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MULTI-GRID CAI.CULATION OF THREE-DIMENSIONAL

TRANSONIC POTENTIAL FLOWS

D. A. Caughey‘

Cornell University
Ithaca, New York 14853

e ABSTRACT

rd

A multi-grid algorithm has been developed to
speed the iterative convergence of calculations
for the transoanic potential flow past swept wings
and wing-fuselage combinations. The method is
based upon a fully-conservative, finite-volume
approximation to the steady potential equation
which is second-order accurate everywhere in the
flow field except near shock waves. The multi-

- grid scheme is incorporated within the framework

of an alternating successive-line-overrelaxation
(SLOR) solver of the difference equations. Com—
puted results confirm the second-order accuracy
of the scheme, and demonstrate the effectiveness
of the multi-grid procedure. 45__—

I. INTRODUCTION

In the past several years, algorithms have
been developed for predicting the transonic
potential flow past reasonably complete aircraft
configurations. In particular, the finite-volume
method of Jameson and Caughey ~° has made it pos-
sible to calculate the transonic potential flow
past any configuration for which a suitable boun-
dary-conforming coordinate grid can be construct-
ed. These schemes still remain quite expensive
in terms of computer resources for practical use,
however, primarily because of the large number of
grid cells necessary for adequate resolution in
three-dimensional problems and the iarge number
of iterations required to achieve even modest
convergence on these fine grids. The present
paper describes work addressed primarily at this
last difficulty, but also includes an improvement
which addresses the first problem.

The major thrust of the current work is the
incorporation of a multi-grid algorithm’, to
solve the difference equations., At the same
time, the artificial viscosity terms have been
modified to maintain almost everywhere the
second~order accuracy of the original central-
difference approximation used in subsonic regions
of the flowfield in a manner similar to that used
for two~dimensional calculations by Jameson in
Reference 6. When using multi-grid to accelerate
converggnce in two-dimensional calculations,
Jameson’ found it necessary to use a generalized
Alternating-Direction-Implicit (ADI) smoothing
routine to eliminate all high wavenumber com—
ponents of the error, govever the results of
Shmilovich and Caughey and their extension to
the current work demonstrates that good rates of

Yassociate Professor, Sibley School of Mechanical
and Aerospace Engineering. Member, AIAA.

convergence can be obtained using modified ver-
sions of the original SLOR algorithms. In order
to provide reliable convergence, the bandwidth of
the original SLOR scheme has been increased to
allow pentadiagonal inversions along each line
(instead of the tridiagonal inversions of the
original scheme).

In the present paper, a brief review of the
fully-~conservative finite volume scheme will
first be presented, concentrating upon those
agpects necessary for an understanding of the
improvements in the artificial viscosity, the
modified SLOR schemes, and the implementation of
the multi-grid algorithm. The changes resulting
from the implementation of the new features will
then be described, and results indicating the
improved iterative convergence and accuracy of
the new scheme will be presented. A comparison
of results calculated using the original first-
order accurate and new second-order accurate
schemes will also provide some guidelines on the
number of wesh points required for given levels
of accuracy in force coefficients for these
three-dimensional calculations.

I1. ANALYSIS

The current work is based upon the finite-
volume method of Jaweson and Caughey." That
method provides a discrete approximation to the
nonlinear potential equation of transonic flow
vwhich may be interpreted either as a finite-
difference method which balances fluxes across
cell faces or as & finite element method based
upon the Bateman variational principle. In the
original formulation of that method, a first-
order truncation error was introduced by the
addition of an artificial viscosity needed to
stabilize the scheme in regions of supersonic
flow, and the difference equations were solved by
an SLOR scheme.

A. Finite-Volume Formulation

Many aerodynamic problems of practical
interest, including transonic flows with weak
snock waves, can be usefully approximated as
potential and steady. In strong conservation
form, the equation for the velocity potential &
can be written in Cartesian coordinates (x,y,z)
as

P W N

(pox)x + (pr)y + (pOz)z =0, (1)

hd o Ay
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where p is the density, given by the isentropic

law

1/(y-1)

o= {1+ (v-1)/2 201 - ¢B)} (2)

Here H. is the Mach number of the free stream,

q is the magnitude of the velocity V&, and the
density and velocity have been normalized by
their freestream values.

