
 national bureau of standaros-1963-a

AN EVALUATION OF THE UNITED STATES AIR FORCE MENU CONCERNING KILOCALORIE, TOTAL FAT, CHOLESTEROL AND SODIUM

A Monograph
 Presented to the Faculty of the Graduate School
 of Cornell University

in Partial Fulfillment of the Requirements for the Degree of Masters of Professional Studies

DTICELECTE SEP 191983

REPORT DOCUMENTATION PAGE	3 RFAD MOTKIC WNS BEROKE CisiPLETVIFHKM
T TEPORT NUMAER AFIT/CI/NR $83-46 T$ COVT ACCESSIONNO	
- TITLE iand jubifiel An Evaluation Of The United States Air Force Menu Concerning Rilocalorie, Total Fat, Cholesterol and Sodium	
Dick P. Flack	- contract ja jant mumberat
P PERFOQMING OqGANIZATION VAME ANO ADORESS AFIT STUDENT AT: Cornell University	
I. CONTROLLING OFFICE NAME AND AOORESSAFIT/NRWPAFB OH 45433	12. REPORT DATE May 1983
	13. NUMAER OF PAJES 106
	15. SECURITY CLASS. (Jt this Tepori: UNCLASS
	15. OECLASSIFICATION Jowngr oinc
16. CIStribution statement (ot this Repori)APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED	
17. Distribution Statemen isithe ebatract enterod in Block 20, il diflaront tran Roport)	
18. SUPPLEMENTARY NOTES APPROVED FOR PUBLIC RELEASE: IAW AFR 190-17 19 SEP 98	
19. KEY WOROS (Continue on reverse side it necesisary mid identliy by block number)	
20. ABSThACT (Continue on covorse ido til	

ABSTRACT

Statement of the Problem
Nutrition as a science and its relationship to health is still in its infancy, yet there are numerous known problems associated with one's diet. Additionally, there are a number of dietary concerns that have not been proven and are currently being researched that need to be addressed. The major thesis of the nutritional concerns seems to focus on if and how diets should be modified. The United States Federal government has taken the initiative by adopting dietary guidelines for the American population. As a segment of the federal government, the United States Air Force (USAF) has the task of adopting these guidelines in its menu planning. LThis monograph investigates the pros and cons of some of the dietary goals set forth by the government. This investigation is followed by calculations of the nutritional value of calories, total fat, cholesterol, and sodium within the present USAF menu. The monograph concludes with a discussion of these nutrient values meeting the dietary goals.

Methodology

A statistical random selection from a USAF menu of daily meals was analyzed as individual entrees and calculated for their content of kilocalories, total fat, cholesterol, and sodium. Additionally, a review of all available literature on dietary guidelines was considered to be invaluable.

Conclusion

The monograph concludes that the Air Force menu approaches the dietary goals if the customer is knowledgeable in making the proper menu item selection. But without good nutritional knowledge the customer can select menu components that far exceed the recommended dietary goals.

BIOGRAPHICAL SKETCH

Dick Flack was born and raised in a resort community in New York's Catskill Mountains. His hospitality training began there while working in the family's bakery business. After graduating from high school, he attended Kansas State University and received a BS degree in Bakery Science and Management.

Flack was commissioned into the United States Air Force upon finishing his undergraduate work and for the past ten years has held various hospitality-related positions within the Air Force. Because of his experience and probable future assignments in this same field, he was nominated and selected by the Air Force to enter a graduate program in the hospitality field.

After Flack's completion of his Masters of Professional Studies through Cornell University's School of Hotel Administration in May, 1983, he will return to a position in the Air Force to apply his training.

The completion of my studies at Cornell University and this monograph could not have been accomplished without my family's loving support and understanding.

I dedicate this work to --
my wife Barbara
daughters Leah and Natalie

ACKNOWLEDGEMENTS

There are three special people I owe a great deal of thanks to for helping me accomplish this project.

I owe a big debt to Professor Mary Tabacchi. As an advisor and a friend, she has been a super lady to work with. From the courses she taught I was inspired to undertake this project. She also continued to give me this same inspirational guidance throughout the development of this paper. Professor Tabacchi was always ready and available to provide the necessary details to insure I was going in the right direction. Her review, critiques and feedback of each page always gave me a positive feeling to move forward.

I wish to give thanks to the staff at Headquarters Air
Force Engineering and Services Center, Tyndall AFB, Fl., and especially Mrs. Germaine Gotshall for her supply of information whenever I asked.

I also wish to give special thanks to my personal editor, my wife Barbara, who made sure I did not lose command of the English language.

CONTENTS

BIOGRAPHICAL SKETCH ii
DEDICATION iii
ACKNOWLE DGEMEN TS iv
Chapter page
INTRODUCTION 1
I. NUTRITIONAL CONCERNS 3
Diet Patterns/Habits 3
Society Changes 6
Nutritional-Related Diseases 7
Government Interaction 9
II. DIETARY GOALS 12
Introduction 12
Dietary Goals 13
Pur pose 16
Dietary Guidelines 16
Dietary Goals Pros and Cons 17
III. REVIEW OF NUTRIENTS STUDIED 20
Calories (Obesity) 20
Fat and Cholesterol 24
Sodium 28
IV. UNITED STATES AIR FORCE MENU PLANNING 32
Introduction 32
Menu Preparation 35
Menu Components 36
V. AIR FORCE MENU STUDY 38
Methodology 38
Results 40
Day 1, Nutritional Calculations 42
Day 2, Nutritional Calculations 51
Day 3, Nutritional Calculations 60
Day 4, Nutritional Calculations 69
Day 5, Nutritional Calculations 78
Day 6, Nutritional Calculations 87
VI. CONCLUSION AND RECOMMENDATION 96
Kilocalories 100
Fat 101
Cholesterol 101
Sodium 102
REFERENCES CITED 105

INTRODUCTION

The diet of the American population has changed significantly within the last 50 years, with great and often harmful effects on our health. ${ }^{1}$ Now that deficiency and infectious diseases are largely conquered, there is a new nutritional approach to the management of the chronic degenerative diseases which now provide the greatest threat to the long-lived populations of this and other western nations. 2 Too much fat, too much sugar or sodium can be highly correlated with heart diseases, cancer, obesity and stroke, among other debilitating diseases. ${ }^{3}$ It is estimated that 27 million Americans have some form of heart and blood vessel disease. A million Americans a year die of cardiovascular disease, some 53\% of total deaths; and one quarter of these are in persons under 65 years of age. ${ }^{4}$

1 Congressional Select Committee on Nutrition and Human Needs, Dietary Goals for the United States (Washington, D.C. Government Printing office, 1977), P.1.
2 Robert E. Olson, "Clinical Nutrition, An Interface Between Human Ecology and Internal Medicine", Nutrition Reviews (June 1978), p. 171.
3 Dietary Goals for the U.S., op. cit., p. 1.
4 Michael C. Latham and Lani S. Stephenson, "U.S. Dietary Goals", Journal of Nutrition Education (Oct. - Dec. 1977), p. 154.

These concerns of diet-related degenerative diseases have become an issue in the Department of Defense's nutritional requirements and menu planning. This paper will analyze the United States Air Force's Worldwide Menu by comparing kilocalories, fat, cholesterol and sodium to the more recent governmental dietary goals. From a summary evaluation of these goals and calculated nutritional values, modifications of menus can be recommended. As with any universal dietary modifications there are concerns of its necessity for the total population. Is it possible that these changes are needed only for a select segment of the population?

To summarize these recent nutritional concerns and their possible affect on menu planning in the USAF, the first chapter contains a discussion concerning the eating patterns of the western population plus the recent social changes both of which may have contributed to diet-related degenerative diseases. Also considered are recommendations the government proposes to correct these problems. Chapter two provides the rationale for the dietary goals implemented in 1977 by a congressional select committee on nutrition and human needs. A literature review in Chapter three summarizes the selected goals for calorie, fat, cholesterol and sodium intake to validate the use of the dietary goals as a standard. The USAF menu-planning process and the nutritional calculations presented in chapters four and five respectively provide the basis for possible modifications of the USAF menu when compared to the dietary goals.

Chapter I

NUTRITIONAL CONCERNS

1.1 DIET PATTERNS/HABITS

Food patterns are based on folklore, commercial advertising and sound knowledge of nutritional needs. ${ }^{5}$ Dietary habits are the result of family influences which include sociocultural, educational, and economic factors. Availability of foods and what is promoted both formallyinadvertising and informally through in schools, restaurants, places of employment, etc., are additional considerations affecting food preferences. ${ }^{6}$ This makes worldwide menu planning for the Air Force somewhat difficult both from the standpoint of nutrition and eating patterns because its members come from all parts of the United States and foreign countries. In addition to various geographic, cultural, and genetic backgrounds of the Air Force members entering the service, there is also the added influence of stationing this diverse population throughout the world.

5
Miriam E. Lowenberg, Neige E. Todhunter, Eva D. Wilson, Jane R. Savage and James L. Lubawski, Food and Man, (John Wiley \& Sons, N.Y., second edition, 1974), p. 118 .
6 Dietary goals for the U.S., p. 5.

Nutrient requirements also depend on a variety of environmental factors that may be physical (i.e., average anbienic temperature), biological (i.e., presence of infectious organisms) or social (i.e., physical activity, type of clothing, sanitary conditions and other patterns of behavior). ${ }^{7}$ For example, it is difficult to select a menu for an airman stationed in Alaska and at the same time meeting the needs of an airman stationed in Panama.

The influences of food patterns based on one's sociocultural background plus location may not be as influential as today's technological advances in food processing and advertising. A television advertisement study done in 1975 showed that nonnutritive beverages were the most advertised food group, capturing 40% of television commercial time. Sweets took up 11% of the time. When added to the previous mentioned televised time oils, fats, and margarines, baked goods, snack foods (often those low in nutrient density) total 70% of commercials concerning food. This left the remainder 30% of the advertisirg devoted to "nutritious foods", such as bread, cereals, pasta, neat, fish, seafood, dairy products, vegetables and nut products. Concerning the restaurants advertised, nearly all were limited menu, fast food, specializing in foods high in saturated fats and cholesterol. ${ }^{8}$ Even the so-called educational advertisements are often contradictory about what

7 Lieselotte Hofman, The Great American Nutrition Hassle, (Mayfield Co., CA, 1978), P. 27.
8 Dietary Goals for the U.S., p. 59.
to eat. As an example, advocates of lower fat diets recommended more low-fat dairy products, lean meat, poultry, fish, fruits and vegetables. But newspapers warned about pesticide residues on fruits and vegetables ... toxic chemicals in fish ... carcinogens in mushrooms, etc. There even was a point in time where weight loss mythology had convinced almost everyone that bread and potatoes were fattening. Adding foods high in fat to the "eat less" list made it seem like there was nothing left to eat nor to drink. ${ }^{9}$

Food processing technology may be more influential than advertising concerning one's eating habits. It is easier today to snack than eat three "square meals" and fewer foods are prepared from scratch--hence more processed, snack and fast foods are bought. It does not take a dietitian to realize how many of these processed or fast foods are fatty, salty, high in kilocalories and likely to cause weight gain. ${ }^{10}$ As waistlines grew larger the fitness thrust also grew. A recent survey suggests that consumers have been unsuccessful in losing weight since approximately 67% were reported to have been on a weight reduction diet every year since 1970. As a result of this dieting the consumption of many foods has increased because, rightly or wrongly, people perceive them to be lighter and lower in kilocalories. Some shifts in the diet have included more chicken, salads, fruit and cheeses, while there

[^0]has been a decrease in cake, cookies, chips, butter and red meat. ${ }^{11}$

1.2 SOCIETY CHARGES

The shift in diet has also been witressed by the shifting of the social climate in the United States. The population is getting older. Within the last fifty years, life expectancy has increased by 20 years. Life expectancy for Americans is now the longest in history, 73.2 years. ${ }^{12}$ At the same time total energy requirements have declined with the shift to a service or postindustrial economy with individuals working more with cognitive processes than with physical labor. In addition to the above mentioned lower energy needs: the average workweek has shortened from 70 hours per week to 40 hours or less; vacations are longer; there are more holidays, earlier retirements and more leisure time. ${ }^{13}$ Although living becomes increasingly sedentary, deeply ingrained food habits are slow and difficult to change. The per capita kilocalorie consumption has remained relatively stable during the past 65 years in the United States. In simple terms, more sedentary

11 Florence R. Skelly, "The Attitudes of the Consumer", Nutrition Reviews (suppl. Jan. 1982), p. 38.
12 Marylin Chou, David P. Harmon, Critical Food Issues of the Eighties, (Pergamon Press Inc., N.Y., 1979), p. 33.
13 Graham T. Molitor, "The Food Systems in the 1980's", Jour$\frac{\text { nal }}{103}$ of Nutrition Education (Vol. 12 No. 2, suppl. 1980), p.

Abstract

lifestyles plus no change in caloric intake equals obesity. ${ }^{14}$ In fact, inactivity may contribute more to overweight than overeating. As for mental exertion, someone has estimated that the energy needed for one hour of hard thinking could be supplied by half a peanut. ${ }^{15}$

1.3 NUTRITIONAL-RELATED DISEASES

Past efforts in nutrition education were assuring an adequate diet--one with sufficient kilocalories, proteins, vitamins and minerals. Now it is believed that much of the ill health today may be due to overnutrition. This is more than simply eating too much but eating excessive amounts of specific nutrients, such as fats (especially saturated fat), salt and sugar. ${ }^{16}$ Add to these problems stress and lack of exercise, and the result may be an epidemic of diet-related diseases. What needs to be emphasized is that the foods are not causing cancer or heart disease, but the excess quantity may be a contributing factor. One must adjust his/her food intake to match energy expenditure. Our public health problems have shifted from undernourishment to overeating, and from the poor minority to the middle class.

14 Chou, Harmon, op. cit., p. 154.
15 Hofman, op. cit., p. 94.
16 Chou, Harmon, op. cit., p. 33.

A surgeon general report of 1979 listed the major causes of death for persons aged 25 to 64 as: heart disease, cancer, stroke, cirrhosis of the liver and accidents, while the major causes of death for persons over 65 were: heart disease, cancer, strokes, influenza/pneumonia, arteriosclerosis, and diabetes mellitus. ${ }^{17}$ From this survey age does not appear to be the major factor influencing type of degenerative disease. This is substantiated by the fact tnat it is estimated that one in three men and one in six women in the U.S. can be expected to die of heart disease or stroke before age 60. It is also projected that 25 million suffer from high blood pressure. ${ }^{18}$

At present there is substantial controversy over the causes of coronary heart disease. Among the many possible causes are cholesterol in the diet, saturated fatty acids, hypertension, obesity, inactivity, sex, cigarette smoking, stress, and hereditary factors. ${ }^{19}$ It should be noted that some of the causes are not diet-related.

