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1. IVNTRODUCTION

This is a final report for work accomplished on Naval Surface
Weapons Center contract N60921-82-C-0083, "Expert Computer Systems for
Missile Maintenance". We have done work on several related topics.
Section 2 describes work which was done jointly with McDonnell Douglas,
Section 3 describes an Automated Maintenance Manual which was developed
under this contract, and Section 4 describes results we have obtained on
a number of longer-range issues related to missile maintenance.

2. JOINT WORK WITH MCDONNELL DOUGLAS

Since this contract was awarded to the University of Maryland in
conjunction with a similar award to McDonnell Douglas, some of the work
on the contract was done jointly with McDonnell Douglas. This section
sumsarizes the nature of the work that was done jointly.

2.1. Acquainting McDonnell Douglas With Expert System

In order to familiarize McDonnell Douglas with the general tech-
niques used in expert computer systems, and also to keep them informed
of the work we were doing, we provided them with the following papers:

1. Nau, "Expert Computer Systems" [8]. This paper is a general survey
of the techniques most commonly used in expert systems.

2. Nau, Reggia, and Wang, "Knowledge-Based Problem Solving Without
Production Rules" [101; Reggia, Nau, and Wang, "Diagnostic Expert
Systems Based on a Set Covering Model" [141; and various related

internally generated memos. These papers and memos describe an
approach to diagnostic problem solving based on a set covering
model. Developed originally by James Reggia and currently being
investigated by Reggia and Nau (one of the principal investigators
on this contract), this approach has been used successfully in med-
ical diagnosis systems, and in the general purpose expert system
DIS.

3. Allen, "Yapst Yet Another Production System" [11; Wood, "Franz Fla-
vors: An Implementation of Abstract Data Types in an Applicative
Language" [151; Allen, Trigg, and Wood, "The Maryland Artificial
Intelligence Group Franz Lisp Environment" [2]. (We also provided
McDonnell Douglas with a computer tape of the three systems
described in these three reports.) Yaps is an antecedent driven
production system based on discrimination nets. Yaps is similar
to, but more general than, OPS5 (4]. Franz Flavors is an implemen-
tation in Franz Lisp of the Lisp-Machine Lisp Flavors package
developed at MIT. Flavors are an ideal medium for the generation
of object oriented systems such as constraint networks. The Franz
Lisp Environment is a 'front end' developed at Maryland for Franz
Lisp. It provides useful macros and a history mechanism to facili-
tate working in Lisp.

L.

. . .. .. . ....... S....... .. ",
* 4 54*m wd 

" '-
"" *" -,*,-,.5-,* ,'-,. "*...



2

2.2. Investigation of a Particular Application

At the suggestion of McDonnell Douglas, the Harpoon missile gui-
dance system power supply was chosen as an example circuit for use in
testing the diagnostic techniques being developed. This circuit is
built and maintained by IBM at their plant in Owego, New York. In order
to familiarize ourselves with the operation of this circuit, and with
the diagnostic methods used by the technicians responsible for maintain-
ing it, we decided that we should visit Owego. On October 20, 1982,
Dana Nau and Olaf Schoenrich from the University of Maryland and Jim
Miller from McDonnell Douglas spent the day with the Owego technicians.
This trip was useful in several respects:

1. Insight was gained into the methods used by the technicians to
diagnose a faulty circuit.

2. We learned what kind of automatic testing and diagnostic equipment
the is available to the technicians, and

3. The technicians provided information about what kind of automatic
testing system they would like to see.

Conversations with technicians reveal that they do electronic test-
ing and diagnosis in a hierarchical way. A circuit board is usually
thought of as a collection of functional subunits, each of which is a
collection of sub-subunits organized in a certain way. An experienced
technician has knowledge not only of individual electronic components,
but also of the various subunits, sub-subunits, etc., and the way they
interact with each other. Given a circuit board to diagnose, a techni-
cian will perform a number of tests to tell whether it is working
correctly. If it fails these tests, then one or more of the subunits is
faulty. The technician will use the test results, together with his/her

* knowledge of the subunits and the ways they interact, to select which
subunits to consider. The same diagnosis procedure is then performed on
these subunits.

The automatic testing equipment that the technicians have at their
disposal does not lend itself to this kind of testing. The fully
automatic testing equipment will, when connected to a circuit board,

* -perform an elaborate predefined set of tests. It will make all the
necessary measurements, even read oscilloscope outputs, and it will
display the results. When it has located an error, the tester will stop
and signal what has been found. The chief objection on the part of the
technicians is that there is no way to override the testing sequence.
Much of the time, the technician will have a good idea of what is wrong,
or of what should be tested next, but there is no way to change the
sequence of tests performed by the automatic tester.

What the technicians want, it would seem, is a system that will aid
* them in testing, but whtre they are still 'in control'. That is, they

would like a system that will ake it easy for them to use a hierarchi-
cal testing strategy.



After the trip to Owego, the technicians at McDonnell Douglas stu-
died the power supply circuit and produced a preliminary set of
production-like rules describing the correct behavior of the circuit, as
veil as its behavior given certain errors. These preliminary rules were
quite useful to us, but they suffered frcm two major drawbacks. They
were not complete in that they only described the manifestations of cer-
tain kinds of errors. They also did not show how a failure in one com-
ponent would effect the rest of the circuit.

Nonetheless, the rules were important and showed how a technician
thinks of errors and their manifestations. This influenced the develop-
ment of the paper "Knowledge-Based Problem Solving Without Production
Rules" [10], which was produced under this contract. A copy of that
paper is included as an appendix to this report.

