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Abstract

IThis paper presents a general comptattional treatnent of how ii tiii itals are
able to deal with visual objects and environments. Arrong the isstics addressed ire:
constancies and the stable Visual world, indexig zand conrtext efl'ucts, percept inll
generalization and allocentric spatial maps. The comirinaln model is expressed i
connectionist terms, allowing biological as well is (psychological ex perimienits t() he
included. The model relies heavily on contemporary work in Artilial Ilitlell ipericC,
but is claimed to be consistent with all relevant l'indirigs. --
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1. Introduction

This paper is an attempt to specify' a computationally and scientifically plausible
model of how mammals perceive objects and deal with their visual environments.
The rvisinary model is perforce crude, but is claimed to be consistent with all ofK:the nown behavioral, structural and computational constraints. T[he perspective
taken is that of a designer of complex information processing systems- -one siml.ply
sets out to see how a visual system meeting the knw beavioral specifications
might be built out of the neural componentry, as described in the literature. The
resulting four-frames model appears to be a reasonable start.

The rest of this introduction is mainly concerned with describing the mnain
phenomena to be covered by the model and the role of the four representation
frames that are the core of the model. The actual specification of the model requires
a fair amount of machinery and this is outlined in Section 2. T[he necessary
machinery includes a formal specification of an abstract neural compuiting unit and a
variety of construtions built of these units and their properties. All of this is part of
the connectionist modelling (CM) development [Feldman & B~allard 1982: F-eldmnan
19811 and readers familiar with that material will discover nothing new in Section 2.

In Section 3, we describe the four-frames model of vision and space as it wouild
apply to a "Small World" of limited complexity and resolution. By limiting ourselves
to six visual features and a 10 x 10 visual map; we are able to describe precisely how
the basic operations are intended to work. Section 3 is also oversimplified in that
only the main pathways are mentioned and in the suppression of many technical
problems in reducing the Small World to the mechanisms of Section 2. Section 3 can
be read before Section 2 without much loss, for people who prefer to view the forest
before the trees.

The serious work begins in Section 4 where we attempt to carry out the reduction
of the four-frames model to CM structures. Although the examples are presented at
the scale of the Small World, the computational techniques are caedto work at
realistic scale. The purpose of the section is to confront all the basic comnpu tation al
issues that have come to my attention and to show that -none are i nsurmou qtable.
The solutions are presented at varying levels of detail and some refer to previous
computational -results. There is no attempt in this section to relate the four-frames
model to experimental findings in the behavioral and biological sciences.

Section 5 contains a preliminary attempt to relate the model to experimental
findings. The claim that the model is consistent with all established results cannot bek
tested except by readers such as yourself. What is -presented is a range of solidly
established findings that fit in well with the current model. Some experiments that
could yield challenging results for the current model are also suggested, probably notIwith sufficient detail.

The discursive comments of Sections 1, 3 and 5 derive fromn the detailed
computational models of Section 4 and may not be easy to interpret in isolation. T[he

* . particular computational models are intended to show the feasibility of the model
and should not be taken too literally. More generally, the provisionary nature of the
current model cannot be stressed too strongly. The four frames are an attempt to
provide a scaffolding for the establishment of theories of vision and space: if it
proves to be useful and none of the scaffolding is visible in the resulting structure, it
will have done its work.
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[he entire development is based oii a action orien ted notion ( per eptiol . I hC
observer is assumed to be continuously sampling the ambient light tor ii1lo a tiin of
current value. We initially consider the issues raised by the lour fraiues a
phenomena to be captured independent of any particular strudural model. A
"frame" in this view is a set of experiences and experiments thal secins to share ,a
common representation. Most people have found the following killd( of looe
discussion an adequate reason to suppose that we will need at least four tramuies of
reference to describe vision and space.

The representation of information in the first frame is ilIteiiLC(e 10 ItotLel th'
view of the world that changes with each eye movement. 'Ihe second frame must
deal with the phenomena surrounding what used to be called "the illusion of a stable
visual world." A static observer has the experience of (and can perform as if he held)
a much more uniform visual scene than the foveal-periphery first frame is processing
at each fixation. One can think of the second frame as associated with the position of
the observer's head; this is an oversimplification but conveys the right kind of
relation between the first two frames. Of course, neither of these two frauites is like a
photographic image of the world--as even the most casual examination of the
structure of the visual system shows clearly. Light striking the retina is already
transformed and the layers of the retina, the thalamus and visual cortex all compute
complex functions. The crucial difference between the first two frames is that the
first one is totally updated with each saccade and the second frame is not. The
current model also assumes that the first (retinal) frame (RI) computes proximal
stimulus features and the second frame captures distal (constancy. intrinisic) features
as well as being stable; it is therefore called the stablefeature frame (SI"'). That these
two representations of visual information are distinct does not seent an unreasonable
hypothesis.

The third and fourth representational frames are both multi modal aid thus
unlikely to be the same as the first two. The third representation is not geometrical
and will be described in the next paragraph. [he fourth, or environmental flame
(EF), is intended to model an animal's representation of the space around it at a
given moment. It captures the information that enables one to locate quickly the
source of a stimulus from sound, wind, smell or verbal cue as well as maintaining the
relative location of visual phenomena not currently in view. lor a variety of reasons.
the model proposes a single allocentric environmental frame which gets mapped, by
situation links, to the current situation and the observer's place in it.

The final representational frame to be considered is the observer's general
knowledge of the world, including items not dealing with either vision or space. We
follow the conventional wisdom in assuming that this knowledge is captured in
abstract or propositional form, modelled in our case by a special kind of semantic
network. One kind of knowledge encoded will be the visual appearance of' objects.
Since the other three representations are geometrically organied, we will refer to the
collection of semantic knowledge as the world knowledge fortnulary (WK[),to
emphasize its nature as a collection of formulas. The WKI will carry much of the
burden for integrating information from the other three frames and is far from
adequately worked out in this paper. But a!l we need for now is the notion that the
semantic network representation is likely to be quite different from that of the
retinal, stable feature or environmental frame. All of this suggests that even a
provisionary model of vision and space will require at least four represenitational
frames; that four frames suffice is the contention of this paper.

The initial exposition of the four frames was based on a static obcr~er and at
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basically static environment. Most of the detailed discussions in subsequent sections
will retain this restriction, but the model does attempt to cover motion as well. The
major additional construct needed for moving objects is to postulate explicitly that
the entire system has a second mode of operation, which we call pursuit mode. To get
a feeling for the difference between the two modes, track your finger as you move it
along the second line of text on this page. Now go back and read the line of text,
using your finger as a pointer. There is considerable evidence that the pursuit mode
is computationally distinct and is used for navigation while moving as well as for
tracking. The interactions among the four frames in the model are different in
pursuit mode, but we will not discuss these seriously until Sections 4 and 5.

One of the principal devices employed in the current model is the assumption
that all the visual features of interest can be reduced to explicit parameter values in
some representational space. Typical parameter spaces include color spaces, spatial
frequency channels and slant-tilt maps for surface orientation. The mapping of
primitive shapes, of textures and of motions to parameter spaces remains
problematic, but the model assumes that it must be done. A computational
advantage of this total parameterization of visual features is that all the subsequent
discussion can be framed as discrete computational problems. More importantly, the
assumption that early vision computes discrete values of fixed parameters supports a
clear view of phenomena such as apparent motion. From the stream of visual input,
the visual system continuously calculates the best fit to the critical parameters. The
best fit is, of course, sometimes non-veridical giving rise to apparent motion, shape,
etc. If our computational model is sound, then careful study of illusions, meta-
contrast, etc., should lead to an understanding of the critical parameters and their
possible values. This is the traditional goal of perceptual psychology: an explicit
computational model permits the expression of more comprehensive and quantitative
theories.

The essential requirement.of a computational model of vision and space is that it
be massively parallel. In addition to the obvious parallelism of the retina and early
vision, we require simultaneous massive interaction between computational units
within and across levels of organization of the visual system. Ily exploiting the
reduction of all visual features to explicit parameters we can devote an individual
computational unit to each separate value of each parameter and allow all these units
to interact. Competing coalitions of such units will be the organizing principle behind
most of our models. Consider the two alternative readings of the Necker cube shown
in Figure 1.1. At each level of visual processing, there are mutually contradictory
units representing alternative possibilities. The dashed lines denote the boundaries of
coalitions which embody the alternative interpretations of the image. The units
connected by circular-tipped arcs are assumed to inhibit one another and the others
to excite. The units in Figure 1.1 each represent a distinct entity and are thus like the
infamous "grandmother cells." Most of our constructions will employ such dedicated
units for simplicity; my suggestions on how this relates to neural encodings are
outlined in Section 2 and 5.

Figure 1.1: NeckeriCube

The technical tools suggested for describing and analyzing computational
systems with billions of interacting units are outlined in Section 2 and are
prerequisite for any detailed consideration of the model. For this introductory
discussion, we need only keep in mind that all of the computations within and
among the four frames are assumed to be continuously interacting across myriadi . . .. ... 1



4

channels. The need for these multiple interacting computations is most dearly sccin
in the Stable Feature Frame, the starting point for each of our discussions.

The Stable Feature l"rame (SFt') takes its name from its two basic hi iictionis in
the system. The SF. is intended to be the representation of what was called the
illusion of a stable visual world. It captures, in a spatially organiied buffer, the visual
information in the current field of view and is stable over fixation eye movements.
The model also suggests that this visual information is held in terms of certain
invariant (constancy) features of the scene such as sie and hue rather than in terms
of the immediately sensed values of intensity, retinal projection. etc. 'Ihe Si.-"
contains a set of spatially registered planes, each of which contintuously computes the
best value of some constancy feature for every point in the visual field iisinlg both
retinal input and the current values in all the other planes. The SI:: serves partially
as a visual buffer memory, but what is stored are features constantly undergoing
refinement. It is quite close in spirit to the Al notion of Intrinsic Images jlBarrow &
Tenenbaum, 1978] as extended by the inclusion of global parameter computations
[Ballard, 1981].

The major use of the distal visual feature information captured by the SI"I is 'Ur
indexing into models of the visual appearance which are part of one's basic
knowledge and thus in the World Knowledge IFormulary (WKI:). An appearance
model is assumed to be a hierarchical structure whose base elements are visutd
primitives each of which can be accessed (indexed) by certain combinations of S1.FF
visual features appearing in the same place. It is obviously easier to match an
appearance model to distal features values than to direct image measurements.
Recognition of an object or situation is modelled as a mutually reinlbrcing coalition
of active nodes in the WKF. The relaxation of feature and model networks also
involves top-down, context, links from visual primitives to the feature units that are
appropriate. The network representation of a situation includes objects not currently
in view and has the links 'to other modalities.

In my technical sense, a situation network in the WKI" is a hierarchical structure
like a complex object with one additional property. Any WKiF situation can become
connected by situation links from the Environment I"rame (1F) and thus become the
observer's structure for dealing with the space around him at that moment. The
Environment Frame is modelled as a tesselation by neural units of the three-
dimensional space surrounding the observer. Its mappin; to the current WKI"
situation is allocentric (external) and the chansing egocentric position and viewable
places are represented by changes in activation of I1 units. Moving to a new
situation is captured by a discrete switch of situation links, mapping the Il' to a
different WKF situation network.

The final frame to be outlined here is the first one in the oerceptual cycle, the
Retinal Frame (RF). The RF is intended to capture all the computational structures
which reinitialize with each eye movement. A major problem addressed in the paper
is how separate fixations could be integrated effectively. Less attention is given here
to the questions of exactly what computations are being carried out for color, texture,
motion, etc. because these computer vision questions are under extensive study iin
our lab [Ballard, 1981] and elsewhere. And, of course, most of the contemporary
work in visual system physiology and psychophysics is focused on the retinal fraic.

r Iigure 1.2: Four F'rames
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The four frames model is mainly an attempt to provide a coherent structure for
relating the myriad findings on vision and space. In order to keep the paper of
manageable size, emphasis is placed on filling in the gaps between existing theories
and models of different aspects of vision and space. Somewhat surprisingly, I have
encountered no other contemporary effort to do this, even at a discursive level. There
are, of course, a large number of researchers whose ideas have had a marked effect
on the enterprise. Barlow's Ferrier Lecture [Barlow. 1981] stresses the use of
computational as well as physiological constraints in studying the visual system and
suggests an important role for parameter spaces. Among perceptual psychologists.
Gregory and Hochberg are closest in spirit to the current enterprise. liaber [llaher.
1982] has recently suggested a synthesis of this line of thought with Gibsonian ideas
on early vision and his treatment of low-level vision and space appears to agree with
ours.

Our approach to the problem is quite like that of Marr in placing primary
emphasis on computational adequacy while requiring consistency with biological and
behavioral findings. Much of Marr's effort was directed towards problems at a lower
level than those addressed here. His primal sketch (augmented with motion, color
and disparity data) could serve as our retinal frame. In the areas of overlap, the two
models agree on the use of hierarchical, object-oriented descriptions and disagree on
the stable feature frame and the importance of context and visual cues other than
shape. More generally, our treatment of the SI.I and WKI:, indexing and context
appear to be the natural extension of current Computer Vision practice [Ballard &
Brown, 1982], to massively parallel hardware. '[here has been relatively little
computational work on space models [Kuipers, 1973: McDermott, 1980] but what
there is fits well into our "situation" treatment. We will discuss how the four-frames

i model articulates with behavioral and biological studies in Section 5.

The first question one should ask of a model such as the current one is what
issues it claims to address. The four-frames model is most concerned with the
integration of visual information, and much less with the detailed analysis of color,
motion, etc. It purports to say things about eye movements, stability, constancies and
how these interact with general world knowledge. Another serious concern is the
representation of external space and how this relates to perception and action. All of
these considerations are addressed within a computational framework that aspires to
be physiologically predictive. The major shortcoming of the current effort, within its
own terms, is an inadequate treatment of moving objects and observers. Each of the
four frames would require additional machinery to handle movement and changingsituations.