The finite-volume method for transonic
potential flow ~~ is a geometrically-general
technique based upon a numerical evaluation of
the transformation metrics produced by an
arbitrary transformation to boundary-conforming
coordinates. Consider a transformation to a new
set of coordinates X,Y,Z. Let the Jacobian
wmatrix of the transformation be defined by

X X X

X Y "z
H o= Syy Yy Y21 (3)
x %y %z

and let h denote’the determinant of H. The
metric tensor of the new coordinate system is

given by the matrix G = HTH , and the con-
travariant components of the velocity vector
U, V, and W are given by

U u

-1 -1) X :
vVp= H v) = G oy 0. (4)
w w .Z

Eq.(1), apon multiplication by h, can then be
written

(phU)x + (phv)Y + (phw)z = 0, (5)

The fully-conservative, finite-volume
approximation corresponding to Eq.(5) is
constructed by assuming separate trilinear
variations of the independent and dependent
variables within each mesh cell.

(a) Physical cell (b) Computational cell

Pigure 1. Mapping of mesh cells.

Numbering the cell vertices as illustrated
in Figure 1, and assuming that the local
coordinates Xi = +1/2, Yi =+ 12, z, = 1/2

at the vertices, the local mapping can be written

4
x = 8> x.(1/4 +X.X)(1/4 +Y Y)(1/4 +2.2). (6)
1 1 i 1

i=1

Similar formulas hold for y, z and ¢. If we
introduce the averaging and differencing
operators

Mg T V202,500 B2, 500
(7N

%fi, ik T Civr2,56 fiey2, 5.

then the transformation dervivatives, evaluated
at the cell centers, can be expressed by formulas
such as

Xy T By Syx
x, = uXZGYx, (8)
X T My

with similar expressions for the derivatives of
¥y, z and the potential. Such formulas can be
used to determine p, h, U, V, and W at the
center of each cell using Eqs.(2),(3), and (4).
Eq.(5) is represented by conserving fluxes across
the boundaries of auxiliary cells whose faces are
chosen to be midway between the faces of the
primary mesh cells. This can be represented as

uYzﬁx(phU) + uxzﬁy(ohv) + HXYGZ(phw) = 0. (9)

This formula can also be obtained by applying the
Bateman variational principle that the integral
of the pressure

I =[pdxdyaz (10)

is stationary, and approximating I by a simple
one-point integration scheme in which the
pressure at the center of each grid cell is
multiplied by the cell volume. In this way, for
subsonic flow, the finite-volume method can
equally well be regarded as a finite element
method with isoparametric trilinear elements.

The use of the one-point integration scheme
leading to Eq.(9) has the advantage of requiring
only one density evaluation per mesh point, but
also has the undesirable effect of tending to
decouple the solution at odd~ and even-numbered
points of the grid, and suitable recoupling terms
can be added to improve the stability of the
solution.

We define
T= -’f{uLGXY(AX MR AN
+ uXGYZ(AY + A u,s

Z°7X'Ye (1)

s ouyby Ay ¢ A by,
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where
Ay - oh(g't - v?/a?),
A, = ph(g?? - v¥/ad), (12)

A, = oh(g33 - w2/a?),

are the coefficients of oxx, .YY’ and ’ZZ’ in
i

the expanded form of Eq.(5). Here g are the

elemenss of the inverse of the metric tensor G ,
and a is the square of the local speed of
sound. The addition of T to Eq.(5) provides
recoupling for 04 € < 1/2. For € = 1/2, this
reduces Eq.(9) to the usual second-order
accurate, six-point Laplacian operator for
incompressible flow on a uniform grid.

