

DISPOSITION INSTRUCTIONS

UNCLUE OF

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIG-NATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL INDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.

.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
REPORT NUMBER	DEFORE COMPLETING FORM
TIT: E (and Sublide)	28/
Comparison of Arithmetic Developments in the	5. TYPE OF REPORT & PERIOD COVERE
META SHIFT MEET DET and DET Alassiation	PFA, mashedaal Barast
wrin, Swiri, Hrri, Fri and Dri Augoziurms	
	C. PERFORMING ORG. REPORT NUMBER
AUTHOR()	S. CONTRATION GRANT NUMBER(.)
Robert C. Hicks	
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
ATTY. DEMI DED	
Alle: OKOMI-KEK Podetono Amoonol AL 25909	
Redstone Arsenar, AL 55090	
CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Commander, US Army Missile Command	November 1982
ATIN: DRSMI-RPT	13. NUMBER OF PAGES
Redstone Arsenal, AL 35898	
MONITORING AGENCY NAME & ADDRESS(II different 'rom Controlling Of	(ICO) [15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	154 DECLASSIFICATION/DOWNGRADING
	SCHEDULE
Approved for public release; distribution unli	mited.
3. DISTRIBUTION STATEMENT (of the Report) Approved for public release; distribution unli 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differ	mited.
Approved for public release; distribution unli Approved for public release; distribution unli Distribution STATEMENT (of the abstract entered in Block 20, 11 dille	mited.
5. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unli 7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, 11 diffe	rent from Report)
Approved for public release; distribution unli Approved for public release; distribution unli Distribution statement (of the ebstract entered in Block 20, 11 diller Supplementary notes	rent (rom Report)
5. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unli 7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if differ 8. SUPPLEMENTARY NOTES	rent (rom Report)
Approved for public release; distribution unli Approved for public release; distribution unli Distribution statement (of the ebstrect entered in Block 20, 11 diller B. SUPPLEMENTARY NOTES	rent from Report)
Approved for public release; distribution unli Approved for public release; distribution unli Distribution statement (of the abstract entered in Block 20, if differ Supplementary notes	rent (rom Report)
Approved for public release; distribution unli Approved for public release; distribution unli DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differ SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block r	rent (rom Report)
Approved for public release; distribution unli Approved for public release; distribution unli DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differ Supplementary notes KEY WORDS (Continue on reverse side if necessary and identify by block r Discrete Fourier Transform	rent (rom Report)
Approved for public release; distribution unli Approved for public release; distribution unli Distribution STATEMENT (of the abstract entered in Block 20, if differ S. SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block r Discrete Fourier Transform Fast Fourier Transform	numfer; numfer; IIFT cithmetic Requirements
Approved for public release; distribution unli Approved for public release; distribution unli Distribution STATEMENT (of the ebstrect entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the ebstrect entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the ebstrect entered in Block 20, 11 differ No. SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block r Discrete Fourier Transform Fast Fourier Transform Prime Factor Algorithm	rent from Report)
 DISTRIBUTION STATEMENT (of the Report) Approved for public release; distribution unli DISTRIBUTION STATEMENT (of the abstract entered in Block 20, H differ SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse aide if necessary and identify by block r Discrete Fourier Transform SW Fast Fourier Transform Ar Prime Factor Algorithm Di 	number; Int from Report)
DISTRIBUTION STATEMENT (of the Report) Approved for public release; distribution unli DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, 11 differ SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse eide if necessary and identify by block r Discrete Fourier Transform Fast Fourier Transform Prime Factor Algorithm Mixed Radix Fast Fourier Transform	num*;; ///////////////////////////////////
Approved for public release; distribution unli Approved for public release; distribution unli DISTRIBUTION STATEMENT (of the ebstreet entered in Block 20, 11 differ USUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block r Discrete Fourier Transform Fast Fourier Transform Prime Factor Algorithm Mixed Radix Fast Fourier Transform ABSTRACT (Continue on reverse side if necessary and identify by block r	numher; rent from Report) numher; IIFT rithmetic Requirements lgital Signal Processing umber;
Approved for public release; distribution unli Approved for public release; distribution unli Distribution STATEMENT (of the obstract entered in Block 20, 11 differ Supplementary notes Supplementary notes Supplementary notes KEY WORDS (Continue on reverse side 11 necessary and identify by block r Discrete Fourier Transform Fast Fourier Transform Prime Factor Algorithm Mixed Radix Fast Fourier Transform ABSTRACT (Continue on reverse side 11 mecessary and identify by block r This discrete Fourier transform (DET) is a note	rent from Report) rent from Report) The state of the st
Approved for public release; distribution unli Approved for public release; distribution unli Distribution STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (Continue entered in Block 20, 11 differ ABSTRACT (Continue entered entered entered in Block 20, 11 differ This discrete Fourier transform (DFT) is a power for discrete data accuraces with mathemet	<pre>.mited. .mited. </pre>
Approved for public release; distribution unli Approved for public release; distribution unli DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 differ USER UNDER Continue on reverse side if necessary and identify by block re Discrete Fourier Transform SW Fast Fourier Transform Ar Prime Factor Algorithm Di Winograd Fourier Transform Algorithm Mixed Radix Fast Fourier Transform (DFT) is a pow form for discrete data sequences with mathemat those of the Fourier transform The DFT can b	.mited. rent (rom Report) rumPsy; //IFT :ithmetic Requirements Igital Signal Processing ////////////////////////////////////
DISTRIBUTION STATEMENT (of the Report) Approved for public release; distribution unli DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if differ SUPPLEMENTARY NOTES	rent from Report) rent from Report) The state of the st
Approved for public release; distribution unli Approved for public release; distribution unli DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ USTRIBUTION STATEMENT (of the ab	rent from Report) rent from Report) rent from Report) IFT The tic Requirements Igital Signal Processing umber) verful reversible mapping trans- tical properties analogous to be used for spectral analysis of ast convolution of sequences for ar digital beamforming. The even
DISTRIBUTION STATEMENT (of the Report) Approved for public release; distribution unli DISTRIBUTION STATEMENT (of the ebstreet entered in Block 20, If differ SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and identify by block r Discrete Fourier Transform SW Fast Fourier Transform Mr Mixed Radix Fast Fourier Transform Mixed Radix Fast Fourier Transform ABSTRACT (Continue on reverse side If measures and identify by block r This discrete Fourier transform ABSTRACT (Continue on reverse side If measures and identify by block r This discrete Fourier transform ABSTRACT (Continue on reverse side If measures and identify by block r This discrete Fourier transform ABSTRACT (Continue on reverse side If measures and identify by block r This discrete fourier transform. The DFT can b time series, fast correlation of sequences, fa the purpose of digital filtering, and for rada improved to perform the DFT can b time series in the tent of the DFT can b time series in the DFT can b time series in the tent of the DFT can b time series in the tent of tent	rent from Report) rent from Report) The sequences in the sequences of the sequences for the sequences for the sequences of
Approved for public release; distribution unli Approved for public release; distribution unli DISTRIBUTION STATEMENT (of the obside onloced in Block 20, if differ SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES Supplementary notes Supplementary notes Supplementary notes Approved for intermediate of the obside of the fourier for and for any for the fourier for the fourier form. The DFT can be form for discrete data sequences with mathemat those of the Fourier transform. The DFT can be time series, fast correlation of sequences, fast fourier is form for discrete fourier for algorithm has a covered and for rada increasing importance of the DFT algorithm has a covered and for a sequence of the DFT algorithm has a covered and for a sequence of the fourier transform.	rent from Report) rent from Report) rent from Report) TIFT The tic Requirements Igital Signal Processing rentul reversible mapping trans- tical properties analogous to be used for spectral analysis of ast convolution of sequences for ast convolution of sequences for and the development of ar lage arithmetic computations

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. (Continued)

than the DFT. This report examines the multidimentional DFT decomposition theory central to many of these algorithms and gives a brief introduction to the radix-2 fast Fourier transform (FFT), radix-4 FFT, mixed radix fast Fourier transform (MFFT), prime factor algorithm (PFA), Winograd Fourier transform (WFTA), and SWIFT algorithms. In addition, the arithmetic complexity of these algorithms is compared for various one and two-dimensional transform sizes. Included in the comparison are the number of real additions, real multiplications, total real operations, total equivalent real multiplications, and integrated circuit chips required for each algorithm.

a a star a st

シストン

きんてい たいこう 算法できた たい

1

.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

CONTENTS

		Page
I.	INTRODUCTION	3
II.	MULTIDIMENSIONAL DFT THEORY	3
111.	EFFICIENT DFT ALGORITHMS	11
IV.	COMPARISON OF ARITHMETIC REQUIREMENTS	15
	APPENDIX A - WFTA SHORT DFT ALGORITHMS	33
	APPENDIX B - PFA SHORT DFT ALGORITHMS	39
	APPENDIX C - SWIFT SHORT DFT ALGORITHMS	48
	REFERENCES	55

Accession For R NIIS GRA&I PIIC IAB : C minounced Justification ----Distribution/____ Availability Codes DIIC ECHA A Avel and/or Special Dist

I. INTRODUCTION

Charles and a static static and a second state of the static state of the second state

This report compares the arithmetic requirements of several efficient algorithms which compute the Discrete Fourier Transform (DFT). The DFT is a powerful, reversible mapping transform for discrete data sequences with mathematical properties analogous to those of the Fourier transform. The definitions of the DFT and the inverse DFT can be written in the form

$$A(k) = \int_{n=0}^{N-1} x(n) \exp(-j2\pi nk/N)$$
(1)

$$x(n) = \sum_{k=0}^{N-1} A(k) \exp(j2\pi nk/N)$$
(2)

for $k=0,1,\ldots, N-1$; $n=0,1,\ldots, N-1$. The N-point data sequences x(n) and A(k) are generally complex and are often used to represent time and frequency series, respectively.

In 1965, Cooley and Tukey began a revolution in the field of signal processing when they introduced the Fast Fourier Transform (FFT) as an algorithm for efficiently computing the DFT [1]. The FFT reduced the number of computations required to compute the DFT from a number proportional to N^2 , to one proportional to $Nlog_2N$. This reduction of computations spurred widespread application of the DFT to many problems in diverse fields. In addition to spectral analysis of time series, the FFT has been used for fast correlation of sequences, fast convolution of sequences for the purpose of digital filtering, and radar Digital Beam Forming (DBF). In DBF applications, the output of each element of a receive-only array antenna is independently converted into complex baseband samples. A DFT is then used to transform the data into a simultaneous set of receive beams uniformly distributed in space [2].

The ever increasing importance of the DFT algorithm has led to the development of many new efficient algorithms requiring far less computations than the FFT. This report examines the multidimensional DFT decomposition theory central to many of these algorithms, and gives a brief introduction to the radix-2 FFT, radix-4 FFT, mixed radix fast Fourier transform (MPFT), prime factor algorithm (PFA), Winograd Fourier transform algorithm (WFTA), and SWIFT algorithms. In addition, the arithmetic complexity of these algorithms is compared for various one and two-dimensional transform sizes. Included in the comparison are the number of real additions, real multiplications, total real operations, total equivalent real multiplications, and integrated circuit chips required for each algorithm.

II. MULTIDIMENSIONAL DFT THEORY

All of the efficient DFT algorithms examined in this report are based on Good's standard multidimensional DFT decomposition technique [3-4]. This technique decomposes a large one-dimensional DFT into a sequence of smaller DFTs which are combined with twiddle factors (i.e., complex weights or multiplications). The number of multiplications and additions required to compute a DFT is greatly reduced by computing its decomposed small point DFT transforms, even though the twiddle factors increase the computational load.

However, the multidimensional decomposition is only applicable to the DFTs of length N, where N is factorable into integer values (i.e., $\dot{N} = N_1 * N_2 * ..., N_r$). In order to circumvent this requirement, DFTs can be appended with zeros to give a length that is factorable.

The basic mechanism of the multidimensional decomposition is transforming the one-dimensional data sequence of length $N = N_1 * N_2$ into a two-dimensional rectangular array of N_1 rows and N_2 columns. The N-point DFT can then be computed by performing N₂-point DFTs on all the rows, and performing N₁-point DFTs on all the columns, and in some cases, multiplying the intermediate results by complex twiddle factors. If desired, the N₁ and N₂-point DFTs can be decomposed if they are factorable. This process can be applied repeatedly to the one-dimensional DFTs until the original N-point DFT has been completely decomposed into all of its integer factors.

A unique or one-to-one mapping function is needed to map the onedimensional arrays A(k) and x(n) of the DFT expression

$$A(k) = \sum_{n} x(n) W_{N}^{nk}$$
(3)

into the two-dimensional arrays $\hat{A}(k_1,k_2)$ and $\hat{x}(n_1,n_2)$ of the two-dimensional function [5]

$$\hat{A}(k_{1},k_{2}) = \sum_{n_{1},n_{2}} \sum_{n_{1},n_{2}} W_{N}^{nk}$$
(4)

where k_1 , $n_1 = 0, 1, \ldots, N_1 - 1$; k_2 , $n_2 = 0, 1, \ldots, N_2 - 1$; and $W_N^{nk} = \exp(-j2\pi nk/N)$. Although many different mapping functions exist, the mapping function fundamental to most fast DFT algorithms is

$$\begin{cases} n = (L_1n_1 + L_2n_2) \mod N \\ k = (L_3k_1 + L_4k_2) \mod N \end{cases}.$$
(5)

A simple mapping of this form is

$$\begin{cases} n = (n_1 + N_1 n_2) \mod N \\ k = (N_2 k_1 + k_2) \mod N \end{cases}.$$
(6)

For example, this mapping can be used to decompose the vectors A(k) and x(n) of an eight-point DFT into two-dimensional functions with N_1 rows and N_2 columns. For the values $N_1 = 2$ and $N_2 = 4$, the mapping between x(n) and $x(n_1,n_2)$ is

$$\hat{x}(n_1, n_2) = x(n_1 + 2n_2) \mod 8$$
, (7)

as shown below:

and the state of the second second of the second second second second second second second second second second

and the second second second

$$\hat{\mathbf{x}}(0,0) = \mathbf{x}(0) \quad \hat{\mathbf{x}}(0,1) = \mathbf{x}(2) \quad \hat{\mathbf{x}}(0,2) = \mathbf{x}(4) \quad \hat{\mathbf{x}}(0,3) = \mathbf{x}(6)$$

$$\hat{\mathbf{x}}(1,0) = \mathbf{x}(1) \quad \hat{\mathbf{x}}(1,1) = \mathbf{x}(3) \quad \hat{\mathbf{x}}(1,2) = \mathbf{x}(5) \quad \hat{\mathbf{x}}(1,3) = \mathbf{x}(7)$$

$$(8)$$

Note that each position in the above 2x4 matrix is assigned a unique value from the x(n) vector. The mapping for the output values is

$$A(k_1,k_2) = A(4k_1 + k_2) \mod 8$$
 (9)

as shown below:

$$\hat{A}(0,0) = A(0)$$
 $\hat{A}(0,1) = A(1)$ $\hat{A}(0,2) = A(2)$ $\hat{A}(0,3) = A(3)$
 $\hat{A}(1,0) = A(4)$ $\hat{A}(1,1) = A(5)$ $\hat{A}(1,2) = A(6)$ $\hat{A}(1,3) = A(7)$. (10)

The mapping of (5) can be substituted into Equation (4) giving

$$\hat{A}(k_1,k_2) = \sum_{\substack{n_1 \ n_2}} \sum_{\substack{n_1 \ n_2}} \hat{x}(n_1,n_2) W_N(L_1n_1 + L_2n_2)(L_3k_1 + L_4k_2)$$

or

12220022

ļ

$$\hat{A}(k_{1},k_{2}) = \sum_{n_{1}} \sum_{n_{2}} \hat{x}(n_{1},n_{2}) W_{N}^{L_{2}L_{4}n_{2}k_{2}} W_{N}^{L_{1}L_{4}n_{1}k_{2}} W_{N}^{L_{1}L_{3}n_{1}k_{1}} W_{N}^{L_{2}L_{3}n_{2}k_{1}} .$$
(11)

where

 $\hat{A}(k_1,k_2) \equiv A(L_3k_1 + L_4k_2) \mod N$ $\hat{x}(n_1,n_2) \equiv x(L_1n_1 + L_2n_2) \mod N$

 L_1 , L_2 , L_3 , and L_4 can be selected using the results of a theorem from number theory to insure a unique mapping. Case A of the theorem applies when the factors N_1 and N_2 are mutually prime, that is 1 is the largest common integer factor. Case B applies when N_1 and N_2 are not mutually prime, that is N_1 and N_2 have a common integer factor, λ , which is greater than 1. The notation used in the theorem to represent these two cases is

CASE A:
$$(N_1, N_2) = 1$$

CASE B: $(N_1, N_2) = \lambda$, (12)

where the operator (N_1, N_2) is defined as the greatest common integer factor of N_1 and N_2 . The theorem can be written in terms of n or k of Equation (5) as they are of the same form. For simplicity, however, the theorem will be expressed for both the n and k mapping.

