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ABSTRACT

The theory of hydrodynamic lubrication has been adapted

in this report to include surface roughness effects and

asperity interactions. This theory becomes a means of
studying the behavior of sliding-surface bearings in
transition from hydrodynamic into mixed lubrication. A model

problem, in the fora of a crowned tilt-pad bearing with
longitudinal roughriess, was solved. In the treatment of the

model problem, end-i. akage was neglected and a constant

lubricant viscosity as assumed. Use of numerical
computational m,!thois could readily remove these

restrictions.

In real-life operating environments of ship components

and shipboard machinery, the lubrication process is made more
complex by thermo-elastohydrodynamic effects and the likely
occurrence of film striation. Because these complicated
phenomena are only qualitatively understood, no adequate or .

comprehensive method exists for designing critical machine

components such as face seals, elastomeric sterntube

bearings, rudder stock, diving plane bearings, and main shaft
thrust bearings.

The work presented herein is part of a more

comprehensive plan to develop a better understanding of the
interactive wear mechanisms of sliding surfaces. The

theoretical basis is the application of Reynolds' equation to
the mixed lubrication regime. A closed-form solution of
Reynolds' equation applied to a crowned tilt-pad thrust
bearing in transition from the hydrodynamic to the mixed
lubrication region is presented to demonstrate some of the

principles of this approach. Associated topics related to
the extension of such analyses are also discussed. Concepts

developed herein are applicable to a wide variety of bearings

and seals. They provide a basis for future work in tribology
of improved machinery design methods.

ADMINISTRATIVE INFORMATION

This report covers work conducted under the Marine Tribology Block Program

(PE62761N, Task Area SF 61-541-502, Work Unit 2832-101). The coauthor, Dr. Coda

H. T. Pan, is a consultant with DTNSRDC under Contract N00167-81-0149. Dr. Pan is

a Professor of Mechanical Engineering at Columbia University. The Marine

Tribology Block program is sponsored by Dr. H. H. Vanderveldt of NAVSEA 05R25.
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INTRODUCTION

Most sliding-surface bearings are designed to operate with the bearing fully

separated from its mating surface by a lubricant film. These bearings are

referred to as self-acting or hydrodynamic bearings. The lubricant film develops

load capacity, primarily due to a wedge effect between the moving surfaces.

Various lubrication modes of such bearings can be explained by considering the

Stribeck curve shown in Figure 1. The Stribeck curve represents the general

characteristicsl* of lubricated moving surfaces as a function of the lubricant

viscosity, p, the velocity, V, and the normal load, FN (or pressure, p). As

Figure 1 shows, there are three main lubrication regimes: hydrodynamic, mixed,

and boundary. The regime of operation depends upon the geometry, the materials,

the operating conditions, and the relative geometry of the opposing surfaces.

In the hydrodynamic regime a wedge of lubricant provides a thick enough

lubricant film to keep the surfaces completely separate, such that their combined

roughness, o, is substantially smaller than the local film thickness, h. The

frictional resistance results from viscous shearing of the lubricant. Since the

surfaces are separated, no contact wear takes place. Under these conditions,

analytical techniques for the study of bearing performance are well developed.

Mixed lubrication begins when the local film thickness, h, approaches that of

the combined surface roughness, a, of the bearing and the mating surfaces. The

pressure generated by the hydrodynamic wedge effect and by the asperity contact

between the bearing and the mating surface share the load support. Wear occurs at

the contact points. Frictional resistance is a result of these asperity

interactions plus shearing of the lubricant.

As load is increased and/or speed or lubricant viscosity are decreased, the

coefficient of friction and the wear rate increase rapidly. Eventually all load

will be supported by asperity contacts. This is the boundary lubrication region.

Physico-chemical interactions at the solid-lubricant-solid interface determine the

friction and wear behavior.

In a wide variety of sliding surface bearing and seal applications in ships,

not enough lubricant film exists under certain operating conditions to completely

*References are listed on page 81.
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Figure 1 - Stribeck Curve Showing the Three Main Lubrication Regimes. The
Characteristics of Moving Lubricated Surfaces are a Function of Lubricant

Viscosity, p, the Velocity, V, and the Normal Load, FN; h is the Fluid Film
Thickness and o the Combined Roughness of the Surfaces.
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separate the mating surfaces. Such conditions cause mechanical wear. Examples

are ship main thrust bearings, lineshaft journal bearings, and compliant-surfaced

sterntube and strut bearings. For these bearings, films are often inadequate at

slow shaft speeds and under transient conditions of starts and stops. Face seals

are unique in having to operate most of their lives in a contact and wear mode,

since they are designed to minimize leakage. A good face seal design thus

successfully controls wear during normal operation without adequate fluid film.

Even though the design methodology for full-film sliding-surface bearings is

relatively well established, tribology laboratories regularly perform friction and

wear tests in search of better bearing materials. The challenge is to improve

service reliability of ever more complex mechanical systems. A comprehensive

knowledge of the interactive wear mechanisms of sliding surfaces is of paramount

importance. Because of the multitude of phenomena involved, an interdisciplinary

point of view must be maintained. Friction and wear studies, which are

traditionally pursued with empirical methods, can and must be vitalized by

computer-aided techniques of design, analysis, and research. Theory for mixed

lubrication plays a pivotal role in the meaningful study of interactive wear

mechanisms. It should address four main issues.

o How can one predict the start of asperity interactions?

o What are the important thermo-mechanical consequences of asperity

interactions?

o What are the relevant roles of lubricant chemistry, surface chemistry, arid

near-surface behavior of materials?

o How does the wear process alter the topographical and chemical properties

of the surface?

Progress in finding answers to these questions will advance design technology for

machinery systems in ships.

BACKGROUND

Reynolds' equation has been used to study hydrodynamics of lubricating

films since its development by Professor Osborne Reynolds 2 in 1886. It is a

differential equation for the pressure distribution in a lubricant film and takes

into account the density and viscosity of the lubricant, the velocities of the

.4 4
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solid surfaces, and the shape of the lubricant film. The most general Cartesian

form of Reynolds' equation can be written as:

a(x+± ~) 6 2 ( ph )z u~ Izata (U1+U2)I + Ia h 1 +12)11
where: h = smooth fluid film thickness

p = pressure of fluid film

x,z = cartesian coordinates

p = fluid density

P = fluid viscosity

t = time

= x-component of fluid velocity component tangential to lower and

upper bearing surface, respectively.

WW 2 = z-component of fluid velocity component tangential to lower and

upper bearing surface, respectively.

The following assumptions are inherent in the development of Reynolds' equation:

o The lubricant is Newtonian -- that is, the shear stress in the lubricant

is proportional to the rate of shear.

o The flow is laminar.

o The fluid film thickness is negligibly small in comparison with the

overall scale of the bearing.

o Fluid inertia is negligible.

o The lubricant adheres to the surfaces (no slip).

o No external forces act on the lubricant.

o The lubricant viscosity is uniform across the film.

A thrust bearing usually has sector pads. It is more natural to study the sector

pad in cylindrical polar coordinates. The corresponding Reynolds' equation is
hp 3

rop ) +3r apO

6 2 (ph) + a (ph(0+ 2 )

where: r = the radial coordinate in polar notation

0 = the circumferential angular coordinate in polar notation

01,W2 = the angular rotational speed of the lower and upper bearing

surfaces

5
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In allowing (61,p2) to appear as independent quantities, a duo-rotation system can

be considered. Often the rectangular form approximation is used, and in the case

of an incompressible lubricant, one has

ax ju ax a z 'U az

f~ ~ah aJi~+-U+... :" = 6 2- O + ( U I + U )2 - + h d- ( U l+ U '-
at a ax 2

The terms on the right hand side of the equation are referred to as the squeeze

"' term, the wedge term, and the stretch term, respectively. The stretch term is

seldom of any importance. This form of equation can be used to study the two-

dimensional tilt pad bearing illustrated in Figure 2. In this particular

instance, the surface of the tilt pad does not have a sliding motion (UlI = 0).

," -b

L

RUNNER y

LUBRICANT DISTRIBUTION

INLE K} , LUBRICANT

FILM
VELOCITY PRESSURE
DISTRIBUTION DISTRIBUTION

TILTING PAD

Figure 2 - Two-Dimensional Tilt Pad Bearing; Top View Shows Width,

b, and Length, L, of Bearing

P4 6
...................-



The pressure distribution in the lubricant film can be determined by

integrating in the x and z direction, yielding the load capacity, FN, as

ILp(xz) dx dz

N o

The flow per unit width in the x direction is

h h3 dp
qx = (U +U2) 2 -1 2 2 1l2judx

and in the z direction

h3 ap
q= -qz- 12 az

The friction force, FF9 in the lubricating film is the sum of the velocity-induced

and pressure-induced shear stresses as

Fr F _+ bY(U-U dx dZ I I- l h ap dx dz
0 0 h 2 o o dx

where the plus and minus signs are used for the force acting on the lower and

upper surfaces, respectively. The film thickness must be describable in terms of

x and z for use in Reynolds' equation.

Other simplifications are usually possible in applying Reynolds' equation to

hydrodynamic bearings. For steady state conditions the squeeze term, ah/at,

vanishes. If the bearing and mating surfaces are made of rigid material, the

stretch term also vanishes. In most applications the bearing speed, UI, is zero.

Reynolds' equation now becomes, writing U = U2

a (h3 ap)+ (h3 ap ah--- -- +- - - =6U-
ax lU dx az YZ ax

If the viscosity can be considered constant over the entire domain, further

simplification can be made:

a + - = 61u Uax ~axI az- az /ax
This equation is most commonly used to determine the pressure distribution, from

which one can determine the bearing load capacity and the friction for operation

that is free of asperity interactions (hydrodynamic conditions).

7



Reynolds' equation has also been applied to the region of mixed lubrication,

where load is supported by both hydrodynamic pressure and asperity contacts.

Christensen 3 proposed stochastic models to permit consideration of surface

roughness. For the one-dimensional, longitudinal roughness (Figure 3), he recast

the Reynolds' equation in terms of mean or expected values of pressure and film

thickness parameters4 :

a{ + a E{1/H3 }z ax
where: H = the fluid film thickness, including roughness deviations

E{ } = the expectation or stochastic average of {
The corresponding film thickness profile was treated as

H = h(xz) + hs(z)

Where h is the smooth part of the film thickness profile and hs(z) represents the

roughness deviations, which are assumed to be on one of the two surfaces.

Independence of hs on x indicates the longitudinal topography. Stochastic

description of the roughness deviations is represented by the probability

distribution function, which is assumed to have the polynomial form of

35( 2- h
2 )'

P(h c)- - h c
s 32c

where: P(hs) = the probability distribution function of hs

c = half the total range of the random film thickness variable, 8

E {}is the ensemble average with respect to the assumed probability distribution

function. As a model problem, Christensen analyzed in detail the infinitely long,

tapered slider.

Christensen's approach was applied to a crowned, tilt-pad bearing (shown in

Figure 4) under a David Taylor Naval Ship R&D Center contract. Crowning was

introduced to simulate initial pad crown and distortions during operation due to

pad loading and thermal gradients. The tilt-pad feature required the pad

inclination to be determined by the condition of moment equilibrium about the

pivot point. This condition included the contribution of asperity contact

friction, which would become prominent in mixed lubrication. The technical report

of this analysis is included as Appendix A. Although the predicted frictional

i,::, , .:...: , .., ..., : ..-, . .-; -i : . -. .: .---: :, ,- . .. _-,.:-: .:;-.i .- : , -. :... :-:.-.: .. : :.8-
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Figure 3 - Christensen's Longitudinal, One-Dimensional Roughness Model

hHx) x)
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, U

Figure 4 - Crowned Tilt-Pad Bearing with Longitudinal,
One-DimensionaL Roughness
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performance of the tilt-pad thrust bearing in the hydrodynamic and mixed

lubrication region resemble experimental results, several theoretical issues

remain. These can be grouped as follows:

o Film striation or cavitation

o Thermo-elastohydrodynamic effects

o Computation techniques

* o Surface roughness effects

In the rest of this report we have addressed theoretical approaches to various

topics under these headings. These approaches may serve as guidelines for future

in-depth studies.

THEORETICAL TOPICS RELATED TO THE STUDY OF MIXED LUBRICATION
OF SLIDING SURFACE BEARINGS

1. FILM STRIATION

Film striation often occurs in sliding bearings. Part of the bearing gap is

filled with gaseous and/or vaporous constituents at close to ambient pressure.

The boundaries of the striation region must be accurately determined for

computation of the film pressure, the flow rate, the viscous shear stress, and

viscous heating. The following derivations incorporate film rupture into the

computation of pressure and shear in a fluid film.

Incipience Point of Film Rupture

On page 93 of Appendix A, pressure gradient and pressure of the hydrodynamic

film, respectively, are given as

dp3
dp6u [UE(H) + CE I/E{H3j

d X f l 
X d

P6uU xfE{'~d+ CE dx
P61U0 EJH3 EfH3

(1-2)
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If a full film is allowed to occupy the entire shoe length, then the constant

of integration, CE, is to satisfy the ambient condition imposed at the exit point

of the fluid film:

p(b) = 0

(1-3)

or

-Jb E{ldz 1bdx
E o 0 E113

(1-4)

as indicated in Appendix A. However, in the case of a converging-diverging film

profile, Equations (1-2) and (1-4) can result in a subambient pressure domain

immediately preceding the exit edge. The latter circumstance violates common

experience. It is generally believed that a subambient pressure condition in a

fluid film cannot be sustained; instead, the film ruptures or cavitates somewhere

so that the ambient condition will be reached internally with a vanishing pressure

gradient. This is known as the Reynolds-Swift-Stieber condition of film rupture

or cavitation and is stated as

P(Xc) 0

(1-5)

dp -
dx x

(1-6)

0 <x, <b

(1-7)

To satisfy Equation (1-6), Equation (1-1) yields

C = -E{vi}

C
(1-8)

Substitute Equation (1-8) into Equation (1-2), setting x=xc; one obtains

% -
.4 11
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p~x~ = pU E{H~dx - {H J dx

(1-9)

This may be regarded as a transcendental equation, the root of which yields the

location of the beginning of film rupture or the cavitation domain.

The necessary steps to determine the root of Equation (1-9) can be readily

incorporated into a computer program. Equation (1-9) can be regarded as a

residual function and can be obtained within the cycle of numerical quadratures

.'. for the two integrals. Sign reversal of the residual function signifies that the

beginning of film rupture had just been overtaken, and a simple interpolation

would yield its location and the correct value of CE quite accurately.

In common bearing configurations, the bearing gap continues to diverge until

the exit edge of the bearing pad is reached, so that there is no need to consider

whether the full-film condition can be re-established. Even the full cylindrical

journal bearing usually has a feed-groove or a feed-hole located in the unloaded

part of the bearing surface, so that it may be regarded as a circular arc of

approximately 3600, and the maximum gap point can be assumed to be the end of the

rupture domain or the full-film reestablishment point.

Viscous Shear of a Striated Film

The film flux of a bearing with ruptured film is UE(H)Ixc. In the domain

-xc<xgb, this film flux is insufficient to fill the local film thickness E(H)Ix.

According to the striation model of film rupture, the local striation length

fraction is E(H)Ixc/E(H). Accordingly the local viscous shear stress, L, is

E(/H)

I, x !b E(H)(H
C

(1-10)
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The analysis presented in Appendix A is a closed integral solution to

Reynolds' equation. End leakage is neglected. During operation lubricant flow

occurs not only in the direction of motion (leading edge to trailing edge) but

also leaks along ends of the pad. Such end leakage can significantly affect the

load capacity of the bearing by bleeding off pressures built up in the film.

Fuller 5 presented an approximate procedure to account for end leakage through the

use of a correction factor for the load and the minimum film thickness. The

correction factor was based on the experimental data for a tapered wedge with

bearing width-to-length ratio ranging from ' to 51. Such an approximate procedure

for correcting end leakage can be used in conjunction with the analysis of

Appendix A. A later section of this report, Finite Difference Computation of the

Infinitely Long Slider (in the section on computation techniques under "High

Accuracy Numerical Algorithm for Computing Fluid Film Pressure"), presents

approaches for considering the use of finite difference techniques to prepare a

more thorough treatment of end leakage.

2. THERMO-ELASTOHYDRODYNAMIC EFFECTS

General Discussion

Thin-film lubrication is prevalent in many critical machine elements in naval

propulsion and shipboard machine systems. Trouble-free operation of such machine

*elements depends on the control of subtle geometrical details of the film, details

that are readily influenced by elastic and thermoelastic deformations of the

surfaces. Rational design procedures for such machine elements have not been

" developed. The derivations in the following sections provide general guidance for

the development of such analytical engineering tools.

The possibility of adjusting surface geometry for optimization of designs was

5eloquently demonstrated by Rayleigh's classic paper , and elastohydrodynamic and

thermo-elastohydrodynamic effects in thin-film machine elements are especially

important in naval applications.

13
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For various reasons, lubrication by very thin fluid films in naval machine

elements is likely to be associated with pressure distribution that can

significantly deflect the lubricated surface. At the same time, the viscous shear

stress in the fluid film, which is responsible for the generation of load-carrying

film pressure, necessarily also generates heat and accompanying temperature rise

and temperature gradients in the machine parts. Important thermal phenomena

include reduction of fluid viscosity, differential thermal growths (due to

different coefficients of thermal expansion of various materials in the machine

structure), and thermal distortions (due to temperature gradients regardless of

the temperature level).Three major categories of machine elements deserve

particular recognition in relation to studies of thermo-elastohydrodynamic

effects. An example in the first category is the thrust bearing in a ship

propulsion system, which carries the load caused by sea pressure acting on an

unbalanced area and by vessel acceleration. The study of tilting-shoe thrust

bearings first revealed the significance of thermo-elastohydrodynamic effects.

