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1. INTRODUCTION

,No adequate computer program existed at ARL to estimate the parameters of a three-
parameter Weibull distribution from a set of experimental data. A method using Maximum
Likelihood was developed and programmed, and tested with Weibull distributed data. Contour
plots of the likelihood function have been made as a check on the convergence of the solution,
and to help locate the maxima when the method fails to converge. A computerized version of a
graphical method using extreme value probability paper [Ref I ] was also developed, and the results
of both methods compared.

2. THE THREE-PARAMETER WEIBULL DISTRIBUTION

The three-parameter Weibull distribution is an extreme value distribution which takes the
following form:

F(x) = I -ex- - (x---- ] (1)

and

f(x) = V_ - ex{ - (Xe (2)

with the conditions v > e, at > 0, F(e) = 0, F(v) = I -lie. Here f(x) is the probability density
function of the random variable x, a the dispersion parameter, v the characteristic value and
£ the lower bound of x. F(x) is the cumulative distribution function:

F(x) = fx f(x)dx.

3. THE MAXIMUM LIKELIHOOD METHOD

The likelihood function of dataf(Xi) is given by

•L'( --- flf(X,) (3)
i-I

where n is the total number of data values available. Then, from (2)

(~'~ 1 EE,£1 (4)
i- v- / -q V-,Yi

Taking logarithms

L'(x) = nn( + ln(--' -

- nIlna-nn(-C)+(-i-I) ln(X,-.)- I t



If we make the substitution V = v-E and reduce the magnitude of the numbers involved by
dividing through by n, we get*

L(x) = L'(x) = lna-a-lnV+(a-l)- j ln(X-)- (5)
n ni=I I

The Maximum Likelihood equations for V, a and e are:

bV V Vn,=k\ , 0, (6)

bL 1 I n 1 _nV__ 1 Xj.-&\,
.... nV+- Y In(Xi---- T -- In(X-a) +InV- 0I = 0, (7)

b at ni, n,=,\ V n
bL = 1 i (XI~E~- = ; , ,. -- - (.-)-, _ (x,- )-i = o. (8)
be Vni\ V n,-,

Equations (6), (7) and (8) are then solved for V, and E; the solution method employed is the
second-order Newton-Raphson method [Ref 31, an iterative process described in Appendix 1.
The method requires the second derivatives to provide the terms for the Hession matrix
[Z2L/bOO 1]. These are:

D
2L I I n1 X+-.ex,-__

.2 n/ : iV

+21nV- I -C ln(X, -)

X
2L I - i-7 2 1b - -E ( n(X-0)--(

42z V2 ni=\ hl\

+21n I IY e.-- )n(X,-- I '1V ),(X-

b, V V n fl ,\ V nV

b
2
L I n a I- '  l -nV I Xf-C-l-

-- = -- (Xi-)-I + E(Xt - ) ln(X ,E) + -7_-l---

b
2L a

2 
I Xf-- 9jV = _V ; --n/ . 9

To check that a maximum is being obtained, L is printed after each iteration, the deter-
minant of the Hessian matrix is found, and this, as well as the terms on the leading diagonal,
must be negative.

To enable this method to be used for determining the parameters of a two-parameter
Weibull distribution, i.e. e = 0, it is only necessary to set e 0 in (6), (7), (8) and (9), and solve
(A3) with i = j = 2 where a, = V and a2 = a.

4. INITIAL ESTIMATES OF THE PARAMETERS V, s, AND a

Initial estimates of the three parameters are required for the application of the Newton-
Raphson method.

From equation (7)

+ I n(X,-) InV + lE( t In I nj( .I (10)

a - n, / V ni1 "

• Any further reference to "likelihood function" in the remainder of the report will strictly
mean the scaled log likelihood function L.
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From equation (6)

that is 
M

Substituting (11) into the right-hand side of (10) gives

-= (X -');In(X,-.) - ln(X,-c). (12)

Now, from (1), the definition of the three-parameter Weibull probability function gives:

-ln(1 -F(Xi)) =

Substitution into (12) leads to

.... - In(Xg-E-r(-In(l-F(X). In(X4-q)). (13)
I, n n

Values of F(Xi) can be approximated from the data by listing it in ascending order of
magnitude and ascribing probabilities to the ordered data viz:

n+l-i
I -Ft- n+1

This approach is used by Gumbel [Ref 3], but he also uses a correction parameter A,, to
allow for different sample sizes n, to obtain a better estimate of 1-F. The corrected value is:

l-Fj = (n P1I\~~ (r--i 
"

where A. = for n < 100,
nln(n+ l)-In(n!)