Theorem: The necessary and sufficient conditions for the mapping of Expression (5) to be unique are:

CASE A:

1)
$$L_1 = \alpha N_2$$
 and $L_2 \neq \beta N_1$ and $(\alpha, N_1) = (L_2, N_2) = 1$
 $L_3 = \gamma N_2$ and $L_4 \neq \delta N_1$ and $(\gamma, N_1) = (L_4, N_2) = 1$ (13)

2) $L_1 \neq \alpha N_2$ and $L_2 = \beta N_1$ and $(L_1, N_1) = (\beta, N_2) = 1$ $L_3 \neq \gamma N_2$ and $L_4 = \delta N_1$ and $(L_3, N_1) = (\delta, N_2) = 1$ (14) 3) $L_1 = \alpha N_2$ and $L_2 = \beta N_1$ and $(\alpha, N_1) = (\beta, N_2) = 1$

$$L_3 = \gamma N_2$$
 and $L_4 = \delta N_1$ and $(\gamma, N_1) = (\delta, N_2) = 1$ (15)

CASE B:

1)
$$L_1 = \alpha N_2$$
 and $L_2 \neq \beta N_1$ and $(\alpha, N_1) = (L_2, N_2) = 1$
 $L_3 = \gamma N_2$ and $L_4 \neq \delta N_1$ and $(\gamma, N_1) = (L_4, N_2) = 1$ (16)
2) $L_1 \neq \alpha N_2$ and $L_2 = \beta D_1$ and $(L_1, N_1) = (\beta, N_2) = 1$
 $L_3 \neq \gamma N_2$ and $L_4 = \delta N_1$ and $(L_3, N_1) = (\delta, N_2) = 1$ (17)

The variables i_1 , L_2 , α , and β of this theorem will be used for the mapping of n and the variables i_3 , L_4 , γ , and δ will be used for the mapping of k. All of thuse variables are non-zero positive integers.

CASE B of the theorem will be considered first as it is the basis of the Decimation-In-Time (DIT) and Decimation-In-Frequency (DIF) algorithms. These algorithms are used to implement the familiar radix-2 and radix-4 FFT algorithms.

The DIT algorithm is derived by using Equation (17) for the mapping of n and Equation (16) for the mapping of k. Combining these expressions with that of (5) gives the mapping

ol et al televise de la contraction de

$$\begin{cases} n = (L_1n_1 + \beta N_1n_2) \mod N \\ k = (\gamma N_2k_1 + L_4k_2) \mod N \end{cases}, \qquad (18)$$

where $L_1 \neq \alpha N_2$ and $L_4 \neq \delta N_1$.

Substituting this into Equation (11) gives

$$\hat{A}(k_{1}k_{2}) = \sum_{n_{1}} \sum_{n_{2}} \hat{x}(n_{1}, n_{2}) W_{N_{2}}^{\beta L_{4}n_{2}k_{2}} W_{N_{1}}^{L_{1}L_{4}n_{1}k_{2}} W_{N_{1}}^{L_{1}\gamma n_{1}k_{1}} .$$
(19)

Note that the last term of Equation (11) is eliminated as

$$W_{N}^{\beta \gamma n_{2}k_{1}(N_{1}N_{2})} = \exp(-j2\pi\beta\gamma n_{2}k_{1}N/N)$$

= $(\exp(-j2\pi))^{\beta \gamma n_{2}k_{1}} = 1$. (20)

Choosing the values $L_1 = L_4 = B = \gamma = 1$ satisfies the theorem and when substituted into Equation (19) gives

$$\hat{A}(k_{1},k_{2}) = \sum_{n_{1}} \sum_{n_{2}} \hat{x}(n_{1},n_{2}) W_{N_{2}}^{n_{2}k_{2}} W_{N_{1}}^{n_{1}k_{2}} W_{N_{1}}^{n_{1}k_{1}}, \qquad (21)$$

where

$$A(k_1,k_2) = A(N_2k_1 + k_2) \mod N$$

 $\hat{\mathbf{x}}(n_1, n_2) = \mathbf{x}(n_1 + N_1 n_2) \mod N$.

The $W_N^{n_1k_2}$ term is the twiddle factor.

A brute force computation of Equation (21) would require N complex multiplications and N-1 complex additions for each value of the $\hat{A}(k_1,k_2)$ array, assuming prior combination of the three complex exponential terms. This would require N² complex multiplications and N(N-1) complex additions to compute the DFT. Fortunately, the number of operations required can be reduced by using one-dimensional DFTs on the rows and columns as suggested by the following nesting of Equation (21)

$$\hat{A}(k_{1},k_{2}) = \sum_{n_{1}=0}^{N_{1}-1} W_{N_{1}}^{n_{1}k_{1}} \left[W_{N}^{n_{1}k_{2}} \left[\sum_{n_{2}=0}^{N_{2}-1} \hat{x}(n_{1},n_{2}) W_{N_{2}}^{n_{2}k_{2}} \right] \right].$$
(22)

The innermost bracket is a function of n1 and k2

$$q(n_1,k_2) = \sum_{n_2} \hat{x}(n_1,n_2) W_{N_2}^{n_2k_2}$$
(23)

where $k_2 = 0, 1, \dots, N_2-1$ and n_1 is fixed by the value of the outermost summation symbol. This is obviously an N₂-point one-dimensional DFT on the n_1 th row of data. As indicated by the next level of brackets, each of the N $q(n_1,k_2)$ values is multiplied by its complex twiddle factor. The results of the two innermost brackets is still a function of n_1 and k_2

$$h(n_1,k_2) = q(n_1,k_2)W_N^{n_1k_2}$$
 (24)

Combining Equations (22), (23), and (24) gives

$$\hat{A}(k_1,k_2) = \sum_{\substack{n_1=0\\n_1=0}}^{N_1-1} h(n_1,k_2) W_{N_1}^{n_1k_1},$$
 (25)

where k_1 , = 0,1,..., N_1 -1 and k_2 is a fixed value for each column of data. This is obviously an N_1 -point one-dimensional DFT on the K_2 th column. Thus, using the nesting of Equation (22), the N-point DFT is calculated by: (1) calculating an N_2 -point one-dimensional DFT on the data of each of the N_1 rows; (2) multiplying each intermediate transformed data point by a complex twiddle factor; and (3) performing an N_1 -point one-dimensional DFT on the twiddled data of each of the N_2 columns. The required real multiplications and additions for this process can be expressed

 $NRMULT = N_1 \mu_2 + N_2 \mu_1 + 4N$ (26)

$$NRADDS = N_1 \alpha_2 + N_2 \alpha_1 + 2N , \qquad (27)$$

where

$$\mu_{f} \equiv$$
 number of real multiplications in the N_f-point DFT

 $\alpha_i \equiv$ number of real additions in the N_i-point DFT.

This method is generally more efficient than the brute force computation of Equation (21). Greater efficiency results if the N₁ and/or N₂ one-dimensional DFT(s) of the above process can be decomposed into still smaller factors.

$$\hat{A}(k_{1},k_{2}) = \sum_{n_{1}} W_{N_{1}}^{n_{1}k_{1}} \left[\sum_{n_{2}} W_{N_{2}}^{n_{2}k_{2}} \left[\hat{x}(n_{1},n_{2})W_{N}^{n_{1}k_{2}} \right] \right].$$
(28)

The computation suggested by this nesting is very similar to that of Equation (22) as only the first two computation steps are reversed. For this nesting the N-point DFT is calculated by: (1) multiplying each data point by the appropriate complex twiddle factor; (2) calculating an N₂-point DFT of each row of the intermediate data; and (3) performing an N₁-point DFT of each column of the data calculated in step 2. The arithmetic requirements for computing Equation (28) are obviously the same as Equation (22).

A final way the DIT Equation (21) can be nested is

$$\hat{A}(k_1,k_2) = \sum_{n_2} W_{N_2} \sum_{n_1}^{n_2k_2} \left[\sum_{n_1} W_{N_1} \sum_{n_1}^{n_1k_1} \left[\hat{x}(n_1,n_2) W_{N_1}^{n_1k_2} \right] \right]. \quad (29)$$

For this reverse nesting, the N-point DFT is calculated by: (1) multiplying each data point by the appropriate twiddle factor; (2) calculating an N₁-point DFT of each column of the twiddled data; and (3) calculating an N₂-point DFT of each row. This also has the same arithmetic requirements as the other DIT nestings of Equations (22) and (28). The DIF algorithm is obtained by using Equation (16) for the mapping of n and Equation (17) for the mapping of k. Combining these expressions with that of (5) gives the mapping

$$\begin{cases} n = \alpha N_2 n_1 + L_2 n_2 \mod N \\ k = L_3 k_1 + \delta N_1 k_2 \mod N \end{cases}$$
(30)

where $L_2 \neq \beta N_1$ and $L_3 \neq \gamma N_2$.

Substituting this into Equation (11) gives

$$\hat{A}(k_{1},k_{2}) = \sum_{n_{1}} \sum_{n_{2}} \hat{x}(n_{1},n_{2}) W_{N_{2}} \overset{\delta L_{2}n_{2}k_{2}}{}_{W_{N_{1}}} \overset{\alpha L_{3}n_{1}k_{1}}{}_{W_{N}} W_{N}^{L_{2}L_{3}n_{2}k_{1}} .$$
(31)

Note that this combination of CASE B eliminates the second term of Equation (11) as

$$W_{N}\alpha\delta n_{1}k_{2}(N_{2}N_{1}) = \exp(-j2\pi\alpha\delta n_{1}k_{2}N/N) = 1 .$$
(32)

Choosing the values $L_2 = L_3 = \alpha = \delta = 1$ satisfies the theorem and, when substituted into Equation (31), gives

$$\hat{A}(k_{1},k_{2}) = \sum_{n_{1}} \sum_{n_{2}} \hat{x}(n_{1},n_{2}) W_{N_{2}}^{n_{2}k_{2}} W_{N_{1}}^{n_{1}k_{1}} W_{N}^{n_{2}k_{1}}, \qquad (33)$$

where

 $\hat{A}(k_1,k_2) = A(k_1 + N_1k_2) \mod N$ $\hat{x}(n_1,n_2) = x(N_2n_1 + n_2) \mod N$.

The $W_N^{n2^{k_1}}$ term is the twiddle factor. Like the DIT algorithm, the DIF algorithm requires on the order of N² complex operations until nested according to one of the following three expressions:

$$\hat{A}(k_{1},k_{2}) = \sum_{n_{1}=0}^{N_{1}-1} W_{N_{1}}^{n_{1}k_{1}} \left[\sum_{n_{2}=0}^{N_{2}-1} W_{N_{2}}^{n_{2}k_{2}} \left[\hat{x}(n_{1},n_{2})W_{N}^{n_{2}k_{1}} \right] \right]$$
(34)

$$\hat{A}(k_{1},k_{2}) = \sum_{n_{2}=0}^{N_{2}-1} W_{N_{2}}^{n_{2}k_{2}} \left[W_{N}^{n_{2}k_{1}} \left[\sum_{n_{1}=0}^{N_{1}-1} \hat{x}(n_{1},n_{2}) W_{N_{1}}^{n_{1}k_{1}} \right] \right]$$
(35)

化化学的过去式 化分子的 医副外的 计算机分词分词分词 化分析 医外裂下的

$$\hat{A}(k_{1},k_{2}) = \sum_{n_{2}=0}^{N_{2}-1} W_{N_{2}}^{n_{2}k_{2}} \left[\sum_{n_{1}=0}^{N_{1}-1} W_{N_{1}}^{n_{1}k_{1}} \left[\hat{x}(n_{1},n_{2})W_{N}^{n_{2}k_{1}} \right] \right].$$
(36)

Equations (34) and (36) are calculated like Equations (28) and (29), respectively. Only the twiddle factors and the mapping are different. Equation (35) is calculated by (1) calculating an N₁-point DFT of each column, (2) twiddling the results, and (3) calculating an N₂-point DFT on each row of the twiddled results. All three nested expressions of the DIF algorithms require the same amount of computations as the nested DIT algorithms.

The two other possible combinations of CASE B of the theorem involve using Equations (16) or (17) for both the n and k mapping. However, neither of these maps allow the elimination of a complex exponential term of Equation (11). This prevents the efficient nesting of the two-dimensional function of Equation (11).

CASE A of the theorem is the basis of all DFT algorithms involving mutually prime factors, including the WFTA, PFA, and the SWIFT algorithms. Using Expression (15) of the theorem for n and k gives the mapping

$$\begin{cases} n = (\alpha N_2 n_1 + \beta N_1 n_2) \mod N \\ k = (\gamma N_2 k_1 + \delta N_1 k_2) \mod N \end{cases}.$$
(37)

Substituting this into Equation (11) gives

$$\hat{A}(k_{1},k_{2}) = \sum_{n_{1}} \sum_{n_{2}} \hat{x}(n_{1},n_{2}) W_{N_{2}}^{\beta \delta N_{1} n_{2} k_{2}} W_{N_{1}}^{\alpha \gamma N_{2} n_{1} k_{1}} .$$
(38)

Note that both the second and fourth complex exponential term of Equation (11) are eliminated by this mapping. Good [3] suggested using the values

$$\begin{cases} \alpha = \beta = 1 \\ \delta = N_1^{-1} \mod N_2 \\ \gamma = N_2^{-1} \mod N_1 \end{cases}$$
(39)

1.●のことでは、後になったなななななな。●によっていた」となっていた。●のですができる。●によったのです。

where δ and γ are multiplicative inverses of N₁ and N₂, respectively. The multiplicative inverse of a number N is defined as the unique integer, A, which belongs to the set $(0, 1, \dots, M-1)$ and satisfies

$$(A*N) \mod M = 1$$
 (40)

For example, if $N_1 = 3$ and $N_2 = 7$ are used in Equations (37) and (39) then $\delta = 5$ and $\gamma = 1$, giving the mapping

$$\begin{cases} n = (7n_1 + 3n_2) \mod 21 \\ k = (7k_1 + 15k_2) \mod 21 \end{cases} .$$
(41)

The multiplicative inverses of Equation (39) are guaranteed to exist because N_1 and N_2 have been restricted to being mutually prime for CASE A. Substituting the values of Equation (39) into Equation (38) gives

$$\hat{A}(k_{1},k_{2}) = \sum_{n_{1}} \sum_{n_{2}} \hat{x}(n_{1},n_{2}) W_{N_{2}}^{n_{2}k_{2}} W_{N_{1}}^{n_{1}k_{1}}, \qquad (42)$$

where

$$\hat{A}(k_1,k_2) = A((N_2^{-1} \mod N_1)N_2k_1 + (N_1^{-1} \mod N_2)N_1k_2) \mod N$$
$$\hat{x}(n_1,n_2) = x(N_2n_1 + N_1n_2) \mod N.$$

Because there is no twiddle factor, Equation (42) can be computed like a twodimensional DFT. Thus, a DFT of length $N = N_1 * N_2$ where $(N_1, N_2) = 1$ can be computed according to the two obvious nesting arrangements

$$\hat{A}(k_{1},k_{2}) = \sum_{n_{1}=0}^{N_{1}-1} W_{N_{1}}^{n_{1}k_{1}} \left[\sum_{n_{2}=0}^{N_{2}-1} \hat{x}(n_{1},n_{2}) W_{N_{2}}^{n_{2}k_{2}} \right], \qquad (43)$$

$$\hat{A}(k_{1},k_{2}) = \sum_{n_{2}=0}^{N_{2}-1} W_{N_{2}}^{n_{2}k_{2}} \left[\sum_{n_{1}=0}^{N_{1}-1} \hat{x}(n_{1},n_{2}) W_{N_{1}}^{n_{2}k_{1}} \right] .$$
(44)

The N-point DFT as nested in Equation (43) can be calculated by performing N₂-point DFTs on all N₁ rows of the data and performing N₁-point DFTs on all N₂ columns of the intermediate data resulting from step 1. The nesting of Equation (44) simply dictates calculating the column DFTs before calculating the row DFTs. The above method is referred to as the row/column technique. For the above two cases the computational requirement for calculating an $N = N_1 * N_2$ point DFT where $(N_1, N_2) = 1$ is

$$NRMULT = N_1 \mu_2 + N_2 \mu_1$$
 (45)