Thermally induced surface crowning is probably responsible for the stabilization

of the pitch-roll motions of the bearing shoes. An example in the second category

is the dynamic seal, which not only keeps water out of the ship interior but also

. prevents lubricants and process fluids from contaminating the cabin environment.

Although "contact" operation is often assumed for low-leakage seals, current

belief holds that low wear rate is critically dependent on the effective

generation of film pressure to maintain a stable, partial separation of the mating

surfaces. Several mechanisms have been suggested to explain the likely existence

of load-carrying film pressure in low-leakage face seals: namely, hydrodynamic'

wedge action due to runner misalignment or thermoelastic waviness of the mating

surfaces; pressure-induced gap convergence; and evaporation of leakage fluid. An

example from the third category of machine elements, one that has fascinated

researchers studying probable thermo-elastohydrodynamic effects, is the sterntube

bearing, which is constructed of elastomeric staves. A relatively large

coefficient of thermal expansion and a relatively small shear modulus make the

elastomeric stave bearing a prime subject for study of both the beneficial and the

harmful effects that have been attributed to these properties. Table I

illustrates the essential thermo-elastohydrodynamic phenomena associated with

these three machine elements.

14



,

Vdw

0. cI~ ~~~~l __ __ _ ___ _ _ _ _

t-Jo

Z ~ t C ~.

(UC2C

u0

V 4-. ____

04

cc

cc cu
uew -

0wK' :~- GJ-3:3 1

PL15

-'~2 . E-4



The generic machine element of interest consists of two bodies, which are

respectively designated as (1) and (2), and a thin fluid film that permits low

friction relative sliding between the two bodies. The internal mutual action

between the two bodies is transmitted, for the most part, through the enveloping

surfaces of the thin film in the form of distributed traction. Friction heating

in the thin film is due to viscous dissipation and may also be associated with

asperity contact sliding. The latter can precipitate tribological trauma and thus

cause catastrophic failure. Under ordinary circumstances, friction heating is

converted into sensitive heat, raising the temperature of the two bodies and the

circulating fluid.

Conservation laws of mass, momentum, and energy as applied to each of the

three parts of the system and as applied to the overall system are the foundation

for the thermo-elastohydrodynamic analysis of machine elements. The essential

elements of the mathematical statements of this problem are derived below.

Conservation Laws for the Fluid Film

The significance of thermo-elastohydrodynamic analysis for machine elements

was broadly discussed above in connection with naval machine systems. The generic

machine element is a system consisting of two bodies separated by a thin film of a

viscous fluid. The functional behavior of the machine element depends on the

dynamic and thermal interactions between the thin fluid film and the two

surrounding bodies. The present section summarizes the applicable equations

specifically pertaining to the thin fluid film.

For an incompressible Newtonian lubricant, the mathematical theory of

lubrication is usually presented in terms of the Reynolds' equation, which is

summarized in the contemporary form as follows:

( Uh + (U2 U) Jc (VP)Jp

(2-1a)
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: at
(2-1b)

where: V = the film flux vector

Jc = the integral of the viscosity weighted Couette velocity profile

function

Jp = the integral of the viscosity weighted Poiseuille velocity profile

function

* = the two-dimensional surface gradient operator

(P = leakage flux through bearing surfaces

In the "surface" vector form presented here, these expressions are valid for all

flat and moderately curved surfaces. Figure 5 illustrates a generic

representation of such a pair of surfaces. The film geometry has two length

scales; R is the size scale of the bearing while C is the separation scale

representing the nominal bearing clearance.

SCALE OF BEARING SCALE OF

SURFACE SURFACE SEPARATION

OR PAD LENGTH .- .... OR

n (V-n) NOMINAL BEARING

CLEARANCE

I!

Figure 5 - Thin Film Between Nearly Parallel Surfaces
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A suitably chosen reference surface is used to define the geometry of lower

and upper bearing surfaces in terms of their respective normal distances (hl, h2 ).

A unit normal, n, can be defined at every point of the reference surface; it can

be regarded to be also perpendicular to either bearing surface and is usually

"outwardly" directed by convention. The three-dimensional fluid velocity V is

described by its normal component V'n and its tangential component U; the latter

can further be decomposed into appropriate surface components according to the

representation of the reference surface. Zis the surface gradient operator,

which is constrained to exclude the normal component of the conventional three-

dimensional gradient operator.

The radius of curvature of the reference surface is, by definition, of the

same order as the size scale. The separation to size ratio C/L, is typically 10
-4

to 10 - . A necessary, but sometimes overlooked, assumption is

W(hih2

(2-2)

Where O{ }means "order of { f." Any discontinuities in (hi, h2 ) will require

special attention. 'I is the tangential (to the reference surface) flux vector and

is obtained by integrating the tangential velocity component with respect to the

separation between the two surfaces:

"h2
.- V U= Udy

(2-3)

Subscripts (1, 2) as applied to U and h refer to the lower and upper surfaces,

respectively. The film pressure p is regarded as invariant with respect to the

film thickness coordinate y in the lubrication theory. h = h2-hI is the local

separation between the surfaces. 4# accounts for porosity of the bearing surfaces

and is the sum of the (wall) penetration flow rate per unit area of the two

surfaces.

18
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Simplification of the Navier-Stokes' equations to the lubrication theory, as

represented by Equations (2-1a) and (2-1b), requires a number of prior

assumptions. Let V be the scale of fluid velocity. The necessary assumptions to

ensure validity of the lubrication theory include the following:

() Components of the dyad V V are dominated by the term (n-V) U which is of 0

7. {V/C}. Consequently, the stress tensor enters into the momentum conservation

law through the term

= - p + (i.V) .V)i

where: V = the three-dimensional gradient operator

V- = the dot product of the three-dimensional gradient operator and the

viscous shear stress

n = the unit vector perpendicular to the nominal bearing surface

it = the fluid velocity vector

V.L=O0{970}V

Po is the nominal viscosity coefficient; the actual viscosity

coefficient may vary throughout the lubricant film.

(2) The film Reynolds' number (pVC/po) (C/L) is of negligible magnitude.

(3) Mass conservation is satisfied with 7U " and ( n'-) (P'W, cancelling out each

other so that

IL ofV ; InT O o CV
tL

(4) The flow field is laminar. Consistent with these assumptions, the fluid

pressure can be shown to have negligible variation in the normal direction.

The momentum conservation law is reduced to

(2-4)
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which can be integrated with respect to y twice; upon imposing nonslip

conditions at the surfaces, one obtains

U U1 + (U2 -U 1 ) Ic -(TP)IP

(2-5)

where: Ic = 10(y)/1o(h 2 )

1= 1(h2 ) Ic - 1(y)

k =Y yk dyl

(2-6a,b,c)

1k is the kth moment integral of inverse viscosity. IC and Ip are, respectively,

velocity profile functions associated with shear and pressure effects.

The lubricant viscosity, at common operating environments of fluid film bearings,

should be regarded as temperature dependent. If, however, one chooses to accept

the isoviscous approximation, p = Po = const., then

(y-h1)

C isovscOus (h2-h)

(h2 -y)(y - h t)
(I ) = 2P o .

P 150L7!SC'US 
y

(2-7a,b)

These functions are seen to describe the Couette and Poiseuille velocity profiles,

respectively. The coefficients (c' JP) in Equation (2-1a) are obtained by

substituting Equations (2-5) and (2-6a, b) into Equation (2-3) and carrying out

suitable integrations formally:

Jc= Jhc = I dy

(2-8a,b)
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And for the isoviscous approximation,
I I
-(h -)-h(JC),soviscous = ( 2 -h l ) = h

C 22 1 2

(h2 - h )3  h3

(J ~i~SCOUS- 12pO 121 0

(2-9a,b)

Accurate determination of the film pressure requires a suitable allowance for

the temperature dependence of viscosity, so that Equation (2-8a,b) instead of (2-

9a,b) can be used. Therefore, it is of interest to examine the energy

conservation law as applied to the lubricant film flow process. The complete

governing equation of energy in a liquid is

DE DT
P D + P  t = Q + V'(,VT)

Dt Di
(2-10)

where Ee is the specific internal energy, 0 is the bulk coefficient of thermal

expansion, Q is the internal dissipation, K is the thermal conductivity, and T is

the fluid temperature. (D/Dt) is the substantive time derivative which includes

the convective derivative to account for fluid motion. For common conditions in

fluid film bearings, the second term on the left hand side of Equation (2-10) can

be neglected. Also, consistent with the approximations already invoked in the

lubrication theory, the terms on the right hand side may be simplified as

du aT'

V.(,v = - • L

(2-11a,b)

If asperity contacts occur because of surface roughness, the dissipation term,

Equation (2-11a), should be increased to reflect sliding friction effects.

21
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Also, writing DEe = CvDT, Cv being the specific heat for a constant volume

process, then the applicable energy equation which defines the temperature field
in the fluid film is

PCDT au aU) + ( aT)

(2-12)

*For the steady-state problem,

pCV (V.V) T

juU 43 ). a) a T

(2-13)

This equation is of the parabolic type and its rigorous field solution is to

satisfy an inlet temperature profile and suitable continuity conditions of heat

flux at the surfaces. Equation (2-13) can also be expressed in the thin film

integral form:

PC " T Jh2( (U dy

jhh2

hI  a1

(2-14)

Equation (2-14) can be utilized to seek an approximate temperature field without

dealing with the full complexity of Equation (2-13). Both the convective term on

the left hand side and the dissipation term, the first term on right hand side,

need to be known as integrals across the surface separation; they can tolerate

crude approximations without introducing very serious errors. The last term is to

be matched with conduction heat flux entering the bodies which surround the fluid

film.
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The cylindrical polar coordinate system can be used for the three-

dimensional, geometrical representation of either the cylindrical journal bearing

or the thrust bearing. The complete three-dimensional gradient operator is

--48 -. 1 8 -*8
V +i -+1 -- + -

rdr r 80 Z az
The components of a vector A are designated by the subscripts (r,O,z)

respectively. The divergence operation takes on the form

A= 1 (rA)+ _ _O + .A

r ar r 80 8z
The sliding velocity is due to rotation:

U = 0 cor

If both surfaces slide, then subscripts (1,2) would be associated with the

rotational speed, co. In the case of the counter-rotating shafting, (ol, O2 ) would

have opposite signs.

For the cylindrical journal bearing, the nominal reference surface is a

circular cylinder. The normal direction is radial. Equations (2-la,b) thus

become

1 8 [h+( Pl2 p } 8 j8p Lh
... ..+ 9+ + - +

a II I (JI J 810-r2 a0 ae z az at

(2-15a,b)

The radial coordinate r can, within the accuracy of the lubrication theory, be

regarded as a constant and be equated to the nominal journal radius, R.

For the thrust bearing, the nominal reference surface is a radial plane. The

normal direction is axial. Reynolds' equation takes on the form

CO =i oh + Wt2  CO )JC Ir-r LPL + -dp LP)
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r 8

77 R71 ( _ 4

0 h_ + j pLrjp p +- +Xd
r- r2  do 1~ +  t 2 -  1~)J CIOJ  " r dr ar at

(2-16a,b)

In contrast to Equation (2-15), in which r=R is a constant, r in Equation (2-16)

is the radial coordinate.

To restate the energy equation in a more usable form, each term in Equation

(2-14) will be separately examined. For either bearing type, the integrated

dissipation can be rewritten as

h2Q dy -oh )  + o 1(_ I Wp ( 9(hh)

h 0 2

(2-17)

lo and 12 are moment integrals, respectively of the 0th and 2nd orders, of the

inverse of the viscosity coefficient as given previously by Equation (2-6c).

The surface conduction terms do not need further attention. The convective

heat transfer terms differ slightly in form for the two bearing types, mainly in

the divergence operator:

hI

=PC, {-16e + (0 0)KI (KV

(2-18)

where,

0= T (h

jh2 dy
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(2-19a,b,c)

For the cylindrical journal bearing,

W-K (IVPK Op) K P

(2-20)

while for the thrust bearing,

) (K L r
W.'(KPVJP-# 0K" +- (r- LPO

r2 0 do d rdr" Kr

(2-21)

The fluid film is not a closed system regarding the conservation laws. The

following are sources of interactions between the fluid film and the two

surrounding bodies:

(1) Global equilibrium of the machine element requires that the internal load and

moment transmitted through the fluid film be related to the kinematics of the

two surrounding bodies and the externally imposed constraints.

(2) The surface separation, h = h2-hl, which is the dominant factor in the

generation of the film pressure, is significantly affected by thermoelastic

deformations of the two bodies. Thermoelastic deformations, in turn, result

from temperature fields caused by viscous heating which is moderated by

convective and conductive cooling effects as described by Equations (2-

14,17,18). A major computational difficulty is associated with the accurate

determination of the temperature field with its simultaneous conduction-
convection effects.
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(3) The surface separation is also affected by elastic deformations caused by

film pressure. This aspect is quite important in sterntube bearings because

of the compliant elastomeric staves. It is also important for high-pressure

face seals. Load-induced cross-sectional twisting of the seal ring can be

considerable in comparison with the thickness of the film formed by leakage

flow. Elastic deformation from film pressure is less important for tilting-

shoe thrust and tilting-shoe journal bearings, where pitch-roll equilibrium

becomes an inherent feature of the overall analysis.

(4) Temperature distribution across the film thickness, in addition to the

surface temperature fields, influence the film pressure because of the

temperature dependence of lubricant viscosity. Equations (2-6a,b,c) pertain

to this issue.

(5) Surface permeability due to material porosity can also affect film pressure.

It can be important in the friction behavior of the retainer-roller contact

of rolling element bearings.

Thermal Effects

Thermal coupling between the fluid film and surrounding bodies stems from two

independent physical causes: (1) temperature dependence of lubricant; and (2)

thermal distortion of bearing surfaces.

The Walther-ASTM formula may be used to determine the kinematic viscosity, v,

from two data points:

log log (v + 0.6)= m logT + m 2

(2-22)

where v and T are, respectively, in units of centistokes and degrees Rankine and

mi1 and m2 are coefficients which depend upon the oil. If the temperature

distribution within the fluid film is known, then the weighted integrals of the

reciprocal of viscosity coefficient can be accordingly calculated:
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Sy y #k dy,

h judT)

(2-23)

where y' is a dummy variable of integration for y

Ic(Y) = 10(y)/10(h,2

IPO ) =/1(h 2 ) c(Y) -11(y)

(2-24a,b)

Jc = jhi

j IC dy

P h I

h J2

(2-25a,b)

Subsequently, the film pressure can be found by solving the generalized

Reynolds' equation for a fluid contained between nonpermeable, smooth walls:

ah 0
at

h=h 2 -h 1

W= Uth + (U 2 - UI)Jc - (p)J ,
(2-26a,b,c)

U1 and U2 are sliding velocity vectors of the lower and upper surfaces,

respectively. The film velocity profile is

U=U 1 + (U 2 - U 1 )c (TP)I P

(2-27)
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The temperature field itself is to be found by solving the thin-film energy

equation:

-- C VVT , U aU + c-

(2-28)

V is the three-dimensional velocity vector. allay can be found by differentiating

Equation (2-27), yielding

(U2 - U ) 1l (h2) 1 I

-l U1 0 (h 2) If 0) 1(h 2) -
(2-29)

Equation (2-28) is truly three-dimensional; it is of the parabolic type, being

first order in the tangential direction and second order in the normal direction.

Needless to say, its complete solution is a formidable task. Thus, it is often

desirable to accept the compromise of tackling the integral form of the energy

equation:

2h 2 ) 2 2 [1(h

p CV. 2(,Indy - 2 - 1)2r 2 - 10(hh+ K aT 2

h1 0(h 2) 0 7P 2) '

(2-30)

Analysis of the Temperature Field

The fluid-film is coupled to the two surrounding bodies through the

equilibrium conditions (both static and dynamic), elasticity effects, and thermal

coupling. The thermal coupling problem will be treated here.

Consider the schematic illustration given in Figure 6. Bodies I and II are

separated by the thin fluid film. Flow through the thin film is maintained by a

supply through a manifold arrangement in Body I. The exposed surfaces of Body I,

marked "S," are submerged in a fluid bath that is maintained at a constant ambient

temperature. The thermal environment is similar for Body II. Subsequent

discussion will refer specifically to Body I only.
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Figure 6 - Schematic Thermal System

The steady-state temperature field in Body I would obey the classical

potential theory:

q V -IlT

V."q= V- V.(IC VT) 0

(2-31a,b)

where: q = the conductor heat flux

= the thermal conductivity of Body I

If the body is moving, for example the runner of a thrust bearing, the

divergence law should be replaced by the diffusion law, which allows for the

contribution of convection. Nevertheless, because of the large thermal capacity

of the moving material, an isothermal condition is approximately maintained along

its interface with the fluid film. Thus Equation (2-31b) in a two-dimensional

form, would remain applicable even to the runner. The coefficient of thermal

conductivity should be spatially uniform; consequently, the divergence law is

equivalent to the Laplace's equation V 2T = 0.

29
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Three types of thermal boundary conditions are to be imposed:

(1) At the surface of the thin fluid film there is a yet unknown

distribution of normal heat flux.

(2) At each of the exposed surfaces, a suitable heat transfer coefficient

can be assigned to relate the local surface temperature rise above the

ambient to the heat flux:

-In,'n (VT) = hT(TS - TA)

(2-32)

where: hT = the heat transfer coefficient at the exposed surface

TS = the temperature at the exposed surfaces S

TA = the temperature of the ambient fluid

(3) At the walls of the supply manifold, an adiabatic condition could be
assumed. On an actual bearing, however, a feed groove, instead of a

closed manifold, is more typical. Because circulation between the feed

flow and the ambient fluid is not inhibited, part of the overall cooling

would take place at the walls of the feed groove. The fluid in the feed

groove should be somewhat hotter than the ambient fluid. Thus, the

adiabatic supply model would overestimate the temperature rise of Body

I. The other extreme model would assume that an ambient condition

prevails in the feed groove and would select a suitable heat transfer

coefficient for the feed groove. This model thus would underestimate

the temperature rise of Body I. These two extreme models may be

regarded as upper and lower bounds of the thermal situation.

