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ABSTRACT

4 This report shows how the Modulation Transfer Function, an important

quantity for remote microwave sensing of ocean wave spectra, will vary

with environmental conditions that control the air-sea interaction. The

accuracy with which this quantity is known will determine the quality of

remote measurements of ocean wave spectra. Microwave remote sensing of

individual ocean wavelengths (and th copleedrcinlsetu)i
co eedretoa petu)i

based on synchronized reflectivity variations along each wave, that the

radar can resolve spatially. This study demonstrates that the MTF, which

is the ratio of this reflectivity (amplitude of variation) to the ocean

wave amplitude, is affected by the air-sea interaction, in addition to

the hydrodynamic interaction between capillary anid long gravity waves.

_Recent measurements by the Naval Research Laboratory of the ocean

wave-radar modulation transfer function (MTF) from fixed ocean platforms,

over a period of several years, have demonstrated that the local hydro-

dynamic modulation of short centimeter waves is affected by the air-sea int-

eraction. Results from widely separate d ocean regions also show different

individual properties, that make detailed measurements necessary. An X-band

radar with vertical polarization was mounted on a platform in the Gulf of

Mexico during Nov.-Dec. 1978. The data set is computer stored and was pro-

cessed by the Naval Research Laboratory, Washington, D.C. A selective study

of this data has been conducted on the separate indepeadent influence of

wind speed, air-sea temperature difference and wave slope on the MTF and

the average radar cross section. Dependence on all these parameters was

observed. Data from other experiments agree with these results. Variations

of the coherence function for the modulation transfer function imply that

A other mechanisms must be found for these modulation effects other Lthan



hydrodynamic (wave-wave) interactions. An important conclusion of this

study is that the surface stress depends not only on the wind speed, but

also on air-sea temperature difference and wave slope.

INTRODUCTION

Microwave radar signals (wavelength about 3 cm) obliquely incident

on the ocean surface encounters a very rough surface that scattcrs this

energy in all directions. At steep angles, backscattered signals are control-

led by matching "Bragg-waves" that are in the short gravity-capillary

part of the surface spectrum. The reflectivity of patches of these scatterers

and their synchronous variation along a large gravity wave permits the

spatial resolution of the ocean wavelength by the radar. This reflectivity

(local radar cross section) oscillates along the large wave because its

orbital velocity modulates the short gravity and capillary waves. Thinking

in terms of a simple linear system model, where the output is the amplitude

(and phase, relative to the wave peak) of the local radar cross section cycle,

the MTF behaves like the "gain" of this system, with the input being one

of the long ocean gravity waves. Since the remote sensing problem is to

infer the amplitude of each long "input" gravity wave, based on the inten-

sity of the observed radar cross section variation, the MTF mus be known

or atimated to invert this measurement. Higher values of the MTF make

ocean waves more visible to a radar (either'ave Spectrometers" or imaging

radars), lower values mean a lower "visibility" that may not be detectable,

or accurately measureable.

2
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Previous studies (Plant, et. al 1983; Wright et. al., 1980; Valenzuela

&Wright, 1979; Keller & Wright, 1975) have provided the theoretical and

experimental foundation for the understanding of the modulation transfer

function. Tower based L-band and K-band measurements have shown the fund-

amental properties of the MTF within the ocean wave spectrum and as a

function of the environment: wind and wave parameters. This study presents

important progress in the understanding of the dependence of the MTF on the

environmental conditions at the air-sea interface and on the effect of the

wave height/slope on this function. This is possible because of a favorable

range of weather and wave conditions during the measurement period that

permitted comparison of the MTF within this large dynamic range of

parameters.

The measurement was conducted from an oceanographic tower known as

Stage I, operated by the Naval Coastal Systems Laboratory near Panama

City, Florida (Fig. 1). This tower functions as a residence and research

facility with living accomodations and support facilities. This platform,

located 12 miles offshore in 32 meters of water, is 32 meters square

and about 18 meters above the surface. The ocean bottom slope was small:

0.001. The measurements reported here were conducted during Ihocember 1978.

This experiment was conceived and initiated by the late Dr. John (Jack)

W4. Wright of NRL. The field and data processing activities were completed

* by William C. Keller and Dr. William J. Plant.