Pn(21n)-2]
-- I + 2 -for n > 100.

2N

On using this corrected value (13) becomes:

1 I n A, j _n+I- -i\ (14)-. - ,., n(X,-r) - - Z; In_ ilin/-" ('-) (4

The initial estimate ofc is taken as the data minimum, Xmin, i.e. e = Xmin. Using this value
in (14), a first approximation to a is obtained.

The initial estimate of V is obtained from the mean of the data, i.e.

V = - t X,-. (16)
'li-I

Although V can also be obtained from (11) as a function of c and a, i.e. V =j!_ (I. - ,an

initial estimate using this function contains uncertainties inherent in the initial values of * and a.
Using the population mean gives quite a reasonable estimate of V and it is independent of the
other parameters.

S. LEAST SQUARES OF THE REDUCED VARIATE y

Define a new variate
y - -(1ln(x-.)-l(-). (7)

From equation (I),
I -F(x) - ep-e-PI

3



or y = -n-ln(l.O-F(v))).

From (17) it can be seen that y and hence In(-ln(! -0-F(x))) is a linear function of In(x-).
In general, using experimental data, only the x values are available, but F(x) may be approxi-

mated using order statistics as in the previous section (in this case factor An was not used).

n+ I -ii.e. 1-F(X) - .
n+1

Using the graphical method of Reference 1, yi, determined using ln(-n(I-F(X))), is
plotted against ln(Xi-), and by adjusting c, a least squares best fit straight line is fitted to the
data, from which a and v can be determined.

To obviate the need to estimate a, the computational procedure solves equation (17) for
v, a and e using a nonlinear least squares fit of y against Xj. The method used for doing this is
described in Appendix 1.

6. TEST DATA

Both methods were tested using data that were known to be Weibull distributed. The test
data were produced as follows.

From equation (1)

= ln(l-F(x))

and
x -- .-+(u-.(-ln(l-F(x))) 1 1' .

By choosing random values of F(x) between 0 and 1, a sample of x can be obtained that will be
Weibull distributed with parameters v, cc and e. In this way samples ranging in size from 20 to
1,000 were obtained.

The random numbers were generated using the DEC system library subroutine RAN.
RAN is not clock-dependent; it will reproduce the same random numbers if the same number of
calls to the subroutine are made. To produce different sets of random numbers, a chosen number
of calls to the subroutine is made before generating the data set.

7. GRAPHICS SUPPORT

Both methods have some supporting graphical output, to help indicate the success of the
estimation.

7.1 Grapical Outt for the Maxha. JkuMed Mehed

Contour plots of the likelihood function as a function of a and a can be produced, together
with a contour plot of v over the same (c,a) domain. It becomes obvious from these plots where
the solution is located, and when the solution method fails to converge they can provide alterna-
tive etimates. Figures I and 2 are examples of the contour plots produced.

7.2 Grq&d utt for 1@M as m o v -- s y medhed

Since this method determines the best linear fit of y to n(X -c) the y, is plotted against
ln(Xi-a), together with the fitted function. An example is shown in Figure 3.

L RESULTS

The two methods were applied to a large number of generated samples. One set, generated
with v - 1 .0, a - 3.0 and . - 0.7, demonstrates the effect of sample size, while a larger set,
with v - 1 "0, a - 2"5 and a - 0.7, demonstrates the effectiveness of both methods when only
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a small sample is available. Sample sizes of 1,000 were also generated with various values of the
three Weibull parameters.

To determine the effect of sample size on estimates, various sizes, from 20 to 1,000 were
used, with five different samples being produced for each size. The mean values of each parameter
for each sample size are shown in Table 1.

Generally, the larger the sample, the greater the accuracy of estimation. This is an observa-
tion from the known asymptotic efficiency of maximum likelihood estimators, and it probably
indicates that the least squares method is also very efficient. There appears to be little difference
between the accuracy of the two methods for the data considered in Table 1.

Extensive testing was carried out with a typical sample size of 20. Thirty-six different
samples were produced for v' = I1-0, a= 2 -5 and e= 0 -7. (Each sample is identified by a
number IST which represents the number of calls to the random number generator prior to
producing the set of random numbers. This enables any sample to be reproduced.) The results
are shown in Table 2, together with the sample identification number 1ST and the minimum
value in each sample, Xmin.