Standard methods are available for solving the conduction problem. The

boundary condition at the exposed surfaces, as given by Equation (2-32), can

accommodate a full range of possibilities, which include the extremes of a fully

chilled condition

TS = TAatS ifh,, ! -'

and also the insulated condition

n (VT) =OatS if hj',ct ---O
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At the interface with the fluid film, the conduction heat flux should be

continuous; therefore

q,= K, n. (VT)

= -n (VT)f at the interface.

Here, the subscript "I" refers to body I and the subscript "f" refers to the fluid

film. The temperature also should be continuous at the interface; or

(T)i = (T)f at the interface.

If Body I is moving and is also well chilled, then (T), would be a known

constant and the conduction problem of Body I merely serves to impose a

temperature boundary condition at the interface with the fluid film. It is no

longer necessary to treat the conduction problem. The heat flux across the

interface can be calculated only from the temperature field in the fluid film.

To illustrate the relationship between the temperature and the heat flux at

the interface with the fluid, consider a model two-dimensional problem for the

domain (0 : X ! b, 0 ! y1 ! w). Discretization is accomplished by dividing the

sides a and b respectively into M and N uniform intervals. The mesh index i has

the range of (I to M+l) in the x-direction while j has the range of (1 to N+l) in

the yl-direction. Let j=1 be the interface with the fluid film, while the

convectively cooled boundary condition is imposed for the sides (i=l, i=M+l, and

j=N+l). The entire temperature field is represented by the column vectors

for (j=1,2,3,...N+l). Each vector has a rank of M+1 and contains the elements

Ti~j for (i1l,2,3,...M+l). The conduction heat flux at the interface directed

into the fluid film is the vector

[q)

which is also of rank M+1. The conduction problem of Body I can thus be described

in terms of the following system of matrix equations:

[A(0)], (T], + [A(+)], {T1I = - [q],

(2-33)
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[A(-)] (TzIJ + [A(O~jlf {I~ + [A(+#)]~ f'I 1 {

for j=2,3,...N (2-34)
[A -)IN+I (TIN + [A(o)]N l {ITIN = 1 01

(2-35)

This system can be solved by the method of forward-elimination-and-backward-

substitution, resulting in

IT), [I [q)

(2-36)

In turn, this last expression can be inverted to yield

{q) [ Bl ' (T],

(2-37)

In this manner, the conduction problem is reduced to a pair of reciprocal

influence matrices [BI] and [B11- 1 which relate the interface temperature T

• .linearly with the heat flux {q}I and vice versa according to Equations (2-36) and

(2-37).

Next, the energy equation of the fluid film will be treated for the domain

(0 ! x ! a, 0 ! yf 5 h). Equation (2-28) can be written as

2

pC, - (uT + --(vT) = - + Pt

(2-38)

The subscript "f" has been dropped from yf to simplify notation. The velocity

components (u,v) are regarded to be given. The interface with Body I, temperature

and heat flux are continuous. Thus

T(x,h) =Tl~x)

(2-39)

TI(x) in the discretized representation is simply {T}1. And
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% y=h
(2-40)

Note that the sign in Equation (2-40) is consistent with the definition of ql,

which is directed into the fluid film. In the above pair of equations, neither TI

nor ql is fully specified. However, they are related to each other according to

Equation (2-36) or (2-37). To complete the physical description of the model

problem let the inlet fluid-film temperature be a known constant

T(x=Oy) Ttnlet

(2-41)

and the surface temperature of Body II be also a given constant to represent a

runner face:

T(x,y--O) = T

(2-42)

Although the above statements are sufficient to allow computation of the

temperature field in the fluid film, one may observe that Equation (2-38), which

contains the convective terms on the left-hand side and conduction-dissipation

terms on the right-hand side, is a troublesome partial differential equation from

the standpoint of numerical analysis. A special scheme, which consists of

-' iterative successive approximations, is proposed to simplify the method of

computation. Essential steps of the proposed iterative scheme are outlined below

* for the model problem.

(1) Postulate the transverse temperature profile to be of the form

R(xy) = Trunner I (T1 - Trunned F (xy/h)

(2-43)

to satisfy Equations (3-39) and (2-42), profile function F(x,y/h) should be

unity at yfh and vanish at y=0. To start the iterative computation, let
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F(x,y/h) y/h

(2-44)

for the first time.

(2) Consider the integral form of Equation (2-38) with the profile function:

d fh YuF() (f
y=h y=O

-P UO -1F) T dy - KT Is) -( )Pe - run erl runnler I( a 'h

2

V2 2[ 1(h)I+ - + (dP (h) }
10(h) dx 2 o(h)

(2-45)

Note that this is an ordinary differential equation for T, x).

(3) Having obtained T, (x), use Equation (2-37) to compute ql, which then yields

icT/ady at y=h.

(4) Integrate Equation (2-38) across, beginning from y=h, with

(2-46)

as a boundary condition. For the terms in the left hand side of Equation (2-

38), the profile function F(x,y/h) is same as before. The value of Tl(X) ,

however, is left to satisfy the other boundary condition as specified by

Equation (2-42). Completion of the integration process from y=h to y=0 would

yield the improved temperature field.

(5) Revise the profile function according to the improved temperature field. F

now depends on both x and y/h. Repeat the iteration process from step (2).
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Successful convergence of the iteration scheme would be indicated by a stationary

trend of TI(x) and qi(x).

Iterative improvement on the film pressure calculation and on the convective

heat transport, presently approximated by Equation (2-38), can be implemented if

desired. The temperature field in the fluid film would directly affect the fluid

viscosity in the hydrodynamic analysis. At the same time the film geometry should

also reflect thermal distortions of the surrounding bodies. With tilting pad

bearings, the tilt position and motion should also be adjusted and be included in

the hydrodynamic analysis in a manner consistent with the static and dynamic

equilibrium conditions of the pad.

The above proposed iteration scheme can be extended to the three-dimensional

case as is required to analyze a realistic problem. For the three-dimensional

problem TI and q, depend upon two spatial variables, x and z. Step (2) would be a

marching type two-dimensional integration. Step (4) remains a one-dimensional

computation.

3. COMPUTATION TECHNIQUES

For approximately 25 years, researchers on fluid film lubrication have made

use of electronic digital computers to numerically analyze various bearing types.

Theoretical analysis of lubrication can be formulated as a two-dimensional partial

-* differential equation of the elliptic type. Accordingly, the applicable

computation methods are always based on a discretized approximation, which may be

induced by either a finite difference formulation or a variational argument. More

recently, the finite-element method has become very popular because it adapts to

the description of complicated geometry quite conveniently. As a computation

algorithm, the finite-element method achieves discretization through a variational

formalism within the domain of a finite, although small, element.

Interest in the study of sliding surface bearings with a very small local

- film thickness, and with the inclusion of surface roughness and wear effects,

makes it particularly challenging to have a universally accurate computation

algorithm for the lubrication theory. Furthermore, inherent physical features

make it necessary to consider elastic compliance of the bearing parts, thermal
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distortion of the bearing surfaces, and the temperature dependence of lubricant

viscosity. These issues were discussed in the preceding sections. In the mixed

lubrication regime the film thicknesses are on the order of the surface roughness

of the mating parts. Emphasis must be placed upon the accuracy of the film

pressure and thickness for precise considerations of surface interactions.

In the following sections, the basis for implementation of a highly accurate

algorithm will be outlined. First, the problem considered in Appendix A, which

neglects end leakage and thus possesses closed form solution for the film

pressure, will be recast in terms of a numerical procedure so that numerical

accuracy may be directly verified in terms of this particular model problem.

Next, a procedure is provided whereby the actual metrology record can be used to

describe the surface of a sector pad in the as-manufactured state. And finally, a

high accuracy algorithm, which accounts for end-leakage effects, which requires a

minimum of fine mesh treatment to describe film thickness variation, and which

permits intermesh interpolation for extrema, is documented.

*. Finite Difference Computation of the Infinitely Long Slider

*Appendix A treats the infinitely long slider problem by formally integrating

the governing differential equation

d E(H 6PuUE(,H) =0

(3-1)

yielding

E(H)!]x dx1p(x) = 6,U + E
1 0 E(H) 0 E(H,

(3-2)

CE is an integration constant that is fixed by the exit condition

p(b) = 0

(3-3)
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Or, in the case of a converging-diverging film geometry, if the rupture condition

E(H)dx _ E(H) [b < 0

0 E(H3) b 0 E(H3)
(3-4)

is satisfied, then

CE -E(H)
IX

C

(3-5)

and

Ic E( ) C dx -0

0 E(H3) +E E(H3)

(3-6)

together satisfy the Reynolds-Swift-Stieber condition for film rupture. To

address end leakage or a slider of finite length, it is expected that closed form

integrals such as Equation (3-2) will no longer be available so that a numerical

procedure of the finite-difference or finite-element type will be needed. As a

preparatory effort, the infinitely long slider problem will be re-examined in

terms of numerical computation formalism, which subsequently can be generalized to

deal with the finite length slider.

Consider that the slider width be divided into NT equal intervals such that

Ax = b/NT

(3-7)

And the mesh points are designated by the index i, which represents the set of

integers between and inclusive of (I, NT+l). Note that xi = (i-l)Ax. Equation

(3-1) will next be recast into

E(3, - p + 61XE(H)dp

(3-8)

- =0
d

"1 (3-9)

"3
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Consider these equations between mesh points (i, i+l). Define the local

coordinate

(3-10)

Assume that, upon making Ax suitably small, (D can be approximated by the series

expansion

12

(3-11)

To the same order of approximation, E(H3) and E(H) can be similarly expressed as

2
E(H3) = a° + 'l+ 2 2 a2 +

(3-12)
12

6pUE(H)= bO + 4b + 4 2 b +
0 12 2

(3-13)

Note that the coefficients of Equation (3-11) are unknown constants associated

with point i, whereas those of Equations (3-12) and (3-13) can be determined from

their respective mesh point values. Since attention is directed exclusively

between points (i, i+1), the above series expansions will be truncated beyond O{E}.

Equation (3-8) can now be rewritten as

dp (b0 - O0 + 4(b, - Ot )

d4 a 0 + 4a

(3-14)
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which has the exact solution

1 11 0

Setting E= Ax, one obtains

1 0 1 o 10

[-i. AX+n

+--' -Pi Q a aL  aa"

a1-)n ) dxO -O (a) -q ln( aO

a.."a a a a a 0

(3-16)

Equation (3-9), however, also requires

(3-17)

Thus, one obtains

unler sal )Ax + b  alies t ln( i a E (3

ca ta

(3-18)

Nte thet (ouda ounver sals equires 0t =0

(3-19)

3u 90

(3-20)
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Therefore,

P2 = A, 0 + B,

(3-21)

Upon setting i=2 in Equation (3-19) and making use of Equation (3-21), one obtains

P3 = (A 2 
+ A) 50 + (B 2 + Bj)

(3-22)

Equations (3-20) through (3-22) can be given the generic form

P, = Ct 0o + D

(3-23)

with CI=D1=0; C2=A1 , D2=BI; Ci+l=Ai+Ci; Di+l=Bi+Di.

(3-24a,b,c)

Equation (3-24c) can be implemented repeatedly until i=NT so that (CNT+I, DNT+1)

are regarded as known. But at the exit, PNT+1 = 0; therefore,

'P0 =-DNT+ 1/CNT +1

(3-25)

whereupon, since (Ci, Di) are now known at all i's, Equation (3-23) allows pi to

be computed also at all i's.

Now Equation (3-14) allows one also to compute

L P) = (bo -,o)IajI,dx

(3-26)

noting that (a0 , b0 ) are known constants at each i. Also

dp )bo +b, Ax -0

dx +1 a0+ aAx I N
)N I 1(3-27)

If the last value is positive, then the computed set of pi may include a subset

pj, j being inclusive of (Nc +1, NT-1), whose values are negative. One can then

compute (40)j such that (dp/dx)j = 0, i.e.

40

S ''. : ' ' -,- " " " .. ... •.. ._ . . .



(3-28)

Accordingly (p)j can be calculated by Equation (3-23). As j steps up from

(Nc+l), (p)j will be initially positive. Let j = Mc + I be the first point where

(P)Mc + 1 is negative, then the rupture point had been established to be in the

interval (Mc, Mc+,). Whereupon Equation (3-14) yields

0= (bo)Uc + (bl)Mc kc

(3-29)

Substituting into Equation (3-15), with Di=0 and Equation (3-23) used for PMc , one

finds

0 =(a d) IC.c {(bo)M + (b )M } + DM1 + b C4

cL c c a0

(3-30)

which is the characteristic equation for kc and can be solved numerically.

Subsequently Equation (3-29) yields (D0 and Equation (3-23) can be used to

calculate all pi.

To determine load and pressure center, one must seek the integrals

J pd4andj p4d4

Explicit expressions can be obtained by using Equation (3-15) for p and

integrating formally. In a similar manner, the viscous friction can be computed.

The crowned tilt-pad bearing analysis of Appendix A assumes a constant

lubricant viscosity and includes no coupling, either to pad distortions caused by

elastic deformations from load or to thermally induced deformations.

Consideration of these topics adds considerable complexity to the required

analyses.
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Description of Thrust Bearing Film Profile

The film profile of a sector thrust bearing pad, as measured from a nominal

runner surface, can be described as the sum of the following components:

(1) warpage;

(2) pitch and roll of the sector pad;

(3) displacement (axial) and misalignment of the runner; and

(4) waviness of the runner

Consider the sector pad shown in Figure 7. Point "P" is the intersection of the

bisecting radius and the mean circumference. The four vertices are marked

(A,B,C,D). M is the midpoint of the inner arc and N is the midpoint of the outer

arc. E and F are midpoints of the sides. For the nominal flat surface, all nine

points are on the same plane. Note that each of these nine points is designated

by an upper case letter.

0p

00

Figure 7 - Sector Pad of a Thrust Bearing

42

.,O .



If the bearing surface is warped, the warpage can further be defined in terms of

the following components:

Radial Crown-

.i . 4 r - r./ hb

0 t

Circumferential Crown -

2

These can be respectively measured from P at (M,N) and at (E,F); i.e.

hM - h p hN - h p h b

* hE- h P = h -hP  ha

Note that the definitions of (ha, hb) in essence fixes the metrological setup.

The heights of the corner points remain to be defined. The following additional

relations can be specified:

h A + hB + h C + h D 4 (h a + hb + h)

hA -h B + hc - h =4h d

-hA - hB + h + hD = 4 h

hA hB hC + hD = 4 hf

hc is crown increment; hd is edge pitching; he is edge rolling; and hf is radial

helix. A lower case letter is used as a subscript to indicate a type of surface

deviation from the nominal plane. Combining these effects.

r ,)h +r-rr )• t wrpage =4( r... .. 2 ... ha r d -

0 t 0

r-r 2 2

+ 4 . hb + 4(t) h
(r r b p, a

r f-r 2 2
+16 .- _ ') (t h

t43
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High Accuracy Numerical Algorithm for Computing Fluid Film Pressure

The load capacity of a fluid-film bearing (sliding surface type) depends on

the development of the film pressure. The film pressure results from the

hydrodynamic wedge effect, which is caused by the spatial variation in the film

thickness. Operating the bearing near the mixed lubrication condition is usually

desirable. The film pressure is then concentrated upstream of and near the

minimum film thickness location. The minimum film thickness at the initiation of

mixed lubrication would be typically one order of magnitude smaller than the

prevailing maximum film thickness. Since the wedge effect is inversely

proportional to the third power of the local film thickness, numerical computation

of the film pressure requires special care to achieve the desired accuracy. The

conventional algorithms of either the finite element or the finite difference

type, which attempt to describe the film pressure by simple polynomial functions,

may not be accurate enough unless a very fine computation mesh network is used.

Since a fine computation network usually means a high computation cost, one often

has to resort to use of a nonuniform mesh. As a result, the overall accuracy

realizable by such computation schemes is unreliable at best. Therefore, a

consistently accurate computation method for the fluid film pressure remains to be

developed. Here, a new algorithm to allow high precision in pressure field

computation will be outlined.

Strategy. The proposed new algorithm addresses two somewhat independent issues in

numerical field computations: the sizing of the computation meshes and the

derivation of the high accuracy algorithm. The two are covered in separate

sections.

Background. Christensen'S4 mixed lubrication theory for longitudinal roughness

was followed for the derivation of governing equations in a form that is valid for

both journal bearings (of either the full cylindrical or the partial arc variety)

and the sector-type thrust bearing pads. Anticipating eventual consideration of
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thermo-elastohydrodynamic coupling, the Couette and the Poiseuille flux components

are presented in a form that allows for viscosity variation across the fluid film.

However, since the mixed-lubrication theory has not yet been advanced enough to

treat variable viscosity conjunctively with surface roughness, any symbolic

reference to the stochastic evaluation of a variable viscosity cannot be executed

in reality except for the limiting case of smooth surfaces.

Following Christensen's lead, variables are expressed according to the

stochastic point of view in terms of values of expectation; e.g., E {p} is the

expected value of film pressure and is its ensemble average. The ensemble

averaging process, however, is to be executed in the two-dimensional probability

space, with the roughness distributions of the two surfaces furnishing independent

stochastic states except when asperity interference occurs. The applicable

governing equations are

Y (1Efh7 (.7 - 1)ETJ- E{JP} -Efp}

(3-31)

- €)n_

(3-32)

a a -2n 0
- E{ir +-y- -E W. I + y -=E{h}
Ox X Y a&

(3-33)

Where index n is (0 or 1), respectively, for the cylindrical journal and thrust

bearings.

( x' 'Iy) are dimensionless, radius-weighted flux components in the sliding

and in the transverse directions, respectively. ('1' 72 ) are rotational speeds of

the lower and upper surfaces normalized with a suitable reference rate W.