Any attempt to describe the phenomena of vision and space must deal with the
problems of interactions among the various kinds of representations and
computations. Since these interactions are clearly parallel computations in both the
channel sense and the multiple-processor sense, a technical discussion will have to
use some kind of distributed computation formalism. '[he particular formalism
presented in the next section is adequate to the task and has proved useful in a
variety of related problems.

.. * ~ ~ -~ - -. ."1
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2. Connectionist Models

2.1 Background

Much of the progress in the fields constituting cognitive science has been based
upon the use of concrete information processing models (111M), almost exclusively
patterned after conventional sequential computers. There are several reasons for
trying to extend IPM to cases where the computations are carried out by a massively
parallel computational engine with perhaps billions of active units.

Animal brains do not compute like a conventional computer. Coniparatively slow
(millisecond) neural computing elements with complex, parallel connections form a
structure which is dramatically different from a high-speed, predominantly serial
machine. Much of current research in the neurosciences is concerned with tracing
out these connections and with discovering how they transfer information. Neurons
whose basic computational speed is a few milliseconds must be made to account for
complex behaviors which are carried out in a few hundred milliseconds [l'osner,
1978]. This means that entire complex behaviors are carried out in about a hundred
time steps. Current Al and simulation programs require millions of time steps.

Various parallel computational models have been successfully used for certain
problems in machine perception for some time [Hanson & Riseman, 1978]. What has
occurred to us relatively recently is that all of these and more fit nicely into theparadigm of widely interconnected networks of active elemnents like those envisioned
in connectionist models. The generalization of these ideas to the connectionist view
of brain and behavior is that all important encodings in the brain are in terms of the
relative strengths of synaptic connections. The fundamental premise of
connectionism is that individual neurons do not transmit large atnounts of symbolic
information. Instead they compute by being appropriately connected to large numbers
of similar units. We have been engaged for some time in elucidating the properties of
CM models [Feldman & Ballard, 1982; Feldman, 1981] and their application to
particular problems in vision reseach [Ballard, 1981]. '[his paper is the first of this
series to attempt a general description of a major function--the perception of objects
in space. The plan is to continue to address hard problems (e.g. ambiguity in natural
language [Small, 1982]) in technical CM terms so long as it appears to be fruitful.

2.2 Units

As part of our effort to develop a generally usefuil framework for connectionist
theories, we have developed a standard model of the individual unit. It will turn out
that a "unit" may be used to model anything from a small part of a neuron to the
external functionality of a major subsystem. But the basic notion of unit is meant to
loosely correspond to an information processing model of our current understanding
of neurons.

Our unit is rather more general than previous proposals and is intended to
capture the current understanding of the information processing capabilities of
neurons. Among the key ideas are local memory, non-homogeneous and non-linear
functions, and the notions of mutual inhibition and stable coalitions.
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A unit is a computational entity comprising

{q} -- a set id discrete states, ( 10
p -- a continuous value in [-10,10], called poiental (accuracy of several digits)
v -- an output value, integers 0 < v < 9

" - i -- a vector of inputs i1 .... in

and functions from old to new values of these

p <.- f(,p,q)

q <- g(i,p,q)
v 4 h(i,p,q).

The form of the f,g, and h functions will vary, but will generally he restrictd I.
conditionals and simple functions. Most often, the potential and output of a unit wi
be encoding its confidence, and we will sometimes use this term. The ",-" notation i
borrowed from the assignment statement of programming languages. This notatio'covers both continuous and discrete time formulations and allows us to talk abot
some issues without any explicit mention of time.

The restriction that output take on small integer values is central to our
enterprise. The firing frequencies of neurons range from a few to a few hundred
impulses per second. In the 1/10 second needed for the basic mental events, there
can only be a limited amount of information encoded in frequencies. "[he ten output
values are an attempt to capture this idea.

The inclusion of a discrete set {q) of different states has both biological and
computational advantages. It allows the system to accommodate models of fatigue,
peptide modulators and other qualitative state changes. Computationally it permits
the use of analysis and proof techniques from computer science.

For some applications, we will be able to use a particularly simple kind of unit
(p-unit) whose output v is proportional to its potential p (rounded) when p > 0 and
which has only one state. In other words

P'P +P -wkik  [0< wk 11
v 4- if v > 0 then round (p - 0) else 0 [v 0...9]

where , o are constants and wk are weights on the input values. The weights are the
sole locus of change with experience in the current model. The p-unit is somewhat
like classical linear threshold elements (Perceptrons [Minsky and lPapert. 1972]), but
there are several differences. The potential, p, is a crude form of memory and is an
abstraction of the instantaneous membrane potential that characterizes neurons; it
greatly reduces the noise sensitivity of our networks.

A problem with the definition above of a p-unit is that its potential does not
decay in the absence of input. This decay is both a physical property of neurons and
an important computational feature for our highly parallel models. One
computational trick to solve this is to have an inhibitory connection from the unit
back to itself. Informally, we identify the negative self feedback with an exponential
decay in potential which is mathematically equivalent. With this addition, p units cal
be used for many CM tasks of intermediate difficulty. The Interactive Activation

--'?- ~ . ...--....- .-. -". .. .... - .
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models of [McClelland & Rumelhart, 19821 can be described naturally with p iriLt.,.
and some of our own work [Ballard, 1981] and that of others [Marr & loggro. 19761
can be done with p-units. But there are a number of additional features which we
have found valuable in more complex modeling tasks 11 eldman & Iallard, 1982].

It is both computationally efficient and biologically realistic to allow a unit to
respond to one of a number of alternative conditions. In terms of our lbrmalisin. this
could be described in a variety of ways. One of the simplest is to detine the poletilial
in terms of the maximum of the separate computations, e.g.,

p *- p + #Max(il+i 2 -,), i3 +i 4 -T, i5 +i6 -i7-P)

where 13 is a scale constant as in the p-unit and q, is a constant chosen (usually >
10) to suppress noise and require the presence of multiple active inputs [Sabbah,
1981].The max-of-sum unit is the continuous analog of a logical OR of-ANI)
(disjunctive normal form) unit and we will sometimes use the latter as air
approximate version of the former. The OR-of-ANI) unit corresponding to the
definition above is:

p +-- p + a OR (i1 &i2, i3&i4, i5&i6&(not i7))
Most of the constructions in later sections will employ these "oLjOE.Jrrrce
connection" units.

2.3 Networks of Units

A very general problem that arises in any distributed computilng situation is how
to get the entire system to make a decision (or perform a coherent action, etc.). One
way to deal with the issue of coherent decisions in a connectionist framework is to
introduce winner-take-all (WTA) networks, which have the property that only the
unit with the highest potential (among a set of contenders) will have output above
zero after some settling time (Fig. 2.1). There are a number of ways to construct
WTA networks from the units described above, and severa' of these have been
disccussed in [Feldman & Ballard, 1982] and elsewhere. lor our purposes it is
enough to consider one example of a WTA network which will operate in one tine
step for a set of contenders each of whom can read the potential of all of the others.
Each unit in the network computes its new potential according to the rule:

p - if p > max(ij, .1) then p else 0.

Figure 2.1: Winner-Take-All network.

A problem with previous neural modeling attempts is that the circuits proposed
were often unnaturally delicate (unstable). Small changes in parameter values would
cause the networks to oscillate or converge to incorrect answers. What appears to be
required are some building blocks and combination rules that preserve the desired
properties. For example, the WTA subnetworks of the last example will not oscillate
in the absence of oscillating inputs. This is also true of any symmetric mutlually
inhibitory subnetwork.

Another useful principle is the employment of lower-hound an(] upper bound
cells to keep the total activity of a network within bounds. Suppose that we add two
extra units, LB and UB, to a network which has coordinated otrtput. 'he lIIA cell
compares the total (sum) activity of the units of the network with a lower bound and
sends positive activation uniformly to all members if the sum is too low. *1 he Uli cell
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inhibits all units equally if the sum of acutiity is too high. tnder it wide rangC of
conditions (but not all), the L.13-UII augmented network can be designed to preserve
order relationships among the outputs vj of the original network while keeping the
sum between LB and UB. We will often assume that I A Iill pairs are used to keep
the sum of outputs from a network within a gien raiige. [hi. same iechanisii also
goes far towards eliminating the twin perils of ti form saturation and uniform
silence which can easily arise in mutual inhibition networks. Thus we will oftLei he
able to reason about the computation of a network assuming that it stays activc and
bounded.

For a massively parallel system such as the ones we are envisioning to iike a
decision (or do something), there will have to be states in which some activity
strongly dominates. One example of this is the WTA network. lint the general idea is,
that a very large complex subsystem must stabilize, e.g. to a fixed interpretation of'
visual input. The way we believe this to happen is through mutually reinforcing
coalitions which dominate all rival activity for a period of time. Iormually, a coalition
will be called stable when the output of all of its ineinbers is non-decreasing. Notice
that a coalition is not a particular anatomical structure, bit a temporarily rutitally
reinforcing set of units, in the spirit of Hebb's cell assemblies [Jusc/yk, 198Q)1.

The mathematical analysis of CM networks and stable coalitions contfitlues to he
a problem of interest. We have achieved some understanding of special cases
[Feldman & Ballard, 1982] and these results have been useful in designing CM too
complex to analyze in closed form [Sabbah, 1981].

By combining the ideas of conjunctive connections. WTA aid stahle coalitions.
we can developnetworks of considerable power and flexibility. Consider the exam ple
of the relation between depth, physical size, and retinal size of a circle. (Assume I il
the circle is centered on and orthogonal to the line of sight, that the locus is fixed,
etc.) Then there is a fixed relation between the size of retinal image and the site of
the physical circle for any given depth. That is, each depth specifies a tnapllig from
retinal to physical size (see Fig. 2.2).

Figure 2.2: Relations among depth, retinal si/e. and physical site.

Here we suppose the scales for depth and the two sizes are chosen so tha tilit
depth means the same numerical size. If we knew the depth of the object (by touch,
context, or magic) we would know its physical size. [ or example, physical site - 4
and depth = 1 make a conjunctive connection with retinal size - 4. lach of the
variables may also form a separate WTA netowrk" hence rivalry for ditferent depth
values can be settled via inhibitory connections in the depth network. Notice that this
network implements a function phys = fret.dep) that maps from retinal site and
depth to physical size, providing an example of how to replace functions with
parameters. For the simple case of looking at one object perpendiclar to the line of
sight, there will be one consistent coalition of units which will be stable. The network
does something more; the network can represent the consistency relation R anioig
the three quantities: depth, retinal size, and physical size. It embodies rot only thefunction f, but its two inverse functions as well (dep = fl(ret.phys), and rel

f2(phys,dep)). Much of the vision work in our lab [lallard, 1981] and elsewhere
[Hanson & Riseman. 1978] relies on the interaction among constrairt networks like
those of Figure 2.2.
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The stable coalition mechanism also has implications for the "grandmother ccll"
issue. Even the 3-unit loop capturing a siz e bpth relationship could be viewed aL a
"pattern of activity" of the three units. Mort, generally, in any CM network, there
will always be many active units forming one or more coalitions. This does not meia
that one can useftlly characteriie the network in terms of diffuse system states
instead of units with particular functions. On the other hand. a unit will participate
in several coalitions and need not have a simple response pattern. Ihere are both
biological and computational advantages to employing the simultaneous activity of
multiple units to code some information of interest.

For example, suppose we wanted to represent 10 valuCs eaCh of tell low level
visual features such as position, orientation, hue, contrast, motion, etc. laviig a
separate unit for each vector of values would require 1010 units which is clearly too
many. Suppose instead we had units which were precise in only one dimension. '[hen
we would need only 10 x 10 units but it would take the simultaneous activity of ten
units to specify a full vector of values. There are a range of intermediate
constructions [Hinton, 1981; Feldman & Ballard, 1982]. One of these techniques
(coarse-fine tuning) appears close to the coding used in primary visual cortex, where
units are broadly timed in several dimensions and fine-tuned in one stimulus
dimension. Consideration of the particular coding techniques employed by the brain
will be deferred until Section 5 and we will use whatever coding seems easiest to
understand in earlier sections.

2.4 Memory and Change

In the previous section, we saw how fixed CM networks could be designed to
compute functions and relations quite efficiently. These fixed networks could have a
certain amount of built-in flexibility by explicitly incorporating parameters. One can
view the depth networks of Figure 2.2 as computing the physical size of objects from
the retinal size, parameterized by depth.

But there are also a number of situations where it does not seem plausible to
assume the existence of either fixed or parameterized links. An obvious, though
artificial, set of examples are the paired-associate tasks with nonsense syllables used
by psychologists. A closely related real task is learning someone's name or the
Hebrew word for apple. One cannot assume that all the required connections are
p re-established, and it is known that they do not grow rapidly enough (in fact, very
little at all) [Cotman, 1978]. What does seem plausible is that there is a built-in
network, something like a telephone switching network, which can be confiured to
capture the required link between two units. We refer to this as establishing a
"dynamic connection" in the uniform network. We are assuming (as is commonly
done) that the weight of synaptic connections cannot change rapidly enough to do
this, so that all dynamic connections are based on changes in the potential (p) and
state (q) of individual units. The other basic constraints that we impose on possible
solutions are that units broadcast their outputs and that there is no central controller
available to set up the dynamic connections. These assumptions differ from those in
the switching literature, and the results there don't carry over in any obvions way.
The assumption is that only one dynamic connection is made at a time, but that
several (e.g. 7 ± 2) must be sustainable without cross talk.