Throughout the period of observation, winds, scattering coeff-

icient, sea surface and air temperature, wave height, and other

meteorological variables were recorded (Niziol and Mack, 1979).

Measurements of true wind speed and direction were made at the 24.7 m

height with a Beckman-Whitley wind system. Data on wind speed and

3



direction were continuously recorded. Sea surface temperature and air

temperatures at the 24.7m, 9.3m, and 4.4m height were continuously

monitored with calibrated Foxboro thermistors. The ocean wave trough,

crest and average wave height were computed and tabulated hourly.

Some comparisons will be made to the results obtained during

the West Coast experiment (Wright e.t. al., 1980) conducted in 1976

and the MARSEN experiment conducted in 1979 (Plant, et. al. 1983).

..
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ENVIRONMENTAL CONDITIONS AND DATA ANALYSIS

Environmental conditions during the period of observation were

very variable. Winds ranged from 5 to 15 meters/sec. More impor-

tant was the air temperature variation; from a minimum of 2 deg. C

up to 24 deg. C. Since the sea temperature stayed between 20 and 22

deg. C, both stable and unstable conditions were encountered. In

addition to the physical variables, the wave height and slope were

also considered as parameters in this study. The rms wave heights

ranged from 0.2 to 2.2 meters, and the rms slope up to about 0.06.

Approximately 100 hours of experiment data were recorded.

The X-band (9.3 CHO) radar was mounted on a movable platform so

that it could be positioned at any chosen look direction. The

grazing (depression) angle was 45 degrees for all the data taken.

The coherent (CW) radar techniques used to acquire the AM and FM

parts of the backscattered signal are discussed in a recent paper by

Plant, et.al. (1983). The AM channel was squared in an analog

multiplier and low pass filtered at 1 Hz to give the received power.

The FM channel contains Doppler and hence velocity information: it

yielded long wave orbital velocity and height spectra. The statis-

tical signal processing and correlation techniques to determine the

modulation transfer function are also discussed fully in this paper .

The coherence function was also computed, and proved to be an

important quantity in the interpretation of the data under the wide

range of conditions encountered. This function denotes the amount

of control that the large wave orbital velocity has on the reflec-

tivity variations along the waves. Lower values of the coherence

5
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imply other mechanisms are influencing the MTF. The data shows that

unstable conditions reduce the coherence, opening the search for

other mechanisms that influence the radar backscattering properties.

The data was blocked into 20 minute segments. The ouput func-

tions for these segments are: FM spectra, AM spectra, orbital veloc-

4 ity spectra, wave height spectra, magnitude squared coherence func-

tion, magnitude and phase of the modulation transfer function and

wind speed. The rms slope and average radar cross section were

easily calculable from the FM and AM spectra. These segments were

filed in true time sequence, and labeled according to their environ-

mental and wave (height and slope) conditions.' In order to search

for the MTF dependence on a single parameter, all the files with a

chosen, limited range of the other parameters were averaged. Then

4 this parameter was stepped through a sequence of values. For

example, in the case of wind speed dependence the. MTF vs. frequency

was computed from all (either stable or unstable) records having

wind speeds of 4-6, 6-8, 8-10, and 1 0-12 m/s respectively. (See

*Fig. 2 and 3 . ) Then for a given surface frequency (and wave length)

the MTF variajtion with wind speed could be estimated.

EFFECTS RELATED TO ENVIRONMENTAL PARAMETERS

The analysis of the MTV data shows that it is affected by both

wind speed and air-sea temperature difference. In addition, it is

also affected by the wave parameters; the rms slope. For purposes

6



of discussion, a functional representation of the magnitude of "m"

could be written:

* f (U, AT, sqr[<s z >1 )

The data analysis in this report will provide some empirical results

which demonstrates the size and rates of change of this function

with respect to these variables. Because of the complex influence

of all of these parameters, the dependence on any one must be

qualified with respect to the values of the other variables. The

strongest dependence is that on the wind speed. Figure ( 2) shows

the decrease on the MTF of 25 meter waves for both stable and

unstable conditions. The results here represent an average over all

values of wave height. Each data point represents an average over 2

meter/sec range of winds, and is positioned at the center Gf that

range. The "stable" data includes all measurements in the range of

temperature difference (air-sea. temperatures) of -5 to +5 deg. C.

