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MULTI-GRID CAI.CULATION OF THREE-DIMENSIONAL

TRANSONIC POTENTIAL FLOWS

D. A. Caugheyl

Cornell University

Ithaca, New York 14853

ABSTRACT convergence can be obtained using modified ver-

-" sions of the original SLOR algorithms. In order

NA multi-grid algorithm has been developed to to provide reliable convergence, the bandwidth of

speed the iterative convergence of calculations the original SLOR scheme has been increased to
for the transonic potential flow past swept wings allow pentadiagonal inversions along each line

and wing-fuselage combinations. The method is (instead of the tridiagonal inversions of the

based upon a fully-conservative, finite-volume original scheme).

approximation to the steady potential equation
which is second-order accurate everywhere in the In the present paper, a brief review of the

flow field except near shock waves. The multi- fully-conservative finite volume scheme will
* grid scheme is incorporated within the framework first be presented, concentrating upon those
of an alternating successive-line-overrelaxation aspects necessary for an understanding of the

(SLOR) solver of the difference equations. Con- improvements in the artificial viscosity, the

puted results confirm the second-order accuracy modified SLOR schemes, and the implementation of
of the scheme, and demonstrate the effectiveness the multi-grid algorithm. The changes resulting

of the multi-grid procedure. 4 from the implementation of the new features will

then be described, and results indicating the
improved iterative convergence and accuracy of

I. INTRODUCTION the new scheme will be presented. A comparison
of results calculated using the original first-

In the past several years, algorithms have order accurate and new second-order accurate

been developed for predicting the transonic schemes will also provide some guidelines on the

potential flow past reasonably complete aircraft number of mesh points required for given levels

configurations. In particular, the finite-volume of accuracy in force coefficients for these

method of Jameson and CaugheyI
- 3 

has made it poe- three-dimensional calculations.
sible to calculate the transonic potential flow
past any configuration for which a suitable boun-
dary-conforming coordinate grid can be construct- II. ANALYSIS

ed. These schemes still remain quite expensive
in terms of computer resources for practical use, The current work is based upon the finite-

however, primarily because of the large number of volume method of Jameson and Caughey.1
- 3 

That

grid cells necessary for adequate resolution in method provides a discrete approximation to the
three-dimensional problems and the large number nonlinear potential equation of transonic flow
of iterations required to achieve even modest which may be interpreted either as a finite-

convergence on these fine grids. The present difference method which balances fluxes across

paper describes work addressed primarily at this cell faces or as a finite element method based

last difficulty, but also includes an improvement upon the Bateman variational principle. In the

which addresses the first problem. original formulation of that method, a first-
order truncation error was introduced by the

The major thrust of the current work is the addition of an artificial viscosity needed to

incorporation of a multi-grid algorithm4,
5 

to stabilize the scheme in regions of supersonic

solve the difference equations. At the same flow, and the difference equations were solved by

time, the artificial viscosity terms have been an SLOR scheme.

modified to maintain almost everywhere the

second-order accuracy of the original central-
difference approximation used in subsonic regions A. Finite-Volume Formulation

of the flowfield in a manner similar to that used

for two-dimensional calculations by Jameson in Mary aerodynamic problems of practical

Reference 6. ihen using multi-grid to accelerate interest, including transonic flows with weak

convergence in two-dimensional calculations, snock waves, can be usefully approximated as

Jameson found it necessary to use a generalized potential and steady. In strong conservation

Alternating-Direction-Implicit (ADI) smoothing form, the equation for the velocity potential 4
routine to eliminate all high wavenumber com- can be written in Cartesian coordinates (x,y,z)

ponents of the error, towever the results of as

Shmilovich and Caughey and their extension to
the current work demonstrates that good rates of (p# )x  + (y )y + (p )s  = 0, (1)

t
Associate Professor, Sibley School of Mechanical
and Aerospace Engineering. Member, AIAA.
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where p is the density, given by the isentropic Numbering the cell vertices as illustrated
, law in Figure 1, and assuming that the local

-i + (y-0/2 21/(Vd) coordinates X. 
= +1/2, Y. + 1/2, Z. - + 1/2

at the vertices, the local mapping can be written

Here N is the Mach number of the free stream, 4

q is the magnitude of the velocity V7, and the x - 8>x.(l/4 +i.X)(/4 +Y.Y)(I/4 +Z.Z). (6) P
density and velocity have been normalized by i=I
their freestrem values.

