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"I. INTRODUCTION

This report compares the arithmetic requirements 'of several efficient
algorithms which compute the Discrete Fourier Transform (DFT). The DFT is a
powerful, reversible mapping transform for discrete data sequences with mathe-
matical properties analogous to those of the Fourier transform. The defini-
tions of the DFT and the inverse DFT can be written in the form

N-1
A(k) = 7. x(n)exp(-j2itnk/N) (1)

n=O

N -1
x(n) = ) A(k)exp(j27tnk/N) (2)

k=O p

for k=0,1,..., N-l; n=0,1,..., N-1. The N-point data sequences x(n) and A(k)
are generally complex and are often used to represent time and frequency
series, respectively.

In 1965, Cooley and Tukey began a revolution in the field of signal pro-
cessing when they introduced the Fast Fourier Transform (FFT) as an algorithm
for efficiently computing the DFT [1]. The FFT reduced the number of com-
putations requl-ed to compute the DFT from a number proportional to N2 , to one
proportional to Nlog 2 N. This reduction of compitations spurred widespread
application of the DFT to many problems in diverse fields. In addition to

spectral analysis of time series, the FFT has been used for fast correlation
of sequences, fast convolution of sequences for the purpose of digital filter-
ing, and radar Digital Beam Forming (DBF). In DBF applications, the output
of each element of a receive-only array antenna is independently converted
into complex baseband samples. A DFT is then used to transform the data into
a simultaneous set of receive beams uniformly distributed in space [2].

The ever increasing importance of the DFT algorithm has led to the devel-
opment of many new efficient algorithms requiring far less computations than
the FFT. This report examines the multidimensional DFT decomposition theory
central to many of these algorithms, and gives a brief introduction to the
radix-2 FFT, radix-4 FFT, mixed radix fasc Fourier transform (Y"FT), prime
factor algorithm (PFA), Winograd Fourier transform algorithm (WFTA), and SWIFT
algorithms. In addition, the arithmetic complexity of these algorithms is
compared for various one and two-dimensional transform sizes. Included in the
comparison are the number of real additions, real multiplications, total real
operations, total equivalent real multiplications, and integrated circuit chips
required for each algorithm.

II. MULTIDIMENSIONAL DFT THEORY

All of the efficient DFT algorithms examined in this report are based on
Good's standard multidimensional DFT decomposition technique [3-4]. This
technique decomposes a large one-dimensional DFT into a sequence of smaller
DFTs which are combined with twiddle factors (i.e., complex weights or
multiplications). The number of multiplications and additions required to
compute a DFT is greatly reduced by computing its decomposed small point DFT
transforms, even though the twiddle factors increase the computational load.
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However, the multidimensional decomposition is only applicable to the DFTs of
length N, where N is factorable into integer values (i.e., N= *N2*...
Nr). In order to circumvent this requirement, DFTs can be appended with zeros
to give a length that is factorable.

The basic mechanism of the multidimensional decomposition is transforming
the one-dimensional data sequence of length N = NI*N 2 into a two-dimensional
rectangular array of N1 rows and N2 columns. The N-point DFT can then be com-
puted by performing N2-point DFTs on all the rows, and performing N1-point
DFTs on all the columns, and in some cases, multiplying the intermediate
results by complex twiddle factors. If desired, the N1 and N2-point DFTs can
be decomposed if they are factorable. This process can be applied repeatedly
to the one-dimenstonal DFTs until the original N-point DFT has been completely
decomposed into all of its integer factors.

A unique or one-to-one mapping function is needed to map the one-
dimensional arrays A(k) and x(n) of the DFT expression

nkA(k) = x(n) WN (3)
n

into the two-dimensional arrays A(kl,k 2 ) and x(nl,n 2 ) of the 'two-dimensional
function [5]

A(kl,k 2 ) = ^ X(nl,n2) WN (4)
nj n2

where kl, n1 = 0,",..., N - 1; k2 , n2  0,1,..., -- 1; and

WN" . exp(-j2nnk/N). Although many different mapping functions exist, the
mapping function fundamental to most fast DFT algoritmuns is{n =(Lln1. + L2n2)mod N

k = (L3kI + L4 k2 )mod N . (5)

A simple mapping of this form is: : n +Nln2)mod N
k = (N2k1 + k 2 )mod N • (6)

For example, this mapping can be used to decompose the vectocs A(k) and
x(n) of an eight-point DFT into two-dimensional functions with k rows and
Y2 columns. For the values N 2 and N2  4, the mapping between x(n) and
x(nl,n 2 ) is

x(nl,n 2 ) = x(nI + 2n 2 )mod 8 , (7)

as shown below:

x(0,0) = x(O) n(0,1) = x(2) x(0,2) x(4) x(0,3) x(6)

Lx(1,0) = x(l) x(l,l) x(3) x(l,2) = x(5) x(1,3) = x(7)]. (8)

S , ". . .- . . . . .



Note that each position in the above 2x4 matrix is assigned a unique value
from the x(n) vector. The mapping for the output values is

A(kl,k 2 ) A(4kl + k 2 )mod 8 (9)

as shown below:

A(0,0) = A(O) A(0,1) = A(I) A(0,2) = A(2) A(0,3) = A(3)

A(1,0) = A(4) A(l,l) = A(5) A(1,2) = A(6) A(1,3) - A(7) • (10)

The mapping of (5) can be substituted into Equation (4) giving

A(kl,k 2 ) = I x(nl,n 2 )WN(Llnl + L2 n2 )(L3kl + L4 k 2 )

nl n2

or

A(k 1 ,k 2) = ), Ix(nl,n2 )wNL2L4n2k2WNLlL4nlk2WNLlL3nlklWNL2L3n2kl •

n1 n2

where

A(kl,k 2 ) A(L 3kI + L4 k2 )mod N

x(nl,n25 -x(LlnI + L2 n2 )mod N

LI, L2 , L3 , and L4 can be selected using the results of a theorem from
number theory to insure a unique mapping. Case A of the theorem applies when
the factors N1 and N2 are mutually prime, that is I is the largest common
integer factor. Case B applies when Nj and N2 are not mutually prime, that is
N1 and N2 have a common integer factor, X , which is greater than 1. The
notation used in the theorem to represent these two cases is

CASE A: (N1 ,N2 ) = 1

CASE B: (N 1 ,N 2 ) = X , (12)

where the operator (N 1 , N2) is defined as the greatest common integer factor
of N1 and N2. The theorem can be written in terms of n or k of Equation (5)
as they are of the same form. For simplicity, however, the theorem will be
expressed for both the n and k mapping.

Theorem: The necessary and sufficient conditions for the mapping of
Expression (5) to be unique are:

CASE A:

1) L1 = aN2 and L2  •N1 and (a,Nj) = (L2 ,N 2 ) = 1

L3 = yN 2 and L4 #8N 1 and (y,N 1 ) = (L4,N2) = 1 (13)

'p . , - . . . - . . - . . , . - . . , . . . . . . . : . ' . - - . . . . . . ; . ' . . " - . - . ' . . . . . . . . . . . . . . ' . . °



2) L #A N2 and L2 =N 1 and (L 1 ,N1 ) = (0,N 2 ) = 1

3 ýyN2and L4 = 6NI and (L 3 ,N1 ) = (6,N 2 ) = 1 (14)

3) LI =N2 and L2 =NI and (a,Nj) = (0,N 2 ) = 1

SL3 = y and L4  6N1 and (y,N)= (6,N 2 ) = (15)

CASE B:

1) L1 = aN2 and L2 # ONI and (a,NI) = (L 2 ,N 2 ) = I

L3 y yN2 and L4 # 6Nk and (y, k) = (L4 ,N 2 ) = 1 (16)

2) LI aN2 and L2 = 0:"- and (LI,N1 ) = (0,N 2 ) = 1

L'i yN2 and L4 = N and (L3 ,N1 ) = (6,N 2 ) = 1 (17)

The ;-I.ri&-es , L2 . a, and 0 of this theorem will be used for the mapping
zf n .-ad .:-..Iables 73, L4 , y, and 6 will be used for the mapping of k.
dll of a ariables are ,ion-zero positive integers.

CASE B of the theorem will b2 considered first as it is the basis of the
Decimation-In-Time (DIT) and De imation-In-Frequency (DIF) algorithms. These
al."rithms are used to implement the familiar radix-2 and radix-4 FFT
algu. ithms.

The DIT algorithm is derived by using Equation (17) for the mapping of n
and Equation (16) for the mapping of k. Combiining these expressions with that
of (5) gives the mapping

n = (Lln1 + PNln 2 )mod N

'k (yN2kI + L4k 2 )mod N , (18)

where L1 0 aN2 and L4 A 6N 1

Substituting this into Equation (11) gives Q

A(klk2 ) = ) x(nl,n2)WN2 L4n2k2w•IL 4 nlk2 WlLIynlkl. (19)
nj n2

Note that the last term of Equation (11) is eliminated as

WN Yn2kl(N1N2) = exp(-j22-nyn2kIN/N)

= (exp(-j2t))Pyn2kl 1 . (20)

Choosing the values LI = L4 =8= = I satisfies the theorem and when substi-
tuted into Equation (19) gives

Ak ,n 2 )WN2n2k2W nlk2WNlnlkli ~A(kl,k2) ý • nlxnn Nnlk )

nl n2
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where

A(kl,k2) = A(N 2kI + k2 )mod N

x(nl,n2) = x(n 1 + Nln 2 )mod N

nlk2
The WNnk term is the twiddle factor.