The vast majority of Americans, approximately 70\%, eat well and enjoy good nutritional health. ${ }^{20}$ Predicting a national nutrition program on such an overwhelming majority, although logical, may not assist the groups at risk. It is estimated

17 Eleanor F. Eckstein, Food, People and Nutrition, (AVI Publishing Co, Inc, Conn., 1980), p. 8.
that 10% of our population's nutritional intake is lacking while 20% or upwards of the general population is either overfat or clinically obese. ${ }^{21}$

The debate about the need for dietary change in the U.S. to reduce chronic degenerative diseases will continue for years. Some comfort is provided by the fact that the coronary disease rate in this country has decreased since 1960 , be it a result of improved diet, medicar orer nutrition education. ${ }^{22}$

1.4 GOVERNMENT INTERACTION

Only 30 years ago there was concern about recommended daily allowances to combat dietary diseases. Today, the concerns shifted to establishing maximum levels of nutrients to prevent diseases linked with dietary affluence or overabundance. ${ }^{23}$

Nutrition, as the science of food and its relationship to health, is still in its infancy. Jean Mayer, former chairman of the White House Conference on Food, Nutrition and Health, has described nutrition as "an agenda of problems", the solution of which requires the application of all man's knowledge and technology. As a result, hypotheses abound and nutrition is credited or blamed for unrelated cures and sicknesses. Only a decade ago nutrition evoked little interest. Today it is used as a solution for social, economic, and health prob-

21 Ibid., p. 103.
22 Olson, op. cit., p. 179.
23 Chou, Harmon, op. cit., p. 30.
lems. Future nutritional theories will come and go. ${ }^{24}$
Nutrition has become a political concern similar to taxes, inflation and unemployment. A prominent USDA official has stated,

Our food production is one-sided. It includes a relative excess of the fat of meats, of starch and of sugar.

The USDA official who made that statement was Wilbur Olin Atwater, sometimes hailed as the "Father of American Nutrition." His statement appeared in 1894 in the first Yearbook of Agriculture. That same concern expressed almost a century ago has a familiar ring today.

To introduce "optimal" nutrition practices, it is most important to bring about changes that are in keeping with the established food habits of people, and are acceptable within the framework of their value system. ${ }^{26}$ This brings forth the controversy of the dietary goals as proposed in 1977 by the congressional select committee on nutrition and human needs. These dietary goals are probably not the final solution. It must be stated that absolute safety cannot be achieved because nothing is absolutely free of risk. While risk is a measure of the probability and severity of harm to human health, safety is a value judgment, based on personal and social experi-

24 Chou and Harmon, op. cit., p. 177.
25 Molitor, op. cit., p. 103.
26 Miriam E. Lowenberg, Neige E. Todhunter, Eva D. Wilson, Jane R. Savage, James L. Lubawski, p. 125.
ences, of the acceptability of risk. ${ }^{27}$ A substance as harmless as water is safe until one drinks too much in a very short period of time. However, recently nutritionists have acknowledged the dietary goals as a starting point or a priority listing and if nothing else it will stir interest to prove or disprove the theories upon which dietary goals are based.

27 Chou and Harmon, op. cit., p. 33.

Chapter II

dIETARY GOALS

2.1 INTRODUCTION

Nutrition is a relatively new scientific discipline. Although eating habits themselves are hundreds of years old, they are largely based on trial and error or personal preferences, and not on evidence gathered in the laboratory. Modern nutrition began with this century and much remains to be learned. 28

In 1968, the American Heart Association (AMA) released eight dietary guidelines. They were:

- reduce animal fat
- decrease saturated fats and increase polyunsaturated fats
- reduce cholesterol
- maintain ideal body weight
- apply dietary recommendations early in life
- maintain the principles of good nutrition with the change in diet
- adhere to dietary recommendations
- make sound food habits a family affair

28 William Beers, "The Food Industry and Nutrition: Challenges and Responsibilities", Nutrition Reviews (suppl. January 1982), p.7.

The revised recommendations to the above made in 1978 included advice to increase complex carbohydrates to compensate for the reduced calories from fat and to reduce sodium intake. ${ }^{29}$ Interesting enough, Sweden was the first to establish a nutrition policy in 1971. This was followed by Netherlands 1973, Norway 1975, West Germany and Canada 1976 and the United States as late as 1977. It should be noted that the U.S. was lagging even with the strong recommendations presented by the AMA in 1968. ${ }^{30}$ Prior to 1977, most U.S. public advice regarding diet planning centered around the "Basic Four Food Groups. ${ }^{\text {3? }}$

2.2 DIETARY GOALS

Dietary Goals for the United States, published in February 1977 and revised in December 1977 are to:

- avoid overweight, consume only as much energy (kilocalories) as is expended; if overweight, decrease energy intake and increase energy expenditure.
- increase the consumption of complex carbohydrates and "naturally occurring" sugars from about 28% of energy intake to about 48% of energy intake.

[^1]- reduce the consumption of refined and processed sugars by about 45\% to account for about 10% of total energy intake.
- reduce overall fat consumption from approximately 40% to about 30% of energy intake.
- reduce saturated fat consumption to account for about 10% of total energy intake; balance that with polyunsaturated and monounsaturated fats, which should account for about 10% of energy intake each.
- reduce cholesterol consumption to about 300 mg . a day.
- limit the intake of sodium to 2 g . a day or reduce the intake of salt to 5 g . a day.

These goals suggest the following changes in food selection and preparation:

- increase consumption of fruits and vegetables and whole grains.
- decrease consumption of refined and other processed sugars and foods high in such sugars.
- decrease consumption of foods high in total fat, and partially replace saturated fats, whether obtained from animal or vegetable sources, with polyunsaturated fats.
- decrease consumption of animal protein, and choose meats, poultry and fish, which will reduce saturated fat intake.
- except for young children, substitute low-fat and non-fat milk for whole milk, and low-fat dairy products for high fat dairy products.
- decrease consumption of butterfat, eggs, crustaceans, organ meats, and other sources high in cholesterol. Some consideration should be given to easing the cholesterol goal for premenopausal women, young children, and the elderly in order to obtain the nutritional benefits of eggs and liver, etc., in the diet.
- decrease consumption of salt and foods high in salt content. ${ }^{32}$

One point of irony when we look at the macronutrient recommendations for protein, fat and carbohydrates over the past approximate 100 years, there has been little recommended change.

Nutrient	PERCENT OF ENERGY INTAKE		
	USDA 1895	USDA 1935	CONGRESS 1977
Protein	15\%	10-12\%	12\%
fat	35\%	25-35\%	30\%
Carbohydrate	55\%	60\%	58\%

Taken from Graram Molitor, "The Food Systems in the 1980's", p. 105.
"Dietary Goals for the U.S.", Journal of Nutrition Education Vol. 10 no. 1 (January-March 1978), p. 14.

2.3 PURPOSE

The approach of the goals is public health awareness and is not proposed to retard the onset of degenerative diseases. Each goal will not be beneficial to everyone because there are genetic and other individual differences, but overall results of their adoption would improve public health. 33 Former Assistant Secretary for Health and Surgeon General Julius Richmond said:

Individuals have the right to make informed choices and the government has the responsibility to proyide the best data for making good dietary decisions.

2.4 DIETARY GUIDELINES

In 1980, the U.S. government modified its nutrition policy with the issuance of the "Nutrition and Your Health--Dietary Guidelines for Americans". This report was aimed at achieving variety and moderation in diet. Notable in these recommendations was the absence of target figures for changes in nutrient percentage of calories or total intake of nutrient per day. The dietary guidelines for Americans are:

- eat a variety of foods
- maintain ideal weight

- avoid too much fat, saturated fat, and cholesterol
- eat foods with adequate starch and fiber
- avoid too much sugar
- avoid too much sodium
- if you drink alcohol, do so in moderation 35

2.5 DIETARY GOALS PROS AND CONS

It is very hard to find in modern textbooks of nutrition the definition of an "optimal" diet. Excluding the statement that the diet should be composed of a variety of foods that protect against deficiency of unknown trace components, and should meet the allowances recommended by the Food and Nutrition Board, little is said about the composition of the "optimal" diet. ${ }^{36}$ This fact is compounded by the fact that nutrition needs are highly individualized and dependent on a wide range of variables. A representative list of some factors which cause variations in nutritional needs, includes, but is not limited to:

age	culture
sex	clothing
height	climate
weight	metabolism
activity	hormones
occupation	enzymes
lifestyle	psychology
income	diet

35 Ibid. p. 99.
36 Olson, op. cit., p. 171.

To implement the dietary goals, a very different set of beliefs, attitudes, and eating behavior may be necessary. This diet is the basis for a set of food habits that are expected to be followed for 50 years or so and not just a few months. 37 Obviously these dietary goals have been the center of intense controversy as seen in several volumes of testimony before the select committee on nutrition and human needs as well as in nutritional and medical literature.

One problem which complicates the dietary regulation of the degenerative diseases is their multiple etiology. There are many factors besides diet which determine the progression of disease, and these vary widely from individual to individual. Also, changing the diet pattern of the U.S. in the direction of dietary goals with the specific reduction in foods such as meat, eggs, and whole milk may increase deficiencies of protein, iron, vitamin A, calcium, and riboflavin in people who are not at risk from coronary disease. ${ }^{38}$ In general, the eridence must be very convincing, and the degree of controversy minimal, if advice on health is to be given to the public. It is the opinion of many that the dietary goals meet neither of these criteria.

On the other side of the fence, those advocating dietary goals do not reject the notion that protein, vitamins, and minerals are vital to health. Rather, they suggest a good

37 Eckstein, op. cit., p. 445.
38
Hausman, op. cit., p. 72.
diet is one that limits fat, sodium, kilocalories and cholesterol concomitantly considering Recommended Daily Allowances. They propose that it is necessary to establish a pecking order among hazards so that the most serious dangers could be avoided. 39 More important than the exact figures set are the general principles stated in the goals and the whole concept of having goals.

Chapter III

REVIEW OF NUTRIENTS STUDIED

3.1 CALORIES (OBESITY)

Weight accumulation seems to be the curse of affluence. A report of the President's Biomedical Research panel of 1976 indicated that $1 / 4$ to $1 / 3$ of the American adult population and over 10% of American children are overfat or obese. ${ }^{40}$ For most, weight reduction is desirable for reasons of both health and appearance. While there is no doubt that some genetic basis for body build and weight exists, recent research has suggested that children and particularly infants, are programmed to be fat. Early prevention may save years of dieting.

It has been calculated that in a normal adult the number of cells in the adipose tissue is relatively constant and that increase in adipose mass occurs through an increase in cell size. Obesity resulting in this manner is thought to be the more common type. The other type of obesity characterized by increased numbers of cells in the adipose tissue occurs early in life and is more difficult to control later in life through dietary restrictions. ${ }^{41}$ Another factor contributing to this

40 Eckstein, op. cit., p. 5.
41 Joannis S. Scarpa, Helen C. Kiefer, Sourcebook on Food and Nutrition, (Marquis Academic Media, Ill., 1978), p. 192.
cell size theory is the fact that obesity tends to cluster in families. A child risks a 40% chance of being an obese adult if one parent is obese, and this risk increases to 70% if both parents are obese. 42

Because excessive gain in weight represents an imbalance between energy intake and energy needs, the straightforward solution to the problem of reducing calories consumed and increasing regular physical exercise may be easier said than done. The efficiency with which the diet is utilized to maintain a constant body weight at any given level of caloric intake varies considerably from person to person. Factors other than overindulgence that may contribute to overfat include:

- metabolism
- genetics
- environmental influences
- social and cultural influences
- psychological factors
- sedentary lifestyle
- behavioral patterns ${ }^{43}$

An additional fact that too many people ignore or are unaware of is the law of "calorie reversal": with each decade after age 25 one burns 5 to 7% fewer kilocalories. 44 This translates into the fact that at age 50 one needs about 20% fewer calo-

42 Ibid. p. 200.
43 Molitor, op. cit., p. 106.
44 Hofman, op. cit., p. 94.
ries than at age 25. While attempting to reduce calorie consumption, it may be necessary to increase the nutrient density (ratio of nutrients to calories) of those foods which are consumed. ${ }^{45}$ This requires a more careful selection of foods to make up a complete diet. The problem of controlling the energy intake presents a number of concerns.

- It is difficult to obtain all the necessary nutrients on an intake of less than $1800 \mathrm{Kcal/day}$ especially trace minerals.
- It is difficult to limit intake to $1800 \mathrm{Kcal} / \mathrm{day}$ or less on a continuing basis. This would require eliminating whole categories of foods such as desserts and snack foods. Thus the foods that are consumed lack richness and sweetness, so have a low satiety value. Also, oral gratification is less because of the small quantities of food ingested. Low calorie foods are available but may be lacking in nutritive value and taste-texture. Additionally, these foods are expensive for one to consume during extended periods of time.
- Limiting kilocalories is a greater problem for women. It has been found that in order to meet nutritional needs, women must consume a diet that is higher in nutrient density than men. ${ }^{46}$

45 Chou, Harmon, op. cit., p. 159.
46
Eckstein, op. cit., p. 126.

Even determining the necessary weight controls can be a problem when evaluating the degree of obesity because body weight is a poor measure of fatness. Obesity should not be gauged by relative weight. As an example, football players may be overweight but not fat, while office workers could be overfat but not necessarily overweight. Body fatness is more a risk factor than relative body weight. ${ }^{47}$ It has been documented that overweight due to increased fatness is a risk factor for coronary heart disease. Additionally, the percentage increase in early deaths runs in almost direct correlation with the percentage that one is overfat. It has been found that men who are 10% overweight run a 13% risk of early death while an individual 30% overweight risks a 42% chance of an early death. Overweight women, on the other hand, experience a lower risk of an early death when compared to overweight men. ${ }^{48}$ The risk of dying prematurely or having a heart attack appears to increase substantially only at the extreme of being overweight or overfat where men are concerned.

Another link between obesity and heart disease has been hypertension. Findings have indicated that in the absence of hypertension, overweight is not a risk factor. Nonetheless, there is a tendency for persons with high blood pressure to be

Ancel Keys, "Overweight, Obesity, C Oronary Heart Disease and Mortality", Nutrition Reviews, Vol. 38 no. 12 (1980), p. 305.

Allan G. Cameron, Food Facts and Fallacies, (Faber and Faber Limited, London, 1971), p. 18.
overweight. 49
Proper weight control is essential when stacked against the consequence of being obese. The method of losing weight must be individualized based on the numerous factors contributing to the weight gained. A recent review of currently existing treatments for obesity concluded that behavior modification is the best method for weight loss and maintenance.