The scheme is stabilized in supersonic
regions by the explicit addition of an artificial
viscosity. The viscosity terms added in the
original formulation are chosen to emulate the
directional bias introduced b{ the rotated

difference scheme of Jameson. The fluxes ?, 6,
and are defined such that

4 - 2(2

Pi,j,k pha/a“(u °xx + uvsXY + uw&xz)o,

= 2 2

Gi,j’k shofaZ(UVE  + V6 o+ WE e, (13)

A - 2 2

Ri,j,k pho/a (uwsxz + VHGYZ + W Gzz)o,

where the switching function

¢ = max(0., 1 - (uc/mz) (14)

is non-zero only for values of the local Mach
number M greater than some critical Mach number
Hc. Then, after defining

L,k (15)
i*l,j,k ’

Piv1/2,5,%"

o> v

with similar shifts for Q and R, Eq.(9) is
represented as

6x(un(phu) + P) + 6Y(uxz(phv) + Q)

(16)
+62(uxY(th) +R + T = 0,

The difference Eqs.(9) approximate the
original differential Eq.(5) to within a formal
truncation error of second order in the mesh
spacing in the physical plane when the mesh is
smooth. Since the additional fluxes P, Q, and
R added in supercritical regions are of the
order of the physical mesh spacing itself,
however, Eqs.(16) approximate Eq.(5) to within a
truncation error of only first order in the mesh
spacing. The error resulting from the introduc-
tion of the artificial viscosity can be reduced
to second order negrly everywhere in the flow
field if we define

vi,j,k =] - x6quzp an

where «x is a constant of order unity, and

? v ? u*o

irj-k i,j,k i-lrj:k' ’

Pi*l/2,j,k- n . (18)
U<o,

~P. . . 4V, . P, -
Pl*l,J.k itl,),k i+2,},k

Similar expressions are used for the contributons
from the Q and R fluxes. In regions where the
solution is smooth, the term xGXuYZp is of

first order in the mesh spacing, and the
viscosity is formally a second order quantity.
Near a shock, for an appropriate value of «, the
quantity vi i,k becomes small, and Eqs.(18)

* ’

approximate Eqs.{15) -- i.e., the viscosity
reverts to the original first-order form. This
hybridization of the second-order scheme has been
found necessary to stabilize computations for
solutions containing stromng shocks.

B. Multi-Grid Iteration

The difference equations resulting from
Eq.(16) can be solved by carefully constructed
SLOR schemes. The SLOR schemes described in
References 1-3 were constructed in a manner that
required only tridiagonal inversions along each
line. When the contributions arising from the
inclusion of the artificial viscosity terms are
included, the corrections at each point are coup~
led to those of its two neighbors on one side
(either side must be allowed in a general scheme,
depending upon the sign of the velocity) for the
first-order scheme, and its three nearest neigh-
bors on one side for the second-order form of the
viscosity. Thus, a general scheme which accounts
for all these contributions would require a pen-
tadiagonal inversion for the first-order scheme,
or a septadiagonal inversion for the second-~order
scheme. It was found that the pentadiagonal
inversion scheme was substantially more stable
than the tridiagonal scheme when the second~order
form of the viscosity was used, but made little
difference in convergence behavior when the
first-order viscosity was used. Complementary
experiments by A. Jameson of Princeton University
have shown no consistent advantage in using sep-
tadiagonal inversions (over the pentadiagonal
scheme) when the second-order viscosity is used.
The pentadiagonal iaversion scheme has been
incorporated for the present calculations.

Both X-line and Y-line schemes have been
implemented. Only the Y-line scheme will be
described here; the X-line scheme can be similar-
ly constructed. Also, the coefficients will be
described only for the case when U,V,W > 0; the
coefficients for other cases can easily be
constructed by analogy.

We define

w,ahU/n2 uax('U',,VI,,W'),

w'phV/nz max( |V, V], |w]), a9)

& & &

u).chH/l2 max(lU‘,lVl,lH‘),
where ws is a parameter governing the amount of

.st type damping added explicitly to the time
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dependent equation modelling the relaxation
process. Also,

Ay T phav?/a?,
Ay = nav?/a?, (20)
Ay = ohow?/a?.

