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Algorithms for semputing the sample varianes:
analysis and recommendations
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Abstract. The problem of computing the variance of a sample of N data points {z,} may be
difficult for certain data sets, particularly when N is large and the variance is small. We present
a survey of possible algorithms and their round-off error bounds, including some new analysis
for computations with shifted data. Experimental results confirm these bounds and illustrate the

dangers of some algorithms. Specific recommendations are made as to which algorithm should be
used in various contexts.
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1. Introduction.

b The problem of computing the variance of a sample of N data peints (=) is ene which ssams,

S at first glancs, 1o be almost trivial but can in fact be quite dcult, particularly when N ls large

o and the variance is small. The fundameatal calculation consista of computing the sum of squares
of the deviations from the mean,

»
8= Y (s-w, (1.16)
fan}
where
‘ " . .
1 ﬁ‘-z'q. (1.19)
The sample variance is then S/N or §/(N — 1) depeading on the application. The formulas (1.1)
. define a straightforward algorithm for computing S. This will be calied the standard two-pass
- algorithm, since it requires passing through the data twice: ence 1o compute 2 and then again to
. compute S. This may be undesirable in many applications, for exsmple when the data sample Is
oo large to be stored in main memory or when the variance Is (o be calculated dynamically as the
data is collected.
per “In order to avoid the two-pass mature of (1.1), It s standard practice to manipulate the

definition of S into the form N Y . .
s-‘):‘i:!-ﬁ(‘gu). (2)

This form is frequently suggested in statistical textboeks and will be ealled the textbook one-pass
algorithm. Unfortunately, altbough (1.2) is mathematically equivalent to (1.1), sumerically it ean
be disastrous. The quantities 37 and §(T:)® may be very large in practice, and will generally
be computed with some rounding error. If the variance is amall, these aumbers should cancel out
almost completely in the subtraction of (1.2). Many (or all) of the correctly compute digits will
eancel, leaving & computed S with a possibly unacceptable relative error. The computed S ean
even be negative, a blessing in disguise since this at least alerts the programmer that disastrous
cancellation has occured.

To avoid these difficuliies, several alternative one-pass algorithms have been introduced. These
include the updating algorithms of Youngs and Cramer{11], Wellord[10], West(8}, Ilanson{s}, and
Cotton(8], and the pairwise algorithm of the present autbors[8]. In doscribing these algorithms we
will use the notation T;; and Ad;; to denote the sum and the mean of the data points =; through
25 respectively,

S ik
and §;; to denote the sum of squares
8 = t(n-”«)'-
o=

For computing an wnwsighted sum of squares, ss we consider bere, the algorithms of Welford, West
and Hanson are virtually ideatical and are based on the wpdating formulas

My ;o= My + %(35 = My 4-1) (1.36)
By mm 841+ (-1 s, ~ Uu-a(ﬂ;:v""—') (1.39)
1
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with M;,; = 2, and S;; = 0. The desired value of § is uitimately oblained as 8, . The
updating formulas of Youngs and Cramer are simlilar:

! Tiym T+ | (140)
.‘ Sy = 8141 + m——;ut_ U - W) (1.40)

with 7,3 = 2; and S),; = 0. These two algorithms have similar aumerical behavior aad are
more stable than the textbook algorithm. Note, in particular, that with both of thess algorithms
S = S;,n is computed as the sum of nonnegative quantities. Cotion’s update Is no more stable
than the textbook algorithm and should not be wsed (sse [8]).

The updating formulas (1.4) can be generalised to allow us to combine two samples of arbitrary
sise. Suppose we have two samples (le}“':.;_.(q)m, and we know

= wmén
T 2 i Tattmen = 2 L
tm1 dwm+l
- 1 ;mdn 1
Brm = Y (5 ZTimls  Smttmiam 3 (w- ;1'-+|.-¢.)'-
dm} tom41

Then, if we combine all of the data into a sample of sise m + n, we have

Timen =T+ Taitmen (1.80)
S1,men = Bim + Bnitmin
m " 8
+ AmTe) (;Tn,u - T-+:.-+-) . (1.8%)
Whea m = » this reduces to
$1.0m = Siim + Smtim + 5 (Tiim = Tmssom )™ (19

This formula forms the basis of the pairwise algorithm. The pairwise summation algorithm for
computing the sum of N numbers is wall known and ean be described recursively by stating that
T1,3m shall be computed as

Tiom = T0+ Tt om

with each of the sume on the right hand side computed in a similar manner. Formula (1.8)
defines the analogous pairwise algorithm for cormputing the variance. This can be implemented
in a onc-pass manncr wsing only O(log N) internal storage locations as discussed in (3] and also
by Nash|7]. All logarithms in this paper are base 3. It can casily be shown that the usc of the
pairwise summation algorithm reduces relative arvors in Ty, v from O(N) to Oflog N) as N = co.
mm«amumm be expected to have the same advantage, as is confirmed
Incidestally, palrwise summation can be used in implementing (1.1) (both in computing 2 and
in forming §) or (1.3) with similar benefits.