The "unstable data set (including all data within the temperature

differential range of -20 to -5 deg.) displays a marked decrease in

the magnitude of the HTF, at each corresponding wind speed. Both of

these groups of data display a good fit to an inverse wind speed

curve. Approximate formulas based on a "best fit" to a power law

function are (with a coefficient of determination - "quality of fit"

index of above 0.9):

STABLE CONDITION: i" 82/U 5 U 9 M/s

UNSTABLE CONDITION: ; 4'- 49/U 7 U /s

7



.1Two significant points are obvious from this result. The first is

that the MTE decreases by a factor of 1 .7 for unstable conditions,

at all wind speeds. The second is that regardless of the tempera-

ture state of the air-sea interface, the MTF is inversely propor-

tional to the wind speed. Therefore while the principal influence

on the MTF is the wave orbical velocity, the wind speed has a moder-

ating effect on its magnitude. Also noted in the data was the

coherence function, of the wave frequency. This was usually in the

range of 0.4 to 0.6, but excursions beyond these limits also (Fig. 10)

occurred. This range of values is consistent with an external

mechanism (in addition to the orbital velocity) affecting the local

roughness and radar reflectivity. Further support for this comes

from comparing stable and unstable cases. The unstable condition

almost always reduces the coherence function, indicating a more

complicated structure (probably, turbulent) of the wind profile above

the waves. This in turn affects the MTF but *in a manner uncorre-

lated with the orbital velocity. The same observations can be made

for the data from the 11 meter waves. Therefore it is a reasonable

* assumption that these effects apply to a large part of the surface

spectrum. Data for a look direction of 45 deg. with respect to the

wind shows similar environmental effects, but the level of the

magnitude does decrease as this azimuthal angle changes. The

strength of these effects are strongly influenced by the wave height

*and slope. This aspect will be further addressed in the following

section.

The average of the radar cross section measured from a tower

taken over a long time interval, much longer than the wave period,

8

S-U.... .. . . . . . . U*- . . . . . . . . . . . . . . .



yields a measure of the average surface roughness, and is propor-

tional to the radar cross section measured from an aircraft or sat-

ellite with a Scatterometer. (Schroeder, et. al. 1982) For X-band, the wind

speed dependence has been chosen to be strong, but considerable

variation and data spread is always observed when wind speed is used

as the independent variable. The results in this study provide an

excellent opportunity to observe the role of air-sea temperature

difference on the radar cross section. If the possible role of wave

height is ignored (results include the entire range of wave heights

and slopes), then the wind speed dependence can be grouped into two

sets, as show in Fig. 4 .The data points associated with the

unstable conditions exhibit a higher radar cross section at all

winds, by several dB, in most cases. The empirical conclusion is

that unstable conditions increase the surface stress beyond the

neutral value at a given wind.

The important implication, from an applications viewpoint, is

that an electromagnetic sensor of this type, that is being developod

to remotely measure surface winds will give a more precise result if

the air-sea temperature difference is known and included in the

algorithms used to invert the backscattered power. In addition,

4 wave slope has also been observed to have a strong influence on the

radar cross section. Therefore slope must be treated as another

independent variable, along with wind speed and temperature in

modeling the backscatter response.

