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SUMMARY

This paper introduces the subject of Voice-Interactive Systems and their role 1in
military applications,. The history and evolution of automatic speech recognition and
synthesis is briefly explored and the current state-of-the-art is reviewed. The term
“Voice-Interactive Systems" is daefined and the advantages and disadvantages of
Voice-Interactive Systems are highlighted. Next, are previous applications of speech )
systems to military problems is summarized, the major application areas are described
and current development projects in the US and other NATO countries are presented.

Special attention is focused on the cockpit application. Several projects in this area
are discussed alonyg with a summary of important issues to consider when applying
Voice-Interactive Systems to the aircraft environment,

1. INTRUDUCTION

The objective of this paper is to provide a broad perspective on the topic of ’
Voice-Interactive Systems, and in particular the use of these systems for cockpit and
other military applications. Before the actual application of these systems is
discussed, it would be heipful to consider such questions as: "“How did speech systems
evolve?", "Wnat techniques are used to do speech recognition and synthesis?", and "Wnat
are the major problems in doing recognition and synthesis?" By answeriny these
questions it is hoped the reader can gain an understanding of the current capabilities
and limitations of automated speech systems. With this background, the issues of )
applying speech systems to military problems is undertaken, Because the use of speech
systems is nuw so widespread the treatment here is not exhaustive, but instead is
intended to be representative of much of the current research. This paper is a general
survey and cannot comprehensively cover all of the topics presented. The extensive
bibliography provides references for more detailed information for the interested

reader.
2. MWhat are Voice-Interactive Systems? -
Potential users in industry, the home and the military are starting to become f': T-:

excitea about the possibilities of voice interaction with machines. Speech technology
has recently received considerable publicity as new appliications are discovered -
(Doddington, G. R., and Schalk, T, B,, 1981; Simmons, E. J., 1979; Levinson, S. E. and o
Liperman, M., Y., 1981). In this section the history of speech technology 1is traced N
from the pioneering days in the fifties to the present, and the advantages and RPN
disadvantaygyes uf speech are discussed. Prior to this discussion, it would be useful to L .
review some terminology. Figure 1 1lists some of the terms presently used in voice -
processing technology. Voice-Interactive systems includes both Automatic Speech T
Recognition (ASR) and systems for speech synthesis. "Speech Recognition" of a human B
speaker who utters single words or short sequences of words. "Speech Synthesis", N
sometimes called voice responses or voice output, refers to a maciiine which can : Y
generate a human or human-like vocal response. "Speech Understanding" 1is sometimes 3
used to retfer to machines which can not only recognize complete sentences (as opposed o
to a sinygle word or short sequence of words) but somehow interpret the meaning of the 1
sentence as well, "Speaker identification" (or speaker recognition) 1is used to . 3
describe a machine which has the ability to determine who is speaking, rather than what o 2
is said. There are other wuseful actions based on speech that can be performed by ) {
machines including: the capability to recognize what language 1is being spoken : R -
\languaye identification), the ability to remove noise or interference from speech LTS
(speech enhancement), the capability to compress the bandwidth necessary to transmit o
digital speech (vocoders), the capability to detect abnormal physical or psychological .. .
conditions of the speaker (stress analysis), and others. The wuseful functions being L .
vertormed by these systems are accomplished through the theory and practice of speech *--~’M
prucessing technology. How this technology has evolved 1is the topic of the next
section.

2.1 The tvolution of Speech Processing Technology

Speech prucessing technology has been based, to a large degree, on early research
in such areas as experimental phonetics, the pnhnysiology of the human vocal apparatus )- ry
and auditory system, human perception of speech, and especially acoustics, and !1
phonetics. This basic research provided much ot the fundamental knowledge which is
required to some extent in almost all speech processing systems, OUne of the first
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applications ot this knowledge to speech processing was reported in 1952 (Davis, K. H.,
et al, 19%2) with the demonstration of a successful speech recognition system which
could recoynize the digits spoken from one talker. One of the first electronic speech
Synthesis systems was produced even earlier, 1in 1939, by researchers at Bell Labs
(budley, H.; Riesz, K. R.; Watkins, S. A.; 1939). This system was called the Voder and
was also a tforerunner of the modern vocoder.

Important milestones in the development of speech processing technology occurred in
1956 and 1959, with the first efforts to incorporate linguistic information (Wrien, J.
and Stubbs, H. L.; 1956) and tne use of a general digital computer (Forgie, J. W. and
torgie, . D.; 1959) respectively. OUne of the first speech recognition systems which
could recognize continuous speech was developed in 1969 and could accommodate a highly
constrained vocabulary of 16 words (Vicens, P, J.; 1969}. Much of this early work
assumed all of the information required to do recognition could be extracted from the
spectral envelope of the acoustic speech wave, This resulted in the development of
many approaches for spectral analysis of speech, and with these analysis approaches
came very sophisticated mathematical techniques for manipulating the acoustic speech
parameters. Some of these mathematical techniques are: linear predictive coding
(LPC), dynamic programming, the Fast Fourier Transform (FFT), and homomorphic
filtering, amony others., Speech recognition techniques which are concerned solely with
the manipuiation of the acoustic waveform are sometimes referred to as mathematical,
pattern matching or statistical approaches. However, an alternate approach was soon to
receive considerable attention.

Prior tu 1970 most of the work in ASR was concerned with recognizers which could
only deai with a very limited vocabulary (typically 5U words of less), spoken in a
dgiscrete manner, for a talker who had previously used the device. In tact, many of
these recoygnizers worked with high accuracy in the laboratory, and a group of
researchers at RCA were encouraged enough to leave and form their own ASR company,
Tnresnold Technoloygy Inc., in 1970. However, the field of speech recognition was
sharply criticized in a letter written by John Pierce, a highly respected scientist at
Bell Laboratories (Pierce, J.; 1969). The letter accused researchers working in speech
recognition of failing to appreciate the difficulty of their task. Although the letter
seemed tou put a temporary damper on the enthusiasm ftor speech recognition, the Advanced
Kesearch Projects Agency (ARPA) nonetheless funded a large, 5 year effort in the field
in 1971, The ARPA project addressed the problem of speech und:rstanding, rather than
speech recognition, and had a number of ambitious technical goals. There 1is
cunsiderable debate even now as to the progress made in the project (Klatt,
D. H., 1477; and Neuberg, E. P., 1975). What is noteworthy is that the approach taken
in the project can be considered from the perspective of artificial intelligence (Al).
Unlike the mathematical approach, Al presumes that a perfect extraction of phonetic
teatures in speech is not necessary (or maybe even possible) because errors made in
this extraction phase can be compensated by knowledge obtained from so-called "“higher
sources." This nigher order knowledge includes syntax, semantics and the pragmatics of
discourse. It remains to be seen which approach will be more successful. Perhaps a
combination of approaches, along with greater computing power, will solve many
problems. Most agree that increasing the knowledge of the human speech process is
required betore the effectiveness of speech systems match the expectations of potential
users.

The last half of the seventies has seen increased attention given to the
application of ASR technology to a variety of real-world problems, with less emphasis
being yiven to more funadamental research. There are still many of these fundamental
research problems which remain to be solved, as shall be discussed below, A number of
compdanies, large and small, now have speech recognition products commercially
available. An  increasing number of speech synthesis products are also becoming
available in the marketplace.

The state-of-the-art in speech recognition and synthesis wilil now be addressed.
Practical ASR is restricted to discrete-utterance, limited vocabulary, and speaker
dependent recognition of high quality speech. The accuracy ot such systems are
aependent on a variety of factors but accuracies near 100% in the laboratory and less
than 90% in field tests are typical. Synthesis systems are generally of three types:
1. Those which do a simple encoding of the speech signal. An example is a simple
digitization of real speech,. The synthesis would then be accomplished by
digital-to-analog conversion; 2. A complex encoding of the speech signal. An example
of this type is linear predictive coding. Speech is encoded and then stored to form
pre-recorded messages which are synthesized by doing the inverse of the encoding
process; 3. Synthesis-by-rule systems which require very little storage of actual
speech, but instead accept as input typed commands. The commands are interpreted and a
pasic set of speech sounds (phonemes) are strung together and modified by a complex
seyuence ot rules. There are three main trade-offs associated with speech synthesis
systems. These are: speech quality, memory requirements and message flexibility. The
chart below summarizes these trade-offs for the three types of synthesis:

SYNTHESIS TECHNIQUES QUALITY MEMURY FLEXIBILITY
1. Simple Encoding High Greatest Moderate

2. Complex Encoding Moderate Moderate Low

3. Synthesis-By-Rule Low Low High
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Currently, there are more than 44 companies producing speech synthesis products
wong, D., 1981). Excellent summaries of speech processing technology evolution can be
ound among the references (Denes, P. B. 1975; Hyde, S. R., 1972; Reddy, ©D. R., 1976;

Lea, W, A., 1979).

2.2 Voice-Interactive System Devined

The previous discussion highlighted speech technology, not voice-interactive
systems. The term "voice-interactive system"” emphasizes the interfacing of a human and
a machine that is of interest. The “voice" part of a voice-interactive system can mean
either a human voice talking to a machine, or vice versa. Since a human 1is involved,
it is not only speech technology that is of concern, but the psychology and physiology
of the man-machine interaction. Researchers involved with speech processing are
typically electrical engineers, computer scientists or mathematicians., Those involved
with voice-interactive systems have a more behavioral science orientation, and include
experimental psychologists and human factors engineers.

What, then, is meant by the term "voice-interactive system“? Conceivably it could
mean any system involving humans and machines, with speech as the mode of
communications, Thus, a digital voice communications system could qualify as a
voice-interactive system under this definition. However, this is not what is wusually
meant by the term.

A Voice-Interactive System is defined as the interface between a cooperative human
and a machine, which involves the recognition, understanding or synthesis of speech, to
accomplish a task of command, control or communications, and which involves feedback
trom the listener to the speaker. With this definition, the digital communications
system no lounger qualifies, because the system provides an interface between a human
and another human, not a machine, Likewise, speaker identification and language
identification systems do not qualify as Voice-Interactive Systems because they involve
non-cooperative speakers and no feedback from the speaker (human) and the listener
(machine). Figure 2 shows in a very simple way a voice-interactive system: The box
labeled "Speech I/0 Subsystem" is some type of speech processing technology. Suppose
the voice-interactive system was one in which a human pilot can control certain cockpit
functions, and in addition can receive audio warning messages. The diagram of Fig. 2
can then be drawn more specifically as shown in Fig. 3. The interaction diagrammed in
Fig. 3 is fairly complex and is intended to show relationships among all the elements
invoived, not any particular system, The pilot and speech 1/0 sub-system are both
listeners and speakers. The pilot controls certain cockpit functions (which have not
been specified) by speaking utterances into an ASR device. The controller of the
voice-interactive system interprets the results of the recognition and responds with
the appropriate controlling actions to the aircraft. Suppose an emergency situation
arose of which the pilot was unaware. Presumably, the aircraft would signal this to
the controller which would respond with the appropriate synthesized warning message.
The pilot would then take corrective action which may require him to use manual
controls, and the warning message would be subsequently halted. 1In this case there is
teedback in both directions between man and machine.