The maximum likelihood method failed to converge in only one of these cases (for this case,
the least squares method returned values of 0 -968, 1 -152 and 0 -790 for v, a and e respectively).

In three other cases both methods failed to produce estimates for a three-parameter dis-
tribution, although they provided estimates for a two-parameter distribution. Table 3 shows
three different data samples that lead to different types of solution using the maximum likelihood
method.

Case 32 had a successfully converged solution with v = 0 -96, a = 2 -572 and e = 0 -7076.
The contour plots of the likelihood function and v are shown in Figures 1 and 2 respectively.
The location of the maximum in the likelihood function is enclosed within the 0-95 contour,
the + indicating the location of the solution values. In case 8, the Maximum Likelihood method
failed to converge to a solution. The contour plot of Figure 4 shows that a peak does not exist
within the c~ domain. The likelihood function has a maximum value on the e = Xmln = 0 -804
boundary at at 0-8. Since no converged solution exists, the best estimates of ii, a and e, from
Figure 4 and the corresponding contour plot of u, Figure 5 are 0 -94, 0 -8 and 0 -804 respectively.

Case 9 would only converge to a solution if e was set to zero for both methods of estimation,
i.e. a two-parameter Weibull distribution appears to be the best fitting distribution for this data.
The contour plots, Figure 6 and 7, show that no peak exists for e > 0, and that the maximum
value of the likelihood function lies on the e = 0 boundary at at2 9-5 and the corresponding
value of v =I -069 (the maximum likelihood method returned values of U = 1 0693 and
a = 9 -5259). Considering all 36 cases of Table 2, the following means and standard deviations
of the three parameters are obtained.

Weibull Values used Least squares of variate Y Maximum likelihood
parameter in data-- ___________

generation Mean S.D. Mean S.D.

U1-0000 1-0068 0-0300 0.9958 0-0305
£2-5000 4-3525 5.4620 3-2398 2-9364
£0-7000 0-5714 0-2344 0-6483 0-2183



The mean values obtained for z and E have been affected greatly by the three cases in which
e was assumed to be zero, cases 9, 26 and 35. If these are ignored, the mean values of & and c
are much closer to the generating parameters. For both methods there is a large scatter in the
value of a. Ignoring cases 9, 26 and 35 the following values are obtained.

i

Weibull Values used Least squares of variate Y Maximum likelihood
parameter in data

generation Mean S.D. Mean S.D.

v 1"0000 1"005 0"028 0"993 0"028
S 2"5000 2"944 1"653 2-457 1-129
• 0"7000 0"623 0"163 0"707 0096

The Maximum Likelihood method provides better estimates for , and e; both methods accurately
estimate v.

When all the sample data is pooled, providing a sample size of 720, the following estimates
for v, a and e are obtained from the two methods.

Weibull Values used in Least squares Maximum
parameter Data generation of variate Y likelihood

v 1.0000 1"0029 1"0018
2 5000 2"5761 2"4800
0"7000 0"6792 0"6884

Both methods were tested using data generated with various other values for the three
parameters, and the results are shown in Table 4. In most cases the Maximum Likelihood method
gave the best estimates of the three parameters.

9. DISCUSSION

The Maximum Likelihood procedure requires relatively good initial estimates of e and a,
otherwise the procedure may tend to diverge. The results given in Table 2 reveal that the mean
value of e is 10% lower than the mean value of Xmin and if the initial estimate of e is slightly
less than Xmin, the procedure is more likely to converge. The values of f are plotted against
Xmin in Figure 8.

It was also found that introducing a relaxation parameter into the Newton-Raphson
solution procedure improved convergence.

Of particular interest are the contour plots of the likelihood function. All have a relatively
steep gradient along the e = Xmin boundary with a "ridge" running from e = Xmin, a = 1 "0
to a point on the c = 0 boundary. There is only one maximum located on this ridge.

Although the contour plots give the impression that the function has a well-defined "peak",
in fact the "peak" is poorly defined, as can be seen from the values of the contours; the ridge
is the dominant feature in the e,a domain.

The contour plot of v indicates that it changes slowly throughout the e,a domain and
explains why the Maximum Likelihood procedure is relatively insensitive to the initial value of v.