3.2 FAT AND CHOLESTEROL

Since 1900 total fat intake has increased from 32% to over 41\%. However, looking at nutrients available per capita per day in terms of contributions, fat from meat, poultry and fish has declined from 37% to 34%. While the contribution from eggs has been relatively constant at 3%, the contribution from dairy products, including butter, has dropped from 42% to 29\%. The large increase of fat consumption has been due to a tripling of the intake of vegetable fats and oils. ${ }^{50}$ The amount of fat consumed is most critical of nutrients because it represents 9 calories per gram of fat whereas protein and carbohydrates equate to approximately 4 calories per gram. From this fact there seems to be a great deal of discussion linking fat to a number of degenerative diseases.

49 Keys, op. cit., p. 305.
50 Chou, Harmon, op. cit., p. 126.

Hypotheses concerning lipids have been applied most intensely to the problem of coronary artery disease, and its underlying arteriosclerosis which is characterized by patchy modular thickenings of the inner walls of the arteries, especially at branch points. At present, approximately 600,000 persons die annually from coronary heart disease and an additional 200,000 from strokes and other complications of atherosclerosis in the U.S. ${ }^{51}$ At present, there is no accurate and dependable way to observe atherosclerotic build-ups in the arteries of live human beings. However, serum cholesterol and serum triglyceride levels offer resonably reliable indications of the overall degree of arteriosclerosis present. 52

Additional information from cross-sectional surveys has produced evidence which is consistent with the concept that diets low in fat and cholesterol are more prevalent in populations with low rates of heart attacks and other atherosclerotic diseases. On the other hand, there is no direct evidence, either experimental or observational in human beings, that conclusively demonstrates a causative relationship between dietary fat and human atherosclerotic cardiovascular disease. There are, however, abundant data showing a direct, positive correlation between plasma cholesterol levels and/or with levels of low-density lipoproteins and arteriosclerosis. There are also data showing an inverse relationship between

51 Chou, Harmon, op. cit., p. 121.
52 Robin Hur, Food Reform: Our Desperate Need, (Heidelberg Publishers, Tx, 1975), p. 38 .
high-density lipoproteins and the incidence of arteriosclerosis. 53 The linkage between dietary fat and coronary heart disease in humans is thus an indirect one.

As previously pointed out, the intake of dietary cholesterol has not changed significantly in the U.S. since 1900. In 1909, the average person consumed 509 mg . of cholesterol per day, whereas, in 1950 the intake was 577 mg . per day, and in 1970 , 556 mg . per day. At present, per capita egg consumption in this country is less than one egg per day per capita, which contributes about 200 mg . of cholesterol per day. $54 \mathrm{Al}-$ though eggs are a concentrated source of cholesterol, consumption of one egg per day has no effect on circulating blood levels. Increasing effects due to consumption of two to ten eggs per day have been demonstrated. 55

The vegetable oil manufacturers, on the other hand, are advertising their products as "cholesterol free", as if that were tantamount to "coronary artery disease free". Cholesterol has served as a convenient scapegoat because it appeals to our futile desire for every effect to be the result of a single cause. With an intake of $500 \mathrm{mg} . /$ day, and an absorption rate in man of 40%, only 200 mg . enters the body and mixes with the endogenous pool. Sensitive feedback mechanisms in the liver retard the synthesis rate so that the body pool of

53 Bray, op. cit., p. 97.
54 Chou, Harmon, op. cit., p. 126.
55 Eckstein, op. cit., p. 78.
cholesterol remains constant. In most individuals cholesterol intake in the range of $300-800 \mathrm{mg}$./day has no effect on the serum cholesterol. ${ }^{56}$ This presents the problem of identifying the "optimum" or "normal" levels of cholesterol to minimize the risk of coronary heart disease.

Sharply divided opinions cast uncertainty on possible health risks associated with "excessive" consumption of saturated fat and cholesterol. In light of all the evidence relating to plaque formation, it seems more than likely that dietary fat and possibly cholesterol are among the contributing factors in atherosclerosis. Thus limiting fat consumption should do no harm, and it may be beneficial. But cutting back on fat to meet the dietary goals may limit the diet in flavor, variety, and fat-soluble vitamin content. Additionally, to follow the guidelines, one needs good information about the type of fat and amount of fat in foods. Unfortunately, information regarding the type of fat in foods is not readily available. The Food and Drug Administration presently lacks the authority to require this information on food labels. ${ }^{57}$ It can be concluded that the implementation of dietary changes (as per dietary goals) in large populations carries with them some degree of risk, however small. These risks may be due to changes in food processing, purchasing and/or to the possible hazards for individuals whose present diet is marginally ade-

56 Chou, Harmon, op. cit., p. 126.
57 Hausman, op. cit., p. 122.
quate regarding vitamins, minerals and protein. 58

3.3 SODIUM

The dietary goals recommend the reduction of salt intake. The actual concern is the sodium in the salt which by molecular weight is approximately 40% of the chemical compound sodium chloride (salt). Five grams of salt/day which equal approximately 1 teaspoon would thus equal 2 grams of sodium/day.

Sodium in all forms has been implicated as having a major, although not yet well understood, role in hypertension. Evidence used to support the argument that excessive sodium ingestion in some way predisposes susceptible people to high blood pressure includes the following points:

- In the laboratory, high sodium diets produce accelerated hypertension in rats under specific experimental conditions.
- Throughout the world, populations with excessive salt and/or sodium intake have a higher prevalence of hypertension than those with low sodium intake.
- Reducing sodium ingestion from excessive to moderate amounts in diets of hypertensive individuals produces a favorable blood pressure response in some cases. 59

58 Bray, op. cit., p. 98.
59 Scarpa, Kiefer, Op. cit., p. 316.

These data cannot be interpreted to document that excessive sodium or salt cause hypertension in the population at large.

High blood pressure, though, does affect 20-30\% of the American adult population. ${ }^{60}$ If sodium is a factor, the problem is compounded due to the fact that at least 70% of the sodium intake in the U.S. comes from canned, processed foods, convenience foods and baked goods and not from salt added by the salt shaker. ${ }^{61}$ This is illustrated through the processing steps of the following:

Food Item	$\mathrm{Na} \mathrm{(mg/100g)}$
Sweet corn	trace
canned corn	236
corn flakes	1005
baked potato	4
potato salad	528
potato chips	1000
sliced tomato	3
canned tomato	130
tomato catsup	1042

60 Robert W. Cullen, Audrey Paulbitski, Susan M. Oace, "Sodium, Hypertension, and the U.S. Dietary Goals", Journal of Nutrition Education, Vol. 10 no. 2 (April-June 1978), p. 59.

61
A. M. Altschul, J. K. Grommet, "Sodium Intake and Sodium Sensitivity", Nutrition Reviews, Vol. 38 no. 12 (1980), p. 399.

It has been reported that only 10% of the sodium intake may be a direct result of individuals salting their food. The salt shaker thus may not make a serious difference in total sodium intake of an individual. Yet, this "typical" sodium intake can prove to be a burden for those individuals exhibiting a physiological deficiency in the ability to hande sodium.

Whatever its etiology, the results of hypertension can shorten one's life. A 35-year-old American man with a blood pressure 14% above normal for his age has reduced his life expectancy by nine years. Similarly, a 45-year-old having a blood pressure 17% above normal runs twice the risk of a heart attack and four times the risk of a stroke than a man with normal blood pressure. ${ }^{62}$

In nearly all cases the actual cause of hypertension is unknown, but it is not generally accepted as being a nutrition problem. An article cited in the dietary goals report in support of the recommendation to reduce salt intake concluded that the disease is of complex etiology with evidence of genetic susceptibility. It stated that a high salt intake increases blood pressure in some but not in others, and a low salt intake lowers high blood pressure in some but not in others. Control of salt intake is only an adjunct to drug treatment of hypertension and weight loss. 63

62 Scarpa, Kiefer, op. cit., p. 22.
63 Latham, Stephenson, op. cit., p. 155.

There is evidence from clustering of blood pressure in humans to suggest that genetics has an important role in determining blood pressure. In the majority of nonhypertensive individuals, an intake of as much as 17 grams of salt per day will not induce hypertension. In contrast, the minority that do develop hypertension appear to have a genetically determined susceptibility to salt loading and manifest the disease on intakes of 7 to 14 grams per day. ${ }^{64}$ Many authorities now agree that low sodium intake lowers blood pressure in most hypertensive patients.

The dietary goal of restricting salt intake may benefit persons with high blood pressure and may reduce the incidence of hypertension among persons with genetic predisposition for the disorder. This goal is achievable without extraordinary diet modification by eliminating added salt and excessively salty processed foods and condiments. Yet this recommended level of salt intake might be inadequate for persons engaged in heavy exercise or living in high environmental temperature but would be adequate for most individuals. ${ }^{65}$

At best, it is difficult to alter dietary tastes. A good beginning is educating individuals as to what foods are high in sodium, how to read labels and how to develop innovative menus. This positive approach allows one to readjust his/her eating habits and modify the sodium intake if one so desires.

Bray, op. cit., p. 99.
Cullen, Paulbitski. Oace, op. cit., p. 59.

Chapter IV

UNITED STATES AIR FORCE MENU PLANNING

4.1 INTRODUCTION

The USAF prepares and publishes a 42-day cycle menu that is used worldwide at all its installations. In order to properly study this menu it is important to understand the customer we are attempting to satisfy and the manner in which these meals are prepared and served.

The clientele fed in any given Air Force dining facility is but one member of a diverse group and the following must be considered:

- geographic and/or sociocultural background
- age
- activities (work and pleasure)
- sex

As previously highlighted, Air Force members come from all points on the globe with varying social and cultural backgrounds. These same individuals are then stationed at different locations throughout the world exposing them yet to additional cultural elements. All of these variables must be considered when attempting to satisfy service personnel. Food that is prepared and served in Air Force dining facilities is definitely an important factor in determining the morale of individuals with such diverse backgrounds.

The second factor that influences the eating habits of these individuals is their age. Age ranges from teenagers to persons in their late forties. The average age would be close to the mid-twenties.

Another variable to the menu equation is the energy spent on the job that must be replaced through adequate food intake. The jobs in the Air Force span the full spectrum of activity from clerical to heavy maintenance. These activities and energy expenditure are fur ther complicated depending on where this activity is accomplished, i.e., Iceland or Spain, with extreme differences in climates. The Air Force as a whole has a majority of its members working in light activity jobs resulting in a more sedentary life-style.

A fourth factor that has a bearing on the menu planning process is the increased number of women entering the Air Force. The nutritional needs for men and women are different in such areas as minerals and calories. The menu has to provide the proper nutritional elements for both sexes.

These are but just a few of the major variables that must go into the menu plan. A second set of variables deals with the specific dining facilities designed to support different segments of the Air Force mission--for example, missions ranging from piloting to fire fighting. However, meals for each specific assignment are derived from the Worldwide Menu.

The main dining facility serves the general working population on any given installation. The meals served may include
short order, carryout, specialty (ethnic), all being part of breakfast, lunch or dinner. Most diners are made up of airmen living in dormitories whose source of meals are provided through the dining hall. A second group are those individuals who reside off the installation and eat their midday meal at the dining hall but eat other meals at home.

The alert facility dining hall is much smaller than the main dining facility with an altogether different clientele. This facility serves aircrew members who are restricted to this controlled area for a given period of time. In addition to being a captive audience they also are restricted to specific diets for aircrews, i.e., no gaseous foods. This may require some modifying of the Worldwide Menu but in most cases it is minimal.

Additionally, most installations have a fire station that supports the flightline in case of an air emergency. Within this facility there is a small dining area to provide meals to the fire personnel who usually are restricted to the facility for twenty-four hours. The personnel performing this duty are mostly men in their 30 's and 40 's whose activity is minimal unless there is an emergency.

The USAF Worldwide Menu has evolved over the years based on inputs from the local dining facilities to satisfy the numerous variables mentioned. Additionally, menus are modified according to changing food service equipment and processing and to incorporate new food items.

4.2 MENU PREPARATION

The USAF Worldwide Menu is a 42-day cycle which is publisned three times a year, January through April, May through August, and September through December. When prepared, cost and nutrition are the two major constraints in menu planring. The published menu must meet the nutritional standards of the Air Force Regulation (AFR) 160-95. This document is presently under revision with recommendations for it to follow the dietary goals. Besides meeting specified rutritional standards, the menu must fall within the cost of the basic daily food cost allowance which is conputed monthly using current wholesale food prices.

The cyclical menus are centrally developed fron an annual food plan which is programmed 18 montns prior to the calendar year. This annual food plan allows one to program the nunber of servings for each month. A nutritional analysis is computed on the food plan to ensure it meets the Recommended Daily Allowances as specified by $A F R$ 160-95. The nutritional data base is derived from the United States Department of Agriculture Handbook Number 8 , for comparison with the Recommended Daily Allowances. Since the daily menus are developed from the annual food plan which has been prepared to meet the nutritional standards, it is assumed that the daily menus meet the same standards. Once the menus are prepared, they are distributed to the local dining facilities six montas prior to the first month of use to allow for any local nodifications as a result of many variables previously mentioned.

4.3 MENU COMPONENTS

The menu covers the three basic meals: breakfast, lunch, and dinner plus a short order menu. It also provides guidelines for modified meals, specialty meals, and a brunch menu.

The breakfast menu consists of a choice of two juices and one fruit selection (fresh, canned or frozen) eggs to order, ready to eat or cooked cereal, choice of two breakfast meats, pastry, assorted breads, and beverages.

The lunch and dinner menus consist of a soup, a choice of three entrees, two potatoes or starch substitutes, three vegetables, three to five salads, one hot bread plus assorted other breads, three to five desserts, and beverages.

The short order menu is a standard menu with hamburgers, cheeseburgers, frankfurters, peanut butter and jelly sandwiches, and chili con carne. In addition, this menu features one special sandwich of the day, french fried potatoes, potato chips, and the same soup, salads, and desserts as the lunch or dinner menus.

The dining facilities have no obligation to serve special diets but are encouraged to prepare modified meals. Kilocal-orie-restricted meals are noted on the menu to indicate items suitable for a Sensible Limited Intake Menu (SLIM) which provides 1500 calories per day when followed. A second modification is the recommendation of a vegetarian meal if needed or on customer demand. The menu is also designed to always provide a meat entree to satisfy those who do not consume pork.

Specialty meals are offered in each menu cycle. These include foods of ethnic and geographical origin as well as holiday meal trimmings which are added to the variety offered dining hall customers.

A brunch is normally offered on weekends. This combines the characteristic foods of breakfast and lunch.

The cycle menu provides variety for the patron through its different menus. To promote reliability of products (menu items), Standard Armed Forces Recipes are used in the preparation of each menu item.

All the variables to the menu-planning equation have been addressed to produce the final menus. The purpose of the current research is to recheck some nutritional computations to see what other standards the menus may satisfy.

Chapter V

AIR FORCE MENU STUDY

5.1 METHODOLOGY

The menu study was performed using the USAF Worldwide Menu, Air Force Pamphlet (AFP) 146-17. For evaluation purposes, this 42-day cycle menu was divided into six seven-day sections and from each section one day's menus were randomly selected. The four basic menus of breakfast, lunch, short order, and dinner for each of these six days were checked for kilocalories, fat, cholesterol and sodium. These daily intake totals for each of the nutrients were then compared to the dietary goals advocated by the United States government.