 $\mathbf{NRADDS} = \mathbf{N}_1 \alpha_2 + \mathbf{N}_2 \alpha_1 \quad . \tag{46}$

If N_2 can be factored further such that

and the second second second

$$N_2 = N_3 * N_4$$
, (47)

where N_3 and N_4 are mutually prime, then the arithmetic requirements for computing the Ny-point DFT are

$$\mu_2 = N_3 \mu_4 + N_4 \mu_3 \tag{48}$$

$$\alpha_2 = N_3 \alpha_4 + N_4 \alpha_3 . \tag{49}$$

Thus, if N is factored such that

enderstand. Szeregyizet frederikte getregenek frederiktettette kieleszte

$$N = N_1 * N_2 * N_4$$
(50)

where all the factors are mutually prime, Equations (48) and (49) can be substituted into Equations (45) and (46) to give the requirements

$$NRMULT = N_1 N_2 \mu_3 + N_3 N_1 \mu_2 + N_2 N_3 \mu_1$$
(51)

$$NRADDS = N_1 N_2 \alpha_3 + N_3 N_1 \alpha_2 + N_2 N_3 \alpha_1 .$$
 (52)

In general, when N is factored into r mutually prime factors

$$N = N_1 * N_2 * \dots N_r$$
, (53)

the arithmetic requirements are simply

$$NRMULT = N \sum_{i=1}^{r} \frac{\mu_i}{N_i}$$
(54)

$$\mathbf{NRADDS} = \mathbf{N} \sum_{\mathbf{i}=1}^{\mathbf{r}} \frac{\alpha_{\mathbf{i}}}{\mathbf{N}_{\mathbf{i}}}$$
(55)

III. EFFICIENT DFT ALGORITHMS

The radix-2 FFT is restricted to lengths N where N is a power of 2 (i.e., $N = 2^r$) [6]. The radix-2 algorithm is based on a complete decomposition of the N-point DFT into r 2-point DFTs. For N = 2 the DFT definition (see Equation (1)) simplifies to

$$A(0) = x(0) + x(1)$$
(56)

$$A(1) = x(0) - x(1)$$
 (57)

Thus, only two complex additions are required for each 2-point DFT. As shown in the last section, however, twiddle factors or complex multiplications are required between each 2-point DFT as the factors of N are not mutually prime. The number of real multiplications and additions required for an N-point radix-2 FFT can be expressed as

$$NRMULT = 2Nlog_2 N$$
(58)
$$NRADDS = 3Nlog_2 N .$$
(59)

The radix-4 FFT is restricted to lengths N where N is a power of 4 (i.e., N = 4^r) [6]. The radix-4 algorithm only partially decomposes N into r 4-point DFTs. The 4-point DFT also requires no multiplications as shown in Appendix B. Like the radix-2 FFT, the radix-4 FFT requires complex multiplications because of twiddle factors. However, the radix-4 FFT requires 25% less multiplications than the radix-2 FFT as the former has fewer small point DFTs to connect with twiddle factors. An N-point radix-4 FFT requires

$$NRMULT = (3N/2)\log_2 N$$
 (6)

$$NRADDS = (11N/4) \log_2 N$$
 (61)

The MFFT was published by Singleton in 1969 [7]. The MFFT can compute the DFT of any sequence length. N must be factored as

$$N = 2^{r} 3^{s} 4^{r} 5^{u} p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{k}^{m_{k}} , \qquad (62)$$

where the p_1 's represent odd prime numbers. The arithmetic reqirements of the MFFT were determined [8] to be

$$NRMULT = 2rN + 4sN + 3tN + 32uN/5 + \sum_{i=1}^{k} [2(p_i-1) + (m_i)N(p_i-1)^2/p_i + 4(m_i)N(p_i-1)/p_i] - 4(N-1)$$
(63)

NRADDS = 3rN + 16sN/3 + 11tN/2 + 8uN +

$$\sum_{i=1}^{\kappa} [(p_i-1) + 7N(m_i)(p_i-1)/p_i + (m_i)N(p_i-1)^2/p_i] - 2(N-1) .$$
(64)

For the comparison purposes of this report, the arithmetic requirements of the MFFT were only calculated for the lengths suitable for the other efficient algorithms. The arithmetic requirements based on the restricted factorization

$$N = 2^{r} \times 3^{s} \times 4^{t} \times 5^{u} \times 7^{w} , \qquad (65)$$

can be expressed

$$\mathbf{NRMULT} = \mathbf{N}(2\mathbf{r} + 4\mathbf{s} + 3\mathbf{t} + 32\mathbf{u}/5 + 60\mathbf{w}/7 - 4) + 12\mathbf{w} + 4 \tag{66}$$

$$\mathbf{NRADDS} = \mathbf{N}(3\mathbf{r} + 16\mathbf{s}/3 + 11\mathbf{t}/2 + 8\mathbf{u} + 78\mathbf{w}/7 - 2) + 6\mathbf{w} + 2 \,. \tag{67}$$

The SWIFT algorithm is based on the standard multidimensional DFT decomposition which results when all the factors of N are mutually prime [9]. As shown by Equations (43) and (44) of the last section, no twiddle factors are required for this algorithm. Thus, as discussed in the last section, the arithmetic requirements of an N-point SWIFT algorithm with r mutually prime factors are

$$NRMULT = N \sum_{i=1}^{r} \frac{\mu_i}{N_i}$$
(68)

NRADDS = N
$$\sum_{i=1}^{r} \frac{\alpha_i}{N_i}$$
 (69)

The SWIFT algorithm uses efficient small point DFT algorithms of lengths 2,3,4,5,6,7,8,9, and 16. Table 3-1 gives the number of non-trivial multiplications and additions required for each of these small point DFTs.

TABLE 3-1. SWIFT SHORT DFT REAL OPERATIONS REQUIREMENTS

<u>N</u>	$\underline{\mu_1}$	$\frac{\alpha_1}{\alpha_1}$
2	0	4
3	4	12
4	0	16
5	16	32
7	36	60
8	4	52
9	44	88
16	24	144

A listing of the algorithms is given in Appendix C. The different mutually prime combinations of these small point DFTs allow the SWIFT algorithm to compute DFTs of lengths N = 2 to N = 5040.

The PFA [10-11] is also based on the standard multidimensional DFT decomposition which results when the factors of N are mutually prime. Accordingly, the arithmetic requirements of an N-point PFA algorithm with r mutually prime factors are

 $NRMULT = N \sum_{i=1}^{r} \frac{\mu_i}{N_i}$ (70)

$$NRADDS = N \sum_{i=1}^{r} \frac{\alpha_i}{N_i} .$$
 (71)

The PFA also uses efficient small point DFTs of lengths 2,3,4,5,7,8,9, and 16. The number of non-trivial real multiplications and additions required for each of these small point DFTs is given in Table 3-2. TABLE 3-2. PFA SHORT DFT REAL OPERATIONS REQUIREMENTS

<u>N</u>	<u>µ1</u>	$\frac{\alpha_1}{\alpha_1}$
2	0	4
3	4	12
4	0	16
5	10	34
7	16	72
8	4	52
9	20	84
16	20	148

A listing of the algorithms is given in Appendix B.

The WFTA [12-17] was first published by Dr. Samuel Winograd in the midseventies. Like the SWIFT and PFA, the WFTA is based on a mutually prime factorization of N resulting in no twiddle factors. However, the WFTA offers an alternative to the row/column evaluations of Equation (42) used in the SWIFT and PFA. The WFTA uses the special structure of the WFTA short DFT transforms to nest all the multiplications inside of input and output additions. The number of real multiplications required of an N-point WFTA algorithm with r mutually prime factors is ● 「こういい」という日 ● 「いいいいい」

NRMULT =
$$2 \prod_{i=1}^{r} \delta_i - 2 \prod_{i=1}^{r} \beta_i$$
, (72)

where

 $\delta_{i} \equiv$ the number of complex multiplications in the N_i-point DFT

 $\beta_1 \equiv$ the number of multiplications by "1" in the N₁-point DFT.

The number of real additions required [10] for two, three, and four factors is expressed in Equations (73), (74), and (75), respectively.

 $\mathbf{N}\mathbf{R}\mathbf{A}\mathbf{D}\mathbf{D}\mathbf{S} = 2\mathbf{N}\mathbf{1}^{\mathbf{\gamma}}\mathbf{2} + 2\mathbf{\delta}\mathbf{2}^{\mathbf{\gamma}}\mathbf{1}$ (73)

$$NRADDS = 2N_1 N_2^{\gamma}_3 + 2\delta_3 [N_1^{\gamma}_2 + \delta_2^{\gamma}_1]$$
(74)

$$NRADDS = 2N_1 N_2 N_3 Y_4 + 2\delta_4 [N_1 N_2 Y_3 + \delta_3 [N_1 Y_2 + \delta_2 Y_1]], \qquad (75)$$

where $\gamma_i \equiv$ the number of complex additions in the N₁-point DFT. The WFTA also uses efficient small point DFTs of lengths 2,3,4,5,7,8,9, and 16. The total number of complex multiplications, the number of multiplications by "1," and the number of complex additions required for each of these small point DFTs is given in Table 3-3.

TABLE 3-3. WFTA SHORT DFT COMPLEX OPERATIONS REQUIREMENTS

<u>N</u>	<u>δ</u> 1	<u>β</u> 1	<u>Y1</u>
2	2	2	2
3	3	1	6
4	4	3	8
5	6	1	17
7	9	1	36
8	8	4	26
9	11	1	44
16	18	5	74

The ordering of the factors of N can affect the number of real additions required by the WFTA. In this report the optimum ordering of the factors of N was always used to calculate WFTA real addition requirements. This optimum ordering is shown in Tables 4-7 and 4-8. A listing of the WFTA small point algorithms is given in Appendix A.

IV. COMPARISON OF ALGORITHM ARITHMETIC REQUIREMENTS

The arithmetic requirements of the various one-dimensional DFT algorithms are given in this chapter for lengths N = 2 to N = 5040. In addition, the requirements for various two-dimensional DFT algorithms are given for sizes ranging from 2x2 to 90x90. The one-dimensional requirements for the DFT, radix-2 FFT, radix-4 FFT, MFFT, SWIFT, WFTA, and PFA algorithms are compared in Tables 4-1 through 4-8. The two-dimensional requirements for the custom DFT, DFT, radix-2 FFT, MFFT, SWIFT, WFTA, and PFA algorithms are compared in Tables 4-9 through 4-12. In addition, Table 4-13 summarizes the chapter by listing the number of current and future chips required for various one and two-dimensional transforms. Tables 4-1 through 4-13 are located at the end of this chapter.

Tables 4-1 and 4-2 give the total number of real operations (i.e., the sum of the real multiplications and real additions) required for the onedimensional DFT algorithms of N = 2 through N = 5040. Measured by the number of real operations, the DFT is by far the least efficient algorithm. For example, the DFT requires 54,600% of the operations required of the radix-2 FFT for N = 4096. A radix-4 FFT requires 85% of the real operations required by the radix-2 FFT. The MFFT requires fewer real operations than the DFT and the two FFTs. In addition, the MFFT can be used for every sequence length listed between N = 2 and N = 5040. However, the MFFT usually requires about 10% more operations than the PFA and WFTA. Generally, the PFA and WFTA are the most efficient algorithms for the lengths between N = 20 and N = 5040. The number of real operations required for the PFA, WFTA, and SWIFT algorithms are within 10% of the number required by the best algorithm for 100%, 96%, and 44% of the lengths in this range, respectively.

Generally, the multiplication operation requires more time and hardware resources than the addition operation. This is also true at the chip level where a multiplier requires approximately four times the silicon "real estate" of an adder. Accordingly, a weighted index of arithmetic complexity is particularly important if a custom chip can be designed to match the requirements of an algorithm. The weighted unit shown in Tables 4-3 and 4-4 is the Total Equivalent Real Multiplications (TERM). The TERM unit is simply the total of the required real multiplications added to one-fourth the number of required real additions. As with the total number of real operations, the TERM count shows the DFT to be by far the least efficient algorithm. For example, the DFT requires from 700% to 62,000% of the TERM of comparable radix-2 FFTs. A radix-4 FFT requires about 80% of the TERM required by the radix-2 FFT. As before, the TERM index shows the MFFT and SWIFT algorithms to be more efficient than the DFT and FFT algorithms. However, for many of the lengths, the MFFT and SWIFT algorithms require up to 200% and 150% of the TERM required of the WFTA algorithm. For lengths between N = 20 and N = 5040, the WFTA is the most efficient algorithm for 93% of the lengths with the PFA being the most efficient algorithm for the other 7%. The required TERM for the WFTA, PFA, SWIFT, and MFFT algorithms are within 10% of the number required by the best algorithm for 100%, 58%, 2%, and 0% of the lengths in this range.

Tables 4-5 and 4-6 give the number of real multiplications required for one-dimensional DFT algorithms of lengths N = 2 through N = 5040. Once again, the DFT is by far the least efficient algorithm in terms of real multiplications. For example, the DFT requires 53,300% of the real multiplications needed for the radix-2 FFT for N = 4096. A radix-4 FFT requires 75% of the real multiplications required by the radix-2 FFT. The MFFT offers considerable savings in the number of multiplications required compared to the DFT and the FFT algorithms. However, the MFFT is never within 10% of the arithmetic requirement of the most efficient algorithms for lengths greater than N = 4. The WFTA is superior at minimizing the number of required multiplications. The WFTA is the most efficient algorithm in terms of real multiplications for 93% of the lengths between $N \approx 20$ and N = 5040. The PFA is the most efficient algorithm for the other 7% of the lengths. The percentages of the lengths in this range at which the MFFT, SWIFT, WFTA, and PFA algorithms are within 10% of the most efficient algorithms are 0%, 2%, 100%, and 9%, respectively.

uter states i states a states de la substate sameta sameta sameta sameta substates de la substate de la substa

Tables 4-7 and 4-8 give the number of real additions required for onedimensional DFT algorithms of lengths N = 2 through N = 5040. In terms of real additions, the DFT is the least efficient algorithm followed in order of increasing efficiency by the radix-2 FFT and the radix-4 FFT. The radix-4 FFT requires 92% of the real additions required of the radix-2 FFT. The SWIFT algorithm is the most efficient, or as efficient, as any other algorithm for 98% of the lengths N = 20 to N = 5040. The percentages of the lengths in this range at which the SWIFT, PFA, WFTA, and MFFT algorithms are within 10% of the most efficient algorithms are 98%, 76%, 33%, and 20%, respectively.

The thrust of this report has been one-d.mensional DFT algorithms. However, two-dimensional DFT algorithms can be easily implemented with onedimensional algorithms using the row/column technique. Using this procedure, one-dimensional DFT transforms are performed on all the rows, followed by onedimensional transforms performed on all the columns of data resulting from the row transforms. Thus, the arithmetic requirements of a row/column implementation of an NxN DFT algorithm is simply 2N times the requirements of the selected N-point one-dimensional DFT algorithm.

True two-dimensional FFT algorithms have been developed which do not rely on one-dimensional tranforms [18]. These algorithms generally require less complex multiplications than the row/column methods. However, they are harder to implement and are less universal than the one-dimensional algorithms. Algorithms have also been developed for computing the two-dimensional DFT of arrays whose elements do not have rectangular spacing [19]. Refinement and extension of this work is very important to radar digital beam forming efforts as most phased array antennas have triangularly spaced elements. Although important, an in-depth examination of these algorithms is beyond the scope of this report.

The arithmetic requirements of a one-dimensional DFT are the same whether the coefficients are the standard ones of Equation (1) or those selected for individual custom responses. However, if the row/column method is selected for the two-dimensional DFT, only standard coefficients can be used. The custom shaping of the response of each transform output point afforded by the custom two-dimensional DFT requires a weighted sum of all the elements in the NxN data array. Each transform output point can have a unique NxN array of coefficients exhibiting none of the symmetrical properties of the standard DFT coefficients. Computing each custom DFT output point requires $4N^2$ real multiplications and $4N^2-2$ real additions. Computing all of the N^2 transform outputs therefore requires $4N^4$ real multiplications, $4N^4-2N^2$ real additions, and $8N^4-2N^2$ total real operations.

The number of total real operations, TERM, real multiplications, and real additions for the custom DFT, DFT, radix-2 FFT, MFFT, SWIFT, WFTA, and PFA two-dimensional algorithms for array sizes 2x2 through 90x90 are shown in Tables 4-9 through 4-12. The arithmetic requirements shown in the tables are for the row/column method except for the custom DFT.

