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Abstract. The problem of computing the vairlance of a momple of N data points (ti) UM( be
difficult for certain data sets, particularly when N Is large and the variance Is Salli. We present
a survey of possible algorithms ad their round-off error bound*, Including some new analysis
for computations with shifted data. Experimental results confirm these bounds and Illustrate the
dangers of some algorithms. Specific recommendations are made as to which algorithm should be
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Tb. problem or computing the vwanc.. Ora ample at N Pdapt ff.,) Inis WMem ss
at List glancep to be almost trivial but can Is fact be quite Aftmik particularly when N be lar
and the variance is small. The fuandamsata cakuatisa s@" ef comput the.. sam of Sq
at the deviations from the mean,

N

The sample variance is then S/N or SI(N - 1) depeadlng es the sppflcatien. Tie frmula (1.1)
define a straightforward algorithm for gomputing S. TiU Mil be aed the ataadard tgwpam
algorkith, ince It requires pessing through the da" go!c Once tq compute g and them again to

* ~compute S. This may be undesirable, In any applications, for mample when the dat ample is
too large to be stored In main memory si when the variance is to be calculated dynamically sa the
data Is collected.

bn order to avoid the two-pam Jmatur of (1.1), It la standard practice to manipulate the
* definition of S Into the form

* ~This form Is frequently suggested in statistia tmthee and will be caed the iut book eo-wpm
algorithm. Unfortunately, although (1.2) Is mathematically equlvast to (1.1) nuumealy it cn
be disastrous. The quantitles 4 and MEsJ aMY be vey large In practice, and will generally

* ~be computed with some rounding eror. If the varlance b Una, thes numbers should cance out
- -almost completely In the subtraction of (1.2). bMany (or all1) of the correctly compute digits Will

cancel, leaving a computed S with a possibly unce taherlative error. The computed S an
even be negative, a blessing In disguise ine thi at last alerts the programmer that disatrous
cancellation has occured.

To avoid these dlfficulUese severa alternative onepm algorithms have been introduced. These
Include thc updating algorithms of Younp and Cramerllij, Walrord[1oJ, wWestil, lanoso)1, and
Cotton 15), and the pairwie. algorithm or the present authorsl2l. In describing these algorithm we
will.s the notation Tdj and A14. to denote the mum and the mans of the data points x, through
zi respectively,

and S.2 to denote the m ofsuae

For competing an mnwsighted mum of squares, a we consider here, the algorithms of Welford, West
and Hawsn are virtually Identical and are based on the updating fr=ma

MwWjl- + ( - ;Miai.t!-'L1) (1.4)

Ow M Ow- + XJ-M'



withbMaj xiE3 and S.1u0. Thederd valv of Is UU Wtyeobtainedas am. The
updating f~nmulas of Youngs and Cramer ane smilar.

Sh4 - Baja + exTd) (141)

with Tj,, - z and S,.1 =-0. These two algerithmns bane similar numerical behavior and awe
more stable than the textbook algorithm. Note, Is particular, that with both of these algorithm
S = Sj, Is computed as thoes of monmogative quatities. Cotton's update Is s owe stable
than the textbook algorithm and should not be used (mimi18).

The updating formulas (1.4) can be gsneraflued to allow as to combine two iaples or arbitrary

size. Suppose we have two samples (2r1 and= M we knWW

-~ ~ ~ 5 Tr- +1 00"~mg M4

81.t xi- IT,.)', 5..g,4~s - (x (

Then, if we combine all of the data Into a sample of isew + vn have

*Whnma this reducesto

Slimg - 1Ba + Bm6+a1sW + 1 (T4m -T.,s.).()

* ~This formula form. the bao athW pelrwbe algrithm The peirwise summakio algorithm for
* ~computing the sum of N numbes. le sWa known ad m be descuibed recursiv*l by sAting that
* T,.,, @hall be computed as

* *. with each of the sme on the righ hand side computed In a silar manner. Formula (1.6)
deasns the analogous pairwise algorithm for computing the variance. This can be Implemented
in a one-pams manner using only O(log N) nternal&stoap locations s discussed In [21 and also
by NashmIl. All logarithms In this paper arn base 2. It can eaily be shown that the use of the~
pairwise summation algorithm reduce relative wtri In Tm from 0(N) to 0(log N) as N -. o.