4 3. AUTOMATED MAINTENANCE MANUAL

The task of building a completely automatic computerized diagnostic
system is beyond the current state of the art. Therefore, means must be
provided for the machine maintenance personnel to interactively involved
in diagnosis process. As an intermediate solution for the fault diag-
nosis problem, we envision a maintenance computer system that will allow
the engineer to specify a functional description of the object to be
diagnosed and from that specification the system will automatically
create a set of tests that will assist maintenance personnel in their
troubleshooting. It is likely that some of these tests may be performed
by the maintenance system itself.

To achieve this goal, several problems must be addressed and
solved. The first problem is designing a mapping between the functional
description of the device to be maintained and a set of tests that would
locate the possible failures once a problem was encountered. The second
problem is a design of a coherent language to represent the set of tests
to be performed during the troubleshooting procedure. The third problem
is inherently a control problem since it involves dynamic execution of
the proper tests depending on the knowledge that was accumulated by the
computer system as a result of performing previous tests.

3. 1. AM System Overview

We have have designed a computer system, an Automated Maintenance
Manual (Alt4), to provide a flexible tool for specifying a series of
tasks to be performed by the servicing personnel in order to diagnose
faults of a device. The system can be used as a tool for identifying
bugs in the device as well as for periodic preventive maintenance pro-
cedures. The *1*1 system is interactive. It allows the user to record
the results of his inquiries and provides the user with guidance as to

* where the potential problem may be.* With a few simple commands, the
engineer can nov specify an entire series of diagnostic procedures in a
particular format which should help technicians to isolate where the
device failure lies (see Figure 3.1).



An AHIM syste, is comprised of a knowledge base and a control struc-
ture. The knowledge base is organized hierarchically and contains tests,
text, and diagrams (see Figure 3.2). Tests are diagnostic procedures
which constrain the set of possible faults that could exist in a device.
Text is free-form data which contains general information appropriate to
a particular test. Diagrams are visual representations which
correspond to the test being administered. All of this information will
be available to the technician during a troubleshooting session. The
control structure of the system provides the technician with guidance
during the diagnostic session directing him to the next appropriate set
of tests to be administered. It also contains the provision for the
technician to take the initiative and guide a troubleshooting session
himself.

The *164 system is, therefore, an intermediate solution to the
maintenance problem where a complete solution would involve a system
which could automatically create a partially ordered set of diagnostic
tests, given a specification of the device and a problem to be diag-
nosed. The system we have designed and implemented is a consultation
program which provides a link between the device manual specification

"0 and the set of tests used to analyze and identify problems. These tests
are related to the inherent structure of the device being diagnosed.

Maintenance manuals are often written in a format useful for locat-
ing specific information about a particular device. AMM provides a uni-
form language which links diagnosis of a device's problems and the
device's manual. This command language is flexible enough to be used
for a large class of servicing prooedures and may be used naturally by
the engineer who designates diagnostic procedures.

Using command language, the engineer can create the basic com-
* ponents of an AM6 system: decision nodes, control arcs, packages, and a

dictionary. Decision nodes are tests used to limit the set of possible
faults which could have caused a device to fail. Control arcs are
directed edges leading out of a decision node and direct system control
to the next appropriate decision node or package. Packages are composed
of a set of decision nodes connected by control arcs. All nodes within
the same package are associated with isolating one specific problem in
the hierarchy of problems that can cause a device to fail. An AIIM dic-
tionary contains a list of all packages and decision nodes contained at
each level in an AMI hierarchy. In particular, this dictionary contains
the name of each element, its address in memory, the number of ele-
ments, the root of this particular sublevel, and the alphabetical order
of the element list.

3.2. AM1 Organization

The AM* knowledge base is organized hierarchically into several
major components: decision nodes, control arcs and packages, along with
a dictionary.



1.1.1. Decision Nodes

The basic component of AI#4 is the decision node (refer to Figure
3.3). A decision node must characterize the ideal function of a partic-
ular state in the system. The decision function f is a partial function
of discrete variables x1, .*** x where each variable x takes exactly

m . values. In the case where f is a constant, the decisiLn tree for f
is composed of a single decision node labeled by a constant value. In
practicality this would mean that no matter what the outcome of a diag-
nostic procedure, the system would be directed towards only one result.
If f is null, then the decision tree for f is a single leaf labelled
with the null symbol. In terms of AiIM, a null function f would mean
that the program had been compiled with nothing in the input file and
thus there would be no decision tree made. In all other cases, for each

x,1 < i < n, such that at least two restrictions (say, f I xi k, and
f I xi -k ) are not null, f has one or more decision trees composed of
a root labefed x i and mi subtrees.

At every decision node there are two possible conditions which may
exist. In the first instance, we know the source of the devices

2 failure. If this is the case then at the decision node we must output
the solution or more formally, the function value. In the second case,
we do not know what the source of the device failure is. We make a
prediction and design a sequence of steps to narrow the number of possi-
bilities which might cause manifestations of device problems. A predic-
tion may be considered to be a disjunction of possible device failures.

3.2.2.* Control Arcs

A control arc is the directed edge leading out of a decision node.
There is a one to one correspondence between the number of control arcs
leaving each decision node and the number of exits from each node. Each
control arc is associated with a semantic action. The actions direct
system control to the next appropriate decision node/package and emit
portions of the text associated with each are.

3. 2.3. Packages

A package is a fundamental building block in the £114 system used to
achieve modularity and flexibility in the system organization (refer to
Figure 3.4$). Packages may correspond to a set of troubleshooting pro-
cedurs for testing a module in the device being diagnosed. Packages
are composed of a set of decision nodes connected by control arcs. All
nodes in a package have the same generic package nae as well as a
specific deoision node name.* All nodes within the same package are
associated with isolating one specific problem in the hierarchy of prob-
lem that can cause a device to fail. There may be multiple occurrences
of the ame functional package in different parts of the decision tree,
but every package within the system must have a unique name to identify
its individual role in the troubleshooting process.