2.3 Advantages of Speech Communications

There are good reasons why people might wish to use speech to communicate with
machines and many reports have detailed the relative advantages of speech
communications {lLea, W. A., 1968; Lea, W. A., 1979; Martin, T. B., 1976). However,
there is relatively 1little empirical evidence which demonstrates the value of speech
over other modes of communications, command or control. What empirical evidence does
exist seems encouraging, In a famous experimental run at Johns Hopkins University,
teams of people interacting together to solve problems solved them much faster wusing
voice when contrasted to other modes of communication (Uchsman, R. B. and Chapanis,
A., 1974), Other studies indicating the advantage in terms of speed and accuracy of
voice over other modes of communications for certain tasks have been reported. (Welch,
J. R., 1977; Harris S., Owens J., and North R., 1979; Skriver, C., 1979; Wherry,
R., 1974, Poock, G&. K.., 1980). Despite the 1lack of supporting data, a list of
advantages shall be presented for speech communication 1in general, and in a later
section for the application of speech 1in the cockpit environment. Many of these
arguments for speech are of the "common sense" variety and there are undoubtedly others
that could be added to them.

The most powerful reason for using speech is the fact that it is man's most natural
form of communications and does not require special training to learn. A second strong
argument tor wvoice 1is that it frees the hands and eyes for other tasks. Most of the
other advantages follow directly from these two. Figure 4 shows a list of advantages
of speech communication. The list has been divided into three sections: engineering,
psychological and physiological.

¢.4 VDisadvantages of Speech Communications

The disadvantages of speech communications should be considered carefully, It is
important to make a distinction between the drawbacks of speech communications in
yeneral and the limitations of current speech technology. The former is relevant in
speculating about the long-range possibilities of speech, and the latter is relevant to
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near-term concerns. The general aisadvantages of speech communications are shown in
Fig. %, and those associated with cockpit environments are discussed in a later
section. The aisadvantages of speech communications involve mainly the effects of a
nostile environment on the speech signal directly, or indirectly by a change of the
physical or emotional state of the speaker,

3.0 lssues ot Cockprt Applicatiuns of Voice-Interactive Systems

The use of volce-interactive systems offers the potential for solving critical
man-machine problems 1n the aircraft cockpit. These problems are severe in military
alriratt, and especlally in aircraft capable of high performance. In these aircraft,
(rew members are otten forced to cope with a very high workload, caused by inefficient
(rew member statiuns, poor asstgnment of operator tasks, and an overwhelming number ot
dvs,lass  anu yrglcators., In summary, the human operator is overwhelmed with too much

Vi turvaltun d¢na has too many visual/manual tasks to perform. There has been recent
attentice . atead un  using voice-interactive systems in the cockpit to reduce the

Lefalf wure 'ugd problem and solve other man-machine problems. All three services in
e .nited siales. many MATU countries and considerable industrial effort has addressed
‘v 4, 0 Tvstice ot speech technoloyy (Lane, N. E., and Harris, S. D., 1980; Coler,

=L .9s., Nortn, K. A,, et al, lYBU; Wicker, J. k., 1980; Harris, S., et al, 1980;
W'+ e .. t.. .46i, Keed, L., 1981). Because this is a tutorial paper, the discussion
: ' - . 1 s~umitafy ot the relevant issues and not a detailed technical

30 oisadvanlayes ot Voice Interactive Systems in the Cockpit

w e wai 1 tuture high performance attack/fighter aircraft may exceed

i« ',y Intertace cdpabilities. Hence, a real-time voice interactive
“terligi sulutron as a method of augmenting current control/display
1 resait oot tnis realization, @ number of airframe manufacturers have
Latt.ry gnd experimental design in interactive voice command/feedback
¢ sevdal tignter aircraft,

‘v, . eas,erienced military pilots were questioned regarding the idea of
c.ts. vy tyr tighter aircratt. In one study, (Ruth, J. C. et. al.,
mefe  asked to rate, on a scale of zero to ten, the use of voice command

veate. tur nign pertormance military aircraft; zero, of course, represented
v “le wl..e 1dea” 4and, ten represented “sounds great." These pilots were opposed
A ..V v .umitany tor Tmportant decision making functions such as firing weapons,
- 4wy . w_wil an¢ control trim, However, they were in favor of mode selection

T, t.r.tiees sulh as radio channel selection, TACAN ILS, radar, bomb/NAV mode
se . tuliot gt lbb,transponder setup. Some early results indicate that voice command
Lruti.ry  ar ! pe directly substitutea for control/display interfaces in a fighter

avroratt,

I, auditiun tu tne above, the ~ilitary aircraft environment levies a number of
accttiural  reyuirements on automatic recognition subsystems (voice recognition
gevices ;. o>ume of these reyuirements are listed in Table 1.

TABLE 1
Uxygen Mask High Ambient Background Noise
Microphone Preselected Vocabulary
Physical Stress Non-robust words
tmotional Stress Human Error
Vibrational Effects Uverall reliability
Complexity Cost, Size/Weight

tyntax

The requirements listed in Table 1 cause specific technical problems such as word
pboundary detection, memory requirements, small space, noise stripping and voice
inconsistencies,

Questions arise as to whether training should be done with pilots wearing oxygen
masks under actual flight conditions (different G-levels, enygine power levels, canopy
on-ott). Types of signal input to system must include the atfects ot requlation,
inhaling, exhaling, etc. Kesults have shown that because bredtn and background noilse
cause drop offs at the ends of words, an end point detector bas¢d on eneryy level can't
be used, hence more sophisticated automated end point detection 15 reguired.

3.2 Speech Synthesis 1in the cockpit
Military aircraft appl.cations ot speech synthestis systems have 4also been

investigated especially for caution and warning messages. Some ot  these gpplications
are tistea in Table 2.
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Table 2
Applications ot Speech Synthesis Systems

Voice Warning

Time-to-Go Countaown

Fault List Feedback

Way Point Announcement

Voice Response for Specific Request System Data
Audio Feedback to Voice Commands

A few problem areas resulting from speech synthesis in a nigh performance aircraft are
specific message selection and corresponding voice quality. These synthesis systems
must be aware of pilot safety, sound level variation for different noise levels,
potential interference with other audio communications, cognitive and attentional
aemands.

It can be said there is general agreement that voice command, control and synthesis
systems can provide the military aircrews with a useful adjunct to conventional control
anda display interfaces and provide warning and status data via speech synthesis,
However, in order to apply this technology, many behavioral and human factors problems
must be solved as well as some very difficult technical speech recognition issues.
Clearly, the question of complexity and overall reliability of a voice interactive
system in an aircraft environment must be addressed.

4. Uther Military Applications of Voice Processing Systems.
(Beek, B., et.al., 1977, 1978, 19482)

l. Digital Narrowband Communications Systems.

Air Force tactical communications are being required to operate 1in increasingly
aifficult and hostile situations. Requirements are being levied on spread spectrum
communications systems to provide increased communications capacity, multiple access,
and tactical conferencing., Higher degrees of jam resistance and a lower probability of
intercept are required in the already overcrowded, dynamic channel, and rapidly
changing signal and interference environment. (See Fig. 6)

These increased requirements stress using existing frequency hopped, pseudo noise,
voice FH/PN spread spectrum communications systems and ordinary HF and VHF radio
systems. Systems being considered 1in exploratory development address these demands
aggressively with a combination of Speech Processing, Adaptive Speech Processing,
Adaptive Signal Processing, and VHSIC type microcircuitry.

Presently, the standard method of voice digitization being used is 16 kilobits
CVSD. For advanced applications 2400 bit/sec LPC based systems are completing the
developmental process. The 2400 bit/sec LPC system provides a factor of 6.66 reduction
in input data rates which of itself would allow that many more channels 1in a
communications bandwidth or a factor of 8 db increase in processing gain.

Recent research has produced sufficiently intelligiole demonstrations of advanced
exploratory techniques which are capable of digitizing continuous Speech and retaining
a degree of speaker recognition at rates down to 400 bits/sec. An additional factor of
6 increase over "“standard" LPC is obtained providing that many more channels or another
8 db increase in processing gain. Total gain that can be achieved here is 36
additional channels or 16 db increase in processing gain for the potential AJ systems.

Isolated word recognition can further reduce the transmission rate to about 80
bits/sec for the limited vocabulary case. Basic research 1is presently underway
applying artificial intelligence methods to achieve continuous speech recognition with
fess iimited vocabularies. Fig 7 shows a simplified listing of the state-of-the-art of
voice digitization system and limitations. Another factor of 5 is obtained here, with
a corresponding 7 db increase in processing gain. Total gain that can be achieved is
180 adaitional channels or a processing gain advantage of 22 db.

Unfortunately, it becomes correspondingly more difficult to realize these gains in
practice, For example, the total delay incurred in going through the speech
processor/synthesizer combination grows as the degree of sophistication of the
processor increases. For the intermediate state of voice compression the challenge is
to achieve delays below 100 msec. For word recognition systems, delays of up to 250
msec. are not acceptable. Additionally, the longer integration times required for the
longer bit times and the higher anti-jam requirements in many cases exceed the
coherency of the <channel. Electromagnetic compatibility demands consideration of
shorter transmissions implying the wuse of Jlower duty cycle transmissions. The
resulting loss in transmitted energy per bit requires an increase in the peak power of
the transmitted signal not desirable for 1low detectability considerations. The
incoherency of the channel taken together with the shorter pulse times will necessitate
the use of incoherent <combining techniques incurring additional losses. Finally,
cockpit noise and speech distortion can increase the difficulty in successfully
digitizing the speech information.
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Fortunately, the application of advanced signal processing techniques can minimize
the losses incurred. Adaptive signal processing and signal encoding techniques are
being applied by current RADC development programs to achieve even more jam resistance
and interterence suppression than can be achieved by input data compression .echniques
taken alone., Noise suppression and speech analysis efforts are showing great promise
in solving the practical cockpit speech input problem., Additionally, basic research is
being conducted to make practical the use of word recognition techniques for
applications where the speech processing delay does not pose an unacceptable factor in
the communications system design,

The RADC in-house program (HF Terminal with ECCM Modem, Speech
Recognition/Synthesis) demonstrated a combination of techniques which provide anti-jam
(AJ) voice communication over radio channels whose bandwidth ordinarily supports only
conventional non-AJ voice (Beek, B., 1982). Moreover, this combination also provides
enhanc2d .eliability under noisy (but unjammed) channel conditions. The voice source
encoding employs special codes to represent phrases and in some cases, sentences, and
thus provides a certain significant amount of data compression. This type of system
will narros the bandwidth requirements for voice communication to approximately 80 Hz
and will provide 15.7db anti-jam margin. This compares very favorably with analog
systems that require a bandwidth of 3000 Hz and has no anti-jam margin. Low data ratc
systems have the disadvantages of vocabulary size restrictior, word rate restrictions,
ana loss of speaker identity, but the advantage of increased intelligibility may
vutweigh the disadvantages for certain applications. As connected speech recognition
systems are developed, vocabulary size and word rate restrictions can be minimized.

