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APERTURE AVERAGING OF SCINTILLATION

FOR SPACE-TO-GROUND OPTICAL COMMUNICATION APPLICATIONS

Fat S
- G
. ,'.4~ « @
- AN
»

Communication from space-to-ground stations which utilize coherent short
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wavelength radiation (~lum) as the carrier must contend with atmospherically
. induced scintillation. The amount of scintillation with wl;ich the

communication system must deal is.a function of the diameter of the collecting

entrance pupil in the ground station optical system. As 1is well known,
increasing the size of the aperture diameter reduces the amount of scintilla-
tion measured by the detector.l'z’3
The aperture averaging factor 1is defined as the ratio of the variance of

irradiaqce obtained from a finité size collecting aperture to the correspond-

ing quantity obtained from a "point aperture.” In this letter the aperture

averaging factor is calculated for both spherical and plane waves. The

Kolmogorov spectrum with an arbitrary index structure constant Ci profile, as

:1; would be encountered in a space~to-ground propaéation geometry, 1is used
here. A useful engineering formula for the aperture averaging factor that
exhibits the explicit parametric dependence on wavelength, collector diameter

O and path weighted integrals of Cﬁ is presented below. In Ref. 3 it 1is shown

that the aperture averaging factor, A, can be written as

1 CI(Dx)
A-§ ({ W M.L(x) xdx (1)

where CI(p) is the covariance of irradiance and

SO R L.
ML(X) = (2/n)[cos "x - x (1-x") ]
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1s the optical transfer function of an unaberrated circular entrance aper-
ture. Here we consider weak scintillation conditions only where CI(O) « 1.
Following the development given in Ref. 3, it can be shown for spherical .

waves that the aperture averaging factor can be written as

B
A B r— (2)
CI(O)
where
z ) @
B = 4n? [ d2'(z-z9)?(2)? [ £ £ 0 K&K (3)
o (o]
2 2%, 20212 [ 5
€ (0) = 4w £ dz'(z-z"') (;—J £ £ K'dK (4)
£, - sinc? [K%z'(z-2')/2kz] . (5)
27, (KDz'/22) |2
£ = |— (6)
R (RDz"/2z)

and, for the Kolmogorov spectrum,

o(K,z') = 0.033 Ci(z')K-11/3. (7

Al
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In Eqs. (3)-(6), z' = 0 corresponds to the location of the source, z is the

distance between the source and the receiver, k is the optical wavenumber,

* sinc(u) = sin(u)/u, D is the diameter of the circular collector, and J, is the i
Bessel function .of the first kind of order one. The quantities fg and fp can '

be regarded as the spherical wave turbulent diffraction and receiver filter j

2 functions, respect:i.vely.3 To modify Eqs. (3) - (6) for plane wave propagation '41
' the factor z'/z is replaced by unity. i
E We are primarily concerned with downward propagation from an exoatmos- ‘

pheric laser source to a receiver located within the atmosphere or on the

ground. For the corresponding case of upward propagation, the transverse
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B irradiance correlation scale length is typically much greater than the dia-
meter of collection apertures of practical concern, and hence no appreciable
aperture averaging effects will result (i.e., A = 1).

For spherical-wave propagation, fR possesses spatial frequencies

K< KR-'Zz/Dz' = 2/D. The relative importance of turbulent diffraction

effects and aperture averaging can be seen by comparing Kp and Kg» where Ks =

[Zkz/z'(z-z')ll/2 = [2k/z°]1/g For ;J

2 zo
D™ > X (8)

KR <« Kg and all the turbulence lies in the near field of the aperture. In
this case the geometrical optics formulation (i.e., fs % 1) can be used in
Eq. (3) to compute the collected scintillation. On the other hand, for D2 <<
zolk it follows that KR > Ks, and one may use the approximation fR = 1 in

Eq. (3) with the result that the aperture averaging factor approaches unity.