In purpose, a package may be considered analogous to a procedure in
a computer program. Like a procedure, a package should contain only a



limited number of procedure steps or in the case of a package, decision
node. Its function is to satisfy one specific task in the schema of
jobs that must be performed in the entire unit. It is the encapsulation
of one particular module within the network or nodules in the system.

One may also think of a package as a higher level decision node. A
decision node has one entry port and possibly multiple exit ports to
other decision nodes,and a package also has only one entry port and may
have multiple exits. Like a decision node, a package represents the
partial function of mapping variable xi to mi possible outcomes. This
function f may be constant or null in which case the package represents
a constant value or is empty. Or in the more general case, it
represents at least two or more possible restrictions corresponding to
m outcomes. As in the case of the decision node, at every package we
hive two possible conditions which may exist. In the first instance,
we know the source of the device's failure in which case the package
outputs the solution or conclusion reached during the diagnosis process.
In the second case, the source the devices problems is not known so
control is transferred to another package to continue troubleshooting.

3.2.4I. ANN4 System

An *194 System consists of a set of packages which are connected by
control arcs (refer to Figure 3.5). As in the case of decision nodes,
and packages, an AIIM system contains one entry port and multiple exit
ports. Like a decision node, and packages, an *14 system represents
the partial function of mapping variable x to mi possible outcomes.
This function f may be constant or null In which case *14K represents a
constant value or is empty. Or in the more general case, it represents
at least two or more possible restrictions corresponding to mi outcomes.

3J.2.5. Dictionary

Corresponding to every level in the AIIM hierarchy is a list of all
elements to be found at that level (refer to Figure 3.6). At the top
level is the *194 dictionary which specifies the root of the system. In
particular, this dictionary contains the label of each element listed at
that sublevel, its address in memory, the number of elements currently
listed at this particular sublevel of the hierarchy, the root of this
particular sublevel, and the alphabetical order of the element list.
Whenever an element from this level is required, it is searched for
using the binary search technique. Since the elements are already
ordered alphabetically, they may easily be listed for the technicians
benefit in alphabetical order without requiring a new sorting of ele-
ments which would have been the case had, for instance, a hash function
been used to sort elements in a list.

The root of the hierarchy at the top level points to the next level
in the hierarchy which contains the list of packages currently in the
system. The dictionary at the package level contains a list of every

* package label in the system in the order that the packages were created,
the number of packages in the system, the root decision node of that
package, the address of the root decision node in memory and a sorting
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of package labels in alphabetical order for easy access,

Every package listed in the dictionary also has a pointer to the
list of all decision nodes within that package. This list of a
package's decision nodes is the next lover level in the dictionary.

* Decision node dictionaries contain along with the list of' decision node
label in order of creation, the number of decision nodes in that pack-
age, their location In emory, and the alphabetical order of' the deci-
sion nodes belonging to that one package.

So from the above description we can deduce that there exists only
one dictionary at the package level of' the hierarchy whereas there
exists n dictionaries at the decision node level, one decision node dic-
tionary for every package in the system. Every element in a dictionary
must have a unique name in order for the binary search to be successful.
Thus all packages must have unique names and all decision nodes within a
particular package must have a unique name. However, decision nodes in
different packages in the system may have identical names. The possi-
bility for identically named decision nodes in the system exists because

'-a the binary search is performed only upon the the decision nodes within
one package.

This provision was created to allow engineers to create multiple
occurrences of the same package in different parts of the decision
structure without having to rename the decision nodes within the same
functional package. Only the different occurrences of the package must
have unique names. One may compare this organization to the labelling of
variables in computer program where local variables in a procedure must
have unique names but there my exist this identical local variable name
in another procedure in a program. Every procedure in a program must
have a unique name just as every package in *194 must be uniquely
labelled.

3.3. ANN4 Conclusions

The Automated Maintenance Manual is designed to assist engineers in
documenting diagnostic procedures for maintaining systems and to assist

* technicians in diagnosing device failures. *194 is organized in a deci-
sion tree format which corresponds to many of the documents already in
existence. Decision trees model a discrete function where the value of

4 the current variable determines the next variable to be evaluated or
outputs the function's value.

-' *1AM was designed to help alleviate some of the drudgery of creating
documentation. By mastering a few commands in the command language syn-
tax the engineer can now specify a series of diagnostic procedures. He
has great flexibility in formulating the actual tests to be performed,
specifying the order in which tests a-e conducted,listing the correct
range of proper respons' * to a articular experiment, eliminating
unnecessary teats during a 'toe' P testing sequence, and in limiting
the domain which his tests a. - supposed to diagnose.
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Further information about AMM can be found in [51, a copy of which
is available on request.

4.~ LONG-RANGE ISSUES FOR DIAGNOSIS AND MAINTENANCE

N In Section 3 we described a system implemented under this contract
which automates a portion of the diagnosis and maintenance process, and
which makes use of information already Sathered by McDonnell Douglas
under this contract. However, it is clear that much more can be done in
the use of Al techniques for automation of diagnostic and maintenance
tasks. As described in this section, we have been investigating several
important theoretical issues concerning the applicability of various AI
techniques to electronic diagnosis. Section 11.1 contains some introduc-
tory comments about the nature of electronic diagnosis, and Sections 4I.2
and 4.3 describe our investigations of two approaches to the diagnostic
problem.