5.0 Automatic Speaker Verification/Identification

Speaker Verification. The objective of this program is to develop automated
methods of identity verification for the purpose of providing controlled access to
secure areas. (See Fig., 9) For many years, RADC has supported the development of a
method of entry control using speech as the personal attribute. The Automatic Speaker
Verification (ASV) System has proved to be highly reliable (over 99% accurate) at
verifying individuals' identity and detecting imposters.

An Advanced Development Automatic Speaker Verification System was fabricated,
tested, and evaluated for entry control using a person's voice as a personal attribute
for secure access control. Under this effort, algorithms were implemented on three TI
900 minicomputers, which were operationally tested for six months at the entrance of
the Semiconductor building at Texas Instruments, Dallas Texas. A total of 286 wusers
(200 men and 86 women) provided 13,539 accesses. A Type I error rate (true speaker
rejection) of less than 1.0% was achieved. Off-line tests on casual impostors provided
a Type Il error rate (impostor acceptance) of less than 1.0% with a confidence level
yreater than 90 percent.

A study of speakers using an LPC-based prediction residual was also investigated
under this effort. This study provided a magnitude of improvement in performance which
exceeds the goals of this effort. Future work in this area 1is to implement an
LPC-based speaker verification system.

Speaker Identification. This problem is similar to the speaker verification
problem except no prior identity claim is made by the wunknown speaker. Speaker
identification is the harder problem for several reasons (See Fig. 10):

a. The speaker may be uncooperative;
b. The quality of the communications channel may be poor;
¢. There is no control over the spoken text by the communications analyst;

d. The wunknown speaker may or may not be a member of an original set of
speakers; and

e. The recording and/or <channel conditions may be different for speech
coliected tor reference and test samples.

An exploratory development program to do speaker identification was recently
concluded (See Fig. 11). The goals of the effort were to recognize any one of 30
unknown male talkers, using as little as ten seconds of reference and test speech data,
in real-time as shown in Fig. 12. All goals of the effort were met or exceeded.
These encouraging results were achieved by use of an algorithm originally developed by
Markel, which uses ten Linear Prediction Codes (LPC) coefficients that are averaged
over the entire recognition period. A follow-on effort is planned which will attempt
to improve human factors aspects of the speaker identifications system and to improve
recognition accuracy under noisy (10db or less SNR) channel conditions.

b. Speech Enhancement
The wuse of Automatic Speech Recognition (ASR) to reliieve flight crew workload and

to provide narrowband communications for airborne operations is highly desirable.
Unfortunately no ASR system exists that «can cope with the harsh, noisy airborne
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environment. Current commercial ASR equipment has not been designed to operate in the
airburne environment, For this vreason a considerable amount of attention has been
given to reducing the effects of the airborne environment on ASR.

There are many environmental effects that cause poor operation of an ASR system in
the aircraft environment. Some of these effects are aircraft noise, breathing noise,
operator stress, operator fatigue, effects of gravitational forces on operator's
speech, etc. Although all of these environmental effects must be reduced, much
attention has been given to reducing the acoustic noise generated by the aircraft. The
level and characteristics of this noise can vary considerably, depending on such
conditions as type of aircraft, location of the ASR microphone, facemask or no mask
operations, and status of aircraft,

The areas of concentration in reducing the effects of this noise have been in the
development of more robust recognition algorithms and the development of techniques to
reduce the acoustic noise before recognition processing begins. OUne area which has
generated some interest for removing aircraft noise has been the area of speech
enhancement, Some of the problems with these techniques have been high spectral
distortion, limited noise adaptation, and distortion <characteristics that wviry with
input signal noise level and spectral shape.

Rome Air Development Center (RADC) has been developing speech enhancement
technolugy to improve the quality and intelligibility of speech signals that are masked
and interfered with by communication <channel noise. RADC's interest 1in speech
enhancement is not only in improving the quality and intelligibility of speech signals
tor human listening and understanding but to improve speech signals for machine
processing as well, Speech technology such as speaker identification, language
recognition and keyword recognition being developed by RADC requires good quality
siynals in order to provide effective results. The development of automatic, real-time
speech enhancement technology is therefore of high interest to RADC. This technology
is required to improve the quality of degraded speech signals to an acceptable level
for these systems.,

txploratory development work at RADC has led to the development of an Advanced
Uevelopmental Model enhancer called the Speech Enhancement Unit (SEU) (See Fig 13).
This unit, which wuses a high speed digital array processor in conjunction with time,
trequency and root-cepstral algorithms, provides an on-line, real-time capudility to
remove frequently encountered communication channel interferences wit{. minimum
degradation to the speech signals. The types of interferences or noises removed can be
classea into three groups; (1) impulse noises such as static and ignition noise, (2)
narrowband noise which includes all tone-like noises, and (3) wideband random noise
such as atmospheric and receiver electronic noises. Tests have shown that the SEU can
reduce all of these types of noises simultaneously while improving both the quality and
the intelligibility of the speech signal. The capability to remove both narrowband and
wideband random noise without degrading the quality of the speech signal may make these
speech enhancement techniques applicable to improving the performance of Automatic
Speech Recognition (ASR) in the airborne environment. The SEU's ability to remove
narrowband types of noises automatically and in real-time by as much as forty (40)
decibels would allow the removal of such aircraft noises as power converter hums,
periodic aircraft vibrational noises, aircraft compressor noises, and other rotational
noises associated with the engine. Since the noise removal process causes little
distortion to the speech signal and removes a minimum amount of the speech signal, this
spectral noise removal process should remove all narrowband noises without having
agetrimental effects on the recognition accuracy of the ASR system.

The StU's ability to remove wideband random noise automatically and in real-time
may allow the removal of much of the unstationary noise generated by the aircraft. An
example of the noise removal process is shown in Fig. 14, The wideband noise removal
process is a root-cepstral process that can improve the signal-to-noise ratio of noisy
communication channels as much as 12 to 14 decibels. An improvement of this amount in
the signal received at the input of an ASR system could improve the performance of an
ASR system vastly.

The wideband noise removal is a subtractive process that is accomplished in the
spectrum of the square root of the amplitude spectrum. While this function is not the
same as the cepstrum (the cepstrum is the spectrum of the log amplitude spectrum), it
resembles the cepstrum and is referred to as the root-cepstrum. In this method of
noise reduction the average root-cepstrum of the noise in the input signal is updated
continually and subtracted from the root-cepstrum of the combined speech and noise,
Because the random noise concentrates disproportionately more power in the low region
of the root-cepstrum than does the speech, the subtracted reconstructed time signal
produces an enhanced speech signal.

There are two reasons why this technique of wideband noise removal is encouraging
for the successful removal of aircraft noise for ASR. First the noise removal
technique wused is independent of the spectral shape of the noise. This indicates that
the enhancement unit should theoretically adjust to the aircraft noise. The second
encouraging reason is that the enhancement transformation used, unlike the spectral
subtraction methods which can cause high distortion, causes very little distortion to
the speech signal which is important to the recognition accuracy of any ASR equipment.
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The SEU's capability to reduce narrowband and wideband noise without causing
aistortion that is detrimental to the human listener (see Fig. 15) may be used to
improve the recognition accuracy of ASR equipment in a noisy airborne environment. For
this reason RADC 1is planning a series of carefully controlled tests. The tests will
utilize two speech recognizers in conjunction with the SEU. The effects of various
types of noise and on the recognition accuracy of these ASR systems will be determined
with and without the enhancer, Preliminary results for an LPC Based Recognition System
are shown in Fig. 16.

7. Voice Control & Data Entry Systems

A Voice Uata Entry (VDE) system was designed for use in entering voice cartographic
data to the Vigital Landmass System (DLMS) data base. The first Voice Data Entry
system was installed at the Defense Mapping Agency Hydrographic Center (DMAHC) (See
Fig, 17). Tnis allowed the user to enter depth information found on the map 1into a
computer as shown in Fig. 18. This information was sorted along with the map
coordinates of the particular depth readings. The vocabulary for this study included
the digits plus a few control words. Results from this effort showed, for a limited
vocabulary scenario where the operator had been sufficiently trained in system
operation, that voice data entry was faster than a manual method of keyboard entry for
both a skilled and unskilled operator. This effort also revealed an indepth study of
error correction procedures, methods of system training, and operator familiarization
procedures would be required in order to increase the efficiency of future Voice Data
Entry Systems.

The seconda effort was the design and testing of a Voice Data Entry (VDE) system
which would serve to input cartographic data to a computer. The system was installed
at the Defense Mapping Agency Aerospace Center (DMAAC), for test and evaluation. The
VUOE system is intended for use in entering, by voice, cartographic data to the Digital
Landmass System (DLMS) Data Base. The VDE system developed had the capability of
recognizing up to 248 separate words in syntactic structures.

The two systems described are isolated utterance speaker dependent systems. For
inputting a string of words, this requires a distinct pause between each word. Tests
have shown that isolated word systems are three times slower, and more frustrating than
normal voice data entry. This increases errors and further decreases the data entry
speed., However, in many applications the emphasis is to input <connected digits and
isolated words or phrases. In these applications many of the functions/commands have
been reduced to a set of digit codes well understood by the analysts.

Presently RAUC is developing an Advanced Development Model (ADM) Voice Data Entry
System to satisfy UMA's operational requirements for automated compilation of the
Feature Analysis Data Table (FADT) for DLMS operation. This system will incorporate a
limited vocabulary which may be entered in connected or normal speech, and an extended
vocabulary which will be entered in an isolated speech mode.

RADC is also investigating voice interactive I/0 algorithms to 1input a Jdimited
vocabulary spoken in continucus text into a computer with a voice synthesis feedback
capability. The algorithms shall be capable of recognizing a 300 word, syntax
independent vocabulary. The recognition shall be done in real time using a pretrained
reterence library.

Automatic Speech Data Entry Systems have application to many Air Force command,
control and communication problems, However, the cost, size, weight, and power
consumption of these devices must be reduced for many applications. RADC is «currently
looking at Very Large Scale Integration (VLSI) technology and microprocessor technology
as a means of reducing cost, size, weight, and power consumption of VDE devices (See
Fig. 19).

8. DUV and NATU Advisory Groups on Voice Technology

At the present time, two major military automatic speech recognition and technology
groups are pursuing active technical «coordination, data exchange and cooperative
research projects. The first 1is the DUD approved Voice Technology for Systems
Applications Sub-technical Advisory Group (VSTAG). The purpose of this VSTAG 1is to
pruvide a forum for technical interaction between scientists and engineers at the bench
level. Included as representatives to the VSTAG are members of the Air force, Army,
Navy, NASA, FAA, Post Uffice and NSA research laboratories that are engaged in speech
processing applications, Table 3 lists the members of VSTAG.