The quantity z_ is of the order 10 km and thus, for example, apertures of dia-

o

meters larger than a few inches will exhibit averaging effects for visible

light propagation.
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In the downward propagation direction, the atmospheric turbulence is
limited to the latter portion of the propagation path where z' = z. The
function Ci(z') is nonzero only in the range z - zo_s z' < z, where for an
exoatmospheric source z, << z. A change of variables from z' to

n=2z-2' is indicated with Ci(z') replaced by Ci(n), where n = 0 corre-

sponds to the location of the receiver. If inequality (8) is satisfied,

then fs = 1 in Eq. (3) and the aperture averaging factor is given by

,.7/6 ‘
A = A (b /p%) (9) i
where

/ x 213 le(x) dx 5 1
B =4 " T3 * 090, (10) !

f x-ll/lﬁ sinzx dx L [3 -1]

o

- " -1/31%/7 :
[ ancZ(n)n(1-nz"1) .~
ho = Path 5/6 ) (11) :
/ dncﬁ(n)[n(l-nz-l)] i
| path i )

A is the optical wavelength, and T is the gamma function. The quantity ho

can be regarded as an atmospheric turbulence aperture averaging scale

(V3 W SRS R

height. For plane waves or for spherical waves where 2z >> z,

(i.e., n/z << 1) we have that

!
)
<

6/7
[ dn Ci(n)n2
path
° [ dn Ctzl(n)\'\S/6
path
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An important attribute of Eq. (9) is that it reveals the explicit parametric
dependence of the aperture averaging factor on optical wavelength, collecéor
diameter, and path weighted integrals of Ci. For propagation at zenith
angle 6 it 1is weasy to show that h, in Eq. (9) {is replaced by
h,sec 6, and Ci(n) in Eqs. (11) and (12) is now given by the index structure
constant profile for the situation of interest.

An engineering formula can be constructed from Eq. (9) wﬁich can be
useful even when inequality (8) 1is violated (i.e., for small apertures).
Indeed, for p? « zo/k, A = 1, and thus without requiring detailed knowledge

of CI(D), the aperture averaging factor can be approximated by the engineering

formula:

1
o, 776 (13)
1 + A "[D”/Ah sec 9]
o o

>
1

where A;1 = l.1. This expression gives the aperture averaging factor for

space-to-ground propagation conditions in closed form and is thus suitable for
system studies of a broad class of atmospheric turbulence models.

For illustrative purposes we present, in Table 1, numerical values of ho
and A for zenith propagation, X =1 ym, D = 1 m, and various Ci profiles
quoted in the literature. In addition, we give the corresponding weak scin-
tillation values for the “point aperture” variance of irradiance:
(@ = 2.24 &/¢[c2(nyn*/an.

Examination of Table 1 reveals for the turbulence models considered here

that both ho and A based on the NAVY/DARPA model are about a factor of two to
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four less than the corresponding quantities based on Barleti's and Hufnagel's

‘l

L §

models. For example, the NAVY/DARPA daytime model and the Hufnagel model (for

V = 27 m/sec) both indicate that the variance of irradiance at a "point” is =

A D
L4
-

about 0.1. On the other hand, the ratio of the corresponding aperture averag-

ing factors is about 3.6. Hence, for A = 1 ym and a 1 m entrance aperture

diameter, the variance of irradiance based on the Hufnagel model is 3.6 times
larger than that . obtained from the NAVY/DARPA daytime model. As this example
illustrates, care should be exercised in the application of available an

models to optical communication system performance studies.
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Table 1. Aperture averaging scale height and reduction factor for
various Ci profiles. The quantity V is the rms wind speed

between 5 and 20 km altitude above mean sea level.6

Turbulence Scale Height Aperture Averaging Factor: Point
- Model hy (lm) Zenith Propagation, Irradiance
¢ A= 1luym, D = 1lm Variance
- NAVY/DARPA(4) 3.4 1.2 x 1073 0.095
i‘ (DAYTIME)
{ NAVY/DARPA 5.3 2.0 x 1073 0.053
_ (NIGHTIME)
..
Barleti et al.(3) 9.8 4.1 x 1073 0.18
HUFNAGEL(6) 9.1 3.7 x 1073 0.063
(Vv = 18 m/sec)
HU FNAGEL 10.3 4.3 x 1073 0.11
(V = 27 m/sec)
HUFNAGEL 10.8 - 4.6 x 1073 0.19
(V = 36 m/sec)
¢
P 11

- TR

PSR

;J'AL..L " l‘_gk:..'J'J'- U - § VLIRS TV TR ~ 4 FOPRIIRIA " - WO OPIRIRIRET - YTervrrea

D v




T —— . " PP —

REFERENCES

1. V. I. Tatarski, "The Effects of the Turbulent Atmosphere on Wave Propaga-

tion,"” National Technical Information Service, Springfield, Va.,
1971.
P 2. D. L. Fried, J. Opt. Soc. Am. 57, 169 (1967).

g 3. R. F. Lutomirski, R. E. Huschke, W. C. Meecham, and H. T. Yura, "Degrada-
p tion of Laser Systems by Atmospheric Turbulence,” The Rand Corpora-
- tion Report No. R-1171-ARPA/RC, June 1973.