The example task we will be considering is to make arbitrary dynamiic
connections between two sets of units labelled A. . .Z and a ... respectively. These
could be words in different languages, paired associates. words and images, and so
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on. Figure 2.3 depicts the situation for three units on each side.

The problem is how to establish, for example, the link It-c without also linking,
e.g. B-b, since the network is originally uniform. More precisely, we require an
algorithm which, given the simultaneous activation of II andc, will establish p and q
values in the units of our network such that (for some time) activating it will
stimulate c but not a or b. For the most part we will consider symmetric networks
where the "dynamic connection" B-c will also have the activation of c stimulate II
and not A or C. It should be clear that primitive units without any internal state
(memory) will not be usable in such tasks.

The basic solution to the dynamic link problem in CM networks relies upon
mutual inhibition between the alternative inter-units. lor notational convenience, we
will sometimes represent this situation as an array of units, with the understanding
that the array is a winner-take-all (WTA) network. If the only active link were 1l-c,
then only the three starred units would be active.

Figure 2.3: Uniform dynamic link network.

The idea here is that there is a separate intermediate unit dedicated to each
possible pairin,. The starred unit for B-c is in two WTA networks, the column which
is "inputs to c', and the "outputs from B" WTA net which is drawn in explicitly.
When B-c is active, it blocks all others uses of both I1 and c, which is the desired
effect. The fact that our solution requires N2 intermediate nodes to connect 2N units
makes it impractical for linking up sets of 105 units like an educated person's
vocabulary. There are, however, more complex interconnection networks which
require about 4N312 units [Feldman, 1981]. This paper also gives detailed
descriptions of the unit computations required and some examples.

2.5 Random Interconnection Networks

There are both anatomical [Buser, 1978] and computational reasons for looking
carefully at random interconnection schemes. We will first consider the possibility of
using random interconnection networks (in place of the uniform networks above) to
dynamically connect arbitrary pairs of units from two distinct layers. As before, each
unit is postulated to have links to some large number of intermediate units, whose
role is strictly a linking one. In any random connection scheme there will be some
finite probability that the required path is simply not present. The remarkable fact is
that this failure probability can be made vanishingly small for networks of quite
moderate size [Feldman, 1981]. The idea is to have k (two or more) layers of
intermediate units so that there is a tree of lik + I links across the network, where I1
is the outgoing number of branches from each unit. This result has been known for
some time and has been used as the basis of a proposed highly parallel computer
[Fahlman, 1980].

It is premature to speculate on the degree to which animals are more like the
uniform or random networks (if either) but we can say something about the
computational advantages of each. Uniform networks appear to be most usefil for
maintaining many simultaneous dynamic links which are easily turned on and off.
They could only be expected to occur in well-structured stable domains because of
the strong consistency requirements. In general, we would like to view uniform
dynamic links as a mechanism roughly equivalent to modifiable or conjunctive



connections where the number of possibilities is too great to wire up directly.

Random interconnection networks are not as stable and predictable as uniform
ones, but have some other advantages. The lower requirements on the number and
precision of wiring of intermediate units are clearly important. But the most
interesting property of the random networks is the relative ease with which they
could be made permanent. Suppose that instead of rapid change we wanted
relatively long term linkage of units from the two layers. Our model specifies that
this must be done by changing connection weights wj. The point to be made here is
that the random networks already have some units biased towards linking any
particular pair from the two layers. By selectively strenghthening the active Inptts
on command) of the most appropriate units, the network can relatively quickly forge

a reliable link between the pair. The details of how we propose that this comes about
are given in [Feldman, 1981] and summarizxed in Section 2.5. Of course, one this has
happened, the network will not be able to represent competing dynamic links, but its
ability to capture new pairings will remain intact until a large fraction of the nodes
are used up (cf. [Fahlman, 1980]).

The fact that random (as opposed to uniform) interconnection networks could be
readily specialized suggests that random networks may play an important role in
permanent change and memory. After enough training, the originally random inter-
connection network would become one in which there was essentially a hard-wired
connection between particular pairs of units from the two spaces.

The problem with this scheme as a proto-model of long term memory is that
most of our knowledge is structured much more richly than paired associates. It is
technically true that one can reduce any relational structure to one involving only
pairings, and Fahlman [1980] suggests that the best current hardware approach is
along these lines. But the intuitive, psychological and physiological [Wickelgren,
19791 notions of conceptual structures involve the direct use of more complex
connection patterns. It turns out that the results of the previous section on random
interconnection layers extend nicely to the more general case.

The basic situation is shown in Figure 2.4. There are again N (-- 16) units
connected to V N others, but without any layer structure. We are assuming that all
units and connections are identical and that each unit has, at each time step

v -2p
p - p + Yi - 2 (= decay when p * 0).

We suppose that at each time step the unit subtracts 2 from its current potential if
not zero, and then adds the sum of its input values. The table in ligure 2.4 shows
successive values of p for various units, assuming that at T = 0, units I" and I have p
= 10 and are maintained for six time steps. The unit 0 happens to be directly
connected to F and I and thus will eventually saturate (under the rules above).

Figure 2.4: Random chunking network.

After step 5, the coalition (F,0,1) is self-sustaining and would actually need to be
stopped by fatigue or an external input. In some sense, we can view this coalition as
having recruited unit 0 to maintain the dynamic link between 1 and 1. The main
differences from the examples given earlier is that here the linking can take place
between any set of units and there is no distinction between end and intermediate
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units. This is a simple example of the basic mechanism which we helie e to suppolt
associative learnin& and appears to be close to what Wickelgren [1979] had in iiind.
If random chunking networks can be made to support short term associations
through coalitions, the usual weight-changing algorithnis would enable the
associations to be made permanent.

2.6 Changing Weights and Long-Term Memory

There was a brief discussion of changing weights earlier where it was suggested
that random networks could easily be made to incorporate long-term change. We will
examine this problem more carefully in this section, still within the constraint that all
long-term change is caused by structural modification of connection weightLs w.

There is some evidence for the growth of new connections in adults [liser. 19781.
and for relatively rapid physiological change at synapses [Kandel. 19761. but neither
seems to be nearly widespread or selective enough to play a doiiniant role in the
acquisition of knowledge. The discussion in this section will be nainly technical
dealing with rules for changing weights, their properties, and some basic problems.

The standard basis of weight-changing algorithms [Sutton & Barto. 1981' Jursc/yk
& Klein, 1980] is reinforcement of those weights (wj) whose inputs (ij) correlate with
desired outputs. This is almost trivially correct, but is subject to a wide range of
interpretations, some of which won't work. One widely used rule is lo always
reinforce those wj for which ij was active whenever the unit fires (rapidly). This is the
rule originally proposed by Hebb [Jusczyk & Klein, 1980] and has been the basis for
many studies of plasticity. However, this feedback-free reinforcement rule provides
no way for a system to learn from its mistakes and could not be the only rule used in
nature.

Our definition of weight changing in the abstract units depends on a
hypothesized ability for a unit to "remember" the activity state of its incoming

connections for long enough to get feedback. This assumption is commonly mnade by
modelers (e.g., see [Sutton & Barto, 19811), and has some currency among
neurobiologists (e.g., [Stent, 1973]). The idea is that the activity at a receiving site
causes chemical changes that persist and remain localiied for some time.

The change in weights will be determined by a function of the inputs ().
potential (p). state (q), and outcome value (x) for each unit. The general case
includes a provision for dealing with situations where it is not possible to decide
immediately whether a given network behavior should be reinforced. We introduce a
"memory" vector a and two functions, c which updates y, and d, which (usually
later) uses values of y to bring about changes in the weights w. The general
definitions are given in [Feldman, 1981]. This paper will not deaI with deferred
outcomes, so that we can use a simplified definition with L w and c d. [he rule
for weight change becomes

W +- dQi,p,q,x,w).

As an example, let us consider augmenting the random network of Iig re 2.4 to
enable it to selectively strengthen connections. We will assume that all of the wj ill
the network are initially set to .5. The table in [igure 2.4 is still applicable if we
assume that all units have output v = 4p (instead of 2p). because the initial weights
of .5 will even things out. We will also have to be more precise in our treatment of

-r -- - - - --- , --. ]- . 1-
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bidirectional links. We interpret Figure 2.4 to mean that, for example, tunit 0 has
inputs from and (separately) outputs to units F, I, L, and ?. Recruiting units (0, I, I)
to form a more permanent chunk would be accomplished by strengthening their
mutual positive effects.

The dynamic link established in Figure 2.4 provides the inforiation necessary
for a uniform updating algorithm to choose the right weights to change. I-or
example, the system could signal updating weights at time 5 for all units with p > 8.
The next thing that needs specifying is a particular updating rule. The next thing that
needs specifying is a particular updating rule. A typical update rule might be

A wj a ,, ij

which increases weights at a rate proportional to the current input level. A well
known problem with this rule is that if weights only increase they will often all
saturate. One standard solution (e.g., [Sutton & Barto, 1981]), which works well
enough in this case, is to have an increase or decrease in weights which depends on
the output or potential of the unit. We could do this discretely by setting a
conditional 8 = 1 if p > 8 and 8 = -1 if p < 8. A continuous version could be , "
p - 8, which would greatly penalize active inputs to dormant units. In either case,

A wj a ,• ij
is an acceptable updating rule. Assuming that the fourth input of unit 0 is idle, the
new values of weights on inputs to unit 0 would be (a .1):

I F I

old .5 .5 .5 .5

continuous .6 .6 .56 .5
discrete .55 .55 .53 .5

Notice that the weight on the mystery input remains unchanged because i0 is
zero. This might not be desirable if the goal were to cut off other inputs that might
cause confusion with the chunk (0, I, F). In general, different structures will be
better served by different updating algorithms and one should not expect to find a
uniform scheme that will be applicable in all situations. Our major departure from
the literature is to allow non-linear updating rules that need not treat all wj on a
given unit identically. This is a natural extension of the more flexible cornputatiomal
rules we have found useful in our detailed models. Many of the results [Sutton &
Barto, 1981] on the convergence and stability of correlation weight changing schemes
will carry over to rules of our kind. More details on this and related questions can be
found in [Feldman, 1981].

--.-. i '. -? - i % .. ~ . -".- -
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Figure 2.1: Winner-Take-All network. Each unit
stops if it sees a higher value.
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Figure 2.2: Relations among depth, retinal size, and
physical size. In the conjunctive depth
network, physical size 2 required both
retinal size 2 and depth = 1.
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Figure 2.3: Uniform Dynamic Link Network



RANDOM NETWORKS:

N NODES EACH CONNECTED To N OTHERS

A E

ASSUME V = .2 *POTENTIAL; DECAY is 2

F IG L 0 A N
T=0

*1 10 10 0 0 0 0 0
*2 10 10 0 2 4j 2 2

3 10 10 0 2.8 6 2 2
4 10 10 0 4 816 2 2
5 10 10 0 6.3 10 2 2

FIGURE 2.41: RANDOM CHUNKING NETWORKIL
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3. Small World

One problem in trying to think coherently about vsion and spate is the
enormous number of entities involved at every level. Ii this section we will present a
fairly detailed examination of the interactions among the four frames, but all done at
a very coarse grain. The small world development has been crucial to the elahorationm
of the current model and will hopefully also he easier for others to work with. Again.
we will push through a straight line of development that ignores many important
issues and then try to address all the major ones (iin Section 4). his section and tile
next one still contain no behavioral or physiological support tr the choices being
made - the concern is strictly with the computational adequacy of the model. Only
after the model is specified will we address its relationships with past and luture
experiments (Section 5).

Our discussion begins with the problem of linkinrg %isual featuire ii ltoi IIml oll
with the knowledge of how objects in the world can appear. I he problen of going
from a set of visual features to the description of a situation will he tailed the
indexing problem, following the terminology common in AL. The small world we will
consider in detail has exactly six distinct visual features each with 10 possible alue s

(Figure 3.1). Assume for now that any object in the small world can be characterm/ed
by some particular set of values for the six features. [his would mmean that Cach
object has a distinct 6-digit visual code (not unlike a /ip code). If the sYstcm could
always reliably extract the values for the visual features, it would not he hard to
identify which objects were in which places in the current enviromnent. No

additional problems would arise if some objects had multiple codes among the 10()
= 1,000,000 available. But the system, as specified, would totally break down if two
objects needed to share the same code, i.e. looked identical relative to our set of
features and values. We will have to address the question of ambiguous feature sets
later.

The six particular visual features which we have chosen are inlerided to
elucidate the nia'or scientific problems in intermediate level vision and would not be
the best choice or a practical computer vision system. We assume for now that tihe
best value at each position of the current view is continuously maintained by
parameter network computations [Ballard, 19811 which will be elaborated below.
Features such as size and shape which cover several units are assumed to be
represented by a single unit, say at the center of the region covered. Of course, the
problem of breaking up the feature space into meaningful regions is a central one
and the model will have to address it in detail.

One of the features which we employ in the small world is c;illed "motion."
Motion, as well as the other features, will be treated in this section as a property of
objects which has ten discrete values and is continuously updated by computational
processes which will be specified later. Motion and change are clearly critical
problems and require much more careful treatment than an arbitrary assignment of
ten values. But there is .ti important conceptual advantage to including motion as an
explicit parameter even ,:t this early stage. If computing the best discrete valued
characterization of object motion is a basic property of low-level vision, then there is
nothing at all surprising about the various perceived motion phenomena. More
generally, the notion that low-level vision is concerned with continuously
maintaining the best current discrete value choices for specific ,isllal features
provides a powerful organizing principle for helping to explain a wide ral ge of
findings in perceptual psychology. We will consider some of these issues in Section 5,

iI



,,. --.-

22

after the small world model has been worked out in detail.