In addition, it should be noted that missile maintanence is inti-
mately linked with missile manufacturing. Thus we have directed some of
our research to the use of artificial intelligence in automated manufac-
turing. This work is described in detail in the paper "Prospects for

* Process Selection Using Artificial Intelligence" [91 which was supported
by this contract and is included as an appendix to this report.

4.1. The Hierarchical Nature of El.ectronic Diagnosis

Conversations with technicians reveal that they do electronic test-
ing and diagnosis in a hierarchical way. A circuit board is usually
chiought. of as a collection of functional subunits, each of which is a

4 collection of sub-subunits organized in a certain way. An experienced
technician has knowledge not only of individual electronic components,
but also of the various subunits, sub-subunits, etc., and the way they
interact with each other. Given a circuit board to diagnose, a techni-
cian will perform a niumber of tests to tell whether it is working
correctly. If it fails these tests, then one or more of the subunits is
faulty. The technician will use the test results, together with his/her
knowledge of the subunits and the ways they interact, to select which
subunits to consider. The same diagnosis procedure is then performed on
these subunits.

The procedure described above suggests an approach for use in
knowledge-based electronic diagnosis. One could imagine a knowledge-
based diagnostic procedure operating roughly as follows:

proc DIAGNOSEWt4: /9 M is an electronic module '

Use knowledge about M4 to select various diagnostic tests.

Perform these tests on M.

If M4 performs correctly, then return.

*If M4 performs incorrectly and M4 has no functional subunits, then



M is faulty. Replace M and return.

Use knowledge about M to construct the set S [M (M, ... 9M Iof
the major functional subunits of M.

Using the test results, and knowledge about the members of Sp
remove from S some of' its members (those known to be OK). Let
S' be the set of all remaining members. Order the members of S'
in terms of which of then is most likely to be faulty.

For each M'* in S', call DIAGNOSECK.

end DIAGNOSE

The procedural framework described above omits many important
details. For example, such a system would require considerable
knowledge about the nature of each of the functional subunits, sub-
subunits, etc. Just how this knowledge would best be used and ho!7 it
would best be organized is a very important question. We have been exa-
mining two possible approaches, as described in Sections 41.2 and 41.3.

11.2. Propagation of Constraints

Propagation of constraints is one of the main techniques used in
most AI electronic diagnosis systems. It is an extremely powerful
modeling formalism and can be used not only to determine the outputs of
a circuit from the inputs, but also to determine the inputs from the
outputs, as well as intermediate circuit values. It also frequently
happens that, using a constraints network, fewer values are needed to
make these determinations than would be needed in an actual circuit.

A constraint network can be defined mathematically as a directed
graph G =(V,E) for which a variable is associated with each vertex in
V, and a predicate (called a constraint) is associated with each edge in

* . E. Given some initial values for some of the variables, values (or sets
of possible values) for the other variables are determined by the
requirement that all of the predicates must be satisfied simultaneously.

This mathematical abstraction can be used in modeling many kinds of
systems. For example, if an electronic component is associated with
each vertex in the network, and each edge is thought of as wire between
components, then a constraint network is an excellent model for a cir-
cuit. As a simple example, consider the adder shown below:

(1.2x x--- I
ladderl -

y ---I

The constraints (predicates) that would be associated with this adder
are:
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(4.2.2) z x + y
y =Z-X
x= z-y

Thus, if values were given for any two of x, y and z, the constraint
network would automatically generate the third value using one of the

rules listed in (4.2.2).

Rules, or rather, constraints, of this type can be written for
other components. Consider a multiplier:

(4.2.3) I
I mill t i --- 7y---I ... 9

In this case, the constraints are:

(4.2.4) z = x * y
y =z/x
x z y

The above examples are, of course, trivial, and do not demonstrate
the power of a constraint network. It is only when several components
are connected that this power becomes apparent. Consider the circuit
show below:

5

(4.2.5) x---I
ladderl---- I I

I Imulti ------ z

I _ _ _ _ _ I I
I I

This circuit expresses the relationship:

(4.2.6) x + y =5
y9 55 z

There are two things to note in this example. First, note that if any
one of x, y or z is provided, the constraint system can determine the
other two values. For example, if x is know the system uses the rule
from (4.2.2)

y =z-X

to determine the value of y. It then uses the rule from (4.2.4)

z = x y

to determine z.

I

-. 0.- - -- - - - - - - 0 - . - - - -
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The second thing to note is that while the circuit is making the
proper determinations for x, y and z, it is not necessarily doing this
the same way the actual circuit would. This is because, in a constraint
network, information is free to travel in both directions; from inputs
to outputs, and from outputs to inputs. While the rule 'y =z - x'
expresses a true fact about adders, no real adder can perform subtrac-
tion. A constraint network, however, is free to use this rule to actu-
ally compute what y must be in order to get z and x.

This computation of values would be of little use if the values
- . could not be changed and the results examined. The question naturally

arises, then, of what happens if, say, one of the inputs changes. As an
example, consider the following circuit for converting from centigrade
to Fahrenheit:

a b
(41.2.7) C ---I I --- I ---------- I

Imulti Imulti ladderi ----F
I-- 5-1I I 32--- I I

where C is the centigrade temperature, F is the Fahrenheit temperature,

9, 5 and 32 are all constants, and a and b are labels.

If a value of 100 is given to C, then a gets a value of 900, b gets
a value of 180 and F gets a value of 212 degrees. Suppose now that we
want to give C a value of 0. By the first rule in (4.2.14) we should
have x 4 y =z, but in this case that would give Us 0 * 9 =900, which
is wrong. In general, to avoid this problem, constraint systems would
retract all the values that were derived from the original value for C.

* Thus, a, b and F would again have no value and there would be no problem
with asserting a value of 0 for C.