As the tables indicate, the arithmetic requirements for the twodimensional custom DFT are enormous. However, if the number of desired custo~ mized transform output points is a small percentage of N^2 , this algorithm can be useful. For example, if only four customized transform output points were required from an 8x8 data array, 2040 real operations would be required. To get four non-customized transform points from the radix-2 FFT would require the 1920 real operations needed to compute all the output points. The relative efficiency of the row/column algorithms is the same as the relative efficiency of the one-dimensional algorithms as the two-dimensional requirements are simply 2N times that of the one-dimensional requirements discussed earlier. As in the one-dimensional case, there are considerable differences in arithmetic complexity among the two-dimensional algorithms. For example, the 30x30 custom DFT, DFT, and WFTA algorithms require 6,478,200 real operations, 428,400 real operations, and 27,120 real operations, respectively. The differences are even greater for the larger arrays. For example, the 90x90 custom DFT, DFT, and PFA algorithms require 524,863,800 real operations, 11,631,600 real operations, and 369,360 real operations, respectively.

It is difficult to project the exact hardware size and cost for the various algorithms based solely on their arithmetic requirements. An analysis of the memory requirements, software complexity, optimum architectures, and availability of special purpose integrated circuits for each algorithm and array size is beyond the scope of this report. However, a brief review of present and near term arithmetic capabilities of digital integrated circuits will give insight into the feasibility of implementing the various algorithms for different array sizes.

Currently, TRW offers 8-bit and 16-bit multiplier/accumulator (MAC) chips which provide real multiplication and addition rates of 14 MHz and 9 MHz, respectively. These two TRW chips are packaged in dual-in-line packages with pin counts of 48 pins and 64 pins. Depending on the algorithm and required operating speeds, these chips can be multiplexed to reduce the total chip count.

Dramatic integrated circuit performance increases are expected in the near future as a result of the Department of Defense's Very High Speed Integrated Circuit (VHSIC) program. The \$325 million, seven year long program which began in March of 1980, was designed to provide a fifty-fold improvement in high speed, high throughput signal and data processing integrated circuits. By the end of phase I of the program in mid-1984, six contractors will provide a pilot line production of chips with 1.25 micron architectural features, minimum throughput rates of 25 MHz, and a minimum functional throughput rate (FTR) of 5×10^{11} gate-Hz/cm². The pilot line production of chips with .5 to .8 micron architectural features, minimum throughput rates of 10^{13} gate-Hz/cm² will be required by the completion of phase II of the program in 1987 [20].

Several phase I VHSIC contractors will produce MAC chips. Preliminary reports indicate that IBM will produce a complex multiplier/accumulator (CMAC) chip. This implies a one-chip capability of performing a simultaneous set of approximately eight real operations (i.e., four real multiplications and four real additions) at a 25 MHz rate [21]. Westinghouse, another VHSIC contractor, plans to build a complex number arithmetic vector processor capable of performing 40 million complex number operations/second, which would only require two 6x8 in. printed circuit boards. In addition, Westinghouse is designing a ten-board array type processor capable of performing 200 million complex number operations/sec. or more than one billion real number operations/ sec. [22]. In addition to the VHSIC program, commercial very large scale integration (VLSI) chips produced with VHSIC technology are expected to provide VHSIC-like arithmetic capabilities.

A convenient way to compare the chip capabilities and algorithm requirements is to use the units: (1) millions of real multiplications/sec (MMPS), (2) millions of real additions/sec (MAPS), and (3) millions of total equivalent real multiplications/sec (TERMS). For example, the 16-bit TRW MAC chip is capable of 9 MMPS and 9 MAPS. The IBM VHSIC CMAC chip will offer roughly an eleven-fold improvement at 100 MMPS and 100 MAPS when developed. A hypothetical custom VHSIC/VLSI chip with at least 125 TERMS of arithmetic capability should be available by 1984. For the comparisons in this report, the time required to perform the transform will be arbitrarily assumed to be 1 sec. This choice of time makes the number of real multiplications, additions, and TERM found in the tables equal to the number of MMPS, MAPS, and TERMS, respectively. For example, computing a 64-point DFT in 1 sec requires 16,384 MMPS, 16,256 MAPS, and 20,448 TERMS. As the MMPS requirement of the 64-point DFT is more demanding than the MAPS requirements, the former dictates the use of 1,821 TRW MACs or 164 IBM CMACs. The TERMS numbers predict that 164 custom VHSIC/VLSI chips would be required.

Using the assumptions and methodology of the previous paragraph, Table 4-13 was constructed to estimate the relative number of TRW, IBM VHSIC, and

custom VHSIC/VLSI chips required to meet the arithmetic requirements of various one and two-dimensional DFTs, radix-2 FFTs, and WFTAs. The chip count does not include non-arithmetic chips necessary for implementation, such as control and memory chips. However, a rough estimate of the number of required arithmetic chips can be found simply by scaling the chip count in the table by the ratio of 1 µsec and the desired transform time. This table summarizes the relative differences of complexity among the various algorithms and suitability of current and proposed hardware. For example, the DFT shown in the table requires more arithmetic chips than any other algorithm except the custom two-dimensional DFT. As shown in the table, the custom VHSIC/VLSI chip offers no significant reductions in the DFT chip count. This illustrates that the TRW and IBM chips are well suited to the DFT. In contrast, the WFTA requires fewer arithmetic chips, although it is not particularly well suited to the TRW and IBM chips. Roughly a three-fold improvement is gained using custom VHSIC/VLSI chips tailored to the WFTA's required multiplication to addition ratio. The radix-2 FFT compares surprisingly well with the WFTA when implemented with the MAC and CMAC chips of TRW and IBM. The extra arithmetic chips required by the radix-2 FFT would probably be offset by the extra control and memory chips required by the more structurally complex WFTA algorithm. However, if custom chips are available, the radix-2 FFT would generally require 200% to 300% of the arithmetic chips required by the WFTA. The PFA and radix-4 FFT algorithms are not shown in the table as they are very close to the numbers given for the WFTA and radix-2 algorithms, respectively. Likewise, the MFFT and SWIFT algorithms are not shown as they reside between the radix-2 FFT and the WFTA in performance.

	PFA	4	16	- TO	77	88	56	104	112	204	212	100	256	376	296	404 1		748	576	632	920	760	1,096	1,088	L, 548	1.636	1,368	1,544	1,840 2,052	
	WFTA	80	18	24	2 4	. 06	68	110	911	204	196	104	258	352	292	400	404	772	578	620	00/	734	1,076	1,026	L,004	1.684	1,340	1,558	1,746 2,068	
QUIREMENTS	SWIFT	. 4	16	0T	77	96	56	132	112	220	224	008	272	400	296	490		816	672	664	1 004	760	1,160	1,136	T, 88	1.772	1,560	1,608	1,936 2364	
PERATIONS RE	MFFT	4	16	97	0 4 7 4	120	6 6	120	140 148	286	272	707	344	508	410	040	518	1,008	768	882	1 224	982	1,548 I	1,580	2,004	2,342	1,890	2,038	2,674	
ID REAL OI	RADIX 4 FFT	1		34	1	1	-	10 10 11		1		717		1	1	2 2 1		1	1	† 1 1			1	1	1 637	+,004	1			
TABLE 4-1.	RADIX 2 FFT	4		40	1	1	120	1		1		070					800	1	: : :			1	1	1	1 020	0.92 ° T		!		
	DFT	28	99	071	276	378	496	630	1.128	1,540	1,770	0T0 7	3,160	3,486	4,560	077°0	8,128	9,730	10,296	12,720	14,028	18,336	24,976	28,680	31,020	39,060	41,328	51,040	56,280 64,620	
	N	2	ო .	4 u		, r	8	6 ç	12	14	51 ;	01	20	21	24	0 7 7 0	32	35	36	40	47 47	48	56	93	63	202	72	80	84	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

.

TABLE 4-2. 1D REAL OPERATIONS REQUIREMENTS

16,10

1

5

		_						_		- 1				_	_	_	_		_		_	_	-		_	_	_	_		-	_		
	PFA	2,804	2,584	2,536	3,348		3,552	3,240	4,184	4,464	6,028	5,912	7,200		7,944	10,512	9,544	10,008	12,896	15,912	1	17,848	22,284	22,536	28,312	35,352		47,088	62,504		101,736		221,112
	WFTA	2,740	2,646	2,356	3,460		3,650	3,302	3,916	4,498	5,900	5,654	7,426	1	8,004	11,592	9,302	006 6	12,642	16,116		19,102	24,444	23,678	27,388	38,222	1	51,410	64,046	1	109,124		255,302
	SWIFT	3,008	2,712	2,632	3,828	1	3,824	3,624	4,376	5,088	6,436	6,104	8,160		8,488	11,964	9,928	11,256	13,712	17,832		18,936	25,188	25,032	29,944	39,192	1	52,896	65,768		113,352		242,344
	MFFT	3,956	3,464	2,634	4,734	3.142	5,150	4.278	6,164	6,408	8,938	8,342	10,326	7,174	11,676	14,760	13,480	14,610	19,322	23,148	16,902	25,288	32,646	31,734	42,820	49,800	37,382	69,678	91,496	84,998	151,932	184,326	321,480
RADTX 4	FFT	1	1	1	1			1		1	1	1	t	8,704			1		1	1	1		1				43,520					208,896	ł
RADIX 2	FFT			1	;	4,480			ł	1	: ; ;	1	1	10,240		1		1	1	1	23,040			1			51,200		1	112,640		245,760	
	DFT	87,990	100,128	114,960	126,756	130,816	156,520	165,600	225,456	2.58,840	352,380	460,320	507,528	523,776	626,640	793,170	902,496	1,036,080	1,410,360	2,031,120	2,096,128	2,507,680	3,173,940	4,145,760	5,643,120	8,126,496	8,386,560	12,698,280	22,575,840	33,550,336	50,798,160	134,209,536	203.202.720
	N	105	112	120	126	128	140	144	168	180	210	240	252	256	280	315	336	360	420	504	512	560	630	720	840	1,008	1,024	1.260	1,680	2,048	2,520	4,096	5.040
_																																	

1D TOTAL EQUIVALENT REAL MULTIPLICATIONS (TERM) REQUIREMENTS TABLE 4-3.

	_	_	_	_	_		_	_		_	_	_	_	_	_	_	_					_	_	_	_										
PFA	1	7	4	19	17	34	17	41	42	40	75	16	57	93	94	151	107	164	196	1	300	204	233	323	377	283	391	422	600		634	489	581	688	798
WFTA	5	6	12	21	27	36	29	44	42	42	75	75	73	63	96	127	103	366	164	1 2	273	206	221	275	334	257	371	360	548	1	580	461	544	594	712
SWLFT	1	7	4	24	17	21	17	66	53	40	109	107	60	141	116	202	107	232	229	1	423	300	277	425	546	292	527	488	921	1	881	681	684	892	1,137
MFFT	п	7	4	24	26	66	26	09	11	67	153	143	73	165	170	274	196	333	364	. 229	552	384	446	646	660	465	801	821	1.122	557	1.279	962	1.017	1,410	1,563
RADIX 4 FFT		1	18	1	1	1							140		1	1	1	1				1	1		1		-		1	840		1	-	1	1
RADIX 2 FFT			22		1	1	66	8	1	1			176		1		1	1		740				1	1	1				1.056		1	1		
DFT	91	77	78	123	177	242	316	CTC	405	714	973	1 118	1 272	1 611	1 990	2,195	2,4,2 2,6,8	3 906	4 485	701 5	108	00TO	7 080	8 799	10,103	11 496	15 652	17 070	10 814	20,048	24 465	25,884	31 960	35 238	40 455
N	•	4 9) <	r u	ר ע 	2	- 0	o c		2	14	t 1 - F			20	2 F	77	1 Q 7 C	2 0	5.6	1 c 1 c	ייי		7 7 7 7 7	15				2.4			2 0	1 0	200	5 6

1D TOTAL EQUIVALENT REAL MULTIPLICATIONS (TERM) REQUIREMENTS TABLE 4-4.

No. Contraction

5 97 **9**3 1.1

											_			_				_										_				
PFA	1,144	943	979	1,263		1,338	1,185	1,565	1,686	2,392	2,303	2,652		2,991	4,166	3,613	3,777	4,994	5,871	.	6,787	8,646	8,589	10,933	13,191		17,922	24,281		38,679		84.603
WFTA	927	897	799	1,159		1,232	1,115	1,297	1,516	1,958	1,892	2,446		2,643	3,788	3,047	3,261	4,128	5,211		6,226	7,890	7,694	8,785	12,221	1	16,412	20,378	1 1 1	34,403		79.856
SWIFT	1,514	1,236	1,111	1,905		1,832	1,596	1,973	2,364	3,133	2,612	3,936		3,979	6,117	4,492	5,133	6,476	8,439		8,868	12,549	11,436	13,897	18,516		25,728	30,524	1	54,291	ł	114.772
MFFT	2,180	1,766	1,328	2,573	1,461	2,767	2,153	3,263	3,414	4,920	4,321	5,537	3,333	6,285	8,184	7,054	: 814	10,504	12,441	3,069	13,462	13,083	16,793	23,299	26,502	17,797	33,195	49,310	41,221	83,301	89,093	174 774
RADIX 4 FFT		1	1	ł	1		1	1	1	1		1	4,480	1	1	!	1		1	1		1	1	1	1	22,400			1	1	107,520	1
RADIX 2 FFT		1			2,464		1		1			Ì	5,632	1					1	12,672	1			1	1	28,160		1	61,952		135,168	1
DFT	55,073	62,664	71,940	79,317	81,856	97,930	103,608	141,036	161,910	220,395	2.87,880	317,394	327,552	391,860	495,968	564,312	647,820	881,790	1,269,828	1,310,464	1,567,720	1,984,185	2,591,640	3,527,580	5,079,816	5,242,368	7,937,370	14,111,160	20,970,496	31,750,740	83,884,032	127,005,480
W	105	112	120	126	128	140	144	168	180	210	240	252	256	280	315	336	360	420	504	512	560	630	720	840	1008	1024	1260	1680	2048	2520	9607	2040

NA MARKANA ANA

;

23

TABLE 4-5. 1D REAL MULTIPLICATION REQUIREMENTS

Mar all also

WFTA PFA	4 6 4	8	12 10	18	18 16	6 6 4	20	20	10	32	20	50	0 1	40	76	44	64	100		150	80	100	152	190	124	156	200	284	1	300	196	260	304
WFTA 4	4	∞	12	18	8	, e					-																						
	4			-			22	20	18	32	34	36	640	42	52	40	66	68		106	82	88	104	130	98	136	138	196	1	212	168	206	210
SWIFT 0		0	16	8	36	4	44	32	16	72	68	24	88	64	136	44	144	136		292	176	148	272	364	136	316	272	632		584	388	376	544
MFFT 0	4	0	16	16	48	12	40	48	40	108	100	36	112	112	196	124	228	256	132	400	256	300	460	472	292	552	568	808	324	924	652	676	988
RADIX 4 FFT 4		12	1	1	1	1	1	1	1		1	96	1	4			1	-	8	1	1		1	1	81		1	8	576		1		1
RADIX 2 FFT 0 0	, I	16			!	48	1	1		1	1	128			1	!			320			1	1	1	1			1	768		1	1	1
DFT 16	36	64	100	144	196	256	324	400	576	784	006	1,024	1,296	1,600	1,764	2,304	3,136	3,600	4,096	4,900	5,184	6,400	7,056	8,100	9,216	12,544	14,400	15,876	16,384	19,600	20,736	25,600	28,224
FACTURS 2	1 ന	4	Ś	2×3	7	æ	σ	5x2	3x4	7×2	5x3	16	9x2	5x4	7×3	3x8	7x4	5x3x2	25	5x7	9x4	5x8	7x3x2	5x9	16×3	7x8	5x4x3	7×9	26	5x7x2	9×8	5x16	7x4x3
N N	5	4	ŝ	9	~	8	6	10	12	14	15	16	18	20	21	24	28	30	32	35	36	40	42	45	48	56	60	63	64	70	72	80	84