A brute force computation of Equation (21) would require N complex
multiplications and N-I complex additions for each value of the A(kl,k 2 )
array, assuming prior combination of the three complex exponential terms.
This would require N2 complex multiplications and N(N-I) complex additions to
compute the DFT. Fortunately, the number of operations required can be
reduced by using one-dimensional DFTs on the rows and columns as suggested by
the following nesting of Equation (21)

k rk FN2l-11-i nlkl [nlk nN-I2kW W.Ik2 (22)
A(kl,k2= W I WN A (nl,n 2 )WN2 n2k

nl=0 Ln 2=O

The innermost bracket is a function of nI and k 2

q(nl,k 2 ) = • x(nl,n2)WN2
2 2  (23)

n2

where k2 = 0,1,...,N2 -1 and nI is fixed by the value of the outermost sum-
mation symbol. This is obviously an N2-point one-dimensional DFT on the n1 th
row of data. As indicated by the next level of brackets, each of the N
q(nl,k 2 ) values is multiplied by its complex twiddle factor. The results of
the two innermost brackets is still a function of nI and k2

nlk2
h(nl,k 2 ) = q(nl,k2)WN • (24)

Combining Equations (22), (23), and (24) gives

N1 -1 nlkl
A(kl,k 2 ) I. h(nl,k2)WN , (25)

nl =O

where kl, = O,l,...,Ni-l and k2 is a fixed value for each column of data.
This is obviously an Nl-point one-dimensional DFT on the K2 th column. Thus,
using the nesting of Equation (22), the N-point DFT is calculated by:
(1) calculating an N2 -point one-dimensional DFT on the data of each of the
N1 rows; (2) multiplying each intermediate transformed data point by a complex
twiddle factor; and (3) performing an N1-point one-dimensional DFT on the
twiddled data of each of the N2 columns. The required real multiplications
and additions for this process can be expressed

NRMULT = N112 + N211I + 4N (26)

IInADDS = Nk2 + N2al + 2N (27)



where

'i E number of real multiplications in the Nj-point DFT

i- number of real additions in the Nj-point DFT.

This method is generally more efficient than the brute force computation of
Equation (21). Greater efficiency results if the N1 and/or N2 one-dimensional
DFT(s) of the above process can be decomposed into still smaller factors.

The DIT Equation (21) can also be nested as

nA(klk = jkl W. n2k2[(nln 2 )W nlk21 (28)
nj n2

The computation suggested by this nesting is very similar to that of Equation P
(22) as only the first two computation steps are reversed. For this nesting
the N-point DFT is calculated by: (1) multiplying each data point by thei• appropriate complex twiddle factor; (2) calculating an N2-point DFT of each

row of the intermediate data; and (3) performing an Nj-point DFT of each
column of the data calculated in step 2. The arithmetic requirements for com-
puting Equation (28) are obviously the same as Equation (22).

A final way the DIT Equation (21) can be nested is

A ~ k WNjnlkl nlkA(k 1,k2 ) WE L Nx(nl,n 2 )WNnl 2  (29)
n2 nl

For this reverse nesting, the N-point DFT is calculated by: (1) multiplying
each data point by the appropriate twiddle factor; (2) calculating an N1-point
DFT of each column of the twiddled data; and (3) calculating an N2-point DFT
of each row. This also has the same arithmetic requirements as the other DIT
nestings of Equations (22) and (28).

The DIF algorithm is obtained by using Equation (16) for the mapping of

n and Equation (17) for the mapping of k. Combining these expressions with
that of (5) gives the mapping

n = aN2 nI + L2 n 2 mod N 1

k = L3kI + 8Nlk2 mod N (30)

where L2 #PN 1 and L3  yN2

Substituting this into Equation (11) gives

, x(nl,n 2 )WN2 L2n2kwNjaL3nlklWNL2L3n2kl • (31)

nl n2

Note that this combination of CASE B eliminates the second term of Equation
(11) as

WN- nlk2(N2NI) = exp(-j2nabnlk2 N/N) =1 • (32)

B



Choosing the values L2 = L3= a = 8 = 1 satisfies the theorem and, when
substituted into Equation (31), gives

A(klk 2 ) = ) x(nl,n 2)wN2 nkW~lnkwNnl, (33)
nl n2

where

A(kl,k 2 ) = A(kI + Nlk 2 )mod N

x(nl,n2) = x(N2 nI + n2)mod N

The W n2kl term is the twiddle factor. Like the DIT algorithm, the DIF
algorithm requires on the order of N2 complex operations until nested
according to one of the following three expressions:

k-i N2-1-

A(kl,k2) = N2 WNInll WN2 n2k2 x(nl,n 2 )WNn2kl (34)
nl=0 n2=0

N2-1lI-
A(klk 2 ) = 2 n2k2 WNn2kl [ x(nl,n 2 )WNl (35)

n2=0 nl=O

A(kl,k 2 ) = N WN2nN[2 WNlnkl ( 2 n2k (36)J=n xN W1(nl,n2)WN
n2 f0 n0 J

Equations (34) and (36) are calculated like Equations (28) and (29),
respectively. Only the twiddle factors and the mapping are different.
Equation (35) is calculated by (1) calculating an Nj-point DFT of each column,
(2) twiddling the results, and (3) calculating an 1N-point DFT on each row of
the twiddled results. All three nested expressions of the DIF algorithms
require the same amount of computations as the nested DIT algorithms.

The two other possible combinations of CASE B of the theorem involve using
Equations (16) or (17) for both the n and k mapping. However, neither of
these maps allow the elimination of a complex exponential term of Equation
(11). This prevents the efficient nesting of the two-dimensional function of
Equation (11).

CASE A of the theorem is the basis of all DFT algorithms involving mutually
prime factors, including the WFTA, PFA, and the SWIFT algorithms. Using
Expression (15) of the theorem for n and k gives the mapping

n = (aN2nI + PNln 2 )mod N

k - (YN2kI + 6Nlk2)mod N . (37)

Substituting this into Equation (11) gives

A(kl,k 2 ) " [ ) x(nl,n 2 )WN2 Nln2k2WNjYN2nlkl (38)
nl n2

9



Note that both the second and fourth complex exponential term of Equation (11)
are eliminated by this mapping. Good (3] suggested using the values

6 j-lmodN 2

Y = N2-1mod NL (39)

where 8 and y are multiplicative inverses of N1 and N2 , respectively. The
multiplicative inverse of a number N is defined as the unique integer, A,
which belongs to the set (0,1,...,M-1) and satisfies

(A*N)mod M = 1 . (40)

For example, if N f 3 and N2 = 7 are used in Equations (37) and (39) then
6 8fi 5 and y = 1, giving the mapping

k (7k1 + 15k2)mod 21 } (41)

The multiplicative inver3es of Equation (39) are guaranteed to exist because
NI and N2 have been restricted to being mutually prime for CASE A.
Substituting the values of Equation (39) into Equation (38) gives

A(kk 2) x(nl,n 2 )WN2 n2k2WNlnlkl , (42)
nI n2

where

A(kl,k 2 ) = A((N 2 -lmodNI)N 2kl + (Nl-lmodN2 )Nlk 2 )mod N

x(nl~n2) = x(N2 n1 + Njn 2 )mod N •

Because there is no twiddle factor, Equation (42) can be computed like a two-
dimensional DFT. Thus, a DFT of length N = NI*N2 where (NI,N 2 ) 1 can be
computed according to the two obvious nesting arrangements

A(kk 2 )= 1-l WNlnlkl n 2=0 n (43)N2-
nlk ~(ln)n 2 2k2]

nl=0 n2=0 I

N2-1 nk rN-1- 2k11:
A(kl,k 2 ) x(nl,n2)=wnk[• (44)

n2 =0 &-= J
The N-point DFT as nested in Equation (43) can be calculated by performing
N2 -point DFTs on all NI rows of the data and performing k-point DFTs on all
N2 columns of the intermediate data resulting from step I. The nesting of
Equation (44) simply dictates calculating the column DFTs before calculating
the row DFTs. The above method is referred to as the row/column technique.
For the above two cases the computational requirement for calculating an
N = NI*N 2 point DFT where (NI,N 2 ) = 1 is

10

• '.• N ' -. , •":- 7 .# '...'-,.'-•"..':-.2 -" .'• -"-.2.- -." ."- "..',. -.- ,"-"-, -." ". - -. • ... .'. . -'. " •.÷ ... . . --.- ". .- . " -. ". ". .' - . "



•4•; ~~~~~~.. . .. . . . . . ...............' > •% ••••'' •,••' •-.......

NRMULT = N1112 + N2•i 1  (45)

NRADDS = NIa2 + N2 aI . (46)

If N2 can be factored further such that

N2 = N3* N4 ,(47)

where N3 and N4 are mutually prime, then the arithmetic requirements for com-
puting the N2 -point DFT are

=12 = N314 + N443 (48)

a2 = N3a4 + N4a3 - (49)

Thus, if N is factored such that

N = NT*N3 *N4 , (50)

where all the factors are mutually prime, Equations (48) and (49) can be
substituted into Equations (45) and (46) to give the requirements

NRMULT = N1N 2 13 + N3 NfI 2 + N2 N3111  (51)

NRADDS N1N2 a3 + N3 N1a2 + N2 N3 aI . (52)

In general, when N is factored into r mutually prime factors

N = Ni*N2* .... r, (53)

the arithmetic requirements are simply

r Pi
SIMULT = N N (54)

4.=1

NKADDS = N (55)

III. EFFICIENT DFT ALGORITHMS

The radix-2 FFT is restricted to lengths N where N is a power of 2
(i.e., N = 2r) [6]. The radix-2 algorithm is based on a complete decomposition
of the N-point DFT into r 2-point DFTs. For N = 2 the DFT definition (see
Equation (1)) simplifies to

A(O) = x(O) + x(l) (56)

A(l) = x(O) - x(l) . (57)

Thus, only two complex additions are required for each 2-point DFT. As shown

in the last section, however, twiddle factors or complex multiplications are
required between each 2-point DFT as the factors of N are not mutually prime.