Other devices can also be usod to increase the accuracy of the computed §. For data with a
large mesn value 2, cxpericnce has shown thst substantial gains in accuracy can be achieved by
shifting all of the data by some approximation to 2 before atlempting Lo compute S. Even a crude
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estimate of B can yield dramatic improvements in ascuracy, se we assd el resert to & two-pass '

algorithm in order to first estimate 8. This is discussed ln dotall in mctics 3. However, when the

shift & the computed mean and the taxtboek algerithm (1.3) Is then applied to the shifted data,
one oblains the correcled two-pass algerithm

N N ]
4 -z:.(c‘ -8~ -“-,-(‘I_;(n-l)) . .7

Here the first term is simply the two-pass algorithm (1.1a). The sscead term would be sero In
axact computation, but in practice Is & goed appreximation to the errer is the first term. Note
that in this case use of the textbook algorithm does not lesd (o eatastrophic cancellation, since
the correction is generally much smalier than the first term. This algorithm was first pelated out
to the authors by Professor A. BjSrek{1] who suggested this correction term based solely ea the
error analysis of the two-pass algorithm(s]. Aa alterastive (sad improved) errer analysls Is given
in section 3. .

Initially algorithms for computing the varianes were judged solely ea the basis of empirical
studies(6], (9], (11]. More recently rigorous arver bounds have besa sbtained for many algorithmels),
(8], [6]. Our aim here is to present a usified survey of error analyses for the above-mentioned al-
gorithms and techniques. Bome of this material is believed to be sew, particularly the Investigation

into the effects of shifting the data. Based e this survey, specific recommendations will be made
as to which algorithm should be wsed in various contexts.

3. Condition sumbers and errer analysis

Chban and Lewis|4] Brst derived the condition sumber, &, of a sample {(=;} (with respect to
computing the variance). This condition aumber measures the ssnsitivity of § for the given data
set. If relative errors of sise 4 are introduced isto the s;, then the relative change in § is bounded
by #v. Chan and Lewis showed this to be true up to O(7®). In fact it ls strictly true as noted by
van Nes{8]. Physical data almost always has some uncertalaty in It, and this uncertainty will be
magnificd by the factor x in §. If nothing else, errors are introduced in representing the data on
the computer, and so a value of § computed on & computer with machive accuracy « may have
relative errors as large as xu regardiess of what algorithm is wsed. This value cu can be used as &
yardstick by which (o judge the accuracy of the various algorithms, sspecially since error bounds
ean often be derived which are functions solely of x, », and N.

If we define the 3-norm of the data by

N
Bell} = E =
Py
then the condition number for this problem is given by

&= l% - ‘/l +2N/8S. (2.1)

When £ is small and 2 is not close 0 sero we obtain the useful approximation

& w2y/N/§ (for § small, & nonsero) (292)

which Is the mean divided by the standard deviation. We always have « 2 1, and In many
situstions = is very large.

Amalvodend




P I U S TUN.

et ot s S C A -3

Table 2.1 shows the asymptotic error bounds for the slgorithms discussed. These are bounds
on the relative error |(S — S)/S| in the computed value 5. Small constant maltipliers have besn
dropped, for clarity. Higher order tarms have also besa dropped, but the terms shown deminste
the error bounds whenever the relative error Is Jess thas 1. The bounds fer the textbeok algorithm
and West's updaiing are derived by Chan and Lewia{¢]. The two-pass error boand iacluding the
N3x3x? term (which can dominate in practics) is derived ia {3]. Bouads for these algorithms wsing
pairwise summation can be found similarly. The pairwise variasce aigorithm bound is a conjecture
based on the form of the error bound for Youngs and Cramer updating and experimental results.
The error analysis for the corrected two-pass algorithm Is given In ssctios 3.

Graphs of these bounds are shown in Figures 3.1 through 3.8 along with some experimental
results. Each plot has = on the abecissa and the relative arror In § oa the ordinate. The lower curve
in each figure shows the error bound for N == 64, the upper curve for N == 4006. The aumerical
experiments were performed on an IBM 3081 computer at the Stanford Linear Accelerator Center.
The data uscd was provided by a normal random aumber generator with mean 1 and a variety of
different variances 1 > ¢® > 10~!2. For this choice of the mean, & aw 1/0 (see (3.3)). In each
case the results have been averaged over 20 runs. Single precision was wsed in all of the tests,
with machine accuracy w ms § X 10=7. The “correct® answer for wse In computing the error was
calculsted in double precision. The resulting errors are denoted in the fgures by the symbols +
(for N == 84) and X (for N == 4098).