Simply retracting values is no longer adequate when there is loop-
ing or when there are multiple sources for a value. Such a situation
occurs in an SR flip-flop.

s---I
(4.2.8) Inon

I lb
II_____1

at Inorl --- 0--Q
R --- I I I

When values Of, say, 1 and 0 are given to S and R we have the following:
the value of 1 for S constrains b to be 0. This 0, with the 0 on R,
constrains Q to be 1, which also makes a 1. What happens in a real
flip-flop at this point, if S is set to 0, is that the 0 on S and the I
on a do not change the value of 0 on b, so the output Q stays 1. In
the constraint network, if we follow the strategy of the temperature
converter and remove the values from b and a, when S is set to 0 there
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is no way to tell if b should be 0 or 1,v as there is no value on a.

Clearly there is a problem. In circuits with loops, such as the
flip-flop, it is inadequate to simply retract intermediate values. It
is unfortunately not clear what should be done instead. One possibility
is to retract a value only when a new one is being propagated over an
old one. This would handle the flip-flop case, but it is not clear
whether it will work in general. Another possibility is to include time
in some fashion. This is something that is desirable for other reasons
as well.

To see why it is desirable to include time, suppose we now look at
circuits containing time-dependent devices such as memory units or delay
lines. Then an ordinary constraint network such as those discussed
above will not suffice. This is because constraint networks (as we have
defined them above) can only model situations where every constraint
must be satisfied simultaneously, whereas memory units ard delay lines
have constraints on future or pas values in terms of present ones. For
example, consider the following oscillator.

(4.2.9) a /0~~T

I delay)

The constraint on the NOT gate is "a -b", and the constraint on the
delay unit is "the next value of a will be the current value of b".

Here there is a problem similar to the problem with the flip-flop;
if all values are retracted then there is no way to determine what the
new value will be. If values were retracted properly, it should be pos-
sible to have the constraint network cycle in a way that simulated the
behavior of the real oscillator being modeled.

Another possibility, however, is to include time specifically as a
variable in the constraints; in this case the constraint through the
delay would be:

(b, t) (a, t+1)
(This should be read "a at time t equals b at time t-I".)

This would create an infinite network rather than a finite one. While
this might at first seem an unwieldly concept, it has the advantage that
it appears to simplify somewhat the problem of determining just what the
circuit does.

In some oases the problem of recognition is straightforward, or at
worst requires only some algebraic manipulation. For example, in
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(4.2.5) only simple algebra is needed to determine that the global con-
straint is

2xy + y2 -w,

and it is also simple to determine from the temperature converter that

C = (5/9)(F - 32).

It is not so simple in cases where the behavior is time dependent.
In the case of the oscillator (4.2.9), realizing that it oscillates
requires noticing that the entire state of the system at time t 2 is the
same as it was at time t, whence the state at times t 2, t+4, ... , must
also be the same. This looks doable in some sense, although it is not
clear how it would be done if the oscillator were part of a larger sys-
tem.

A similar sort of thing would have to be done in the case of the
flip-flop (4.2.8). Even though this does not oscillate, it is still time
dependent in that it remembers which of S and R was last high. In this,
and other devices with memory such as counters, it seems critical to
include memory in the constraints.

Constraints in a constraint network are usually implemented as
pattern-invoked programs. The invocation of these programs is data-
driven; i.e., a constraint P(xl,...,xn) is only invoked if enough of the
variables xl,...,xn are known that all of the others can be determined
by applying P.

As an example, consider the binary adder given below, which is made
out of 9 hAND gates. x, y, and c are the inputs (c is the carry input),
s is the output, and k is the carry output.

(4.2.11)

c A

1)_ a e _1 0-sI I o - \iN o- I
I0 1.xA z-,-- -0-I_ 1_~ - _

y b d

Do§ Dd 0-k
The constraints describing this network are the following:

-J iT:,-' :: , i' L.'. -i . . :. , / i; . . .- -. - , - - , . -, a - - . = -" '
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(4.2.12) zzxy; azx@z; bzy@z; dsa@b; ezc@d; f=c@e; g=dfe;

szf@g; k=z@e; c,x,y are in (0,11;

where "@" is the NAND operation.

At first glance, prolog seems like a natural vehicle in which to
implement such constraints. The constraints defining a NAND gate can be
described in prolog as

(4.2.13) nand(O,O,1).
nand(0,1,1).
nand(1,0,1).
nand(1,1,0).

The description of the adder would thus be

(4.2.14) adder(x,y,c,s,k) <- nand(x,y,z) & nand(x,z,a) &
nand(y,z,b) & nand(a,bd) & nand(c,d,e) &
nand(c,e,f) & nand(d,e,g) & nand(f,g,s) & nand(z,e,k).

Thus, under the initial conditions xzl, y=O, c=1, the problem of finding
the values of s and t in the adder could be coded in prolog as

(4.2.15) <- adder(1,0,1,s,k) & write(s) & write(k).

However, the operation of prolog is a bit different from that of
most implementations of constraint networks. As mentioned earlier, con-
straint networks normally are data driven: a constraint P(xl,...,xn) is
only applied if enough of the variables xl,...,xn are known that the
others can be determined by applying P. Thus if it were known that
xzl,y=O, and c=1 in the adder, the constraints would be applied in the
order

(4.2.16) first nand(x,y,z);
second nand(x,z,a), nand(y,z,b);
third nand(a,b,d);
fourth nand(c,d,e);
fifth nand(c,e,f), nand(d,e,g), nand(z,e,k);
sixth nand(f,g,s).