The model specified so far has almost no content, but several in )ortalit points
can already be seen. The most important point is that discrete values for a fixed set
of visual features provide a natural base for indexing, and all of our imiodels will
assume this structure. The second point is that the 'isual t' attures chosen will
determine which distinctions the sytem is capable of, as is already well known il
classical pattern recognition. An obvious consequence is that the featres used for
indexing should be as invariant as possible tinder different viewing conditions. 'his
suggests that we should use the "constancy" properties like reflectance, physical si/e
and surface curvature rather than proximal or image features for indexing.

The six visual features used in indexing are the flollowihg: hilitness, lh1e.
texture, shape, motion, arid size. Obiously enough, ten ,alhtes of these features (ecn
in logarithmic scales) is not enough to characterize visual appearance in the real
world; but the small world is rich enough to exhibit most of the required problems.
The model assumes that the six features are continously represented in six parallel I)
x 10 arrays which are intended to map the currently visible external world. [here is
also assumed to be a (10 valued logarthmic) depth map maintained as part of the
same structure (Fig. 3.1). The depth map is needed for calculating constalicy liatures
such as object size and is also used directly in mapping the environment. [he depth
map is assumed to be calculated cooperatively with the six feature planes, using
binocular and other cues. These seven parallel arrays, along with sonc auxiliary
structure, comprise the stable feature frame (SIF) which is one of the Ibur
cornerstones of the model.

Figure 3.1; The six feature (and depth) planes for the Small World SIl.

The SI" takes its name from its two main properties: it encodes vs oll/ AIclurl
values and it is stable over fixations. The SI1 is the basic interface between the visual
system and the more general world knowledge represented in the World Knowledge
Formulary (WKF). The idea is that the SIT at all times maintains ai map of the
visual properties of the part of the world that is currently in view. We will describe
below il some detail how the SI:T interacts with the retinal frame (RI) in
maintaining a stable visual world. Assuming that the SII is successfully tiaintained,
we now address the problem of how its feature values can be employed to capture
knowledge of the objects in the current environment (and their activities). [hus we
return to the indexing problem.

Our first view of appearance models wis that each object could be
characterized by one or more sets of feature valnes. I[or objects that are sufticienly
simple, this is not a bad approximation. You can probably name an object that is an
approximately 1.5" white sphere and which is uniformly pock inarked e en before
seeing it hook into the rough. But for complex object.s like a horse or larvard
Square, the single feature set isn't even the right kind of visual inlbornlation. Our way
of handling the appearance models for complex objects and sittiations is. again, taken
directly from current Al practice. We assume that the appearance of a complex
object is represented (as part of one's world knowledge) as a network of nodes
representing the "appearance possibilities" of simpler comiponents and relationships
among them. Figure 3.2 shows the description of a Otair scene fromi [liallard &
Brown, 1982] which is typical. There are several unsolked technical questions about
the number of separate views maintained. and how much flexibility should be
encoded in a description. but the general idea of CollpositiOn is all e ieCd A IhliC
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moment.

Figure 3.2: A typical network representation of visual objects ill a sitliatioii
[Ballard and Brown 1982]

Recall that the naive version of indexing was to use the 6 digit isiial lc c
code to look up the name of the object with that description. Complex objects are
assumed to be composed of parts, each part being either another complex objcct or a
visual primitive that can be indexed by the 6-digit code. Now recall that all of our
structures are assumed to be parallel and continuously actihe. [his meaus that
"indexing" can be continuously in progress between different areals of the SI I and
networks of visual appearance knowledge in the WKI. lhe crude verion of tiS Idea
is to assume that each set of visual features (for a point in the 1() x 10 SI'I Itap)
picks out (indexes) the visual primitive which is appropriate. If this were to happen,
it is not hard to see that a visible complex object would ha e many of its vislual
primitive parts selected simultaneously and should therefore be i ognii/able. Parallel
indexing from the entire visual field without confusion is too muich to expect.

In order to make these notions more precise and elininate the ghosts troin
our machine, we must describe all of this in considerably more detail, using the
technical definitions of Section 2. The various components of both the SI.IF and
WKF will be elaborated in terms of the "units" of Section 2. Obhiously eough, we
will need separate units for each of the 100 spatial positions in each of the seven
separate maps. In fact, it is also important to follow the unit/value priiciple and
require a separate unit for each value of each cell in the maps above, giving a total of
7000 units. Following the connectionist dogma, we assume that 'visual primitives are
units which are connected to the appropriate set of visual-feature-value units. ['or
example, Figure 3.3 shows how golf and ping pong ball descriptions in the WKI"
might be connected (indexed) by visual features. It is easy to see how to make
connections do the same job as the index codes. I-ach code for a visual primitive is
assumed to be encoded as a conjunction of links from units representing the
appropriate value of each feature. A visual primitive with multiple codes has several
disjunctive "dendrites," one for each code. Visual primitives that are part of a
complex object are also linked into a network for representing the appearance of the
object [Figure 3.4].

Figure 3.3: Ping pong and golf balls

Figure 3.4: Harvard Square situation network
Rectangles are situations, squares are (complex) objects

The general notion of representing a complex object as a network or graph of
nodes is standard in machine perception and will be followed here. In the small
world we will assume that a node corresponds to one visual prinmitive (set of featiure
values) and is represented by a single unit as in Section 2. 'The links hetwee, fiodes
are assumed to be conceptually labelled as in Figure 3.2. The encoding of' labelled
links into CM connections will vary. but will mainly be through conjunctive
connections involving separate units which embody the link name.

An important aspect of the small world model is that complex otlcts anld
situations have the identical representation as selantic networks in the WKI- but
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may include several complex objects and relations among them. A stttatwon is for ts
any oriented WKF network which can be mapped to the environmental frame to
guide behavior [cf Section 4.2]. The question of whether a given network should be
viewed as a situation description is not fixed in advance, but is determined by the
way that the description is being used. Intuitively, it seems reasonable enough that a
room or Harvard Square can be treated either as a situation or as an object viewed
from some distance and that the same relational knowledge could be employed in
each use. Both object and situation descriptions allo'/ for nested sub descriptions and
both can accommodate some stylized movement as will be discussed later.

The question of when a network description is playing the role of a situation
is quite sharply defined in our model. We assume that at any given time there is
exactly one currently active situation description and that it represents the
environmental situation at that time. Loosely speaking, the model assumes that there
are situation descriptions for places, routes, etc. and that these are linked in the WKI"
as a "patchwork cognitive map" [Kuipers, 1973]. The technical questions to be
addressed here are how these situation descriptions interact with early vision (SIIF)
and with the (modality-independent) frame which encodes knowledge of the space
around us at any time. It is this environmental frame (1'!) which is the fourth pillar
of our framework- the others being general world knowledge (WKI"). features of the
stable visual scene (SFF) and the instantaneous retinal information (0I:). Again, it is
crucial to think of all of these frames as continuously active and interacting with one
another.

The environmental frame in the small world is again unrealistically rectilinear.
We assume that the world around us is always represented as a box like three-
dimensional spatial map, as shown in Figure 3.5. The nodes of the 1-1 each represent
a position in the space surrounding the observer, and the activation of these nodes
varies with the direction of gaze. There is a mapping to nodes ii the currently active
situation (in the WKF) from appropriate units in the environmental frame. livery
node in the currently active situation will get some potentiation just from being part
of the active situation. Additionally if one of these nodes is mapped to a position in
space that is currently being gazed upon, it will receive much more potentiating
input and can be said to be "anticipated." Recall that in our discussion of ambiguous
visual input we said that mechanisms like this would lead to one interpretation being
preferred over another depending on the situation.

Figure 3.5: Two EF units of different scales activate different objects in SIT
435 = Harvard Square

The model includes three levels of top-down input to nodes representing
visual objects in the WKF: current situation, visible, and foveated. We will describe
the proposed representation for situations and the l in more detail and worry only
later about how one might come to learn the networks for situations (aid objects).

Our model of the environmental frame includes a subnetwork lor
continuously updating the position and orientation of the observer within his
environment. '[his is clearly necessary for computing which parts of the environment
are visible and foveated. The same information is assumed to be used in the (GAI.l
mapping linking the retinal and SFF frames. Although it is not so obvious, the ego
position within the frame also can provide scale information, allowing ius to
anticipate more precisely what should be visible from a given view po int in the
environment. This scale information combines nicely with the hierarchil WIatiIC of
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the visual descriptions suggested for the WKI-. As the observer approaches some
object, different levels of substructure become visible and the operation of the
current model incorporates this in a natural way. 'the relative position of objects to
the current egocentric position is also assumed to be the basis for physical actions on
objects. The model suggests that the Sl.'F-WKI"-system is crude arid thai uisual or
other sensory guidance is needed for accurate location of objects.

[For concreteness, we assume that the (fixed) environment frame has four
directions (N,E,S,W); we will not include objects above or below the observer for
now. Starting from the center of the map, there are four (logarithmic) distances in
each direction. For things at distance one, the observer can re.;olve 10 x 10 spatial
postions. At distance two, the resolution is 5 x 5. At distance 3 it is 2 x 2 and at
distance 4 only one unit is active or not. The situations are encoded in a compatible
way. Each object description in a situation network has a scale at which it could be
visible, if gazed upon.

As the observer moves, the visible scale and postion values are continuously
updated. There is no apparent difficulty in also computing occlusion information,
either generally through the EL or specifically in the situation description. We
assume that situations become mapped as the active current environment, based on
how the observer has organized his situation memory. Some general cues as to when
situations would change include: going through a door, changing to a different scale
of consideration or switching from planning to acting. The technical question is
exactly how the environmental frame interacts with the current sluttation network.
The major difficulty is providing for the mapping of a great numniber of' possible
situations onto the single fixed environmental frame. Notice that any CM model will
face the problem of coupling distrututed knowledge to fixed input arid output
systems - the scientific questions are wihere and how to carry out this coupling. 'lie
keys to our solution to the situation - FL mapping problems are: saualion twod.s,
conjunctive connections and directly encoding only the inverse mapping. We assume
that the environmental frame consists (inter alia) of units that each represent a region
of the currently surrounding space. Lach of these units will conjuncively connect to
all of the objects which might be visible in its region of space in some situation. Not
surprisingly, the other half of the conjunctive connection comes from a unit which is
active exactly for one particular situation. Figure 3.5 depicts the general situation. If
the current situation is "Harvard Square" = S463 then all of the objects in that
situation will be receiving some activation. 'l'his means that there will be sonie
greater than usual expectation that these objects will be chosen over their rivals ill
non-visual as well as visual computations. When gaze is of a direction and scale
appropriate for some object, its node (in the WKI" network) will be more strongly
activated because the corresponding position in the IFI will be active anrd this plus
the currency of S463 will cause high activation of e.g. "Ihe Coop" and "righamns".
This provides top-down bias to the relaxation between the WKI and the visual
features of the SFF, the details of which will be given later. Finally, if a particular
known object (say the door of the Coop) is foveated. there will be even stronger top
down bias through the WKIF to both the SI]' and Retinal computations.

The advantages accruing to a visual system with foveation are ihe focus of our
description of the first basic component of the model - the retinal (RI') frame. I'Vvem
before we fill in the details we can see that there are several reasons why foveating an
object of interest leads to better recognition:

a) Certain complex calculations (e.g. color, texture) (;an only be done f'oveally.
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b) Bottom-up indexing of features to visual primitives can he restricted to the
area of the SFF being foveated (by spatial focus units), greatly reducing tie
possible confusions.

c) In a known environment, top-down activation from the conjunction of
situation and gaze information can significantly raise the activation of an
expected object or primitive.

All three of these advantages mutually reinforce one another, leading to aii
overwhelming advantage for foveal vision in the model. "[he role of peripheral vision
is to set and maintain contexts and to continuously monitor for change, as we will see
as the elaboration of the model continues.

The retinal frame (RF) is primarily concerned with bringing the enormous
spatial resolution and processing power of the fovea and its maps to heai on points
of interest. The RIF is assumed to calculate the values of disparity, retinal motion,
intensity change, etc. which are the primary inputs to the Sl'. The current model
assumes that there are local grouping and smoothing processes active within each
feature network, but that interactions among features are carried out in the SI']'.

In keeping with the rest of the development we will describe a specific
incarnation of the retinal frame which is much too small and rectilinear, but shouldbe easier to understand. Our retinal frame will have 100 spatially organied units.
like the feature frame (ST), but they will be laid out very differently. In the RI., 64
of the 100 spatial units will be uniformly packed into an area equivalent to a 2 x 2
array of the SFF. The remaining 36 units will be formed into three surrounding rings
of logarithmically decreasing resolution. In terms of SI.1 units, the units in the outer
rings of the retinal frame will cover 1, 4, and 16 squares respectively. All of this is
depicted in Figure 3.6.

Figure 3.6: logarithmic Retinal Frame

We assume that the retinal frame can (logically) move with respct to the
SFF. The center of the RE can "move" to any position in the SI'" except the two
outer most rings. Under these conditions, the entire SI:TI is covered by the RI at all
times. Naturally, the parts of the SFr mapped by the coarse units of the RI: get only
coarse information while the fovea is mapped elsewhere. Iligure 3.7 depicts the
situation where the fovea is mapped to the upper left extreme of its range, leaving
most of the SFF covered by 2 x 2 and 4 x 4 retinal units.

First, a technical point. The relative motion of the RI" must be implenmnted
in our scheme by a switchable conjunctive mapping. We assume that each RI: unit is
linked appropriately with every combination of SI' units to which it could mia.
Every such RF-SFF link is conjoined with a connection that specifies the currently
active GAZE mapping. For example, in Figure 3.7, the top-lefl corner unit of the
RFF arrays will be mapped to the unit just beyond the fovea which is the top lell of
its ring. The mappings tor units other than those in this ring are not 1 to I: this will
be important as we consider the interactions of the retinal (RI-) and feature (SII)
frames.

