

5

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

40-4133 010

Semiannual Report

Switchable Zero Order Diffraction Gratings as Light Valves

> Office of Naval Research Contract N00014-82-K-0522

> > covering the period

1 January 1983 - 30 June 1983

Submitted by

John Melngailis

30 June 1983

Cambridge, Massachusetts 02139

83 08 3 . 059

Introduction

The motivation of this work is to produce line-addressable arrays of independently switchable light values for flat-panel video displays. In addition, such light values would be useful as spatial light modulators in optical signal processing. The principle of the light values is based on the switching of the zero order of diffraction. Two gratings are fabricated face-to-face and displaced with respect to one another by half of one period. The displacement may be produced by using the strong piezoelectric properties of PVF_2^- or, alternatively, by using electrostatic forces. The goal of this project is to build a fast, lockable, miniature light value which is compatible with fabrication into arrays. \leftarrow

Progress

A. Fabrication of Gratings:

Gratings of 3.4 μ m period have been produced by holographic lithography. Such gratings are free of the patch-work effect which occurs in pattern generator produced gratings due to stitching error. The gratings have been transferred to nickel by plating techniques and embossed into PVF₂. Some strain recovery was found to occur after the embossing, and we needed to study the temperature and pressure dependence of the embossing process. The best operating parameters have been identified. Gratings in PVF₂ have thus been fabricated which, when put face to face, have the desired optical properties. Gratings were also fabricated in quartz by reactive ion etching, and their optical properties in the bigrate configuration (face to face) have been measured.

B. Production of Micromotion in PVF,

HARDONNY, TRADUCTURA CONTRACT PRODUCT (CONTRACTOR) CONTRACTOR CONTRACTOR

Techniques for metallizing PVF_2 , which is poled so that an electric field perpendicular to the surface will cause the surface to shrink laterally, have been developed, the expected motion has been observed, and the piezoelectric coefficient has been measured. Two such sheets of PVF_2 were glued face to face to form a bimorph. (Much like a bimetallic strip.) This in effect amplifies the amount of motion obtained per applied potential. The bimorph also behaved as expected. Designs for a light valve using the bimorph were examined, and a simple structure to test the concept is being built. However, a design, which uses patterned PVF_2 with angled strips providing the motion, appeared to be simpler and is also being pursued. The patterning of the PVF_2 will need to be done using reactive ion etching in oxygen. The techniques for mounting the sample during etch have been developed. The etch rate has been found to be $0.1\mum/min$.

C. Production of Micromotion Using Electrostatic Forces

In a configuration of facing but electrically insulated interdigitated electrodes the achievable electrostatic forces were calculated to be large enough to produce the desired motion. A test structure was built entirely of quartz with 2µm electrodes separated by 2.5µm gaps. No lateral displacement of the two surfaces of quartz relative to each other was observed up to the limit of the voltages used. Some clamping action of one surface with respect to another, which is also a necessary ingredient of the light valve, could be produced by flat relatively large electrodes.

Masks have been designed and fabricated with $4\mu m$ and $6\mu m$ gap between the electrodes. These structures are being built on quartz, and the moveable part was built on mylar.

<u>Conclusions</u>

At this point in the research program we have perfected the techniques for embossing ratings in PVF_2 , demonstrated the optical principles of the bigrate, chosen a design for a single element, developed methods of reactive ion etching the PVF_2 , and fabricated structures to test the electrostatic motion. We have narrowed our goal to building a single miniature light valve that is capable to being fabricated into arrays and have laid the ground work for achieving the goal.

DI.

Accession For NTIS GRA&I DTIC TAB Unannounced <u>M</u> By. Distric 14 :/ Codes Avail · . m / orDist : A

DISTRIBUTION LIST

۷.

× .1

	DODAAD Code	
Leader, Information Sciences Office of Naval Research 800 North Quincy Street Arlington, Virginia 22217	N00014	(1)
Administrative Contracting Officer E19-628 Massachusetts Institute of Technology Cambridge, Massachusetts 02139	N66017	(1)
Director Naval Research Laboratory Attn: Code 2627 Washington, D.C. 20375	N00173	(6)
Defense Technical Infromation Center Bldg. 5, Cameron Station Alexandria, Virginia 22314	S47031	(12)
Office of Naval Research Eastern/Central Regional Office Bldg. 114, Sec. D 666 Summer Street Boston, Massachusetts 02210	N62879	(1)