(7, 7) are dimensionless spatial coordinates; " is normalized by the local

radius r and is actually the angular coordinate, and the transverse coordinate is

normalized by a nominal radius R. t is time multiplied by w.
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p is the film pressure normalized by p0 w (R/C)2 . po is a reference

viscosity coefficient. (TC, Jp) are normalized, viscosity-weighted Couette and
Poiseuille flow coefficients; they are defined as follows:

(3-34)

-- hi hi h 1 fh2 o J

(3-35)

p is the local viscosity coefficient and is dependent on the temperature profile.

C is the nominal gap.

hl and h2 are heights of the lower and upper surfaces, including roughness

profiles on each surface, as measured from a fixed reference surface. h = h2 - h

is the local gap. For the isoviscous approximation,

(j~~~ h h

(3-36)

For the present discussion, the ambient condition, p = 0 is assumed at all edges.

Mesh Sizing. Selecting the proper mesh size to achieve the desired computation

accuracy involves a number of considerations.

1. Structure of the equation - The governing equation is second order. The

simplest nontrivial field distribution would be a parabolic profile that

can be defined numerically by no less than three points in each

direction.

2. Field coefficients - The field coefficients are mainly associated with

the film thickness profile and may also be temperature dependent through

Equations (3-34) and (3-35). If crowning of the surface is present,

again a minimum of three points are needed to permit unambiguous

numerical definition of the field coefficients in the corresponding

direction.

46

.% ;: : i : : " " " . . '' " ' " " - * * " - - . . . . .- ' - .- " - " - "



.7 7. 7

3. Slenderness ratio - The slenderness ratio for the cylindrical journal

bearing is L/(-R); that of the sector thrust pad is [(In (Ro/Ri)]/x*. If

the slenderness ratio is very large, variation along the transverse

direction is minimal except near either end. If the slenderness ratio

is very small, the short bearing solution6 applies, except near the

leading and trailing edges. For a finite but large slenderness ratio, a

reasonable rule to follow is to maintain equidistant mesh spacings in

the end-edge regions while requiring the mesh aspect ratio to stay

within the range of 0.75-2.0. For a small slenderness ratio, mesh

S."points are to be spaced evenly near the inlet and exit edges. Table 2

illustrates the direct application of this rule, assuming three mesh

"- points are equally spaced along the smaller dimension.

TABLE 2 - MINIMUM RECOMMENDED MESH POINTS

Slenderness Mesh Points Mesh Aspect Ratio
Ratio x y Central End-Edge

1/4 7 3 2.0 1.0

1/3 6 3 2.0 1.0

7 3 1.0 1.0

1/2 4 3 2.0 1.0

5 3 1.0 1.0

1 3 3 1.0 1.0

4/3 4 5 1.33 1.0

3/2 4 3 1.0 1.0

4 3 1.5 0.75

2/1 3 4 2.0 1.0

3 5 1.0 1.0

3/1 3 6 2.0 1.0

3 7 1.0 1.0

• = is the pad arc; for a full cylindrical journal = 2n
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In order to realize good accuracy, the number of mesh points in either direction

probably should be no less than four.

Overall Accuracy. The purpose of an accurate algorithm is to seek a numerical

approximation to Equations (3-1) and (3-3) so that the residue of the approx-

imation vanishes uniformly. If one presumes that the convergence of the residue

to zero can be achieved by the limiting process of an infinitesimal mesh set (Ai,

AF) , then such an approximation can be constructed by the following scheme.

Let

E{) = F(,y + 0 {residue}

(3-37)

E } =G(,y) + O{residue}

(3-38)

Then F and G may be replaced by their respective truncated Taylor expansions from

a suitable mesh point (i, 7j); i.e.,

aF aFF(,y) = F(7,7) + (-.) -_ + (F - 37) - +

£ J

(3-39)

aG aG

(3-40)

Similarly, one can write

Efh= H(! , y ; 7 + (i - T.) - + ( -y)-+ .

at + y. Fy+

(3-41)

Substituting the above expansions into Equation (3-33) and collecting terms of

like order, one obtains

dF _n0G -2.

-ei YJ dy + YJ

( i [ d F  d2G .2a H . 2F 'ff2,M t

++ - -n j
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+ 2n2nH)+ =0

(3-42)

Listing separately in progressively higher orders, the approximation requires
OF +h-n d -n

o{1}: + y -+yj H =

(3-43a)

a 2F d2G d2oF ~ 0 -2nOH

S - -2On
01(X Ox 7. - Yj

a2j iJ v

(3-43b)

2+2 F n + -2n aH . -1G -2n - IH

(3-43c)

Since (OF/ai, aG/aj, H; etc.) are fixed at the mesh point (2i j), these

expresssions are algebraic constraints; they are not differential equations.

In a conventional finite difference algorithm, the truncated series

expansions are extended to E{P}such that Equations (3-31) and (3-32) are directly

reduced to algebraic constraints. In the proposed approach, Equations (3-31) and

(3-32) are retained as ordinary differential equations so that E{} is not required

to be equally smooth as E{nt} and E{W'y}. Thus, the effects of variable field

coefficients can be naturally accommodated in the locally exact field of E{}. In

this sense, mesh sizing is used to ensure the validity of the approximation

imposed by Equation (3-43); meanwhile, within the domain of convergence permitted

by the mesh sizes, E{A} is determined as accurately as possible through analytical

means.

Polynomial Approximations of Field Coefficients. In the isoviscous case of smooth

surface problems,

Polynomial Approximations of Field Coefficients. In the isoviscous case of smooth

surface problems,

E{h,} (h/C) = (h/C)
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E{#= - (h/C)3; I
12 E{1/) 12

(h/C) can usually be adequately approximated by a second order polynomial within

the domain of two consecutive mesh intervals, even when the surfaces are nearly in

contact. Note that, consistent with a second order polynomial for E{h(,E{jp. should

be regarded as a sixth order polynomial. Such functional behaviors of the field

coefficients will be retained. Specifically, one shall accept

a 2 2
E{h} + 0~ - ){}=a + a ( -

t 2 1 ra L.ja +a( 2 (

(3-44)

E{J)*= bo +b1 i +S)
+ ZF 2 (771

(3-45)
-I 

2

E{1/J] C += c° 5- C- + 2 2

(3-46)

(a0 , a,, a2) is a set of coefficients applicable to the known data of E{h} and E(C}

for ;i-l S ; 5si+l and = j (b0 , bl, b2) is similarly related to [E{fp}1 i

along the same line element. (CO, C1, c2 ) represents the second order curve fit
of [E{I/jp}0 for i = - - -

Locally Exact Ordinary Differential Equation Solutions. Consider the 2 x 2 mesh

cluster around point (xi, yj) shown for the general case in Figure'8. Uniform

mesh intervals are not assumed. Based on the known numerical data of the field

coefficients, (a0 , a,, a2 ; b0 , bl, b2 ; co, cl, c2 ) can be obtained by second order

curve fitting.

Substituting Equation (3-39) for E{W%.} in Equation (3-31) and making use of

Equations (3-44) and (3-45), one obtains

2na F )+ --2n a .

f bo + b (I + 'b(7- 7 2 3

(3-47)
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u, W .

Similarly, substituting Equation (3-40) for E{iy} in Equation (3-32) and making use

of Equation (3-46), one obtains

6,J

d5 +(y-.F )In[c +c(-rP+'Y 2 13

(3-48)

+i, j + 1

- A (-) 4-A(+)

i, j
i-I, j

Figure 8 - Schematic of a Nonuniform Mesh Cluster
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Closed form integration of Equation (3-47) along = j from 7 = Ri yields

aK
E{jp}.- E{p}l= [Ao(2)-Ao(F)HIY ao-F ) + [A (R) - (i"" ' ' ,Ja.i "

(3-49)

where,

-~ dR
A0 (1) = Ib 2

I o bl(T-I.) + 2 1

(3-50a)

A 1() 1
N." b b b2 2 13

2 1
etc. (3-50b)

The detailed expressions for (A0 , A1 ) are given in Appendix B. Similarly, closed

forms integration of Equation (3-48) along = i from =j results in

5.- 
Ji0d

(3-51)

where,

B°(Y-) =f d5
0"-"= (.. y)n{co+ C(y-5y) + c 9(y-yr/2

(3-52a)

(7 - 7) dy
BI(Y) = (F)n{c0+ clF- + c2(y- _s12/2 tJ

(3-52b)

Details of (BO, Bl) are given in Appendix C.

The Central Algorithm. Truncating the expansion of E{x} at the first order term,

(3-49) can be regarded as containing two undetermined coefficients (Fi,j and

~i,j/dii). The data of E{(} at (i-l, j) and (i + 1, j) can be utilized so that
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:I- 0 f~pi- J Ao(I-14 ) -Ao(Tj) Al &Ti1) - Al(1 5j2n a- ij

-1 1 [i~, Ao(7 z-Ao(xi) Aj(r,+1 )-A 1 (Tja - aF /ai

(3-53)

The matrix equat ion can be inverted to yiel.d

JI l typ'nao - F1 . [ A, (iL+1) - A, (7d] E(f 2 [A, (3i-+1 ) - A1 (!jQj E{,P2
-[A1 (j~) -A, Zd)JE {aPi+i ,

(3-54)

and

IAI 52a, d8F MT) = [AjO( 1 ) AO (fd)]EI31 1 j + [AO (Z +1) -A 0 (i 1 )Ef

+ [AO (i_) - AO (TV1E~ji +j

'.~ (3-55)

where

AOF )- A 0 !F) A 1 (Tr. + A1 (F.)

(3-56)

to Similarly, making use of the data of E{A) at G, j-1) and G, j+) would lead

1=- OiF + enl (Y

(3-58)

with

B - d~ -B0 
) -Bd7j) B,( yB 1 )

BY + 1 - Bj 7 - '7j
0I m + B

0 Y0 B 1(7 1  B1 (7
(3-59)
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To simplify symbolics further, define
1

AO,I(±) = [Ao,0 (,)- Ao,(!,)]

A

I

B [B0 1(Y. B )-B 0

°'- B I - B (l

(3-60a,b)

Combining (WFi,j/ai, aGi,j/ayj) respectively from Equations (3-55) and (3-58) into

Equation (3-43a), using the new notation, it is found that

E{P, _ I j2

(3-61)

This is the high-accuracy central difference algorithm. It is to the variable

viscosity lubrication theory for surfaces with longitudinal roughness as the

relaxation formula is to the classical potential theory. Its inherent accuracy is

not affected by the presence of localized small film thickness provided the

surface profile is accurately qescribed by a second order polynomial.

Equation (3-61) applies to all (i, j). If one chooses a fixed i, the total

system encompassing all j can be written as

[U1J{p-.,} + [VI{pi} + [wI{pl,+I} = {Q1

(3-62)

{pilis a column vector with elements of Ej i'jj (fixed i, all j). (Ui ) is a

diagonal matrix with the element AO(+). (Vi) is a tri-diagonal matrix with the

elements (B0 (+), - A0 (+) + A0 (_) -B0 (+) + B( - B0 (_). (Wi ) is another diagonal

matrix with the elements -A0 (_). {Qij is a column vector containing the elements

(yj) 2 n(al-Hij).

The rank of the system represented by Equation (3-62) is the number of mesh

points in the 9-direction. Inversion of this system is the bulk of the

computation effort. For a bearing with a large slenderness ratio, there are fewer

*' mesh points in the i-direction. Therefore it would be more advantageous to treat
.8
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the alternative representation (fixed j, all i), which can be written in the form
W j)fpj + (V.) p I + (w )(P+#= Qj

(3-63)

Determination of the Rupture Boundary. The presence of film rupture is indicated

by

(3-64)

whereupon the rupture boundary is located by the condition

(3-65)

From the standpoint of numerical computation, where E{f} is represented by mesh

arrays, a sufficient condition for the inequality (3-64) is

1'.j <

(3-66)

Equation (3-65) can be solved iteratively, in accordance with Equation (3-49) or

(3-51), to establish the intermesh location of the rupture boundary. Once the

rupture boundary is located, then one may seek to impose the Reynolds-Swift-

Stieber condition as the criterion for subsequent global iterations.

If the inequality (3-64) occurs in the interior of four surrounding mesh

*- points then a more elaborate scheme is needed to determine the rupture boundary.
Since this situation is not likely to be associated with the thin-film operating

condition of sliding surface bearings, it will not be given further attention.

4. SURFACE ROUCHNESS EFFECTS

When a sliding surface bearing operates with a minimum film thickness, which

is of a similar order as the surface roughness, the classical lubrication theory

is no longer adequate. Allowance must now be made for asperity interactions --

load is shared between hydrodynamic pressure and asperity contacts. At asperity

contacts, friction behaves according to the principles of boundary lubrication,

and attendant heating and wear inevitably lead to alterations in the surface

texture. The role of surface topography in tribological functions cannot be
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expected to be uniquely associated with a single decriptive parameter, e.g.,

C.L.A. (center line average) or R.M.S. (root-mean square) roughness. Researchers

are beginning to bring together topics that had been regarded as isolated issues

to examine the detailed mechanisms of these complicated interactions.

Christensen's theory of mixed lubrication for longitudinal roughness has been

selected as the analytical point of view, since the longitudinal orientation of

topographical features seems to be a reasonable model for machined and worn-in
-7 surfaces.

In Appendix A, as in Christensen's "A Theory of Mixed Lubrication,"4 the
model concentrates on the behavior of the bearing with longitudinal roughness on

one surface only. Christensen points out that if both the surfaces in a bearing

are rough, then the probability density function used will be considered as a

description of the combined roughness. The roughness distribution functions used

by Christensen were symmetrical and approximated the Normal or Gaussian

distribution.3'4  There remain areas for theoretical improvement such that more

realistic characterization of the interacting surfaces may be considered. The

subsequent discussions will deal with two specific aspects of conceptual

generalizations that are related to the stochastic description of the topographs.

First, the roughness deviations on each surface are recognized as an independent

set of statistical data; consequently a two-dimensional representation of the

stochastic model would have to be used. Second, a machined surface or one that

had experienced prior wear would have fewer peaks than valleys; thus the roughness

deviations should have skewed distribution functions. If these improvements were

incorporated into mixed lubrication theory, all stochastic operations used in the

theory would have to be consistently revised.

56



Z 7- I . -

Mixed Lubrication of Sliding Surface Bearings with Long;tudinal Roughness

Background. Christensen3 has proposed stochastic models for hydrodynamic

lubrication of rogh surfaces and has applied this technique to study the mixed

lubrication problem using the one-dimensional flat slider for illustration.4

Christensen's theoretical models include striated roughness of both transverse and

longitudinal orientations as well as a uniform isotropic roughness. 7 He

considercd the hydrodynamic aspect using the thin film model, which is strictly

applicable only with roughness on the stationary surface.

Elrod8 considered striated roughness, again using the thin film model, from

the deterministic point of view. The latter approach is a direct extension of the

lubrication theory for bearings with shallow, narrow grooves on one surface

only.9'1 0  In the most general form, both surfaces may be rough; however, their

respective striations must be parallel.1 I Using a multiple-scale expansion

method, 12 it was shown that the flow across the striations would not follow the

rapid gap fluctuations associated with surface roughness. If the surface motion

has a component that is transverse to the striations, then the moving roughness

would contribute to an additional squeeze-film effect, which has a nonvanishing

temporal average. Patir and Cheng, 13 concerned mainly with transverse striations,

arrived at similar conclusions. More recent efforts on lubrication analysis for

rough surfaces are reported in References 14,15 and 16. In Reference 17, Elrod

gave a comprehensive review of theoretical ideas on roughness effects, including

deterministic considerations of two-dimensional Reynolds roughness (thin film),

Stokes roughness (short wavelength), as well as molecular slip (very thin gas

films).

The purpose of this section is to consolidate relevant approaches to form the

basis for studying mixed lubrication on both stationary and moving surfaces to

allow for longitudinal roughness. Specifically, equations suitable for the study

of cylindrical journal and sector type thrust bearings will be developed.

Description of Surfaces, Roughness Functions, and Film Thickness. Subscripts 1

and 2 will be used to designate the lower and upper bearing surfaces,

respectively. Each point on the surface is measured as the height from an
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appropriate nominal surface; and each surface is described as the sum of a

geometrical part (which is "smooth") and a topographical part (which is "rough").

Thus

ht  H, (x/b, yL,t) + 81 (y/A)

h2  H2 (x/b, y/L,t) - 82 (y/A2 )

(4-la, b)

(x,y) are local Cartesian coordinates, x being aimed in the sliding direction; t

is the time. 81 and 82 are topographical descriptions of the roughness features.

Their sign conventions depict elevation above the respective mean surfaces as

positive values. (A1, A2 ) are roughness scales for the respective surfaces. It

will be assumed that

(el c A )IL < < I

(4-2)

(al, 02) are rms values of (81,82); i.e.,

~2 fY0 + Ay 2 dY 2 fY + AY6 2 dy
a 2 = fy--A y 5 ; a2 = f- A y 2 dy

yo - i Ay YYO -

(4-3a, b)

It is assumed that

(X1, Ad < < Ay < < L

(4-4)

(01,o2) can be dependent upon (x, y), if desired, to allow for spatial variation of

roughness features.

Separation of the surfaces is

h = - hi
=H. 81-82

(4-5)
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where

H = H 2 - H1

(4-6)

is the usual film thickness upon neglecting roughness. 8, and 82 may be regarded

as definable through their respective profilometry data. However, the coordinates

(y/A 1, Y/A2 ) can not be related to each other. In this sense (8, 62) should be

regarded as stochastically independent of each other; that is, the probability for

81 to assume any particular value is independent of the particular value of 62.

This point of view is crucially important to the development of a consistent

stochastic analysis.