The number of real multiplications and additions required for an N-point
radix-2 FFT can be expressed as

NRMULT = 2NIog2 N (58)

NRADDS= 3Nog2 N (59)

The radix-4 FFT is restricted to lengths N where N is a power of 4
(i.e., N = 4r) [6]. The radix-4 algorithm only partially decomposes N into r
4-point DFTs. The 4-point DFT also requires no multiplications as shown in
Appendix B. Like the radix-2 FFT, the radix-4 FFT requires complex multipli-
cations because of twiddle factors. However, the radix-4 FFT requires 25%
less multiplications than the radix-2 FFT as the former has fewer small point
DFTs to connect with twiddle factors. An N-point radix-4 FFT requires

NRMULT = (3N/2)log 2 N (C))

NRADDS = (llN/4)log2 N • (61)

The MFFT was published by Singleton in 1969 [7]. The MFFT can compute the
DFT of any sequence length. N must be factored as

N = 2 r 3 s 4 t5UPlmlP2m2 .... pkmk , (62)

where the pi's represent odd prime numbers. The arithmetic reqirements of the
MFFT were determined [8] to be

NRMULT = 2rN + 4sN + 3tN + 32ug/5 +

k
S[2(pi-I) + (mi)N(pi-l) 2 /pi + 4(mi)N(pi-l)/pi] - 4(N-1) (63)

i=l

NRADDS = 3rN + 16sN/3 + lltN/2 + 8uN +

k
X [(pi-I) + 7N(mi)(pi-l)/pi + (mi)N(pi-l) 2 /pi] - 2(N-1) . (64)

i=l

For the comparison purposes of this report, the arithmetic requirements of the
MFFT were only calculated for the lengths suitable for the other efficient
algorithms. The arithmetic requirements based on the restricted factorization

N = 2 r* 3 s*4t*5u*7w , (65)

can be expressed

NRMULT = N(2r + 4s + 3t + 32u/5 + 60w/7 - 4) + 12w + 4 (66)

MUADDS = N(3r + 16s/3 + llt/2 + 8u + 78w/7 - 2) + 6w + 2 . (67)

The SWIFT algorithm is based on the standard multidimensional DFT decom-
position which results when all the factors of N are mutually prime [9]. As
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shown by Equations (43) and (44) of the last section, no twiddle factors are
required for this algorithm. Thus, as discussed in the last section, the
arithmetic requirements of an N-point SWIFT algorithm with r mutually prime
factors are

r pi
RMULT = N ) (68)

ifl

NRADDS =N , (69)

i=l Ni

The SWIFT algorithm uses efficient small point DFT algorithms of lengths
2,3,4,5,6,7,8,9, and 16. Table 3-1 gives the number of non-trivial multipli-
cations and additions required for each of thpse small point DFTs.

TABLE 3-1. SWIFT SHORT DFT REAL OPERATIONS REQUIREMENTS

N P'i ai

2 0 4
3 4 12
4 0 16
5 16 32
7 36 60
8 4 52
9 44 88

16 24 144

A listing of the algorithms is given in Appendix C. The different mutually
prime combinations of these small point DFTs allow the SWIFT algorithm to com-
pute DFTs of lengths N = 2 to N = 5040.

The PFA [10-11] is also based on the standard multidimensional DFT decom-
position which results when the factors of N are mutually prime. Accordingly,
the arithmetic requirements of an N-point PFA algorithm with r mutually prime
factors are

j r

NRMULT =N (70)
Nil

r ai

MRADDS = N r (71)
J=l

The PFA also uses efficient small point DFTs of lengths 2,3,4,5,7,8,9, and 16.
The number of non-trivial real multiplications and additions required for each
of these small point DFTs is given in Table 3-2.

13
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TABLE 3-2. PFA SHORT DFT REAL OPERATIONS REQUIREMENTS

N P-i a

2 0 4
3 4 12
4 0 16i•5 10 34
7 16 72
8 4 52
9 20 84

16 20 148

A listing of the algorithms is given in Appendix B.

The WFTA [12-171 was first published by Dr. Samuel Winograd in the mid-
seventies. Like the SWIFT and PFA, the WFTA is based on a mutually prime fac-
torization of N resulting in no twiddle factors. However, the WFTA offers an
alternative to the row/column evaluations of Equation (42) used in the SWIFT
and PFA. The WFTA uses the special structure of the WFTA short DFT transforms
to nest all the multiplications inside of input and output additions. The
number of real multiplications required of an N-rrint WFTA algorithm with r
mutually prime factors is

r r
NRMULT = 2TF8-i - 2-T-oi , (72)

i=l i=l

where

81 =the number of complex multiplications in the Ni-point DFT

the number of multiplications by "1" in the Nj-point DFT.

The number of real additions required [10] for two, three, and four factors is
expressed in Equations (73), (74), and (75), respectively.

INRADDS = 2NIY2 + 26 2 Y1  (73)

1NRADDS = 2NIN2Y 3 + 25 3[NIy 2 + 62Y1] (74)

NRADDS = 2N1 N2 N3 Y4 + 2b 4 [N1 N2Y3 + 63[NY2 + 8 2Y1 ]] , (75)

where Yi !- the number of complex additions in the Nj-point DFT. The WFTA also
uses efficient small point DFTs of lengths 2,3,4,5,7,8,9, and 16. The total
number of complex multiplications, the number of multiplications by "1," and
the number of complex additions required for each of these small point DFTs is
given in Table 3-3.
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TABLE 3-3. WFTA SHORT DFT COMPLEX OPERATIONS REQUIREMENTS

N _i _i Yi

2 2 2 2
3 3 1 6
4 4 3 8
5 6 1 17
7 9 1 36
8 8 4 26
9 11 1 44

16 18 5 74

The ordering of the factors of N can affect the number of real additicns
required by the WFTA. In this report the optimum ordering of the factors of N
was always used to calculate WFTA real addition requirements. This optimum
ordering is shown in Tables 4-7 and 4-8. A listing of the WFTA small point
algorithms is given in Appendix A.

IV. COMPARISON OF ALGORITHM ARITHMETIC REQUIREMENTS

The arithmetic requirements of the various one-dimensional DFT algorithms
are given in this chapter for lengths N = 2 to N = 5040. In addition, the
requirements for various two-dimensional DFT algorithms are given for sizes
ranging from 2x2 to 90x90. The one-dimensional requirements for the DFT,
radix-2 FFT, radix-4 FFT, MFFT, SWIFT, WFTA, and PFA algorithms are compared
in Tables 4-1 through 4-8. The two-dimensional requirements for the custom
DFT, DFT, radix-2 FFT, MFFT, SWIFT, WFTA, and PFA algorithms are compared in
Tables 4-9 through 4-12. In addition, Table 4-13 summarizes the chapter by
listing the number of current and future chips required for various one and
two-dimensional transforms. Tables 4-1 through 4-13 are located f.t the end of
this chapter.

Tables 4-1 and 4-2 give the total number of real operations (i.e., the sum
of the real multiplications and real additions) required for the one-
dimensional DFT algorithms of N = 2 through N = 5040. Measured by the number
of real operations, the DFT is by far the least efficient algorithm. For
example, the DFT requires 54,600% of the operations required of the radix-2
FFT for N = 4096. A radix-4 FFT requires 85% of the real operations required
by the radix-2 FFT. The MFFT requires fewer real operations than the DFT and
the two FFTs. In addition, the MFFT can be used for every sequence length
listed between N = 2 and N = 5040. However, the MFFT usually requires about
10% more operations than the PFA and WFTA. Generally, the PFA and WFfA are
the most efficient algorithms for the lengths between N - 20 and N - 5040.
The number of reel operations required for the PFA, WFTA, and SWIFT algorithms
are within 10% of the number required by the best algorithm for 100%, 96%, and
44% of the lengths in this range, respectively.

Generally, the multiplication operation requires more time and hardware
resources than the addition operation. This is also true at the chip level
where a multiplier requires approximately four times the silicon "real estate"
of an adder. Accordingly, a weighted index of arithmetic complexity is par-
ticularly important if a custom chip can be designed to match the requirements
of an algorithm. The weighted unit shown in Tables 4-3 and 4-4 is the Total
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Equivalent Real uIltiplications (TERM). The TERM unit is simply the total of
the required real multiplications added to one-fourth the number of required
real additions. As with the total number of real operations, the TERM count
shows the DFT to be by far the least efficient algorithm. For example, the
DFT requires from 700% to 62,000% of the TERM of comparable radix-2 FFTs. A
radix-4 FFT requires about 80% of the TERM required by the radix-2 FFT. As
before, the TERM index shows the MFFT and SWIFT algorithms to be more effi-
cient than the DFT and FFT algorithms. However, for many of the lengths, the
MFFT and SWIFT algorithms require up to 200% and 150% of the TERM required of
the WFTA algorithm. For lengths between N = 20 and N = 5040, the WFTA is the
most efficient algorithm for 93% of the lengths with the PFA being the most
efficient algorithm for the other 7%. The required TERM for the WFTA, PFA,
SWIFT, and MFFT algorithms are within 10% of the number required by the bestalgorithm for 100%, 58%, 2%, and 0% of the lengths in this range.