The second is the NATU AC/243 Panel 111 Research Study Group (RSG)-10 for Speech
Processing., The first meeting of RSG-10 was held in Paris, France in May 1978,
Meetings are held twice a year and are rotated among the member nations. The technical
objectives of RS$SG-10 are generally to review speech processing topics of military
relevance in order to recommend specific research projects to be <carried out
cooperatively among the member nations. Member nations include Canada, France,
Germany, Netherlands, United Kingdom and the United States. Table 4 is a 1list of of
RSG-10 participants.
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TABLE 3
Army

ARl Army Research Institute

tTL Engineering Topographic Laboratory

AVRADA Avionics Research Development Activity Human Engineering Lab
Communicative Technology Uffice

Navy

NAMRL Naval Aerospace Medical Research Lab.
NADC Naval Air Development Center
ONR Uffice of Naval Research

NOSC Naval Ucean Systems Center

NPGS Naval Post Graduate School

NATC Naval Air Test Center

NNMC National Naval Medical Center
NWC Naval Weapons Center

NASC Naval Air Systems Command

NTEC Naval Training Equipment Center
NPRDC Navy Personnel R&D Center

Air Force

AFAMRL Aero Medical Research Lab.

RADC Rome Air Development Center

AFWAL Air Force Wright Aeronautic Lab
AFIT Air Force Institute of Technology

Uther Government Agencies

IRS Internal Revenue Service

USDA Dept. of Agriculture

NBS National Bureau of Standards ;
NSA National Security Agency

UUSURE Office of the Under Secretary of Defense for Research Engineering
NASA Ames Research Labs
US Public Health Service

FAA federal Aviation Administration
TABLE 4
Mr Jdohn S. Bridle UK (Chairman)
Dr M. Martin Taylor Canada (Secretary)
Dr Harmut Mutschler FR Germany (Delegate)
Mr Patrice DesVergnes France (Delegate)
Ur Harman J, Steeneken Netherlands (Delegate)
Mr Richard S. Vonusa USA (Delegate)
Dr Helmut Mangold FR Germany (Specialist)
Dr Joseph J. Mariani France (Specialist)
Dr Melvyn J. Hunt Canada (Specialist)
Or Roger K. Moore UK (Specialist)
Dr Robert Breaux USA (Specialist)
Dr David Pallett USA (Specialist)

Y, Future Direction

Since its inception, research in automatic speech recognition (ASR) has progressed
to the point where military application can be a reality. Man's most natural means of
communication will be the future method of interaction with man's machine. Progress
has been slow but steady and excellent success has been demonstrated on isolated word
recognition devices and speech synthesis devices to make them practicable for military
use. This has increased the interaction among scientists of various disciplines
including interchanges - interaction 1in acoustic-phonetics, 1linguistics, signal
processing, etc., In fact, as we have seen, international participation in the solution
of numerous ASR problems is at hand.

However, although we have come a long way we still have a long way to go.
Presently, we are too strongly focused on applications to extend the minimal support
given to a number of fundamental issues. In fact, before ASR can even approach human
performance, we still need significant advances in acoustic-phonetics relationships and
English phonology.
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ENGINEERING

v

1. CAN BE FASTER THAN OTHER MODES OF COMMUNICATIONS

2. CAN BE MORE ACCURATE THAN OTHER COMMUNICATION
MODES »

3. COMPATIBLE WITH EXISTING COMMUNICATION SYSTEMS, '

1 E.G. TELEPHONES T

- 4. CAN BE MORE ACCURATE AT TASKS CURRENTLY ]

- PERFORMED BY HUMANS, E.G. AUTOMATIC SPEAKER -

F VERIFICATION vs IDENTITY VERIFICATION BY HUMAN ]
VISUAL INSPECTION

; 5. CAN REDUCE MANPOWER REQUIREMENTS

i 6. CAN BE MOST COST-EFFECTIVE MAN-MACHINE INTERFACE

L PSYCHOLOGICAL

1. MOST NATURAL FORM OF HUMAN COMMUNICATION
2. BEST FOR GROUP OR TEAM PROBLEM SOLVING »
3. UNIVERSAL (OR NEARLY SO) AMONG HUMANS & REQUIRES
NO TRAINING
4. CAN CONTAIN VALUABLE INFORMATION REGARDING BRI
EMOTIONAL STATE OF SPEAKER e
5. CAN REDUCE VISUAL & MOTION INFORMATION OVERLOAD L
6. CAN REDUCE VISUAL & MOTOR WORKLOAD
7. INCREASES IN VALUE PROPORTIONAL TO COMPLEXITY OF
INFORMATION BEING PROCESSED
8. CAN REDUCE ERRORS FOR TASKS INVOLVING CONSIDERABLE
COGNITIVE (AS OPPOSED TO PERCEPTUAL) EFFORT

PHYSIOLOGICAL

1. REQUIRES LESS EFFORT & MOTOR ACTIVITY THAN OTHER ... ..
COMMUNICATION MODES

2. FREES EYES & HANDS & DOES NOT REQUIRE PHYSICAL o | -
CONTACT WITH TRANSDUCER o

3. PERMITS MULTI-MODAL OPERATION

4. POSSIBLE EVEN IN DARKENED ENVIRONMENTS 4 3
. 5. OMNI-DIRECTIONAL & DOES NOT REQUIRE DIRECT LINE OF ]
- SIGHT ]
[ 6. PERMITS CONSIDERABLE OPERATOR MOBILITY
o 7. CONTAINS INFORMATION ABOUT IDENTITY OF

Lo COMMUNICATOR . jﬂ
i 8. CONTAINS INFORMATION REGARDING PHYSICAL STATE OF ]
- THE COMMUNICATOR 4
: 9. SIMULTANEOUS COMMUNICATIONS WITH HUMANS & ’
E 7 MACHINES u
e ’ @1
i

Fig.4 Advantages of speech communications
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COMPETING ACOUSTIC SOURCES MAY INTERFERE WITH SPEECH.
THESE INCLUDE NOISE, DISTORTION, & OTHER TALKERS

VARIETY OF PHYSICAL CONDITIONS CAN CHANGE ACOUSTIC
CHARACTERISTICS OF SPEECH, INCLUDING VIBRATION, G-FORCES,
& PHYSICAL ORIENTATION OF SPEAKER

HUMAN FATIGUE CAN RESULT FROM PROLONGED SPEAKING &
FATIGUE MAY CHANGE SPEECH CHARACTERISTICS

PHYSICAL AILMENTS SUCH AS COLDS MAY CHANGE SPEECH
CHARACTERISTICS

SPEECH IS NOT PRIVATE & MAY BE OBSERVED BY OTHERS

NO PERMANENT RECORD OF SPEECH UNLESS RECORDED EXPLICITLY
(NOT TRUE OF TYPING)

PSYCHOLOGICAL CHANGES (STRESS FOR EXAMPLE) IN SPEAKER MAY
CHANGE HIS SPEECH CHARACTERISTICS

MICROPHONES REQUIRED FOR SPEECH INPUT, ACOUSTIC SPEAKERS
FOR SPEECH OUTPUT

SPEECH SYNTHESIS MAY INTERFERE WITH OTHER AURAL INDICATORS

SPEECH SYNTHESIS MORE SERIAL INFORMATION CHANNEL THAN
VISUAL DISPLAYS & CAN BE SLOWER

Fig.5 Disadvantages of speech communications

LIMITED CHANNEL CAPACITY

BEYTER NOISE IMMUNITY

INCREASED JAM-RESISTANCE

COST ADVANTAGES

Fig.6 Bandwidth reduction needed because:

UNDER 200 bps SYSTEMS
® SPEAKER DEPENDENT

¢ LIMITED VOCABULARY

200-400 bps SYSTEMS
® SPEAKER INDEPENDENT

¢ UNLIMITED VOCABULARY

Fig.7 State of the art
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Fig.9 BISS in-house test facility




GENERAL CONSTRAINTS

TEXT - INDEPENDENCE

UNCOOPERATIVE SPEAKERS

BAND - LIMITED & NOISY COMMUNICATIONS CHANNELS

CHANNEL CONDITIONS MAY VARY FOR SPEECH
COLLECTED FOR REFERENCE & TEST SAMPLES

OPERATIONAL CONSTRAINTS

MUST OPERATE ON - LINE & IN REAL - TIME

SPEECH SEGMENTS AVAILABLE FOR REFERENCES &
UNKNOWNS MAY BE VERY SHORT

MUST WORK RELIABLY FOR SEVERAL LANGUAGES

Fig.10 Speaker authentication problem

SYSTEM OPERATION

— OUTPUT
GROUP OF UP TO SPEAKER SPEAKER CONFIDENCE
30 KNOWN. UNKNOWN 'DENT;f('SCT':RON SPEAKER A 90%
SPEAKERS
SPEAKER B 25%
SPEAKER C 82%
SPEAKER D 74%
HUMAN
FEATURES:

* HUMAN HAS OPPORTUNITY TO OVERRIDE MACHINE'S DECISION
* HUMAN MAY UPDATE FILES WHEN HE DESIRES
* HUMAN MAY LISTEN TO MOST RECENT SPEECH DATA FOR ANY SPEAKER

* OPERATION IS REAL-TIME, ON-LINE, CONTINUOUSLY

Fig.11 Speaker identification
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) WIDEBAND NOISE BEFORE SPEECH CONTAMINATED
ENHANCEMENT WITH WIDEBAND NOISE
b » : ;’l
; , !'ﬂw !% i ]
il il Nt oL Lol .
==g§== . “‘.f
- Y O S 0
B i
o INEN >
F AFTER ENHANCEMENT AFTER ENHANCEMENT
- . R
r. Fig.14 Wideband noise removal process ® o
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Fig.15 Speech enhancement test results :
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INCREASE OPERATOR PRODUCTIVITY
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SEMI-AUTOMATIC MONITORING
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Fig.20  Tactical speech signal processing
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The Speech Signal

Melvyn J. Hunt

National Research Council of Canada
National Aeronautical Estalilishment
U686, Montreal Road
Ottawa, Ontario
K1A OR6
Canada

Summary

This talk is intended to provide an introduction to the speech sig-
nal with particular emphasis on the recognition of spoken mes-
sages. In an attempt to clarify its nature, speech is compared with
two other kinds of signal. Some properties of words and phonemes
are considered, and it is concluded that, unlike many artificial
message-bearing signals, speech cannot be considered as a simple
sequence of independent message units. A speaker adjusts the
amount of information in his speech to suit his listener, and the
listener carries out an active reconstruction of the message from
the information available to hirn. Turning to recognition by
machine, the use of syntactic constraints is first discussed, fol
lowed by a look at three kinds of approach to the analysis and
representation of speech for recognition purposes. A brief account
of speech production is provided in order to explain the motivation
for production-based representations. This is followed by a look at
how knowledge of auditory perception has been incorporated into
recognition systems. Finally, some purely pragmalic approaches
are discussed, and it is argued that success here generally corre-
lates with simplicity.

Introduction

This session is concerned with the nature of the speech signal itself: the signal that
allows one human being to communicate to another whatever message he consciously
chooses to express, with no external aids and usually with very little effort. As such, it
is the session furthest removed from applications of speech technology. 1 am assuming
that you, the audience or the readers of the proceedings, are mostly not spcoech spe-
cialists but rather people interested in how speech technology can be used. 1 am
therefore not going to try to give you a comprehensive account of speech production
or phonetics or linguistics. Instead, I want to put to you a few general ideas about the
speech signal. My hope is that these ideas may provide a clearer picture of whal peo-
ple trying to make speech recognizers are up against, which recognition tasks arc
difficult and which relatively easy.