Because these meals are served cafeteria style allowing the diner free choice of selection, parameters had to be established. To make the evaluation comparisons, sample menu selections were grouped so one menu would represent the "worse" combination for a day while a second grouping provided the "best" combination for the same day. This worst and best menu approach provided a range that the four nutrient values might occupy on any given day. It could be assumed that another menu grouping would fall within this range.

The first premise used in selecting the best or worst menu item was the number of kilocalories supplied by the item. If
two items had high caloric values that were almost equal, the percentage of fat from total kilocalories would determine which item would be used in the worst menu scenario. If the amount of fat was close, cholesterol was the determining factor with sodium being the last selection criterion used.

This selection process did not take into consideration values for vitamins, minerals, proteins, and carbohydrates contained in the various menu components. As an example it appeared to be a better choice to select coffee, tea or even soda over milk because they each have less calories than milk. However, milk does contain other very important vitamins and minerals not found in the other beverages, making it an overall better nutritional choice. This would be an extreme as the best and worst menu selection did include on a daily basis the basic four.

After the items were chosen from the menu, selected nutrient composition was determined by using Air Force Standardized Recipes, Air Force Manual (AFM) 146-12. Kilocalorie and fat composition of the recipes were computed using the table of food composition from the Home and Garden Bulletin number 72 published by the U.S. Department of Agriculture (USDA). Cholesterol values were taken from USDA Handbook 8. Sodium content was derived from the USDA Home and Garden Bulletin number 233 published by the U.S. Department of Agriculture. This analysis determined if the customer could comply with the dietary goals using the menu items chosen.

The following assumptions were made:

- customers ate all three meals in the Air Force dining nall.
- customers added very small amounts of additional ingredients to the item once it was served.
- serving sizes for food and beverage items were in compliance to the Air Force Standardized Recipes.
- nothing was added to the food by the kitchen staff other than what was called for in the standardized recipes.
- customers maintained a somewhat sedentary life style.
- Air Force dining halls did not use low-fat cottage cheese, or other dairy products.
- customers possessed a basic understanding of nutrition and would consume food or beverage items that were low in kilocalories, fat, cholesterol and sodium.

5.2 RESULTS

One could suggest that from the results of this research an Air Force member dining in an Air Force dining hall can obtain a diet low in calories, fat, cholesterol and sodium as illustrated by the tables at the end of the chapter. By showing the best and worst menu combinations, it is apparent that some responsibility must rest with the customer in selecting the meal components. This, of course, requires the diner to understand food composition and nutrition.

Although the sample size of six out of forty-two days is small, the calculated values of the four nutrients showed very little variation among the six days computed. Consequently, the results of this research are thought to be indicative of what one would expect to find in any given day of the 42-day cycle menu.

A summary and discussion of the computed results with proposed recommendations will be outlined in the next chapter.

Following are the amounts of kilocalories, grams of fat, and milligrams of cholesterol and sodium for each of 4 menus found in each of 6 randomly selected days from the 42-cycle. To find a particular day's menu selection and its worst or best menu combination, the following pages denoted:
Day 1 menus 42-45
Day 1 worst and best menus 46-50
Day 2 menus pages 51-54
Day 2 worst and best menus pages 55-59
Day 3 menus 60-63
Day 3 worst and best menus pages 64-68
Day 4 menus pages 69-72
Day 4 worst and best menus pages 73-77
Day 5 menus pages 78-81
Day 5 worst and best menus pages 82-86
Day 6 menus pages 87-90
Day 6 worst and best menus pages 91-95

5.2.1 Day 1, Nutritional Calculations

B REAKF AST	CALORIES Kcal.	$\begin{gathered} \mathrm{FAT} \\ \mathrm{gm} . \end{gathered}$	CHOLESTEROL mg.	SODIUM mg.	REMARKS
ORANGE JUICE	120	trace	--	5	8 oz.
COLD CEREAL	105	1	--	225	2/3 cup
HOT CEREAL	130	2	--	283	$3 / 4$ cup
Panc ake S	110	4	--	304	2 ea.
FRENCH TOAST	225	--	--	217	2 ea.
WAFFLES	205	8	--	550	1 ea.
EGGS	170	12	550	118	2 ea.
TOAST	65	1	--	79	1 ea.
MARGARINE	70	8	24	95	2 pats
JELLY	40	trace	--	3	$1 \mathrm{oz}$.
SYRUP	180	2	--	40	2 02.**
COFFEE	--	--	--	2	5 oz.***
TEA	--	--	-	1	5 oz.*
MILK	150	8	25	122	8 oz.
ADDIT IONAL NONS TANDARD ITEMS					
VEGETABLE JUICE	45	TRACE	--	887	$8 \mathrm{oz}$.
FRESH PEAR	100	1	--	1	1 ea.
BACON	85	8	70	274	2 slices
CORN BEEF HASH	264	17	70	1003	2/3 cup
RAISIN MUFFINS	260	8	--	238	2 ea.

Menu extracted from AFP 146-17, May - August 1982, Day 3

```
*without milk
* without cream or sugar
```

Day 1

LUNCH SHORT ORDER

CALORIES
Kcal.

HOT DOG W/ ROLL 290
HAMBURGER W/ ROLL 355 CHEESEBURGER W/ ROLL
PEANUT BUTTER \& 285 JELLY SANDWICH
CHIEE CON CARNE
460 WITH ROLL
RELISH
FRIED ONIONS
FRENCH FRIES POTATO CHIPS
SODA 460 20

MILK WHITE CHOC OLA TE SKIM
COLD PLATTER BOLOGNA
HAM
AMERICAN CHEESE LETTUCE \& TOMATO POTATO SALAD
SALAD SELECTION
SALAD DRESSING REGULAR
LO'N KI LOC ALOR IE
DESSERT SELECTION

FAT CHOLESTEROL SODIUM
gm . mg. mg.
mg.

REMARKS
1540
$19 \quad 70$
2894
9
18

TRACE	--
7	--
7	--
8	--
0	--
8	25
8	25
TRACE	TRACE

124
2

146
200
728 461 709

242
1 ea.
$155211 / 4$ cup
2 oz. roll
1 oz.
$1 / 4$ cup
1 cup
1/2 oz.
8 oz.
122
8 oz.
8 oz.
8 oz.

8	20	220	1	slice
15	20	288	1	slice
9	24	406	1	oz.
TRACE	--	--		
4	--	625	4	oz.
SEE LUNCH	MENU			
16	--	300	1	02.
4	--	300	1	02.
SEE LUNCH	MENU			

Day 1

LUNCH
CALOR IES Kcal.

FAT CHOLESTEROL SODIUM gm . mg 。 ing.

REMARKS
解

BEEF RICE SOUP	65	3	--	952	1 cup
PORK CHOPS	321	25	70	79	4 oz.
W/ SLICED APPLES					1 oz.
TURKEY A LA KING	470	34	--	662	1 cup
STUFFED CABBAGE	485	34	70	63	2 rolls
STEAMED RICE	116	TRACE	--	2	5 oz .
LYONNA ISE POTATOES	90	TRACE	--	5	1 potato
PEAS W/ MUSHROOMS	52	TRACE	--	240	402.
GREEN BEANS	17	TRACE	--	4	4 oz.
CORN ON THE COB	120	1	--	1	1 cob
TOSSED VEG SALAD	21	TRACE	--	11	1 cup
COTTAGE CHEESE	55	2	15	228	$1 / 4$ cup
W/ PEACH	20	TRACE	--	4	$1 / 2$ peach
PINEAPPLE COLE SLAW	98	6	--	1	1/2 cup
MIXED FRUIT	82	TRACE	--	3	1/2 cup
TOASTED HERB	150	2	--	158	2 slices
ASSORTED BREAD	130	2	--	158	2 slices
GIngerbread cake W/ LEMON SAUCE	265	5	--	242	1/9 8" cake
PINEAPPLE PIE	345	15	--	169	1/6 9" pie
COCONUT PUDDING	160	4	--	445	$1 / 2$ cup
W/ LEMON COOKIES	50	1	--	216	2 cookies
MILK					
WHITE	150	8	25	122	8 oz.
CHOC OLATE	210	8	25	149	8 oz.
SKIM	100	TRACE	TRACE		8 oz.
SODA	145	--	--	20	8 oz.*
TEA	--	--	--	1	502.**
COFFEE	--	--	--	2	5 oz.*
SALAD DRESSING					
REGULAR	150	16	--	300	1 oz .
LOW KI LOC ALOR IE	40	4	--	300	$1 \mathrm{oz}$.

[^2]Day 1

DINNER C	CALORIES Kcal.	$\begin{aligned} & \text { FAT } \\ & \mathrm{gm} . \end{aligned}$	CHOLESTEROL mg.	$\begin{gathered} \text { SODI UM } \\ \mathrm{mg} . \end{gathered}$	REMARKS
CHICKEN NOODLE SOUP	55	1	--	1107	1 cup
ROAST VEAL	307	19	90	92	402.
W/ GRAVY	38	3	--	13	1 oz .
SPAGHETTI	330	12	70	930	1 cup
W/ MEAT SAUCE					2/3 cup
BAKED CHICKEN	120	4	60	69	1/4 chicken
CRANBERRY SAUCE	100	Trace	--	19	2 oz.
MASHED POTATOES	129	5	--	485	2/3 cup
SNEET POTATOES	138	TRACE	--	20	4 oz .
SPINACH	11	TRACE	--	65	4 oz.
ASPARAGUS AU GRATIN	170	TRACE	--	532	402
MIXED VEGETABLES	57	TRACE	--	45	4 oz .
TOSSED VEG SALAD	21	TRACE	--	11	1 cup
JELLIED CRANBERRY \& ORANGE SALAD	Y 35	TRACE	--	TRACE	$\begin{aligned} & 5 \times 7 \times 21 / 2^{\prime \prime} \\ & \text { square } \end{aligned}$
CUC UMBER, ONION \& PEPPER SALAD	32	TRACE	--	8	1/2 cup
COTTAGE CHEESE	55	2	15	228	$1 / 4$ cup
DINNER ROLLS	170	4	--	276	2 ea.
ASSORTED BREAD	130	2	--	158	2 slices
WHITE CAKE W/ CHOC. ICING	250	8	--	242	1/3 9" cake
RAISIN PIE	365	16	--	258	1/6 9" pie
FRUIT CUP	98	TRACE	--	7	1/2 cup
MARGARINE	70	8	24	95	2 pats
MILK					
WHITE	150	8	25	122	8 oz.
CHOC OLA TE	210	8	25	149	8 oz.
SKIM	100	TRACE	TRACE		8 oz.
SODA	145	--	--	20	8 oz.*
TEA	--	--	--	1	5 oz.*
COFFEE	--	--	--	2	5 oz.*
SALAD DRESSING					
REGULAR	150	16	--	300	1 oz .
LOW KI LOC ALOR IE	E 40	4	--	300	1 oz .

Day 1

BREAKFAST CALORIES FAT CHOLESTEROL SODIUM Kcal. gm. mg. mg.

WORST COMBINATION

ORANGE JUICE	120	TRACE		5
EGGS	170	12	550	118
CORN BEEF HASH	264	17	70	1003
RAISIN MUFFINS	260	8	--	238
MARGARINE	70	8	24	95
HOT CEREAL	130	2	--	283
MILK (WHITE)	150	8	25	122
TOTAL	1164	55	669	1864
FAT \% OF TOTAL CALORIES		42.5		

BEST COMBINATION

FRESH PEAR	100	1	--	1
COLD CEREAL	105	1	--	225
RAISIN MUFFINS	260	8	--	238
MILK	150	8	25	122
TEA	--	--	--	2
MARGARINE	70	8	24	95
TOTAL	685	26	49	683
FAT \% OF TOTAL CALORIES		34		

Day 1

LUNCH	CALORIES	FAT	CHOLESTEROL SODIUM	
SHORT ORDER	$\mathrm{Kc} a \mathrm{l}$	gm.	mg.	mg.

WORST COMBINATION

COLD PLATTER	505	36	64	1539
POTATO CHIPS	115	8	--	200
TOSSED VEG SALAD	21	TRACE	--	11
W/ DRESSING	150	16	--	300
PINEAPPLE PIE	345	15	--	169
MILK (WHITE)	$\underline{150}$	$\underline{8}$	$\underline{25}$	$\underline{122}$
TOTAL	1286	83	89	2341

FAT \% OF TOTAL 58 CALORIES

BEST COMBINATION

PEANUT BUTTER \& JELLY SANDWICH	285	9	--	242
FRIED ONIONS	70	7	--	2
COTTAGE CHEESE	55	2	15	228
W/ PEACH	20	--	--	4
COCONUT PUDDING	210	5	--	661
W/ *LEMON COOKIE				661
MILK	150	8	25	122
TOTAL	790	31	40	1251
FAT \% OF TOTAL CALORIES		35		

Milk was used because of its total nutritional values as mentioned in the methodology section.

LUNCH CALORIES FAT CHOLESTEROL SODIUM Kcal. gm. mg. mg.

WORST COMBINATION

BEEF RICE SOUP	65	3	--	952
STUFFED CABBAGE	485	34	70	63
RICE	116	trace	--	2
CORN ON THE COB	120	1	--	1
TOSSED VEG SALAD	21	1	--	1
W/ DRESSING	150	8	--	300
HERB BREAD	150	2	--	158
MARGARINE	70	8	24	95
PINEAPPLE PIE	345	15	--	169
MILK (CHOC.)	210	8	25	149
TOTAL	1732	80	119	1890

[^3] CALORIES

BEST COMBINATION

PORK CHOP	321	25	70	79
W/ APPLE RING				
LYONNA ISE POTATOES	90	TRACE	--	5
GREEN BEANS	17	TRACE	--	4
MIXED FRUIT	82	TRACE	--	3
ASSORTED BREAD	130	2	--	158
MARGARINE	70	8	24	95
COCONUT PUDDING	210	1	--	661
W/ LEMON COOKIES				
TEA	$-=$	-	-	2
\quad TOTAL	920	36	94	1007
FAT \% OF TOTAL		35		
CALORIES				

Day 1

DINNER CALORIES FAT CHOLESTEROL SODIUM

WORST COMBINATION

CHICKEN NOODLE SOUP	55	1	--	1107
ROAST VEAL	345	22	90	105
W/ GRAVY				
MASHED POTATOES	129	5	--	485
MIXED VEGETABLES	57	TRACE	--	45
TOSSED VEG SALAD	21	TRACE	--	11
W/ DRESSING	150	16	--	300
dinner rolls	170	4	--	276
MARGARINE	70	8	24	95
RAISIN PIE	365	16	--	258
MILK (CHOC)	210	8	25	149
TOTAL	1572	80	139	2831

FAT \% OF TOTAL 45 CALORIES

BEST COMBINATION

BAKED CHICKEN W/ CRANBERRY SAUCE	220	4	60	88
SWEET POTATOES	138	TRACE	--	20
SPINACH	11	TRACE	--	65
CUC UMBER, ONION \& PEPPER SALAD	32	TRACE	--	8
ASSORTED BREADS	130	2	--	158
MARGARINE	70	8	24	95
FRUIT CUP	98	Trace	--	7
MILK	150	8	25	122
TOTAL	849	22	109	563

FAT \% OF TOTAL 23 CALORIES

Day 1
DAILY RESULTS CALORIES FAT CHOLESTEROL SODIUM

WORST COMBINATION

BREAKFAST	1164	55	669	1864
LUNCH	1732	80	119	1890
DINNER	$\underline{1572}$	$\underline{80}$	$\underline{139}$	$\underline{2831}$
TOTAL	4468	215	927	6585
FAT \& OF TOTAL		43		
\quad CALORIES				

BEST COMBINATION

breakf ast	685	26	49	683
LUNCH	790	31	40	1251
dinner	849	$\underline{22}$	109	563
total	2324	79	298	2497
FAT \& OF TOTAL CALORIES		30.6		
RECOMMENDED dietary goals	2700**	30\%	300	2000
	2000**			

- Calories for men 23-50 years old
* Calories for women 23-50 years old

National Academy of Science, "Recommended Dietary Allowances," (Federal printing office, ninth edition, 1980, Washington, D.C.), p. 23.

