of equations are zero except for the following:

u(O) .

w(O) unknown parameters to be estimated

0(0) "

UU(0)(O) I

wWW(O) 1



APPENDIX 3

Effect of Correlations on Sensitivity Matrix

As explained in Section 2.4, when relationships between initial conditions and biases are
accounted for, it is possible to reduce the number of parameters to be estimated. At the same
time, alterations need to be made to some elements of the sensitivity matrix defined in Appendix I.
Four possible approaches which have been examined and the resulting changed elements of the
sensitivity matrix are summarised below.

(1) Parameter vector, [bax,baz,bq,bv.,b ,u(O),,t.(O),O(O)]T-bo treated as a function of 0(0).

Changed sensitivity elements:

0 out.O(O) 0

(2) Parameter vector, [bax,baz,bq,U(O),w1(O),0(O)]T -b,b,,,b0 treated as functions of u40), .-

RIO), 0(0).

Changed sensitivity elements:

=ot 0 (U . UU~o -10- + it 1 1.0 1)(/U'- +- it'2)1 2 -u()(U2(O) +- 2(0))1/ 2

Vout,woi = (U . UwOl +t .1 it'1vo0)/(U2 +),'2)11'2 - jw(O)/U 2(0) +14.2(0))1' 2

=eotU0 (u . wuo- [i-(qm ±bq)X~j]Uuto,)I(U 2 ± [it -(qm+bq )XJ 2 )

I-(tt() - (qm ±bq).)/(U2 (O)+ [i'(O) -(qm(0) +bq)X. 12)

avou, ,W(O) =(u . it.(o) - [it'-(qrn-i- bq)xju.U1 O1 )/(U2 +[ii -(q + bq)X. 2 )

-u(0)/(U 2 (0) +- [is-(O) - (qm(O) +bq)X. 2 )

0
OUt.6(O) = 0

(3) Parameter vector, [bax,baz,bq,bv,b,b]T-u(0),w(O),0(0) treated as functions of bv, b,,. bo

Changed sensitivity elements:

VouI --[(U . UUtOIit +W - HU(oi)cos oc(0)

-t(u . UWIoI' it . it 1 o1)sin 0e(0)]!(U
2
+I-t

2)' 2

Vout,b. [(U - -- It'. iv, 1o,)sin x(O)

-(U .U,110 -- - % t,, ,)cos %(O)] (u2(O)± it'2(O))I 2 /(U2+11-'2)1 2

Voutbo -( . Ut)( 1  11'. 0(o1)(Ur -t-'1
2 )1 2

oe"outN~ = W [(- Utio) -- u ;tu,o,)cos u(O- j(t' )-u4. iv,j1o1)sin a(0)J/(U
2 ± t'2)

=I [(u . ivu~,ol -iv'. uuol)sin Y(O)

-(1t' . U14 (0) - U .ir t.) )COS X(O)] .(U
2(O) -t t2(O))I 

2 /(U 2 -t + t'
2 )

oout~bo = 0

These relations assume initially steady flight, i.e. pitch rate equals zero.



(4) Parameter vector, [baz-,ba,u(O),w(O),B(O)] -bv,b.,be and b.. treated as functions of u(O),
W(O), 0(0).

Changed sensitivity elements:
VOUt.U(O), Vout.w(o), 2vou.u (o), avout.w(o) and Oout.o(0) same as listed in approach 2. In

addition:

*VO-tO~O? = fu. -UgoC)+w wo(o)-(azm(O)+baz)sec2 O(0)(U. Ub,,+W. Wbax,)/(U 2 +W2)1, 2

avout. 0(O) = [u.- wo'(o)W . uo(o) -(azm(O) + b,)seC2 O(0)(U. Mbax., -' . Ubax')II(U
2 

+ j
2

)

-. Initially steady flight, i.e. zero pitch rate, has been assumed in these relations.
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INPUT DATA