Various distributions from Table 2 with parameters determined using the Maximum
Likelihood method are plotted in Figure 9. Three of the distribr':,,ns are for the data sets given
in Table 3. Another, case 17, was plotted because of its high a value but relatively good estimates
of v and a. A plot of the parent distribution (v = 1 "0, t = 2"5 and e =0- .7) was plotted as a
comparison.

The interesting feature is the difference between the distribution of case 32 and the parent
distribution. The parameter estimates for case 32 are nearly equal to the parameter of the parent
distribution yet there is a marked difference between the distributions.
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10. CONCLUSIONS

The three parameters of a Weibull distribution can be successfully determined using a
Maximum Likelihood approach. The method can be used with as little as 20 data values, and in
the event that the method fails to converge, the associated graphics enable the three parameters
to be estimated.

When a solution is located on either of the c boundaries of the parameter space, the data
used is probably biased, and thus caution should be exercised in its use.

The least squares of the reduced variate y method, developed purely as a comparison with
the Maximum Likelihood method, is generally less accurate, especially when a is large, and there
may be inherent errors in the method caused by the need to assign probabilities to the data.

Its one advantage over the Maximum Likelihood method is that the initial parameter values
do not have to be as accurately determined to ensure convergence.
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APPENDIX 1

The Newto.-Raphsom Method

If X = XK is an approximation to the solution X = A of f(x) = 0, then the sequence
f(Xx)

XK+i = XK- f(XK) (Al)f'(XK)

will converge quadratically to X = A if the following conditions apply:

(1) for Monotonic convergence F(Xo)f'(X.) > 0 andf'(x),f'(x) do not change sign in the
interval (Xo,A);

(2) for Oscillatory convergencef(Xo)f'(Xo) < 0 andf'(x),f'(x) do not change sign in the
interval (X.,X), X. < A < X1.

If Sx represents the change in XK after each iteration then (Al) can be written as

f'(XK)Sx = --f(XK). (A2)

In terms of the Maximum Likelihood function and representing V, a and e by al, a2 and a3
respectively, sequence (A2) can be used to solve equations (6), (7) and (8), viz.:

b2L Lai a -, j = 1,3, i =1,3 (A3)

or expressed in matrix form

b2L b2L b2L
bai a

bai2  baiba2 balba3 a

b2L 2L 2L

bas~al ia22  a2 ~a3 ia2

b2L b2L b2L 8a_

a3bai ba3a2 Da3
2  

L . j
This system of equations is solved for a,, a2 and a3 using a subroutine SOLEQU contained

in the ARL DEC10 library. It uses Gaussion elimination with the pivot selected as the largest
element of the first row of each submatrix.
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APPENDIX 2

Nonlinear Least Squares Fit Method

From (17)

yj = -(ln(Xt-e)-n(v-))+e.

The residual sum of squares is given as

= X e,2 = j y,+((n(X,--n(v-,)).
i~.l i=I

Suppose we have trial values ao, vo and e.. We shall increment these by Aa, Av and AE respectively
so as to minimise E using linear approximations.

For simplification, let fi(Xj,aoj+Aaj) = -(ln(Xj+E)-ln(v-e)) where aj (j = 1,2,3)
replaces v, a and e respectively, a01 replaces the initial values v., c. and e. and Aaj replaces the
incremental values Av, Ac and Ae then

E= [y,-fj(X,,aoj+Aajj 2

t=1

thus
DE f'

= -2 (y-f(Xj,aoj+Aaf))-- x ()

neglecting higher order terms.
E

For a minimum -- = 0

-afroI .yj = Y fi(X,ao+Aaj) . j = 1,2,3 c)
" I baji aoj.x i=1 "a'

These equations must be solved for Aaj on which -fibfi/aj depends.

Now

fi(Xj,aoi+Aa,) 2-fi(X,aoj)+ I - .Aaj. -T

Substitution into (A) gives

I baf'aoj. Xi .1 Dal I =

transposing,

.__3 

CAIE ---(yi--fg(Xj,aoj)) Y_ E Aaf Y --- Aay 11

L1DjiDj~ o . . abo



In matrix form

i- bal baoi i bai baoz ,=j baM i. i oal

- ,ba 2 bao i , ba2 a2 =a2 baos ba2

ba bo j= i a3 ba 2  ,=Ias M03

In terms of equation (Aq-), we have

= --ln(v-e)--ln(Xg-E)

by= .

b~y a __a

and the matrix equation above, in terms of v, m and e becomes

I j-L j AV = i(KI

i=1 ~ ~ ~ A bY1 iI__atj1b b -

I bae bV i=1*~;c bo bef w4 f( v- )J

This system of linear equations is solved for AV, Act and At and the initial values of , a and
updated; the calculation being repeated until there is convergence to final values of v, a and e.