Similar formulas hold for y, z and t. If weThe finite-volume method for transonic itoueteaeaigaddfeecn

potential flow -3 is a geometrically-general operators
technique based upon a numerical evaluation of
the transformation metrics produced by an f 1/2(f
arbitrary transformation to boundary-conforming UX i,jk I2i+1/2,j,k+ 'i-1/2,j,k
coordinates. Consider a transformation to a new (7)
set of coordinates X,Y,Z. Let the Jacobian 5 f - (f - f
matrix of the transformation be defined by Xfi,j,k i+l/2,j,k i-l/2,jk

then the transformation dervivatives, evaluated
Kxx y XZ at the cell centers, can be expressed by formulas

H YX YY YZ (3) such as

X  y zZ Xx . yx'

and let h denote the determinant of H. The xy - UXZ'yX, (8)
metric tensor of the new coordinate system is

given by the matrix G R , and the con- 
.XYZ

travariant components of the velocity vector
U, V, and W are given by with similar expressions for the derivatives of

y, z and the potential. Such formulas can be
(u' ~ f~dused to determine p, h, U), V, and W at the

- ul G-1 center of each cell using Eqs.(2),(3), and (4).
jv "Eq.(5) is represented by conserving fluxes across

(W tw the boundaries of auxiliary cells whose faces are
chosen to be midway between the faces of the

Iq.(l), apon multiplication by h, can then be primary mesh cells. This can be represented as

written iaZ8X(phU) + vXZ6y(phV) + uXyaZ(phW) - 0. (9)

(Phu) x + (phV)y + (phW) z - 0. (5)
This formula can also be obtained by applying the
Bateman variational principle that the integral -.

The fully-conservative, finite-volume of the pressure
approximation corresponding to Eq.(5) is
constructed by assuming separate trilinear I f p dx dy dz (10)
variations of the independent and dependent
variables within each msh cell, is stationary, and approximating I by a simple

one-point integration scheme in which the
pressure at the center of each grid cell is
multiplied by the cell volume. In this way, for
subsonic flow, the finite-volume method can
equally well be regarded as a finite element
method with isoparametric trilinear elements.

The use of the one-point integration scheme
7 leading to Eq.(9) has the advantage of requiring

7I only one density evaluation per mesh point, but3 also has the undesirable effect of tending to"i

3 decouple the solution at odd- and even-numbered
- X points of the grid, and suitable recoupling terms

5can be added to improve the stability of the
6 solution.

z 1 2 1 2We define

z T - jtlZmn(AX +

(a) Physical cell (b) Computational cell + "x6n (A + Az )us (II)
+ JAy6 (AX + A )py6xFigure 1. Mpping of mesh cells. Y S ( + A Z

-1/25 (A +A +A )6XyZ.4
KYK X V¥ Z
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where P i,j,k- 'i,j,k i-l,j,k '  U b 0,
AX = ph(g'i - U

2
/a

2
), Pi+l/2k (18)

Ay - ph(g 22 
- V2/a2 ), (12) i+l,j,k + vi+l,j,k i+2,j,k . U 4 O,

AZ = ph(g 33 - W2/a2 ), Similar expressions are used for the contributons
from the Q and R fluxes. In regions where the

solution is smooth, the term K6X"yZp is of
e toY' afirst order in the mesh spacing, and the

the expanded form of Eq.(5). Here gtj are the viscosity is formally a second order quantity.
-I Near a shock, for an appropriate value of K, the

elemen5s of the inverse of the metric tensor G quantity v . becomes small, and Eqs.(18)
and a is the square of the local speed of i,j,k
sound. The addition of T to Eq.(5) provides approximate Eqs.(15) -- i.e., the viscosity
recoupling for 0 4 £ 4 1/2. For c - 1/2, this reverts to the original first-order form. This
reduces Eq.(9) to the usual second-order hybridization of the second-order scheme has been
accurate, six-point Laplacian operator for found necessary to stabilize computations for
incompressible flow on a uniform grid. solutions containing strong shocks.