Stochastic Computations. The stochastic descriptions of the topographic functions

(81,62) will be assumed to be known in terms of their respective surface height

histograms PI (8,) and P2 (62). P1 d 8, can be regarded as the infinitesimal area

fraction on the lower surface that has the (roughness) height of 6. (Pl, P2 ) are

sometimes called probability density functions. By the nature of this definition,

the following identities hold:

I 6=1; I~S=1
j I d 1 2 d62=

(4-7a, b)

J P161d61 =0; J P262d6 2=0
(4-8a, b)

I cc21 2= W P 2 2d6 2

(4-9a, b)

The upper and lower limits of all real roughness profiles are finite; therefore,

*the integration limits of Equations (4-7) to (4-9) should be replaced accordingly.

(61,82) are independent variables of the phase space in the stochastic analysis of

a problem involving two rough surfaces. The expected value of a function f that

is stochastically dependent on (81,82) is computed by ensemble averaging
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(integrating with probability weighting) in the two-dimensional stochastic phase

space. Formally this is written as

E(f) = f f(P! P2) f(dl d82 )

(4-10)

The applicable domain excludes the condition 81 + 82 _>H, since H is the separation

of the mean surfaces. The area fraction of asperity contact is

Ac = f f (PIP2 ) (dl d8 2) 2!0

81 +82- H

(4-11)

General Equations. The isoviscous, laminar film theory of lubrication will be

accepted for the present treatment. In vector notation, this is

h h3

-Vp
2 12y

(4-12)

div Vi +_h= 0
at

(4-13)

IP is the volume flux vector. V is the sum of the sliding vectors. This form can

be used for a counter-rotating bearing. For cylindrical journal and sector type

thrust bearings, these equations can be rewritten in the component form with a

common representation.

x rO; r= R (y/R)n

(4-14a, b)

h (coI + o2r h3  op

2 12pr 8y'

h3 8p

Y 12y oly

(4-15a, b)
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-- a'!'] 1 a

div +--(r)
r aO ray Y

(4-16)

nf(O,1) respectively for the cylindrical journal and thrust bearings.

For a dimensionless formulation, the spatial coordinates are

x=0=x/r 5'=y/R

(4-17a, b)

A nominal clearance C is used to scale the composite film thickness while the two

roughness profiles are respectively scaled by their rms roughness values (01,02):

T= h/C - f o 1 El -22

(4-18)

where,

= (H2 -H)IC

= 11 8212); ( ) (ol/CojC)

(4-19a, b, c)

The rotational speeds are scaled by a nominal rotational rate

(4-20)

The flux components are scaled by the nominal Couette flux
( x y ) =2 (%P, IF ) RC)

(4-21)

The film pressure, as measured above ambient pressure, is scaled by

pC 2

6p wR
2

(4-22)
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Equations (4-15, 4-13) can thus be rewritten in the dimensionless form:

(4-23a, b)

+ - a W) + 0
-n OT n =0 ay 7y

(4-24)

The natural dimensionless time is

= t/2

(4-25)

Multiple-Scale Analysis of Striated Reynolds Roughness. After Elrod, 1 2 one

recognizes that the roughness function is more appropriately described in terms of

a local coordinate of a fine structure; i.e.,

12

(4-26)

Therefore, partial spatial derivative with respect to the transverse coordinate

must also make allowance for these fine scales, which play the role of

amplification in the differentiation process. In other words

a a (R(a a

(4-27)

(R/A1, R/A2) can be regarded as roughness amplification factors associated with
transverse (relative to the direction of striation) spatial differentiation.

One may also reasonably postulate that longitudinal spatial differentiation

and temporal differentiation do not introduce roughness amplifications. A simple

idea is used in the narrow groove lubrication theory and is known to be valid in

all areas remote from the edges. Equation (4-24) can thus be rewritten, treating

Y--' 1, 4 as independent variables, and be regrouped according to various degrees

of roughness amplification:
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+(~ (R)al + X +~ yn S1h

(4-28)

This expression suggests the usefulness of constructing the solution in terms of a

double power-series expansion with respect to the two smallness parameters

(I /R, X /R).

Neglecting O{JA/R, X2/R}, since Equation (4-28) is to be valid for the

independent limits (X1-O, X 2-0), one concludes that

Y = 0; Y 0

(4-29)

These expressions are the essence of the theory of striated Reynolds' roughness.

The flux component transverse to the roughness striations does not respond to the

fine-scale fluctuations of the surface topography. This general conclusion is

independent of the orientation of the striations relative to the sliding

direction, but does require the striations on one surface be parallel to those on

the other.

Stochastic Analysis of Film Flux and Film Pressure. The ultimate interest of

lubrication analysis is concerned with the spatial integrals of film flux and film

pressure. In the statistical studies, these are really ergodic averages as

opposed to ensemble averages. Thus for a specific rough surface, spatial

integration is the real objective, and stochastic analysis is conceptually

irrelevant. If, however, the surface topography can be defined only in

statistical terms, then the results are valid for all surfaces that are

-' statistically similar to the sample topography. In this sense, the statistical

point of view begins to have meaning. However, the use of ensemble averaging

instead of spatial integration is mainly a matter of convenience. When both

surfaces are rough, because the relative location of the two roughness profiles is

- snot certain, the actual composite roughness cannot be uniquely constructed from

the individual roughness profiles in a deterministic manner. Accordingly, the

stochastic point of view becomes a matter of necessity. In the following,
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stochastic analysis will always refer to ensemble averaging (expectation) and the

deviation.

Symbolicly every function will be so treated; i.e.,

f = E(1) + f

(4-30)

The expectation operation has already been defined by Equation (4-10), in which

the roughness heights (81,82) were used to define the probability density functions

(Pl, P2). Consistent with the dimensionless notations adopted above, the

expectations operation on a dimensionless variable will be defined in terms of the

dimensionless probability density functions.

2(E -02 P2 (82 022) (4-31a, b)

Clearly, expectations of the film fluxes and the film pressure are of particular

interest. Equation (4-29) is equivalent to a null condition of the deviation

component of TvV i.e.,

(F = V7 - EQV=0y y y
(4-32)

Equation (4-23b) now can be rewritten as

9F

-3

(4-33)

Taking the ensemble average,

-E(p= -E Y

(4-34)

or,
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aE(P) Xi
I'=E( )=-- E-

(4-35)

Equation (4-33) can be differentiated~with respect to 7, yielding

(4-36)

The order of differentiation of the left-hand side can be written in reverse;

therefore,

,

(4-37)

The last relation means, neglecting Oa/R, 2/R, that F/ax also has a null

deviation component; i.e.

* =0

(4-38)

Consequently, from Equation (4-23a), the ensemble average of Wx can be derived as

E-i =(U, + U,) - _ _ EP)_
y

(4-39)

Finally, taking the ensemble average of Equation (4-24) term by term, one

obtains
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-nE - + - E(h) =0Ii -3

(4-40)

This is the analog of Reynolds' equation for longitudinal roughness. Typical

boundary conditions are

E(p) = 0 at X-ne

(4-41)

E(1'0 0 at"(7 l, '= 1 y - L/R)

(4-42)

Equation (4-42) is subject to the ambient-rupture constraint

E( Zo

(4-43)

Where appropriate, Equation (4-42) is to be replaced by the Swift-Stieber rupture

condition:

(4-44)

at the rupture boundary xr (y).

Computation of Ensemble Averages. To solve (4-40) for E (p), ensemble averages of

(N, -2, 1/53) are needed. The procedures of these computations depend on whether

or not asperity contacts would take place. Let (-a,, b1 ) be, respectively, the

(lower, upper) limits of the roughness profile of the lower surface, and (-a2, b2 )

be those of the upper surface. Then the condition for asperity contact is
.4

71b, + 52b2 >

(4-45)

"6

66

..............................................



-, , .. j -, - *,-.v,, . . r u,% . . . , . ., <]] -. . ,, , . -- .,- .... .; . - - - . ,- _

N.."

This inequality marks the boundary of a forbidden domain in the two-dimensional

phase space; this domain must be excluded from all ensemble average calculations.

* Figure 9 illustrates these ideas.

WT AINCIPIENCE OF ASPERITY

SURFACE SEPARATION CONTACT

WITH ASPERITY CONTACTS b2H 110 + =1b 6 + "262

K +

C

. a

* Figure 9 -Applicable Domain for Ensemble Averaging
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It is convenient to define the unrestricted expectation as the ensemble

integration over the entire rectangular domain:

E b

1 a2

(4-46)

Then, if the inequality (4-45) is satisfied, also define the expectation

deficiency as

fb1P P d6 -- P -db J(-7b) I (-a 61

. 201 021
° I  o2

(4-47)

The net expectation is

E(f) = Eo() - AE(f)

(4-48)

For the various functions of interest, the unrestricted expectations are

Eo(h) = H
Eo)_ + 3 12 + T 2)- 3 E (3'3). 23 E (23)

(4-49a, b)

E o(/V 3 ) is much more complicated and will be given attention separately.
0

Expectation deficiency functions of My3) require computation of the type

I f Td n=O,1,2,3

(4-50)

through appropriate ranges as defined in Equation (4-47). In particular
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bd b2

72b2 f (H -a 51 P2 2

1 2

(4-51)

yields the area fraction of contact.

Hydrodynamic Shear. The hydrodynamic shear stress in the sliding direction is of

interest because it contributes to the drive torque. Depending on the particular

circumstance, the shear stress on either the upper or the lower surface is of

interest; they are

(W 2w2 - 1) r h ap
h 2dx

(4-52)

The upper sign is to be used for the shear stress on the upper surface; and the

lower sign, for the shear stress on the lower surface.

Scaling with puoR/C

(2 Z haF
U= yn 3

(4-53)

Carrying out ensemble averaging,

_ E(h) aT
EfrO~ ~17 E(/7h)±3-

(4-54)

E(l/W) is the additional expression that did not appear in the analysis of film

pressure.
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Stochastic Computation's for Mixed Lubrication with Skewed Roughness Distribution

Function

The theory of mixed lubrication -- for example, the original treatment by

Christensen3 -- was developed with a symmetrical roughness distribution function.

The bearing roughnesses in practical applications are not likely to be

symmetrically distributed, rather, they are skewed. Most likely, there are more

valleys of a certain magnitude than peaks of the same magnitude. The necessary

analysis to accommodate an unsymmetrical roughness distribution function is given

below.

Background. The mixed lubrication theory of Christensen4 requires the computation

of ensemble averages of the following quantities:

Longitudinal Poiseuille Flow Admittance

h 3 =-(H -6 82)
3

(4-55)

Couette Flow Admittance

h = H- 1 -62

(4-56)

Transverse Poiseuille Flow Resistance

h -3 (H- 81 -62)- 3

(4-57)

Couette Shear Function

h- =(H- -6 2 Y-

(4-58)

Transverse Poiseuille Shear Function

h 2 -(H- 81 62 ) -2

(4-59)
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Ensemble averaging (as the expectation) of a stochastic function that depends

on two random variables, f (81, 82) , is defined as the probability-weighted

integral in the two-dimensional phase space; namely.

E() = ff[PI (61) P2 (62)] f(d 6 d 62)

(4-60)

With a finite separation, H, the domain of integration should exclude the

condition of interference, which is

61 +62 > H

(4-61)

Consequently, the ensemble average can be treated as the sum of the unrestricted

expectation and an expectation deficiency;

E(1) = E° (1)-AE(f)

(4-62)

where,

EJ (P P Mad61 6a

(4-63)

AE() = ff P1 P2 f d6 d62

61 + 62 > H

(4-64)

The probability density functions (P1 , P2 ) should be based on actual

topographical records of the surfaces. However, to facilitate the computation

procedure, an empirical function, which shares the same overall characteristics of

the actual function, may be used. Christensen3 proposed a symmetrical sixth order

polynomial, which contains a single free parameter that can be directly associated

with the rms roughness, o, defined by

o2 =p 2 d6

(4-65)
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Christensen's empirical formula is

32(3o)
7

P (62 > (3o)2) =0 for82 < (3o) 2

(4-66)

Note that this function has vanishing derivatives up to the second order at the

extreme points (8= +30). Furthermore, the distribution of asperity height is

symmetrical, so that there are as many protrusions as there are depressions. For

real surfaces, however, due to the inherent features of machining processes and

possible run-in effects, there always are fewer protrusions than depression.

Therefore, the centroid of the distribution function should be skewed to the

negative side (depressions). It should be possible to modify Equation (4-66)

slightly, so that a second parameter becomes available to describe skewness in the

topography. A seventh-order polynomial will be examined as a proposed basis for

the computation of ensemble averages of interest.

Basic Properties of the Distribution Function. The distribution function is

always positive, and must satisfy two contraints due to the very nature of its

definition. The first is the convention of normalization in probability theory:

.+00

Pd=I

(4-67)

The second is the condition of null-biasing, which must be satisfied because the

stochastic function itself must have a null value for its ensemble average, i.e.,

+P6d6= 0

(4-68)
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The rms deviation, sometimes called the standard deviation, o, was previously

given by Equation (4-65). These are moment integrals of P(8) of order (0, 1, 2)

for Equations (4-67, 68, and 65), respectively. One way to examine the skewness

of the distribution is to consider the third order moment integral as given by

0 3 -: P63 dS

(4-69)

Note that for a symmetrical probability density function such as Equation (4- 66),

and all odd orders, the moment integrals vanish identically.

Derivation of a New Probability Distribution Function. Instead of using Equation

(4-66) as the probability distribution function, its basic form is adopted as a

generating function.

G(8) = (c2 - 82)3 for 82 < c 2

G(8) 0 for 82 >c 2

(4-70)

The indefinite moment integral of G is defined as

c 6 c462 3 264 66

F (6)= G6nd6= - - + + 6 n +

( n+l n+3 n+5 n+7 ( -1(4-7 1)

One may postulate that

P(8) = [A+B (8 + 80)] [c 2 - (8 + 80)213 for (8 + 80)2 5 c 2

(4-72)

For Equation (4-67) to be satisfied

32 A c7

I =2AI (c) =-
0 35

Or,

35A =-
32 c 7

(4-73)
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To satisfy Equation (4-68), one finds

0 0 2 -- 23
0 [A+B(6+6)I[c (8+ 0)16d.

0

J",[A+B(+ )[c2 - (6+6) 21 [(6 + 6) 6 d(6 + 6)

32 Bc 9

--6 + 2B1 2 (c)= -6 +:; o o 315

Or

B 31560

32 c9

(4-74)

Thus the desired two-parameter distribution function is

P(-) = 35 [c2 +96 (6+6 )J [c2 _ (, + 6)23

32 C9

(4-75)

The two parameters, c and 80, remain to be determined from a and 0s .  By

substituting Equation (4-74) into Equations (4-65) and (4-69) one finds that

2 2(3 o

(4-76)
30 )3=_23 (38o

(4-77)

It is customary to present topographical data by normalizing the roughness

height with the rms roughness, o. Thus, the normalized roughness height is

V

~,7
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(4-78)

Accordingly, the various statistical parameters, all normalized with o, are

Half maximum Height = (c/o)

Skew-Bias Parameter To= (0/)

Root Mean Third Moment Ws = (Ss/°) (4-79a,b,c)

The corresponding probability distribution function is

. P (6) : o(6)

(4-80)

Recasting Equation (4-75) in the new notation, one can write
323

(4-81)

Equations (4-81) and (4-77) can be rewritten as

T= 3 V/1 + 2

(4-82)

(4-83)

These expressions provide an easy-to-use single parameter (80) for the statistical

characterization of skewed topography.

From the specific profilometry data, the value of 0s can be calculated. Thus,

according to Equation (4-83), the skew-bias parameter can be determined as the

root of
t.

(4-84)
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However, because this solution is not unique, the appropriate branch must be

identified. Equation (4-84) lacks a unique root because 0 has a stationary point

at 802 = 1/8. Fortunately, in the range

o 821
0 8

(4-85)

(0, 80) nave a one-to-one correspondence. In fact the upper bound of 802 makes

certain that p is non-negative in the full range of 8. This constraint is

obviously due to the relatively simple functional form of Equation (4-81), and

limits its applicability to

(4-86)

If a larger numerical value of Osshould be indicated by actual profilometry data,

then the upper-bound condition, (8o2=1/8), would have to be used in lieu of solving

Equation (4-84) for To.

If the last inequality is satisfied, the root of Equation (4-83) can be rapidly
-t

found by the Newton-iteration method. Given an initial estimate 8 o, the residue

R' = R (8'o) * 0 can be readily calculated. Then an improved estimate of 8o is

R .. 11)\R'
8=80 0 dRl,- -6 [8(j)2_11

0

(4-87)
Table 3 shows --3 and E2 tabulated for the full range of 'o. Note that F2 changes

only slightly and therefore would not be an accurate means of reflecting skewness.

By comparison, the relative sensitivity of s3 for indicating skewness is quite

"' evident.
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TABLE 3- DEPENDENCE OF THIRD MOMENT AND
SQUARE OF HALF MAXIMUM HEIGHT ON THE

SKEW-BIAS PARAMETER

TO .O 
SZ

0 0 9

0.018 -0.009810 9.002916

0.036 -0.019569 9.011664

0.054 -0.029226 9.026244

0.072 -0.038730 9.046656

0.090 -0.048031 9.072900

0.108 -0.057077 9.104976

0.126 -0.065818 9.142884

0.144 -0.074202 9.186624

0.162 -0.082180 9.246196

0.180 -0.089699 9.291600

0.198 -0.096709 9.352836

0.216 -0.103160 9.419904

0.235 -0.108999 9.492804

0.252 -0.114177 9.571536

0.270 -0.118643 9.656100

0.288 -0.122345 9.746496

0.306 -0.125233 9.842724

0.324 -0.127255 9.944784

0.342 -0.128361 10.052676

0.3538132 -0.128565 10.125000
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CONCLUSIONS

Knowledge of the mixed lubrication process and the associated interactive

wear mechanisms is vital in the engineering of a variety of machine components for

reliable service in the operational environment of naval ships. The thermo-

mechanical interactions can be effectively studied by computer-aided analysis

techniques. However, any accurate theoretical model must penetrate the

traditional boundaries that isolate classical disciplines from one another. The

analytical technique presented here required methodologies to be combined that

were developed in the fields of numerical computations, statistics, heat transfer,

continuum mechanics, and topographic analysis of surfaces, in addition to the

theory of hydrodynamic lubrication. Experimental verification of theoretical

predictions presented will be necessary to prove that such an assemblage of

analytical tools is valid, so that these tools can eventually be used with

confidence in the engineering of actual hardware.