Tables 4-5 and 4-6 give the number of real multiplications required for

one-dimensional DFT algorithms of lengths N = 2 through N = 5040. Once again,
the DFT is by far the least efficient algorithm in terms of real multiplica-
tions. For example, the DFT requires 53,300% of the real multiplications
needed for the radix-2 FFT for N = 4096. A radix-4 FFT requires 75% of the
real multiplications required by the radix-2 FFT. The MFFT offers con-
siderable savings in the number of multiplications required compared to the
DFT and the FFT algorithms. However, the MFFT is never within 10% of the
arithmetic requirement of the most efficient algorithms for lengths greater
than N = 4. The WFTA is superior at minimizing the number of required
multiplications. The WFTA is the most efficient algorithm in terms of real
multiplications for 93% of the lengths between N = 20 and N = 5040. The PFA
is the most efficient algorithm for the other 7% of the lengths. The percen-
tages of the lengths in this range at which the MFFT, SWIFT, WFTA, and PFA
algorithms are within 10% of the most efficient algorithms are 0%, 2%, 100%,
and 9%, respectively.

Tables 4-7 and 4-8 give the number of real additions required for one-
dimensional DFT algorithms of lengths N = 2 through N = 5040. In terms of
real additions, the DFT is the least efficient algorithm followed in order of
increasing efficiency by the radix-2 FFT and the radix-4 FFT. The radix-4 FFT
requires 92% of the real additions required of the radix-2 FFT. The SWIFT .j

algorithm is the most efficient, or as efficient, as any other algorithm for
98% of the lengths N = 20 to N = 5040. The percentages of the lengths in this
range at which the SWIFT, PFA, WFTA, and MFFT algorithms are within 10% of the
most efficient algorithms are 98%, 76%, 33%, and 20%, respectively.

The thrust of this report has been one-d.mensional DFT algorithms.
However, two-dimensional DFT algorithms can be easily implemented with one-
dimensional algorithms using the row/column technique. Using this procedure,
one-dimensional DFT transforms are performed on all the rows, followed by one-
dimensional transforms performed on all the columns of data resulting from the
row transforms. Thus, the arithmetic requirements of a row/column implemen-
tation of an NKN DFT algorithm is simply 2N times the requirements of the
selected N-point one-dimensional DFT algorithm.

True two-dimensional FFT algorithms have been developed uhich do not rely
on one-dimensional tranforms [18]. These algorithms generally require less *

complex multiplications than the row/column methods. However, they are harder
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to implement and are less universal than the one-dimensional algorithms.
Algorithms have also been developed for computing the two-dimensional DFT of
arrays whose elements do not have rectangular spacing [19]. Refinement and
extension of this work is very important to radar digital beam forming efforts
as most phased array antennas have triangularly spaced elements. Although
important, an in-depth examination of these algorithms is beyond the scope of
this report.

The arithmetic requirements of a one-dimensional DFT are the same whether
the coefficients are the standard ones of Equation (1) or those selected for
individual custom responses. However, if the row/column method is selected
for the two-dimensional DFT, only standard coefficients can be used. The
custom shaping of the response of each transform output point afforded by the
custom two-dimensional DFT requires a weighted sum of all the elements in the
NkN data array. Each transform output point can have a unique NxN array of
coefficienta exhibiting none of the symmetrical properties of the standard DFT
coefficients. Computing each custom DFT output point requires 4N2 real
multiplications and 4N2 -2 real additions. Computing all of the N2 transform
outputs therefore requires 4N4 real multiplications, 4N4 -2N 2 real additions,
and 8N4 -2N 2 total real operati-ns.

The number of total real operations, TERM, real multiplications, and real
additions for the custom DFT, DFT, radix-2 FFT, MFFT, SWIFT, WFTA, and PFA
two-dimensional algorithms for array sizes 2x2 through 90x90 are shown in
Tables 4-9 through 4-12. The arithmetic requirements shown in the tables are
for the row/column method except for the custom DFT.

As the tables indicate, the arithmetic requirements for the two-
dimensional custom DFT are enormous. However, if the number of desired custo-
mized transform output points is a small percentage of N2 , this algorithm can
be useful. For example, if only four customized transform output points were
required from an 8x8 data array, 2040 real operations would be required. To
get four non-customized transform points from the radix-2 FFT would require
the 1920 real operations needed to compute all the output points. The rela-
tive efficiency of the row/column algorithms is the same as the relative effi-
ciency of the one-dimensional algorithms as the two-dimensional requirements
are simply 2N times that of the one-dimensional rquirements discussed
earlier. As in the one-dimensional case, there are considerable differences
in arithmetic complexity among the two-dimensional algorithms. For example,
the 30x30 custom DFT, DFT, and WFTA algorithms require 6,478,200 real opera-
tions, 428,400 real operations, and 27,120 real operations, respectively. The
differences are even greater for the larger arrays. For example, the 90x90
custom DFT, DFT, and PFA algorithms require 524,863,800 real operations,
11,631,600 real operations, and 369,360 real operations, respectively.

It is difficult to project the exact hardware size and cost for the
various algorithms based solely on their arithmetic requirements. An analysis
of the memory requirements, software complexity, optimum architectures, and
availability of special purpose integrated circuits for each algorithm and
array size is beyond the scope of this report. However, a brief review of
present and near term arithmetic capabilities of digital integrated circuits
will give insight into the feasibility of implementing the various algorithms
for different array sizes.
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Currently, TRW offers 8-bit and 16-bit multiplier/accumulator (MAC) chips
which provide real multiplication and addition rates of 14 MHz and 9 MHz,
respectively. These two TRW chips are packaged in dual-in-line packages with
pin counts of 48 pins and 64 pins. Depending on the algorithm and required
operating speeds, these chips can be multiplexed to reduce the total chip
count.

Dramatic integrated circuit performance increases are expected in the near
future as a result of the Department of Defense's Very High Speed Integrated
Circuit (VHSIC) program. The $325 million, seven year long program which
began in March of 1980, was designed to provide a fifty-fold improvement in
high speed, high throughput signal and data processing integrated circuits.
By the end of phase I of the program in mid-1984, six contractors will provide
a pilot line production of chips with 1.25 micron architectural features,
minimum throughput rates of 25 MHz, and a minimum functional throughput rate
(FTR) of 5xlO 1 gate-Hz/cm2 . The pilot line production of chips with .5 to .8
micron architectural features, minimum throughput rates of 100 MHz, and a
minimum FMR of 1013 gate-Hz/cm2 will be required by the completion of phase II
of the program in 1987 [20].

Several phase I VHSIC contractors will produce MAC chips. Preliminary
reports indicate that IBM will produce a complex multiplier/accumulator (CMAC)
chip. This implies a one-chip capability of performing a simultaneous set of
approximately eight real operations (i.e., four real multiplications and four
real additions) at a 25 Mfz rate [21]. Westinghouse, another VHSIC contractor,
plans to build a complex number arithmetic vector processor capable of per-
forming 40 million complex number operations/second, which would only require
two 6x8 in. printed circuit boards. In additior., Westinghouse is designing a
ten-board array type processor capable of rerforming 200 million complex
number operations/sec. or more than one billion real number operations/
sec. [22]. In addition to the VHSIC program, commercial very large scale
integration (VLSI) chips produced with VHSIC technology are expected to pro-
vide VHSIC-like arithmetic capabilities.

A convenient way to compare the chip capabilities and algorithm require-
ments is to use the units: (1) millions of real multiplications/sec (MMPS),
(2) millions of real additions/sec (MAPS), and (3) millions of total equiva-
lent real multiplications/sec (TERMS). For example, the 16-bit TRW MAC chip
is capable of 9 MMPS and 9 MAPS. The IBM VHSIC CHAC chip will offer roughly
an eleven-fold improvement at 100 MMPS and 100 MAPS when developed. A
hypothetical custom VHSIC/VLSI chip with at least 125 TERMS of arithmetic
capability should be available by 1984. For the comparisons in this report,
the time required to perform the transform will be arbitrarily assumed to be 1
sec. This choice of time makes the number of real multiplications, addi-

tions, and TERM found in the tables equal to the number of MMPS, MAPS, and
TERMS, respectively. For example, computing a 64-point DFT in 1 sec requires
16,384 MMPS, 16,256 MAPS, and 20,448 TERMS. As the MMPS requirement of the
64-point DFT is more demanding than the MAPS requirements, the former dictates
the use of 1,821 TRW MACs or 164 IBM CMACs. The TERMS numbers predict that
164 custom VHSIC/VLSI chips would be required.