Before I start, | should mention a problem often faced by speech researchers in
describing their work: if this lecture series were about some newly developed or newly
discovered signal we could address an audience free of preconceptions, ready to
accept whatever we had to tell them. But everyone can speak, and so everyone already
has some strong subjective ideas about the speech signal. What is worse, most people
can read, and their knowledge of the written representation generally has a strong
effec’. on how they think of the spoken signal. I will come back to this point later. For
the moment, perhaps you might try to forget that you can speak or read.

What sort of a signal is speech?

In trying to answer this question, I think it is helpful to start off by considering two
other types of signal that speech is sometimes grouped with. The first is a class of sig
nals that are subjected to image processing. To be specific, let us choose a satellite
image of a portion of the earth. Such an image has the obvious difference that it is
two dimensional while the speech signal is effectively one dimensional. The more
important difference, though, is that the satellite image is not a communication: it
contains inforration but it does not contain a message. The very same image might be
used to study the vegetation of an area or to try to spot missile silos, but presumably
the image processing techniques appropriate for the one task would be quite different
from those appropriate for the other. Thus, image processing tends to be a loose col
lection of techniques with diverse goals. Depending on which field we want to flatter,
we can describe the automatic speech recognition problem as more limited or as
more coherent than image processing.
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The image processing problem we just discussed is rather like the problem in the ‘

yo speech field of determining the identity or the emotional state of a spcaker from a :
e speech sample, since we Lhe receivers are deciding what information we want o derive !
F from the signal rather than trying to extract the message being intentionally supphied !
e by the speaker. The rest of this session, hewever, and indeed most of this whole .
series, is concerned with the problem of recognizing or efficiently transmitting the - -

intended message, not Lthe side information that may come with it. o 'i

The discussion that follows also excludes certain kinds of social communication such 3

as "Hello, how are you?’, where the speaker is not so much enquiring into the state of S .4-.-1

health of the listener as making a semi voluntary announcement of his feelings and : ‘]

relationship to the listener. This use of speech seems similar to Lthe way in which a o

dog might bark a greeting at its master or a threat at an inlruder. [t is not what
makes human speech special, and it is not of primary interest in communicating with
machines.

The sccond kind of signal I would like to have you consider is a man made artificial
communications signal. We could take as a specific example another oplically derived
signal like the output of a scanner reading product codes in a supermarketl, but 1
think a belter one is provided by an h.f. radio transmission carrying teleprinter text.
In this example, there is quite clearly a message, and the message is laid out sequen-
tially in time or space just like speech. The similarities to speech are obvious; the
differences much less so, but Lhey are nonetheless large and | want to Ltake some Lime
to look at them.

The artificial signals in our examples are composed of a sequence of units, the units
being selected from a definite, known set that I want to call an alphabet. The units in
a message are generally well separated from each other, and they do not interact.
The decoding device usually has available to it in some form an ideal, undistorted
representation of the alphabet, and decoding consists mainly of trying to identify the
received units one by one using its built-in knowledge of the ideal forms.

¥Yords

What is the equivalent of these units for the speech signal? I contend that there is no
single exact equivalent. Perhaps the closest candidate is the word, but words differ in
several major respucis from our artificial units.

First of all - notwithstanding our prejudices from the written form of language - spo-
ken words do not in general have gaps between them. Indeed, there are no consistent
acoustic cues of any kind to word boundaries. What is more, not only are words not
well separated from each other, they often interact at their boundaries. For instance,
"bread board” is often pronounced in fluent English in a way that we might write as
"breab board”, and "this shop” as "thish shap”. There is a more extreme example in
French in Lhe phenomenon of liaison: "ils ouvrent” (they open) sounds different from
"il ouvre” (he opens) because we hear the "s” of ils in the first case. But it takes the
initial vowel in ouvrent to bring the "s" to life: the corresponding expressions for clos-
ing - "ils ferment” and "il ferme"” - do not have any distinction in their pronunciation.

v

Next, we know of no ideal reference forms of words: any normally pronounced version
of a word is as good as any other, and no two productions will ever be exaclly the
same. [n particular, words differ in their prosodic features (intonation, timing and
loudness) depending on their function in a sentence. Even in such a prosaic utterance
as a list of digits, the final digit differs markedly from the others, being typically 60%
longer and having a falling intonation. When people try to generate synthetic sen-
tences by recording words in isolation and playing them back unmodified in a
sequence, the result is disastrous - each word is perfectly clear, but the sentence is
almost impossible to follow.

Despite these problems with words, most of the more successful and practical con.
nected speech recognizers have been word-based. As will be explained clsewhere, ways
have been found to ignore prosodic differences and concentrate on the phonctic iden-
tity of words.

Phanemes

When I suggested words as the best equivalent of the artificial communication units, 1
imagine some of you were surprised that [ did not choose phonemes. Such surprise
would be understandable considering the number of popular articles on speech tech
nology that talk about speech being made up of phonemes as though it were like lay

v T, T T T TR T T T e e LS A A T e - P A

- ing out bricks in a line - just like the symbols in our teleprinter transmissions, in fact.
E.: Proponents of phonemes might also point out that the phoneme inventory (just over
. forty in English) is much more manageable more alphabet sized than the enormous
E‘:- inventory of words in a language. Some people might also be influenced by the way .
a words are printed as a string of discrete context.independent letters. Despite all this, :
-4 I want to suggest to you that phonemes bear very little resemblance to teleprinter [ 2 - @
- symbols. If you would like a writing analogue for phoneme sequences, quite a good one k
; is provided by hastily scribbled handwriting, in which individual letters are hard to

o D
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isolate and depend for their form very much on the other letters around them.

A phoneme is defined as the smallest unit of speech within a word that when changed
results in a change in the meaning of the word. Thus, the English word tap diflers
from the English word cap in the position of the tongue at the start of the two words.
In tap the point of contact between the tongue and the roof of the mouth is just
behind the upper teeth, while in cap it is at a point quite far back in the mouth. We , .
can conclude that cap and tap must start with a different phoneme. We could have o .E
started with the tongue making contact in other places: it could have been directly L
behind the upper teeth like the "t" sound in eighth, or the tip of the tongue could have Co T
been curled back slightly like the "t” in tree. If we used either of these "t" sounds in ’ ;
our word tap we would no! get a new word, we would simply have tap with a slightly
non-standard pronunciation - we might not even notice that the word sounded odd if it
occurred in fluent speech. Yet those same "t sounds represent different phonemes
for some other languages. For speakers of such languages (which include several
languages spoken on the Indian subcontinent) the "t” variants presumably sound quite
distinct. In the same way, the English "I and "r” sounds in words like lap and rap,
which sound quite different to English speakers, do not correspond to different
phonemesin Japanese, so Japanese speakers have difficulty in making the distinction.

Phonemes, then, are not "speech sounds” in some absolute sense, they are a property
of the way a language gets coded in sound, and their phonetic realization is frequently
context dependent. Something interesting is happening in standard French right now
the vowel sounds in the digits deuzr and neuf used to be different phonemes, that is to
say, there existed at least one pair of words - jeflne and jeune are usually cited - that
differed just by the fact that the first had the deux vowel in it and the second the neuf
vowel. French speakers are increasingly using a new rule that says that the deur vowel
can occur only at the end of a word and the neuf vowel only at a non-final position in a
word. Thus the jeflne/jeune distinction is lost, and the two vowels have become
context-dependent allophones of the same phoneme. French has lost a phoneme, but
it has not lost a speech sound.

So far, we have established that phonemes do not correspond to a single speech R
sound, but perhaps we could say that it corresponds to a set of sounds. If by "sounds” - LT
we mean something we can hear and identify in isolation, the answer has to be no, or . .
at least not always. The English word do is made up of two phonemes /d/ and /u/ - .
(phonemes are conventionally written between oblique lines), but there is no way of ’ 284
pronouncing the /d/ without also pronouncing a vowel either before or after it. What is o
more, if we take a recording of do and listen to what happens as we shorten it by suc- R
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cessively chopping off more and more of the vowel, we never get to hear a /d/ in isola- T
tion: when we have shortened it enough that we no longer hear the vowel, we no longer ) 4
hear anything that we perceive as speech. 1
The picture of what a phoneme might be in acoustic terms gets even fuzzier when we E -

start to ask about the acoustic features a listener might use to decide what phoneme
sequence he is hearing. By using a speech synthesizer, researchers have been able to -
vary the properties of speechlike sounds and so investigate the phonetic cues that ST
listeners use. It turns out that listeners often do not depend on a single cue but rather -
weigh the evidence from several independent features. Some results have been partic- E 5
ularly surprising. For example, the words ones and once are normally felt to differ just
in their last phoneme, ones ending in the voiced phoneme /z/ and once in the e - F
corresponding voiceless phoneme /s/ (in voiced sounds the vocal cords act as a
quasi-periodic sound source; in voiceless sounds they do not); but it is possible to
s change a listener's judgment of which word he is hearing merely by altering the length
of the /n/ sound (a longer /n/ indicating ones), and indeed it seems likely that this is ] RERR
the most important phonetic cue in discriminating between these words in natural LY
» speech. Here we have an example, then, where the major distinguishing mark of a : -
’,'. phoneme is not only not what we would expect it to be, it is not even where we would o )
. expect to find it.

Moreover, some work carried out in England [1] has shown that cues to phoneme iden-
tity are not even entirely confined to the auditory channel: in appropriate cir-
r cumstances visual cues can be integrated into speech perception. The point has been

Lo convincingly demonstrated by synchronizing a recording of a stop consonant vowel

L_. sequence - e.g. "ba” wilh a video recording of a”person producing a different stop ® w:!‘
-

-

»

1)

»

S consonant followed by the same vowel - e.g. "ga”. The perception of the sound is
strongly modified by the conflicting visual cues - in the ba/ga example what is per . :
ceived is “da”’. The effect has perhaps to be seen to be fully believed: when | saw the
demonstration | "heard” a perfectly natural "da" whilever 1 watched Lhe screen; il N
reverted to "ba" as soon as | heard it while looking away from the screen.

I hope all this is beginning to convince you that speech cannol be considered as a 5
L@ sequence of speech sounds in the way thal the teleprinter transmission is a sequence o .j
> of teleprinter symbols.
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Fig. 1 A visual paradox: Cube with Magic Ribbons by M.C. Escher (courtesy M.C.
Escher Foundation, the Hague).