RECOMMENDATIONS

Because the study of jmixed lubrication is inherently an interdisciplinary

undertaking, a well-focused overview must be balanced by commensurate stimulation

of the constituent disciplines which play the pacing roles. At present, it is

timely to demonstrate the possibility of quantitative analysis of the mixed

lubrication process in the realistic operational environment of a machine

component.

A recent endeavor (Appendix A) yielded a reasonable analytical prediction of

friction behavior of the tilt-pad bearing in the one-dimensional approximation.

Such an analysis procedure can be readily upgraded to consider a full complement

tilt-pad thrust bearing. Specifically, we recommend that a computer-aided

analysis procedure for the tilt-pad thrust bearing be developed to include the

following features:

o variable sliding speed due to radius change,

o side leakage flows,

o surface roughness effects,
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o film cavitation (Swift-Stieber condition),

o moment balance about the pivot point, and

0 thermo-elastohydrodynamic interactions as they affect temperature-

dependent fluid viscosity and film profile distortions.

We concede that certain aspects of surface roughness effects can be

* theoretically modelled only rather crudely at present. Although such crude

*" approximations appear adequate to describe the friction behavior, not enough is

known about surface deterioration when hydrodynamic lubrication is incomplete.

Traditional wear rate estimation based on empirical test data is suitable only for

low speed machine elements for which the relative fit and conformance to a nominal

geometrical profile determine the functional performance. For high speed machine

elements, lack of full film lubrication usually precipitates violent

thermomechanical events that rapidly lead to catastrophic failure. Our goal is to

control processes in mixed lubrication so that inevitable surface deterioration

proceeds at a benign pace. A quantitative understanding is imperative of the

closely coupled phenomena of surface chemistry, material modulii and hardness,

local heat transfer, material behaviors in the presence of severe thermal

gradients, thermal distortions and dynamics, form and size of wear debris, and the

topographical changes occurring at the sliding contact, for these phenomena

interact and govern the capability of the machine element to endure and to recover

from tribological overload that exceeds the full film lubrication capacity.

Progress in this area can be fostered by a well-coordinated effort which

encompasses:

o friction and wear tests,

0 surface mechanics, including superficial and near-surface failure

processes,

o topographical analysis for corroboration and correlation with mixed-

lubrication analysis and wear tests,

o testing of a full complement thrust bearing, and

0 the formulation of a cohesive theoretical model of the evolutionary

dynamics of topographical changes.
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Because of the possible synergistic interactions of various processes, the

knowledge of mixed lubrication for one set of machine components and environmental

conditions may not directly apply to another machine component or to substantially

different environmental conditions, even though the same fundamental processes are

involved. However, the general approach to acquiring the knowledge is applicable

to many other machine elements that are vital in naval ship systems. The face

seal and the elaL ric sterntube bearings are candidate topics worthy of

attention when resources are available.
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APPENDIX A

THE CROWNED, MOMENT BALANCED TILT PAD BEARING IN MIXED LUBRICATION

CADCOM Report No. 81-11, Reproduced in Entirety
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ABSTRACT

The term "mixed lubrication" is used to describe regions of hydrodynamic

lubrication in which part of the load carried by a bearing results from actual

metallic contact between mating bearing surfaces. Past bearing design practice

has been to size bearings to avoid this phenomenon. However, recent interest in

reducing size and weight in shipboard machinery has led to a reassessment of this

mode of bearing operation. This report presents a computational scheme, based on

a stochastic model of roughness distribution, for the determination of bearing

performance in the mixed regime. The model also considers "crowning", or convex

deformation of the bearing surface that arises due to thermal or mechanical

deformations while in service. This is known to cause a significant rearrangement

of the pressure profile on the bearing surface. Allowance is also made in the

determination of bearing performance for the frictional moment that acts on a

tilt-pad bearing, which may assume sizeable proportions in the mixed regime. The

results are presented in the form of an interactive computer program.
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I. INTRODUCTION

As the steam engine came of age in the nineteenth century, the need for

dependable bearings grew, and journal bearings were successfully developed. But

it was not until nearly the turn of the century that the scientific theories of

Petrov, Tower, and Reynolds revealed how such bearings operated. Prior to their

efforts it was believed that bearing friction depended on material properties, but

theory showed that this was not the case, and that friction was merely the

consequence of viscous shearing stresses developed in the thin lubricant film that

separated the mating bearing surfaces.

Application of these theories led eventually to the development of practical

thrust bearings. Working independently, Kingsbury in the United States, and

Mitchell in Australia invented the tilt-pad thrust bearing, which had far reaching

*consequences. Among other things, their invention greatly facilitated the

conversion of the world's navies and commercial fleets from sail to steam.

In the intervening years a vast literature dealing with various aspects of

hydrodynamic lubrication has emerged, and it seems safe to say that lubrication

mechanics is well understood, at least when viewed from the standpoint of lightly

loaded bearings. However, in recent years an interest has developed in weight and

size reduction in steam propulsion plants designed for shipboard use dictating

significant increases in bearing load capacity beyond that which has been

previously regarded as good engineering practice. Such bearings typically exhibit

phenomena that cannot be explained by classical hydrodynamic lubrication theory.

Essentially, at higher loads, the minimum film thickness is reduced to the extent

that certain amounts of metal-to-metal contact take place between microscopic

surface irregularities, or asperities, that to some extent exist on all bearing
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surfaces. This is known as "mixed lubrication." Interest in this regime stems

from the fact that bearings can give quite satisfactory performance while

operating in mixed lubrication, providing that the load carried by metallic

contact is relatively small as compared with the total load. But at higher

loadings, complete breakdown of the film occurs, friction rapidly increases, and

the bearing fails. Predicting this point of departure is a primary goal of mixed

lubrication theory. Material properties play an important role in this

*. prediction, indicating that earlier theorizers may not have been completely wrong.

While the breakdown phenomenon has been observed experimentally for many

years, it has only been in recent times that serious attempts have been made to

model this process mathematically. Christensenl has presented a stochastic theory

of mixed lubrication in which the asperities are distributed in a near-Gaussian

way and examines a plane slider bearing according to this rationale. His results

are illuminating in that the model gives both qualitative and quantitative

performance closely matching observed behavior.

Classical bearing theory, when applied to a plain slider bearing, also fails

to account for the operation of a centrally pivoted bearing, becoming

mathematically degenerate for this case. Despite this frustration, centrally

pivoted bearings give fully satisfactory operation and are in widespread use in

applications requiring thrust to be carried regardless of rotational direction. A

good explanation of this evident paradox has been given by Abramovitz2 , who showed

that an exceedingly small amount of crowning, or convex surface curvature on a

slider face (which may result from elastic or thermal deformations, or polishing

operations) radically alters the pressure distribution on the slider in a way that

results in an upstream migration of the pressure center.
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Finally, we call attention to another shortcoming of classical theory when

applied to a bearing that is free to pivot, and that is the essential "static"

nature of the theory, in that the inclination angle of the bearing pad and the

ratio of leading to trailing edge film heights are specified a priori and the

bearing is then analyzed under conditions of varying load and speed. It is

further assumed that the center of pressure and the pivot center are coincident,

based on the practical assumption that the offset distance of the center of

pressure from the pivot center required to compensate for the moment due to

tangential shearing stresses is negligible. While this simplification appears to

be fully justified in the pure hydrodynamic regime, it becomes highly suspect in

the nixed regime, where frictional moments can reach sizeable proportions. A real

bearing pad responds to variations in load and speed within its operating

capability by altering its inclination angle and mean film height so that the load

is automatically developed and the moment about its pivot center cancelled,

regardless of operating regime.

I-1 Purpose of this Study

The present study was undertaken to explore performance boundaries of tilt

pad bearings in a fashion that is unencumbered by restrictions of classical theory

previously discussed. Considering the large number of variables in this class of

problem, it is not practicable to present performance in customary graphical

(generalized) formats. In the final analysis, it is much more convenient to

compute performance for each specific example of interest. In the following, we

present the rationale leading to a computational scheme that permits numerical
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experimentation for a class of curved slider bearings operating in the mixed

lubrication regime, having arbitrary pivot coordinates.

II APPROACH

We adopt the stochastic model of Christensen for a slider bearing free to

tilt about some arbitrarily specified point. The macroscopic film height

distribution is assumed to be that which results when the slider surface is

parabolically crowned, having a maximum crown height at the midpoint of the

bearing face. Upon the macroscopic height distribution is superimposed a randomly

_. distributed series of linear roughness asperities, aligned so that the peaks and

.' valleys thus formed lie in the direction of motion. Thus, at any point along the

surface, the film height H is represented as

P = h(x) + h(x,z)

(1)

where h is the macroscopic film height and hs is a randomly distributed roughness,

or asperity height.

In regions along the bearing surface where the film height is greater than

the asperity height, the load and friction are assumed to be purely hydrodynamic

in nature, whereas in regions where the film height is less than the asperity

height, both the load and friction are carried by separate contributions of

hydrodynamic forcesp and other forces that depend on the mechanical properties of

the bearing material, in linear combination. Viscosity is assumed constant, and

side leakage is neglected. Regarding side leakage, it should be noted that in

regions of mixed lubrication, the lubricant is effectively trapped in the valleys

between asperities, a fact which tends to mitigate the otherwise sweeping
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assumption of no side leakage. The model is also two-dimensional, and does not

include centrifugal effects.

The general arrangement and nomenclature are indicated in Figure 1.

III FORMULATION

III-1. Basic Relationships

Under the stated assumptions, the steady, two-dimensional form of the

Reynolds equation is'

(dldx) {E (H3 )dp/dr} 6qUdE(H)Idx

(2)

where E() is the expected value of m,and H = h(x) + hs(x,z), the hydrodynamic

film thickness. The value of p in the above expression is taken to be the mean

hydrodynamic pressure at any location x, U is the slider speed and q is the

viscosity of the lubricant, assumed constant.

The random roughness distribution is assumed to be well represented by the

near-Gaussian function

ifh) = (35/32c7) (c2 - h,2)3

where 2c is the maximum peak-to valley height of the roughness. Then the

expection of any quantity g(x) is obtained from the expression

E(g(x)) = g(x)/fh s )dh,

4 (3)

where the upper limit of integration is always c, and the lower limit either -c,

or -h, depending on whether the film thickness is greater or less than c. This

corresponds to regions of pure hydrodynamic and mixed lubrication. In particular,

in regions of pure hydrodynamic lubrication, it is readily shown that

E(K) K, aconstant
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4,

E(H) =h,

and E(H3) h3 +hC2/3,

whereas, in mixed lubrication regions, more detailed calculations show that

E(K) = (K/32c 7) (16c7 + 35c6 h - 35c4 h3 + 21c 2h5 
-5/

7),

E(H) = (35/32c7) (c8/8 4- (16/35)c 7h + (112)c 6 h2
- (114)c 4 h4

+ (1/IO)c2 h6 - (1156)h8l,

~a. (4)

and

E(H3 ) = (35/32c7) (1140)c1 0 + (16/105)c9 h 4- (3/8)c8 h2

+- (I6/35)c 7 h3 + (I/4)c6 h4 
- (1120)c4h6

+ (31280)c2 h6 -(1/840)hO}.

The nominal film height h(x) for a crowned slider bearing (see F-1) is given

by the expression 2

h h2 (a + (I -a) ((1 4 4ff -mB 2) x- (4Hc/mB3)x2 ),

(5)

where h2 is the trailing edge film height, a = hl/h 2, h1 is the Leading edge film

height, m is the bearing inclination angle, measured in radians from the direction

of motion, and B is the slider length. A useful relationship between a, m, B, and

h2 is

_.,.'h = mB/(a-I).

(6)

The boundary conditions are the usual specification of zero gauge pressures

at the leading and trailing edge of the slider, i.e,

. p(O) = p(B) =0.
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111-2. Pressure Distribution

For a given slider bearing characterized by its physical dimensions (B, Hc,

c) operating at a speed U with a given lubricant viscosity q, it is possible to

obtain a solution to the Reynolds equation by direct numerical methods, providing

that two of the three variables a, m, and h2 are specified. It is emphasized that

the appropriate expressions for the expectancy operators must be employed at each

point in the integration, depending on whether the lubrication is purely

hydrodynamic, or mixed at each point. The first integration is straightforward,

and yields

dp/dx = 6qUl (E(H)/E(H3) + C/E(H 3)

(7)

where C is a constant of integration.

The second integration is performed by numerically calculating the

expressions

p = 6qU J (E(H)I-E(H 3))dx + C 0 (lIE(H3))dxj,

whereupon, it results from the boundary conditions that

C= -0 (E(H)/E(H) dx / (1/E(H)) dx.

111-3. Bearing Load and Center of Pressure

Having performed the above integrations which give the pressure distribution

that exists on the slider face, taking into account that some regions are in mixed

lubrication, it is now necessary to introduce an ad hoc assumption regarding the

manner in which the total load is developed. The simplest model of the

contribution of the roughness asperities to the load assumes that in mixed

lubrication regions, the metallic contact load is equal to the product of the
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yield bearing stress of the weaker bearing material, multiplied by the fraction of

area, per unit bearing width, over which such contact takes place. Thus, the load

capacity (per unit bearing width) is represented as

wr Il.dx+ 12pdx+ pdx,
0 1 2

(8)

where in the first and last integrals, p is the ordinary hydrodynamic pressure

upstream and downstream of the interference region that exists between 1, and 12.

* The second integral is the sum of the load carried by ordinary hydrodynamic

pressure in the valleys between asperity peaks, and the load carried by the

asperities; i.e.,

12 d x r: (x)pdx+py (12I - r)dx

11 1l 11

(9)

where py is the yield stress of the weaker bearing material, and r is the fraction

of bearing area formed by the valleys between asperity elements, calculated from

equation (4) to be

r = (1/32c) (16c7 + 35c6k - 35c4h3 + 21c2h5 - 5h 7j,

per urit bearing width.

The center of pressure is obtained in a straightforward fashion by weighting the

above integrands with x, performing the indicated integrations, and dividing by

-the load; i.e.,

C= 0pxdx I pdx,

(10)

where it is to be wv'er aod that the integrations follow the above rationale.
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111-4. Slider Friction

The shearing stress acting on each element of the slider surface is obtained

from the expression
1

-(x) UE(1/H) + 1/2(dpldx)E(H),

where dp/dx is given by (7).

The total frictional force on the slider is determined in a manner similar to

the method used in obtaining the load; i.e.,

F = rdx + I$2 dx + B rdx,

12

(12)

where, here again,

J2 ,dx = 12 rr dx +a 2 (1- r)dx,

1 1 1

(13)

and o is the yield shearing stress of the weaker bearing material.

The frictional moment about the pivot center is the integral of the shear

acting on each surface element weighted by its distance from the y coordinate of

the pivot center. Since the bearing surface is curved, this distance is not,

strictly speaking, constant along the bearing surface. However, in our area of

interest, the maximum ratio of crown height to slider length is of the order 10-3

and it is sufficiently accurate to assume that all shearing stresses act at

constant distance from the y pivot coordinate, thus simplifying subsequent moment

balance calculations.
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In order to perform the indicated integrations to obtain the frictional

force, the additional expectation function E(1/H) must be evaluated. In the pure

hydrodynamic region, this is, from (3),

E(I/H) = (35/32c7 ) I(c2 - h2)3 1 n {(H + c)/(h - c)}

+ (2/15)ch(15h 4 40c 2h2 + 33cA)

and, in the mixed region, the equivalent expression is

E(1/H) = 35/32c7 ) 0(c2 - h2)3 ln{(h + c)/(h - h*)} + (8h 3/3)(h + 0 3

-(1/6)(h + c) 6 -4(c - h2)h(h + c) 3

+ 6(c2 - h2)2 h(h + c) + 6(c - h2)h 2)(c + h 2 )

-(Q/6)(h + C)6 -4(c 2 - h2)h(h + c)3

-3h2(c + h) + (6/5)h(h + c)5 + (3/4)(c2 - h2)(h + c) 4

-(3/2)(c2 - h2)2(h + c)2J

The term h* in the above expression appears in order to prevent the

logarithmic term from becoming unbounded. Following Christensen, we set h - h* =

m8/1000 in subsequent calculations. Numerical experimentation shows that the

resulting solutions are not particularly sensitive to this assumption.
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111-5. Coefficient of Friction

The frictional force indicated above acts on the slider surface. The total

resiztance to motion is this force, plus the component of load acting in the plane

of rotacion. A precise determination of this second contribution would involve an

incei-ation of the components of load in the direction of rotation that act on

each elemept of the curved slider surface. Since, however, the radius of

curvature of the curved surface is many orders of magnitude greater than the

slider length, it is sufficiently accurate to write

Fr = F S + mw,

where Fr is the frictional force on the runner. Then the coefficient of friction

p is obtained by dividing Fr by the load; i.e.,

= F/w + m.

111-6. Homent Balance

Referring to Figure 2, it is seen by inspection that the condition that

satisfies zero unbalanced moments about the pivot center is

F5Y =(X~ -C ,w,or

C =X -(F /w)YP

(14)

where Xp, Yp are fixed by design, and Cp, Fs , and w are functions of speed, load,

etc. the term Fs/w is recognized from the above as a first approximation to the

friction coefficient which, for bearings operating in the pure hydrodynamic

regimes, is a number approximating 10- 3 . In classical formulations, the second

term is neglected. However, in the mixed regime, this simplification is not

generally justified, and thus will not be adopted in this study.