Using the assumptions and methodology of the previous paragraph, Table
4-13 was constructed to estimate the relative number of TRW, IBM VHSIC, and
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custom VHSIC/VLSI chips required to meet the arithmetic requirements of
various one and two-dimensional DFTs, radix-2 FFTs, and WFTAs. The chip count
"does not include non-arithmetic chips necessary for implementation, such as
control and memory chips. However, a rough estimate of the number of required
arithmetic chips can be found simply by scaling the chip count in the table by
the ratio of I Vsec and the desired transform time. This table summarizes the
relative differences of complexity among the various algorithms and suitabil-
ity of current and proposed hardware. For example, the DFT shown in the
table requires more arithmetic chips than any other algorithm except the
custom two-dimensional DFT. As shown in the table, the custom VHSIC/VLSI chip
offers no significant reductions in the D2T chip count. This illustrates that
the TRW and IBM chips are well suited to the DFT. In contrast, the WFTA
requires fewer arithmetic chips, although it is not particularly well suited
to the TRW and IBM chips. Roughly a three-fold improvement is gained using
custom VHSIC/VLSI chips tailored to the WFTA's required multiplication to
addition ratio. The radix-2 FFT compares surprisingly well with the WFTA when
implemented with the MAC and CMAC chips of TRW and IBM. The extra arithmetic
chips required by the radix-2 FFT would probably be offset by the extra
control and memory chips required by the more structurally complex WFTA
algorithm. However, if custom chips are available, the radix-2 FFT would
generally require 200% to 300% of the arithmetic chips required by the WFTA.
The PFA and radix-4 FFT algorithms are not shown in the table as they are very
close to the numbers given for the WFTA and radix-2 algorithms, respectively.
Likewise, the MFFT and SWIFT algorithms arc not shown as they reside between
the radix-2 FFT and the WFTA in performance.

V--
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Appendix A. WFTA SHORT DFT ALGORITHMS

Algorithms are given to compute the DFT for lengths 2, 3, 4, 5, 7, 8, 9
and 16. These algorithms were taken from [23], but have been credited to the
work of Radar and Winograd [23,13]. The complex input data x(l), x(2),...,
x(N) and complex output data X(l), X(2),..., X(N) are in natural order. The
complex values Ml, M2,..., MM are the results of the M complex multiplications
required for the small point transform. The complex values Ti, T2,... and
S1, S2,... are temporary values derived from the input data and intermediate
results, respectively. Generally, the operations must be performed in the
order listed. The total number of trivial and non-trivial complex multiplica-
tions and additions required for each DFT is listed with the algorithm. In
addition, the number of complex multiplications by WO or "I" is given in
parentheses.

(1) N=2; 2 complex multiplications (2), 2 complex additions.

Ml=l*(x(l)+x(2))
S2=l*(x(1)-x(2))

X(1)=Ml
X(2)=M2

(2) N=3; 3 complex multiplications (1), 6 complex additions, u-2n/3.

Coefficients: Cl=-3/2
C2=jsin u

Tl-x(2)+x(3)
Ml=l*(x(l)+Tl)
M2--Cl*Tl
M3=C2*(x(3)-x(2))
S I=MI+M2
X(1)=Ml
X(2)=S1+M3
X(3)=Sl-M3

(3) N=4; 4 complex multiplications (3), 8 complex additions.

Tlfx(] )+x(3)
T2-x(2)+x(4)
Ml=l*(Tl+T2)
M2=1*(Tl-T2)
M3=l*(x(1)-x(3))

M4=j*(x(4)-x(2)'
X(1)=Ml
X(2)=M3+M4
X(3)=M2
X(4)=M3-M4

(4) N=5; 6 complex multiplications (1), 17 complex additions, u-2n/5.

Coefficients: C1=-5/4
C2=(cos u-cos 2u)/2
C3=-j sin u
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C4-j~in u~in 2u

C4-j(sin u-sin 2u)

Tl:x(2)+-x(5)
T2=-x(3)+x(4)

T4-x(4)-x(3)
T5=T1+T2
Ml14*(x(l)+T5)
M2=-C1*T5%
M3=-C2*( T1-T2)

-' H4-=C3*(T3+T4)
M5-C4*T4
M6=C5*T3
Sl=Ml+142
S2=S 1*13

4 S3=M4-M5
S4=S 1-13
S5=M44M6
X(1)=M1
XC 2)=S2+S3
X(3 )=S4+S5
X(4 )=S4-S5
X(5)=S2-S3

(5) W=7; 9 complex multiplications (1), 36 complex additions, u-2,E/7.

Coefficients: Clm-7/6t
C2-'(2cos u-cos 2u-cos 3u)/3
C3(o -cs2Io u/

MI C4=(cos u-2cos 2u-2cos 3u)/3

C5=-J(sin u+sin 2u-sin 3u)/3
C6=J(2sin u-sin 2u+sin 3u)/3
C7=j(sin u--2sin 2u-sin 3u)/3
C8-j(sin u+sin 2u+2sin 3u)/3

Tl=x(2)+x(7I)

T2=x(3)+x(6)
T3-x(4)+x(5)
T4=T1+T2+T3

T5=x(2)-x(7)
T6=x(3)-x(6)
T7=x(5)-x(4)
T8=Tl-T3
T9=T3-T2
TlO=T5+T6+T7
T11=T7-T5
T12=T6-T7
T13=-T8-T9
T14=-T1 1-T12
M1=l*(x( 1.)+T4)

M3=C2*T8
M2=cCl*T9
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H5=C4*Tl3
M6=C5*TIO
M7=C6*Tll
M8=C7*T12
M9=C8*T14
Sl=-M3--M4
S2-M3-M5
S3--M7-M8
S4=M7+M9
S5=Ml+M2
S6=S5-Sl
S7=S5+S2
S8=S5+Sl-S2
S9=M6-S3
SlO=M6-S4
Sll=M6+S3+S4
X(l)=Ml
X(2)=S6+S9
X(3)=S7+SlO
X(4)-S8-Sll
X( 5)=S8+S 11
X(6)=S7-SlO
X(7)=S6-S9

(6) N=8; 8 complex multiplications (4), 26 complex additions, u-2i1/8.

Coefficients: Ci-cos u
C2=-jsin u

Tl=x(l)+x(5)
T2-x(3)+x(7)
T3=-x(2)+-x(6)
T4=-x(2)-x(6)
T5=x(4)+x(B)

'2 T6=x(4)-x(8)
T7=Tl+T2
T8=T3+T5
Ml=l*(T7+T8)
M2=1*(T7-T8)
M3=l*(Tl-T2)
M4=1*(x(l)-x(5))
M5=Cl*(T4-T6)
146=j*(T5-T3)
147=j*(x(7)-x(3))
M8=C2*(T4+T6)

r'I Sl=M4+M5
S2=M4-Y,5
S3=M74-M8
S4=M7-M48
X(l)=M1
X(2)=Sl+S3
X(3)=M3+1.46
X(4 )=S2-S4
X(5)=M2
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ý71 X(6)=S2+s4
X(7)=M3-M6
X(8)=sl-s3

(7) N=9; 11 complex multiplications () 44 complex additions, u-2nit/9.

Coefficients: C1=3/2
C2-1 /2
C3=cos u
C4=-cos 4u
C5=-cos 2u
C6-Jsin 3u
C7=jsin u
CB=jsin 4u
C9=Jsin 2u2

Tl'x(2)+x(9)
T2=x(3)+,C(8) 

'

T6--x(2)-x( 9 )
T7=x(8)-x(3 )
T8-zx(4)-x( 7 )
T9-x(5)-x(6)
Tlo0T6+T7+T9
Tii=Ti-T2
T12=T2-T4
T13=T7-T6
T14=T7-T9
Ti5=-Ti 2-Ti1l

Ti6=-Ti3+Tl4
Ml14*(x(l1)+T3+T5) 

-

M2-C i*T3
M3-C2*T5

M5-C4*Ti2
MF=C5*Ti5
M7=C6*TiO
M8=C6*T8 m
M9=C7*Ti3
mlO=C8*T14
Mii=C9*Ti6
S 1=-M4--M5

'I 52=146-MS
S3=-M9-MIO 

m

S4=MiO-MI1l
S5=Mi+-M3-+M3
S6=S5-142
S7=S54-13
S8=.e6-Si

S9=S2+S6
j SIO=Sl-S2+S6
4 Sll=M8-S3
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S ThýV ...

S12-M8-S4
S13-M8+S3+S4
X(1)=M1
X(2)='S8+S11
X(3)=S9-SI2
X(4)=S7+M717 X(5)-S10-+Sl3
X(6 )=SlO-S13

N ~X( 7 )S7-M7
X( 8)=S 9+S 12
X(9)=S8-Sll

-4(8) M=16; 18 complex multiplications (5), 74 complex additions, uu'2n/16.