However, prolog does a depth-first search going top down from the
predicates in the Horn clauses, regardless of where the data is. For
the adder definition given in (4.2.14), prolog would behave in almost
the same way as a data-driven search; the order of instantiation would
be similar to the order given in (4.2.16). However, if the definition
of the adder given in (4.2.14) were replaced by

.."
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(4.2.17) adder(x,y,c,s,k) <- nand(f,g,8) & nand(d,e,g) &
nand(o,e,f) & nand(c,d,e) & nand(a,b,d) &
nand(y,z,b) & nand(x,z,a) & nand(x,y,z) & nand(z,e,k).

then prolog would behave in almost the same way as a goal-directed
search. This has both advantages and disadvantages.

The main advantage of prolog's search is that it is more general
than a data-directed search: prolog may be able to deduce an answer
where an ordinary constraint propagation system cannot. For example, if
s=1 and k=O, then prolog can determine that one of the following must
hold:

(4.2.18) x=O y=O c=1 s=1 k=O
x:O y=l c=0 s=1 k=O
x:1 yzO c=O s=1 k=O

There are two main disadvantages to prolog's search. First, prolog
may require considerably more computation than constraint propagation.
Clearly, a depth-first search can be very wasteful at times, and exam-
ples have been given in the literature to show that prolog can sometimes
do much unneeded searching. Second, if prolog's built-in arithmetic
predicates are used, an error occurs if they are invoked with more than
one variable uninstantiated. For example, consider the data-flow net-
work given below (x, y, z, and w are arbitrary integers).

z
(4.2.19) x--- 1- I I

ladderl----l I
y-7-1 I ladderl ------ wI _ _ _ _ I t

I I

This can be defined in prolog as

(4.2.20) network(x,y,z,w) <- plus(y,z,w) & plus(x,y,z).

where plus(p,q,r) is a built-in predicate that is true if and only if
p+qfr. If it is known that z:2 and w:3, then both prolog and constraint
propagation can determine that xzycl. However, suppose we redefine the
network as

(4.2.21) network(x,y,z,w) <- plus(x,y,z) & plus(y,z,w).

This definition is logically equivalent to (4.2.20) and a propagation of
constraints system would behave exactly as before. However, prolog can-
not determine that xzyzl using (4.2.21); instead, an error message
results when "plus(x,y,2)" is invoked.

It should be noted that regardless of which of (4.2.20) or (4.2.21)
is used, neither constraints nor prolog can determine y and z given x
and w. However, suppose that instead of using a built-in predicate

.4-. =

"''-'-' .',' :: . :" " .- - '-' ': . - .U ; " " ' - - d . - .- - -- = -
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"plus" we defined it using Peano's postulates as

(4.2.22) plus(Op,p).

plus(S(p),q,S(r)) <- plus(p,q,r).

Then prolog could determine that y=S(O) and z=S(S(O)) given x=S(O) and
w=S(S(S(O))), whereas ordinary propagation of constraints still could
not determine anything.

The optimal approach would appear to be the following: use data-
driven propagation of constraints whenever possible. When no more
existing constraints can be applied, then start a prolog-style search.

4.3. Set Covering

4.3-1. Deficiencies in Current Rule-Based Diagnostic Systems Below is
an excerpt from the paper "Knowledge-Based Problem Solving Without Pro-
duction Rules" [101 which was supported by this contract and which was
presented at the IEEE Trends and Applications conference this May:

Despite the wide use of rule-based reasoning, it is not
clear that production rule systems in general are entirely ade-
quate. Production rules have long been criticized as a general
means of knowledge representation ...

In expert computer systems for inferential problems ...,
the required format for production rules is usually along the
lines of

IF manifestations (or other evidence)
THEN conclude cause.

However, most of the knowledge which humans use to create
such rules goes in the opposite direction: if some cause is
present, then certain manifestations will occur. For example,
as part of a research project in electronic diagnosis [61, a
group of electronic technicians were given a brief introduction
to the concept of production rules, including an example of the
kind of rules used in Mycin. They were then asked to write down
some production rules describing an electronic circuit for use
in electronic diagnosis. The rules they produced were almost
all of the form

IF cause
THEN manifestations

Presumably the technicians were specifying their knowledge
in an intuitively familiar form, more along the lines of
describing each cause rather than providing fixed rules for di-
agnosis. One naive way to translate such rules into the previ-
ous format would be to interchange the "IF" and the "THEN"
clauses, but it is not clear how well this would work--if at
all.

• . .. ' ,' -. ? > - i . .? . _ _ ,, ... , . . , _ _L ' .= -
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The format "IF manifestations THEN conclude cause" used in Mycin
means that Myoin is set up to solve the converse of the general diagnos-
tic problem: it finds something implied by the given facts rather than
something which implies the given set of facts. Most other diagnosis
systems we have seen operate this way. It is probably no wonder why the
systems were set up this way--it is easier to do rule-based deduction
than to solve a set covering problem--but perhaps this rule format is
one reason why users of diagnostic production systems have experienced
so much difficulty constructing adequate rules for these systems.

KMS.HT [13] [14] and Internist [71 [121 (which are not rule-based)
are the only diagnosis systems we know of which are set up to find some-
thing which implies the given set of facts. However, it should be pos-
sible to do this using rule-based systems as well, as discussed below.

4.3.2. A Possible Approach for Rule-Based Electronic Diagnosis

Let us examine what kinds of rules are needed for electronic diag-
nosis. The rules in the preliminary list that McDonnell Douglas gave us

*[61 are of the following forms:

(4.3.1) cause -> manifestation

(4.3.2) causel OR cause2 OR ... OR causeN -> manifestation

(4.3.3) cause -> manifestationl & ... & manifestationN

Each rule given in form (4.3.2) can be simplified to a number of rules
of form (4.3.1):

causel -> manifestation

cause2 -> manifestation

causeN -> manifestation,

Each rule given in form (4.3.3) can similarly be simplified to

cause -> manifestationl
cause -> manifestation2

cause -> manifestationN.