The active nature of speech perceplion

Before 1 go on, I would like you to look at the M.C. Escher drawing reproduced in Fig- ' ) SRR
ure 1. It seems paradoxical: among other problems that il poses, the circular objects

on the ribbon seem to flip from pointing outwards to pointing inwards. If we were able

to regard it as a meaningless pattern of different shades of grey on a flat piece of -@ -@
paper, there would be no paradox. But it seems all but impossible to restrain our ’

minds from atiempting to reconsiruct a three-dimensional object out of the pattern, . 1
even when such a reconstruction cannot be made to work. The picture illustrates the R 1

point that visual perception does not work simply by recording the light entering the S
eye, but rather by actively trying to "make sense” of that light. To give another exam- : -
ple, we can perceive the color brown, but there is no such thing as brown light: ' .
apparently our brain deduces the “brownness” of an object by comparing the quality @ -@
of the light reflected from the object to that of the light that our brain cornputcs to be o
striking the object. 1
1
!
i

1 want to suggest that our hearing is similar: it no more works like a microphone than

our vision works like a camera. In particular, listening to speech is not a passive

detection of an acoustic signal: it is an active reconstruction of the transmitted mes.

sage.

This reconstruction is so effective that we frequently do not notice that apparently - - -
important information is missing: until we have to deal with something unfamiliar like ]
an unusual name, we are hardly aware that it is not possible to distinguish between an ]
"s" sound and an “f” sound on the telephone; and synthetic speech in which all the i
voiceless sounds have been replaced by silence seems surprisingly normal, particu 1
larly if there is some background hiss that our brain can lake to be voiceless frica- 1

tives. @ -!4
It is the reconstruction that gives us such a firm impression that the speech signal - - 1
consists of a neat sequence of phonemes: it may indeed be possible to describe speech '
in this way, but only at a certain stage of processing in our brains, not at the level of 4
the acoustic signal. y
In reconstructing the speech message the listener can use information from several 1
different sources. We have already mentioned prosodic cues such as intonation that 1
generally indicate sentence structure, and phonetic cues that indicate word struc . @ ®:

ture. There are rules that govern the order in which words can be utlered in the syn
tax of a language, and other constraints labeled as semantics that provide that most
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sentences should be meaningful. Syntax and semantics are clearly linked, but they are
at least partially separable: Chomsky's sentence colorless green ideas sleep furiously )
is syntactically acceptable but meaningic¢cs, while Me Tarzan, You Jane breaks the 1
rules of standard Fnglish syntax but was nevertheless meaningful to the cinema audi.
ences that heard it. To our list of information sources we might also add external con .
text, that is, whether an utterance is germane to the situation, and whether it is the -— .
sort of remark the speaker frequently makes under his present circurastances. [ ] .1
Finally, the work with synchronized video recordings demonstrates that in some cir- : '
cumstances optical information is used in reconstructing the speech message.

This leads me to point out another way in which speech differs from the teleprinter
transmission, namely, the fact that speech has to be regarded as a radtilevel
sequence. Thus, words can be thought of as phoneme sequences, while they them

selves form part of word sequences making up phrases, which in turn make up sen ® ~@
tences. Evidence needed to understand speech is present at every level, and in all 1

probability the evidence at all levels has to be considered simultaneously if the mes ) 1
sage is to be understood. It is true that we could find much the same set of levelsin a
teleprinter transmission of meaningful text, but the levels are not so intimately :
mixed: in order to decode the individual teleprinter symbols we do not even need to 1
know what language the text is written in.

.
It is often said that speech is a very redundant signal. As evidence for this assertion, it » ~.;
might be pointed out that the same utterance can be understood either when it is
low-pass filtered at 1kHz or when it is high-pass filtered at 1kHz: the information in T
the lower part of the spectrum must somehow be duplicating the informaticn in the S

upper part. I believe this to be a fallacious way of looking at the speech signal. The

amount of information one needs in a speech signal depends on how skilled one is at

reconstructing the message: 1 need much higher signal quality to follow spoken French -
or German than I do to follow spoken English. To mangle a metaphor: redundancy is in »
the ear of the beholder.

This brings me to what is perhaps the most important point in this talk. It is that peo-
ple do not emit speech messages to be picked up by anyone who cares to listen, they

talk to someone. Although we as yet know too little about speech to be sure about o 1
this, it seemns likely that a speaker puts just enough cues into his speech to allow his R .i
listener (or imagined listener in the case of, say, a radio broadcast) to be able toc com- .

fortably reconstruct the message from the evidence available. Thus, when we are | N8 «*’*

saying something that is difficult to follow, or when we are speaking to someone we
believe to be foreign, deaf or senile, we supply more phonetic information than we
would in a relaxed conversation with a friend. Elision of phonetic information, such as
when we say fish 'n chips, is often described as being due to laziness, but I would
argue that it is part of a rational strategy for the economical use of a communications

link: it would be lazy only if the person at the other end of the link were obliged to Y ._.J
make an unreasonable effort to reconstruct the message. Depending on the cir- -
cumstances, overarticulation can be just as inappropriate as underarticulation: it can ST
sound stilted, irritating, even insulting when the listener feels it to be unnecessary. ST

To summarize my account of the speech signal so far, I have tried to argue that it is
different in nature both from the messageless signals we considered first and from .
machine-generated message-bearing signals like the teleprinter transmission. It is a

signal from which a message may be reconstructed using information drawn from [ .J’J
many sources, both information at various levels in the signal itself and information

stored in the mind of the listener. The amount of information that the speaker puts
into the signal depends on the difficulty that he imagines the listener will have in

reconstructing the message from it. R
The speech signal and speech recognition b
I would like to turn now to considering the speech signal more specifically in relation P . !1
to automatic speech recognition. 1
T : . int

Because we are directly aware of speech only after it has been subjected to extremely o '-\1

sophisticated processing involving information from several sources, it is all Loo easy

to underestimate the difficulty of deducing a spoken message purely from the acous- S
tic signal. In particular, there is a danger of expecting to find products of a high level L -
analysis of speech such as phonemes to be present as clearly identifiable enlilies in

the acoustic signal. Presumably, it was false impressions such as these that

influenced the author of a recent market study of speech technology [2] when he

predicted that commercially viable voice activated typewriters would be available in

1987, the limiting factor, according to him, being the cost of memory to slorc a large

vocabulary.

L= - It is not clear to me that it would ever be possible for a machine to recognize unres »
tricted speech with high reliability purely from the acoustlic signal - it is, at besl, like
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asking a human listener to transcribe accurately a language he does not understand
Accurale transcription of unrestricted text probably requires both a knowledge of the
syntax of the language and a comprehensive knowledge of the world Present day
practical systems limit the difficulty they face either by having a small vocabulary or
by having a larger vocabulary but with a syntax thal limits the choice of words thal
can follow a previous word or sequence of words. For it 1s, of course, the number of
choices that the system has to discriminate between that determines the difiiculty of
a recognition task not the total number of words it has to recognize. To give o trivial
example, the task of recognizing the two.word vocabulary Paris and lLondon 1s made
easier if we go to a four word vocabulary by including the words France and England
together with a syntax that requires that the city must be followed by its correspond
ing country.

Some of the most ambitious systems using syntaclic and semantic constraints were
constructed as part of the ARPA Speech Understanding Project [3]. Systeins were
devised that had "knowledge” of a small subset of the syntactic structures possible in
English and an "understanding” of a small universe (such as facts about ships). Since
that project ended in 1976, however, there seems to have been a considerable reduc
tion in interest in such systems. As | see it, apart from the high cost, there are several
good reasons for this loss of interest. First, there is the problem of the very consider-.
able effort needed to specify the syntax and semantics of the language to be used for a
particular application. This prevents speech understanding devices from being sold as
off-the-shelf devices. Second, there is a problem in defining what is known technically
as a habitable subset of a natural language. That is to say, as the syntactic structures
allowed by a system get more complex and the language one can use gets more
natural, it gets correspondingly harder to teach a user what sentence structures are
grammatical to the recognizer as opposed to those that are grammatical in the user's
own language but not allowed in the recognizer’'s grammar. Finally, as a resecarch tool
complex systems seem to me to be unattractive because when overall performance
depends cn so many factors it is difficult to draw useful conclusions from that perfor-
mance or from the relative performance of two such systems.

I wonder if there is perhaps a parallel to be drawn between speech recognition devices
and robots. Before any useful robots had been built the image of the robot was of a
device that superficially resembled a man; but real, useful robots working for example
in car factories do not look at all like humans. Real, useful speech recognizers do not
use a syntax that superficially resembles natural language, though they do
increasingly use a task-oriented syntax.

An example of a very simple yet effective use of task-oriented syntax in a recognizer is
the addition of a check digit to a string of digits to be recognized. This digit would typ-
ically be chosen such that when a string of digits including the check digit is summed
together the result is always a multiple of ten. (For instance, the string 1 1 1 would
have 7 as a check digit, while 8 8 0 would have 4.) The inclusion of the check digit does
not reduce the total number of possible digit strings that the system has to discrim.
inate between - if we have a three-digit string there are a thousand possibilities
whether we add a fourth check digit or not - but it does increase the amount of acous.-
tic information that can be used in the discrimination. Allernatively, we can view the
check digit as having made discrimination simpler by reducing the average number of
choices to be made per word. This average number of choices is known as Lhe branch-
ing factor, and it - or a generalization of it when the choices are not equiprobable . is
often used as a measure of difficulty of recognition tasks.

The use of devices like check digits is not as alien to natural language as it might
appear. A similar recognition-aiding device occurs, 1 believe, in all Indo.Furopean
languages except the one I am using now. I am referring to the division of nouns into
two or three classes according to what is called the gender of the noun, the gender
classes being called variously masculine, feminine and (sometimes) neuter, or neuter
and common. To illustrate how it can help, consider the French nouns poisson (fish)
and boisson {drink) that are quite similar in pronunciation, bul differ in thal the first
is masculine and the second feminine. When we meet them in sentences like

Le X est un poisson délicieur and Le X est une boisson délicieuse
(X is a delicious fish/drink) it is virtually impossible to confuse them despite their
phonetic similarity because the form of the adjective and the indefinite arlicle both
depend on the gender of the noun they refer to and are therefore different for boisson
and poisson. In French there are only two noun classes against ten check digits, so
instead of calling gender a check digit we should perhaps better describe it as a
linguistic parity bit, but the principle is the same.

Appnoachcs lo SchCb ')nal;ISlE‘

So far, 1 have tried to point out some of the difficulties in analysing the specch signal
and the dangers of methods based on introspection. | would like to look now al some
approaches that have proved helpful. Useful approaches to the treatment of the
speech signal seem to fall under three headings, namely, produclion based
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approaches, perception.-based approaches and pragmalic approaches. No automatic
recognition system relies totally on just one of these approaches, but in most systems
one approach dominates.

Production.-hased approaches

It does not seem immediately obvious why we should approach the recognition of
speech from the viewpoint of how it was produced - we do not, after all, need to know
how the teleprinter signal was generated in order to decode it. Nevertheless, there is
a whole spectrum of arguments in favor of taking speech production into account
when analysing speech. They range from the most moderate, with which no onc would
argue, to the most extreme, which few people now hold.

Before we consider these arguments, | shall have to break off from my main line of
argument for a little while in order give you a brief overview of how specech is pro-
duced. The human organs primarily involved in producing speech are the larynz,
which contains the vocal cords, and the pharynx and mouth cavity, which together
form the wvocal tract, and which is essentially a tube leading from the larynx to the
lips. A side branch, the nasal cavity, can be added to this tube by opening a valve at
the back of the mouth. This valve is open in nasal consonants, such as an "m’ sound,
and in nasalized vowels, which form a separate class of phonemes in some languages
such as French.