5.2.2 Day 2, Nutritional Calculations

BREAKFAST	CALOR IES Kcal.	$\begin{aligned} & \text { FAT } \\ & \text { gm. } \end{aligned}$	CHOLESTEROL mg.	$\begin{gathered} \text { SODIUM } \\ \mathrm{mg} \end{gathered}$	REMARKS
ORANGE JUICE	120	TRACE	--	5	8 oz. *
COLD CEREAL	105	1	--	225	2/3 cup*
HOT CEREAL	130	2	--	283	3/4 cup
PANCAKES	110	4	--	304	2 ea.
FRENCH TOAST	225	--	--	217	2 ea.
WAFFles	205	8	--	550	1 ea.
EGGS	170	12	550	118	2 ea.
TOAST	65	1	--	79	1 ea.
MARGARINE	70	8	24	95	2 pats
JELLY	40	Trace	--	3	1 oz.
SYR UP	180	2	--	40	2 oz.**
COFFEE	--	--	--	2	$502 . *$
TEA	--	--	--	1	5 oz .
MILK	150	8	25	122	8 oz .
ADDIT IONAL NONSTANDARD ITEMS					
VEGE TABLE JUICE	45	TRACE	--	887	$8 \mathrm{oz}$.
HALF GRAPEFRUIT	95	TRACE	--	1	
BACON	85	8	70	274	2 slices
MINCED BEEF	140	5	40	55	2 oz.
PECAN ROLLS	562	32	--	236	2 rolls

Menu extracted from AFP 146-17, May - August 1982, Day 11
*without milk
**without cream or sugar

Day 2

Day 2

LUNCH

CALORIES Kcal.

FAT CHOLESTEROL SODIUM mg . mg.

RE: A ARKS

9921 cup
1324 oz.
268 4 1/2 oz.
69 1/4 chicken
485 2/3 cup
1791 cup
173 stalks
454 oz.
54 oz.
688 oz. $321 / 2$
" cube
$382 \quad 3$ oz.
2762 rolls
158 2 slices
$2423 \times 3 \times 1$ 1/2"
252 oz.
163
445 1/2 cup
151 tbsp. 142 cookies COC ONUT 180 COOKIES
MILK
WHITE
CHOC OLA TE
SKIM
SODA
TEA
COFFEE
SALAD DRESSING REGULAR 150 LOW KI LOCALORIES 40

Day 2

DINNER C	CALORIES Kcal.	$\begin{aligned} & \text { FAT } \\ & \text { gm. } \end{aligned}$	CHOLESTEROL mg.	SODIUM mg.	REMARKS
TOMATO BOUILLON SOUP	65	1	--	943	1 cup
STUFFED PORK CHOP	P 403	27	70	79	1 chop
W/ APPLESAUCE	58	TRACE	--	2	$2 \mathrm{oz}$.
BEEF STROGA NOFF	353	23	91	195	
SHRIMP CHOP SUEY	127	2	125	778	1 cup
W/ RICE	116	TRACE	--	2	5 oz.
BAKED POTATO	145	Trace	--	5	1 potato
STEAMED RICE	93	TRACE	--	2	402.
CAULIFLONER	155	TRACE	--	433	402.
AU GRATIN					1/2 oz. cheese
GREEN BEANS	17	TRACE	--	4	4 oz .
CARROTS	25	TRACE	--	43	4 oz.
TOSSED VEGETABLE SALAD	21	TRACE	--	11	1 cup
COTTAGE CHEESE	55	2	15	228	2 oz.
W/ PEAR	50	TRACE	--	4	1/2 pear
MIXED FRUIT	100	TRACE	--	3	1/3 cup
GERMAN STYLE	90	6	--	92	1/3 cup
TOMATO SALAD					
BISCUIT	210	10	--	350	2 biscuits
ASSORTED BREAD	130	2	--	158	2 slices
MAPLE CAKE	364	16	--	242	$3 \times 3 \times 11 / 2 "$
W/ MAPLE ICING	150	3	--	25	102.
VANILLA CREAM PIE	E 285	14	--	104	1/6 9" pie
W/ WHIP CREAM	10	TRACE	--	15	1/2 oz.
APPLE CRIS P	345	15	--	208	$3 \times 3 \times 11 / 2 "$
MILK					
WHITE	150	8	25	122	8 oz.
CHOC OLA TE	210	8	25	149	8 oz.
SKIM	100	TRACE	TRACE		8 oz.
SODA	145	--	--	20	8 Oz.*
TEA	--	--	--	1	5 oz.*
COFFEE	--	--	--	2	$5 \mathrm{oz}$.
SALAD DRESSING					
REGULAR	150	16	--	300	$1 \mathrm{oz}$.
LOW KI LOC ALOR IE	E 40	4	--	300	$1 \mathrm{oz}$.

[^4]Day 2

BREAKFAST

CALORIES FAT CHOLESTEROL SODIUM Kcal. gm. mg. mg.

orange juice	120	trace	--	5
EGGS	170	12	550	118
MINCED BEEF	140	5	40	55
PECAN ROLLS	562	32	--	236
MARGARINE	70	8	24	95
HOT CEREAL	130	2	--	283
M ILK	150	8	25	$\underline{122}$
TOTAL	1342	67	639	914
FAT \% JF TOTAL CALORIES		45		

BEST COMBINATION

HALF GRAPEFRUIT	95	trace	--	1
PANC AKES	110	4	--	304
BACON	85	8	70	274
Margarine	70	8	24	95
S YRUP	180	2	--	40
COFFEE	--	--	--	3
TOTAL	540	22	94	717

FAT \% OF TOTAL 37CALORIES

Day 2

LUNCH	CALORIES	FAT	CHOLESTEROL SODIUA
SHORT ORDER	Kcal.	gm.	mg.

WORST COMBINATION

SUBMARINE SANDW ICH	998	61	113	1323
POTATO CHIPS	115	8	-	200
MILK (CHOC)	210	8	25	149
TOSSED VEGE TABLE	21	TRACE	--	11
\quad SALAD				
CRESSING	150	16	--	300
PEANUT BUTTER CAKE	315	12	--	242
W/ ICING	150	-3	-	25
\quad TOTAL	1959	108	138	2246

FAT \% OF TOTAL 50 CALORIES

BEST COMBINATION

HAMBURGER	355	19	70	461
FRIED ONIONS	70	7	-	2
MILK	150	8	25	122
JELLIED PINEAPPLE,	86	TRACE	--	3
PEAR \& BANANA				
BLACKBERRY COBBLER	$\underline{325}$	$\underline{15}$	$-=$	$\underline{163}$
TOTAL	986	49	95	751

FAT \% OF TOTAL 44CALORIES
LUNCH CALORIES FAT CHOLESTEROL SODIUM Kcal.
gm.
mg.
mg.

WORST COMBINATION

FISH CHOWDER	80	3	70	992
BREADED LIVER	260	12	300	132
MACARONI \& CHEESE	430	22	--	178
BLACKEYE PEAS	110	TRACE	--	6
TOSSED VEGETABLE SALAD	21	TRACE	--	11
DRESSING	150	16	--	300
ASSORTED BREAD	130	2	--	158
MARGARINE	70	8	24	95
PEANUT BUTTER CAKE	315	12	--	242
W/ ICING	150	3		25
MILK (CHOC)	210	8	25	149
TOTAL	1926	86	419	2288
FAT \% OF TOTAL CALORIES		40		

BEST COMBINATION

BAKED FLOUNDER	140	5	70	268
MASHED POTATOES	129	5	--	485
BROCCOLI	30	TRACE	--	17
JELLIED PINEAPPLE,	86	TRACE	--	3
PEAR \& BANANA				
ONION ROLL	70	4	-	276
MARGARINE	70	8	24	95
BLACKBERRY COBBLER	325	15	-25	163
MILK	$\underline{150}$	$\underline{8}$	$\underline{25}$	$\underline{122}$
TOTAL	1000	45	119	1429

FAT \% OF TOTAL 41
CALORIES

Day 2

DINNER CALORIES FAT CHOLESTEROL SODIUM Kcal.
gm.
mg.
mg.

WORST COMBINATION

TOMATO BOUILLON SOUP	65	1	--	943
STUFFED PORK CHOP	403	27	70	79
W/ APPLESAUCE	58	--	--	2
BAKED POTATO	145	TRACE	--	5
CARROTS	25	trace	--	43
COTTAGE CHEESE	55	2	15	228
W/ PEAR	50	TRACE	--	4
MILK (CHOC)	210	8	25	149
MAPLE CAKE	364	16	--	242
W/ ICING	150	3	--	25
TOTAL	1525	57	110	1720
FAT \% OF TOTAL CALORIES		33		

BEST COMBINATION

SHRIMP CHOP SUEY	127	2	125	778
W/ RICE	116	TRACE	--	2
GREEN BEANS	17	TRACE	--	4
MIXED FRUIT	100	TRACE	--	3
ASSORTED BREAD	130	2	--	158
MARGARINE	70	8	24	95
VanILLA CREAM PIE	285	14	--	104
W/ CREAM	10	trace	--	15
TEA	--	--	--	2
total	855	26	149	1161
FAT \% OF TOTAL CALORIES		27		

Day 2

DAILY RESULTS	CALORIES	FAT	CHOLESTEROL
	Kcal.	gm.	mg.

WORST COMOINATION

BREAKFAST	1342	67	639	914
LUNCH	1959	108	138	2247
DINNER	$\underline{1525}$	$\underline{57}$	$\underline{110}$	$\underline{1720}$
TOTAL	4826	232	887	4881
FAT \& OF TOTAL		43		
\quad CALORIES				

BEST COMBINATION

BREAKFAST	540	22	94	717
LUNCH	1000	45	119	1429
DINNER	855	26	149	1161
TOTAL	2395	93	362	3307
FAT \% OF TOTAL CALORIES		35		
RECOMMENDED dIETARY GOALS	2700*	30\%	300	2000
	2000**			

[^5]5.2.3 Day 3, Nutritional Calculations

Breakf ast	CALORIES Kcal.	$\begin{gathered} \mathrm{FAT} \\ \mathrm{gm} . \end{gathered}$	Cholesterol mg.	SODIUM mg.	RE.MARKS
orange juice	120	trace	--	5	8 oz.
cold cereal	105	1	--	225	$2 / 3$ cup*
hot Cereal	130	2	--	283	3/4 cup
PANCAKES	110	4	--	304	2 ea.
FRENCH TOAST	225	--	--	217	2 ea.
WAFFLES	205	8	--	550	1 ea.
EGGS	170	12	550	118	2 ea.
TOAST	65	1	--	79	1 ea.
margarine	70	8	24	95	2 pats
JELLY	40	trace	--	3	$1 \mathrm{oz}$.
SYRUP	180	2	--	40	20 0.**
COFFEE	--	--	--	2	5 oz.**
TEA	--	--	--	1	5 oz.**
MILK	150	8	25	122	8 oz.
ADDITIONAL NONSTANDARD ITEMS					
TOMATO JUICE	45	trace	--	878	8 oz.
HONEYDEW MELON	50	trace	--	28	1/2 melon
CANADIAN BACON	245	19	40	438	2 pieces
MINCED BEEF	140	5	40	55	2 oz .
CHERRY QUICK coffee cake	230	7	--	135	$3 \times 3 \times 11 / 2 "$

Menu extracted from AFP 146-17, May - August 1982, Day 17

* without milk
** without cream or sugar

Day 3

LUNCH C	CALORIES Kcal.	$\begin{aligned} & \text { FAT } \\ & \text { gm. } \end{aligned}$	CHOLESTEROL mg.	SODIUM mg.	REMARKS
FRENCH ONION SOUP	P 160	8	--	1292	1 cup
ROAST BEEF	220	9	70	73	402.
W/ Gravy	205	12	--	171	1 oz .
BBQ SPARERIBS	361	29	70	579	8 oz.
TURKEY NUGGETS	340	19	--	190	302 .
MASHED POTATOES	195	7	--	485	2/3 cup
FRENCH FRIES	135	7	--	270	8 oz.
ASPARAGUS	170	9	--	532	40 z .
AU GRatin					1/2 oz. cheese
LIMA BEANS	210	TRACE	--	128	402.
CABBAGE W/ BACON	36	2	--	86	40 oz .
LetTUCE, TOMATO AND CUCUMBER	16	TRACE	--	9	402.
COTTAGE CHEESE	55	2	15	228	202.
W/ PEAR	50	TRACE	--	4	1/2 pear
FRUIT SALAD	97	TRACE	--	7	1/3 cup
HARD ROLLS	155	2	--	232	2 rolls
ASSORTED BREAD	130	2	--	158	2 slices
ANGEL FOOD CAKE	135	TRACE	--	134	4 1/2" sq. x
					1 1/2", no icing
BLACKBERRY PIE	325	15	--	163	1/6 9" pie
COCONUT PUDDING	110	4	--	65	1/2 cup
W/ WHIP CREAM	10	TRACE	--	4	1/2 oz.
W/ FRUIT BAR	100	1	--	96	2 bars
Margarine	70	8	24	95	2 pats
MILK					
WHITE	150	8	25	122	8 oz.
CHOCOLATE	210	8	25	149	8 Oz.
SKIM	100	TRACE	TRACE		8 oz.
SODA	145	--	--	20	$80 \mathrm{oz}$.
TEA	--	--	--	1	50 z .
COFFEE	--	--	--	2	5 oz .
SALAD DRESSING					
REGULAR	150	16	--	300	102.
LOW KILOCALORIE	- 40	4	--	300	$1 \mathrm{oz}$.