The initial values are determined as described in section 4.



TABLE I

T.e Effect of Data Sample Size for Data Gemated from a Distrtio
with V= 1.0,z =3.0,c=0.7

Sample Least squares method Maximum likelihood method
size*

V £" V I

20 Mean 0-989 2.436 0.727 0.980 2.090 0.776
S.D. 0-017 0.291 0-029 0.018 0-228 0-019

50 Mean 1.002 3.021 0-639 0-998 3-165 0.670
S.D. 0-007 1-371 0-094 0.005 1.269 0.089

100 Mean 1-007 3-396 0-662 1.005 3.197 0.691
S.D. 0.01i 0-671 0.056 0.011 0-585 0-039

200 Mean 0-997 3.163 0-678 0-995 3-064 0.694
S.D. 0.006 0-692 0-051 0.006 0.533 0.038

500 Mean 1.003 3-249 0.676 1.002 3.110 0.689
S.D. 0.003 0.253 0.017 0.003 0.293 0-014

750 Mean 0-999 3.119 0-692 0.999 3.050 0.699
S.D. 0-003 0.196 0.013 0.003 0.194 0.009

1000 Mean 1-003 3-143 0.688 1.002 2.997 0.698
S.D. 0.004 0.115 0-008 0.004 0"173 0011

The values shown are the mean and standard deviation of the results obtained from apply-
ing each method to five different samples for each sample size.
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TABLE 2

Results Obtained for Data Samples of Size 20, foru = 10, a = 25, 0-7

Least squares of variate y Maximum likelihood
Case 1ST Xmin ... -- ---
No. V a ,,,

0 07626 0-9764 3"5608 0-5814 0"9717 39643 06096
2 20 0-7811 0"9646 2"8545 0-6952 0-9561 2-1999 0.7575
3 40 0"7819 0"9915 1"6390 0-7465 0-9798 1"4563 0.7744
4 60 0.7400 0"9651 4"2318 0.4762 0-9712 5.2771 0.4676
5 80 07958 1"0805 2'2609 06652 1"0656 2"0486 07381
6 100 0-7720 1-0345 3"3494 05800 1"0279 4"0224 05934
7 120 0.7572 0-9872 2"1532 0.6683 0.9754 1.9483 0.7212
8 140 0.8040 0.9682 1-5214 1 0.7896 0"9400t 0.8000 0.8040
9* 160 0-7574 1"0775 12.2768 0-0 1"0693 9"5259 0-0
10 180 0.7530 1.0090 6.3284 0-3102 1.0004 4"2105 0'5825
11 200 0.7241 1-0006 5"5321 0-2806 0.9909 3.9904 0.5316
12 220 07063 1"0369 4" 330 0"3747 1 10295 4"3204 0-4904
13 240 0.7866 1-0065 2"6827 0.6893 0"9967 2.1951 0.7567
14 1 260 08441 1"0327 1"5852 08043 1"0189 1"4248 0"8349
15 280 0-7612 10089 1"4850 0.7233 0"9934 1"4132 0 07522
16 300 07283 0"9871 1-6929 0-6678 0"9727 1-5384 07154
17 320 0"8056 10264 78281 03614 1-0196 4.5134 0.6681
18 340 07592 09661 1"2918 0-7340 09490 1"2379 07555
19 360 0.8098 1.0157 1.6501 0.7725 10056 I6338 07965
20 380 07661 1"0062 1-8961 .7003 0-9895 1-6242 0-7501
21 400 0.7139 1"0268 2'1630 0.6186 1.0119 1.8577 0"6856
22 420 0.7274 1"0507 6"5505 0"1565 1-0359 3"5306 0"5838
23 440 0.8635 1"0330 1.9446 0.8197 1"0235 1.7226 0-8512
24 460 0' 8033 1"0168 1"8691 0-7476 1"0067 !8798 07774
25 480 0.7233 0.9987 2"4818 0.6186 0-9865 2-0546 0-6916
26* 500 0"7541 0"9853 30" 1486 0.0 0'9806 15"2848 0"0
27 520 0"7995 1"0030 2"6423 0"7023 0"9948 2"3492 0"7576
28 540 0.7539 0-9740 2"4077 0.6705 0-9652 2.1896 0.7193
29 560 0"8161 1"0186 4.6199 0.5624 1"0083 3'0710 0.7343
30 580 0-8325 0"9816 2.7091 0.7309 0.9744 2"3125 0.7928
31 600 0.8072 1-0166 1"8863 0.7504 1"0045 1.6600 0.7910
32 620 0"7772 0-9715 3"4026 0.5923 09600 2'5722 0.7076
33 640 0.7978 !0419 2.0191 0.7278 1.0044 1-9807 0.7655
34 680 0-7126 1"0157 3"2307 0.5302 1.0041 2.5730 0.6479
35* 680 0'7528 1"0318 17"1216 0.0 1"0249 10.7364 0-0
36 700 0.7452 0.9631 1-5082 0.7119 0.9512 1"5122 0"7344