Suppose for the moment, then, that all of our rules are of form (4.3.1).
Suppose we have a malfunctioning circuit which exhibits manifestations
ml, m2, ... , mN. For each ml (iI to N), we could do backward chaining
from mi until we could go no further. This would give us a set
oauses(mi) of "root causes of mi", any one of which could (through a
chain of cause-and-effect) cause mi.

Knowing the possible "root causes" for each mi would define a
causal relationship C between the set of all root causes and the set

(ml, m2, causes(al), causes(m2), ..., causes(mN), such a system could
find every minimal set S of causes such that if all causes in S occurred

* '.4 ' *S4 -. ., ."\I.'%.. v -.*. * * *.". -.-. , . -. .. -"• . . . . - ., * -... ... . . . . . . . .. .- ;, = , . ..- . i i . ..
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then all of ml, m2, ... , zl would occur. Furthermore, if the system

were set up correctly, it would not have to be given
causes(ml),...,causes(mN) all at once, but could be given them one at a
time as each manifestation is discovered.

There are additional ocomplications, however. It seems likely that
we would also need rules of the form

(4.3.4) causel & cause2 & ... & causeN -> m,

which cannot be simplified. The causal relationship C could not be
determined as described above, since it would no longer be true that
each individual "root cause" in causes(m) could by itself cause m.
There are at least two possible approaches to this:

1. One possibility would be to replace each such rule with a number of
rules of the form

causel -> ml
cause2 -> m2

causeN -> mN,

with the implicit understanding that ml = m2 ... = zl = m. With
the rules in this form, the causal relationship C could be con-
structed and a minimal set of causes could be found. There are at
least two problems with this, however:

(a) There is some question whether a minimum cover for some set of
manifestations containing fml,...,mN) would contain a set of
causes sufficient to fit the original rule. We think it
would, but this issue needs to be investigated further.

(b) If we have

al & a2 & ... & aK -> bl
bl & b2 & ... & bN -> c

then it will have to be split into

al -> bll
a2 ->b12

aK -> blK
bll -> ell
b12 -> o12

biK -> olK
b2 -> o2
b3 -> 03

bN -> ON,

1 - ... .... . . , *:* . .. . .. .
,L ° , , .'.o'.., o." .. o-. ,'.-'.-,..'.' ." '.- ." -.-..-. •."...-.-..- ,. %,.....................-.....-....,......-..".".,'....
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and in general, the number of "equal" manifestations could
become quite large.

2. If the rules given in form (4.3.4) were used directly, this would
set up an AND/OR graph structure in which each manifestation could
be caused not by any of a number of root causes, but rather by any
of a number of conjuncts of root causes. All such conjuncts could
be represented as separate entities to a system such as KMS.HT,
which could then find minimal sets of conjunots. However, just as
approach 1 could result in a very large set of "equal" manifesta-
tions, approach 2 could result in a very large set of conjuncts of
root causes. There may be some way to cut down on the sizes of
these sets, but we have not finished investigating this yet.

In addition to handling rules of the form

causel & cause2 & ... & causeN -> manifestation,

it will also probably be necessary to handle negations of causes or man-
ifestations (e.g. "the bulb is not lit" as opposed to "the bulb is
lit"), and also to simple arithmetic relations (e.g. knowing that vol-
tage>7 implies voltage>5). This means that complicated tests will be
necessary for the backward chaining, but this is not too dissimilar from
tests that have already been done in some systems.

4.3.3. Problem 1: A Diagnostic Problem

The above paragraphs have discussed the motivation for looking at

diagnostic problems involving a number of causal rules of the form

4, cl & c2 & ... & on => m

where each ci is a disorder or "cause" that can cause certain manifesta-
tions and m is a manifestion which occurs when all of cl, c2, actually
present in some diagnostic problem, and suppose we want to find all
minimum sets of "root causes" which (by appropriate rule chaining) are
sufficient to cause every manifestation in M. If we add the rule

ml & m2 & ... & off => X

to the system, where X is a symbol which does not appear in any other
rule, then the problem becomes the problem of finding a minimum set of
"root causes" which is sufficient to cause X.

4.3.4. Problem 2: A Grammatical Problem

The above problem can be translated into a grammatical problem as
follows. Let G1 be the context-free grammar such that for every one of
the causal rules

cl& c2 & ... & on 0 m

.... - . - . - .... . - .. , , d,/, .l-m. . - ..- -. * ...........................
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given above, 01 contains a production of the form

m -> ci c2 ... on.

The set of nonterminals in G1 is the set of all symbols appearing on the
left hand sides of productions. The set of terminals is the set of all
symbols which appear on right hand sides of productions but not on left
hand sides. The start symbol is X.

Let LI be the language generated by G1. The problem is to find
every string S in Li such that S has minimum number of distinct symbols
of any string in L1. By distinct terminals, we mean that if the termi-
nal T appears twice in S, it is only counted once.

4.3.5. Set Covering

Problem 2, by the way, is a generalization of the set covering
problem. To see this, let T={tit2,...,tn} be a set, F = {T1,...,Tk} be
a family of subsets of T, and G2 be the grammar whose rules are

the rule "X -> tl t2 ... tn"
for every Ti containing t1, a rule "tl -> Ti"
for every Ti containing t2, a rule "t2 -> Ti"

for every Ti containing tn, a rule "tn -> Ti"

The start symbol for G2 is X, and the terminals are T1, T2, ..., Tk.
Let L2 be the language generated by G2. Note that every string in L2
has length n.