Figure 3.7: Retinal I'rame mapped to SIT'

i-m
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In the current model, there is no top-down feedback from SII to RI' iins.
Any tuning of the retinal frame is assumed to be captured in the mechanism for
GAZE control. The flow of information in the other direction is, of course, the basic
problem of low-level visual processing. The model postulales a distinct fovea and
periphery in the retinal frame and assigns quite different functions to them. 'I he
fovea (8 x 8 in our case) is assumed to have enough resolution to determine which of
the discrete (10 in our case) values of the stimuls features are preset in the area
foveated. The SIFF is assumed to be able to integrate and retain information about
hue, texture, shape but not to do the direct computation of the feature values. The
main purpose of the SIF is incorporating and maintaining i formation about the
entire visible scene that is only computable foveally. The SI'- does not simply
transcribe retinal input: the seven planes interact continuously to produce a feature
frame which encodes "constancy" values of si/e. hue, etc. The depth map is needed
in the SFF to aide in constancy calculations and, in fact, there appear to be a minncr
of other auxiliary calculations needed as well [Ballard, 1982]. Ihe four miiuts of the
SFF currently mapped to the fovea of the R dominate the calculation of feature
values, but an overall consistancy must be maintained.

The peripheral 36 units of the retinal frame are assumed to play a diflerent
role. If the SF" is blank, as when a new scene is first encountered, each ulit inl the
RF provides the same value to all the (1, 4, or 16) units in the SF. to which it is
currently mapped. These crude values become the basis for the initial relaxation
towards constancy features in the SFF and (because they are there) begin indexing
the visual primitives in the WKF. This crude indexing is assumed to provide some
guidance to the choice of fixation points for further analysis of the scene.

When analysis is well under way and the S11" is not blank, the periphery is
assumed to function in a "change detection" mode. The coarse values compte dby
peripheral units are compared with average values from the (1, 4, or 16) Si'F unmits
covered. If there is too large a difference, an alerting signal is activated leading (in
the simple case) to a saccade to the place of change. The S11" is also assulied to
contain networks for "smooth continuation" of visual properties across fixations.
The networks for continuity and "filling in" phenomena are assumed to interact with
the coarse values computed by the peripheral RIF. There is a wealth of data on
visual illusions and meta-contrast phenomena which constrains the choices of how
these networks function and interact.

Recall that this entire discussion is ignoring what we have called the "pursuit
mode" of the system. In pursuit mode, the periphery does not alert oil all changes
but is assumed to still be sensitive to optic flow patterns indicating collisions. Pursuit
mode is discussed in Section 4.4.
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Figure 3.6: Logarithmic Retinal Frame
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4. Small World, exl)anded.

The purpose of this section is to address a variety of technical questions that ,ete
suppressed in the previous overview, still without seriously confrontting experimetal
data. The technical questions are all addressed relative to the specific fIhlualin
described in Section 2, but most of the questions would arise il any allellpt to
model vision and space at the current level of specificity. We ,,ll ldllo, the same
order of presentation as before, but will also include disLussion (t some liilk, artlnogo
the four frames that were ignored earlier. Most of the specific soltiums to tcLhnaal ,
problems will be carried out at the Small World scale, hopefully making it easiler to
see the ideas.

4.1 The SFF reconsidered.

The first technical questions concern the assumption that the Stable I cii iii c
Frame (SFF) can continuously maintain values for the hue, sattiration. si/c. shape.
color, texture, motion and distance of features in the current field of view A larg c
fraction of the current effort in computer vision is focussed on these probleitis and,
while a great deal is known, quite a few problems remain. Without atteaptlllua to
survey all this work, we can indicate extensions to the Small World SIF llodcl tlit
make it a reasonable abstraction of our current understanding of constancies ( --
intrinsic images = extra-striate visual maps).

There was a certain sleight-of-hand in the previous description ofl I-
functionality. In order to even define Sl-'l features like shape and sie, the imiage
must already be segmented into regions, and we have not specified how this
segmentation is to happen. (This is our first technical problem and is typical of' ihe
ones to follow.) Our notions of how region analysis and feature extraction are
cooperatively computed is described in detail in [Ballard, 19811. The basic idea is that
the SIT' also contains parameter space networks representing the relative importance
of different feature values in a given scene. Color is a particularly easy example to
examine. Our ten values of hue and lightness yield 100 color values that could be
present in a scene. Imagine one unit for each of these 100 values whose activity is a
measure of how much of this color is in the scene. Now consider the most active
color and the points in the SIT whose hue and lightness yield that color. This
collection of identically colored points is a good candidate for a mCalingfiul region,
especially if the points are adjacent. If there is no significant variance in depth,
texture, or motion over such a region, it will almost certainly be segmetnted out and
its size and shape can be computed. When the various features do not agree, people
have trouble with segmentation (e.g. camouflage). Algorithms for forming distinct
regions within a cellular computer like ours are not trivial, but are in the Iiteratle
[Minsky & Papert, 1972). The size and crude shape of an identified region could be
calculated by a parameter network [Ballard. 19811. We assume that lor ndcxilg, the
properties of a region are represented by the unit at its center of tmass, with tie other
units reporting null values.

Current Computer Vision research is dilected at a slightly less abstract set of
constancy features emphasizing e.g. local surface slant and tilt instead of our shape
features. There is no reason why the SI.I. could not incorporate iultitple leels of
features and we expect that it will have these as well as glohal parameters suach as the
direction and color of illumination. The model also should be reli ied 1t acolia t for
the fact that there are order relationships among the features. It turns out that depth
precedes lightness [Gilchrist. 19771 and that region properties like sie and shape
presume some segmentation bh depth. color, mtion and texttare. All of these
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calculations do interact with each other as well as the with the bidirectional (iindexiiig
and context) links to knowledge of the appearance of objects (WKl). 'The model
presumes that this giant network relaxes into a consistent stable coalition (Section 2)
and preliminary simulations [Sabbah, 1981] are encouraging, but a great deal of work
remains before we can have real confidence in the computational stability of the
model.

Another important issue is the role played by points ul' discontinuity (edges) in
the SFF. Both the behavioral and physiological data indicate strongly that the visual
system responds primarily to differences (e.g. in color), but the S11' encodes point
values of features. The model uses the SFF primarily as a buffer memory and for
indexing - both functions are better served by attempting to capture the (constancy)
values of visual features. It might be useful to add additional planes representing,
e.g., depth discontinuities, to the SFF and there is no problem in doing so. )epth
discontinuity points would be particularly usefl in grouping regions into separate
objects and this, in turn, would greatly simplify indexing (which is a major technical
problem to be addressed below). More generally. the conversion from retinal
(difference) information to SFF (constancy value) information is a major prediction
of the model. The model postulates that the SI:I continuously computes, among
other things, smooth continuation values for feature plane units not foveated
recently.

In Section 3, we described the R - S" mapping as involving moving the
logarithmic retinal frame over the SIT spatial map. The next task is to show how this
is accomplished using the mechanisms of Section 2. The same idea of a variable
mapping will occur repeatedly below. All of our variable mappings will rely on
conjunctive connections; the particular scheme for the RI. -- SII" map is shown in
Figure 4.1. First consider t1,e case where a position in the SI.I is currently covered
by a equal size piece of the RF. For example if gaze were directed to its maximum
extent in the upper right corner of the field (8,8), then the SI:I" units at position (6,5)
would get values from the RF unit (64) in the spiral numbering order. This is showii
in Figure 4.1 as a conjunctive connection on the (6,5) unit of links from [gaze
(8,8)] and RF position (64). The same gaze value maps RI' position (73) to SIT,
position (9,5), and so on. Also shown is one of the 64 other conjunctive inputs to the
SFF (6,5) units; this for gaze (7,8). The mapping for unequal sizes of R1: and S"I
fields is only slightly more complicated. Coarse RE:" units map the same value to
several SF units. Fine RE units would have to compute some summary value of
their findings, for each of the seven planes of the SFI". There is no difficulhy here ill
mapping, but the nature of the RF foveal computations and their use is a technical
question to which we will return in Section 4.4.

Figure 4.1: Mapping retinal to SI- coordinates, Detail

Another general issue is the choice of one unit per feature value as a basis 1br
representing information. Although this unit/value principle is a convenient way to
build models and appears to be a reasonable abstraction of the experimental dala.
the real situation is more complex. Even on pure computational grounds, it is muchmore efficient to use some encoding tricks such as the coarse-fine coding trick
described in Section 2. These tricks also exploit conjunctive connections to reduce by
a large fraction the number of units that would be required to capture a given level
of precision for a feature value. The assertion here is that these technical tricks are

-iI
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sufficient to solve the problem of combinatorial explosion iII the iminher of units as
we move to realistic numbers. Our exposition will continue to employ pure value
units (e.g. in the planes of the SI]) with the understanding that any physiological
predictions would have to be translated to realisitic encodings.

4.2 Indexing and Context Mappings

In this section we attempt to confront a complex set of interacting technical
questions upon which the viability of the provisionary model will stand or fall. The
crucial issue is how to convert from a spatial, visual, syntactic representation to the
more general, modality-independent semantic network which is claimied to einbody
one's world knowlege. Esssentially the same problem arises in any formilalion aMd
our attempted solutions may be of some heuristic value even if the four franies
model turns out to be useless.

Recall that Section 3 presented a simple anl direct niodcl of indexing from visual
features (SFF) to visual primitives (WKI-). A primitike was simply any node (- unit)
in the WKF which could be indexed by a vector of feature values. Although it was
not stated explicitly, the implication was that conjunctive connections would be used
to activate the visual primitive when the appropriate feature values all appeared at
the same point in space (and thus in the SFF). More complex ohjects and situations
were assumed to be built up recursively from primitives using standard relationships
(e.g. "below") from semantic network theory. In addition, context links from the
WKI- to the SFI- were supposed to prime certain feature value units from general
knowlege and expectations. The remainder of the sectionl lays out how the model
does all these things without attempting to specify the details of semantic network
representation in the WKF, this being a major intellectual problem, independent of
vision and space.

The classic problem in parallel models of indexing is cross-talk or confusion of
features. If a red circle and a blue square appear together, how does the parallel
network avoid activating the red square primitive? The obvious way to handle the
red-circle, blue-square problem is to have a red-circle conjunctive unit for every
position in the visual field. This quickly becomes infeasible for more complex
combinations of features. For example. in the Small World with six 10-valued
features, one would require a million units for each position in the SI] in order to
implement our naive notion of mapping from visual feature vectors to visual
primitives. For realistic numbers the problem grows too fast for our coding
techniques [Feldman & Ballard, 1982] and other ideas must he invoked. The
particular solution used here to the feature-cross talk problem will be presented in
some detail, both becuase of its importance and as an indication of how the
elaboration of the model is proceeding.

The basic idea is to maintain spatial cohereice for all pairs of properly al les and
to index use conjunctions of pairs. Figure 4.2 depicts the basic situation for a , olf
ball in the Small World. We assume for now that the appearance of a golf hall is
characterized by exactly one value for each of the six visual features, appearing
together at a point in the visual field (SFF). There are 15 (5 + 4 1 3 + 2 t- 1) ways
of making pairs of values from six features, any subset of which could be used 10r
indexing. Suppose we just use shape conjoined with each of the others, yielding lie
pairs involved in the indexing of golf ball appearance. 'I he important point is that
the feature-pair units are all spatially independent: there is only one white sphere
unit. 'he feature-pair units are themselves actiated oily by the simltaneou,
appearance of their component features at the sa me poiit ii thcl 11 ual II field (I [g L'
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4.2 shows size and shape at (1,6) in the Si:I). For the Small World, this would ilitiali
100 conjunctions of two inputs each to feature-pair cells. If all 15 pairs were laid out,

there would be 15 x 102 or 1500 pair units because each element of each pair coLild
have ten different values. Even counting the 100 separate input sites to each of these
pair nodes as a unit, one gets only 150,000 units as opposed to the 100,000,000
needed for directly encoding each vector of 6 feature values at each positioI. Since
each feature pair unit responds to the entire visual field, the model automatically
generalizes from an object learned at one spatial location.

Figure 4.2: Indexing and Priming, Detail

* - What price do we pay for this dramatic reduction in unit count'! 'I he main cost is
an increase in the chances of false indexing, the feattire-cross-talk probleii with
which we began this section. While each feature-pair is required to be spatially
coherent, the pairs could all come from different parts of space. [or example, if an.
orange at (4,7)and a flying ping-pong ball at (1,6) occtrred in the same image, the
network of Figure 4.2 could falsely activate golf ball. In a more complete version
with all fifteen pairs, several pairs (pocked flying, pocked white, pocked 1-inch)
would not activate and this might be enough to prevent falsely activating golf ball.
Other factors include mutual inhibition by ping-pong-hall and the effects of the
situation context, but there remains a possibility of false activations through
coincidence. In fact, just this kind of cross-talk is found in [I reisnian, 19821 One
cannot effectively index the entire scene and must use fixations Ztnd internal focus of
attention to deal with things sequentially. Changes in region grouping and problems
like transparency also require sequentiality.

There are also some minor technical questions to be aniswered about this schcnc.
One obviously must allow for indexing by more than a single valuie of various
features. There are two cases, both of which fit quite well with other aspects of the
model. When a range of values (e.g. lightness) is possible, we assiie indexing is
done with a coarse-valued cell which we need for other reasons anyway. If no values
of some feature are criterial (e.g. hue of jelly beans), that feature is simply not used
in indexing. Also, the :sjunctive input sites of Section 2.2 provide a na tral way of
encoding separate visual appearances of a single primitive. [he hard problem is how
all this structure could get built for new objects, and this will be treated fairly
carefully in Section 4.5.