M.,



EFFECTS RELATED TO WAVE PARAMETERS

Earlier aircraft based measurements of the dependence of the

radar cross section on the air-sea interaction (Krishen, Jones &

Ross) presumed that, like the classical steady state spectrum

models, there is a one-to-one relationship between wind speed and

wave height (and slope) so that only wind speed parameterization is

necessary. However, actual ocean conditions usually do not satisfy

this assumption. Depending on fetch, wind direction and duration,

and remote sources of waves, there is a wide range of possible wave

heights (and slopes) at a given wind speed. The data analysis in

this study demonstrates that both modulation transfer function and

radar cross section results have a definite dependence on wave slope

when the other parameters can be kept within a narrow range. Also

important is the fact that these dependencies: o n wave slope, wind

speed, and air-sea temperature difference, are not "separable".

Unstable air temperature conditions produce very differe,,t dependen-

cies on the wave slope and wind speed than do stable conditions.

Circumstances during the Gulf of Mexico experiment were very fortui-

tous in that a wide range and mixture of conditions influenced the

RCS and MTF data.

Fig. 5 and 6 show the effects of these conditions on the MTF

of 0.25Hz (25 meter) and 0.375Hz (11 meter) waves. For near

neutral (-5 < T < +5 deg. C) conditions and winds equal to or above

6 m/s, the MTF is shown to display a strong inverse RMS slope

dependence. At the lower wind speeds (4 to 6 m/s) the sensitivity

to slope is very weak and does not decrease with slope. Under

10
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unstable conditions the slope dependence is very different. In the

6 to 8 m/s range, changes in the MTF are relatively small compared

to the stable case. At the higher wind speed range (8 - 10 m/9),

our Gulf of Mexico data shows that the MTF increases steeply with

slope, just the opposite of the st-able case behavior. Fig. 7 shows

results from a similar experimental configuration, the West Coast

Experiment, during Feb.-March, 1977 (see Wright et.al. 1980). This

data cannot be easily separated into narrow air-sea temperature

ranges because only wind speed was carefully monitored. At that

time, the importance of air-sea temperature wa.s not known. It is

possible that during the course of this MTF experiment, the air-sea

temperature differences varied considerably and were really a

mixture of near neutral and unstable conditions. Studying these MTF

results, only those for the 4 - 5 m/s and 9 - 10 m/s ranges are

comparable (decrease with slope) to the stable Gulf of Mexico

results. Host of ti~e other data displays an increase in magnitude

with increasing slope. This is simflar to the unstable GM results,

but no firm conclusions can be drawn because of the unknown air

tempera'ture values.

Another discovery of this data analysis is the strong dependence

of the radar cross section on the wave slope, at a given wind speed.

The stable and unstable data of Figs. 5 & 6 were reorganized into wind

I speed ranges; 6 - 7, 7 - 8, etc. and the RMS wave slope was used as a

parameter for the average backscattered power (uncalibrated radar cross

AE4 11
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section). The results of this investigation can be seen in Figs. 8 &

9. In the former, the stable condition results in a strong depend-

ence on RMS slope, especially in the 7-8 and 9-10 M/s bands. Also

seen in Fig. 8 is the expected increase with wind, when the slope is

held constant. The unstable condition results in an opposite slope

sensitivity. Most of the data of Fig. 9 shows a decrease in the RCS

with slope. Although there are only 3 or 4 data points at the 6-7 and

7-8 M/s condition, the trend is unmistakeably down. These results are

very significant in the development of accurate algorithms to measure

air-sea conditions and parameters from airborne backscatter data.

Future flight measurement programs should be influenced by these rel-

ationships so that all the important quantities can be observed sim-

ultaneously and separated in the data analysis and algorithm develop-

ment. Previous studies at L-band have also found that the wind speed

and directional dependence is affected by the air-sea temperature

conditions (Thompson, et. al. 1983).

COHERENCE FUNCTION

The basis for the definition of the MTF is the assumption that the

wave orbital velocity is the principal driving mechanism for the ref-

lectivity variations sensed by the microwave radar. This is analogous

to a single input-single output linear system. If this model were

completely accurate then the measured coherence (Bendat & Piersol, 1971)

between the orbital velocity and the backscattered power would be

unty On the contrary the measured values of coherence vary from

about 0.25 to 0.7, with the average being about 0.5. As explained by

Bendat and Piersol, values of coherence less than unity can be caused

12



by one or more of the following possible situations:

(a) extraneous "noise" or other sources are present either in
the input or output.