[^6]Day 3

DINNER
CALORIES Kcal.

FAT CHOLESTEROL SODIUM gm. mg. mg.

REMARKS

[^7]Day 3

BREAKFAST
CALORIES
FAT CHOLESTEROL SODIUM Kcal. gm. mg.
mg.

WORST COMBINATION

ORANGE JUICE HOT CEREAL WAFFLES
CANADIAN BACON CHERRY QUICK

COFFEE CAKE MARGARINE
SYRUP
MILK
TOTAL
FAT \% OF TOTAL CALORIES

120 130 205 245 230

70
180 150

1330

TRACE	-	5
2	--	283
8	-	550
19	40	488
7	-	135

8
2 -- 25

89
36.5

BEST COMBINATION

TOMATO JUICE	45	TRACE	-	878
PANCAKES	110	4	-	304
MARGARINE	70	8	24	95
JELLY	40	TRACE	--	3
MINCED BEEF	140	5	40	55
COFFEE	--	$-=$	-	-
TOTAL	405	17	64	1337

FAT \% OF TOTAL 37 CALORIES

Day 3

LUNCH	CALORIES	FAT	CHOLESTEROL SODIUM	
SHORT ORDER	Kcal.	gm.	mg.	mg.

WORST COMBINATION

CHILE CON CARNE	460	18	70	1552
FRENCH FRIES	135	7	-	146
MILK (CHOC)	210	8	25	149
LETTUCE, TOMATO	16	TRACE	--	9
$\quad \&$ CUCUMBER SALAD				
DRESSING	150	16	--	300
BL.ACKBERRY PIE	$\underline{325}$	$\underline{15}$	$-=$	$\underline{163}$
TOTAL				1296
FAT \& OF TOTAL		64	95	2319
CALORIES		44		

BEST COMBINATION				
PEANUT BUTTER \&	285	9	--	242
\quad JELLY SANDWICH				
FRIED ONIONS	70	7	--	2
FRUIT SALAD	97	TRACE	--	7
ANGEL FOOD CAKE	135	TRACE	--	134
MILK	$\underline{150}$	$\underline{8}$	$\underline{25}$	$\underline{122}$
\quad TOTAL	737	24	25	507

FAT \% OF TOTAL 29
CALORIES
CALORIES

Day 3

LUNCH CALORIES	FAT	CHOLESTEROL SODIUM	
	Kcal.	gm.	mg.

WORST COMBINATION

FRENCH ONION SOUP	160	8	--	1292
BBQ RIBS	361	29	70	579
MASHED POTATOES	195	7	--	485
LIMA BEANS	210	TRACE	--	128
LETTUCE, TOMATO \& cucumber salad	16	TRACE	--	9
DRESSING (REG.)	150	16	--	300
HARD ROLLS	155	2	--	232
Margarine	70	8	24	95
MILK (CHOC)	210	8	25	149
BLACKBERRY PIE	325	15	--	163
TOTAL	852	93	119	3432

FAT \% OF TOTAL 45
CALORIES

BEST COMBINATIONS

ROAST BEEF (NO GRAVY)	220	9	70	73
FRENCH FRIES	135	7	--	270
CABBAGE W/ BACON	36	2	--	86
LETTUCE, TOMATO \& cucumber salad	16	trace	--	9
DRESSING (LO CAL.)	40	4	--	300
ASSORTED BREAD	130	2	--	158
MARGARINE	70	8	24	95
ANGEL FOOD CAKE	135	TRACE	--	134
TEA	--	--	--	1
TOTAL	782	32	94	1126
FAT \% OF TOTAL		37		

DINNER CALORIES FAT CHOLESTEROL SODIUM

WORST COMBINATION

CHICKEN SOUP	105	3	--	1107
VEAL STEAK	185	9	90	69
W/ TOMATO SAUCE	112	8	--	186
WALDORF POTATOES	177	9	--	632
O'BRIEN CORN	65	TRACE	--	3
COTTAGE CHEESE	55	2	15	228
W/ PEAR	50	TRACE	--	4
ASSORTED BREAD	130	2	--	158
Margarine	70	8	24	95
MILK (CHOC)	210	8	25	149
APPLESAUCE CRISP	345	15	--	208
TOTAL	1504	62	154	2839
FAT \& OF TOTAL CALORIES		37		

BEST COMBINATION

TUNA BAKE	331	10	70	185
BROCCOLI	25	TRACE	--	17
TOMATO SALAD	77	6	--	130
BISCUIT	90	3	--	228
Margarine	70	8	24	95
TEA	--	--	--	2
RAINBOW PIE	305	12	--	92
TOTAL	898	39	94	749

FAT \% OF TOTAL 39
CALORIES

Day 3

daily results	CALORIES Kcal.	$\begin{gathered} \text { FAT } \\ \mathrm{gm} . \end{gathered}$	Cholesterol mg.	$\underset{\substack{\text { SODIUM } \\ \mathrm{mg}}}{\text { Sin }}$
WORST COMBINATION				
breakfast	1330	54	89	1626
LUNCH	1852	93	119	3432
DINNER	1504	63	154	$\underline{2839}$
total	4686	210	362	7897
FAT \& OF TOTAL CALORIES		40		
BEST COMBINATION				
breakfast	410	17	64	485
Lunch	737	24	25	507
DINSER	898	39	94	749
total	2035	80	183	1741
$\begin{aligned} & \text { FAT \% OF TOTAL } \\ & \text { CALORIES } \end{aligned}$		35		
RECOMMENDED DIETARY GOALS	2700 *	30\%	300	2000
	$2000^{\text {" }}$			
* Calories for men 23-50 years old				
** Calories for women 23-50 years old				
National Academy of Science, "Recommended Dietary Allowances," (Federal printing office, ninth edition, 1980, Washington, D.C.), p. 23.				

5.2.4 Day 4, Nutritional Calculations

BREAKFAST	CALORIES Kcal.	FAT gm.	CHOLESTEROL mg.	SODIUM mg.	REMARKS
ORANGE JUICE	120	Trace	--	5	8 Oz.
COLD CEREAL	105	1	--	22.5	2/3 cup
hot cereal	130	2	--	283	3/4 cup
Pancakes	110	4	--	304	2 ea.
FRENCH TOAST	225	-	--	217	2 ea.
WAFFLES	205	8	--	550	1 ea.
EGGS	170	12	550	118	2 ea.
TOAST	65	1	--	79	1 ea.
MARGARIME	70	8	24	95	2 pats
JELLY	40	TRACE	--	3	102.
SYRUP	180	2	--	40	$202 . * *$
COFFEE	--	--	--	2	$502 . * *$
TEA	--	--	--	1	$502 . *$
MILK	150	8	25	122	8 Oz.

ADDITIONAL NONSTANDARD ITEMS

VEGETABLE JUICE	45	TRACE	-	887	8 oz.
FRESH PEACHES	40	TRACE	-	1	1 peach
BACON	85	8	70	274	2 slices
SAUSAGE	60	6	70	336	2 links
HASHED BROWN	228	12	--	15	$2 / 3$ cup
POTATOES					110
HOT CROSS BUNS	275	15	--	1 roll	

Menu extracted from AFP 146-17, May - August 1982, Day 26

* without milk
**without cream or sugar

LUNCH SHORT ORDER C	CALORIES Kcal.	$\begin{aligned} & \text { FAT } \\ & \text { gm. } \end{aligned}$	CHOLESTEROL mg.	SODIUM mg.	REMARKS
HOT DOG W/ ROLL	290	15	40	728	202.11 .5 oz .
HAMBURGER W/ ROLL	L 355	19	70	461	$3.5 \mathrm{oz./2} \mathrm{oz}$.
CHEESEBURGER W/ ROLL	460	28	94	709	3.5 oz./2 oz.
 JELLY SANDWICH	285	9	--	242	1 ea.
CHILE CON CARNE	460	18	70	1552	$11 / 4$ cup
WITH ROLL					202.
RELISH	20	TRACE	--	124	1 oz .
FRIED ONIONS	70	7	--	2	$1 / 4$ cup
FRENCH FRIES	135	7	--	146	1 cup
POTATO CHIPS	115	8	--	200	1/2 oz.
SODA	145	0	--	20	8 oz .
MILK					
WHITE	150	8	25	122	8 Oz.
CHOCOLATE	210	8	25	149	$8 \mathrm{oz}$.
SKIM	100	TRACE	TRACE		8 oz.
GRILLED HAM AND CHEESE	465	30	35	822	1 sandwich
SALAD SELECTION		SEE LUNCH MENU			
SALAD DRESSING					
REGULAR	150	16	--	300	1 oz .
LOW KILOCALORIE	E 40	4	--	300	$1 \mathrm{oz}$.
DESSERT SELECTION		SEE LUNCH MENU			

LUNCH
CALORIES Kcal.

FAT CHOLESTEROL SODIUM mg. mg.

REMARKS
BEAN SOUP 170

PORK CHOPS 305
W/ APPLE RINGS
BRAISED BEEF CUBES
245
SEAFOOD NEWBURG 347
PARSLEY POTATO
140
BAKED POTATO
BUTTERED ASPARAGUS
145
$\begin{array}{ll}\text { BUTTERED ASPARAGUS } & 70 \\ \text { BUTTERED GREENS } & 85\end{array}$
O'BRIEN CORN
LETTUCE, TOMATO \&
CUCUMBER SALAD
JELLIED FRUIT
COCKTAIL
KIDNEY BEAN SALAD
125
HARD ROLLS 155
ASSORTED BREAD 130
MAPLE NUT CAKE
364
W/ MAPLE ICING
APRICOT PIE
150
$\begin{array}{ll}\text { BUTTERSCOTCH } & 365\end{array}$
PUDDING
W/ WHIP CREAM 10
W/ SUGAR COOKIES
60
MILK
WHITE
CHOCOLATE
150
SKIM
SODA
210

TEA
COFFEE
SALAD DRESSING
REGULAR
LOW KILOCALORIE
150
40

[^8]DINNER

CALORIES Kcal.

FAT
CHOLESTEROL SODIUM gm . mg . mg.

REMARKS

1076	1 cup
92	4 oz.
195	4 oz.
718	1 cup
--	$1 / 3$ cup

24 oz .
485 5 oz.
640 Oz

434 oz .

1244 oz .
228 oz. 21 slice 684 oz. 15 4oz. 3823 oz. $3523 \times 311 / 2^{\prime \prime}$ 1582 slices $2423 \times 3 \times 1$ 1/2" 251 oz.
194 1/6 9" pie $1693 \times 3 \times 1$ 1/2"

3001 oz.
3001 oz.

[^9]Day 4

BREAKFAST
CALORIES
FAT
CHOLESTEROL SODIUM Kcal. gm. mg. mg.

WORST COMBINATION

ORANGE JUICE	120	TRACE	--	5
HOT CEREAL	130	2	--	283
EGGS	170	12	550	118
BACON	85	8	70	274
HASHED BROWN	228	12	$-\cdots$	15
POTATOES				
HOT CROSS BUNS	275	15	--	110
MARGARINE	70	8	24	95
MILK	$\underline{150}$	$\underline{8}$	$\underline{25}$	$\underline{122}$
TOTAL	1228	65	669	1022
FAT \% OF TOTAL		47.6		

Day 4

LUNCH
SHORT ORDER

CALORIES Kcal. FAT gm. CHOLESTEROL SODIUM mg. mg.

WORST COMBINATION

GRILLED HAM AND CHEESE	465	30	35	822
FRENCH FRIES	135	7	--	146
MILK (CHOC)	210	8	25	149
LETTUCE, TOMATO \& CUCUMBER SALAD	16	TRACE	--	9
DRESSING (REG.)	150	16	--	300
MAPLE NUT CAKE	364	16	--	242
W/ MAPLE ICING	150	3	--	25
TOTAL	1490	80	60	1668
FAT \% OF TOTAL CALORIES		48		

BEST COMBINATION

PEANUT BUTTER \& JELLY SANDWICH	285	9	--	242
FRIED ONIONS	70	7	--	2
MILK	150	8	25	122
JELLIED FRUIT	56	TRACE	--	8
COCKTAIL				
BUT TERSCOTCH	163	4	--	445
PUDDING				
W/ WHIP CREAM	10	TRACE	--	12
W/ SUGAR COOKIE	60	3	--	108
TOTAL	794	31	25	939
FAT \% OF TOTAL CALORIES		35		

CALORIES Keal.

FAT CHOLESTEROL SODIUM gm. mg. mg.

WORST COMBINATION

BEAN SOUP	170	6	--	823
SEAFOOD NENBURG	347	35	97	398
PARSLEY POTATO	140	6	--	65
BUTTERED GREENS	85	6	--	64
LETTUCE, TOMATO \&	16	TRACE	--	9
CUCUMBER SALAD				
DRESSING (REG.)	150	16	--	300
HARN ROLLS	155	2	--	232
MARL,ARINE	70	8	24	95
MAPLE NUT CAKE	364	16	--	242
W/ MAPLE ICING	150	3	--	25
MILK (CHOC)	$\underline{210}$	$\underline{8}$	$\underline{25}$	$\underline{149}$
TOTAL	1857	106	146	2402

FAT \% OF TOTAL CALORIES

BEST COMBINATION

BRAISED BEEF CUBES	245	16	70	55
BAKED POTATO	145	TRACE	--	5
O'BRIEN CORN	65	TRACE	--	3
JELLIED FRUIT	56	TRACE	--	8
COCKTAIL			--	158
ASSORTED BREAD	130	2	--	145
BUTTERSCOTCH	163	4	--	
PUDDING				12
W/ WHIP CREAM	10	TRACE	--	108
W/ SUGAR COOKIES	60	3	--	$\underline{25}$
MILK	150	$\underline{8}$	$\underline{25}$	$\underline{122}$
TOTAL	1024	33	95	616
FAT OF TOTAL		29		
CALORIES				

Day 4

DINNER

CALORIES
Kcal.

FAT CHOLESTEROL SODIUM gm . mg. mg .