いたが、中国のななななないが、国家のためになったななななどのなかない。 アイドロ 国家のなかなななななない 美国ななない かんかん 書き アイン・シュー

TABLE 4-6. ID REAL MULTIPLICATION REQUIREMENTS

N	FACTORS	DFT	RADIX 2 FFT	RADIX 4 FFT	MFFT	SWIFT	WFTA	PFA
105-1	5x7x3	44,100			1,588	1,016	322	590
112	7×16	50,176			1,200	744	314	396
120	5x8x3	57,600		1	892	604	280	460
126	7×9×2	63,504	1	1	1,852	1,264	392	568
128	27	65,536	1.792		006	1		1
140	5x7x4	78,400	.]	1	1,972	1,168	426	600
144	9x16	82,944		1	1.444	920	386	500
168	7x8x3	112,896		1	2,296	1,172	424	692
180	5x9x4	129,600			2,416	1,456	522	760
210	5x7x2x3	176,400			3,580	2,032	644	1,180
240	5x16x3	230,400	1		2,980	1,448	638	1,100
252	7x9x4	254,016	ł	1	3,940	2,528	786	1,136
256	28	262,144	4,096	3,072	2,052	ł		
280	5x7x8	313,600			4,488	2,476	856	1,340
315	5x7x9	396,900		1	5,992	4,168	1,186	2,050
336	7x16x3	451,584		1	4,912	2,680	962	1,636
360	5x9x8	518,400		1	5,548	3,092	1,048	1,700
420	5x7x3x4	705 600	1		7,564	4,064	1,290	2,360
504	7x9x8	1,016,064	1		8,872	5,308	1,576	2,524
512	29	1.048.576	9.216	1	5,124	1		
560	5x7x16	1,254,400		1	9,520	5,512	1,934	3,100
630	5x7x9x12	1.587,600			13,228	8,336	2,372	4,100
720	5x9x16	2.073.600			11,812	6,904	2,366	3,940
840	5x7x6x3	2,822,400		1	16,792	8,548	2,584	5,140
1.008	7x9x16	4,064,256		1	18,736	11,624	3,554	5,804
1.024	210	4,194,304	20,480	15,360	11,268	1		
1.260	5x7x9x4	6,350,400	•		27,700	16,672	4,746	8,200
1.680	5x7x16x3	11.289.600		1	35,248	18,776	5,822	11,540
2.048	211	16.777.216	45.056		26,628		1	
2.520	5x7x9x8	25,401,600	·	l	60,424	34,604	967*6	17,660
4,096	212	67,108,864	98,304	73,728	57,348		ł	
5,040	5×7×9×16	101,606,400		1	125,872	72,248	21,374	39,100

TABLE 4-7. ID REAL ADDITION REQUIREMENTS

PFA	4	12	16	34	36	72	52	84	88	96	172	162	148	212	216	300	252	400	384		598	496	532	684	746	636	940	888	1,264	{	1,336	1,172	1,284	1,536	1,672
WFTA	4	12	16	34	36	72	52	88	88	96	172	162	148	212	216	300	252	400	384	1	666	496	532	684	814	636	940	888	1,408	1	1,472	1,172	1,352	1,536	1,808
SWIFT	4	12	16	32	36	60	52	88	84	96	148	156	144	212	208	264	252	352	372		524	496	516	612	728	624	844	864	1,156	1	1,188	1,172	1,232	1,392	1,636
MFFT	4	12	16	32	40	72	54	80	92	108	178	172	146	212	232	312	286	418	432	386	608	512	582	742	752	069	966	1,012	1,256	930	1,418	1,238	1,362	1,686	1,772
RADIX 4 FFT	1	1	22		1		1		1	i	1 1	1	176	1		ł	1	ļ			1	1	1	1		1	1			1,056		1			
RADIX 2 FFT	4	1	24	ł	!		72		1	1	1		192	1	1	1		1	1	480	1	1	1	1	1		1			1,152		1		1	
ከፑጥ	12	30	56	06	132	182	240	306	380	552	756	870	992	1,260	1,560	1,722	2,256	3,080	3,540	4,032	4 830	5,112	6,320	6,972	8,010	9,120	12,432	14,280	15,750	16,256	19,460	20,592	25,440	28,056	32,220
FACTORS	2	5	4	5	2x3	7	8	6	5x2	3x4	7x2	5x3	16	9x2	5x4	7×3	3x8	7×4	5x3x2	25	5x7	9×4	5x8	7×3×2	5x9	16x3	7x8	5x4x3	7x9	26	5×7×2	9x8	5x16	7x4x3	5x9x2
X	2	. m	4	ŝ	9	~	8	6	10	12	14	15	16	18	20	21	24	28	8	32	35	36	40	42	45	48	56	60	63	64	70	72	80	84	90

÷.-

TABLE 4-8. 1D REAL ADDITION REQUIREMENTS

100

C.

「おいたいないないのない」

1. S. S. S. S.

1. HE WAR

ł

CTORS DFT FFT MFFT SWIFT WFFA FFA x3 43,890 2,368 1,992 2,418 2,214 x3 49,952 2,368 1,968 2,312 2,076 x3 57,360 2,564 1,968 2,312 2,076 x4 78,120 2,588 2,076 2,076 2,076 x4 78,120 2,584 1,968 2,322 2,188 x4 78,120 2,583 2,742 2,740 x4 125,560 3,178 2,656 3,016 2,740 x5 112,560 2,834 2,704 2,916 2,448 x5 112,560 3,912 2,740 2,916 x4 125,980 3,916 2,740 2,916 2,448 x5 129,224 2,324 2,	
CTORS DFT FFT MFFT SWIFT WFTA x3 43,890 2,368 1,992 2,418 6 49,952 2,368 1,992 2,418 x3 57,360 2,264 1,968 2,332 x4 78,120 2,242 2,076 2,076 x4 78,120 2,242 2,076 3,224 x4 78,120 2,242 2,076 3,224 x4 78,120 2,242 2,264 3,492 x5 5,580 2,688 2,242 x4 78,125 2,242 x5 112,560 2,318 2,704 2,916 x5 129,240 2,326 4,404 5,256 x6 129,240 2,362 4,6656 5,016 <t< td=""><td>14,748 18,184 18,596 23,172 29,548 38,888 50,964 84,076 84,076</td></t<>	14,748 18,184 18,596 23,172 29,548 38,888 50,964 84,076 84,076
CTORS DFT RADIX 2 RADIX 2 NHFT SWIFT x3 43,890 2,368 1,992 6 49,952 2,368 1,992 x3 57,360 2,368 1,992 x4 78,120 2,564 1,968 x4 78,120 2,242 2,028 x4 78,120 2,882 2,704 x4 78,120 2,832 2,564 x4 78,120 2,882 2,704 x4 112,560 2,834 2,704 x4 129,240 3,992 3,632 x4 175,980 3,992 3,632 x4 253,512 5,356 4,404 6x3 253,512 5,356 4,404 6x3 253,512 5,356 4,404 6x3 253,512 5,632 5,632 x8 313,040 5,356 4,404 6x3 250,122 5,356 4,404 6x8 396,270 5,35	17,168 22,072 21,312 24,804 34,668 46,664 58,224 99,628 233,928
CTORS DFT RADIX RADIX 2 AUFT x3 43.890 2,368 6 49.952 2,368 x3 57,360 2,368 x4 78,120 2,368 x4 78,120 2,382 x5 53,250 2,382 x4 78,120 2,383 x5 112,560 2,334 x5 112,560 2,383 x4 122,560 3,992 x5 112,560 3,992 x4 175,980 5,368 x5 313,040 5,368 x8 313,040 5,362 x8 1,015,056 5,362 x8 1,044 5,632 5,112 x8 396,270 9,062 x8 1,044 9,062	13,424 16,852 18,128 21,396 21,396 27,568 36,992 78,748 78,748
CTORS DFT RADIX 2 RADIX 4 x3 43,890 FFT FFT FFT 6 49,952 x3 57,360 x4 78,120 65,280 2,688 66 112,560 x4 82,616 65,280 2,688 65,280 2,688 66 112,560 x4 253,512 6x3 253,512 6x3 253,512 6x3 253,512 6x3 396,270 x8 1,015,056 x8 1,04,760 x8 1,045,06	11,778 15,768 19,418 19,922 26,028 31,064 41,978 41,978 56,248 56,248 91,508 91,508 1126,978 1195,608
CTORS DFT RADIX 2 x3 DFT FFT FFT x3 43,890 FFT x3 49,952 65,280 x4 78,155 65,280 2,688 x4 78,155 65,280 6 112,560 x4 122,980 6x3 125,560 6x3 175,980 6x3 253,512 6,144 x4 261,632 6,144 x8 313,040 x8 517,680 x8 1,015,056	28,160 28,160 135,168
CTORS DFT 43,890 6 49,952 7 43,890 6 49,952 7 49,952 7 49,952 6 5,280 6 78,120 6 82,650 6 112,560 8 450,912 8 313,040 8	13,824 30,720 67,584 147,456
x x x x x x x x x x x x x x x x x x x	1,047,552 1,253,280 1,258,340 2,072,160 2,072,160 4,192,256 4,192,256 4,192,256 6,347,880 11,286,240 16,773,120 16,773,120 67,100,672 67,100,672
7×11 5×75 5×75 5×75 5×75 5×75 5×75 5×75	2 ⁹ 5x7x15 5x7x15 5x7x9x2 5x7x8x3 5x7x8x3 7x9x16 7x9x4 5x7x16x3 211 5x7x9x16 5x7x9x16
N 105 1120 1205 1205 1205 1205 1205 1205	00000000000000000000000000000000000000

TABLE 4-9. 2D REAL OPERATIONS REQUIREMENTS

Sec. 22

,			_		-				_		_								-		-			_			_					_			-
PFA	16	96	128	440	528	1,232	896	1,872	2,160	2,688	5,712	6,360	5,376	9,072	10,240	15,792	14,208	25,984	29,040	1	52,360	41,472	50,560	70,224	84,240	72,960	122,752	130,560	195,048		229,040	196,992	247,040	309,120	369.360
WFTA	32	108	192	460	648	1,260	1,088	1,980	2,160	2,736	5,712	5,880	5,888	9,072	10,320	14,784	14,016	26,096	27,120		54,040	41,616	49,600	66,192	84,960	70,464	120,512	123,120	202,104		235,760	192,960	249,280	293,328	372,240
TAIWS	16	96	128	480	528	1,344	896	2,376	2,320	2,688	6,160	6,720	5,376	10,800	10,880	16,800	14,208	27,776	30, 580	1	57,120	48,384	53,120	74,256	98,280	72,960	129,920	136,320	225,288	1	248,080	224,640	257,280	325,248	425.520
MFFT	16	96 .	128	480	672	1,680	1,056	2,160	2,800	3,552	8,008	8,160	5,824	11,664	13,760	21,336	19,680	36,176	41,280	33,152	70,560	55,296	70,560	100,968	110,160	94,272	173,376	189,600	260,064	160,512	327,880	272,160	326,080	449,232	520.560
RADIX 2 FFT	16	1	320	1	ł	1	1,920	1	1				10,240	1	;		1	1	1	51,200			1	1	!	1		1	1	245,760	1				
DFT	112	396	6096	1,900	3,312	5,292	7,936	11,340	15,600	27,072	43,120	53,100	64,512	92,016	126,400	146,412	218,880	348,096	428,400	520,192	681,100	741,312	1,017,600	1,178,352	1,449,900	1,760,256	2,797,312	3,441,600	3,984,876	4,177,920	5,468,400	5,951,232	8,166,400	9,455,040	11.631.600
DFT (CUSTOM)	120	630	2,016	4,950	10,296	19,110	32,640	52,326	79,800	165,600	306,936	404,550	523,776	839,160	1,279,200	1,554,966	2,653,056	4,915,680	6,478,200	8,386,560	12,002,550	13,434,336	20,476,800	24,890,040	32,800,950	42,462,720	78,669,696	103,672,800	126,015,750	134,209,536	192,070,200	214,980,480	327.667,200	398,282,976	524,863,800
N ²	7	6	16	25	36	49	64	81	100	144	196	225	256	324	400	441	576	784	906	1.024	1,225	1,296	1,600	1,764	2,025	2,304	3,136	3,600	3,969	4,096	4,900	5,184	6,400	7,056	8.100
z	2	e	4	5	9	2	8	6	10	12	14	15	16	18	20	21	24	28	30	32	35	36	40	42	45	48	56	60	63	64	70	72	80	84	06

TABLE 4-10. 2D TOTAL EQUIVALENT REAL MULTIPLICATIONS (TERM) REQUIREMENTS

Z	N ²	DFT (CUSTOM)	DFT	RADIX 2 FFT	MFFT	SWIFT	WETA	PFA
2	4	78	76	4	4	4	20	4
e	6	401	261		42	42	54	42
4	9T	1,272	624	176	32	32	96	32
5	25	3,113	1,225		240	240	210	190
9	36	6,462	2,124	ļ	312	204	324	204
~	49	11,981	3,381	1	924	714	504	476
8	64	20,448	5,056	1,056	416	272	464	272
6	81	32,765	7,209		1,080	1,188	792	738
10	100	49,950	006 6		1,420	1,060	840	840
12	144	103,608	17,136	1	1,608	960	1,008	960
14	196	191,982	27,244	1	4,284	3,052	2,100	2,100
15	225	253,013	33,525		4,290	3,210	2,250	2,730
16	256	327,552	40,704	5,632	2,336	1,920	2,336	1,824
18	324	524,718	57,996	.	5,940	5,076	3,348	3,348
20	400	799,800	79,600	1	6,800	4,640	3,840	3,760
21	441	972,185	92,169	1	11,508	8,484	5,334	6,342
-24	576	1.658,592	137,664	!	9,408	5,136	4,944	5,136
28	784	3,072,888	218,736		18,648	12,992	9,296	9,184
30	900	4.049.550	269,100		21,840	13,740	9,840	11,760
32	1.024	5,242,368	326,656	28,160	14,656		1	
35	1,225	7,502,513	427,525	1	38,640	29,610	19,110	21,000
36	1.296	8,397,432	465,264	!	27,648	21,600	14,832	14,688
40	1,600	12,799,200	638,400	1	35,680	22,160	17,680	18,640
42	1,764	15,557,598	739,116	1	54,264	35,700	23,100	27,132
45	2,025	20,502,113	909,225	ļ	59,400	49,140	30,060	33,930
48	2,304	26,540,928	1,103,616	1	44,640	28,032	24,672	27,168
56	3,136	49,170,912	1,753,024	1	89,712	59,024	41,552	43,792
60	3,600	64,798,200	2,156,400	1	98,520	58,560	43,200	50,640
63	3,969	78,762,821	2,496,501	1	141,372	116,046	69,048	75,600
64	4,096	83,884,032	2,617,344	138,168	71,296	1	1	
70	4,900	120,047,550	3,425,100		179,060	123,340	81,200	88,760
72	5,184	134,366,688	3,727,296		138,528	98,064	66,384	70,416
80	6,400	204,796,800	5,113,600	1	162,720	109,440	87,040	92,960
84	7,056	248,932,152	5,919,984		236,880	149,856	99,792	115,584
06	8.100	328,045,950	7.281.900		281.340	204.660	128,160	143,640

.....