This completes the basic formulation of the problem.

97



,%

,'-COPY

IV COMPUTATION OF SPECIFIC BEARING PERFORMANCE

IV-1. The Inverse Problem

Discounting obvious embellishments required to accommodate mixed lubrication

and crowning considerations, the preceding analysis has followed the classical

approach to bearing performance; i.e., the Reynolds equation is integrated to

obtain the pressure distribution, which is then successively integrated to obtain

the load and pressure center. A parallel integration gives the frictional force.

Application of this approach depends upon practical assumptions regarding the mean

film height (or the film height ratio, which amounts to the same thing) and the

slider inclination angle. When this is done, the performance of a given bearing

may be determined. In particular, the load and pressure center of a bearing

operating under given conditions may be obtained from explicit relations (or, in

the more complex case treated here, by direct numerical integrations) that take

the form

w = w(a,m,U,q, dimensions, material properties)

C = Cp (a, m,U,q, dimensions, material properties)

where a and m are assumed known to reasonable approximation.

In the real situation, however, the pivot point is fixed by design, and the

load and speed are independent variables. As these vary (often simultaneously,

according to some speed-load schedule) the film height and inclination angle

automatically adjust to accommodate the new operating conditions; we may thus

think of a bearing as a computer that continuously solves the inverse problem

according to functional relations of the form

a = a(w, X P, U, etc.)

m = m(w, X, etc.)
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where X and w are specified.
p

*"- The method by which the bearing performs this inversion cannot be duplicated

by rational analysis. Thus, if a bearing's performance is to be determined across

a spectrum of operating conditions, it must be done by trial-and-error, using the

forward integration technique indicated above. It is evident that a dual

iteration must be performed on the variables a and m, which, when acting in proper

(and, one would hope, unique) combination, results in a correct load prediction,

and at the same time gives assurance that the dual moments about the pivot center

caused by load and friction will be effectively canceled.

"- Computational methods exist, of course, for dual iteration problems.

However, such schemes usually owe their success to the fact that the values sought

are single valued, and vary monotonically with the iteration variables.

Considering the sizeable number of variables in the present problem, there is no

assurance whatever that these conditions can always be met. It is clear that

physical insights, leading to "intelligent guesses," must be sought.

IV-2. Inverting the Plane Slider Bearing Problem

By way of illustrating the above considerations, as well as obtaining a

highly useful means of arriving at an intelligent first guess needed to expedite

the iteration process in the more complex case treated in this study, the plane

slider bearing problem is inverted; i.e., given the load, speed, dimensions,

viscosity, and pivot center, the problem is to obtain the inclination angle and

film height ratio, for the case of the smooth plane slider bearing.

To begin, the Reynolds equation is solved for the pressure distribution. The

result, expressed in partial fractions suitable for further integration, is:

99

- -'.?> ;?--- , / 3 ;i, .- ' '... ,.---- , J- . - ," " " " " " - , , , , -,...' o -. .



P() 6rIUB{ a I

which, when integrated on x between the limits 0, B, gives

W - PZU 2 In(a)-_ 2(a-1)

(a-1 2 (a + 1)1

With the help of (6), this may be rewritten

W 61ZU I1a)_2(a-I1)

Mn2  (a +1)

(15)

-6rzUg(a~m
2

(16)

The center of pressure is obtained by a second integration to yield

2a(a +2)n(a) - (5a +1) (a-I1)

=cp(a).

(17)

Now clearly, if it were possible to invert this last expression, yielding

a = a(c~)

then mn would immediately follow from (16), i.e.,

in = V6,? U 9a)/w.

(18)

Unfortunately, the transcendental form of (17) prohibits a direct inversion;

however, for reasons that are not readily apparent, an excellent correlation

formula, good to 1% of the exact prediction given by (17) in the range I < a <_

* is

P= .09191n(a) + .504

(19)

which is readily inverted to yield
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a = 10.88(c P- .504)j

(20)

Having now determined a, the value of m follows from (18), and h2 from (6). The

slider friction per unit bearing width is obtained from the expression

_UB 1 6 21n(a)
s h2 a + 1 (a - 1)

the runner friction is

Fr = F, + mw,

and the coefficient of friction is Fr/w. Thus, the problem is inverted. Note

that if the pivot coordinates are specified, it is possible to compute the actual

pressure center required to nullify the load and frictional moments. Then, with

the aid of (20), a new value of a is found, and the calculations are repeated.

Study shows that one, or at the most two, iterations is all that is required to

completely specify the frictional force, with full assurance that moment balance

is achieved.

There is an interesting extension to this development that bears directly on

the more complex cases being dealt with in this study. Returning to the

expression for the slider friction given above, then, with the help of (6), this

becomes

- 6(a-1) (a)=

(a+ 1)

and so the runner friction is

F r= f(a)+mw i? f(a)+6g(a) from(16).
r m Ml
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Thus the coefficient of friction is, again using (16),

p -m f (a) + 6g(a) I/6g(a) = mF(a).

(21)

The full solution for this problem, given the load, speed, viscosity, and

pivot center is thus

I2(a +1Uln(a) -3(a -1) 16U 2(aa)-1
1= 3(a+1ln(a) -6(a- 1) XAa (a+1)I

(22)

where a is obtained from the correlation formula

a - exp Il O.88(c p- .504)J,

(20)

and the minimum film height is

1/2

h2=mB = 1 6q1?U 2I na 2(a-1)
(a - ) w(a -1) a a+ 1

(6, 23)

Note that (22) may be written

1/2

(24)

expressing the well-known fact that the coefficient of friction is proportional to

the product of the speed and viscosity, divided by the load, all raised to the

one-half power. Once again, if moment balance is considered important, the above

relations offer a rapid iteration method.

IV-3 Effects of Mixed Lubrication

In the preceding development, a simple strategy emerged for determining the

friction coefficient while requiring moment balance. In the mixed lubrication

102

.zA-V *" V V **, * *- V, . - - .- . ,* • - . ' • . . .. . " V. . . .4 , , *,- - . ".. " .



regime, there is no hope of duplicating this since more variables are introduced,

and the equations do not admit closed form solutions. Thus, the problem of

finding both the inclination angle and the ratio of film heights that deliver a

given load, while assuring moment balance, is formidable.

But if we pause to consider that in general the primary interest is not so

much in the determination of these parameters for a given load, but rather a range

of loads, then the picture is somewhat brighter. In the pure hydrodynamic regime,

(6) shows that for a given bearing operating at a given speed, the inclination

angle and load exist in simple relationship. Thus, given the load, m is

established, but one could just as well specify m and compute the load that this

corresponds to. Therefore, in a numerical determination of bearing performance, a

reasonable approach seems to be one in which the inclination angle is successively

stepped, with film height iterations that produce moment balance being performed

at every step along the way. This is in fact the approach eventually adopted

after considerable experimentation with dual iteration schemes.

V NONDIMENSIONAL SYSTEM

In order to facilitate computations and to illuminate certain consequences of

mixed lubrication, it is convenient to normalize the relevant equations of motion.

To do this, we note that

ud d 2 d n
U = LIT,p A F/L ,x = L,E(Hn ) L,

where F, L indicate the dimensions of force and length.

Defining

x'= x/B, H' =H/h2, P'= ph / rUB, then

d/dx d/Bdx', and the Reynolds equation (2) becomes

d P EI, 3 6 dE(HI')

dx' & d' I dx'
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which is now fully nondimensional.

The macroscopic height expression (5) may be normalized on h2 and B to yield

h= h/h 2= a - [1a)I (1 + 4H'/m)x'- (4H'/m)x .21,

where H = HcB.

Likewise, all expectation functions can be normalized on h2, replacing c with

c'=c/h2 andh'=h/h2 . Then it follows that

E(Hn) = h2n E(H'n), where n is any integer.

Following this rationale, the load, given by (8) may be rewritten

w = PZU 2/h [ i + 2rp'dx' + (p h2 / UB 2) (1 - r)dx' + p'dx'
1 rI  ' 2

since r' = r from above.

The nondimensional shear stress t' = th2/qU comes from (11) and is given by

r- E(IH') + 1/2(dp'/dx1)E(H')

and the force on the slider is therefore written
1. 1 1'2 1 'd

FS = q UBh 2 f 1'd' + 2 rdx' + (oh jUB) (2- r)dx' +

1 1 2

With this nondimensionalization, it is possible to generalize and thereby

greatly facilitate numerical integration of the above equation.

Another result of this development is the indication that bearing performance

cannot be predicted by the simple relationship given by (24) in the mixed regime,

owning to the introduction of the new parameters py and o.

VI COMPUTATIONAL SCHEME

On the basis of the foregoing, a computer program was developed in the BASIC

language for use on an interactive system such as the Tektronics 4052. The inputs

required are the bearing dimensions, rotational speed, asperity and crown heights,

the bearing material properties, and the pivot coordinates, all in the dimensions
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indicated in the program. The program then calculates a reasonable first

approximation to the value of a (= hl/h2) and a slope m, based on rationale

previously presented. The equations are then successively integrated to obtain

the friction and pressure moments. If the net unbalanced moment is greater than

the load multiplied by one-tenth of one percent of the bearing length, a new value

of a is tried, calculated from a "hunting" routine, and the process repeated until

the moment balance criterion is met. Regarding the adoption of this criterion, it

is noted that this particular standard appeared to represent the best compromise

between reasonable moment balance and iteration time, which can be quite lengthy,

especially in the mixed regime.

When the moment balance criterion has been met, the operator then receives a

listing of pertinent bearing parameters such as the load and friction forces

(broken down into contributions from pure hydrodynamic, mixed hydrodynamic, and

asperity contact forces), the shear and pressure moments, and so on. The operator

may then select a new slope, and the process is then repeated,. Operators who

wish to change the initial inputs may access this routine by inputting a zero

slope. Instructions are given throughout the program to assist the operator in

selecting workable combinations. For example, if zero crown height is selected,

and the pivot center is specified to lie at the midpoint of the bearing, the

operator will be informed that this is an unworkable combination of parameters,

and will be given the opportunity to try new, workable combinations.

As shown in Ref. 2, and borne out in this study, certain regions of crowned

bearing operations lead to negative (gauge) pressures at some points on the slider

face, which may in some applications result in cavitation, thus altering the

pressure distribution. It was not, however, possible to pursue this aspect within
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the scope of this study, and so it was decided to merely alert the operator to

this possibility when negative pressures appear through the statement, "Bearing

may cavitate." When this statement appears, the operator should exercise some

caution in applying the results.

The requirement for continuous slope information requires continuous inputs

from the operator. In an earlier version of this program, the slope was stepped

successively through the program, but it was found that very small changes in

slope bring about quite large variations in load and friction coefficient in the

transition regime between pure hydrodynamic and mixed lubrication, and this scheme

had to be abandoned because too much information was being "lost" with this

routine.

As a matter of information to operators, it is noted that the program

"remembers" the value of a that was found by iteration in a previous run, and uses

this as the first estimate for the next run. Therefore, iterations are minimized

if the operator takes relatively small "bites" in specifying new slopes. That is,

the larger the increment in m for each succeeding run, the greater the number of

iterations will be required.

A complete program listing is given in Appendix I.

VII APPLICATION OF RESULTS

To illustrate the use of this effort, a bearing pad presently under study by

the David W. Taylor Naval Research and Development Center was used as a prototype.

The general characteristics of this slider are:

"* B = 5.87cm (2.31 in.), mean diameter = 13.2cm (5.2 in.), q = 4.13 poise (6 x 10- 6

reyns), py = 1.22 x 108 N/m2 (18,000 psi), 0/Py = 0.2, xp 0.5, yp = 0.3.
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I ./

With these fixed inputs, several cases of asperity height, crown heights, and

-\ rotational speeds were chosen for study. These are summarized in the following

table:

Case H1c c RPM

I 0.0002 in. 0.0002 in. 35

II 0.0002 in. 0.0001 in. 35

III 0.0002 in. 0.0002 in. 20

IV 0.0002 in. 0.0002 in. 50

Figure 3 shows the effect of asperity height. Characteristic of this class

of problems, extremely small dimensional changes, as compared with the macroscopic

. dimensions of the bearing pad, lead to significant differences in the performance

characteristic. This is reinforced in Figure 4, which shows the ratio of film

heights plotted against the speed-load parameter.

.4 Figure 5 shows the "nonsimilarity" of solutions in the mixed lubrication

regime, as discussed in Section V. Finally, Figure 6 shows the level of agreement

between the calculated values of shear and pressure moments, as discussed in

Section VI. Here, it can be seen that the level of agreement increases at the

higher loads, coresponding to the moments developed in the mixed regime, where

such agreement is most important.

Many similar cases were explored during the course of this study, leading to

the same essential conclusions. It is emphasized that the utility of this study

cannot be realized without the aid of a computer, which allows a plethora of such

e* examples to be considered.
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* VIII SUMMARY

NThis study represents an extension of prior work by adapting the stochastic

model of mixed lubrication due to Christensen to the problem of the curved slider

bearing treated by Abramovitz. As a further refinement, the bearing pad is left

free to seek the combination of parameters that causes the dual moments due to

load and friction to balance, within a narrow margin. The results are presented

in the form of an interactive computer program which offers the operator a wide

range of parametric authority in the design or analysis of a family of roughened,

• crowned, tilt pad bearings.

As Christensen points out, no allowance is made for wear of the asperity

contacts in the mixed regime, which almost certainly would exist to some greater

or lesser extent in the real situation. The major consequence of this restriction

is probably an overly-pessimistic prediction of the friction coefficient at the

-* higher loads. Thus, the error introduced by this assumption is on the side of

-conservatism.

It may also be noted that the crown height and viscosity are considered

constant in this model (although they may easily be changed from one run to

* another) whereas in the real situation they are also most probably time-dependent

due to thermal effects. This effect cannot be accounted for, of course, unless

- heat transfer is introduced into the present model. This would seem to be the

logical next extension of the present work.
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COPY

100 PRINT "DO YOU WANT AN EXPLANATION OF THIS PROGRAM?"
110 INPUTP$
120 IF SEG$ (P$, 1, 1) ="Y" THEN 3120
210 PRINT "INPUT RPM"
220 INPUT U 1
230 PRINT "INPUT MEAN BEARING SURFACE DIAMETER, INCHES"
240 INPUT KI
250 PRINT "INPUT VISCOSITY, REYNS X 1E6"
260 INPUT M2
270 M2=M2*IE-6
280 PRINT "INPUT SHOE LENGTH, INCHES"
290 INPUT B
300 PRINT "INPUT ASPERITY HEIGHT, INCHES"
310 INPUTC2
320 PRINT "INPUT YIELD BEARING STRESS, PSI X IE-3"
330 INPUT P8
340 P8=P8*1E3
350 PRINT "INPUT RATIO OF SHEAR TO YIELD STRESS"
360 INPUT M3
370 PRINT "INPUT CROWN HEIGHT, INCHES"
380 INPUT H4
390 PRINT "INPUT PIVOT CENTER, X, Y, FRACTION OF SHOE LENGTH"
400 INPUT P2, P3
410 U2=Ul*(3. 1416/60)*K1
440
450 K5=0
460 A= 0042*EXP(10.88*P2)
470 A=A+(H4/B)* 1E4
480 IFA>I THEN 500
490 A= 1. 001
500 ZI =. 005
510 M5=. 00025*(P2 +.5)
520 K9=0
530 K8=0
540 N8=0
560 K7=0
570 PRINT
580 L1=0
590 16=0
600 17=0
605 X4=0
606 X5=0
610 18=0
620 J1=0
630 J6=0
640 J7=0
650 J8=0
660 N9=0
670 11=0
680 12=0
690 13=0
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700 14=0
704 X4=0
705 X4=0

*710 T1=O
* 720 T2=0

730 T3=0
740 H2=M5*B/(A-1)
750 M6 =H2/B
760 H7=H4IB
796 X5=0

* 810 G=PS*M6^2d(M2*U2)
820 H = G*M3/M6
830 Ml = M5*B/1000
840 M1= M1I/H2
850 FOR X = ZTOI STEP Z1

*860 F = H4H2
870 Fl = A + (I-A)*((l + 4*H4/(M5*B))*X(4H4/(M5*B))*X 2)
880 CI=C2tH2
890 IF Cl/F1 <1ITHENX1000
900 N1=(C1^8)/8 +(16/35)Cl*(CP^6)*Fl+ 5*Fl*(C1^6)*Fl
910 Nl=NI -(.25)*(Cl*Fl)^4+ (ClV2)*(FU^6)l.( 8)/56
920 N1=NI*35/(32*C1'7)
930 D2=(CV^1)/40 +(16/105)*F*CV^9 +(3/8)*(CV'8)*(FV^2)
940 D2=D2+(16t35)*(C1^7)*F173
950 D2 = D2 + .25*(Cl 6)*F1 4 - (1/20)*Cl ^4*F1A6 + 3/280
960 D2 =D2-3/280 + (3/280)*(C 1 2)*(FI 8).(1/840)*(FI 10)
970 D2=35*D2/(32*C177)
980 DI=D2/NI

*990 GO TO 1020
1000 Dl=FI'(Flt2+CI T2/3)
1010 D2= FI*DI
1020 11=11+ Z1/Dl)
1030 12=12+Z1/(D2)
1040 NEXT X

*1050 C=I1/12
1060 FOR X =ZITO1ISTEP ZI
1070 Fl = A+ (l-A)*((l + 4*H4/(M5*B))*X-(4*H4/(M5*B))*X^2)

*1080 Cl=C2/H2
1090 IF C1/F1 < THEN 1460
1100 L1=L1+ZI
1110 N9=N9+1
1120 X4=X+Zl(-N9)