Coefficients: Cl-cos 2u
C2-cos 3u
C3=cos u+cos 3u
C4u-cos 3u-cos ux
C5=-jsin 2u
C6'-jsin 3u
C7=4~(sin 3u-sin u)
C8=-J(sin u+sin 3u)

Tl~x(l)+x(9)
T2=x(5)+x(13)
T3=x(3)+x(l)
T4-x(3)-x",11)
T5=-x(7)+x(15)
T6=x(7 )-x( 15)
T7=x(2)+x(lO)
T8--x(2)-x(1O)
T9=x(4)+x( 12)
TI0=x(4)-x(12)
Tll=x(6)-x(14)
T12=x(6)+x(14)
T13=x( 8)+x(16)
T14=x(8)-x(16)

k4 T1S=Tl+T2
Ti 6=T3+T5
T17=Tl5+Tl6
T18=T7+Tl 1
Tl 9=T7-Tll
T20=T9+Tl3
T21=T9-T13
T22=T18+T20
T23=T8+T14

N T24=T8-T14
T25=T10+Tl 2
T26=T12-TlO
Ml='&*(T17+T22)
M2=1*(T17-T22)
M3=1*(T15-T16)
M4=1*(Tl-~T2)
M5=1*(x(l)-x(9))
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M6=Cl*(Tl99IT21)
M7=Cl*(T4-T6)
M8=C2*( T24+T26)
M9=C3*T24
mlo0c4*T26
Mll~j* (T20-T18)
M12=j*(T5-~T3)
M13=j*(x(13)-x(5))
M14=C5*(Tl9+T21)
M15=C5*(T4+T6)
M16=C6*(T23+T25)
1417=C7*T23
M18=C8*T25
S1=M4-+16
S2=M4-M6
S3=Ml24Ml4
S4=Ml4--M12
S5=M5-+M7
S6=M5-M7
S7=M9-M8
S8=MIO-M8
S9=S5+S7
SlO=S5-S7-
Sll=S6+S8

S12=S6-S8
S13=Ml3-IMl5
S14=Ml3-Ml5
S15=M16+4M7
S16=Ml6-M18
S17=-S13+Sl5
S18=S13-SI5
S19=S14+S16
S20=S14-Sl6

X(2)=S94

X(3)=S1+SL
x(4)=Sl2-S20
X(5).--M3+Mll
X(6)=S11+Sl9
X(7)=S2+S4
X(8)=SlO-SI8
X(9)=M2

* X(10)=SlG+S18
X(11)=S2-S4
X(12)=Sl1-Sl9
X(13)=M3-Ml1
X(14)=Sl2+S20
X(15)=Sl-S3
x(16)rnS9-Sl7
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Appendix B. PFA SHORT DFT ALGORITHMS

The following algorithms compute the DFT for lengths 2, 3, 4, 5, 7, 8, 9,
and 16. These algorithms were taken from Burrus and Eschenbacher [II]. They
are part of a complete Fortran listing of a general purpose PFA program. In
contrast to Appendix A, these algorithms are written in terms of real
multiplications and additions. In addition, no trivial multiplications are
used in these algorithms. The real and imaginary parts of the complex input
data are represented in natural order by XR(1), XR(2),..., XR(N) and XI(i),
XI(2),..., XI(N), respectively. The complex output is stored in natural order
in the XR(I) and XI(I) arrays. The values Ul, U2,..., TI, T2,..., Ri, R2,...,
and Si, S2,... are all temporary values derived from input data and inter-
mediate results. Generally, the operations must be performed in the order
listed. The total number of real multiplications and additions required for
each DFT is listed with each algorithm.

(1) N=2; 0 real multiplications, 4 real additions

Tl=XR(l)
XR(i)=TI+XR(2)
XR(2)=TI-XR(2)
TI=XI(i)
XI(1)=TI+XI(2)
XI(2)=TI-XI(2)

(2) N=3; 4 real multiplications, 12 real additions, u=2n/3.

Coefficients: Cl=sin u
C2=I/2

TI=(XR(2)-XR(3))*CI
Ul=(XI(2)-XI(3))*CI

RI=XR(2)+XR(3)
Sl=XI(2)+XI(3)
T2=XR(1)-RI*C2
U2=XI(i)-SI*C2
XR(1)=XR(1)+RI
XI(i)=XI(l)+Si
XR(2)=T2+Ul
XR(3)=T2-UI
XI(2)=U2-TI
XI(3)=U2+Tl

(3) N=4, 0 real multiplications, 16 real additions.

RI=XR(1)+XR(3)
R2=XR(1)-XR(3)
SI=XI(i)+XI(3)
S2=XI(i)-XI(3)
R3=XR(2)+XR(4)
R4=XR(2)-XR(4)
S3=XI(2)+XI(4)
S4=XI(2)-XI(4)
XR(1)=RI+R3
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XR(3)=R1-R3
XI(1 )=SI+S3
XI(3)=Sl-S3
XR(2)=R2+S4
XR(4)-R2-S4
XI (2 )=S2-R4

XI(4)=S2+R4

(4) N=5, 10 real multiplications, 34 real additions, u=2%r/5.

Coefficients: Cl=sin ui
C2=sin u+sin 2u
C3=sin u-sin 2u.

'1~ C4=(cos u-cos 2u)/2
C5=-5/4

NIX()+R5
R2=XR(2)+XR(5)

* S1=XI(2)+XI(5)
S2=XI(2)-XI(5)
R3=XR(3)+XR(4)
R4=XR(3)-XR(4)
S3=XI(3)+XI(4)

S4:XI(3)-XI(4)
Tl=(R2+R.4)*Cl
Ul=(S2+S4)*Cl
R2=Tl-~R2*C2
S2=Ul-~S2*C2
R4=Tl-.R4*C3
S4=Ul-S4*C3

*1 Tl=(Rl-R3)*C4
Ul=(S1l.S3)*C4
T2=R1+R3
U2=S1+S3

A XR(l)=XR(1)+T2
XI(l)=Xl(1)+U2
T2=XR(1)+T2*C5
U2=XI(1)+U2*C5
RIA=T2+Tl
R3=T2-T1
Sl=U2+Ul
S3=U2-Ul
XR(2)=R1+S4
XR(5)=Rl-S4
XI(2)=Sl-R4
XI(5)=Sl+R4a
XR(3 )=R3-S2
XR( 4)=R3+S2
XI(3)=S3+R2
XI (4 )=S3-R2

(5) N=7, 16 real multiplications, 72 real additions, u-2it/7.

Coeificients: C1'=-7/6
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C2-(2cos u-rcos 2u-cos 30)/3
C3-(cos u-2cos 2u+cos 30)/3
C4=(cos u+cos 2u-2cos 30)/3
C5=(sin u+sin 2u-sin 3u)/3
C6=(2sin ur-sin 2u+sin 3u)/3
C7=(-sin u+2sin 2i$-sin 30/f3
C8=(sin u+sin 2u+ 2sin 3u)/3

Rl1XR(2)+XR(7)
R2=XR(2)-XR(7)
Sl=XI(2)+XI(7)

R3=XR(2)+XR(6)
R3=XR(3)-XR(6)

S3=XI(3)+XI(6)
S4=XI(3)-XI(6,1
R5=XR(4)+XR(5)
R6=XR(4)-XR(5)
S5=XI(4)+XI(5)
S6=XI(4)-XI(5)
Tl1Rl+R3+R5

..i U1=Sl+S3+S5
XR(1)=XR(1)+Tl
XI(1)=XI(1)+U1
TL=XR(1)+Cl*Tl

T2=C2*(Rl-R5)
U2=C2*(Sl-S5)

'A T3=C3*(R5-R3)
US=C3*(S5-S3)
T4=C4*(R3-Rl)
U4=C4*(S3-S1)
Rl=Tl+T2+T3
R3=Tl-T2-T4
R5=Tl-T3+T4
S1=Ul1+U2+U3
S3=U1-1J2--U4
'q '=U1-U3+U4
-.-4C5*(S2+S4-S6)

I-' £i=c5*(R2+R4-R6)
* T2=C6*(R2+R6)

U2=C6*(S2+S6)
T3=0C7*(R4+R6)
U3=C7*(S4+S6)
T4=C8*(R4-R2)
TJ4=C8*(S4-S2)
R2=T1+T2+T3
R4=Tl-T2-T4
R6=-Tl-T3+T4
S2=U1+U2+U3
S4=Ul-U2--U4
S6=U1-U3+U4

A X.R(2)=R1+S2
XR(7)=R1-S2
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KI(2)=Sl-R2
XI(7)-Sl+R2
XR(3)=R3+S4
XR(6)=R3-S4 P
XI(3)=S3-R4
XI(6)=S3+R4
XR(4)=R5-S6
XR(5)=R5+S6
XI(4)=S5+R6

XI(5)=S5-R6

(6) N=8, 4 real multiplications, 52 real additions, u=2it18.

Coefficients: Cl-sin u

Rl=XR(l)+XR(5)p
R2=XR(l)-XR(5)
Sl=XI(1)+XI(5)
S2=XI(l)-XI(5)
R3=XR(2)+XR(8)
R4=XR(2)-XR(8)
S3=XI(2)+XI(8)
S4=XI(2)-XI(8)
R5=X.R(3)+XR(7)
R6=XR(3)-XR(7)
S5=XI(3)+XI(7)
S6=XI(3)-XI(7)
R7=XR(4)-IXR(6)
R8=XR(4)-XR(6)
S7=XI(4)-4XI(6)
S8=XI(4)-XI(6)
Tl=Rl+R5
T2=Rl-R5
Ul=SL+S5
U2=Sl-S5
T3=R3+R7
R3=Cl*(R3-R7)
U3=S3+S7
S3=Cl*(S3-S7)
T4=R4R8

* R4=Cl*(R44R8)

U4=S4-S8
S4=Cl*(S4+S8)
T5=R2+R3
T6=R2-R3
U5=S2+S3
U6=S2-S3
T7=R4+R6
T8=R4-R6
1i7=S4+S6
U8=S4--S6
XR(l)=T1+T3
XR(5)=Tl-T3
Xl(l)=Ul+U33

412



XI(5)=Ul-U3
XR'2 )=T5+U7
XR(8)~=T5-U7
XI(2)=U5-T7
XI (8) =U5+T7
XR(3)=T2+U4
XR(7 )=T2-U4
XI (3)=U2-T4
XI(7)=U2+T4
XR(4 )=T6+U8
XR(6 )=T6-UB
XI(4)=U6-T8
XI (6 )=16+T8

(7) W=9, 20 real multiplications, 84 real additions, uin2n/9.