PFA	C	24	0	100	96	224	64	360	400	384	896	1,500	040	1 200	3 192	0 110 -	3.584	6.000	.	10,500	5,760	8,000	12,768	17,100	11,904	17,472	24,000	35,784		42,000	28,224	
WFTA	91	36	- 64	120	216	252	256	396	400	432	896	1,020		1,440	184 2 184	1 020	3,696	4,080		7,420	5,904	7,040	8,736	11,700	9,408	15,232	16,560	24,696	1	29,680	24,192	
SWIFT	C	24		160	96	504	64	792	640	384	2,016	2,040	89/	30T °C	000.2	11.0	8,064	8,160		20,440	12,672	11,840	22,848	32,760	13,056	35,392	32,640	79,632	1	81,760	55,872	
MFFT	c	24	; 0	160	192	672	192	720	960	960	3,024	3,000	1,152 1,222	4,032	4,40U 8,232	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12.768	15,360	8,448	28,000	18,432	24,000	38,640	42,480	28,032	61,824	68,160	101,808	41,472	129,360	93,888	
RADIX 2 FFT	C		128		1	1	768	1	 	1	1	.	4,096	! ;				1	20,480	· •	1	1			1	1		1	98,304		1	
DFT	64	04 216	512	1,000	1,728	2,744	4,096	5,832	8,000	13,824	21,952	27,000	32,/68	40,020	64,000	110 500	175,616	216,000	262,144	343,000	373,248	512,000	592,704	729,000	884,736	1,404,928	1,728,000	2,000,376	2,097,152	2,744,000	2,985,984	
DFT (CUSTOM)	64	324	1.024	2,500	5,184	9,604	16,384	26,244	40,000	82,944	153,664	202,500	262,144	419,904	040°040	1 126 1/1	2.458.624	3,240,000	4.194.304	6,002,500	6,718,464	10,240,000	12,446,784	16,402,500	21,233,664	39,337,984	51,840,000	63,011,844	67,108,864	96,040,000	107,495,424	
N2		4 0	19	25	36	49	64	81	100	144	196	225	256	324	400	144	10/0	006	1,024	1,225	1,296	1,600	1,764	2,025	2,304	3,136	3,600	3,969	4,096	4,900	5,184	
z	ſ	7 6	1 4	r in	9	7	ø	6	10	12	14	15	16	18 18	22.5	1 2	2 C	200	32	35	36	40	42	45	48	56	60	63	64	70	72	•

TABLE 4-12. 2D REAL ADDITION REQUIREMENTS

100

I d								г ії		~	4	4	4	~	80	12	12	22	53	: 	41,	35,	42,	57,	62	61	105,	106,	159,	: 	187,	168,	205,	258	
WFTA	16	72	128	340	432	1,008	832	1,584	1,760	2,304	4,816	4,860	4,736	7,632	8,640	12,600	12,096	22,400	23,040	1	46,620	35,712	42,560	57,456	73,260	61,056	105,280	106,560	177,408	1	206,080	168,768	216,320	258,048	225 110
SWIFT	16	72	128.	320	432	840	832	1,584	1,680	2,304	4,144	4,680	4,608	7,632	8,320	11,088	12,096	19,712	22,320	1	36,680	35,712	41,280	51,408	65,520	59,904	94,528	103,680	145,656		166,320	168,768	197,120	233,856	087 700
MFFT	16	72	128	320	480	1,008	864	1,440	1,840	2,592	4,984	5,160	4,672	7,632	9,280	13,104	13,728	23,408	25,920	24,704	42,560	36,864	46,560	62,328	67,680	66,240	111,552	121,440	158,256	119,040	198,520	178,272	217,920	283,248	070 010
RADJ.X Z	16		192		1	1	1,152	1	1				6,144			;			ļ	30,720			1			1	1	1	8	147,456	1		1		
DFT	48	180	448	006	1,584	2,548	3,840	5,508	7,600	13,248	21,168	26,100	31,744	45,360	62,400	72,324	108,288	172,480	212,400	258,048	338,100	368,064	505,600	535,648	720,900	875,520	1,392,384	1,713,600	1,984,500	2,080,768	2,724,400	2,965,248	4,070,400	4,713,408	2002 2007 2
DFT (CUSTOM)	56	306	992	2,450	5,112	9,506	16,256	26,082	39,800	82,656	153,272	202,050	261,632	419,256	639,200	777,042	1,325,952	2,457,056	3,238,200	4,192,256	6,000,050	6,715,872	10,236,800	12,443,256	16,398,450	21,229,056	39,331,712	51,832,800	63,003,906	67,100,672	96,030,200	107,485,056	163,827,200	199,134,432	1000 503 020
N ²	4	6	16	25	36	49	64	81	100	144	196	225	256	324	400	441	576	784	006	1,024	1,225	1,296	1,600	1,764	2,025	2,304	3,136	3,600	3,969	4,096	4,900	5,184	6,400	7,056	0 1 0 0 1
N	7	n	4	ŝ	و	~	∞	6	10	12	14	15	16	18	20	21	24	28	30	32	35 25	36	40	42	45	48	56	60	63	64	70	72	80	84	00

のため、これをためためで、「なんななななななな」をなれたからになる。それではないので、それなどなどなど、「「なんななななな」。それないたかで、「それないない」、「それないないない」、「ないないないなななな (American States)

TABLE 4-13. APPROXIMATE ARITHMETIC CHIP COUNT FOR 14SEC TRANSFORM

Mosent. Strategical and the

L'ALLAN

		TRW		ISHV	C IBM		CUSTOM	VHSIC/VL:	11
z	DFT	FFT(2)	WFTA	DFT	FFT(2)	WFTA	DFT	FFT(2)	WFTA
8	29	8	9	3	1	T	m	1	1
16	114	22	17	11	2	2	11	2	-1
24	256		28	23	1	ຕ	23	1	
30	400		43	36		4	36		7
32	456	54	1	14	S	ļ	41	4	
48	1,024		71	66		7	92	1	2
60	1.600		66	144		6	144	-	n
64	1,821	128		164	12		164	6	ļ
72	2,304	1	131	208		12	207		4
06	3,600		201	324		18	324	1	6
120	6,400		231	576	-	21	576		7
128	7,282	299	1	656	27		655	20	
144	9,216		324	830		30	829		6
180	14,400		442	1,296		40	1,296		13
256	29,128	683		2,622	62	}	2,621	45	
360	57,600		984	5,184	1	89	5,183		26
504	112,896		1,616	10,161	ľ	146	10,159	1	42
512	116,509	1,536		10,486	139	!	10,484	102	
720	230,400	1	2,368	20,736	1	214	20,734		62
1,008	451,584		3,852	40,643		347	40,639	!	98
1,024	466,034	3,414		41,943	308	1	41,939	225	
1,680	1,254,400		6,470	112,896		583	112,890		163
2.048	1,864,136	7,510		167,773	676	ł	167,764	496	
2,520	2,822,400		11,070	254,016	!	66	254,006		276
4,096	7,456,541	16,384	1	671,089	1,475	1	671,073	1,082	
5,040	11,289,600		25,992	1,016,064		2,340	1,016,044		639
8x8	456	128	93	17	12	6	41	6	4
16x16	3,641	683	527	328	62	48	326	45	19
24x24	12,288	1	1,344	1,106		121	1,102		40
32×32	29,128	3,414	1	2,622	308		2,614	226	
48x48	98,304		6,784	8,848] ;	611	8,829		198
60×60	192,000		11,840	17,280		1,066	17,252		346
64x64	233,017	16,384		20,972	1,475		20,939	1,082	
06×06	648,000		36,160	98,320		CC2. 5	962,86	1	1,020

•••••

Appendix A. WFTA SHORT DFT ALGORITHMS

Algorithms are given to compute the DFT for lengths 2, 3, 4, 5, 7, 8, 9 and 16. These algorithms were taken from [23], but have been credited to the work of Radar and Winograd [23,13]. The complex input data x(1), x(2),..., x(N) and complex output data X(1), X(2),..., X(N) are in natural order. The complex values M1, M2,..., MM are the results of the M complex multiplications required for the small point transform. The complex values Tl, T2, ... and S1, S2,... are temporary values derived from the input data and intermediate results, respectively. Generally, the operations must be performed in the order listed. The total number of trivial and non-trivial complex multiplications and additions required for each DFT is listed with the algorithm. In addition, the number of complex multiplications by W^o or "1" is given in parentheses.

(1) N=2; 2 complex multiplications (2), 2 complex additions.

```
M1=1*(x(1)+x(2))
M2=1*(x(1)-x(2))
X(1)=M1
X(2)=M2
```

(2) N=3; 3 complex multiplications (1), 6 complex additions, $u=2\pi/3$.

```
Coefficients: C1=-3/2
                C2=jsin u
T1=x(2)+x(3)
M1=1*(x(1)+T1)
M2=C1*T1
M3=C2*(x(3)-x(2))
S1=M1+M2
X(1)=M1
X(2) = S1 + M3
```

X(3)=S1-M3

(3) N=4; 4 complex multiplications (3), 8 complex additions.

T1=x(1)+x(3)T2=x(2)+x(4)M1=1*(T1+T2)M2=1*(T1-T2)M3=1*(x(1)-x(3))M4=j*(x(4)-x(2))X(1) = M1X(2)=M3+M4 X(3)=M2 X(4)=M3-M4

(4) N=5; 6 complex multiplications (1), 17 complex additions, $u=2\pi/5$.

C1 = -5/4Coefficients: $C2=(\cos u - \cos 2u)/2$ C3=∽j sin u

C4=-j(sin u+sin 2u) C5=j(sin u-sin 2u) T1=x(2)+x(5)T2=x(3)+x(4)T3=x(2)-x(5)T4=x(4)-x(3)T5=T1+T2 M1=1*(x(1)+T5)M2 = C1 * T5M3=C2*(T1-T2)M4=C3*(T3+T4)M5=C4*T4M6=C5*T3 S1=M1+M2S2=S1+M3 S3=M4-M5 S4=S1-M3 S5=M4+M6 X(1)=M1X(2)=S2+S3X(3) = S4 + S5X(4)=S4~S5 X(5)=S2~S3 (5) N=7; 9 complex multiplications (1), 36 complex additions, $u=2\pi/7$. Coefficients: C1=-7/6 $C2=(2\cos u - \cos 2u - \cos 3u)/3$ $C3=(\cos u-2\cos 2u+\cos 3u)/3$ $C4=(\cos u+\cos 2u-2\cos 3u)/3$ C5=-j(sin u+sin 2u-sin 3u)/3 $C6=j(2\sin u - \sin 2u + \sin 3u)/3$ $C7=j(\sin u-2\sin 2u-\sin 3u)/3$ $C8=j(\sin u+\sin 2u+2\sin 3u)/3$ T1=x(2)+x(7)T2=x(3)+x(6)T3=x(4)+x(5)T4=T1+T2+T3 T5=x(2)-x(7)T6=x(3)-x(6)T7=x(5)-x(4)T8=T1~T3 T9=T3-T2 T10=T5+T6+T7T11=T7~T5 T12=T6-T7 T13=-T8-T9 T14=-T11-T12 M1=1*(x(1)+T4)M2=C1*T4M3=C2*T8 M4=C3*T9

るないでいたののです。

Ŗ

2

l

à

ħ.

	W5					
	MG-05+T10					
	M7-06+T11					
	M/=00*111					
	M8=C/*T1Z					
	M9=C8*114					
	S1=-M3-M4					
	S2=-M3-M5					
	S3≕-M7-M8					
	S4 = M7 + M9					
	S5=M1+M2					
	S6=S5~S1					
	S7=S5+S2					
	S8=S5+S1~S2					
	S9=M6~S3					
	S10=M6~S4					
	S11=M6+S3+S4					
	X(1)=M1					
	X(2) = S6 + S9					
	X(3) = S7 + S10					
	X(4) = S8 - S11					
	X(5) = S8 + S11					
	X(6) = S7 - S10					•
	X(7) = S6 - S9					
(6)	N=8; 8 complex	multiplications	(4), 2	26 complex	additions,	u=2π/8.
	0	01				
	Coefficients:	Cl=cos u				
		Cz=~jsin u				
	$T_{1=x(1)+x(5)}$					
	$T_{2}=x(3)+x(7)$					
	T2-x(3)+x(7)					
	$T_{2} = X(2) = X(0)$					
	14 - x(2) - x(0)					
	1 J = X(4) + X(0)					
	10=X(4) - X(0)					
	T8=T3+T5					
	M1=1*(T/+T8)					
	M2=1*(T/-T8)					
	M3=1*(T1-T2)					
	M4=1*(x(1)~x(5))				
	M5=C1*(T4-T6)					
	M6=j*(T5-T3)			٠		
	M7=j*(x(7)-x(3))					
	M8=C2*(T4+T6)					
	S1=M4+M5					
	S2=M4-M5					
	s3=M7+M8					
	S4=M7-M8					
	X(1)=M1					
	X(2) = S1 + S3					
	X(3)=M3+M6					
	X(4) = S2 - S4					
	X(5)=M2					

X(6)=S2+S4 X(7)=M3-M6 X(8)=S1-S3

(7) N=9; 11 complex multiplications (1), 44 complex additions, $u=2\pi/9$.

Coefficients:	C1=3/2 C2=-1/2
	C3=cos u
	C4=-cos 4u
	C5=-cos 2u
	C6=-jsin 3u
	C7=jsin u
	C8=jsin 4u
	C9=jsin 2u

T1=x(2)+x(9)T2=x(3)+x(8)T3=x(4)+x(7)T4=x(5)+x(6)T5=T1+T2+T4 $T_{6=x(2)-x(9)}$ T7=x(8)-x(3)T8=x(4)-x(7)T9=x(5)-x(6)T10=T6+T7+T9 T11=T1-T2 T12=T2-T4 T13=T7-T6 T14=T7-T9 T15=-T12-T11 T16=-T13+T14 M1=1*(x(1)+T3+T5)M2=C1*T3 M3=C2*T5 M4=C3*T11 M5=C4*T12 Mf=C5*T15 M7=C6*T10 M8=C6*T8 M9=C7*T13 M10=C8*T14 M11=C9*T16 S1=-M4-M5 S2=M6-M5 S3=-M9-M10 S4=M10-M11 S2=W1+W3+W3 S6=S5-M2 S7=S5+M3 \$8=\$6~\$1 S9=S2+S6 S10=S1-S2+S6 S11=M8~S3

. S12=M8-S4 S13=M8+S3+S4 X(1)=M1 X(2)=S8+S11 X(3)=S9-S12 X(4)=S7+M7 X(5)=S10+S13 X(6)=S10-S13 X(7)=S7-M7 X(8)=S9+S12 X(9)=S8-S11

いたとう

の時間のないの

(8) N=16; 18 complex multiplications (5), 74 complex additions, $u=2\pi/16$.

Coefficients: C1=cos 2u C2=cos 3u C3=cos u+cos 3u C4=cos 3u-cos u C5=-jsin 2u C6=-jsin 3u C7=j(sin 3u-sin u) C8=-j(sin u+sin 3u)

T1=x(1)+x(9)T2=x(5)+x(13)T3=x(3)+x(11)T4=x(3)-x(11)T5=x(7)+x(15)T6=x(7)-x(15)T7=x(2)+x(10)T8=x(2)-x(10)T9=x(4)+x(12)T10=x(4)-x(12)T11=x(6)+x(14)T12=x(6)-x(14)T13=x(8)+x(16)T14=x(8)-x(16)T15=T1+T2 T16=T3+T5 T17=T15+T16 T18=T7+T11 T19=T7-T11 T20=T9+T13 T21=T9-T13 T22=T18+T20 T23=T8+T14 T24=T8-T14 T25=T10+T12 T26=T12-T10 M1=1*(T17+T22)M2=1*(T17-T22) M3=1*(T15-T16) M4=1*(T1-T2)M5=1*(x(1)-x(9))

M6=C1*(T19~T21)
M7=C1*(T4~T6)
M8=C2*(T24+T26)
M9=C3*T24
M10=C4*T26
M11 = i * (T20 - T18)
M12=1*(T5-T3)
$M12 - 4 \times (w(13) - w(5))$
$MIG = \int_{-\infty}^{\infty} (X(IG)^{-1}X(G))$
$M14=03^{(119+121)}$
MI5=C5*(14+16)
M16=C6*(T23+T25)
M17=C7*T23
M18=C8*T25
S1=M4+M6
S2=M4~M6
S3=M12+M14
S4=M14-M12
S5=M5+M7
S6=M5-M7
50-115 117 57-10-118
57-M5 H0
50-FIO-TIO
59=50+57
S10=S5~S7
S11=S6+S8
S12=S6~S8
S13=M13+M15
S14=M13-M15
S15=M16+M17
S16=M16-M18
s17=s13+s15
s18=s13-s15
<u>e10=e14+e16</u>
<u>e20-e1/-e16</u>
320-314-310
X(1) = M1
X(2)=594 C
$X(3) = S1 + S_{-}$
X(4)=S12~S20
X(5)~M3+M11
X(6)=S11+S19
X(7)=S2+S4
X(8)=S10-S18
X(9) = M2
x(10) = \$10 + \$18
$x(1;)=s_2-s_4$
X(12) = S(1-S)
V(12)-W2_W11
X(1) = 10 = 10
X(14)=312T32U
X(15)=51-55
X(16)≕S9~S17

.

Appendix B. PFA SHORT DFT ALGORITHMS

The following algorithms compute the DFT for lengths 2, 3, 4, 5, 7, 8, 9, These algorithms were taken from Burrus and Eschenbacher [11]. They and 16. are part of a complete Fortran listing of a general purpose PFA program. In contrast to Appendix A, these algorithms are written in terms of real multiplications and additions. In addition, no trivial multiplications are used in these algorithms. The real and imaginary parts of the complex input data are represented in natural order by XR(1), XR(2),..., XR(N) and XI(1), XI(2),..., XI(N), respectively. The complex output is stored in natural order in the XR(I) and XI(I) arrays. The values U1, U2,..., T1, T2,..., R1, R2,..., and S1, S2,... are all temporary values derived from input data and intermediate results. Generally, the operations must be performed in the order The total number of real multiplications and additions required for listed. each DFT is listed with each algorithm.

(1) N=2; 0 real multiplications, 4 real additions

Tl=XR(1) XR(1)=T1+XR(2) XR(2)=T1-XR(2) T1=XI(1) XI(1)=T1+XI(2) XI(2)=T1-XI(2)

ų

<u>é (</u>

(2) N=3; 4 real multiplications, 12 real additions, $u=2\pi/3$.