The experimental results confirm the general form of the error bounds dv. in Table 3.1.
In particular the graphs for the two-pass algorithms show how the higher order terms (such as
N2x3y?) begin to dominate the error at fairly modest values of x.

Table 3.1. Error bounds for the relative error |'-i!| in the computed value 5. Only the dominant
terms are shown, and small constant factors have been suppressed for clarity.

1. textbook Nxty
2. textbook with pairwise summation =ulog N
3. two-pass Nu + N3x%*
4. two-pass with pairwise summation ulog N + (xulog N)?
5. corrected two-pass Nu + Nigt?
6. corrected two-pass with
pairwisc summation slog N + xtw?log’ N
7. updating New
8. pairwise sulog N (conjectured)
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Figure 3.3. Two-pass algorithm
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8. Computations with shifted data
If we replace the origina! data {=;) by shifted data (%) defined by

mg-d @)

for some fixed shift d, then the new data hae mesn B — d and § remalns wschaaged (sssuming
the %, are computed exactly). In practice dats with a neasero mean is frequently shified by seme
@ priori estimate of the mean before attempting to compute 8. This will gencrally increase the
accuracy of the computed §. We will analyse this improvement by investigating the dependence
of the condition number on the shift. Bounds on &, the condition sumber of the shified data, are
derived for various cholces of the shift d. Thase can then be issertied in place of z In the bounds

of Tablc 2.1 to obtain error bounds for each of the algorithms with shified data.
From the definition of the condition number we have

LN 'T

=14 -’-:-(!-l)’. (s.2)

Comparing this with (2.1) we see that & < & whenever |d —- 2] < {2}, L.o., whenever d Bes between
0 and 22. Taking d = 2 gives perfectly conditioned data, & = 1. In practice we cannot compute 2
exactly and usually will not even attempt to compute it (except when using a two-pass algorithm).
Instcad, we use some rough estimate which is easily computed without a separate pass through all
of the dats. ‘

Frequently a shift d is obtained by simply “eyeballing” the data. Such a technique might be
expected to yield an approximation d which ls within a few standard deviations of the mean. This
is sufficient to give completely satislactory bounds on X. Recall that the standard devistion is
v/S/N and suppose that [2 - d] < N for some small p. Ther. (3.2) givas

Bcirept. (33)

For example, If d is within one standard deviation of the mean then £ < V2. This result is
completely independent of § and N.

It is not always possible to obtain an approximation in this manner, nor is it always valid to
make such an assumption on its accuracy. Another bound on & can be easily obtained by sssuming

only that
masi S 4 S mpe

This is easily guaranteed, for example by choosing one of the data points as the shift. When
minz, < d < maxz;, we have (2 - d)* < T (2 — 5,)* = § and oo from (3.2),

» mr.‘_-',,-'.

o & <14N. (8.4)

This bound is not as satislaclory as (3.3), but for moderate values of N it may be sufficient to
o guarantoce scceplable errors in §.

= For the case in which we shift by a single data point, d = =, for some 5, we can obtain some
" interesting probebilistic refinements of (3.4). Equality in (3.4) is unattainable and appraximate
equality bolds ealy when

L (2-s;P m -,
. '

: i.e., only when g, Hes considerably farther from 2 than do any of the other s,. If =; is picked at
b random from the sample {£;}, then the expoctod value of &* will be much smaller than 14 N. In

[ N PRI NP MU P I TS 2 abmebnsinsieeninemssticoio




fact, since E[(2 - 5,)%) = /N, (the definition of the sample variancs), we have from (3.3) that
I Ejit|=2 (3-5)

independent of N and S. Note that this s aleo independent of the underiying distribution of the
{z:}. We sssumed only that 5; was chosen from {5} with a uniform distribution. Alternatively
we could choose the datas value with a fixed index, say £;, and assume that the dats is erdered
- randomly. This may not be a valid assumption i, fer example, initial transients are present in the
' data.
_I Improved upper hcunds of the form (3.4) can aleo be ebtained probabilistically which hold
with probability close « 4. Fur fixed &, 1 € k < N, the inaquality

(2—s)* 2 48/N
J ean hold for at most N/k valves of i. Oiherwise we would bave 35(2 — 2,)* > & (kS/N) = 8.

Thus if z, is chosen at random, there Is & probability of at least (N — N/k)/N == 1 — 1/k that
(2 - 2;)* < kS/N. It follows that

' <1+k  with probability st least 1~1/k for 1 < k < N. (8.8)
If N > 100 we bave, for example,

&' <101  with probability 0.99.

This is again independent of N and S when the shift z; Is chosen at random from the sample.