(b) the system relating input and output is not linear.

If non-linearity were a strong factor then the spectrum of the

amplitude demodulated signal (instantaneous backscattered power)

would look much different than the orbital velocity spectrum. But

this is not the case: they are similar, usually with the dominant peaks

occuring at the same frequency. For the other alternative, the term

"noise" or other sources must represent the local wind structure

within the waves. Since it is not coherent with the orbital velocity,

it must be random i.e. related to the turbulent characteristics of the

air-sea interaction (Townsend, 1972).

This point of view will be supported by the results seen in Fig. 10

Realizing that the total modulation (Wright, et.al. 1980, Eq.5)

which is the product of the MTF and the wave slope, (U/C), increases,

the relative 'ignal-to-noise" also increases. The. coherence values in

Fig. 10 for stable conditions show a steadily increasing slope for winds

from 4 to 10 M/s. Even though the MTF is seen to decrease in Fig. 5,

the product (total modulation, M) is still advancing gradually. The

net increase in the total modulation (Im) X(U/C)) as the slope increases

from 0.0225 to 0.0575 seems too small to account for the large increase

in the coherence alone, in terms of a "signal-to-noise" effect.

Another possible effect is that the larger slope influences the wind-

boundary layer structure over the waves, in a way that also creates

the uncorrelated radar modulation features. Additional support comes

from the coherence properties under unstable conditions, seen in the

same figure. For slopes below 0.04, the coherence is seen to be low,

13



less than 0.3, consistent with unstable, turbulent wind conditions.

Then as the slope increases, tightening the coupling (average stress)

between the mean air flow and the interface, the coherence goes up. The

implication is that the turbulence will then have a dimished effect

on the reflectivity variations, or perhaps will be correlated with

* the wave periodicity. These interpretations are only qualitative,

and should be explored further with focussed experimental and theoretical

studies.

CONCLUSIONS

The quality and technical performance of a radar system observing

ocean wave spectra depends on the ability to invert the radar sensed

-i spectra and wave features into ocean wave spectra. An auxiliary know-

ledge of the HTF is therefore required. These studies in the Gulf of

Mexico (K-band, vertical polarization) and other experiments at San

Diego and in the North Sea during& MARSEN demonstrate that this function

can vary over a large dynamic range ( 6 to 1) and will, in general,

depend not only on the wind speed (wh-ich had been detected and studied

* earlier) but also on the air-sea temperature difference and wave slope.

In addition, preliminary observations of the radar cross section during

this experiment, indicate that it too varies with the wave parameters.

Assuming that the local and averaged (time or ensemble) X-band radar

cross section depends strongly on the wind stress, these results lead

* to the significant conclusion that the surface stress imposed by the

wind depends not only on the wind speed and air-sea temperature diff-

erence, but also or. tile wave slope. These quantities affect the radar

properties in a complicated, interactive way; so that it is difficult

41



to separate their singular effects through independent measurements.

For example, the effect and intensity that the wave slope has depends

on whether the air-sea temperature difference is stable (near neutral)

or unstable.

Additional measurements at both lower (less than 4 M/s) and higher

(greater than 10 M/s).would be very useful in modeling the physical

mechanisms behind these results. Previous theoretical studies (Valen-

zuela and Wright, 1979) have been partially successful in modeling the

NTF dependence on wave orbital velocity and slope. However the results

based on approximations (up to second order) to a very complex math-

ematical relation do not predict the strong decrease in the MTF with

slope. The opportunity exists for further advances in this area.

The previous detailed study of the Vest Coast Experiment (Wright,

et. al. 1980) noted that wave-wave interactions were not sufficient to

interpret the data; it alluded to a stronger source affecting the

modulation. The wave-induced airflow was identified as a subject

requiring further investigation. This study based on the Gulf of

Mexico Experiment has greatly advanced this point-of-view and prov-

ided a data base that should be valuable in future modeling and

theoretical studies..
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