Coefficients: Cl=sin u C2=1/2

T1=(XR(2)-XR(3))*C1 U1=(XI(2)-XI(3))*C1 R1=XR(2)+XR(3) S1=XI(2)+XI(3) T2=XR(1)-R1*C2 U2=XI(1)-S1*C2 XR(1)=XR(1)+R1 XI(1)=XI(1)+S1 XR(2)=T2+U1 XR(3)=T2-U1 XI(2)=U2-T1 XI(3)=U2+T1

(3) N=4, 0 real multiplications, 16 real additions.

R1=XR(1)+XR(3) R2=XR(1)-XR(3) S1=XI(1)+XI(3) S2=XI(1)-XI(3) R3=XR(2)+XR(4) R4=XR(2)-XR(4) S3=XI(2)+XI(4) S4=XI(2)-XI(4) XR(1)=R1+R3

XR(3)=R1-R3 XI(1)=S1+S3 XI(3)=S1-S3 XR(2)=R2+S4 XR(4)=R2-S4 XI(2)=S2-R4 XI(4)=S2+R4

(4) N=5, 10 real multiplications, 34 real additions, $u=2\pi/5$.

Į

.

Coefficients:	Cl=sin u
	C2=sin u+sin 2u
	C3=sin u-sin 2u
	C4=(cos u-cos 2u)/2
	C5=-5/4

R1=XR(2)+XR(5)R2=XR(2)-XR(5)S1=XI(2)+XI(5)S2=XI(2)~XI(5) R3=XR(3)+XR(4)R4=XR(3)-XR(4)S3=XI(3)+XI(4) S4=XI(3)-XI(4) T1=(R2+R4)*C1U1=(S2+S4)*C1 R2=T1-R2*C2 S2=U1~S2*C2 R4=T1~R4*C3 S4=U1~S4*C3 T1=(R1-R3)*C4 U1=(S1-S3)*C4 T2=R1+R3 U2=S1+S3 XR(1)=XR(1)+T2XI(1)=XI(1)+U2T2=XR(1)+T2*C5U2=XI(1)+U2*C5 R1=T2+T1R3=T2-T1 S1=U2+U1 S3=U2-U1 XR(2)=R1+S4 XR(5)=R1-S4 XI(2)=S1-R4 XI(5)≈S1+R4 XR(3)=R3-S2 XR(4)=R3+S2 XI(3)=S3+R2 XI(4)=S3-R2

(5) N=7, 16 real multiplications, 72 real additions, $u=2\pi/7$.

Coefficients: C1=-7/6

C2=(2cos u-cos 2u-cos 3u)/3 $C3=(\cos u-2\cos 2u+\cos 3u)/3$ $C4=(\cos u+\cos 2u-2\cos 3u)/3$ $C5=(\sin u+\sin 2u-\sin 3u)/3$ C6=(2sin u-sin 2u+sin 3u)/3 $C7=(-\sin u+2\sin 2u+\sin 3u)/3$ $C8=(\sin u+\sin 2u+2\sin 3u)/3$ R1=XR(2)+XR(7)R2=XR(2)-XR(7)S1=XI(2)+XI(7)\$2=XI(2)∽XI(7) R3=XR(3)+XR(6)R4=XR(3)-XR(6)S3=XI(3)+XI(6) S4=XI(3)~XI(6) R5=XR(4)+XR(5)R6=XR(4)-XR(5)S5=XI(4)+XI(5) S6=XI(4)~XI(5) T1=R1+R3+R5 U1=S1+S3+S5 XR(1)=XR(1)+T1XI(1)=XI(1)+U1 T1=XR(1)+C1*T1U1=XI(1)+C1*U1 T2=C2*(R1~R5) U2=C2*(S1~S5) T3=C3*(R5~R3) US=C3*(S5~S3) T4=C4*(R3~R1) U4=C4*(S3~S1) R1=T1+T2+T3 R3=T1-T2-T4 R5=T1-T3+T4 S1=U1+U2+U3 S3=U1-U2-U4 S=U1-U3+U4 ે≔C5*(S2+S4~S6) f1=C5*(R2+R4-R6) T2=C6*(R2+R6)U2=C6*(S2+S6) T3=C7*(R4+R6) U3=C7*(S4+S6) T4=C8*(R4~R2) U4=C8*(S4-S2) R2=T1+T2+T3 R4=T1-T2-T4 R6=-T1-T3+T4 S2=U1+U2+U3 S4=U1-U2-U4 S6=U1-U3+U4 XR(2)=R1+S2 XR(7)=R1-S2

XI(2)=S1-R2
XI(7)=S1+R2
XR(3) = R3 + S4
XR(6)=R3-S4
XI(3)=S3-R4
XI(6)=S3+R4
XR(4)=R5-S6
XR(5) = R5 + S6
XI(4) = S5 + R6
XI(5)=S5~R6

(6) N=8, 4 real multiplications, 52 real additions, $u=2\pi/8$.

and a second a second

Coefficients: Cl=sin u

R1=XR(1)+XR(5)R2=XR(1)-XR(5)S1=XI(1)+XI(5)S2=XI(1)~XI(5) R3=XR(2)+XR(8)R4=XR(2)~XR(8) S3=XI(2)+XI(8)S4=XI(2)~XI(8) R5=XR(3)+XR(7)R6=XR(3)~XR(7) S5=XI(3)+XI(7) S6=XI(3)~XI(7) R7 = XR(4) + XR(6)R8=XR(4)-XR(6)S7=XI(4)+XI(6)S8=XI(4)~XI(6) T1=R1+R5 T2=R1-R5 U1=S1+S5 U2=S1-S5 T3=R3+R7 R3=C1*(R3-R7) U3=S3+S7 \$3=C1*(\$3-\$7) T4=R4-R8 R4=C1*(R4+R8) U4=S4-S8 S4=C1*(S4+S8) T5=R2+R3 T6=R2-R3 U5=S2+S3 U6=S2-S3 T7=R4+R6 T8=R4-R6 U7=S4+S6 U8=S4-S6 XR(1)=T1+T3XR(5)=T1-T3 XI(1)=U1+U3

XI(5)=U1-U3
XR(2)=T5+U7
XR(8)=T5-U7
XI(2)=U5-T7
XI(8)=U5+T7
XR(3)=T2+U4
XR(7)=T2-U4
XI(3)=U2-T4
XI(7)=U2+T4
XR(4)=T6+U8
XR(6)=T6-U8
XI(4)=U6-T8
XI(6)=116+T8

(7) N=9, 20 real multiplications, 84 real additions, $u=2\pi/9$.

Coefficients: Cl=sin 3u C2=1/2C3≕-cos 4u C4=-cos 2u C5=cos u C6=-sin 4u C7=-sin 2u C8=-sin u R1=XR(2)+XR(9)R2=XR(2)-XR(9)S1=XI(2)+XI(9)S2=XI(2)-XI(9) R3=XR(3)+XR(8)R4=XR(3)-XR(8)S3=XI(3)+XI(8) S4=XI(3)-XI(8)R5=XR(4)+XR(7)T1=C1*(XR(7)-XR(4))S5=XI(4)+XI(7)U1=C1*(XI(7)-XI(4))R7 = XR(5) + XR(6)R8=XR(5)-XR(6)S7=XI(5)+XI(6)S8=XI(5)-XI(6) R9=XR(1)+R5 S9=XI(1)+S5 T2=XR(1)~R5*C2 U2=XI(1)~S5*C2 T3=(R3~R7)*C3 U3=(S3-S7)*C3 T4=(R1-R7)*C4 U4=(S1~S7)*C4 T5=(R1-R3)*C5 U5=(S1-S3)*C5 R10=R1+R3+R7 S10=S1+S3+S7 R1 = T2 + T3 + T5

Ň		R3=T2~T3~T4
¥,		R7=T2+T4-T5
		S1 ≕ U2+U3+U5
N.		S3=U2-U3-U4
N.		S7=U2+U4~U5
		$\frac{XK(1)=K9+K10}{YT(1)=C0+C10}$
		R5=R9~R10*C2
		S5=S9~S10*C2
		R6=~(R2~R4+R8)*C1
		S6=-(S2-S4+S8)*C1
		T3=(R4+R8)*C6
		U3=(54+58)*C0 T/=(22-28)*C7
7 (U4=(S2-S8)*C7
		T5=(R2+R4)*C8
Ě		U5=(S2+S4)*C8
		R2=T1+T3+T5
		R4=T1~T3~T4 D9-T1+T/-T5
		Ko=11+14~10 S2≖111+113+115
		S4=U1-U3-U4
		S8=U1+U4~U5
		XR(2)=R1-S2
		XR(9) = R1 + S2
У -		XI(Z)=S1+KZ VI(Q)=S1-P2
8		XI(3) = R3 + S4
		XR(8)=R3-S4
		XI(3)=S3-R4
		XI(8)=S3+R4
0 ²		XR(4)=R5-S6
8		XR(/)=R5+S6
N.		XI(4)=SJTKO XI(7)=SS-R6
		XR(5)=R7-S8
		XR(6)=R7+S8
Ĕ		XI(5)=S7+R8
		XI(6)=S7-R8
	(8)	N=16, 20 real multiplications, 148 real additions, u= $2\pi/16$
		Coefficients: Cl=sin 2u
		C2=sin u
44 28		C3=cos u+sin u
		C4=cos u~sin u C5=cos u
		R1=XR(1)+XR(9)
		R2=XR(1)-XR(9)
2 2		S1=XI(1)+XI(9)
S		S2=XI(1)-XI(9)
		KJ=XK(2)+XK(10) P4=YP(2)-YP(10)
		NT-AN(2) AN(10)
8		44
N N		
		Na la fata di kana di kata di kata kata kata kata kata kata kata kat

それがとか量の クランスにいたい 豊め ひののののののののの かたままたが、 いたままになったが、単いたいののののので、豊かないたいので、 アメリー 書からた アメリカ またいのの シング・シング しんしゅう しょうきょうきょう しんてん アメリカ 手手がた アメリカ 手手がた アメリカ 手手がたい アメリカ 手手 しんしん しんしん しんしょう

I

S3=XI(2)+XI(10)
S4=XI(2)-XI(10)
R5=XR(3)+XR(11)
R6=XR(3)-XR(11)
S5=XI(3)+XI(11)
S6=XI(3)-XI(11)
R7 = XR(4) + XR(12)
R8 = XR(4) - XR(12)
S7 = XI(4) + XI(12)
S8=XI(4)-XI(12)
R9=XR(5)+XR(13)
R10=XR(5)-XR(13)
S9=XT(5)+XT(13)
S10=XT(5)-XT(13)
R11 = YR(6) + YR(14)
R12=XR(6)-XR(14)
S11 = YT(6) + YT(14)
S11-XI(0) + XI(14) S12-XI(6) - XI(14)
$D12-MI(0)^{-MI(17)}$
RIJ = AR(7) = AR(1)
$K_{14} = XK(7) = XK(13)$
SIJ=XI(/)TXI(IJ)
$S14=X1(7)^{-}X1(13)$
R15=XR(8)+XR(10)
R10=XR(8)-XR(10)
S15=X1(8)+X1(10)
S16=X1(8)~X1(10)
T1=R1+R9
T2=R! · R9
U1=S1+S9
U2=S1~S9
T3=R3+R11
T4=R3~R11
U3=S3+S11
U4=S3-S11
T5=R5+R13
T6=R5-R13
U5=S5+S13
U6=S5-S13
T7=R7+R15
T8=R7-R15
U7=S7+S15
U8=S7-S15
T9=C1*(T4+T8)
T10=C1*(T4-T8)
U9=C1*(U4+U8)
U10=C1*(U4~U8)
R1=T1+T5
R3=T1-T5
S1=U1+U5
S3=U1-U5
R5=T3+T7
R7=T3~T7
S5=03+07

R9=T'2+T10 R11=T2-T10 S9=U2+U10 S9=U2+U10 S11=U2-U10 R13=T6+T9 R15=T6-T9 S13=U6+U9 S15=U6-U9 T1=R4+R16 T2=R4~R16 U1=S4+S16 U2=S4~S16 T3=C1*(R6+R14)T4=C1*(R6-R14) U3=C1*(S6+S14) U4=C1*(S6-S14) T5=R8+R12 T6=R8-R12 U5=S8+S12 U6=S8~S12 T7=C2*(T2-T6) T8=C3*T2-T7 T9=C4*T6-T7 T10=R2+T4 T11=R2-T4 R2=T10+T8 R4=T10-T8 R6=T11+T9 R8=T11-T9 U7=C2*(U2~U6) U8=C3*U2-U7 U9=C4*U6-U7 U10=S2+U4 U11=S2-U4 S2=U10+U8 S4=U10~U8 S6=U11+U9 S8=U11-U9 T7=C5*(T1+T5) T8=T7-C4*T1 T9=T7-C3*T5 T10=R10+T3 T11=R10-T3 R10=T10+T8 R12=T10-T8 R14=T11+T9 R16=T11-T9 U7=C5*(U1+U5) U8≈U7~C4*U1 U9=U7-C3*U5 U10=S10+U3 U11=S10-U3 S10=U10+U8 S12=U10-U8

S14=U11+U9
S16=U11-U9
XR(1) = R1 + R5
XR(9)=R1~R5
XI(1) = S1 + S5
XI(9)=S1~S5
XR(2) = R2 + S10
XR(16)=R2-S10
XI(2)=S2-R10
XI(16)=S2+R10
XR(3)=R9+S13
XR(15)=R9-S13
XI(3)=S9-R13
XI(15)=S9+R13
XR(4)=R8~S16
XR(14)=R8+S16
XI(4)=S8+R16
XI(14)=S8-R16
XR(5)=R3+S7
XR(13)=R3-S7
XI(5)=S3-R7
XI(13)=S3+R7
XR(6)=R6+S14
XR(12)=R6-S14
XI(6)=S6-R14
XI(12)=S6+R14
XR(7)=R11~S15
XR(11)=R11+S15
XI(7)=S11+R15
XI(11)=S11-R15
XR(8)=R4-S12
XR(10)=R4+S12
XI(8)=S4+R12
XI(10)=S4-R12

Appendix C. SWIFT SHORT DFT ALGORITHMS

The SWIFT short DFT algorithms are given for lengths 3, 5, 7, 9, and 16. The algorithms for lengths 3 and 5 are from [9], with slight modifications. In the modified versions shown here, duplicative additions are eliminated. The SWIFT algorithms for lengths 2, 4, and 8 are identical to the PFA algorithms for the same lengths and are thus omitted. All the algorithms are written in terms of real multiplications and additions. In addition, no trivial multiplications are used in these algorithms. The real and imaginary parts of the complex input data are represented in natural order by XR(1), XR(2),..., XR(N) and XI(1), XI(2),..., XI(N), respectively. The complex output is stored in natural order in the XR and XI input arrays. The values Rl, R2,..., S1, S2,..., U1, U2,..., and T1, T2,... are all temporary values derived from input data and intermediate results. The total number of real multiplications and additions for each DFT is listed with each algorithm. The algorithms listed here have not been optimized with respect to minimizing the amount of temporary storage required.

è.

2

(1) N=3; 4 real multiplications, 12 real additions, $u=2\pi/3$.

Coefficients: C1=-3/2 C2=sin u

R1 = XR(2) + XR(3)R2=XR(2)-XR(3)S1=XI(2)+XI(3) S2=XI(2)-XI(3)XR(1) = R1 + XR(1)XI(1)=S1+XI(1)T1=R1*C1 T2=R2*C2 U1=S2*C2 U2=S1*C1 T3=XR(1)+T1U3=XI(1)+U2XR(2)=T3+U1 XR(3)=T3-U1 XI(2)=U3~T2 XI(3)=U3+T2

(2) N=5, 16 real multiplications, 32 real additions, $u=2\pi/5$.