Then the correction to the potential

.(n#l) ~ ’(n)

i,5,k i,k ik (21)
is calculated according to
(Ay + A 5 ™ 51,0
v A A kT S ke
+ (A + AU)(ci,j,k - ci_l,j,k)
* A kT Gy
+ ‘uu{’°i¢1,j,k + (3 + vi’j’k)ci'j,k (22)

= Oy M1, 5,081, 5,k

¢V e e, 5,00%2, 5,k

+ Avv{(s ’“i,j,k)ci,' -(4 +3v, . )C

ik i,i.k izj—l,k
M2y 06 ]
* Aoy %5 Y 508, k)
+ (2/w - 1)(AY + Az)ci,j,k = -ni'j,k
where Ri,j,k is the residual of Eq.(16),

calculated using values of the potential from the
previous iteration, and @ is an overrelaxation
parameter, which is set to 2 in supersonic
regions. Eq.(22) requires a pentadiagonal
inversion along each i-line since for U < 0 the
formula must be modified to include the effect of
the correction at the (i+2,j,k) point. The V
and W components should be non-negative in
supersonic zones for the relaxation sweeps to
proceed in the positive Y- and 2~ directionms.
Note that the influence of corrections at the
(i,j*1,k) and (i,j,k+l), (i,j,k-2) points as well
as the (i-3,j,k), (i,j-3,k) and (i,j,k-3) points
have been eliminated by the effective addition of
mixed space-time differences.

These SLOR schemes have the advantages of
being quite stable, and of rapidly eliminating
any large local errors in the initial estimates
for the potential field. Their rates of conver-
gence decrease as the local errors become smal-
ler, however, with the result that convergence to
very small residuals can be excruciatingly slow,
especially when the mesh spacing is small.

An efficient alterngtive has been
demonstrated by Jameson,  based upon the
multi-level adaptive-grid technique first
proposed by Fedorenko, and developed and
popularized by Brandt. The concept behind the
multi-grid method is to eliminate each band of
wavenumbers in the error spectrum on a

finite-difference grid which is, in a sense,
optimal for that component. Thus, low wavenumber
errors are eliminated on coarse grids, and only
the high wavenumber components need be eliminated
on the fine grids. Alternatively, the use of
coarse grids to eliminate the low wavenumber
component of the error can be thought of as
allowing a very high signal speed for the effects
of this error to be transmitted across the grid.

The multi-grid method was first applied to
the transonic small disturbance equation by South
and Brandt, who noted the problems associated
with highly stretched grids when using SLOR as
the smoothing algorithm, and suggested using
alternating SLOR as a remedy. Three-dimensional
calculations using the full potential equation
(in non-conservation fsrm) have been performed by
McCarthy and Reyhner,‘ for the transonic flow
past axisymmetric inlets. Their computations
were performed in a non-body-aligned, cylindrical
coordinate system.

The structure of the multi-grid method is as
follows. Let the discretization of Eq.(16) be
represented by

k +1 k
LRe(mrl) o gk k=1,2,...,K, (23)

or a heirarchy of grid levels Go, G‘,...,GK,

with K denoting the finest grid. The iterative
solution is started from some initial estimate on
the finest grid. After the high wavenumber
component of the error has been eliminated, the
fine-grid residual is calculated and restricted
to the next coarsest grid. On all but the finest
grid, the residual must be modified to account
for the difference in truncation error on the

various grid levels (i.e., LkO F 0 unless
k = K, where & is the converged solution on the
K-th grid). Thus

k-1 _ Lk-lo(n) _ -lLk.(n)’

F (24)

I

where I: !

averages the residuals over the fine mesh points
in the vicinity of each coarse grid point. After
the high wavenumber error on the coarser grid has
been eliminated, the finer mesh solution can be
improved according to

is a restriction operator which

(n+l) (n) k
=9 + I, (e

(n+1) _ (n)

¢ ¢ ), (25

where is a prolongation operator which is

k
-1
used to interpolate the coarse grid corrections
onto the finer grid,

While the essence of the idea has been
described above for two grid levels, the idea can
be extended to as many levels as feasible in
order to work on the broadest possible band of
the error wavenumber spectrum. Useful error
reduction can be achieved on very coarse grids,
containing only a few cells in each coordinate
direction.