Once an object instance has been recogni/ed, it has a representalil i i the
current situation independent of whether it is currently iii ,icw. I-or t op (owni
context mapping to be effective, there must also be a link from vistal primilives in
the WKF to their component features in t.-,e SIlY. Assuine that the liiiks without
arrows in Figure 4.2 are bi-directional. Then anticipating the a ppearanlce of' a golf
ball would prime all the appropriate feature-pair units (e.g. I" sphere). The feature
pair units could, in turn, prime the appropriate feature-at-position units (e.g. sphere
at (1, 6), 1" at (4, 7)). This would give some advantage in the WTA conpetition at
each point to anticipated features but could not be very effective because it would be
identical across the visual field (SI.F). A much more powerfid context effcct can he
achieved by adding spatial focus units depicted as a diamond unit in I[.-pire 4.2. Iach
spatial focus unit could conjoin with context links so that only the aiticipated
feature-at-position units were primed. Spatial focus has bcen shown [Ileldmanl &
1Ballard, 19821 to be a general solution to many cross talk p)roblemns and appears to be
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related to attention [Posner, 1978: "lreisman c tl., 1980]. ' he coordina tion of spalial
focus with the action of the RI will be dlu1sSed in SeCtion 4.4.

Meanwhile, for spatial focuts to be feasible, one needs a mllapping front the
instance (hexagonal) nodes of Figure 4.2 to the spatial 6Ocus (diailond) ones. Sich at
mapping encodes the (rapidly changing) information that sonic ob)ect instance is
currently at a particular position in the ,, isual field. '[his is just the kind ()f mnappiligfor which the uniform connection networks of I igure 2.4 were deOeloped. OIIce the
links are established, the activation of either a spatial positioli 01 an object i Istaicew,,ill strongly prime the partner. It is also not diffictult to litgillent the patldl focuIs..network so that the expected position of visible objects atter head lio',cinenlts can bC

primed. F~or both computational and scientific reas ons. the current model assumes
that this expectation Is done for only one object and the rest of the SI I is
recomputed, using a little context priming but mostly direct visitm input.

Complex objects (and situations) are represented iII the model as etworks (ill the
WKI) of nodes describing visual primitives or other complex objects. 'There are
tremendous problems of several different kinds in these semantic network models
and these are the subject of the next paper in the current series. Otur goal here is just
to provide a plausible (although crude) model of how network representation of
visual appearance could fit in the four-frames paradigm.

As mentioned in Section 3, the basic idea is that each isiial primitive of a
complex object is represented by a node that corresponds to a particular set of
feature values as computed in the SIT. Since indexing from features to primitives
occurs in parallel, there will usually be several simultaneously active primitive nodes
for a complex object currently in view. This simultaneous activation of siibpaLs will
tend to cause the correct complex objects to be activated, independent of the details
of how the relationships among the subparts are modelled. When we consider the
details of complex object representations, a number of difficult technical problemns
arise. This is the subject of Hrechanyk's fbrthcoming dissertation [fire hanyk &
Ballard, 1982], and we will be content here with a loose discussion, based on the
example of representing the visual appearance of horses. Recall that the WKI visual
appearance models are far from complete -- they are more like a verbal descliption
of something not currently in view.

Obviously enough, the side and bottom views of a horse ha e relatively little in
common. Even within the side view, the horse could appear in a variety of
orientations and scale configurations and the relative positions of its subparts could
also differ considerably. We must also account for the facts that there could be
several distinguishable horses in a scene and that some of these may be partially
occluded. Our current solution, depicted in Figure 4.3, involves instance nodes.
separate sub-networks for different views and cross-referenced structural
descriptions. The prototype horse has a general hierarchical description where, e.g.,
the trunk is composed of a body, legs and a tail. What visual primitives might be
involved in recogni/ing a horse will depend on whether it is a front, side or other
view. Thus the matching process would select together a prototype and a view which
best matched the active visual primitives. Figure 4.4 shows a typical relatioi in the
triangle notation of [1inton. 1981]. As always, there is assumed to be lmilitual
inhibition among competing object descriptions and view nodes. A serious weakness
of the current scheme is that it has no \erification apparatus for checking that the
pieces of the putative horse are all connected in appropriate ways. A (M approach to
the verification of the detailed geometric correspondence between a WK I model aiid
an image is described in [-irechanvk & Hiallard, 198?21. I hcii wliionreq iiieN ;III

!-
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auxiliary structture for comiputing the corr-Cspoiidcri1ce aiid ciit1irs a4 lmci AILliifdl
mtching strategy that IS coiiipa Li le '.ILth the h icraich icai de.scri p1if irs ini Ihe W K

lius far our discussion of object recognirion hats been ha'd IIion l ii IsI Iti rica lii t
of occlusion-we Ignored it entirely. We did discuss discoi hh ies ([c'l, s ealierC In
this section and certain IcIIiii II ities (e.g. depth. 11notior ) piO'. If.c Lcs to ffs I III)C
occlusion. A more thorough treatment %.oiild lud Mcx CphIIt ocluISIOn fceat nrc
recogn izers in the SIT', but th is reqires no qutaaiiie changes. 'I lie ha rd pro Hen Iis
how to make use of occlusion cues in matching partial col lectins of' visuial leari res
to appearance models. Our indexing scheffre doe0.s dit(epenid 01) toil1]y J1i~nil rg
features with primitiv-es, but we need to niak e rMC1 r1*1 C uclC Otrrfr s 1 OcCL Iii r
information.

T[he br-st use Of Occlusion in f'ormaltion would be III co ii r CL ion '.. Spit ai a Ih cill
and the kind of successive refinriment of' match iing described iii Illrechariyk&
Ballard, 1982]. Occlusion cues such ats depth discontinurity coiuld he useud 10 scpatrate
areas of space believed to index separate objects anid the iJpropriate Sibui
matched in the SUF'. One Could also add general matched by occlusion links to
higher level nodes in the object appearance inodels JSabbah, I981). 1F '.c re abc ~le itf
compute the overall position and scale (fairly accurately) of' the Ocluided (fbjuec. thiri

-the vaiu visible pieces could be separately fo'.eatedl and uised to irdex. Irhis Is rIot[
much different than what is needed to recogriiie an tiniocclurded (lb Jeel I hat OcCIr pies
a large amount, of the visual field. Presumanih t 'V the instance rinodes recruited l)i. the-
various objects could include occlusion lit Ks tied to the current sitiaiifu xnid
viewpoint. In important cases, this occlusion in lorniatiori coUil d ecomle pal. () OILth

Another major probleivi is mititrple horses I iii a 5cic. 'lo refirescri I i ilip lc 4
horses clearly r i euires some kind of 'instance'" iiode! to keep trda of' thie posiliiui
and properties of the variotis horses in the scene. 'The 1OL modlasumles that pcopfle can
deal with a few instances, but murst recogni/e (foveate) one at a tline for inidexinrg to
work. Basically we assume that when a particular horse tinstnce is foveaed. the
position, strtucture and other features are surn iltarreorisly acni e. I hie InistarIcc '' lMdc"
is the set of binding units (Section 2.4) recruited to hold the coatlition together. 'Ilie
statistics of recruiting wotuld be between the riforiri uICiworks o1 I :ignire 2.3 aInd the

randomn networks of Figure 2.4 since there is an intermiediat arrurii of stunciie.
* . The coalition representing the horse instance at position could also irrl ide( riof4le
* . that Captured detailed orientation parameters and presumabhly eveni coricept.s like piut,

althotugh motion presents problemTs riot Yet sol'.ed.