WORST COMBINATION

CREAMED MUSHROOM SOUP	215	14	--	1076
BEEF BALL	459	33	91	195
STROGANOFF				
MASHED POTATOES	195	7	--	485
BUTTERED LIMA BEANS	135	6	--	124
COTTAGE CHEESE	55	2	15	228
W/ PINEAPPLE	80	TRACE	--	2
CORN BREAD	180	10	--	352
CHERRY CRUNCH	350	15	--	169
MARGARINE	70	8	24	95
MILK (CHOC)	210	8	25	149
TOTAL	1949	103	155	2875

FAT \% OF TOTAL CALORIES

BEST COMBINATION

BREADED VEAL STEAK	230	14	90	92
RICE	120	1	--	2
CARROTS	25	TRACE	--	43
GERMAN COLE SLAW	70	7	--	68
ASSORTED BREAD	130	2	--	158
LEMON MERINGUE PIE	305	12	--	194
MARGARINE	70	8	24	95
MILK	150	$\underline{8}$	$\underline{25}$	$\underline{122}$
TOTAL	1100	52	139	774
\quad FAT \% OF TOTAL		42.6		
\quad CALORIES				

Day 4

DAILY RESULTS	CALORIES Kcal.	FAT gm.	CHOLESTEROL mg.	SODIUM mg.
WORST COMBINATION				
BREAKFAST	1228	65	669	1022
LUNCH	1857	106	146	2402
DINNER	$\underline{1949}$	$\underline{103}$	$\underline{155}$	$\underline{2875}$
\quad TOTAL	5034	274	970	6299
FAT \% OF TOTAL		49		
\quad CALORIES				

BEST COMBINATION

BREAKFAST	540	20	95	803
LUNCH	794	31	25	939
DINNER	1100	52	139	774
TOTAL	2434	103	259	2516
FAT \% OF TOTAL CALORIES		38		
RECOMMENDED dietary goals	2700*	30\%	300	2000
	2000*			

*

Calories for men 23-50 years old
**
Calories for women 23-50 years old
National Academy of Science, "Recommended Dietary Allowances," (Federal printing office, ninth edition, 1980, Washington, D.C.), p. 23.

5.2.5 Day 5, Nutritional Calculations

Breakfast	CALORIES Kcal.	$\begin{aligned} & \text { FAT } \\ & \text { gm. } \end{aligned}$	CHOLESTEROL mg.	SODIUM mg .	REMARKS
ORANGE JUICE	120	Trace	--	5	8 oz.
COLD CEREAL	105	1	--	225	2/3 cup
hot cereal	130	2	--	283	3/4 cup
PANCAKES	110	4	--	304	2 ea.
FRENCH TOAST	225	-	--	217	2 ea.
WAFFLES	205	8	--	550	1 ea.
EGGS	170	12	550	118	2 ea.
TOAST	65	1	--	79	1 ea.
Margarine	70	8	24	95	2 pats
JELLY	40	TRACE	--	3	$1 \mathrm{oz}$.
SYRUP	180	2	--	40	$202 . * *$
COFFEE	--	--	--	2	$502 . * *$
TEA	-	-	--	1	5 oz .
MILK	150	8	25	122	8 oz.
ADDITIONAL NONSTANDARD ITEMS					
GRAPE JUICE	135	TRACE	--	8	8 oz.
HALF GRAPEFRUIT	95	TRACE	--	1	1/2
BACON	85	8	70	274	2 slices
SAUSAGE	120	12	70	336	2 links
BUTTERSCOTCH PINWHEELS	370	12	--	350	2 ea.

Menu extracted from AFP 146-17, May - August 1982, Day 36

```
*without milk
**
    without cream or sugar
```

LUNCH
SHORT ORDER

CALORIES Kcal.

FAT CHOLESTEROL SODIUM REMARKS gm. mg. mg.

HOT DOG W/ ROLL 290
HAMBURGER W/ ROLL CHEESEBURGER W/ ROLL
PEANUT BUTTER \& 285 JELLY SANDWICH
CHILE CON CARNE WITH ROLL
RELISH
FRIED ONIONS
FRENCH FRIES
POTATO CHIPS
SODA
355
460

460
20
70
135
115
MILK
WHITE
CHOCOLATE
SKIM
FISHWICH
W/ TARTAR SAUCE
W/ ROLL
SALAD SELECTION
SALAD DRESSING REGULAR
LOW KILOCALORIE DESSERT SELECTION

Day 5

| LUNCH | CALORIES
 Kcal. | FAT
 gm. | CHOLESTEROL
 mg. | SODIUM
 mg. | REMARKS |
| :--- | ---: | :---: | ---: | :--- | :--- | :--- |

DINNER

CALORIES Kcal.

FAT CHOLESTEROL SODIUM gm. mg. mg.

REMARKS

BEEF BARLEY SOUP	65	3	--	952	1 cup
ROAST BEEF	220	9	70	73	402.
W/ NATURAL GRAVY	25	1	--	18	102.
TURKEY NUGGETS	340	19	--	182	302.
W/ CHISKEN GRAVY	135	10	--	190	102.
SWEET AND SOUR PORK	468	20	70	1968	1 cup
MASHED POTATOES	195	7	--	485	5 oz.
PARSLEY POTATOES	140	6	--	65	1 potato
SPICED BEETS	77	TRACE	--	165	402.
BRUSSEL SPROUTS	25	TRACE	--	7	402.
LIMA BEANS	85	TRACE	--	64	40 O .
COTTAGE CHEESE	55	2	15	228	2 oz .
CARDINAL SALAD	92	6	--	241	402.
HARD ROLLS	155	2	--	232	2 ea.
ASSORTED BREAD	130	2	--	158	2 slices
YELLOW CAKE	250	8	--	242	$3 \times 3 \times 1$ 1/2"
W/ CHOC ICING	150	3	--	25	102.
SWEET POTATO PIE	285	12	--	169	1/6 9" pie
BANANA PUDDING	160	4	--	445	1/2 cup
W/ NUT BAR	100	2	--	96	2 bars
MILK					
WHITE	150	8	25	122	8 oz.
CHOCOLATE	210	8	25	149	8 oz.
SKIM	100	Trace	TRACE		8 Oz.
SODA	145	--	--	20	8 oz.*
TEA	--	--	--	1	5 02.*
COFFEE	--	--	--	2	50 z .
SALAD DRESSING					
REGULAR	150	16	--	300	10 z .
LOW KILOCALORIE	40	4	--	300	1 oz .

without cream or sugar

Day 5

BREAKFAST CALORIES FAT CHOLESTEROL SODIUM Kcal. gm. mg. mg.

WORST COMBINATION

GRAPE JUICE	135	TRACE	-	8
CEREAL HOT	130	2	-	283
WAFFLES	205	8	--	550
SAUSAGE	120	12	70	336
BUTTERSCOTCH	370	12	--	350
\quad PINWHEEL				
MARGARINE	70	8	24	95
SYRUP	180	2	--	40
MILK	$\underline{150}$	$\underline{8}$	$\underline{25}$	$\underline{122}$
TOTAL	1360	52	119	1784
FAT \& OF TOTAL		34		
\quad CALORIES				

BEST COMBINATION

HALF GRAPEFRUIT	95	Trace	--	1
CEREAL COLD	. 105	1	--	225
MILK	150	8	25	122
BUTTERSCOTCH PINWHEEL	370	12	--	350
COFFEE	-	-	--	3
TOTAL	620	21	25	701
FAT \% OF TOTAL CALORIES		30		

CALORIES
Kcal.

FAT gm.

CHOLESTEROL SODIUM mg. mg.

WORST COMBINATION
CHEESEBURGER
FRENCH FRIES
MILK (CHOC)
TOSSED SALAD
DRESSING (REG.)
PINEAPPLE PIE

TOTAL
FAT \% OF TOTAL CALORIES

460
135
210
21
150
345
1321

1321

28
7
8
TRACE
16 --

74
50

BEST COMBINATION

PEANUT BUTTER \& JELLY SANDWICH	285	9	--	242
FRIED ONIONS	70	7	--	2
MILK	150	8	25	122
MIXED FRUIT	110	TRACE	--	15
STRAWBERRY JELLO	70	TRACE	--	--
TOTAL	685	24	25	381
FAT \% OF TOTAL CALORIES		31.5		

Day 5

LUNCH
CALORIES Kcal.
$\begin{array}{cc}\text { FAT } \\ \mathrm{gm} . & \text { CHOLESTEROL } \\ \text { mg } . & \mathrm{mg} .\end{array}$

WORST COMBINATION

CHICKEN VEGETABLE SOUP	80	2	--	957
FRIED HAM STEAK	245	19	70	1114
POTATO BALLS	98	4	--	485
CORN ON THE COB	120	1	--	1
TOSSED SALAD	21	trace	--	11
DRESSING (REG)	150	16	--	300
ASSORTED BREAD	130	2	--	158
PINEAPPLE PIE	345	15	--	208
MILK (CHOC)	210	8	25	149
MARGARINE	70	8	24	95
TOTAL	1469	75	119	3478

FAT \% OF TOTAL CALORIES

BEST COMBINATION

SPAGHETTI W/ MEAT	330	12	70	985
SPINACH	22	TRACE	--	65
RELISH TRAY	35	2	--	382
GARLIC BREAD	200	2	--	231
STRAWBERRY JELLO	70	TRACE	--	--
TOTAL	657	16	70	1671
FAT \% OF TOTAL CALORIES		22		

CALORIES

 Kcal.FAT gm CHOLE mg mg. SODIUM mg.

WORST COMBINATION

BEEF BARLEY SOUP	65	3	--	952
SWEET AND SOUR PORK	468	20	70	1968
Mashed potatoes	195	7	--	485
SPICED BEETS	77	TRACE	--	165
COTTAGE CHEESE	55	2	15	228
HARD ROLLS	155	2	--	232
MARGARINE	70	8	24	95
BANANA PUDDING	160	4	--	445
W/ NUT BARS	100	2	--	96
MILK (CHOC)	210	8	25	149
TOTAL	1555	56	134	3815

FAT \% OF TOTAL 32 CALORIES

BEST COMBINATION

ROAST BEEF	220	9	70	73
W/ NATURAL GRAVY	25	1	--	18
PARSLEY POTATOES	140	6	--	65
BRUSSEL SPROUTS	25	TRACE	--	7
JELLIED BANANA	58	--	--	1
ASSORTED BREAD	130	2	--	158
YELLOW CAKE	250	8	--	242
W/ CHOC ICING	150	3	--	25
COFFEE	--	-	--	3
TOTAL	998	29	70	5??
FAT \% OF TOTAL CALORIES		26		

Day 5

DAILY RESULTS	CALORIES	FAT	CHOLESTEROL
	Kcal.	gm.	mg.

WORST COMBINATION

BREAKFAST	1360	52	119	1692
LUNCH	1469	75	119	3478
DINNER	$\underline{1555}$	$\underline{56}$	$\underline{134}$	$\underline{3815}$
TOTAL	4384	183	372	8985
FAT \% OF TOTAL		37.6		
\quad CALORIES				

BEST COMBINATION

BREAKFAST	620	21	25	701
LUNCH	685	24	25	381
DINNER	998	$\underline{29}$	70	592
TOTAL	2303	74	120	1674
FAT \% OF TOTAL CALORIES		30		
RECOMMENDED DIETARY GOALS	2700*	30\%	300	2000
	2000*			

[^10]

MICROCOPY RESOLUTION TEST CHART national bureal of standards-1963-A
5.2.6 Day 6, Nutritional Calculations

Breakfast	CALORIES Kcal.	fat gm.	ChOLESTEROL mg.	SODIUM mg.	REmarks
orange juice	120	trace	--	5	8 oz.
cold cereal	105	1	--	225	$2 / 3$ cup
HOT CEREAL	130	2	--	283	3/4 cup
Pancakes	110	4	--	304	2 ea.
FRENCH TOAST	225		--	217	2 ea.
WAFFLES	205	8	-	550	1 ea.
EGGS	170	12	550	118	2 ea.
TOAST	65	1	--	79	1 ea.
margarine	70	8	24	95	2 pats
JELLY	40	trace	--	3	1 oz .
SYRUP	180	2	--	40	$202 . . * *$
COFFEE			--	2	5 02.**
TEA	--	-	--	1	5 oz .
MILK	150	8	25	122	8 oz .
ADDITIONAL NONSTANDARD ITEMS					
GRape Juice	135	trace	--	8	$8{ }^{\text {oz. }}$
Grapefruit half	95	trace	-	1	1/2
bacon	85	8	70	274	2 slices
GRILLED HAM	123	9	35	557	2 oz.
SNAIL ROLLS	550	30	--	220	2 ea .

Menu extracted from AFP 146-17, May - August 1982, Day 42

```
*without milk
**ithout cream or sugar
```

LUNCH
SHORT ORDER
HOT DOG W/ ROLL HAMBURGER W/ ROLL CHEESEBURGER W/ ROLL
PEANUT BUTTER \& JELLY SANDWICH CHILE CON CARNE WITH ROLL
RELISH
FRIED ONIONS
FRENCH FRIES
POTATO CHIPS
SODA
MILK
WHITE
CHOCOLATE
SKIM
PIMIENTO LOAF AND CHEESE SANDWICH Salad SElection
SALAD DRESSING
REGULAR 150
LOW KILOCALORIE DESSERT SELECTION

CALORIES Kcal.

290 355 460 285 460

20
70
135
115
145
150
210 100 325 40

FAT CHOLESTEROL SODIUM
REMARKS gm. mg. mg.

Day 6

[^11]Day 6

Day 6

BREAKFAST
CALORIES Kcal.
$\begin{array}{ccc}\text { FAT CHOLESTEROL } & \text { SODIUM } \\ \mathrm{gm} . & \mathrm{mg} . & \mathrm{mg} .\end{array}$

WORST COMBINATION

GRAPE JUICE	135	TRACE	--	8
CEREAL HOT	130	2	--	283
EGGS	170	12	550	118
GRILLED HAM	123	9	35	557
SNAIL ROLLS	550	30	--	220
Margarine	70	8	24	95
MILK	150	8	25	122
TOTAL	1328	69	634	1403
FAT \% OF TOTAL CALORIES		46.8		

BEST COMBINATION

GRAPEFRUIT HALF	95	TRACE	--	1
PANCAKES	110	4	--	304
SYRUP	180	2	--	40
BACON	85	8	70	274
COFFEE	--	-	--	3
TOTAL	470.	14	70	622
FAT \% OF TOTAL CALORIES		26.8		

Day 6

LUNCH
SHORT ORDER

CALORIES Kcal.

FAT
gm.

CHOLESTEROL SODIUM mg.
mg.

WORST COMBINATION
CHILE CON CARNE
FRENCH FRIES
MILK (CHOC)
Garden vegetable
SALAD
DRESSING (REG.)
POUND CAKE
W/ CHOC ICING
TOTAL
1286
FAT 8 OF TOTAL
CALORIES

BEST COMBINATION

HOT DOG	290	15	40	728
POTATO CHIPS	115	8	--	200
JELLIED PEACH SALAD	59	TRACE	--	1
ORANGE PUDDING	160	4	--	445
W/ WHIP CREAM	10	TRACE	--	12
W/ NUT BARS	100	2	--	96
MILK	150	8	$\underline{25}$	122
TOTAL	834	37	65	1604
FAT \% OF TOTAL		40		

FAT \& OF TOTAL
CALORIES

Day 6

LUNCH CALORIES FAT CHOLESTEROL SODIUM Kcal. gm. mg. mg.