The scheme is stabilized in supersonic
regions by the explicit addition of an artificial B. Multi-Grid Iteration
viscosity. The viscosity terms added in the
original formulation are chosen to emulate the The difference equations resulting from

directional bias introduced bx the rotated Eq.(16) can be solved by carefully constructed
difference scheme of Jameson. The fluxes ', SLOR schemes. The SLOR schemes described in
and V are defined such that References 1-3 were constructed in a manner that

required only tridiagonal inversions along each
S2hO/a(U26 + UV6 + UW6 Z, line. When the contributions arising from theXX, inclusion of the artificial viscosity terms are

phjk ao/a2(UV a + v2 ayy . VW6YZ)#, (13) included, the corrections at each point are coup-
led to those of its two neighbors on one side

A2UW 2Riik hO/a (UW + VW6Z + W 6 (either side must be allowed in a general scheme,
,XZ y ZZ depending upon the sign of the velocity) for the

first-order scheme, and its three nearest neigh-where the switching function bors on one side for the second-order form of the

viscosity. Thus, a general scheme which accounts
a max(0. 1 - (N c/N)2) (14) for all these contributions would require a pen-

tadiagonal inversion for the first-order scheme,
is non-zero only for values of the local Mach or a septadiagonal inversion for the second-order
number M greater than some critical Mach number scheme. It was found that the pentadiagonal
M . Then, after defining inversion scheme was substantially more stable
c than the tridiagonal scheme when the second-order

P U ' O, form of the viscosity was used, but made little
p ijk (15) difference in convergence behavior when the
i+l/2,j,k A U < O, first-order viscosity was used. Complementary

i+ljk experiments by A. Jameson of Princeton University

have shown no consistent advantage in using sep-
with similar shifts for Q and R, Eq.(9) is tadiagonal inversions (over the pentadiagonal
represented as scheme) when the second-order viscosity is used.

The pentadiagonal inversion scheme has been
6 (Py (PhU) + P) + 6 (pXZ(phV) + Q) incorporated for the present calculations.
X Y Y X

(16)
+ 6 (.xy(phW) + R) + T = 0. Both X-line and Y-line schemes have been

Z implemented. Only the Y-line scheme will be
described here; the X-line scheme can be similar-

The difference Eqs.(9) approximate the ly constructed. Also, the coefficients will be
original differential Eq.(5) to within a formal described only for the case when U,V,W ; 0; the
truncation error of second order in the mesh coefficients for other cases can easily be
spacing in the physical plane when the mesh is constructed by analogy.
smooth. Since the additional fluxes P, Q, and
R added in supercritical regions are of the We define
order of the physical mesh spacing itself,
however, Eqs.(16) approximte Eq.(5) to within a A - wPhU/a2 m
truncation error of only first order in the mesh I

spacing. The error resulting from the introduc-
tion of the artificial viscosity can be reduced 8/ m-x(IuI.IvI.IWI). (19)

to second order nearly everywhere in the flow
field if we define a

Vi,j,k  W -X RYZP (17) where ws is a parameter governing the amount of

0 type damping added explicitly to the time
st

where K is a constant of order unity, and

3
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dependent equation modelling the relaxation finite-difference grid which is, in a sense,
process. Also, optimal for that component. Thus, low wavenumber

errors are eliminated on coarse grids, and only

AUU - phOU
2
/a

2
, the high wavenumber components need be eliminated

on the fine grids. Alternatively, the use of
AVV - phoV

2
/a

2
, (20) coarse grids to eliminate the low wavenumber

2 2 component of the error can be thought of as
AW. I phOW2/a. allowing a very high signal speed for the effects

of this error to be transmitted across the grid.

Then the correction to the potential The multi-grid method was first applied to

(n+l) - (n) (2the transonic small disturbance equation by South
C kl i (n) (21) and Brandt,

9 
who noted the problems associated

ijk ijk ijk with highly stretched grids when using SLOR as

the smoothing algorithm, and suggested using
is calculated according to alternating SLOR as a remedy. Three-dimensional

calculations using the full potential equation
(A + A )(Ci ~ - Ci~- )Y + i,j,k i,j-l,k (in non-conservation f rm) have been performed by

+ (A + A)(Ci - C ) McCarthy and Reyhner , for the transonic flow
Z + )i,j,k i,j,k-l past axisymmetric inlets. Their computations

+ (AX + A )(C - ) were performed in a non-body-aligned, cylindrical
X U i,j,k i-l,j,k) coordinate system.