Suppose that the string S = "T2 T5 T2 T7" (which contains 3 dis-
tinct terminals) is in L2. Then [T2,T5,T7) is a set cover for T.
Furthermore, if the number of distinct terminals in S is less than the
number of distinct terminals in any other string in L2, then fT2,T5,T7}
is a minimal set cover for T.

4.3.6. Al Search Procedures

The correspondence between context-free grammars and AND/OR graphs
is well-known. Thus one could consider modifying AI problem-reduction
search procedures such as AO' [11 to work on Problem 2. This is dis-
cussed below.

If AO• were used unmodified, it would find a string S in L of
minimum cost, where the cost was taken to be the sum of arbitrary costs
assigned to the productions used to generate S. If the cost of each
production were taken to be 0 and the cost of each terminal were taken
to be 1, then AO9 would find a string containing the minimum number of
not necessarily distinct terminals--i.e., a string of minimum length.
AOO could probably could be modified to find all such strings rather
than just one.

'oJ '' ,o-o.: -.. S '.p... 
,
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However, it is not clear how to modify AO* to find strings contain-
, the minim number of distinct terminals. The main problem is

whether the cost of solving a subproblem is to be counted once or twice
if the subproblem appears twice in a given problem. If we want a string
of minimum length, then we want to count the cost twice--and AO' can
handle that. If we want a string containing the minimum number of dis-
tinot terminals, we want to count the cost once. AO* cannot handle
that.

The above difficulty should not be too surprising. In particular,
if Problem 2 is a generalization of the set covering problem then Prob-
lem 2 is NP-hard. Thus, since AO* operates in polynomial time (probably
O(n3 ) although we have not determined the exact figure), it would be
very surprising if it could solve Problem 2.

Chang and Slagle (3] invented an AND/OR graph search procedure
which counts the cost of a subproblem only once if the subproblem
appears twice in a given problem. Thus Chang and Slagle's algorithm
could be used to find a string containing the minimum possible number of
distinct terminals. What Chang and Slagle's procedure would do on the
gramar G2 is (in effect) to generate all set covers and then select a
minimal one. In general this would take exponential time; however, I
think same modifications could be made to the procedure to speed up its
average-case performance.

In particular, we think it may be possible to modify it so that it
would not generate any set covers larger than it had to. There may be
some interesting ways to combine Chang and Slagle's procedure with some
of the set covering techniques which one of the principal investigators
(Dana Nau) is exploring with James Reggia.

L2



22

HIGH LEVEL OVERVIEW

Automated Maintenance
Manual

hierarchical I I control I I I
Iknowledge 1< ----------- >Istructure I I I

I Ibase I I I

I, I---------------------------------------------- I

V v

I engineer I 1 technician I
I interface I I interface I

a------------------------------------

I I device to I I
------- >1 be diagnosed 1<------

Figure 3.1
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ADDER EXAMPLE

test

IDoes register C hold the
Icorrect sum?
I(yes, no):I

text

IAn adder is a chip with I
Ithree registers A, B, and C.I
IThe adder takes the contentsI
of oAand B, adds them to- I
Igether and transfers the suI
to register C.I

diagram

--------------- Ireg A I I
I I I-------------------I

v v I I------------ I
-----I-- Ireg B I I

I ladderi I -----

I I ---------- >Ireg C I I
IvI

------- - - - - - - -- - - - - - -

Figure 3.2
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DECISION NODE

v
--------------------------------------------------------------

Itest

I Does register C hold the I
I correct sum? I
I (yes, no): I

-------------------------------- I

text

An adder is a chip with
three registers A, B, and C.
The adder takes the contents
of A and B, adds them to-
gether and transfers the sum
to register C.

-------------------------------- I

diagram

I II
--------------- Ireg A I111

I I I I-------------------I I
v v I-------------II

1.... Ireg B III
I adder III
-- - - - -- - - - - I I

I I I --------- >Ireg C I I I
I I V-- - - - - 11

I I 1 1I I
I I -E I I II -- - - - - - - - - - - - - - - - - I
------------------------------------

II
V V V V V

Figure 3.3
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PACKAGE

* . '1.0

SmInode 1.11

* I I

SInode 1.21 Inode RRN1.1I

* I I•

Slnode 1.31 node RRN1.21

* I I

1 node 2.01 node RRN1.31

Figure 3.4
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AMN SYSTEM EXAMPLE

Ipackage I
11.0 I

Ipackagel
12.0 I

-~ I

I package I

13.0 I

Ipackagel
14.0 I

"9 I

Ii I II

Ipackagel Ipackagel Ipackagel Ipackagel Ipackagel Ipackagel
I 7.0 I I 8.0 1 1 10.0 1 I 11.0 I I 12.0 I I 13.0 I

I I

I package 1 I package I
19.0 1 15.0 I

Ipackagel

16.0 I

Figure 3.5
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AMM DICTIONARY

AMh DICTIONARY

Ipackage 1.0 -------------- I
------------------- I

Ipackage 2.0 1 v v
PACKAGE 1.0 PACKAGE 2.0 ... PACKAGE 13.0

Ipackage 3.0 -
Inode 1.1 I 1 I I 1

Ipackage 4.0 
Inode 1.2 I I I I

Ipackage 5.0 -
Inode 1.3 I I ------- I I --------

*Ipackage 6.0 -
Inode 2.0 I

Ipackage 7.0 -
Inode RRN 1.11

Ipackage 8.0 - - -
-node RRN 1.21

lpackage 9.0
SInode RRN 1.31
Ipackage 10.0 1 -

*Ipackage 11.0 1

Ipacage 12.0 1

- package 13.0 1 -----------------------------------------

Figure 3.6
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