T e TR .~
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In the original implementation of Btandt,s
an adaptive strategy was envisioned for deter-
mining when to change from one grid level to the
next. The swmoothing would continue on a partic-
ular grid level until the convergence rate fell
below some predetermined tolerance, at which time
the residual from that grid would be restricted
to the next coarsest grid. The smoothing on that
grid would proceed until the convergence rate
again slowed, at which time the residual would
again be restricted to a coarser grid, and the
process repeated. When the solution had conver-
ged on the coarsest level, the corrections would
successively be added back to the finer grid
solutions, and the cycle would be repeated. In
the present implementation, a simple fixed stra-
tegy has been found effective. A fixed number of
relaxation sweeps is performed on each grid
before restricting the residual from that grid to
the next coarsest level, and a fixed number of
relaxation sweeps is performed on each grid after
the corrections are added from the preceding grid
before the corrections are added to the next
finest grid.

In the present codes, as in our earlier
work,  the restriction operator averages the
residuals at the 27 fine grid neighbors of each
coarse grid point, weighted according to the
fraction of the coarse grid cell volume asociated
with each fine grid cell in the computational
space. The prolongation operator uses four-point
Lagrangian interpolation in each coordinate
direction, except near boundaries where the order
must be reduced.

The computational labor required for one
multi-grid cycle using this fixed strategy is as
follows. Let one work unit be defined as the
labor required for one relaxation sweep on the
finest grid. Then if m; sweeps are done on
each grid before the residual is restricted to
the next coarsest grid, and my sweeps are done
on each grid before the corrections are prolonged
to the next finest grid, then the cost of one
complete multi~grid cycle is approximately

{8(m, + 1) + my}/7 work units.

This includes the cost of computing the residual
on each grid for restriction to the next coarsest
grid as approximately equal that of a relaxation
sweep on that grid (since most of the labor is
involved in computing the residual, not in the
actual update of the solution), but neglects the
overhead in restricting residuals and prolonging
corrections. For m; = mp = 1, one multi-grid
cycle requires approximately 2-3/7 work units.

The success of the multiple~grid method
depends upon the efficient elimination of high
wavenumber errors on any given grid. Jameson
used a generalized alternating-direction scheme,
in which he replaced the usual constant in each
factor by the sum of a constant and first-order
difference operators in each coordinate direc-
tion. Shmilovich and Caughey" have shown that,
even for SLOR schemes, the growth factor in a von
Neumann anaiysis should never exceed approxi-
mately 0.78 per multi-grid cycle if the multi-
grid algorithm is effective on error with low
wavenumber components in any of the three

coordinate directions. The effectiveness of the
multi-grid procedure in eliminating error having
low wavenumber component in only one (or two)
directions was not verified in the present work,
but it was found effective to alternate between
X-line and Y-line SLOR in conjunction with the
multi~grid procedure. This can be done in two
different ways: (1) alternate multi-grid cycles
can be performed using the two schemes, or

(2) the two schemes can be alternated at each
level within each multi-grid cycle (if m; and
m, are greater than one). The most effective
procedure seems to be the second option (with
m; =2 and my = 4 or 6).

C. Geometrical Aspects

The algorithm described above has been
incorporated into two computer programs for
calculating the transonic potential flow past
three~dimensional wings and wing-fuselage combi-
nations. These codes are known generally as
FLO-27 and FLO-30. FLO-27 analyses the flow
past swept wings of essentially arbitrary plan-
form and section shape; FLO-30 analyses the
flow past such wings mounted upon arbitrary
fuselage shapes.

Both codes construct boundary-conforming
coordinate grids by sequences of simple conformal
and shearing transformations. The computational
domain in each program is terminated at artifi-
cial boundaries, located approximately ten chords
distant from the wing surface in each spanwise
surface, and approximately four semi-spans from
the symmetry plane or fuselage in the lateral
direction. On the upstream and lateral boun-
daries, the potential describing perturbations
from the uniform free stream is set to zero,
while on the downstream boundary, the velocity
perturbations in the streamwise direction are set
to zero (consistent with a fully-developed flow
in the Trefftz plane). The no-flux condition is
enforced directly in the flux balances at solid
boundaries, and a linearized approximation to the
vortex sheet, which assumes the shed vorticity
trails in the freestream direction im a fixed
surface downstream of the trailing edge is used.
The flux balance represented by Eq.(16) is also
satisfied at points on the vortex sheet, since it
does not require differences across the sheet.