+ AX (Ci,j,k - Ci+l,j,k) The structure of the multi-grid method is as

(3 A 0 )C (22) follows. Let the discretization of Eq.(16) be

iC+ ijk ijk represented by

0 +2vi,j,k +Vi-l,j,k )Ci-l,j,k k (n+l) k
L 0 F k. k-1,2,.K, (23)

+ (I + vi,j k Vi l,j,k )c i-2,j,kl 0 K

+ A IO +V )C. . -(4 +3v )C on a heirarchy of grid levels G , G .... G

AVV i,j,k i,j,k i,j,k i,j-l,k with K denoting the finest grid. The iterative
(l *2v. )C-_,, solution is started from some initial estimate on

i,jk ij-2,k) the finest grid. After the high wavenumber
Ccomponent of the error has been eliminated, the

AWWj(3 +v i,j,k )C i~j,k-(3 + v j,k )Cij,k-11 fine-grid residual is calculated and restricted
to the next coarsest grid. On all but the finest

y + AZ)Ci,j,k -,j,k grid, the residual must be modified to account
for the difference in truncation error on the

where Ri~j,k  is the residual of Eq.(16), various grid levels (i.e., Lk i 0 unless

calculated using values of the potential from the k - K, where * is the converged solution on the
previous iteration, and w is an overrelaxation K-th grid). Thus
parameter, which is set to 2 in supersonic

regions. Eq.(22) requires a pentadiagonal k-i _ Lk-l (n) _ k-l k (n)
inversion along each i-line since for U 4 0 the F 0 - L # (24)

formula must be modified to include the effect of

the correction at the (i 2,j,k) point. The V k-I
and V components should be non-negative in where is a restriction operator which

supersonic zones for the relaxation sweeps to averages the residuals over the fine mesh points
proceed in the positive Y- and Z- directions. in the vicinity of each coarse grid point. After
Note that the influence of corrections at the the high wavenumber error on the coarser grid has
(i,j~l,k) and (i,j,kel), (ij,k-2) points as well been eliminated, the finer mesh solution can be
as the (i-3,j,k), (i,j-3,k) and (i,j,k-3) points improved according to
have been eliminated by the effective addition of
mixed space-time differences. *(n+l) -(n) + Ik_ ((n+l) _ *(n)) (25)

These SLOR schemes have the advantages of
being quite stable, and of rapidly eliminating where Ik_ i
any large local errors in the initial estimates k I
for the potential field. Their rates of conver- used to interpolate the coarse grid corrections

gence decrease as the local errors become ssal- onto the finer grid.
let, however, with the. result that convergence to
very small residuals can be excruciatingly slow, While the essence of the idea has been

especially when the mesh spacing is small. described above for two grid levels, the idea can
be extended to as many levels as feasible in

An efficient alternitive has been order to work on the broadest possible band of
demonstrated by Jameson, based upon the the error wavenumber spectrum. Useful error
multi-level adaptive-grid technique first reduction can be achieved on very coarse grids,
proposed by Fedorenko, and developed and containing only a few cells in each coordinate
popularized by Brandt.

5  
The concept behind the direction.

multi-grid method is to eliminate each band of
wavenumbers in the error spectrum on a

4
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In the original implementation of Brandt,
5  

coordinate directions. The effectiveness of the
an adaptive strategy was envisioned for deter- multi-grid procedure in eliminating error having

* mining when to change from one grid level to the low wavenumber component in only one (or two)

next. The smoothing would continue on a partic- directions was not verified in the present work,
ular grid level until the convergence rate fell but it was found effective to alternate between
below some predetermined tolerance, at which time X-line and Y-line SLOR in conjunction with the

the residual from that grid would be restricted multi-grid procedure. This can be done in two
to the next coarsest grid. The smoothing on that different ways: (1) alternate multi-grid cycles

.* grid would proceed until the convergence rate can be performed using the two schemes, or
. again slowed, at which time the residual would (2) the two schemes can be alternated at each
- again be restricted to a coarser grid, and the level within each multi-grid cycle (if m1  and

process repeated. When the solution had conver- m2 are greater than one). The most effective

ged on the coarsest level, the corrections would procedure seems to be the second option (with
successively be added back to the finer grid m, - 2 and m2 - 4 or 6).
solutions, and the cycle would be repeated. In
the present implementation, a simple fixed stra-
tegy has been found effective. A fixed number of C. Geometrical Aspects
relaxation sweeps is performed on each grid
before restricting the residual from that grid to The algorithm described above has been

the next coarsest level, and a fixed number of incorporated into two computer programs for
relaxation sweeps is performed on each grid after calculating the transonic potential flow past
the corrections are added from the preceding grid three-dimensional wings and wing-fuselage combi-
before the corrections are added to the next nations. These codes are known generally as
finest grid. FLO-27 and FLO-30. FLO-27 analyses the flow

past swept wings of essentially arbitrary plan-

In the present codes, as in our earlier form and section shape; FLO-30 analyses the