.. 4, R. R. Jones, J. W. Rockway, L. B. Stotts, D. W. Hanson and A. J. Jullian,
:‘ "Submarine Laser Communications Evaluation Algorithm,” Naval Ocean
Systems Center, Technical Report 673, May 1981.

5. R. Barleti et al., J. Opt. Soc. Am. 66, 1380 (1976).

6. R. Hufnagel, “Variations of Atmospheric Turbulence,” in Dig. Tech.
Papers, Topical Meet. Optical Propagation Through Turbulence, pp WA.
1-1 to WA. 1-4 (Optical Soclety of America, Washington DC, 1974).

,'yv AR

vvv.'vf;r'r‘rv
N ' el
L T

B}

13

O TR TS P WO LTI T W S P G L UL T P AT PRy PP RO G TS PP IR SR P PO




LaNacasn - gutoinn dute e fugh Sat Sut e I TR

LABORATORY OPERATIONS

The Laborstory Operations of The Asrospace Corporation is conducting exper-
imental and theoretical investigations necessary for the evaluation and applica-
tion of scientific asdvances to nev wmilitary epace systems. Vereatility and
flexidbility have been developed to a high degree by the lsboratory personnel in
dealing vith the many problems encountered in the nation's rapidly developing
space systems. Expertise in the latest scientific developments 1s vital to the
accomplishment of tasks related to these problems. The laboratories that conm-
tribute to this research are:

Aerophysics Laboratory: Launch vehicle and reentry aerodynsaics and heat
transfer, propulsion chemistry and fluid wechanics, structural sechanics, flight
dynamics; high-temperature thermomechanics, gas kinetics end radiastion; research
in environmental cheaistry and contsaination; cv and pulsed chemical laser
development including chesical kinetics, spectroscopy, optical resooators amnd
besa pointing, atmospheric propagation, laser effects and countermeasures.

Chemist and Physice Laboratory: Atmospheric chemical resctions, atmo-
spheric optics, 1ight scattering, state-specific chemicsl reactions snd radis-
tion transport in rocket plumes, applied laser spectroscopy, laser cheaistry,
battery electrochemistry, space vacuum and radiation effects on materials, lu-
brication and surface phenomens, thermionic emission, photosensitive msterials

and detectors, atomic frequency standards, and bicenvironmental resesrch asnd
monitoring.

Electronics Research Laboratory: Microelectronics, GaAs low-noise and
pover devices, semiconductor lasers, electromagnetic and optical propagation
phenomena, quantum electronics, laser comsunications, lider, and electro-optics;
communicstion sciences, applied electronics, semiconductor crystal and device
physics, radiometric imaging; millimeter~wave and microwave techmology.

Information Sci R ch Office: Program verification, prograa trans-
luion, perf itive system design, distributed architectures for
ne ers, fault-tolerant computer systems, artificial intelligence,

and ucroelectronicn applications.

Materials Sciences Lsboratory: Develop t of nev materials: metal matrix
composites, polymers, and new forms of carbon; component failure analysis end
reliability; fracture sechanics and stress corrosion; evaluation of materials in
space environment; materials performance in space transportation systems; anal-
ysis of systems vulnerability and survivability in enemy-induced envir s

Space Sciences Laboratory: Atmospheric and ifonospheric physics, rediation Lo
from the atmosphere, density and composition of the upper atsosphere, aurorae .
and airglow; magnetospheric physics, cosaic rays, generation and propagation of T
plasma waves in the wmagnetosphere; solar physics, infrared astronomy; the :
effects of nuclur explosions, magnetic etorss, and solar activity on the T
earth's at e, 1 here, and magnetosphers; the effects of optical,
elcctrmgneuc. and p-rucu.luc radiations in space on space systems. ,,_4
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