* Only solutions for two-parameter Weibull distribution existed.

t Solution would not converge, values obtained from contour plot.
IST-used in the generation of random numbers; given here so that any of these random

number data sets may be reconstituted.

h . . . .___.. .. . .



TABLE 3

The Three Data Sets Used in Prodmg the Contour Plots
in this Report

Case 32 Case 8 Case 9

0777221 0-803982 0757371
0-787285 0-809143 0775983
0"788506 0-826658 0-802988
0-801296 0-843383 0.870959
0-837540 0-854666 0"877282
0-873750 0.866742 0-911713
0-915978 0"868289 0969554
0"917450 0"872045 1"00788
0-928643 0"899308 1-01243
0-935790 0-911857 1-02508
0-970270 0-926751 1-05588
0-975081 0"948090 1-07683
0-976064 0-948586 1-08666
0-978354 0-955043 1-09314
0-984281 0-992642 1-11991
0-991846 1.05085 1-12657
1.00006 1-05241 1-13691
1-00728 1-11716 1-16721
1-03115 1-22371 1-17037
1-15549 1-23370 1-20426

Converged Did not converge Only converged
solution to a to a

solution two-parameter
solution,

i. e 0-0

L-



TABLE 4

'Estimates of the Weibull Parameter Uslig the Two Method with Various Distributiou of Sample
Size 1000

Weibull parameters Least squares of Maximum likelihood
of the test data variety solution solution

IST u E u £ u

0 100 20 90 100-012 80-354 57-906 100'003 21"590 88"360
2000 100 20 90 100-002 68"970 65-872 99"997 31-663 84"189

0 100 20 10 100.107 80.360 -278"869 100.030 21-613 -4.873
0 100 5 90 100.037 5-.536 88.390 100-015 4.832 89-597
0 100 5 10 100.334 5"536 -4.492 100- 137 4-832 6-371
0 1 20 0-9 1"000 80-356 0.579 1-000 21-598 0-884
0 1 3 0-7 1-001 3-020 0.682 1.001 2-842 0-694

2000 1 3 0-7 1.000 3-180 0.683 0.999 3.096 0-691
3000 1 3 0-7 1.009 3.319 0-683 1-008 3-181 0-693
4000 1 3 0"7 0-999 3-123 0-689 0-998 3-084 0-694
1000 1 3 0-7 1-004 3.072 0-701 1-003 2"785 0-717

II
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FIG. 1 CONTOUR PLOT OF THE LIKELIHOOD FUNCTION FOR CASE 32
(Data are shown in Table 3)
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(Data are shown in Table 3)
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FIG. 3 A PLOT OF VARIATE Y FOR A DATA SET OF 500, SHOWING
THE BEST FIT STRAIGHT LINE FITTED BY THE LEAST SQUARES
OF VARIATE Y METHOD
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FIG. 4 CONTOUR PLOT OF THE LIKELIHOOD FUNCTION FOR CASE 8
(Data are shown in Table 3)
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5.0 u = 1.0196
Case 17 ct = 4.5134

e= 0.6681
v=0.94

Case 8 01 = 0.80
= 0.804

v= 0.96
Case 32 ae = 2.5722
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FIG. 9 WEIBULL DISTRIBUTIONS, f(x), DETERMINED BY THE
MAXIMUM LIKELIHOOD METHOD FOR VARIOUS DATA
SAMPLES CHOSEN FROM TABLE 2, SAMPLE SIZE -20
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