* work, the restriction operator averages the flow past such wings mounted upon arbitrary
- residuals at the 27 fine grid neighbors of each fuselage shapes.

coarse grid point, weighted according to the
fraction of the coarse grid cell volume asociated Both codes construct boundary-conforming
with each fine grid cell in the computational coordinate grids by sequences of simple conformal

space. The prolongation operator uses four-point and shearing transformations. The computational
Lagrangian interpolation in each coordinate domain in each program is terminated at artifi-
direction, except near boundaries where the order cial boundaries, located approximately ten chords
must be reduced. distant from the wing surface in each spanwise

surface, and approximately four semi-spans from
The computational labor required for one the symmetry plane or fuselage in the lateral

multi-grid cycle using this fixed strategy is as direction. On the upstream and lateral boun-

follows. Let one work unit be defined as the daries, the potential describing perturbations
labor required for one relaxation sweep on the from the uniform free stream is set to zero,
finest grid. Then if m1  sweeps are done on while on the downstream boundary, the velocity
each grid before the residual is restricted to perturbations in the streamwise direction are set
the next coarsest grid, and m2 sweeps are done to zero (consistent with a fully-developed flow
on each grid before the corrections are prolonged in the Trefftz plane). The no-flux condition is

to the next finest grid, then the cost of one enforced directly in the flux balances at solid
complete multi-grid cycle is approximately boundaries, and a linearized approximation to the

vortex sheet, which assumes the shed vorticity
18(m 1 + 1) + m 2 1/7 work units. trails in the freestream direction in a fixed

surface downstream of the trailing edge is used.
This includes the cost of computing the residual The flux balance represented by Eq.(16) is also
on each grid for restriction to the next coarsest satisfied at points on the vortex sheet, since it
grid as approximately equal that of a relaxation does not require differences across the sheet.
sweep on that grid (since most of the labor is
involved in computing the residual, not in the These codes, and their associated grid
actual update of the solution), but neglects the generation techniques, are described in greater

overhead in restricting residuals and prolonging detail in References 1-3.
corrections. For ml - m2 - 1, one multi-grid

cycle requires approximately 2-3/7 work units.

III. RESULTS
The success of the multiple-grid method

depends upon the efficient elimination of high Results will be presented illustrating both
wavenumber errors on any given grid. Jameson

6  
the improved rate of convergence of the multi-

used a generalized alternating-direction scheme, grid algorithm, and the increased accuracy of the
in which he replaced the usual constant in each scheme with the second-order viscosity.

factor by the sum of a constant and first-order
difference operators in each coordinate direc-

tion. Shmilovich and Caugheye have shown that, A. Computational Aspects
*even for SLOR schemes, the growth factor in a von

Neumann analysis should never exceed approxi- Both programs have been designed to run on
mately 0.78 per multi-grid cycle if the multi- either modest computers with large virtual memory

* grid algorithm is effective on error with low or on advanced machines with large high-speed
wavenumber components in any of the three memories. Even so, only the Cartesian

P 5
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coordinates of the mesh and the solution vector shown in Figure 6. Both first- and second-order

can reasonably be stored for fine meshes, and the accurate results are plotted; the former vs.

transformation derivatives are recomputed at each mesh spacing and the latter vs. the square of the
mesh point in each iteration. Largely because of mesh spacing. Straight lines through the finer

this, the program runs efficiently on vector mesh results for both schemes converge to the

machines even though the actual line inversions same asymptotic value for the lift coefficient in

for the solution are inherently recursive. On a the limit of zero mesh width, but the drag
grid containing l60x24x32 mesh cells in the results have not yet reached their asymptoic

X, Y, and Z directions, respectively, FLO-30 rates on these grids. The absolute error in lift

requires about 830,000 words of storage on the for the second-order scheme on the finest grid is
Cray-I computer, and requires about 2.0 CPU about 2 per cent, while a mesh containing more

seconds per work unit on this grid. This corres- than eight times as many cells (a factor of 2 in

ponds to an estimated average computational rate each coordinate direction) would be required for
of 32 megaflops. A typical solution is conver- similar accuracy using the first-order scheme.

ged to within reasonable engineering accuracy The absolute error in the drag coefficient for
after about 30 work units; this requires the second-order scheme is about 3 per cent,
approximately 65 seconds on this (relatively while similar accuracy for using the first-order
fine) grid. scheme would seem to require approximately 64

times as many mesh cells (a factor of four in
each coordinate direction).