Coefficients: Cl=sin 3u
C2=1/2
C3-cos 4u
C4'-cos 2 u1
C5-cos u
C6--sin 4u
C7=-sin 2u
C8~-sin u

Rl=XR(2)+XR(9)
R2=XR(2)-XR(9)
Sl=XI(2)+XI(9)
S2=XI(2)-XI(9)
R3-XR(3)-XR(8)
R4=XR(3)+XR(8)

S3=XI(3)+XI(8)
S4=XI(3)-XI(8)
R5=XR(4)+XR(7)
Tl=Cl*(XR(7)-~XR(4))
S5=XI(4)+XI(7)
Ul=Cl*(XI (7 )-XI (4))
R7=XR(5)+XR(6)
R8=XR(5)-XR(6)

A S7=XI(5)+XI(6)
S8=XI(5)-XI(6)

R9:XR(1)+R5

* - T2=XR(l)-R5*C2
U2=Xl(l)-S5*C2
T3=(R3-R7)*C3
U3=(S3-S7)*C3
T4=(R1-R7)*C4
U4-(Sl.-S7)*C4
T5=(RI-R3)*C5
U5=(S1-S3'-*C5
RIO=Rl+R3+R
SlO=Sl+S3+S7
R1=T2+T3+T5
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R3=T2-T3--T4
R7=T2+T4-T5
S1=U2+UJ3+U5
S3=U2-U3--U4
S7=U2+U4-U5
XR(1)=R9+RIO
XI(1 )=S9+S1O
R5=R9-Rl0*C2
S5=S9-Sl0*C2

S6-~(S2.-S4+S8)*Cl
T3=(R4+R8)*C6
U3=(S4+S8)*C6
T4=(R2-R8)*C7
U4=(S2-S8)*C7 T5=(R2-R4)*i
T5=(R2+R4)*C8

R2=Tl+T3+T5
R4=T1-T3--T4
R8='Tl+T4-T5
S2zUl+U3+U5
S4=Ul-U3-114
S8=U1+U4-U5
XR(2)=Rl-S2

XR(9).'R1+S2
XI(2)=Sl+R2
XI(9)=Sl-'R2
XR(3 )=R3+S4

* XR(8)=R3-S4
XI(3)=S3-R4
XI(8)=S3+R4
XR(4)=R5-S6
XR(7 )=R5+S6
XI(4)=S5+R6
XI(7)=S5-R6
XR(5)=R7-S8
XR(6)=R7+S8
XI(5)=S7+R8
XI(6)=S7-R8

(8) M=16, 20 real multiplications, 148 real additions, u'=2n/16.

Coefficients: Cl~sin 2u
C2-sin u
C3=cos u+sin u
C4=cos u-sin u
C5=cos u

Rl=XR(l)+XR(9)
R2=XR(l)-XR(9)
Sl=XI(l)+%I(9)
S2=XI(l)-XI(9)

* R3=XR(2)+XR(l0)
* R4=XR(2)-XR(l0)
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S4=XI(2)-XI(lO))
R5=XR(3 )+XR(11)
R6=XR(3)-XIR(11)
S5=XI(3)+XI(11)
S6=XI(3)-XI(li)
R7=XR(4)+XR(12)
R8=XR(4)-XR(12)
S7=XI(4)+XI(12)
S8=XI(4)-XI(12)
R9=XR(5)+XR(13)
RIO=XR(5)-XR(13)
S9=XI(5)+XI(13)
S1O=XI(5)-XIC13)
R11=XR(6)+XR(14)
R12=XR(6)-XR(14)
Sll=XI(6)+XI(14)
S12=XI(6)-XI(14)
R13=XR(7)+XR(15)
R14=XR(7 )-XR(15)
S13=XI(7) I15)
S14=XI(7)-XI(15)
R15=XR(8)+XR(16)
R16=XR(8)-XR(16)
S15=XI(8)+XI(16)
S16=XI(8)-XI(16)
T1=Rl+R9

-3T2=R 1 -R9

-¶ U2=Sl-S9
T3=R3+R1I.
T4=R3-R1 1
U3=S3+S1l
U4=S3-Sll
T5=R5+Rl3
T6=R5-RI3
1i5=S5+S13
U6=S5-Sl3
T7=R7+Rl5
T8=R7-Rl5
U7=S7+Sl5
U8=S7-'Sl5
T9=C1*(T4+T8)
TlO=Cl*(T4-.T8)
U9=C1*(U4+U8)
Ulo=C1*(U4-U8)
R1=T1+T5
R3=T1-T5

S3=U 1-U5
R5=T3+T7
R7=T3-T7
S5=U3+U7
S7=U3-U7
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R9-T2+TlO
Rll=T2-TIO
S9-U2+UlO
Sll=U2-UlO

E R13=T6+T9
R15=T6-T9
S13=U6+U9
S15=U6-U9

T2=R4-R16

*~1 Ul=S4+S16
U2=S4-.Sl6
T3=Cl*(R6+R14)
T4=Cl*(R6-Rl4)
U3=Cl*(S6+S14)
U4=Cl*(S6-S14)
T5-R8+Rl2
T6=R8-Rl2
U5=S8+Sl2
U6=S8-S12
T7=C2*(T2-T6)
T8=C3*T2-T7
T9=C4*T6-T7
TlO=R2+T4
Tll=R2-T4
R2=TlO+T8
R4=TlO-T8
R6=T1l+T9
R8=TlI-T9 .

-4. U7=C2*(U2-U6)
U8=C3*U2-1J7
U9=C4*U6-U7
UIO=S2+U4
UlI=S2-U4
S2=UIO+U8
S4=UlO-U8
S6=U11+U9
S8=U11-U9
T7=C5*(Tl+T5)

T8=T7~-C4*TlI T9=T7-C3*T5
TIO=R1O+T3
Tll=RI0-T3
RlO=T1O+T8
R12-TlO-T8
R14=T1I+T9
R16-Tll-T9
U7=C5*(U1+U5)
U8-UJ7-C4*Ul
U9=U7.-C3*tJ5
U1O=S 1O+U3
U1P=SlO-U3
S1O-u1o+u8
S12-UlO-U8
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S14=Ull+U9
S16=Ull-U9
XR(1)=Rl+R5
XR(9)=Rl-R5
XI(1)=S1+S5
XI(9)=S1-S5
XR(2)=R2+SlO
XR(16)=R2-SIO
XI(2)=S2-RlO

a..' IXI(16)=S2+RIO

XR(3)=R9+Sl3
XR(15)=R9-SI3
XI(3)=S9-RI3
XI(15)=S9+R13
XR(4)=R8-Sl6
XR(14)=R8+S16
XI(4)=S8+R16
XI(14)=S8-'Rl6
XR(5)=R3+S7
XR(13)=R3-S7
XI(5)=S3-R7

4 XI(13)=S3+R7
XR(6)=R6+Sl4
XR(12)=R6-SI4
XI(6)=S6-RI4
XI(12)=S6+Rl4
XR(7)=Rll-SI5
XR(11)=Rll+S15
XI(7)=Sll+Rl5

XR(8)=R4-S12
KR( 1O)=R4+S12
XI(B)=S4+Rl2
XI(1O)=S4-Rl2
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Appendix C. SWIFT SHORT DFT ALGORITHMS

The SWIFT short DFT algorithms are given for lengths 3, 5, 7, 9, and 16.
The algorithms for lengths 3 and 5 are from [9], with slight modifications.
In the modified versions shown here, duplicative additions are eliminated.
The SWIFT algorithms for lengths 2, 4, and 8 are identical to the PFA
algorithms for the same lengths and are thus omitted. All the algorithms are
written in terms of real multiplications and additions. In addition, no tri-
vial multiplications are used in these algorithms. The real and imaginary
parts of the complex input data are represented in natural order by XR(1),
XR(2),..., XR(N) and XI(1), XI(2),..., XI(N), respectively. The complex out-
put is stored in natural order in the XR and XI input arrays. The values R1,
R2,..., Sl, S2,..., U1, U2,..., and TI, T2,... are all temporary values
derived from input data and intermediate results. The total number of real
multiplications and additions for each DFT is listed with each algorithm. The
algorithms listed here have not been optimized with respect to minimizing the
amount of temporary storage required.

(1) N=3; 4 real multiplications, 12 real additions, u=2%/3.

Coefficients: Cl=-3/2
C2=sin u

RI=XR(2)+XR(3)
R2=XR(2)-XR(3)
Sl=XI(2)+XI(3)
S2=XI(2)-XI(3)
XR(1 )=Rl+XR(l)
XI(l)=Sl+XI(l)
TI=Rl*Cl
T2=R2*C2
Ui=S2*C2
U2=SI*Cl
T3=XR(l)+Tl
U3=XI(l)+U2
XR(2)=T3+UlXR(3)=T3-Ul

XI(2)=U3-T2
XI (3)=U3+T2

(2) N=5, 16 real multiplications, 32 real additions, u=2it/5.

Coefficients: Cl=cos u-I
C2=cos 2u-I
C3=sin u
C4=sin 2u

RI=XR(2)+XR(5)
R2=XR(2)-XR(5)
Sl=XI(2)+XI(5)
S2=XI(2)-XI(5)
R3=XR(3 )+XR(4)
R4=XR(3)-XR(4)
S3=XI(3)+XI(4)
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S4=XI(3)-XI(4)
Tl=Rl+R3
U1=Sl+S3
XR(l)=XR(l)+r1
XI(l)=XI(1)+Ul
T2=XR(l )+(Cl*Rl)+(C2*R3)
T3=XR(l )+(C2*Rl)+(Cl*R3)
T4=(C3*R2)+( C4*R4)
T5=(C4*R2)-( C3*R4)
U2=(C3*S2)+(C4*S4)

* ~U3=(C4*S2)-~(C3*S4)
u4=xi(l)+(Cl*Sl)+(C2*S3)
U5=XI(l)+(-J2*Sl)+(C1*S3)
XR(2)=T2+U2
XR(3)=T3+U3
XR(4)=T3-U3
XR(5)=T2-U2
XI(2)=U4-T4
XI(3)=U5-T5
XI(4)=U5+T5
XI (5 )=U4+T4

(3) N=7, 36 real multiplications, 60 real additions, u-2rt/7.