Acoustic energy in speech is generated in one of two ways: by the action of the vocal
cords or by turbulence at a constriction created by the tongue or lips somewhere
along the vocal tract. As I mentioned earlier, sounds excited by the quasi periodic
activity of the vocal cords are said to be voiced, and they generally play a more impor-
tant role in speech than noise-excited woiceless sounds. (All vowels and many con-
sonants, such as "I', "m’ and "b” sounds are voiced, while "sh”, "k and ''f" are exam-
ples of voiceless sounds.)

Whichever kind of excitation is used, the basic spectrum of the excitation is modified
by the resonant structure of the vocal tract. This resonant structure depends on the
position that the tongue, lips and jaw are in. It happens that the generation of the
excitation and its spectral modification by the vocal tract are largely independent of
each other and can thus be considered to a good approximation as a source isolated
from, and leading into, a linear filter.

The upper trace of Figure 2 shows a 200ms stretch of the waveform of a non-nasalized
vowel (strictly, it is the time-differenced waveform: differentiation provides a 6db per
octave lift, which serves to flatten the long-term spectrum for voiced speech). Notice
that the waveform consists of a pattern that repeats itself at regular intervals. The
repetition rate is Lhe rate at which the vocal cords come together - typically a hun-
dred times a second for a man - while the repeating pattern itself is the response of
the vocal tract to that periodic excitation.

The lower trace in Figure 2 shows the excitation with the effect of the vocal tract
removed. The impulse-like excitation occurs each time the vocal cords come together
and close off Lthe airflow from the lungs. In the particularly simple vowel shown here (it
is in fact the "neutral” vowel occurring in a word like "the") essentially what happens
to the impulse is that it travels from the larynx to the lips, where part of it is radiated
into the free air beyond the lips and part is reflected back towards the laryix with its
polarity reversed. At the larynx the signal is reflected again, and it continues to
bounce between larynx and lips steadily losing energy by absorption in the wa'ls of the
vocal tract, by transmission and ultimate absorption behind the vocal cords, and by
radiation to the oulside world until the next excitation impulse comes along. In other
speech sounds the effect of the vocal tract on the excitation is more complex, with
reflections occurring at more places than just the larynx and lips. Nevertheless, Lhe
basic structure of a pattern approximately repeating itself at approximate'y regular
intervals is retained.

Figure 3 shows the power spectrum of a section of specech waveform like Lhe one in
Figure 2. The regularly spaced spikes occur at integer multiples of the ropeal fre
quencey of the excitation. This repeat frequency, corresponding to the first spike in the
figure, is known as the fundamental frequency, and the succeeding spikes are har
monics of Lthe fundamental. The intensity of the harmonics varies smoothly across the
spectrum in a way determined by the impulse response of the vocal tract. The peaks
in the spectrum coincide with resonances in the vocal tract. They are known as for
mants.

The ability to describe the specch signal in terms of an impulse response and the fre
quency of the impulses is extremely important for speech recognition. The impulse
response varies as the positions of the tongue, jaw and lips are changed, while the fun
damental frequency depends on the museles that control Lhe tension in the vocal
cords and on the air pressure behind the vocal cords. For the most part, changes in
the setlings of Lhe larynx and vocal tract oceur slowly relative Lo the frequencies
involved in speech Thus, while we need a sampling rate of at least eighl thousand
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Fig. 2. Upper trace: a 200ms portion of the time-differenced waveform of a neutral vowe!. Lower
trace: the same waveform with the eflect of the vocal tract removed.
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Fig. 3. The power spectrum of a time-differenced neutral vowel.
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times a second in order to obtain a reasonable digital description of the speech
waveform, a description in terms of fundamental frequency and a few paramcelers
describing the impulse response typically needs lo be updated as little as « hiindred
or even fifty times a second.

A second major advantage of an impulse-response/fundamental frequency descriplion
is that the two factors perform separate linguistic functions. In mosl western
languages the identity of a word does not depend on the fundamental frequencey pat
tern with which it is uttered. In some other languages, such as Chinese and to # much
lesser extent Norwegian, the identity of a word may depend on the fundamernial fre-
quency paltern, but even then a practical recognition strategy must still seneratle the
two factors: the fundamental frequency pattern and the configuration of the articuia
tors in the vocal tract are substantially independent attributes of the word.

For non-nasalized vowels and some non-nasal consonants the impulse respon<e of the
vocal tract is quite accurately modeled by a set of resonances in series, the imoortant
resonances lying in the range 300Hz to 3kHz. For such sounds, provided the analysis
is carried out in proper synchrony with the excitation, a technique known as (linear
predicfion can be used to determine from the waveform the frequencies and
bandwidths of the resonances (a comprehensive account of linear prediclion is given
in the book by Markel and Gray [4]). What is more, the analysis can go on Lo recon-
struct the cross-sectional profile of an acoustic tube that would have such a set of
resonances, and the profiles can often show a close similarity to the vocal tract
configuration that produced the sound. This kind of analysis of speech can therefore
be said to be strongly production-oriented. I should point out that that the analysis is
approximate in as much as the model of the excitation by a sequence of impulses is
inexact, that the analysis is inevitably less successful for certain sounds such as
nasals where the simple-tube vocal tract model does not fit, and that in most practical
cases its accuracy is further reduced by applying the analysis at regular intervals
along the waveform rather than in synchrony with the excitation.

We can now get back to considering the arguments in favor of approaching speech
recognition from the point of view of speech production. We can see that at the
moderate end, proponents of production-based analysis could point out that it can
lead to the generation of a simple, compact description of the speech signal, and,
moreover, one in which features that determine the lexical identity of a word are quite
well separated from features that have more to do with the function of the word in the
senilence or with mood of the speaker. Somewhat more speculatively, if we could carry
out a production-based analysis well enough we might hope to predict coarticulation
phenomena such as our breab board example as well as other energy-saving shortcuts
that the articulators might take, such as the possible failure of the tongue to reach its
target position for a vowel separating two consonants in a rapidly spoken syllable.
Finally, the most extreme view, embodied in the Motor Theory of Speech Perceplion
[6], maintains that human speech perception works by mentally reconstructing the
articulator settings that produced the speech signal being heard. According to this
last view, which is, I believe, much less popular than it was fifteen years ago, it would
be highly desirable that an automatic recognizer should also work by reconstructing
the production details of the speech signal it is receiving. Linear prediction looks to be
the best current possibility for carrying out such a reconstruction.

Perception.hased approaches

To some people it may seem a truism to assert that we should base speech recogniz-
ers on human speech perception. Others sometimes point out that aircraft don't flap
their wings just because birds do, so machine recognition of speech need not copy the
human model. But this is a false analogy: first there was air, and then birds and men
found ways of flying in it; I doubt if anyone would claim that first there was speech and
then men evolved ears to listen to it! Speech is certainly adapted to our human capa
city to perceive it, and it is desirable that an automatic recognizer should te able to
make the distinctions that we can make and ignore those we cannot make.

The problem in basing a recognition approach on human speech perception lies not in
deciding whether it is a good idea to do so, but rather in the fact that we know
remarkably few hard facts about human speech perception. What we know somewhat
more about is human sound perception in general. We know, for example, that we are
relatively insensitive to the phase information in a signal, and it would consequently
make little sense to build a recognizer that tried to recognize a specific waveform,
since a slight change in the relative phases of its spectral components would be
indetectible to human ears and yet it could cause the waveform to look quite different.
For this reason, all practical recognizers work with some representation or cther of
the short-term power spectrum and ignore the phase spectrum.

Another known property of human sound perception is frequency masking, the ten
dency of an intense tone to obscure the presence of a less intense tone at a neighbor
ing frequency. It follows from this property that our hearing is more sensilive Lo Lhe
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peaks in the spectrum than to the troughs, whose details tend to be masked by nearby
peaks. Thus a speech recognizer that used a representation of the spectrum that was
particularly sensitive to dips in the spectrum would be unlikely to work well. If the
algorithm commonly used in linear prediction is viewed as a means of characterizing
the short-term power spectrum, it turns out that it has the desirable property of
doing a better job of characterizing the peaks than the troughs.

An alternative - and in fact much older - method of reducing sensitivity to weak tones
when they are close to a strong tone is to divide the auditory spectrum into a set of
bands, the acoustic power in the set of frequencies in each band being averaged
together. Masking experiments with human subjects tell us how wide these critical
bands should be: above about 1kHz the bands should not be of constant width, but
rather they should increase in width in rough proportion to their centre frequency
with about three bands in each octave. A channel vocoder uses a bank of filters that is
rather like the set of critical bands, and the same principle is used in many successful
speech recognizers. There is an interesting conflict between production-based and
perception-based approaches here. A representation of speech based on linear predic-
tion, which generally models speech production quite well, gives equal resolution to all
parts of the spectrum. Thus, a comparison between two recognition systems which
were similar except that one carried out a filter-bank analysis of the speech and the
other a linear-predictive analysis would amount to a comparison between a
production-modeling approach and an auditory-perception modeling approach. Davis
and Mermelstein [6] carried out such a comparison and found a clear advantage for
the filter bank. Moreover, among the parameter sets that can be used to present the
results of the linear prediction the ones that are best interpreted as providing a
description of the general shape of the spectrum (i.e. the linear prediction cepstrum,)
performed better than the more production-oriented area coefficients that would be
used in reconstructing vocal-tract area functions.

Some researchers [7,8] have gone further in modeling neural behavior in the inner
ear, in some cases incorporating the superior time resolution available to the ear at
high frequencies where frequency resolution is poor. Although improved recognition of
stops and fricatives has been claimed to result, the procedure has not been widely
adopted because it is computationally expensive.

If we now turn our attention to speech perception rather than auditory perception, 1
have to admit that I find the field confusing, and I do not feel competent to make any
attempt at an overview of present knowledge. There is, perhaps, evidence [9] that
speech processing works in a "left-to-right” fashion (i.e. forwards in time) rather than,
say, first picking out stressed syllables and working outwards from them in both direc-
tions, and that possibilities for each word to be recognized are considered in parallel
rather than exploring the most promising interpretation first and returning when it
meets trouble. I am sure, however, that both these statements would be disputed by
some specialists in speech perception.

In 1979 Klatt published a long paper [10] proposing the incorporation of models of
human speech perception in a recognition system. He subsequently reported experi-
ments [11] suggesting that listeners use a different criterion when making a judgment
of the phonetic similarity of two sounds from the one they use when making a general
psychophysical comparison of two sounds. The psychophysical judgments seem con-
sistent with the general spectral shape comparisons carried out in most recognition
systems, while the phonetic judgments seem more dependent on the frequencies of
energy peaks in the spectrum. He has more recently reported work on a metric
intended to correlate better with human phonetic judgments [12]. It will be interest.
ing to see how the metric performs - many researchers in the past have thought it
desirable to represent speech in terms of the frequencies of energy peaks - formant
frequencies - but have been held back by the problem that occasional errors in peak
frequency assignment can have disastrous results on performance. The new metric
avoids making hard decisions about formant frequencies.