These codes, and their associated grid
generation techniques, are described in greater
detail in References 1-3.

I1I. RESULTS

Results will be presented illustrating both
the improved rate of convergence of the multi-
grid algorithm, and the increased accuracy of the
scheme with the second-order viscosity.

A. Computational Aspects

Both programs have been designed to rum on
either modest computers with large virtual wmemory
or on advanced machines with large high-speed
memories. Even so, only the Cartesian
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coordinates of the mesh and the solution vector
can reasonably be stored for fine meshes, and the
transformation derivatives are recomputed at each
mesh point in each iteration. Largely because of
this, the program runs efficiently on vector
machines even though the actual line inversions
for the solution are inherently recursive. On a
grid containing 160x24x32 mesh cells in the

X, ¥, and Z directions, respectively, FLO-30
requires about 830,000 words of storage on the
Cray~1 computer, and requires about 2.0 CPU
seconds per work unit on this grid. This corres-
ponds to an estimated average computational rate
of 32 megaflops. A typical solution is conver-
ged to within reasonable engineering accuracy
after about 30 work units; this requires
approximately 65 seconds on this (relatively
fine) grid.

B. Computed Results

The first results to be presented are for
the high-aspect-ratio, supercritical wing (Wing
A) tested by Hinson and Burdgee.‘l A perspective
view of the wing is shown in Figure 2. The flow
past the wing at a freestream Mach number of 0.82
and 1.5 degrees angle of attack was analysed
using FLO-27. The analysis was performed on a
sequence of three grids, each obtained by doub-
ling the number of mesh cells in each coordinate
direction from the preceding grid, and prolonging
the results of the converged solution from the
preceding grid as the initial estimate on the
next grid. The finest grid contained 128x16x32
mesh cells. Calculations were performed with
both the first- and second-order forms of the
artificial viscosity; the iterative convergence
rates were nearly identical. Figure 3 shows the
convergence history of the second-order scheme on
the finest grid. The logarithm of the average
residual, the root section lift coefficient, and
the number of supersonic points are plotted as a
function of computational work (measured in work
units); the lift coefficient is normalized by
its final converged value, and number of super-
sonic points is normalized by twice its final
converged value, while the residual is normalized
by its initial value. The solid lines represent
the convergence of the multi-grid algorithm (with
m; =2, my = 6, and the alternating SLOR scheme)
using 4 grid levels, and the dashed lines rep-
resent the convergence of a relaxation solution
for the same initial quess. Note that after even
100 relaxation sweeps, the SLOR scheme has elim-
inated only about half of the error in root sec-
tion lift coefficient and in the number of super-
sonic points. This illustrates the slowness with
which SLOR eliminates the low wavenumber com-
ponent of error. With the multi-grid scheme,
both of these measures have converged to within
the plottable accuracy of the figure in the
equivalent of 50 relaxation sweeps. The wing
surface pressure distribution for the first- and
second-order accurate schemes are presented in
Figures 4(a) and 4(b), and the streamwise pres-
sure distributions at the 25 per cent semi-span
station are presented for both schemes in Figures
5(a) and 5(b). Note the increased sharpness with
which the shocks are resolved by the higher-order
scheme. Finally, a convergence study of the wing
lift and drag coefficients with mesh spacing is
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shown in Figure 6. Both first- and second-order
accurate results are plotted; the former vs.
mesh spacing and the latter vs. the square of the
mesh spacing. Straight lines through the finer
mesh results for both schemes converge to the
same asymptotic value for the lift coefficient in
the limit of zero wesh width, but the drag
results have not yet reached their asympto*tic
rates on these grids. The absolute error in lift ]
for the second-order scheme on the finest grid is 9
about 2 per cent, while a mesh containing more 4
than eight times as many cells (a factor of 2 in
each coordinate direction) would be required for
similar accuracy using the first-order scheme.
The absolute error in the drag coefficient for
the second—order scheme is about 3 per cent,
while similar accuracy for using the first-order
scheme would seem to require approximately 64
times as many mesh cells (a factor of four in
each coordinate direction).
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Finally, to illustrate the reliability of
the scheme, results for a strongly supercritical
case are presented. The flow past the ONERA M-6
wing,‘ mounted upon a circular cylinder, was
computed using FLO-30. Figure 7 shows the coor-
dinate lines in the wing and fuselage surfaces
for the grid used; only every fourth line is
shown for clarity. The solution was computed at
a freestream Mach number of 0.923 and 3.06
degrees angle of attack on a very fine grid con-
taining 160x24x32 mesh cells. Nearly 20 per
cent of the mesh points have supersonic veloc-
ities for this case. The wing pressure distribu-~
tion, showing the strong shocks at the trailing
edge of the upper surface and the substantial
supersonic pocket outboard on the lower surface,
is plotted in Figure 8. The convergence history
is plotted inm Figure 9. Again, the root section
lift coefficient and the number of supersonic
points have converged to within plottable accu-
racy in the equivalent of about 50 relaxation
sweeps.