WORST COMBINATION

PEA SOUP	145	3	--	987
SEAFOOD PLATTER	327	19	161	544
BAKED POTATO	145	trace	16	5
BROCCOLI AU GRATIN	30	trace	--	440
GARDEN VEGETABLE	21	trace	--	11
SALAD				
DRESSING (REG.)	150	16	--	300
FRENCH BREAD	200	2	--	232
MARGARINE	70	8	24	95
POUND CAKE	160	10	--	171
W/ CHOC ICING	150	3	--	25
MILK (CHOC)	210	8	25	149
TOTAL	1608	69	210	2934

FAT \% OF TOTAL 38.6

BEST COMBINATION

Day 6

DINNER
CALORIES Kcal. $\begin{array}{cc}\text { FAT } \\ \mathrm{gm} . & \mathrm{cHOLESTEROL} \\ \mathrm{mg} . & \mathrm{mg} .\end{array}$

HORST COMBINATION

TOMATO SOUP	75	3		932
ROAST PORK	413	32	70	79
W/ GRAVY	135	10	--	143
W/ APPLE	58	TRACE	--	2
MASHED POTATO	195	7	--	485
PEAS AND CARROTS	40	TRACE	--	27
GARDEN VEGETABLE	21	TRACE	--	11
SALAD				
DRESSING (REG.)	150	16	--	300
ASSORTED BREAD	130	2	-	158
MARGARINE	70	8	24	95
APPLESAUCE CRISP	345	15	--	208
MILK (CHOC)	210	$\underline{8}$	$\underline{25}$	149
TOTAL	1842	101	119	2549

FAT \& OF TOTAL CALORIES

BEST COMBINATION

POT ROAST	220	9	70	73
STEAMED RICE	116	trace	--	2
CABBAGE	15	TRACE	--	8
COTTAGE CHEESE	55	2	--	228
ONION ROLL	70	4	--	276
Margarine	70	8	24	95
BOSTON CREAM PIE	210	6	--	282
TEA	--	-	-	2
TOTAL	756	29	95	966
FAT \& OF TOTAL CALORIES		34.5		

Day 6

DAILY RESULTS	CALORIES	FAT	CHOLESTEROL
	Kcal.	gm.	mg.

WORST COMBINATION

BREAKFAST	1328	69	634	1403
LUNCH	1608	69	210	2934
DINNER	$\underline{1842}$	$\underline{101}$	$\underline{119}$	$\underline{2549}$
TOTAL	4778	239	963	6886
FAT \& OF TOTAL		45		
\quad CALORIES				

BEST COMBINATION

BREAKFAST	470	14	70	622
LUNCH	834	37	65	1604
DINNER	$\underline{756}$	$\underline{29}$	$\underline{95}$	$\underline{966}$
TOTAL	2060	80	230	3192
FAT \& OF TOTAL				
CALORIES		35		
RECOMMENDED DIETARY GOALS	2700^{*}	30%	300	2000
	$2000^{* *}$			

* Calories for men 23-50 years old
**
Calories for women 23 - 50 years oldNational Academy of Science, "Recommended Dietary Allowances,"(Federal printing office, ninth edition, 1980, Washington, D.C.),p. 23.

Chapter VI CONCLUSION AND RECOMMENDATION

The aspirations of present-day research is to provide realistic parameters concerning nutritional practices with the idea of promoting "optimal" health and performance. There appears to be very little evidence that consuming a diet consistent with the dietary goals will cause an individual harm. As previously mentioned, there is some scientific evidence which indicates that such a diet may be beneficial to one's health, and that our present diets may contribute to disease. What one eats today was not planned on the basis of scientific knowledge, nor arrived at without the influence of many outside factors. Regardless of these variables, the USAF Worldwide Menu provides a good means to meet the dietary goals if a diner selects entrees from the best menu combination as highlighted in Table 6-1.

There is the question of how far the USAF or any population should deviate from the dietary goals. This study of the USAF menus showed both fat as a percent of total kilocalories and sodium even under the best menu combination do exceed these guidelines. The specifics of these excesses will be addressed later in the chapter.

FAT \% OF

DAY	KILOCALORIES	KILOCALORIES	CHOLESTEROL mg.	SODIUM mg.
1	2324	30.6	298	2497
2	2395	35	362	3307
3	2035	35	183	1741
4	2434	38	259	2516
5	2303	30	120	1674
6	2060	35	230	3192

RECOMMENDED DIETARY GOALS	2700^{*}	30	300

```
Calories for men 23-50 years old
```

** Calories for women 23-50 years old

National Academy of Science, "Recommended Dietary Allowances," (Federal printing office, ninth edition, 1980, Washington, D.C.), p. 23.

Table 6-1: Best Menu Combinations

The largest problem of the USAF menu occurs when a customer consistently chooses entrees from the other end of the spec-trum--the worst menu combination, which does not correspond well to the dietary goals as detailed in Table 6-2.

FAT \% OF
DAY KILOCALORIES KILOCALORIES

$$
\begin{array}{cc}
\text { CHOLESTEROL } & \text { SODIUM } \\
\mathrm{mg} . & \mathrm{mg} .
\end{array}
$$

1
4468

43
927 6585

2
4826
43
887
4881
3
4686
40
362
7897
4
5034
49
970
6299
5
4384
37.6

372
8985
6
4778
45
963
6886

RECOMMENDED dIETARY GOALS

30
300
2000

```
* Calories for men 23-50 years old
**
    Calories for women 23-50 years old
```

National Academy of Science, "Recommended Dietary Allowances," (Federal printing office, ninth edition, 1980, Washington, D.C.), p. 23.

Table 6-2: Worst Menu Combinations

It becomes evident that to correct this problem the patron needs to possess some knowledge of nutrition and food composition. Educating the public on varieties of foods needed for "optimal" growth or maintenance, functional performance and well-being may be the key to improved nutrition. To blame variety or processing as the cause of poor health is almost like blaming the automobile for accidents. In both cases, education is essential. ${ }^{66}$

To illustrate this point, one could reduce the excesses of the worst menu combination merely by knowing what foods to eliminate. Some suggestions would be:

- eat desserts only once per day.
- do not consume more than the standard serving size and in some cases take a smaller serving of each menu item.
- make either lunch or dinner a "light" meal, i.e., sandwich or soup and salad.
- select a variety of menu components that make up the Basic Four; fruit and vegetables, grain products, dairy products, and meat. By eating such a variety one would approximately meet the dietary goals for kilocalories, fat, cholesterol and sodium.

These few modifications, for example, can reduce kilocalories by 1500-2000. This demonstrates the need for nutrition education in order to develop an awareness of food composition, a knowledge of appropriate symbols and terms, an understanding

Abstract

of nutrient interrelationships, and an appreciation for many other factors associated with "good" nutritional status. 67

The last question of this study concerns the need to adhere to the dietary goals. Must these goals be followed strictly, or can one deviate from them? To be specific, the four nutrient components will be addressed separately to summarize the impact of each on the USAF menu. Following the discussion of each of the four nutrients studied, modifications of the USAF diet shall be considered.

6.1 KILOCALORIES

There is no question as previously stated that kilocalorie intake should be monitored closely. Our sedentary lifestyle requires a diet low in kilocalories. The USAF cycle menu does provide the opportunity for an individual to consume the recommended 2700 and 2000 kilocalories per day for men and women respectively as seen in Table 6-1. Even though women may need to eliminate an additional 300 kilocalories per day, this can easily be accomplished by eliminating one dessert from either the lunch or dinner meal.

No menu modification is necessary.

67
Eckstein, op. cit., p. 9

6.2 FAT

The debate still continues regarding the "ideal" fat percentage of total kilocalories. There is a general agreement that the percentage should be reduced but dropping it to 30% of total kilocalories may be extreme. This percentage would make it very difficult to provide a variety of theals that would have acceptable texture and flavor. As previously cited, the consumption of saturated fats has decreased while the consumption of vegetable oil has increased. Since the consumption of these large amounts of vegetable oil within approxinately the last ten years, there is a void of information as to what impact they may have on one's health.

Perhaps 35% of total kilocalories would be a satisfactory level for the amount of total fat that should be in our diet. This allows the reduction of the possible deleterious effects fat has on health, yet still provides a menu acceptable in flavor. The USAF menu does meet this 35% fat of total kilocalories using the best menu combination.

No menu modification is justifiable in the author's opinion.

6.3 CHOLESTEROL

Cholesterol has received a lot of publicity. Many studies show that most individuals can consume 300-800 mg./day without having a serious effect on serum cholesterol. This amount can be consumed because the body only absorbs approximately 40% of

Abstract

the digested cholesterol. ${ }^{68}$ Using this fact, even the worst menu combination of the USAF menu would be acceptable. However, some may not agree to the $800 \mathrm{mg} . / \mathrm{day}$ level of cholesterol as being safe.

No menu modification is necessary.

6.4 SODIUM

The sodium level under both menu combinations was relatively high. This is a result of using processed foods such as soups and sauces which are often high in sodium. Though the USAF Standardized Recipes call for most products to be prepared from scratch, I believe that in reality this was not and is not occurring because of the time and convenience some processed foods provide.

There still is a question of the dietary goal of 2000 mg./day being a valid figure when many studies suggest that hypertension may be a problem of genetics. If sodium is to be reduced, menu modification can be accomplished through the reduced use of processed or convenience foods.

In summation, the USAF Worldwide Menu provides customers with a meal selection that can meet the U.S. Dietary Goals within realistic terms. Rather than trying to modify its menu, the USAF would find it beneficial to develop or promote an educational program to improve customer awareness of different nutritional values. The Air Force community has vari---------------------
ous avenues available to bring such an educatiotial program to its airmen. As a suggestion, the following methods could be developed to communicate this nutrition message:

- Labeling food items for their kilocalorie, fat, cholesterol or sodium content will make these values as common knowledge as the item's name.
- News releases from Headquarters Air Force Engineering and Services Center can be used in base newspapers or as handouts to diners.
- Programmed presentations, prepared by a central agency, can be used by the base food service staff during menu board meetings, squadron commander calls, and various other meetings to pass out information.

This education is especially important since the USAF menu can provide some unacceptable meal combinations when chosen by an uninformed patron.

This nutrition knowledge will tell the customer that a nutritious or "well balanced" diet supplies nutrients in needed quantities from a variety of foods. It is both unnecessary and unwise to develop a fixed combination of foods that is adequate because, no matter how well the items are liked, the combination will become monotonous and may be rejected. Instead of trying to develop an "ideal" or "best" menu combination, a continuous evaluation of present and new food items must be undertaken in addition to promoting a nutrition education program.

In the author's opinion, the present USAF Worldwide Menu does approximate the standards of the dietary goals and thus provides the USAF airmen the means of obtaining nutritionally "adequate" meals.

REFERENCES CITED

```
Altschul, A.M.; Grommet, J.K., "Sodium Intake and Sodium Sensitivity", Nutrition Reviews, Vol. 38 no. 12 (1980), p. 393-402
```

Beers, William, "The Food Industry and Nutrition: Challenges and Responsibilities", Nutrition Reviews (suppl. January, 1982), p. 7-8

Bray, George, "Dietary Guidelines: The Shape of Things to Comen, Journal of Nutrition Education, Vol. 12 no. 2 (suppl. 1980), p. 97-99

Cameron, Allan G., Food Facts and Fallacies, (Faber and Faber Limited, London, 1971)

Chou, Marylin; Harmon, David P., Critical Food Issues of the Eighties, (Pergamon Press Inc., N.Y., 1979)

Cullen, Robert; Paulbitski, Audrey; Oace, Susan M., "Sodium, Hypertension, and the U.S. Dietary Goals", Journal of Nutrition Education, Vol. 10 no. 2 (April-June, 1978), p. 59-60
"Dietary Goals for the U.S.", Journal of Nutrition Education, Vol. 10 no. 1 (January-March, 1978), p. 14

Eckstein, Eleanor F., Food, People and Nutrition, (Avi Publishing Co., Conn., 1980)

Hausman, Patricia, Jack Sprat's Legacy, (Richard Marek Publishers, N.Y., 1981)

Hofman, Lieselotte, The Great American Nutrition Hassle, (Mayfield Co., Ca., 1978)

Hur, Robin, Food Reform: Our Desperate Need, (Heidelberg Publishers, Tx., 1975)

Keys, Ancel, "Overweight, Obesity, Coronary Heart Disease and Mortality", Nutrition Reviews, Yol. 38 no. 12 (1980), p. 297-307

Latham, Michael C.; Stephenson, Lani S., "U.S. Dietary Goals", Journal of Nutrition Education, Vol. 9 no. 4 (OctoberDecenber, 1977), p. 152-158

Lowenberg, Miriam E.; Todhunter, Neige E.; Wilson, Eva D.; Savage, Jane R.; Lubawski, James L., Food and Man, (John Wiley and Sons, N.Y., second edition, 1974)

McNutt, Kristen, "Dietary Advice to the Public 1957 to 1980^{n}, Nutrition Reviews, Vol. 36 no. 10, (October, 1980), p. 353-359

Molitor, Graham, T., "The Food Systems in the 1980's", Journal of Nutrition Education, Vol. 12 no. 2 (suppl. 1980), P. 103-111

Olson, Robert E., "Clinical Nutrition, An Interface Between Human Ecology and Internal Medicine", Nutrition Reviews, (June, 1978), p. 161-178

Scarpa, Ioannis S.; Kieffer, Helen C., Sourcebook on Food and Nutrition, (Marquis Academic Media, III., 1978)

Select Congressional Committee on Nutrition and Human Needs, Dietary Goals for the United States (Washington, D.C., Government Printing of fice, 1977)

Skelly, Florence, "The Attitudes of the Consumer", Nutrition Reviews, (suppl. January, 1982), p. 35-39

[^0]: 9 Patricia Hausman, Jack Sprat's Legacy, (Richard Marek Publishers, N.Y., 1981), p. 35.
 10
 Hofman, op. cit., p. 339.

[^1]: 29 Kristen McNutt, "Dietary Advice to the Public 1957 to 1980", Nutrition Reviews Vol. 36 no. 10 (October 1980), p. 353.

 30 Beers, op. cit., p. 8.
 31 McNutt, op. cit., p. 353.

[^2]: without cream or sugar.

[^3]: FAT \% OF TOTAL

[^4]: *without cream or sugar

[^5]: * Calories for men 23-50 years old
 ** Calories for women 23-50 years old
 National Academy of Science, "Recommended Dietary Allowances,"
 (Federal printing office, ninth edition, 1980, Washington, D.C.), p. 23.

[^6]: *

 without cream or sugar

[^7]: without cream or sugar

[^8]: *without cream or sugar

[^9]: *without cream or sugar

[^10]: * Calories for men 23-50 years old
 **
 Calories for women 23-50 years old
 National Academy of Science, "Recommended Dietary Allowances," (Federal printing office, ninth edition, 1980, Washington, D.C.), p. 23.

[^11]: without cream or sugar