Coefficients: Cl~cos u
C2=cos 2u
C3=cos 3u
C4=sin u

AC5=sin 2u
C6=sin 3u

4 R1=XR(2)+XR(7)
R2=XR(2)-XR(7)
Sl=XI(2)+XI(7)
S2=XI(2)-XI(7)
R3=XR(3)+XR(6)
R4:XR(3)-XR(6)

S3=XI(3)-XI(6)
R5=XR(3)+XR(5)
R5=XR(4)-XR(5)
S5=XI(4)+XI(5)
S5=XI(4)-XI(5)

T1=Rl+R3+R5
Ul=Sl+S3+S5
XR(l)=XR(l)+Tl
XI(l)=XI(l)+U1
T2=XR(l )+(Cl*Rl)+(C2*R3)+CC3*R5)
T3=XR(1)+(C2*Rl)+(C3*R3)+(Cl*R5)
T4=XR(1 )+(C3*Rl)+(C1*R3)+(C2*R5)
T5=(C4*R2 )+(C5*R4)+(C6*R6)
T6=(C5*R2)-~(C6*R4)-~(C4*R6)
T7=( C6*R2)-.(C4*R4)+(C5*R6)
U2=(C4*S2)+(C5*S4)+(C6*S6)
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r4 U3=(C5*S2).-(C6*S4)-(C4*S6)

U4-(C6*S2).-(C4*S4)+(C5*S6)I ~U5=XI(l)+(Ci*Sl )+(C2*S3)+(C3*S5) -

U6=XI Cl)+(C2*Sl )+(C3*S3)+(Cl*S5)
U7=XI(l)+(C3*Sl)+(Cl*S3)+(C2*S5)
XR( 2)=T2+U2
XR(3)=T3+U3 .

) XR(4)=T4+U4
XR(5)=T4-U4
XR(6 )=T3-U3
XR(7 )=T2-U2
XI (2 )=U5-T5
XI (3 )=U6-T6

(4) =9,44 ealmultiplications, 88 real additions, u-2it/9.

C5,sin 3u

C8=sin 4u

Rl=XR(2)+XR(9) 4

Sl=XI(2)+XI(9)
Sl=XI(2)-XI(9)
R3=XR(3 )+XR(8)
R3=XR(3)-XR(8)

S3=XI(3)+XI(8)
S4=XI(3)-XI(8)
R5=XR(4)+XR(7)

* ~R6=XR (4)-KR (7)
S5=XI(4)+XI(7)
.S6=XI(4)-XI(7)
R7=XR(5)+XR(6)
R8=XR(5)-XR(6)
S7=XI(5)+XI(6)
S8=XI(5)-XI(6)
Tl=Rl+R3+R5+R7
Ul=Sl+S3+S5+S7
XR(l)=XR(1)+Tl
Xi(l)=XI(i)+Ul

T4=(C2*Rl )+(C4*R3)+(Cl*R7)+T2
T5=C3*(Tl-R5)+R5+XR(l)
T6=(C4*Rl )+(Cl*R3)+(C2*R7)+T2

50



7 77 7 77~ .7 .; 7 77 -- 7 7,

T7=C7*R6
T8=(C5*R2)+(C6*R4)+(C8*R8)+T7
T9=(C6*R2)+( C8*R4 )-.(C5*R8).-T7

* ~T1O=C7*(R2-.R4+R8)
Tll=(C8*R2 )-( C5*R4)-( C6*R8)+T7
U2=C7*S6
U3-( C5*S2 )+( C6*S4)+( C8*S8)+U2
U4=(C6*S2)+(C8*S4).(C5*S8)..U2
U5=C7*(S2-S4+S8)
U6=(C8*S2)-(C5*S4)..(C6*S8)+U2
U7=(C3*S5)+Xl(1)
U8=(Cl*S1 )+(C2*S3)+(C4*S7)+U7
U9=(C2*Sl)+(C4*S3)+(Cl*S7)+U7
UlO=C3*(Ul-S5)+S5+XI(1)
Ull=(C4*Sl )+(C1*S3)+( C2*S7)+U7
XP.(2)=T3+U3
XR(3)=T4+U4
XR(4 )=T5+U5
XR(5 )=T6+U6
XR(6 )=T6-U6
XR(7)=T5-U5

¶2 XR(8)=T4-U4
XR(9)=T3-U3

-~ XI(2)=U8-T8
XI(3)=U9-T9
XI(4)=UlO-TlO
XI (5 )=Ul1-Tll
XI (6 )=Ul l+Tl1
XI(7)=UlO-+TlO

.4 XI(8)=U9+T9
XI(9)=U8+T8

(5) N=16, 24 real multiplications, 144 real additions, u--2%/16.

Coefficients: Cl=cos u
C2=cos 2u
C3=cos 3u

R1=XR(1)+XR(9)
R2=XR(l1).-XR(9)
Sl=XI(l)+XI(9)
S2=XI(l)-XI(9)

R3=XR(2)+XR(16)
R4=XR(2)-XR(16)
S3=XI(2)+XI (16)
S4=XI(2)-XI(16)
R5=XR(3)+VR(15)
R6=XR(3)-XR(15)
S5=XI(3)+XI15
S6=XI(3)-XI(15)
R7=XR(4)+XR(14)
R8=X.R(4)-XR(14)
S7=XI(4)+XI(14)
S8=XI(4)-XI(14)

51



H R9=XR(5)+XR(13)
RIO=XR(5)-XR(13)
S9-XI(5)+XI(13)

Ril=XR(6)+XR(12)
0 R12=XR(6)-XR(12)

Sll=XI(6-+XI(12)
S12=XI(6)-XI(12)
R13=XR(7)+XR(Il)
R14=XR(7 )-XR(11)

S13=XI(7).+XI(il)

S13=XI(7)+XI(11)

Tl=Rl34-R5

T3=Rl+R9
T4=R1-'R9
T5-T3+Tl
T6-T3-T1
T7=C2*T2
T8=R2-~T7

'-I T9-R2+T7
TlO=R3+R15
Tll=R3--R15
T12=R7+Rl1

9. T13=R7-R1I
T14=TIO+T12
T15=(C1*T11 )+(C3*T13)
T16=C2*(T1O-Tl2)
T17=(C3,''1)-(C1*T13)

T18=C2*(R6+R14)

T20=T18+RIO
T21=T18-RIO
T22-R4+Rl6
T23-R4--R16
T24=R8+,R12
T25=R8-R12
T26=(C3'*T22)+(Cl*T24)
T27=C2*(T23+T25)
T28=(Cl*T22)-(C3*T24)
T29-T 23-T25
U1=S1+S9
U2=Sl-S9
113=S5+Sl3
114=S5-Sl3
US=Ul+U3
t'6-C2*U4
UJ7=S2+U6
UB=S2--U6
U')=U~IJU3
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U10-S3+S15
Ull=S3-Sl5
U12=Sl1 +S 7
U13=S11-S7
U14=U1O+Ul2

U15=C2*(U1O-Ul2)
U16=(Cl*Ull)-(C3*U13)
U17=(C3*Ull)+(Cl*U13)
U18=C2*(S6+Sl4)
U19=U18+S10
1120=Ul8-S 10
U21=S 6-S 14
U22=S4+S16
U23=S4-S16
U24=S 8+512
U25=S8-SI2
U26=(C3*U22 )+(C1*U24)
U27=C2*(U23+U25)
U28=(Cl*U22)-(C3*U24)
U29-U23'-U25
XR(1 )=T5+Tl4
XI(1)=U5+t114
XR(5)=T6+U29
XI(5)=U9-T29
XR(9)=T5-TI4
XI (9 )=U5-1114
XR(13)=T6-U29
XI (13 )=U9+T294 T30=T8+Tl5
U30=U26+Ul9
T31=T8-Tl5
U31=U26-Ul9
XR( 2)=T30-+U30
XR(8)=T31+U31
XR(16)=T30-U30
XR(10)=T31-U31
T32=T4+T16
U32=U274iU21
T33=T4-Tl6

4 U33=U27-U21
XR(3)=T3244U32
XR(7)=T33+U33
XR(15)=T32-U32
XR( 11 )=T33-U33
T34=T9+T17
U34=U28+U20
T35=T9-Tl7
U35=U28-U20
XR( 4)=T34+U34
XR(6)-T35+U35
XR(14)=T34-U34
XR(12)=-T35-U35
1136=U7+U 16
T36=T20+T26
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U37=U7--Ul6
T37=T20--T26
XI(2)=u36--T36
XI(8)=U37+T37
XI(16)=U36+T36
XI(1O)=U37-T37
U38=U2+U15
T38=T19+T27
U39=U2-U1 5
T39=T 19-T27
XI(3)=U38-T38
XI(7 )=U39+T39
XI (15 )=U38+T38
XI(11)=U39-T39
U40=U8+Ul7
T4O-T21+T28
U41=U8-Ul7
T41=T21-T28
XI(4)=U40-T40
XI(6)=U41+T41
XI(14)=U40+T40
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