Coefficients: Cl=cos u-1 C2=cos 2u-1 C3=sin u C4=sin 2u

R1=XR(2)+XR(5) R2=XR(2)~XR(5) S1=XI(2)+XI(5) S2=XI(2)-XI(5) R3=XR(3)+XR(4) R4=XR(3)~XR(4) S3=XI(3)+XI(4)

```
S4=XI(3)-XI(4)
     T1 = R1 + R3
     U1 = S1 + S3
     XR(1)=XR(1)+T1
     XI(1)=XI(1)+U1
     T2=XR(1)+(C1*R1)+(C2*R3)
     T3=XR(1)+(C2*R1)+(C1*R3)
     T4=(C3*R2)+(C4*R4)
     T5=(C4*R2)~(C3*R4)
     U2=(C3*S2)+(C4*S4)
     U3=(C4*S2)-(C3*S4)
     U4=XI(1)+(C1*S1)+(C2*S3)
     U5=XI(1)+(C2*S1)+(C1*S3)
     XR(2) = T2 + U2
     XR(3)=T3+U3
     XR(4)=T3-U3
     XR(5)=T2-U2
     XI(2)=U4-T4
     XI(3)=U5-T5
     XI(4)=U5+T5
     XI(5)=U4+T4
(3) N=7, 36 real multiplications, 60 real additions, u=2\pi/7.
                    Cl=cos u
     Coefficients:
                    C2=cos 2u
                    C3=cos 3u
                    C4=sin u
                    C5=sin 2u
                    C6=sin 3u
     R1=XR(2)+XR(7)
     R2=XR(2)-XR(7)
     S1=XI(2)+XI(7)
     S2=XI(2)-XI(7)
     R3=XR(3)+XR(6)
     R4=XR(3)-XR(6)
     S3=XI(3)+XI(6)
     S4=XI(3)~XI(6)
     R5=XR(4)+XR(5)
     R6=XR(4)-XR(5)
     S5=XI(4)+XI(5)
     S6=XI(4)-XI(5)
     T1=R1+R3+R5
     U1=S1+S3+S5
     XR(1)=XR(1)+T1
     XI(1)=XI(1)+U1
     T2=XR(1)+(C1*R1)+(C2*R3)+(C3*R5)
     T3=XR(1)+(C2*R1)+(C3*R3)+(C1*R5)
     T4=XR(1)+(C3*R1)+(C1*R3)+(C2*R5)
     T5=(C4*R2)+(C5*R4)+(C6*R6)
     T6=(C5*R2)-(C6*R4)-(C4*R6)
     T7=(C6*R2)-(C4*R4)+(C5*R6)
     U2=(C4*S2)+(C5*S4)+(C6*S6)
```

U3=(C5*S2)~(C6*S4)~(C4*S6)
U4=(C6*S2)~(C4*S4)+(C5*S6)
U5=XI(1)+(C1*S1)+(C2*S3)+(C3*S5)
U6=XI(1)+(C2*S1)+(C3*S3)+(C1*S5)
U7=XI(1)+(C3*S1)+(C1*S3)+(C2*S5)
XR(2)=T2+U2
XR(3)=T3+U3
XR(4)=T4+U4
XR(5)=T4-U4
XR(6)=T3-U3
XR(7)=T2-U2
XI(2)=U5~T5
XI(3)=U6-T6
XI(4)=U7-T7
XI(5)=U5+T5
XI(6)=U6+T6
XI(7)=U7+T7

(4) N=9, 44 real multiplications, 88 real additions, $u=2\pi/9$.

1.

Coefficients:	C1=cos	u
	C2=cos	2u
	C3=cos	3u
	C4=cos	4u
	C5≖sin	u
	C6=sin	2u
	C7=sin	3u
	C8=sin	4u

R1=XR(2)+XR(9)
R2=XR(2)-XR(9)
S1=XI(2)+XI(9)
S2=XI(2)-XI(9)
R3=XR(3)+XR(8)
R4=XR(3)-XR(8)
S3=XI(3)+XI(8)
S4=XI(3)-XI(8)
R5 = XR(4) + XR(7)
R6=XR(4)-XR(7)
S5=XI(4)+XI(7)
S6=XI(4)-XI(7)
R7 = XR(5) + XR(6)
R8=XR(5)-XR(6)
S7=XI(5)+XI(6)
S8=XI(5)-XI(6)
T1=R1+R3+R5+R7
U1=S1+S3+S5+S7
XR(1) = XR(1) + T1
XI(1) = XI(1) + U1
T2=(C3*R5)+XR(1)
T3=(C1*R1)+(C2*R3)+(C4*R7)+T2
T4=(C2*R1)+(C4*R3)+(C1*R7)+T2
T5=C3*(T1-R5)+R5+XR(1)
T6=(C4*R1)+(C1*R3)+(C2*R7)+T2

```
T7=C7*R6
T8=(C5*R2)+(C6*R4)+(C8*R8)+T7
T9=(C6*R2)+(C8*R4)-(C5*R8)-T7
T10=C7*(R2~R4+R8)
T11=(C8*R2)~(C5*R4)~(C6*R8)+T7
U2=C7*S6
U3=(C5*S2)+(C6*S4)+(C8*S8)+U2
U4=(C6*S2)+(C8*S4)-(C5*S8)-U2
U5=C7*(S2-S4+S8)
U6=(C8*S2)~(C5*S4)~(C6*S8)+U2
U7=(C3*S5)+XI(1)
U8=(C1*S1)+(C2*S3)+(C4*S7)+U7
U9=(C2*S1)+(C4*S3)+(C1*S7)+U7
U10=C3*(U1~S5)+S5+XI(1)
U11=(C4*S1)+(C1*S3)+(C2*S7)+U7
XP.(2) = T3 + U3
XR(3) = T4 + U4
XR(4) = T5 + U5
XR(5)=T6+U6
XR(6)=T6-U6
XR(7) = T5 - U5
XR(8)=T4-U4
XR(9)=T3~U3
XI(2)=U8-T8
XI(3)=U9-T9
XI(4)=U10-T10
XI(5)=U11-T11
XI(6)=U11+T11
XI(7)=U10+T10
XI(8)=U9+T9
```

y in the set of the the the the the set of t

(5) N=16, 24 real multiplications, 144 real additions, $u=2\pi/16$.

Coefficients:	C1=cos	u
	C2≈cos	2u
	C3≖cos	30

R1=XR(1)+XR(9)R2=XR(1)-XR(9)S1=XI(1)+XI(9)S2=XI(1)-XI(9)R3=XR(2)+XR(16)R4=XR(2)-XR(16)S3=XI(2)+XI(16)S4=XI(2)-XI(16) R5=XR(3)+XR(15)R6=XR(3)-XR(15) S5=XI(3)+XI(15) S6=XI(3)-XI(15) R7 = XR(4) + XR(14)R8=XR(4)-XR(14)S7=XI(4)+XI(14)S8=XI(4)-XI(14)

XI(9)=U8+T8

R9=XR(5)+XR(13)
R10=XR(5)-XR(13)
59 = XI(5) + XI(13)
S'0=XI(5)-XI(13)
$x_{1}=xR(6)+xR(12)$
R12 = XR(6) - XR(12)
S11=XI(6)+XI(12)
S12=XI(6)-XI(12)
R13 = XR(7) + XR(11)
R14 = XR(7) - XR(11)
S13=XI(7)+XI(11)
S14=XI(7)~XI(11)
R15=XR(8)+XR(10)
R16=XR(8)~XR(10)
S15=XI(8)+XI(10)
C16=XI(8)-XI(10)
F1=R13+R5
C2=R13-R5
r3=R1+R9
[4=R1~R9
r5=r3+r1
r6=t3-t1
r7=c2*t2
r8=r2~t7
r9=R2+T7
f10=R3+R15
T11=R3-R15
E12=R7+R11
F13=R7-R11
F14=T10+T12
F15=(C1*T11)+(C3*T13)
Γ16=C2*(T10-T12)
E17=(C3, _11)~(C1*T13)
r18=c2*(R6+R14)
r19=R6-R14
f20=T18+R10
f21=T18-R10
F22=R4+R16
C23=R4-R16
[24 ≈ R8+R12
C25=R8-R12
$T26 \approx (C3 \times T22) + (C1 \times T24)$
(2/=C2*(T23+T25))
f28 = (C1 * T22) - (C3 * T24)
T29≈T23~T25
J1=S1+S9
JZ=81~89
13=80#813 14-85-813
14=00~010 15-111-1110
10=01703 ***
、 つーじ ム ヘ リ 4 17 - C つ 1 11 4
J/=JZTUD 19_9_114
10=02~00 10=02~00

「「「「「「」」

 $\{ x_i \}_{i \in I}$

ASH BUSYER CA

.

.-

```
U10=S3+S15
U11=S3-S15
U12=S11+S7
U13=S11-S7
U14=U10+U12
U15=C2*(U10-U12)
U16=(C1*U11)~(C3*U13)
U17=(C3*U11)+(C1*U13)
U18=C2*(S6+S14)
U19=U18+S10
U20=U18-S10
U21=S6-S14
U22=S4+S16
U23=S4~S16
U24=S8+S12
U25=S8-S12
U26=(C3*U22)+(C1*U24)
U27=C2*(U23+U25)
U28=(C1*U22)-(C3*U24)
U29=U23~U25
XR(1)=T5+T14
XI(1)=U5+U14
XR(5)=T6+U29
XI(5)=U9-T29
XR(9)=T5-T14
XI(9)=U5-U14
XR(13)=T6-U29
XI(13)=U9+T29
T30=T8+T15
U30=U26+U19
T31=T8-T15
U31=U26-U19
XR(2) = T30 + U30
XR(8)=T31+U31
XR(16)=T30-U30
 XR(10)=T31-U31
 T32 = T4 + T16
 U32=U27+U21
 T33=T4-T16
 U33=U27-U21
 XR(3)=T32+U32
 XR(7) = T33 + U33
 XR(15)=T32-U32
 XR(11)=T33-U33
 T34=T9+T17
 U34=U28+U20
 T35=T9-T17
 U35=U28-U20
 XR(4)=T34+U34
 XR(6)=T35+U35
 XR(14)=T34~U34
 XR(12)=T35~U35
 U36=U7+U16
 T36=T20+T26
```

i

U37=U7-U16
T37=T20-T26
XI(2)=U36-T36
XI(8)=U37+T37
XI(16)=U36+T36
XI(10)=U37-T37
U38=U2+U15
T38=T19+T27
U39=U2~U15
T39=T19~T27
XI(3)=U38-T38
XI(7)=U39+T39
XI(15)=U38+T38
XI(11)=U39~T39
U40=U8+U17
T40=T21+T28
U41=U8-U17
T41=T21-T28
XI(4)=U40-T40
XI(6)=U41+T41
XI(14)=U40+T40
xt(12)=1141-T41

M

-à

ŝ

......

יוויד אינטער אינער אי אינער אינערער אינער אי

REFERENCES

- Cooley, J. W. and Tukey, J. W., "An Algorithm for the Machine Calculation of Complex Fourier Series," <u>Mathematics of Computation</u>, Vol. 19, April 1965, pp. 297-301.
- Spaulding, William G., Array Signal Processing for Radar (An Introduction and Assessment for MIRADCOM Interests), US Army Missile Command, Redstone Arsenal, Alabama, February 1979, Internal Technical Note T-79-11.
- 3. Good, I. J., "The Relationship Between Two Fast Fourier Transforms," <u>IEEE</u> Trans. Comput., Vol. C-20, March 1971, pp. 310-317.
- 4. Gold, B. and Rader, C. M., <u>Digital Processing of Signals</u>, McGraw-Hill Book Company, New York, 1969.
- Burrus, C.S., "Index Mappings for Multidimensional Formulation of the DFT and Convolution," <u>IEEE Trans. Acoustics</u>, Speech, and Signal Processing, Vol. ASSP-25, June 1977, pp. 239-242.
- 6. Brigham, E. O., The Fast Fourier Transform, Prent.'ce-Hall, Inc., Englewood Cliffs, New Jersey, 1974.
- Singleton, R. C., "An Algorithm for Computing the Mixed Radix Fast Fourier Transform," IEEE Trans. on Audio and Electroacoustics, Vol. AU-17, June 1969, pp. 93-103.
- 8. Blanken, J. D. and Rustan, P. L., "Selection Criteria for Efficient Implementation of FFT Algorithms," IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. ASSP-30, February 1982, pp. 107-109.
- 9. Smith, W. W., Jr., Robinson, D. J., and Ward, J. R., <u>Advanced Electronics</u> and <u>Digital Sensor Technology - Final Report, Vol. III - Signal</u> <u>Conditioning</u>, <u>Martin Marietta Corp. Contract No. DASG60-75-C-0060</u>, Mod P00010 for US Army Ballistic Missile Defense Advanced Technology Center, Huntsville, AL, February 1980.
- 10. Kolba, D. P. and Parks, T. W., "A Prime Factor FFT Algorithm Using High-Speed Convolution," IEEE Trans, Acoustics, Speech, and Signal Processing, Vol. ASSP-25, August 1977, pp. 281-294.
- Burrus, C. S. and Eschenbacher, P. W., "An In-Place, In-Order Prime Factor FFT Algorithm," <u>IEEE Trans. Acoustics, Speech, and Signal Processing</u>, Vol. ASSP-29, August 1981, pp. 806-816.
- 12. Winograd, S., "On Computing the Discrete Fourier Transform," <u>Mathematics</u> of Computation, Vol. 32, January 1978, pp. 175-199.
- Silverman, H. F., "An Introduction to Programming the Winograd Fourier Transform Algorithm (WFTA), IEEE Trans. Acoustics, Speech and Signal Processing, Vol. ASSP-25, April 1977, pp. 152-165.
- Silverman, H. F., "Corrections and an Addendum to "An Introduction to Programming the Winograd Fourier Transform Algorithm (WFTA), IEEE Trans, Accustics, Speech, and Signal Processing, Vol. ASSP-26, June 1978, p. 268.

15. Tseng, B. D. and Miller, W. C., "Comments on "An Introduction to Programming the Winograd Fourier Transform Algorithm (WFTA)," IEEE Trans, <u>Acoustics, Speech, and Signal Processing</u>, Vol. ASSP-26, June 1978, pp. 268-269.

- 16. Silverman, H. F., "Further Corrections to "An Introduction to Programming the Winograd Fourier Transform Algorithm (WFTA)," <u>IEEE Trans, Acoustics</u> <u>Speech, and Signal Processing</u>, Vol. ASSP-26, October 1978, p. 482.
- McClellan, J. H. and Nawab, H., "Complex General-N Winogral Fourier Transform Algorithm (WFTA)," in Programs for Digital Signal Processing, IEEE Press and Wiley, New York, 1979.
- Harris, D. B., McClellan, J. H., Chan, D. S. K., and Schuessler, H. W., "Vector Radix Fast Fourier Transform," <u>IEEE International Conference on</u> Acoustics, Speech, and Signal Processing Record, 1977, pp. 548-551.
- 19. Mersereau, R. M., "The Processing of Hexagonally Sampled Two-Dimensional Signals, Proc. IEEE, Vol. 67, June 1979, pp. 930-949.
- 20. Sumney, L. W., "VHSIC Status and Issues," <u>Military Electronics/Counter-</u> measures, August 1981, pp. 77-81.
- 21. Martin, Jim, "Very High Speed Integrated Circuits-Into the Second Generation," Military Electronics/Countermeasures, February 1982, p. 84.
- 22. Aviation Week and Space Technology, "Companies Offer Different Approaches," February 16, 1981, pp. 71-72.
- 23. Nussbaumer, H. J., Fast Fourier Transform and Convolution Algorithms, Springer-Verlag, Berlin, 1981.

DISTRIBUTION

	DISTRIBUTION	
^		No• Copi
•	US Army Materiel Systems Analysis Activity ATTN: DRXSY-MP	1
	Aberdeen Proving Ground, Maryland 21005	
	Commander US Army Materiel Development and Readiness Command	
	ATTN: DRCCG DRCRD	1
	5001 Eisenhower Avenue Alexandria, Virginia 22304	-
	Commander Ballistic Missile Defense Systems Command	
	ATTN: BMDSC-HR P.O. Box 1500	1
	Huntsville, Alabama 35807	
	Director Ballistic Missile Defense	
	Advanced Technology Center ATTN: ATC-R	:
	P.O. Box 1500 Huntsville, Alabama 35807	
	Commander	
	US Army Electronics Research and Development Command	
	ATTN: DRSEL, Mr. Fishbien DRCPM-MALR	1 1
	Fort Monmouth, New Jersey	
	IIT Research Institute	1
	10 West 35th Street	-
	Chicago, Illinois 60616	
4	DRCPM-MD-T-C, Mr. Evans]
• •	-ROL, Mr. Bishop	1
	DRSMI-LP, Mr. Voigt	1
•		
	57	

ļ

ĺ

DISTRIBUTION (Concluded)

		No. of Copies
		•
DRSMI-R,	Dr. McCorkle	1
R,	Dr. Rhoades	1
-RE,	Mr. Lindberg	1
-RE,	Mr. Pittman	1
-REI,	Mr. Currie	1
-REG,	Mr. Root	1
-RER,	Mr. Low	1
-RER,	Mr. Hicks	50
-RE,	(Record Set)	1
-RG,	Mr. Yates	1
-RPR		15
-RPT	(Record Set)	1

and a second second second second second a press second second second second second second second second second

á