* 1130 Ri =(I(32*C1 ^7))*(16*Cl ^7 + 35*(Cl ̂ 6)*F135(CV4)*F1 3)
1140 RI = RI + (1/(32C1 7))*(21*(C1 2)*F1 5 -5*F1 ^7)
1150 16=16+(1-R1)*ZI
1160 J6=J6+(.Rl)*X*ZI
1170 NI = (Cl ^8)/8+ (16/35)*(CI ^7)*F1 + .5*(C I 6)*(F1 ^2)
1180 Ni = NI- .25*(C1 4)'FI4 +. .1*(C1 2)*(F1 6).(l/56)*(FI) 8
1190 N1=35*N1/(32*Cl^7)
1200 D2 =(Cl -10)/40+ (16/105)*(Cl 9)*FI + (3/8)*(C1 8)*FI 2

*1210 D2= D2+ (16135)*(C1 7)*(FI 3)+. 25*(C1 6)*FI 4
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1220 D2 =D2-.05*(C1'4)*(F1 '6) + (31280)*(C1 -2)*(F1 '8)-(1/840)*(Fl '10)
1230 D2= 35*D2/(32*Cl'7)
1240 DI =D2IN1I
1250 N3=((Cl '2-Fl '2)'3)*LOG((Fl +01)/MI) +(8*FI '3/3)*(F1 tCl)'3
1260 N3= N3-(1/6)*F1 +Cl)6-4*(C1 '2-Fl '2)*Fl*(Cl +Fl)^3
1270 N3= N3+6*(Cl '2-Fl '2)'2*FP*(FI +01)+6*(C1 '2-Fl '2)*F1 '2*(C + FI)'2

* 1280 N3= N3-3*(Fl '2)*(C + F1)'4+ (6/5)*Fl*(C + F1)'5
1290 N3=N3+I(3/4)*(Cl'2.F1'2)*((F1 +C1)'4)
1300 N3= N3-(3/2)*(C1 '2-Fl '2)*(C1 '2-Fl '2)*(F1 +C1)'2
1310 N3=N3*(35/(32*C1'7))

* 1320 Ti =T + R1*Z1*(N3+ 3*N1*(N1.C)/D2)
1330 13=I3+Z1/Dl
1340 14=14+Z1/D2
1350 Q=13.C*I4
1360 IFQ>-1E-4THEN 1410
1370 N8=N8+1
1410 Q=Q*6
1420 17=17+Q*Zl*Rl
1430 J7=Q*Z1*R1*X+J7
1440 X5=X
1450 GO TO 1710
1460 D1=FI *(FI t2 + Ct223)
1470 D2= D1*F1
1480 N1=F1
1520 IF ClI< IE-3 THEN 1570
1521 IF Fl>0THEN 1530
1522 PRINT "YOU WILL HAVE TO INCREASE SLOPE FOR A SOLUTION"
1523 GOTO 2506
1530 N3 =((CI'^2F1'^2)'3)*LOG((F + C1)/(F1.CI))
1540 N3= N3+ (2/15)*(CI*F1)*(15*F1 '4.40*(CI*FI)'2+ 33*01 '4)
1550 N3=N3*(35/(37*C1'7))
1560 GO TO 1580
1570 N3 = 1/Fl
1580 13=13+Zl/(Dl)
1590 14=14 +Z1I(D2)
1600 Q=13.C*14
1610 IF Q>-IE-4 THEN 1660
1620 N8=1I

41660 LETQ=Q*6
1670 N3 = 1/Fl
1680 T2=T2+(3*N1*(NI-C)/D2+ N3)*Z1
1690 18=18+Zl*Q

*1700 J8=J8+Z1*Q*X
1710 NEXT X
1720 W =17 +18 +G*16
1730 WI = W*U2*M2/M6'2
1740 W2 =17*U2*M2/M6*2
1750 W3=[8*U2*M2/M6^2
1760 W4=G16*U2*M2/M6 2
1780 T3 =T + T2 +16*H
1790 T5=T2*U2*M2/M6

119



1800 T6=TI*U2*M2/M6
1810 T7=16*H*U2*M2/M6
1820 T4=T3*U2*M2/M6
1830 U3=U2*M2/W1
1840 IF U3>0THEN 1860
1850 GO TO 1990
1860 R3=(T4/W1)/(U3^.5)
1870 M=J7+J8+J6*G
1880 P1 = M/W
1890 M8=WI*(PI-P2)+T4*P3
1900 IF ABS(M8/WI)<. 001 THEN 2150
1910 IF M8>0 THEN 2030
1920 A=A*(1 +.1/(1 + K8))°5
1930 K7=K7+1
1940 IF K7>40 THEN 2505
1950 IF K7< 15THEN 1970
1960 K7= 1.5
1970 IF P1 >0 THEN 2000
1990 GO TO 1522
2000 K9= K9+1
2010 K5=K5+1
2020 GO TO 570
2030 A = A*(1-. I/(1 + K7))^ .5
2031 IF A> I TH EN 2040
2032 PRINT "YOU WILL HAVE TO DECREASE SLOPE FOR A SOLUTION"
2033 A=2
2034 PRINT "CURRENT SLOPE =";M5
2035 GO TO 2506
2040 K8=K8+ 1
2050 IF K8>30 THEN 2505
2060 IF K8< 15 THEN 2080
2070 K8= 1.5
2080 IF PI >OTI[EN 2110
2100 GO TO 1522
2110 K9=K9+1
2120 K5=K5+1
2130 IF K9>30 THEN 2505
2140 GO TO 570
2150 PRINT "SLOPE =M"; M;"PIVOT =";P2;",";P3
2160 PRINT
2170 PRINT "CENT. PRESS= "; PI
2180 PRINT "PURE HYDRO LOAD-"; W3/B
2190 PRINT "MIXED HYDRO LOAD-"; W2/B; "PSI"
2200 PRINT "CONTACT LOAD= "; W4/B; " PSI"
2210 PRINT "TOT. LOAD=-": WI/B;" PSI"
2220 PRINT "PURE HYDRO FRICT =":T5/B; "PSI"
2230 PRINT "MIXED HYDRO FRICT = "; T6/B;" PSI"
2240 PRINT "CONTACT FRICT. = ", T7/B " PSI"
2250 PRINT "TOT. FRICT = "; T4/B; "PSI"
2260 PRINT "U-ETA/W = "; U3
2270 PRINT "COEF. OF FRICTION = "; T4/WI + M5
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COPY

2280 PRINT"SHOE SPEED ="; U2; "IN/S"
2290 PRINT "PRESS. MOM. ="; WI*B*(PI-P2)/12; "FT LB/IN"
2300 PRINT "SHEAR MOM. ="; T4*P3*B /12; "FT-LB/IN"
2310 PRINT "H I/H2 RATIO="; A
2320 PRINT"H2 ="; H2
2330 PRINT "C/H2"; Cl
2340 PRINT "ABRAMOVITZ'S PHI ="; F
2350 PRINT
2360 PRINT "NO. ITERATIONS="; K9
2361 IF N8< .5 THEN 2370
2362 PRINT "BEARING MAY CAVITATE"
2370 PRINT
2380 IF X4= 0 THEN 2410
2390 PRINT "MIXED LUBRICATION BETWEEN"; X4*100; "AND"; (X5+. 00001)*100; "%"

2400 GO TO 2420
2410 PRINT "NO MIXED LUBRICATION"
2420 PRINT
2505 PRINT "FOR HIGHER LOAD, DECREASE SLOPE, AND VICE-VERSA"
2506 PRINT "NEW SLOPE? (INPUT ZERO TO END THIS SEQUENCE)"
2507 INPUT M5

" 2508 IF M5 < 1E-6 THEN 2560
2510 GO TO 520
2560 PRINT "TOTAL ITERATIONS THIS RUN "; K5
2570 PRINT "CURRENT VALUES: RPM="; UI;"DIA="; KI;"IN., VISCOSITY="; M2;"REYNS,
2580 PRINT "LENGTH = "; B; "IN."; "ASP HEIGHT ="; C2; "IN., YIELD STRESS = "; P8
2590 PRINT "RATIO, SHEAR/YIELD= "; M3; "CROWN HEIGHT ="; H4; "IN."
2600 PRINT "PIVOT CENTER= "; P2;", ";P3
2610 PRINT "DO YOU WANT TO CHANGE A PARAMETER AND RERUN?"
2620 INUT E$
2630 IF SEG$ (E$, 1, 1) = "Y" THEN 2670
2640 IF SEG$ (E$, 1, 1)="N" THEN 3370
2650 PRINT "INCORRECT RESPONSE, ANSWER YES OR NO"
2660 GO TO 2620
2670 PRINT "NEW PARAMETER?"
2680 INPUT D$
2690 IFSEG$(D$, 1, 2) = "RP" THEN 2820
2700 IF SEG$ (D$, 1, 1)="D" THEN 2850
2710 IF SEG$ (D$, 1, 1)="V"THEN 2880
2720 IFSEG$(D$, 1, 1)="L"THEN 2920
2730 IF SEG$ (D$, 1, 1)="A" THEN 2950
2740 IFSEG$(D$, 1, 1)="Y"THEN 2980
2750 IF SEG$ (D$, 1,2) = "RA" THEN 3020
2760 IFSEG$(D$, 1, 1)="C"THEN 3050
2770 IF SEG$ (D$, 1, 1)="P" THEN 3080
2780 IF SEG$ (D$, 1,2) = "RU" THEN 410
2790 PRINT "OPTIONS ARE RPM, DIAMETER, VISCOSITY, LENGTH, ASPERITY,"
2800 PRINT "YIELD, RATIO, CROWN, PIVOT, RUN"
2810 GO TO 2670
2820 PRINT"NEW RPM?"
2830 INPUTUI
2840 GO TO 2670
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2850 PRINT "NEW DIAMETER, INCHES?"
2860 INPUT K1
2870 GO TO 2670
2880 PRINT "NEW VISCOSITY, REYNS X IE6?"
2890 INPUTM2
2900 M2=M2*IE-6
2910 GO TO 2670
2920 PRINT "NEW LENGTH, INCHES?"
2930 INPUT B
2940 GO TO 2670
2950 PRINT "NEW ASPERITY HEIGHT, IN.?"
2960 INPUT C2
2970 GO TO 2670
2980 PRINT "NEW YIELD STRESS, PSI X IE-3?"
2990 INPUTP8
3000 P8=P8*IE3
3010 GO TO 2670
3020 PRINT "NEW RATIO, SHEAR/YEILD?"
3030 INPUT M3
3040 GO TO 2670
3050 PRINT "NEW CROWN HEIGHT, INCHES?"
3060 INPUT H4
3070 GO TO 2670
3080 PRINT "NEW PIVOT CENTER, X, Y, FRACTION OF SHOE LENGTH?"
3090 INPUT P2,P3
3100 GO TO 2670
3120 PRINT
3130 PRINT "'THIS PROGAM WILL CALCULATE THE PERFORMANCE CHARACTERISTICS"
3140 PRINT "FOR A CROWNED SLIDER BEARING OPERATING IN THE MIXED"
3150 PRINT "LUBRICATION REGIME. THE INPUTS REQUIRED ARE THE ROTATIONAL"
3160 PRINT "SPEED, THE SHOE LENGTH, THE VISOCITY OF THE LUBRICANT,"
3170 PRINT "THE MEAN BEARING SURFACE DIAMETER, THE ROUGHNESS ASPERITY"

-. 3180 PRINT "HEIGHT, THE BEARING YIELD STRESS, THE RATIO OF THE SHEAR"
3190 PRINT "STRESS TO YIELD STRESS, THE CROWN HEIGHT, AND THE PIVOT"
3200 PRINT "COORDINATES, MEASURED FROM THE LEADING EDGE OF THE SIIOE,"
3210 PRINT "AND EXPRESSED IN FRACTION OF SHOE LENGTH. ALL OTHER"

.' 3220 PRINT "DIMENSIONS ARE INDICATED IN APPROPRIATE INPUT STATEMENTS"
3230 PRINT
3240 PRINT "AT THE END OF EACH RUN, ANY OF THE ABOVE PARAMETERS MAY BE"
3250 PRINT "CHANGE FOR A RERUN. DURING EACH RUN, THE OPERATOR"
3260 PRINT "WILL OBTAIN A TABULATION OF THE SPEED-LOAD PARAMETER"
3270 PRINT "(SHOE SPEED X VISCOSITY/(BEARING PRESSURE X LENGTH)"
3280 PRINT"VERSUS COEFFICIENT OF FRICTION AND THE RATIO OF LEADING"
3290 PRINT "AND TRAILING EDGE HEIGHTS."
3300 PRINT
3310 PRINT "THE OPERATOR WILL BE ADVISED IF HE HAS SELECTED AN"
3320 PRINT "UNWORKABLE COMBINATION OF PARAMETERS. NORMALLY, CROWN"
3330 PRINT "HEIGHT/SHOE LENGTH RATIOS GREATER THAN 0. 0001 WILL LEAD"
3340 PRINT "TO BEARING INTERFERENCE, DEPENDING ON THE PIVOT POINT."
3350 PRINT
3360 GOTO210
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3370 PRINT "PROGRAM TERMINATED"
3380 END
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APPENDIX B

INTEGRALS FOR CIRCUMFERENTIAL AND AXIAL COMPUTATION

Integral formula is to be developed for

k d,
A k  H(4 o H(+ b; = ,4/

(B-i)

First, special characteristics of the second order polynomial will be considered.

(i) Degenerate Constant b I = b2 = 0

k+I
A k (4)- (k + 1) b3

0

(B-2)

(ii) Degenerate Linear Function b2 = 0, b I  0
2

= _ 2bH

(B-3)

A () b _ bl"-- + b0A0

(B-4)

(iii) General Case (bl,b 2 ) ; 0

Write

A2 = b 2_ 2 bb 2
(B-5)

Lhen

H= (b2 4 +b)2 2}/(2 b

(B-6)

H A b24+ b- A  b2 4+ b, +A

(B-7)

(b2 4+ b -A

d41Hi 1n b&-b4Al

(B-8)
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H -2 (b A ' I ) 2 12++,)
(b +b,- {(b2.+ b,) -Al (b24+±b1+)

( X21 __ 2 1 -(b) (624+f b,~j (44+ l+I b H

2 b24 + b, bf

- A 2  j2JLUS(B-9)

H3 
(L13f 6k 1A

(624AI b, 0 b2 b'2 A2
1
2  

(b4 I-A

(b A) 1-- A 3(j+6) I ( 2 + 1 A

3 -2-21(b2 +b, )3 (b24+ b, +A) 2 2611

_ (b24 + 61) 3 bf
AO4)2 2 2 2 H-d4

(B-10)

A W ~~(b 1 A 42 26 H2
2 2

(B-11)

In the event that b, 2b~b2 < 0, instead of Equation (B-5), write

V 2 = - A 2 b o b - b( 
B - 1 2 )

Theni Equation khi-8) can be rewritten as

H-1d4= (2/y) tan {y/(b24+ bI)}

(B-13)
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APPENDIX C

INTEGRALS FOR RADIAL COMPUTATION

Integral formula is to be developed for

(B,+ ;oH % co+ c, + I c2 2

Bk4 ~ I(4+4 )H 0 2

(c-i)

(i) Degenerate Constant c1 = c 2 = 0

B - ln(4 + )
3 0

(C-2)

. B1 (4) 3 [4- 4In(4 - 4)
Co

(C-3)

(ii) Degenerate Linear Function c2  0, c1 +0

1 - 1 cI  + - ;whereH =c -c

(4 + 4 )H 3  (4 + 4)H 3  H 3H H 2 2 HiH3 0 0

00 0 0 0

(C-4)

B 1 In( -- + + + 2 !

H H H 2 H 2 HH 2

(C-5)

(C-6)

H= ( (c24 + _ ,2_ A H = H(-4 0 ).2c 2  '

(c-7)
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1 ° ' 2 ' } -H o =C -A C24+C+

(C-8)

"+ 4)H H o(4 ) + A (c2 . -+ c +) (c2 4 + c ) (c2 4- c + A)(C2 4 + cl + A)

J d4

(, + + 0

~~(4+4)(2 10 cI 2 +C

•H In" =H In C2- + In+

0(c Ao Cll ) (c2 I - c24-i ) n 2 1-

(c-9)
2

H ( ) =,: ,)'.- , , . (C2 4 + C , + 1)2(C2 4 + C1 A)2  I

1 (~C2~2

(4+4 +)H A 2
24 1 (c 4'C± 2  l V+ 0 ) (C2 4 -C ±A(4 + )

[C2 4 +c~ C,2 T2 ti2 (4C24 + (c4c1 (;7

(4+4 )fI c 1( 4+ 0 C24 + AT C 4 2
A C 4+C -1

(4+4(2A? + 2

A H

C2 ( d4

A (401
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~3

3(c4+ C- 1 22lH -CA, A3 2 H 3

2 + 1 A2 1

(4+ (H3 At o (4 + - 40¢ )3 (C2 -- C l 3 + C2 4 + C1 + A)3 2 2t V o 2

0 1
= (C 2 ~ ~C1 ±A.)3C 2 1 A

(44 2 ) A(C24 + C~'C 4
) (C2 4 C2 ±. (C2+c +2010

+ ± A 2 (C2 + --2 4 c) 1±C 2 c + A2 2 + 2F~~
80( In-1 n __4H0H2 2A 2  H2A 3H + A)

0 C C2

A H H H )0 0

___ o~o _( (C- I i( , .
B -40 0 ( 2  + ( 3 C2 j c2 + C2 In(C2 +C A1 a A.2 2 \2)l A.2! 3 n c2 4 + c1 + A.)

(c-12)

If A2  _y2 < 0, then both X and In [(c2 4+c,-.)I(c 2 ,+c,-.A) ] would be imaginar,

However

1 (C 2 4 + c1 -Ay-In t.i - -- an -
C2 + +c1 + AC. + C 1

(C-13)

remains real and should be used in computing Equations (C-9), (C-l0), (C-l) and
(C-12).
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DTNSRDC ISSUES THREE TYPES OF REPORTS

1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECH-
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