PROBLEM DEFINITION

-SYSTEM AND PARAMETERS TO BE ESTIMATED

-A PRIORI VALUES FOR PARAMETERS, RESIDUALS MATRIX

READ AND STORE TIME HISTORIES OF INPUTS/OUTPUTS

START OF ITERATION

- SET ARRAYS, MATRICES SUBROUTINE INIT

- INITIALISE INTEGRATOR

SUBROUTINE ANINT

COMPUTE STATE, GRADIENT AND OUTPUTS DERIVS

FOR ONE TIME STEP SENS

RESP%_i °TIME / MS

LOOP
-. 'CHECK IF LAST TIME STEP

ITERATION
LOOP I

ESTIMATE NEW PARAMETERS

- UPDATE PARAMETERS

- UPDATE RESIDUALS MATRIX

L----FCHECK IF LAST ITERATION O O

CALCULATE CORRELATION MATRIX,

CRAMER-RAO BOUNDS

OUTPUT RESULTS

FIG. 1 BASIC PROGRAM STRUCTURE



5.00

0.00

Longitudinal
acceleration, ax

ms
-2

-5.00
0.00

-5.00

Normal
acceleration, az

ms-2

10.00
0.5

0.00

Pitch rate, q
rad s-1

0 12 24 36 48 60

Time - seconds

FIG. 2 MANOEUVRE 1--INPUTS



150.0,

Measured

100.0

Airspeed, V Calculated
ms-'

50.0
2.00"" 2.00Measured -

1.00

Angle of attack, a
radians Calculated

j/ Measured

0.00
2.00

4 I t 1 Ii-'

0.00
Pitch attitude, 0 1

radians V, I ,

Calculated
- 2.001

0 12 24 36 4+8 60

Time - seconds

FIG. 3 MANOEUVRE 1 -- OUTPUTS



2.00

* 0.00

Longitudinal
acceleration, ax

ms- 2

-2.00
0.00

-10.0

Normal
acceleration, az

ms- 2

- 20.0
0.5

0.00
Pitch rate, q

rad s-1

0.5
*0 8 16 24 2 4+0

Time - seconds

FIG. 4 MANOEUVRE 2 - INPUTS



150.0

Calculated

100. 0

* Airspeed, V
ms- A -

50.0 I
0.3

Angle of attack, a '
radians

* 0.1
0.2

0.001
Pitch attitude, 0

radians
Calculated

-0.2

0 8 16 24 32 4*0

Time - seconds

FIG. 5 MANOEUVRE 2 -OUTPUTS



2.00

0.00

Longitudinal
acceleration, ax

ms- 2

-2.00
20.0

0.00

Normal
acceleration, a.

ms- 2

-20.0
0.5

Pitch rate, q 0.0 -vv
rad s-1

- ~~0.51 * II
0 8 16 24 32 4+0

Time - seconds

FIG. 6 MANOEUVRE 4 - INPUTS



100.0

Airspeed, V

ms'1

50.0
0.7

0.3

Angle of attack, a
radians

-0.1

0.2

Pitch attitude, 0 '
radians/

Calculated
-0.2 __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

0 B 16 24 32 40

Time - seconds

FIG. 7 MANOEUVRE 4 -OUTPUTS



4.00 *

2.00

Longitudinal
acceleration, ax

ms-2

0.00
50.0

0.00
Normal

acceleration, a,
ms- 2

-50.0
0.5

0.00
Pitch rate, q

rad s-1

0 12 24 36 48 60

Time - seconds

FIG. 8 MANOEUVRE 5 -INPUTS



250.0

Airspeed, V Maue
ms'1

- 50.0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1.00

Angle of attack, a
radians Calculated

-1.00 ____________________________
1.00II I

Measured

0.00
Pitch attitude, 0

radians

-1.00
0 12 24 36 48 60

Time - seconds

FIG. 9 MANOEUVRE 5 - OUTPUTS
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