IV. CONCLUDING REMARKS

A multi-grid algorithm has been combined
with a successive-line~-overrelaxation (SLOR)
iterative scheme to provide improved rates of
convergence in the iterative sense for the com-
putation of transonic potential flows past swept
wing and wing-fuselage configurations. At the
same time, a modified form of artificial viscos-
ity has been incorporated which results in
second—order accuracy for the scheme nearly
everywhere in the flow field. The method has
been incorporated into two computer programs for
calculating the transonic potential flow past
three-dimensional wings and wing-fuselage com-
binations. Results indicate that convergence
adequate for most engineering purposes can be
achieved with the new multi-grid algorithm in
less than the time required for about 50 relax-
ation sweeps using the original SLOR scheme.
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Figure 2. Geometry of Lockheed Wing A; sections
at computational stations on fine grid are shown.
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Figure 3. Iterative convergence for calculation

of flow past Lockheed Wing A at M_= 0.82 and
1.5 degrees angle of attack; second-order
scheme.
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Figure 4. Three-dimensional wing surface pressure distributions for Lockheed
Wing A at M_ = 0.82 and 1.5 degrees angle of attack.
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Figure 5. Streamwise surface pressure distributions for Lockheed Wing A at 25
per cent semi-span station. Same freestream conditions as Figure 4.
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Figure €. Convergence study of wing lift and
drag coefficients for Lockheed Wing A. Same
freestream conditions as Figures 4 and 5.
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Figure 8. Wing surface pressure distribution for
flow past ONERA Wing-cylinder combination at
M, = 0.923 and 3.06 degrees angle of attack.

Figure 7. ONERA wing M-6 mounted upon cylin-
drical fuselage. Grid lines shown in wing and

fuselage surfaces only; every fourth line shown.

(=] o
3 g
6.\_,.__,—»— 48 —
o
2 ~
. W
o ] ERROR |
+ o J
I
«
e
©3 o2
s <a
o L.
[V (e}
N N
(]
o NSUF 2 ;
451/ oD
. -TIn
@] berZ
e
3 o
! o
(2 )
3
o
=4 o
T -
'3‘ m
. ~
~ .
- ©
' a0 30 ar

— T v T T
S0.00 100G ug 154 40 200 ug 2n0 un
WORK

ONERA WING ON CYLINDRICAL FUSELRGE
MACH 0.923 ALPHA 3. URD
RESTDL 0.532N0-0y4 Rt 5102 0.GR3IN-NC
WIIRK e, 37 ANTE U.9202
LRID 100Xeux3e

Figure 9. 1Iterative convergence for calculation
of flow past ONERA wing-cylinder combination.
Freestream conditions as in Figure 8.
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