* The pairwis variance algorithm cn be mpeted to have the mue advantage, as le conirmend

Incidontally, peirwise summation can be sed In Implemnenting (1.1) (both In computing a and
In nforming8) or (1) vth dmW arb its

Other devices ca als be usod to Increns the accuracy at the computed B. For data vt a
* large mPan value 3, agperience has ibmw that substantial galns In accuracy can be achieved by

shifting All of th data by sum approximation to 2 beore attempting to compute B. Even a crude



estimate of a ca yield dramatic Inwuml i a y we wed &eA rir bo a
algorithm In order to first astmate IL This Is dlsumad Is dsal h mudi. &. Nensor who tSe
A it muthe computed mean, and the togtboh Agertmn (13) inb e applied to.d lth ed degt
"a obteans the seiued Owspo aber~tI

Re the first term is simply the Unpmsa algoitm P.U4 The mmd term *ald bean, In
eat computation, but In practice bs a goad all Afutium to she armo b the be tern No"e

that in this tase use of the tetbook algoritm des "e lhad to aerplk medlatlsm, idam
the correction is generally much smaler tha the "M tem. Thi alsiliha im *At peated out
to the authors by ProtfmsrkA Nkckelj who mned this eaffeellon term based oftul em the
error analysis of the two-pasi algurithmIS]. An aftemar (sad mp o e) am smair Is dives
in section 3.

Initially algorithms lor competing the "dlam"s We j I d* milym the bai of Mpicael
studiwe(,3,(111. More recently rigoeur er hose have bm oibtand for mow algi-thms),
(t], (41. Our aim hete is to p -- -at a muilled anr at ofer amllym fe the abovemneed al-
gorithims and techniques& Some of tisb material is bieved bo be mew, partiuarly the himudgpdon
into the eets of shifing the dAa Darned on this aarvW, apsclhe usmmd Tie wil ho mde

n owhich algorithm should be Wed In Vwklmeesttab

3. Condition numbes aind wiss amds

Chan and Lewlsj41 frst derived the mdea ion sr, 4, of a smple (Ed) (with respect to
computing the variance). This condition mumber maesi. the sasidtt of S for the Oven dat
set. If relative errors oridse 'y are Introduced late the aj, them the relative chapg In S is hounde
by a-. Chan andLews awd this tobe tup to o(?). inactlisst bA y teas owiby
van NesMS. Physical data almost alwareps i.e - ucitat In Kt and this uscertainty will bo
magnified by the factor x In S. If aehag es, arros wre introduced In representing the dat on
the computer,and so avalue ofl8computedesoaomputer with machine accuracy SMaYhave
relative errors an large as xv regardless of what Algorithm le ad. This value v a be used S a
yardstick by which to Judge the wearacy of the various algrthwn, seialy since error hounds

cm otenhe derived which are fenctimas solely of a, a. and N.
Itfwedefinethe 2-norm of thedatb7

then the condition number for this problem bs gin. by

When 8 Is small and 2 le not close to Derewe obtain the use0ful *ppcinlMAtio

a SW EVON (for S small, I monsero)(3)

which is tho mea divided byr the standaird deviation. We alway. have a 1, and In many
aituations a is Very large.



Table 2.1 showm thme &@XmptoUc error W~as for the Igsritizm 11- ed Than ane bosteds
on the relative erro I(S - S)ISt la the computed value 3.Snad assistant Minddpm ha" bm
dropped, ror clarity. Ifigher orda erms hav abo hem rOpped, but the ta srw dmndae
the eo bounds wheneve thme relative ertor hImn tha I. The bounds for the Sawtboe& algorlib
and Wast's updating awe derived by Chn sad lawle(t]. The fto-pmn error boand hAmg Ohe
NO x9%2 term (which can dominate In practic) Is derived Is 121. Desinds for these alsrltins wng

pirwime sumation can be round elmilarly. The puirse vailasce lgorlthm, boond Is a cooJecture
based em thme form of the error bound for Yousp and Cramner updating and atporimentel result.
The error analysis for the corrected two-pan algorithmn h lve In esetLee3

Graph* of then. bounds are shown In Figures .through 2. along with - merlmemoital
results. Bacb plot has a en the aimed.., and the relative -evror In 8 es the ordinate. The love cum
in each figure show theerror boundr N 4, tbupper cmfar N =49. Theumomcal
experiments were pertermed on an 3M 3061 computer at the Stanord Lbew Accelertor Cemter.
The data used was provided by a normal random number gserater with mean I aid a varity of
different varian 1 2: al 10-12. Forth"seke of the mn, a aw1/v (e (2)). Inasch
case the results have been averaged over 20 runs& Sigle praelden wued In all of the toos,
with machine accuracy v so A x 10-T. The cerect amnew for wein computing the error was

* calculated In double precision. The resulting aor a an deoted Is the Agures by the uMabols +
(for N =64) and X (for N 4M).