structures for particular horses that one k no'.. NV dl I crri ig tlie appcaai.h oelas nldsiii a natura (~~ii cirrueclsea i d af
new object, stich as a centaur, iiiw lves syruthe,iing iicw structulres which iiAL ake ii
of existing substruc-tures. Suich permanent structures aire prcsimricd 1(f iIc' 11(il1
temnporary coalitions by strengthen inrg connmuectionis as dcscri bed IIi I oifl ii . :i 1I

* ~~~[F eldmian, 1981]. The inodel StuvieSLS that peo ple wkith horse 1tun iirs r I [iiHirlHIM
horses, breeds, liveries etc. should be able to eI'Iecti'.ly represent i1(ri~C UriI
scenes without cross-talk. We '.'.ill return to the role o1' network striictures arid
foveatio n in the section onl the retinal ma p (4.4). HI heie xt topic is) sitia t ions'' v hrMii
are W KF networks wichl maiy inw ride se'.eral wriplex obj)ccis.



4.3 Situations and the EF

We are, again, tracing around the four-frames diagram of I igu re 2.1. Rcuall that
the lnironmental lrame (1IT) is postulated to be the imtulti modal representation of
the objects in the current situation. As was the case with complex object nietworks.
the WKF network representing a situation will be more like a verbal lscription or
sketchmap of something not currently in ,,Jew. [he nodes of a situation network
represent either objects or sub-situations, in exact analogy to the networks for
complex objects. The situation networks are assumed to be oriented by compass
direction and to contain some distinguished objects that .erve as landiiaiks. Situallion
networks can be conditionalied on points In time or seasons ol the year.

We assume for now that only one situation is acti e at a gi en time. Slite tlhe
active situation network is a stable coalition, all of the object and sub situation nudes
are also active to varying degrees, providing top-down context to perceptual
processes. So far, this presents no technical difficulties: the problems arise in relating
the current situation (in the WKI-) to the hypothesi/ed spatial fruine in the 1.1

Recall that the wi1 was assumed to be organiied as iiiLs representinng Iixed
positions in space. The ITIF is organi ,ed around cardinal directions which we call
N,E,S,W and Up and )own. The model suggests that t11s spatial flanie ioes not
necessarily change with body movements: it is an allocentric rather than egocentric
representation. The position and orientation of the ego within the II. is also
maintained at all times and used in directing actions. Conceptually, one would like to
be able to map the current situation network (from the WK.) to the l. such that
each landmark object is mapped to its canonical position. This would enable tile
model to anticipate what should be seen at different positions and scale values in the
environment and where to look for expectet objects. lechnical problems arise in
trying to lay out these WKl-Fi mappings in a way that has plausible resource
requirements and is resistant to cross-talk.

The basic form of our technical solution is sho% n ii I igure 3.5. lhe central idea
is to use special situation nodes (depicted as ovals in ligure 3.5) to bind together the
mapping from a fixed place unit in the I-: to object units iii the WKI that are
expected at that place in the active situation. I-or reasons we will get to later, there is
no link from objects in the WKI- to their positions in the l.1. Conjtinctie
connections link a position in space, represented by an 11- unit with a particular
object node in the WKF. When a particular situation iiode (e.g. I-larvard Square) is
activated, then activation of a particular IT node (Fast, Middle distance) could lead
to activation of a node in the WK[ representing a middle distance view of the
Harvard Coop. The model assumes that the amount of 1.1 -- WKI: activation is
related to foveation and attention. There are also implications for retinal (RI)
mappings which we will discuss in the next section.

There is a nice correspondance be tweemI the hiCrarchical sitlation rcpresetllatloi is
in the WKI. and the LI' representations of space at diffe[cut scales. 'he expected
view of a landmark object in a situation depends on both the direction of aC and
the computed position of self relative to the I1:. Moing lose 1o an obeLt (i interest
could lead in a natural way to switching activation to a sub-situation whi has a
more detailed view of the object. The modlel thus suggets that situation nodes are
arranged in a discrete hierarchical structure. and that changes of isiial context are
discrete. In addition to scale change, other reason, for chaiigingm the (unique)
currenty active situation include moving omit of a situatioi or passing i prtiiilar

% landmark [Kuipers, 19731. We also alsiite that a t liaell (0 Iiitrllimal focus of

im,'
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attention is usually accompanied by a switch in active situations. 'The model can alo
accommodate scenarios (time sequences of situations), but we will riot deal with
scenarios in this paper.

There appear to be no technical diffliculties -in the CM reprcscntt1io.nI of Ihese
ideas. Counting arguments limit the number of situation nodes to a few thousand.
but this seems plausible. Some situation networks are assumed to be gcncral (e.g.
office) and used when no more specialized network is available. New situations are
assumed to be handled by recruiting additional binder units linking landmark objecLs
with their li positions, using the techniques of Section 2.4. It is this collection ofbinder units that we refer to as a "situation link."

The amount of and accuracy of information carptn red in a sitnation iietwoik is
quite low, but this appears to be consistent with what is known about people. One
consequence of the model in its current forni is that there is no link from an object
situation pair to the El' node where it is expected. One could easily add these links
but this would lead to vast numbers of input links to each : node violating a
constraint. In addition, these WKI'----I" connections could cause contsion between
what objects were being activated in the WKI and where ga/e was directed. [he
model currently allows one to think about one situation while visually coping wilh a
different one, as long as the non-visual situation does not evoke (simulated) spatial
reasoning or action. For the model, the position of objects in a situation is
represented relationally in the WKI only and one's ability to locate objects not
currently in view should be crude, unless a need for recalling the location was
anticipated. This is typical of the kind of crude prediction of experinental
consequences which will occupy us in Section 5.

4.4 Foveation, Pursuit Mode and tie Retinal Iranie

The logarithmic scaling of IFigure 3.6 is aboit all that has been speCilied so tar
about the Retinal Frame (RI). The model assumes that the RI: continuously
computes proximal (non-constancy) values of visual features and transmits values to
the appropriate SF1' units depending on the direction ot'gae (ligure 4.1). 0bviously
enough, the RF is intended to correspond roughly to primary visual cortex which is.
by far, the best understood of the four frarnes. We will consider in Section 5 the
evidence on what the units in primary and secondary visual cortex compute an.d
whether R"-SI:I2 distinction makes sense of the data.

For this section, the crucial questions are coinptiational. One coll ipiiational
refinement that is required is that tinits in the R1: can not be assumed to respond to
only one feature. As we have seen, units that respond coarsely along some feature
dimensions and finely along one dimension have computational advantages and we
assume that this is the nature of RI: units. More difficult problems -Arise in specifying
computationally how the direct measurements of the RI: cam' . translated to the
features postulated for the SI"". Let us consider motion, which is probably the most
difficult case.

For RI: units in a static eye, motion is indicated by "ctini slip a sistentatI
change in input among neighboring units. It is not, a priori, obvious thai this local
information is enough to determine the object motions and light changes that .ould
cause the retinal changes. Recent research in our lab and elsewhere [Brady, 19821 ha,,
shown that these "optical flow" calculations are feasible uinder a range of wrLidi lton
sufficiently general or the purposes of the SIT model. Mhich is ioI hi polhesit ,d to
be perfect. Ihe other SI.T. features hue, l)ghtl ,,,,. si/e. shape and ,trAce tC lllliV



arewassumed to be corn 1pu ted coo per all eIVi frotll IC f~ nOfi re oOLill ldfl (11v
orientation, motion, spatial eXtenlt Zind dispariIty w ith diftlkei spcta tIirw I hI
details of how the R[-SI[" COpltnilIs are specitied Is at mlajor piil l otuieiilcl
research in comiputer k~isio ri [Hlal lard & Wlow n ii.982 . I he totality of thIis 5 ork is
sufficiently advanced to give uts con fidenCe i hat th ese corn pit tall ion a I sssw ill llot
he a major hurdle. Whether or not any such Algori this are Used by' 1Iile Ics aI
primary experimental questin raised by the ftur framnes miodel ai eto ilb
largely concerned with this issue.

There are some other purely -oipitalioial issues reClAtii 10 thie PN I pafllc-lill)l
stereopsis and pursuilt mode. Very little hats ben said sO ftr about bun cii lI r i5,1( U
because the current model assigns it no great role. I he SIF Is asSitiriedI Ill the model
to be cyclopean and to incoporate two Rl- readings aitd dIiparity in forli ut on when
available. '[he v~isual field covered by tlie SITF is partly nuiociiar iii any even . We
have discussed ga/.e arid saccadic eye nio\ ements briefly in a couple of places. [hle
model says nothing explicit about the choice of' Fixation patternis although the W 1K I
networks for complex objects id( situations would presuriably help direct- sacades.
The question we now address s how t'% eatiort OfleLs Irndexin1g.

The basic fouir franies paradigni i assu ines that in Idexinig (and I Ls iii ~crse, conlete )
occurs Con1till Uously every w ere iii the SI F . It also assumes that inrdex inig is
stronger" at the place currently being fixatedI. IiI Section 3. we saw that tIi is

strengthening was a combination of selectiv'~e top down Ati ' ll (tlirough the I1I1
and situation links) and selective bottom -utp activation of' the places iii Ilie SI I
currently mapped to the fovea. The third strenigthening~ effect decscribed there was,
the ability to rise directly the more accurate calculations of' color, textit re, eCL.
achievable by the fovea. [his amounts to postulating ai direct R1- W K[ Iindexing link
not shown in the four-frames dia~rams. Stich at link would he rmtch sirtpler than (tic
one described in Section 4.2 b~ecause it wkould not need spatial coherertce atud
presumably would not have a top dlown context ii\ rse.

A direct RlI-WKI indexing link is also ulsehil wheii we Consider the 'piiilttt1
Mode"' of tile v~isual system. As we saw in the iiitrodition. it is totally difIferent 1 to
track your finger across text than it is to read following your fintger. "I hec lileramlre
refers to the formner as the ptirsint sistein bitt we prefer the terir ,nodtc because rn ich
of the same structure is used in both modes. O)ur assumption is that the sy stei
operates in pursutit mode both in track inrg a mo~irig target arid whlile tle obser\ er is
moving under visual guidance.

Obviously enough, the purpose ( ) I pnrs it iiode is to keepI a 'v iil I argect to'%cea td
despite target andc/or observ er motion01. Pu rsidt is qt al i iati ely dihere ni il Oilie lou
frames model because the accumuilatiort of'stable conistaincy data by the SI' [ila) riot
be the same in pursuit mode as It Is Ini scanning a static scene. In scitritillg. the
periphery of the R[ receives input fromn a fixed scene (at ' aryirlg r-esoltin). I )uirig
ptursurit, the periphery sees a rapidly changing s. erc Inl lid thereL Ire seCill
mechanisms to prevet upicuk inetict- cc.ts III the periphery h oin t isi liptiiig pii rslilit
[Carpenter, 1977]. The model suiggests that certain RI I tuinctiorus such as depth arid
3-1) motion of' the target mrutst be cornllI~ pll te nscan iii rig Itin debelrep hrsiiI Pi~t. 0I )i i ug
pursuit, we assume that the priiniai 1w rdeX irig ( cutrs, bcet n the R'I art d WK I
refin ing the parameter '. alues originally Lomputed h' the 10 1 . Mear)iwhle two other
comnputations are active. Optical flow cali itltioris aie assitituecd to be cttil[IIIuIOIISl
operating in the RU. allowing theC dde. lion Of Pol~iCiuil collisioiIS. the W KI is
assulmed to continue to regvister (lwrc,(iliition) periphecral Inputn tronr lie Rl i NAlSb
it can. The question of how iich rcdut(rI11(1 (11410m11W) (1 pcrilheral oblct t occiLis
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is assumed to be one of attention if the tracking task is not too demtanding, somej
SFFI WKI" compttatio is can he fit in. Such conipu tatos interfere with the
convergence of the tracking function and are suppressed under heavy load.

When the observer is moving, the sittnation ne L,,orks inlust a] so be Ih 1olight into
play. We postulate that the observer na ,igates by suLccesively fixating and tr,. king
landmarks. Again, peripheral vision and the SIT can do somc recognition if the
tracking is not too demanding. Peripheral vision, prior knowledge and occasional
scanning-mode saccades enable the obserer to maintain a situation network
adequate to provide successive landmarks.

4.5 Learning in the CM Iotir-Frammes Model

Acquisition of new knowledge has heen the most di flicLtlt prohblem in the
development of CM and related paradigms. Our CM model includus an assiiuiipioi
that there is not enough growth of new connections to account for adtlt letdWning.
and changing of weights must suffice. The problem becomes particularly aclte in the
current context, because we must model the continuous play of transient information
on the WKF as well as the incorporation of some of the information into perillanent
structures. The basic idea is to exploit the fact that ranldoinly connected networks
can essentially always be made to capture the required information using only
weight-changing.

The current model assumes that the basic structure of the Retinal (RI"), IFeature
(S1") and Environmental (1;1") flames are genetically and developmnenlally
determined and do not change in normal learning. Ii particular, the coherence of thespatial representations and the mappings between them are assumed to be in plac.
In this case, most learning takes place in the World Knowledge ['orunmilary (WKI)
which encodes the observer's knowledge of the particular objects and situations that
it has encountered. One must also learn the indexing - context links between the SI'1and WKF and have a way of recruiting situation links to relate the Ill to situationsI

in the WKF. A more realistic model would include some plasticity in all of theframes, but the same basic considerations seem to apply.

All of the learning in the model is assumed to be accomplished by the salle
somewhat magical) algorithm described briefly in Section 2.4 and more carefully in
Feldman, 1981]. The algorithm exploits the fact that large random networks have a

radically skewed distribution of connections to a small subset of nodes. I-or example,
in a graph of 1,000,000 nodes with 3000 random connections each, there will be
about 29 binder nodes with three or more links into a set R of 20 randomly chosen
nodes. If these binder nodes could be recruited properly, the binder nodes pihs the
previously unassociated recruiting base R would form a stable coalition. This stable
coalition would be a form of coherent active memory and could serve as the basis for
permanent learning of the coalition as a "concept." Section 5 of' [leldman. 198 11 is
concerned with describing plausible CM algorithms for all this and we assume here
that the arguments there are sound.

The idea, then, is to assume tha t there are pools of iamido li ly collliectcd ii ts
available to be recruited for binders. Consider the hexagonal node in Figure 4.2. One
clearly needs such instance nodes to be able to distinguish the variouis golf balls that
might occur in a given situation. In our model, such instance nodes are recruited a
being the small set of units that bind together the crucial information--here the facts
that the object is a golf ball belonging to Fred in situation 67. If there were soilie
other noteworthy fact (e.g., it was pink) the recruiting algorithm would include the

",
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appropriate units. Usually the recruiting of a node for a visual object instance will
include spatial relation links to other objects (particularly landmarks) in the curt i
situation. We can now see that a "node" in the WKI usually consists of some hinder
units with connections to the various concepts semantically linked to the new "node".
Instance nodes are often transient, but sometimes get itcorporated into a new or
modified situation description. It will come as no surprise that the "sittiation links"hypothesized to link positions in the Fl: with objects ii the WKI are also ranlo nly
recruited sets of binder nodes. If a situation is deemed to be important (or
importantly changed), recruiting is initiated, linking the activated objecLs aid
positions in a coalition held together by the binding situation links, Obviously
enough, a great deal more work is required on the details of these algorithns, but the
general idea seems no flakier than several other aspects of the model.

Fen assuming that random recruiting will do all we ask of it, there re)iain
questions of how the detailed WKF structures get built. [he central question here is
the extent to which we should postulate pre-wired structures and how much can bc
attributed to recruiting. This is, of course, the nature- nurture issue appearing i its
CM manifestation and is not something to be treated in passing. A feeling for the
problem can be derived from Figure 4.3. some WK[ structure for horses. It seems
reasonable to me to suppose that some crude structure represmnting the general
nature of animals (other moving things in the world) may have evolved from what
the Frog's eye appears to tell its brain. The only alternative (within CM) is to assliuie
that all such structures are learned and generalized from experience. 'The next paper
in this series will attempt to deal more carefully with the relationship between WKI.
neural nets and semantic networks.

7
Figure 4.3: General views of horse

Assuming that the SI" structure and the basic structures of objects in the WKI[
are understood, the index-context mappings fall out nicely. Consider the detailed
golf-ball mappings in Figure 4.2. The built-in structures are assumed to include all
the round and diamond-shaped nodes and their connections. The general golf-ball
node is seen to be recruited as a binder linking the appropriate property par units
with units reprsenting other aspects of golf-balls and their place in the universe. The
random recruiting process specifies that the binder links be bi directional, so that
indexing and context should work as suggested. E1xtending all this to complex objects
like the horse of Figure 4.3 appears to be feasible, especially if we assume some pre-
wired structure. The point of all this is to provide a crude base for the claim that the
four-frames model is not obviously wrong. The final section examines the claim a