B. Computed Results
Finally, to illustrate the reliability of

The first results to be presented are for the scheme, results for a strongly supercritical

the high-aspect-ratio, supercritical wing (Wing case are presented. The flow past the ONERA M-6

A) tested by Hinson and Burdges.
I I 

A perspective wing,
12 

mounted upon a circular cylinder, was
view of the wing is shown in Figure 2. The flow computed using FLO-30. Figure 7 shows the coor-

past the wing at a freestream Mach number of 0.82 dinate lines in the wing and fuselage surfaces

and 1.5 degrees angle of attack was analysed for the grid used; only every fourth line is

using FLO-27. The analysis was performed on a shown for clarity. The solution was computed at

sequence of three grids, each obtained by doub- a freestream Mach number of 0.923 and 3.06

ling the number of mesh cells in each coordinate degrees angle of attack on a very fine grid con-
direction from the preceding grid, and prolonging taining 160x24x32 mesh cells. Nearly 20 per

the results of the converged solution from the cent of the mesh points have supersonic veloc-
preceding grid as the initial estimate on the ities for this case. The wing pressure distribu-

next grid. The finest grid contained 128x16x32 tion, showing the strong shocks at the trailing

mesh cells. Calculations were performed with edge of the upper surface and the substantial
both the first- and second-order forms of the supersonic pocket outboard on the lower surface,

artificial viscosity; the iterative convergence is plotted in Figure 8. The convergence history

rates were nearly identical. Figure 3 shows the is plotted in Figure 9. Again, the root section
convergence history of the second-order scheme on lift coefficient and the number of supersonic

the finest grid. The logarithm of the average points have converged to within plottable accu-
residual, the root section lift coefficient, and racy in the equivalent of about 50 relaxation

the number of supersonic points are plotted as a sweeps.
function of computational work (measured in work

units); the lift coefficient is normalized by
its final converged value, and number of super- IV. CONCLUDING REMARKS

sonic points is normalized by twice its final

converged value, while the residual is normalized A multi-grid algorithm has been combined

by its initial value. The solid lines represent with a successive-line-overrelaxation (SLOR)

the convergence of the multi-grid algorithm (with iterative scheme to provide improved rates of
= 2, m2 - 6, and the alternating SLOR scheme) convergence in the iterative sense for the com-

using 4 grid levels, and the dashed lines rep- putation of transonic potential flows past swept

resent the convergence of a relaxation solution wing and wing-fuselage configurations. At the

for the same initial quess. Note that after even same time, a modified form of artificial viscos-

100 relaxation sweeps, the SLOR scheme has slim- ity has been incorporated which results in

mated only about half of the error in root sec- second-order accuracy for the scheme nearly

tion lift coefficient and in the number of super- everywhere in the flow field. The method has
sonic points. This illustrates the slowness with been incorporated into two computer programs for
which SLOR eliminates the low wavenumber com- calculating the transonic potential flow past
ponent of error. With the multi-grid scheme, three-dimensional wings and wing-fuselage com-

both of these measures have converged to within binations. Results indicate that convergence

the plottable accuracy of the figure in the adequate for most engineering purposes can be

equivalent of 50 relaxation sweeps. The wing achieved with the new multi-grid algorithm in
surface pressure distribution for the first- and less than the time required for about 50 relax-

second-order accurate schemes are presented in ation sweeps using the original SLOR scheme.

Figures 4(a) and 4(b), and the streamwise pres-

sure distributions at the 25 per cent semi-span
station are presented for both schemes in Figures V. ACKNOWLEDGEMENTS
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(a) First-order viscosity (b) Second-order viscosity

Figure 4. Three-dimensional wing surface pressure distributions for Lockheed

Wing A at H = 0.82 and 1.5 degrees angle of attack.
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(a) First-order viscosity (b) Second-order viscosity

Figure 5. Streamwise surface pressure distributions for Lockheed Wing A at 25

per cent semi-span station. Same freestream conditions as Figure 4.
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Figure 6. Convergence study of wing lift and

drag coefficients for Lockheed Wing A. Same
freestrea- conditions as Figures 4 and 5.

Figure 7. ONERA wing H-6 mounted upon cylin-
drical fuselage. Grid lines shown in wing and
fuselage surfaces only; every fourth line shown.
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Figure 8. W~ing surface pressure distribution for Figure 9. Iterative convergence for calculation
flow past ONERA Wcing-cylinder combination at of flow past ONERA wing-cylinder combination.
M "0.923 and 3.06 degrees angle of attack. Freestreams conditions as in Figure 8.
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