Tme mperimental results confirm the general f1orm of the error bounds given In Table 2.
In particular the graphs for the two-pass algorithms abow how the higher erder team (such Ms
N'a'u2) begin to dominate the arror at fairly modest values of a.

Table 2.1. Error bounds for the relative error Ito' In the computed valuek3 Only the dominant
* terms are shown, and small constant factors have be. ppiMe for Clarity.

1. textbook Nx'.
2. textbook with pairwise summation aOulogN
3. two-pmn No + WOO.
4. two-pan with pahirws summation u log N + (ars log N)2
5. corrected two-paw Nis + Nlxtus
6. corrected two-pan with

pairwisc summation uSlgN +x arS lg' N
7. updating Nxt
S. pairwise xu log N (conjectured)
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* 3. Computations with shifted do"

9 fweieplace the orgna data ()by Alfted Ajaiedd by

for some fiod shift d, then the new data has meali t- d and 8 remas unhanged (asuniag
the i awe computed exactly). hn practice da" wit a sassre ine. Is frequently shifted bysee
ispriwi estimate of the mean Wore attempting to empute S. This will gealnly Ih-ms the
accuracy of the computed S. We wil analyst this Improvement by investigating the depiendence
of the condition Dumber on the shiRL Bounds em A, the coadition number of the shifte data, we
derived for various choices of the shif 41. TUs can thea be hossled In place of a In the bounds

* of Table 2.1 to obtain error bounds for sach or the ali~hm~~s with shifte data.
* From the definition of the condition number e mv

@ and22. Taking dit ie pefecy condtioned dat, 1=l. In practice wecannot compute 2
eacetly and usually will not even attempt to compute It (accept when using a two-ps agrithm).
Instead, we use some rough estimate which Ins ofly computed without a separate Pon through all
of the data.

Frequently a shift d Is obtained by simply %ysballlng" the data. Such a technique might be
* expected to yield an approximation d which In within a few iAsadard deviations of the moon. This

Is isuflilent to givecompletely atisfactor boundsonmAL Reclltattheadard devation Is
VIFN7 and suppose that I - dl < pV'SN for ama mal p. Thmw (3.2) give

3<1 . (3.3)

* P~~Fr example, If d Is within one standard deviation of the mean then i <itAi This rew& Is
* completely independent of S and N.

It is not always possible to obtain an approximation In this manner, nor Is It always Valid to
* make such an assumption on Its accuracy. Another bound on It can be easily obtained by assuming

only that
uh zn :5d _ max xj.

Thi s easily guaranteed, for example by choosing one of the data points an the shif. When
min xj ~d 5ma s,e have ( - d's :5 ('-s mr= 8and so from (3.2),

31'< I1+N. (3.4)

* This bound Is Dot as stisfactory as (3.3), but for moderate values of N It may be sufliclent to
guarantoe acceptable errors In S.

For the oe in whchwsahftby adsngle data point, d =zfor some j,we canobtain some
* ~interesting probablstic velnementa of (3.4). Squality In (3.4) is unattainable and apprlmsate
-equality holds only when A OWD D -X P

La.. oly when s ua hconsiderably farther fromiathan do any or the other s . if si is Pcked at
-modernfrom the sampl ()then thecapoctod value of'wilbe muchsmller than I+ N. Ih



fact, ince [(R - Z)21 - SIN, (the doAlue of the ampb mdaaoW), we ban bee (U) th

I'i - (34)
Independent ot N and S. Note that this In a lamdent of the aderlyiag digtrlb Ul df te
{gj. We asumed only that sj wM cbeis from (1k) wt a uaiform ditibution. Alteadv*
we could choose the data value with a hd index, aW s, amd asume thate da I edu
randomly. This may not be a vadld ssumption jr, hr umple, dt tranients ar present in the
das

Improved upper ,OUD& Or the form (&4) ea also be ebtalned pobb UlcY which bold
with probability dose u- . For Ied k, I S k S No the heqlaslity

(u-u,)' ks/N

can hold for at most N/k vabula ;of i. Wherwis we would have L(z - sir > *(kS/N) - a.
Thus if j is chosen at random, there is probabiit of at lat (N - N/k)/N -1 - l/k
(2 - zx)2 < kS/N. It follows that

i < 1 + k with probAblit at t 1 - 1/ for 1 <k N. (S.-)

If N 2 100 we have, for example,

S< 101 with probability 0. .