little more carefully in the light of a variety of experimental findings.

J
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T.[le Sinai I Vorldi anid thle Real %Vorldl
The IIIj,() Llatin 111,d l 01 the lo111 I Iauc Mokdl is that it ihL)ilin iIii Al

tie C-stabhished talcLs abo it V istont andl pc.it \01 ill 10 he cleair to the i eader i h ii
t he cit: II S is hit, bet. Cqualitative One: ito paittiuLLar sptciiis or ratipc (it phierioiiteiia

h'e beenl rIodelled at a scienitifically a~dequate lc~el of pteclstoi. Nhe liiipurs of1
this~ecIois to explore the (JiAlitatii adquacy (d [tie I ouir I ratiits Mode(Il andi( t(

kde.,kribe so(me ot' the experinierital resuilts that ledI to its (iirrcii forrin. Ntt
sirriiily. I amn currently iituahle to perLcisan pctiutlrut htdno

fit within the model anld nleed to hael eit brought11101 to lily alitl(il.

Onle (A thle baiJSc cri'teria iIed Ini thle 10oii ,itaio 01 the iiiodell Is th1at 1 he
inltuiti~cly plausible. 'file discuctrsi~e prcsenttionl vI thc L: I II.Ii tuIIcs InI 11iC
itroucLo n1 is also i itendedI to su~ggeSt why the LhoICes aMe reaso t1ible. We iak c no
fuirther appeal to Intuition here, but Wldk he in1ter-cstCd. I f-IMF re O f (1 rtinse
dissatisfaction1 with the model.

The cttrrent. paper arose out of an Attettupt to SpCLIly M:llto p CI ecisely so i ',jcLL1
of the con nection ist miodel of' visuial ii1eil10- norydesribedl ini 11 ckhin trt I9811. We' first
had to develo p at technical Ia ngttage: [or specif'ying conn cct ioi in deAICSa idL I'lea
howv to use the langutage onl non -tri~ al problems [I 'eldinan & lBallilrdC, 198?" Sn bh.~l
198 11. lieflore tak Ing the florinali too seriouisly, I Also had1( to conl in1ce ilysel f, that it
Was capable of incorporating short- andJ long termi chiange [I e1 dnia it, I 9821. Tlli

fornialism, o utlined in Section 2, has been stable I' oeLi i id~ is also bei iig
uised In a x ariety of other tasks [Smiall. 1982: I-Irechanyk & B~allard. 1 98)J. Its role

here s to uppot detailed comiputattional/anatomia reprucin a tionls of filie arni
processing fun11ctions hypothesi/ed focr the miodel.

[he behavioral and netirobiological .onstrailitk (,i1 tIe mod(el ereC chosen ats
broadly as possible. I deliberately at temptedC to incorporate only the least
controversial and best established findin-s. [his deccisioi fIls wvell withtlhe relatively
abstract level of the cutrrent miodel. It shouil not reqire declicate experinitts or
arguments to point onut structural flaws in the I our- mies mnodel. Soii i potcm tially
revealing experiments will be suggested later Ii this section. It is, of' course.
enormously easier to suggest experiments thanl to cari' thetil outL. [he mnain pupose
of this, or any other rnodel, is to help stipgst (Iuestiotis that are worth the
experimental etffort.

Many of the elements of' the four Imesiilodc will he easily recognl/iiale to
workers in Al. Tlhe Stable Feature I ramne has muitch iii comtlioii with lBallar&\
parameter networks [B~allard, 19811 which is itself an extensi o the Intrinsic iltiage
notion which is currently a miajor topic in Comiputer Vision. [hle acti'.e serriaIe1 rlet
of the World K nowledge IFormulary fi Is into almnost any cuirrenit k iowledIge
representation scheme in Al or cognitive psychology. T[he LnFimonniemit I"iaiite and
situation links are also quite like the A nimodels of'space 1Kuiipers. 1 973- McI )riiiott,J
19801 to the extenit that they have beenl workedl otit. [lie reasomi for ii etiili ing ;ill
this here is to suggest th at the basic coinpintatiomil paradi guts selectk 1cd) 111 the ii
frames are consistent with current mainstreami Al notions of how these ttincilion f i NL
be accom plished. 'I he translation to (I'M termns is only pairtially SpCCet II 1111ithS
pa per, but there shouild be enough miaterial to iii dica Ic that the stan dalrd M
structures and algorithms are ex pressible ii terms of' neuro lecopIn g LIII sii

a wa tht iscomact and 1fast enough to be plausible.
T[here are two linies of CollmIpittationial experimieuLs that iight be addedI to thec

work already untderway. Fhe small world systemn couldl be sintilaltd as 'pcIld [lie
pert ormnance range wotild be limnited( bult onle cou1l learn 11u(ite a1 lot. eCi,) ally (FMon
the S-1- WKI Iinteractionls. One of' the Itice fetures1 Of the itiodel is that, it sol~es the
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old Al problem of converting from numerical to symbolic representations of a scene.
A second line of experimental Al work could focus on situation maps and the I. It
would be very informative to see if hierarchical and sequential situations could be
implemented and whether multiple situations could be worked out computationally.

But it is not computational experiment that is most needed at this slage. 'I he
Four-Frames model makes a number of predictions which should be behaviorally
and physiologically testable. Computational requirements have played an important
role in the development of the model, but major constraints have come from the
structure and behavior of the visual system. Most of the assumptions in the four-
frames model are part of a widely shared current world view and are not being
explicitly addressed. What does need more discussion is the rationale for the choices
made in the novel integrative aspects of the work. '[he experimental basis for our
choices is in no instance compelling: more research needs to be done in all of these
areas. Various experimental findings suggesting the central features of the fomr-
frames model are presented as suggestive.

l"or the retinal frame, the data is greatly aheaid ol the model and the thcory has
relatively little to offer experimentalists. There are some new questions to be asked,
but they are mainly concerned with the relation betwe.en the RI and the SI. Ihe
four-frames model assumes that the detailed calculations of color, texture, and so on,
are carried out by the RF and integrated by the SIF. We assume that striate cortex
and the various psychophysical "channels" are at the RI level. Obviously any roveal
functions are part of the RF. Most of [Marr, 1982] is concerned with RI' calculations:
he suggests a number of experiments that would also be of interest here. [he most
interesting prediction of the model concern the interactions between the RI" and the
(hypothesized) SI:F. One would expect mappings to extrastriate cortex that depended
on gaze, and mapped RF units with similar response characteristics. Iigure 5.2
suggests that at least the gaze information of Figure 4.1 is available for this mapping
through the IP-Pulvinar complex (cf. also [Graybiel & Berson, 1981]).

The Stable Feature Frame is a major prediction of the four-frames model. It
presents a computationally plausible and relatively well-specified theory of the
functioning of extrastriate visual cortex. It is well established that there are reciprocal
connections among most extrastriate visual areas (Figure 5.1) and that the features to
which each area is most responsive vary [AlIman et al.. 1981; Cowey, 1982]. There is
some evidence that extrastriate visual maps are concerned with constancy features
[Zeki, 1980]. Experiments like those of [Mays and Sparks, 1980] demonstrate that
saccades are directed towards points in space, not coded as relative displacements
from the current fixation.

With one major proviso, the SlI makes predictions that are subject to
immediate experimental exploration. The proviso is (as mentioned earlier) that SFII:
units are assumed for simplicity to respond only to a single feature. This is neither
biologically plausible nor computationally efficient, which is a pity because it would
make the experiments much easier.

Given that we are dealing with multi-feature units, the SIIF makes strong and
perhaps surprising predictions. One should find visual maps that are both spatially
organized by head position (in an upright stationary anunal) and that respond to
constancy values of visual stimuli. These should interact hi-drectio ally with
parameter maps that are organized along non-spatial axes: this latter hypothesis is
currently being tested [Ballard & Coleman, 19821.

The obvious alternative to the SI' hypothesis is one thatl stuggesLs that constamcy
and indexing computations are done separately at each fixation. Mith Integration ol
the scene occurring only at our WKI. level, The CHLuil %.lc.',tio S ie il XICtCmLC of• I
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spatial maps that are independent of eye position. There are isolated reports of' units
whose properties are independent of eye movement [Schlag et al., 1980: Tomko el
al., 1981], but the usual description of extlastriate maps is in retinal terms. I lowever,
the vast majority of neurophysiological experiments have been done on anaestheti/ed
or fixated animals and would not distinguish retinal from spatial organi/ation. It has
also been noted that the receptive field size is much larger (tip to the entire field) as
one moves towards more anterior visual areas [Gross ei al., 1981]. Since most
fixations are with 15o, the effective size of the SI']" could be of the order of the
receptive field sizes found in the extrastriate areas shown in Figure 5.2. Visuall y
responsive areas more anterior than these will be discussed in connection with
indexing and the WKF.

The psychological literature already contains extemni data on non retinal
(spatial) encoding of visual data and on constancy calculations [I isher eI al., 1981"
Epstein, 1977: Howard, 1982]. The notion that these are carried out (along with
perceptual filling) by a single structure seems to be consistent with these literatures,
and is certainly testable. Behavioral experiments like the masking work of ll)avidson
e! al., 1973] give some idea of the interactions of the retinal and spatial frame. In
these letter naming experiments, masks were perceived to overlie the target letter that
was in the appropriate SFF position, but it was the R" position that could not be
identified. The experiments of [Jonides, 19821 suggest that randomn patterns cal be
integrated surprisingly well across fixations.

There is also evidence of important interactions among S"1" computations. [or
example, apparent motion will not occur for objects which appear to be at great
depth no matter what choices of retinal spacing and inter-stimulus interval [Ilaher,
1982] are used. There is wide range of experiments [Johansson, 1977] on the
interactions of perceived depth, shape and motion, which are directly relevant.
Another example is the work of [Gilchrist, 1977] showing that lightness constancy is
applied only to adjacent areas of the same apparent depth. If the different intrinsic
image calculations interact in the way we suggest, one should be able to predict the
perceptual effects of anamolous combinations. An effort to deal comprehensively
wi',h existing illusion data would be a strong test for the model. One would also
expect that higher-order masking and adaptation experiments [Weisstein, 1978] might
reveal some of the encodings "used in the SII".

The main use of the SFE in the model was in indexing I'momi its visual features to
visual primitives in the WKF. The particular networks used (ligure 4.2) call for
spatially independent units that respond to pairs of visual features. The most likely
anatomical site for such units would be the infero-temporal (l'l) cortex [Gross et al.,19811. Gross et al. report that units in this area are spatially independent and respond
to complex stimuli and multiple features. The connections known for II are also
consistent with the model. There are apparentiy two processing stages between
primary visual cortex (VI) and IT. The outputs from IT include ones that could
embody our spatial focus units and indexing links to the WKI, which we presme tobe subsumed by anterior temporal and parietal structures. Needless to say, there are
alternative treatments of the relatively small amount of intbrmation known about this
large area of cortex.

Indexing by spatially independent feature pair units is only one of a iminhei of
possibilities. Treisman [I ieisman, 19821 has a collection of experiments that limit the
possible performance of such a mechanism in humans. She shows that, under 1
overload conditions, subjects cannot detect in parallel targets requiring feature pairs
(red square) but can do quite well at single feature detections. Treisman hypothesi/es
that all feature-pair detections require an internal focus f attention (like our spatial
focus), but this seems to me to be much too shu, ',r oping with natal, ,t cues. [his

• i.'.7.-i,1 7.i- / ..% . Y -,i . .--. -:-- . . - . . ._ . : . . .,. . .. ..i - : . ._- . - . , . . ,
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is another area in which the model is close enough to existing experillelnts for tLsefiS
interactions.

The WKF, our network of world knowledge, is the least susceptible to direct
biological experiments of the four fiames. In the model, the WKi: is recruited from
all modalities and output areas. Its functions would be subsumed by a number of
areas, presumably in the anterior portions of temporal and parietal cortex. Bulk
metabolic experiments give some corroboration of this view, but all this is not muchmore than restating the classical notion of association areas. here is some eividence
for multi-modal-feature cells of the sort required for the WKI, being found in the
Superior Temporal Polysensory area of [lruce el al., 19811. l)irect neurophysiologicalinvestigation of the WKI' does not appear to be a promnisig route.

* -- Behavioral testing of the WKI' does seein to be feasible at present. 'I here isconsiderable work in experimental psychology on spreading acti\ation in semantic
networks [Anderson, 1976; Collins, 1975; Smith ei al,, 1974] and a fair alnloulit oi
the perception of scenes [Hintzman et al., 1981: Palmer, 1981]. The four-fraines
model suggests a number of experiments on priming, confounding, and other issues
based on the proposed network structure of appearance models.

The cortical structure most likely to substme the functions of the Environmental
Frame (L-E) appears to be the posterior parietal region [Lynch, 1980, Robinson et al.,
1978]. The four-frames model suggests that it is multi-nodal, allocentrically
organized and contains sub-structures that encode the current ego position. The I1
should play a crucial role in hand-eye and other visually guided tasks. Most of these
characteristics have been attributed to the posterior parietal area, but there is still
quite a lot of disagreement on specifics [Lynch, 1980]. The I! is assumed to act
through situation links connecting to WKIF networks. There is considerable
behavioral evidence that people employ relational, network-like descriptions of
spatial situations [Hintzman et al., 1981]. The four-frames models entails a number of
specific predictions about these networks and about cortical connections between I'1,
WKF and gaze structures. The constraint of one-way !I:-WKIF is a computational
one -- it seems unreasonable to have every object link to its places in the 1:. The
model assumes that objects in a situation are located relationally (in the WKI) rather
than in absolute space [Hintzman et al., 19811. Results from child development
studies could also be helpful here; it is already known that the ability to use
allocentric frames of reference develops rather late [Piaget & Inhelder, 1967).

One way in which the four-frames model vastly oversimplies the visual system is
in ignoring hemispheric laterality. Each hemisphere performs visual computations tor
the contralateral hemi-field with very little communication before the infero-
temporal areas. The only systematic mapping across the hemispheres for earlier areas
is of the vertical meridian, which is the border between the two hemi-fields. In terms
of the model, this means that the Ri' and S:" are duplicated and that our spatially-
independent-feature units (cf. Figure 4.2) are probably also separate but
communicate across hemispheres. The WKI obviously would cover multiple
modalities and hemi-fields and would represent the first fully centrali/ed level. There
are a number of aspects of external space known to be coded separately in the two
parietal lobes, but we postulate that the iF'" is subsumed by the right posterior
parietal region. The major problem for the model is explaining how early vision (our
SF-) copes with the switching of inputs between hemispheres with ga/e shilts. [his
appears to be a difficult and important issue in any account of vision and space.

"ven without new experiments, there is a great deal that might be learned fromn
trying to fit the four-frames model to existing bodies of data. l)oing this at a crude
level has forged the current form of the miodel. Subsequent efforts are of two



different kinds: detailed fitting of small segments of data and further relineine dul
the global model. Detailed studies are underway at Rochester on the occuilomotor
system, on parameter networks in extraSLtriate cortex and on conitputational models ol
specific SI'F and WKF computations. These studies plus responses to the cturrelit
article will hopefully lead to an improved and elaborated second version of the or
frames model. At the least, we would hope to direct some more attention to thu
global properties of the visual systern, which is often treated as a large number of
totally separate problems. The rationale of the whole enterprise is that it is not too
early to benefit from more general considerations of the problemis of vision and
space.
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Figure 5.1: Connections among visual areas in owl monkeys The areas are as 
in Figure 5.2, viz: PP (posterior parietal cortex), DM (dorsomedial
temporal area), M (medial visual area, not in Fig. 5.2), DI (dorso-
intermediate visual area), MT (middle temporal visual area) and
DL (dorsolateral visual area). The primary visual areas are denoted
VI and Vll.']

From: R. E. Weller and J. H. Kaas, "Connections of Visual Cortex in Primates,"

in C. N. Woolsey, Multiple Visual Areas, p. 137.
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Figure 5.2: The tectopulvinar relay system. Retinal input to the superior
colliculus from Y and W cells is known from electrophysiological studies in
macaque monkeys. Studies in owl monkeys indicate that the superior colliculus
projects to two of the three subdivisions of the inferior pulvinar complex, and
that each subdivision of the inferior pulvinar projects to separate regions of
extrastriate cortex. The posterior (IPp), medial (IPm) and central (IPc) nuclei
of the inferior pulvinar are from Lin and Kaas. The subdivisions of visual
cortex of the owl monkey are from Allman and Kaas. Areas VI (primary visual
cortex), VII (secondary visual cortex), MT (middle temporal visual area),
DL (dorsolateral visual area), and DM (dorsomedial visual area) each contain
a topographic representation of the contralateral visual hemifield and have
distinctive architectonic features. Areas PP (posterior parietal cortex) and
DI (dorso-intermediate visual area) are visually responsive, but their topography
has not been fully determined. The rostral dashed lines mark the extent of
visually responsive cortex (V), which includes subdivisions not yet fully defined.

From: R.E. Weller and J. H. Kaas, "Connections of Visual Cortex in Primates,"
in C. N. Woolsey, Multiple Visual Areas, p. 126.
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