We can generalise this choice of d by using the average of some p data points, p € N. This
average will be denoted by 2, = 3" z,/p, the sum being over the chosen p data points. We assume
that p is sufliciently small that rounding errors in computing 2, can be ignored. Specifically this
requires xpu < 1. The condition number corresponding to this shift is bounded by using Cauchy's
inequality,

D=1 %(:—:,)’
N/1 '
=14 -s-(; ‘-t‘(l-tj))
N
$1+§;§("’:‘). '
N

Sl+_n
1 4

For p = 1 this reduces (o (3.4).
We now consider the case in which the computod mean is used as the shift. In general we
cannot ignore rounding errors in computing 2. Instead we computle some approximate flosting

e mra = s memm o iam

point value (2), given by "
: 8(s) = ﬁ‘}:,:s.-u +&) (38) ;
" where the & are bounded by
: &l < Nw (39)
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when the vsual (forward) summation Is wsed. ¥ summation s wsed, the N here and below
can be replaced by log N. Now we can bouad &° by ‘

=14 Z(e-20)

1 N L)
=14 m@u&)
< 14 msheien

=14 %z‘lﬁ[} i
< 14 3¢l (3.10)

Here we have used (2.1) and the general inequality [i¢li} < NHEHE, where §€lle = max; |€:]. Using
(3.9) we can rewrite (3.10) as

& <14 NP, (s.11)

Note that due to the dependence o &, the bouad (3.11) may be worse than the bounds obtained
for more primitive estimates of d. This reflects situations which can actually occur in practice.
One can easily construct examples where the computed mean does not even lie between min s; and
max z; and hence(2 — A(2))? is larger than max,(2 — ;)°. In this case one is better off shifting by
any single data point than.by the computed mean.

Of course shifting by the computed mean may also be an undesirable choice from the standpoint
of efficicncy, since it requires a separate pass through the dats to compute i(2). Nonetbeless, when
a two-pass algorithm is scceptable and N?x%s® is small (< 1, say), this shift followed by a one-pass
algorithm provides a very dependable method for computing S. The corrected two-pass algorithm
(1.7) is of this form, it eonsists of the textbook algorithm on data shifted by fi(2). Its error bound
Nu(1 + N2x%4?) is easily derived from (3.11) and the textbook algorithm bounds of Table 3.1.

Other one-pass algorithms eould also be wsed in eonjunction with a shift by the computed
mean. However, if a good shift has been chosen 80 that & aw 1, all one-pass algorithms are essentially
equivalent with a bound N« (or slog N for algorithms using pairwise summations). Since the
textbook algorithm is the most efficient one-pass algorithm (requiring only N multiplications and
SN additions as opposed (o 4N multiplicstions and SN additions for the updating algorithms, for
example), it is the method of choice except in rare instances.

4. Recommendations.

The results of the previous sections provide s basis for making an intelligent choice of algorithm
for accurately computing the sample variance. First we note that if s parallel processor s available,
the data can be split up into smallcr samples and the sum of squares computed for each sample
individually. These can then be combined, and the global sum of squarcs computed, by using the
updating formulas (1.5). In that case the considerations below apply for each processor.

There is one situation in which the textbook algorithm (1.3) can be recommended as it stands.
If the data consists only of integers, emall enough that no overfiows oceur, then (1.2) should be
wsed with the sums computed in integer arithmetic. In this case no roundofl errors occur until the
final step of combining the two sums, in which a division by N occurs.

For non-integral data we must first decide whetber 1o use a one-pass or a two-pam algorithm.
If all of the data fits in high-spood memory and we are not interested in dynamically updating
the variancs as new data Is collocted, then & two-pass algoritbm is probably aceeptable and the

11
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" corrected two-pass algorithm (1.7) is recommended. If N is large and high accuracy is nesded, it

may be worthwhile to use pairwise summation ia implementing this algorithm. :

If a one-pass algorithm is to be weed, the first step Is to shift the data as well as possible,
perhaps by some 2, as discuseed in Section 3. Now an appropriste one-pass algorithm must be
chosen. We should first estimate &, the condition sumber of the shifted data, perhaps by one of the
bounds of Section 3. If N&%u, the error bound for the textbook algorithm, is at least as small as
the desired relative accuracy, then the textbook algorithm ean be weed on the shifted data. If this
bound is too large, we should resort to a less efficient algorithm for safety. The dependence oa N
can be reduced by the use of pairwise summation. The dependence oa & can be reduced by wsing
an updating algorithm. The use of the pairwise algorithm should reduce both of these factors.
When N is a power of 2 the pairwise algorithm Is fairly essy to implement and requires only 3N
multiplications and 4N additions, which is better than the updating algorithms. For general N
slightly more work (particularly human work) is required, making it less attractive.

The decision procedure just described is shown graphieally in Figure §.1.
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