This is again independent of N and S when the shfts 13 cshoen at random from the sample.
We can generalise this choice of d by using the averace of some p data point&, p -C N. This

average will be denoted by 2. = E /p, the sum being over the chosen p data points. We inume
that p is sufficienty small that rounding errors in computing 2, can be ignored. Specifically this
requires ap, < I. The condition number orr0ponding to this shift Is bounded by using Cauchy's
inequality,

+-

<N1+-.

For p I this reduces to (3.4).
We now consider the cae In which the computed mean Is used as the shift. In general we

cannot Ignore rounding errors In computing a. Instead we compute some approxmate floating
point value A(l), given by

80) -4 + ,) (3.8)

where the Cj an bounded by
:S Nu (3.2)

[.0



when the usual (forward) cummation b sed. Iprws emmatee Is seek te N h.e and below
usn be replacedl by log N. New we ant boad by

* N

+IM

Here we have used (2.1) and the general Ineqaty fl(g~ : NICII. wee UCII.. IMaM(. a
(3.9) we can rewite (3.10) as

S 1I+ N'9 1.. Li

Note that due to the dependence so x, the bound (L11) may be vans than the hounids obtained
for more primitive estimates of d. This iuet ituations which earnactually ocu P in practie.
One CAn easily construct m=Pit. Where 6he capuled mean does noteen lie between mla si and
max zi and hence(S - 1i(i))2 to larner than max.(i - 2j)9. In this can one is better off shiffing by
any single data point than.by the computed mesa.

Of course shifting by the computed m ay als be an ubdudrabe choice from the standpoint
of efficiency, since it requires a sepaat pose through the da" to compute 11(g). Nonetheless$ When
a two- pasn algorithm is acceptable and Na tu* Is small (< 10 ay), this shit follwed by & aoes
algorithm provides a very dependable method for computing S. The corrected two-pass algorithm
(1.7) is of this form, It consists of the textbook algrithm on dat shifted by 11(g). Its error bound
Nu(l + NIASS2i) is easily derived from (S.1 1) and the textbook algrthm bounds of 1be31

Other one-pa. algorithmns could also be good in conjunction with a shift by the computed
mean. However, If a good shift has, been ceom s that ow~ 1, ail on-pass algorithms are uessntay
equivalent with a bound No (or slog N for algorithms using pairwise summations). Since the
textbook algorithm is the Meet dlclent one-pm algorithm (requiring only N multiplicatlo and
2N additions as opposed to 4.N multiplcations and SN additos for the updating algprlths for
example), It Is the method of choice except in par Ionews

* 4. Recomsendatleus.

The results of the previous sections provide a basi for making an intelligent choice of algorithm
for accuratelY computing the ample variance. First we note that If a parallel processor is availble
the data can be split up Into smaller samples and the sum of squares computed for each ample

* Individually. Thase can then be combined, and the global sum or equaras computed, by using the
* updating formulas (1.5). In that case the consideration below apply for each processor.

There Is on situation In which the textbook algorithm (1.2) can be recommended as it @tand&
If the data cons0ists Only Of Inegrs sma 4110191 that no ~1oves occur, then (13) should be
use with the smisn. computed In Integer arithmetic. In this case no roundof errors occur until the
S1l step Of osubining the two sum, In which a divon by N occurs.

For Womlatepal dat we mut first decide whether to use a one-pas or a two-pass algorith.
V all of the da" ie. In highoupood memory and wearn not interested in dynamically updating
the vaianc AS SeW d IS esileted them a twoo-pas algorithm Is probably acceptable and Wh



corrected two-pau algorithm (1.7) Is r9emmeded. If N Is Wa and high aemmy is ended, It
may be worthwhile to use pairwse ummmation to this adleth=.

If a one-pams algorithm is to be @ed, the Arst op I the dat s- well poedbi,
perhaps by some . as discussed In Section S. Now n appropriate eo-pm adgrithm it be
choen. We should firt estimate 1, the condition umb of the shiftd data. perhaps by em of the
bounds of Section 3. If NFiis, the error bound for the tbook algorthm, I at least aas l @ n
the desired relative accuracy, then the thok algorlthm am be used e the ftA d data I this
bound Is too large, we should resort to a lom eflihat algprithm for safety. The dependnce on N
can be reduced by the use of palrwis summation. The dependence on I cam be reduced by usng
an updating algorithm. The use of the palrwise algorithm should reduce both of these tocter
When N is a power of 2 the pairwise algorithm Is fairly m to implement and requrm only SN
multiplications and 4N additions, which is better than the updating algorithms. For general N
slightly more work (particularly human work) Is required, making It m ttractive.

The decision procedure just described Is shown graphcally In Fiure 5.1.

it
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