¥n general, it is striking how little the results of research in speech perception have
influenced the design of successful speech recognition systems, though that does not,
of course, preclude such influence in the future.

Bragmatic approaches

The heading "pragmatic approaches” seems at first sight like a catch-all under which
any recognition work not based on production or perception results can be placed. To
some extent it is just that, except that it excludes approaches justified by introspec-
tion or by pet theories inadequately supported by experimental evidence. | mean the
term to be confined to approaches that are justified primarily by the fact that they
are found to work. A notable example of such an approach is provided by the various
versions of the dynamic programming algorithm for time-aligning two productions of
a word or sequence of words. The algorithm will no doubt be explained in detall in
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later sessions; for the moment all I want to point out is that it is central to a large pro
portion of successful recognition systems and that its introduction was not inspired by
production or perception considerations but rather by the fact that it could cope with
a phenomenon found to occur in the signal, namely, non-linear timing variations
amongst different productions of the same word.

Perhaps the most extreme example of an approach based directly on the propertics of
the signal itself is the work of Jelinek's group at IBM [13]. Instead of having syntactic
rules supplied by the system designer, the system itself deduces transition probabili-
ties between words from a very large amount of training data. It then uses those pro-
bability estimates in attempting to decode new material. Results have been reported
on a database of natural English consisting of a setl of patent texts concerning lasers.
It constitutes the most ambitious current attempt at single-speaker speech recogni-
tion that [ know of.

One property that many of the more successful - and above all, practically useful - sys-
tems share is simplicity. | suspect it is no accident that Harpy, the only one of the
ARPA Speech Understanding systems to meet the original success criteria, was dis-
tinguished from its competitors mainly by the fact Lhat it was considerably simpler.
John Bridle’'s successful continuous word matching algorithm [14], which I hope he will
describe Lo you, is also considerably simpler than other algorithms that have been
proposed for recognizing word sequences.

Why should simple approaches be better? I think the main reason is that they have
fewer system parameters to tune, and they can consequently reach a better state of
optimization with a given amount of training data than could a more complicated sys-
tem. A second, related, reason is that in developing a simple system a developer can
more easily assess the effect on performance of a design decision he has made than he
could in a complicated system in which many rules and processes interact.

I am convinced that for the foreseeable future practically useful recognition systems
will remain simple systems. To the extent that their design reflects properties of
human speech production or perception, I believe that the better ones will be based
on solidly established properties and not on speculation.

Further reading

If anyone is interested in a closer look at phonetics, there are introductory texts by
Ladefoged [15] and O'Connor [16]. The standard work on the acoustic theory of
speech production was written by Fant [17].
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ANALYSIS, SYNTHESIS AND TRANSMISSION OF SPEECH SIGNALS

Helmut Mangold
AEG-TELEFUNKEN, Research Institute Ulm
Sedanstr. 10
D-7900 Ulm (West Germany)

SUMMARY

Digital techniques have opened quite new possibilities for processing of speech signals.
This is true for analysis and for transmission. These new methods are characterized by a
strict adaptation to the very special pecularities of speech.

The lecture will give an overview about the mathematical possibilities and their rele-
vance to the different parts of the speech signal. Efforts to represent speech in a dig-
ital and more or less redundancy-free form can give good insight into all the charac-
teristics of such a highly complex signal.

Possibilities for representation of speech signals reach from the very simple pulse-
code-modulation techniques (PCM) to sophisticated vocoders.

The research work done for speech transmission and coding has prepared the way for
methods to recognize and synthesize speech signals. Automatic speech synthesis will be
an important tool for the communication between man and machine. The lecture will give
an additional introduction into the techniques of automatic speech synthesis.

1. INTRODUCTION

Speech signals are the most important signals in today's and tomorrow's telecommunica-
tion systems. This results from the fact that human communication is the basis of all
communication systems. This man-to-man communication will in the future be combined with
efficient man-machine communication. About one part of this communication, speech output
by computers, later in this paper will be reported.

Techniques of digital signal processing have opened quite new and exciting ideas, how to
handle the structure of speech signals. We can now describe quite well the information-
theoretic content of the signal. Most of the characteristics which are necessary to de-
v2lop a suitable model for the speech signal can be understood by the principles of
natural speech production /1/. Fig. 1 shows the essential parts of this process. In the
case of voiced sounds a pulse exitation signal 1is produced by the vocal cords which are
vibrating when the air stream from the trachea passes through. These pulses are
modulated within the cavities of the throat, the mouth and the nose and the resulting

Mouth cawity
U

Speech signal

ose cavity > MMNMMM

Mouth cavity

Throat cavity

Vocal cords

Throat cavity Articulation Filtering
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I |

Pulses Noise /\/\/\/\A/

Fig. 1: Prirciples of natural speech production.

signal will ©be a periodic voiced signal. Its characteristics, that means the sort of
sound is defined by the acoustic porperties of these filtering cavities. Their
properties are defined by the geometric dimensions of the cavities which can be changed
during the process of articulation.
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Fig. 2: Time-domain and frequency-domain representation of speech.

Fig. 2 gives an overview about the important signals in the process of speech production
and speech perception. Fig. 2a shows the already described time-domain signal. The pitch
of the excitation pulses Tpis about 120 Hz in the average for male voices. We can find
this period again in the scheme of the speech signal which is characterized by higher
frequency waveforms, the so-called formant frequencies. This might be understood much
better if we look at the frequency characteristics of such a speech signal (Fig. 2b).
The excitation pulses of voiced signals have a line spectrum with an envelope that falls
to higher frequencies with about 6 to 10 dB/octave. The spectral transfer function of
the vocal tract has very strong resonances, the already mentioned formants, which
characterize the sound of the speech signal. During the process of articulation the
spectral envelope of the excitation signal is modulated by the transfer characteristics
of the vocal tract, which has sharp resonance peaks. For unvoiced sounds the basic
process 1is quite similar. The only difference comes from the fact that the excitation
signal now consists of a sort of turbulence noise which is created by air, streaming
through some quite narrow positions within the vocal tract.

The process of speech production is of course a dynamic process. That means that all the
mentioned parameters are changed in a relatively fast manner. The normal speaking rate
is about 1C to 20 sounds per = ond. The duration of different sounds varies between 5
ms for the very short plosive sounds like /t/ up to about 100 ms for slowly spoken
voiced sounds like some vowels. These timecharacteristics of speech signals are impor-
tant for many speech analysis and synthesis techniques. In the case of speech transmis-
sion it is additionally important to know something about the human perception of speech
signals.

Man's acoustic perception system 1is not exclusively dedicated to the perception of
speech. However its perception principles are very well adapted to the special qualities
of speech signals. In principle the ear makes a spectral analysis with additional empha-
s'is on the analysis of time-varying signals. This reans that there is a combination of a
sort of very narrow band spectral analysis for precise detection of the formant's mid
frequencies and simultaneously a precise analysis of time variations in the spectral
characteristics including periodicity detection for the analysis of the varying line
structure of voiced speech signals. So our speech percep tion appartus is a highly
sophisticated system with special adaptation to the structure of speech signals. We must
take care of these and many more facts if we want to design good speech transmission
systems and want to produce natural and intelligible speech. On the other side speech
signals have been optimally adapted to a sort of spectral anlysis with quite special
poperties which 1is done within our human ear and the following neural stages in our
brain. So technical systems for speech analysis not only must take care of the
physiological processes but also can learn many things from these processes. These ideas
are especially important for preprocessing and feature extraction stages in a speech
processing system.

Fig. 3 gives us a rough overview about this interaction of speech transmission and rec-
cognition/synthesis ideas. Every technical analysis starts with a sort of preprocessing
by which some important signal characteristics are extracted. The following feature ex-
traction is still a preprocessing stage for a speech recognition system but there are
extracted more complicated and combinatorial parameters, e.g. segmented phoneme parame-
ters or prosodic parameters like speech intonation. The following stages are concerned

Wwith the central task of recognition and understanding. Then a speech output is created
based on linguistic rules. The phonetic and speech synthesis parts again handle higher
and lower level parameters to produce a speech signal which will be put to a loudspeaker
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Fig. 3: Relations between speech transmission and speech recognition and synthesis.
to make an acoustic signal. In speech transmission with redundancy reduction we jump

over the inner kernel of this system from Fig. 3 and transmit directly a parametric des-
cription of the analyzed signal to a sort of synthesizer which can reproduce the phys-
ical signal.

So it will be important to understand the significance of different sorts of preprocess-
ing in speech processing by studying some of the more important speech transmission sys-
tems today in use and to understand how their signals can be useful for automatic speech
recognition and synthesis.

2. MATHEMATICAL AND THEORETICAL PRINCIPLES OF DIGITAL SPEECH PROCESSING /4/,/5/

The term "speech processing" does not automatically include the terr. "digital” but in
practice today analog speech processing is still only used in very special cases. So the
basis of all our operations will be a sampled and quantized signal. This means that the

speech signal has to be coded into a form of numbers. The principle of this pulse code
modulation (PCM) process is shown in Fig. 4 /2/. The analog waveform (Fig. 4a) is sam-

al T
Analog signal
with sample points

b
I .
110 R - -— Sampled signal
B A | © === with quantizing
100 - - s g e e R
G y - “ ¥
c'o [ ¥
oo LR
736
4 ‘Cr, Mg, 0, M0, 00, 100, 01 Pulse code modulated
speech signal
Fig. u: Puls-code representation of analog signals.
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pled at a fixed rate 1/Tg [HzJ, normally with double the highest frequency which is in
the signal. Telephone quality speech has a bandwidth of about Y4 kHz, so it is necessary
to sample such a signal with at least 8 kHz. This means that Ty 1is 125 Hs. Speech sig-
nals with better quality need a higher sampling rate up to 20 kHz, resulting in a speech
bandwidth of 10 kHz. Sampling produces an amplitude modulated impulse signal (Fig. 4b).
The amplitude of every of these impulses now is measured with a fixed precision and
these measured values 1in a binary form are the final result of the whole pulse code
modulation process. We get a series of numbers which still represents the full speech
waveform -with some minor errors- and which again can be used to reproduce the analog
waveform for presentation of the speech signal through loudspeaker.

The process of pulse code modulation has not wasted anything, but we now can process
speech samples by number crunching techniques in fast digital signal processing systems.
There are many well Kknown operations to get more intimate knowledge about the informa-
tion within the speech signal. Some of the more important basic operations are trans-
forms, correlation, and prediction. As an example of a very special speech-oriented op-
eration pitch analysis will be described.

2.1 Transform Operations

Since almost 200 years the fundamental principle of signal transform is well known by
the Fourier transform. This transform represents the signal by description through har-
monic waves, the Sine and Cosine waves. We call the result a Fourier spectrum. Fig. 2
gives an example: The time domain signal in Fig. 2a can by Fourier transform be repre-
sented by 1its power spectrum, where the phase information 1is 1lost (for speech
intelligibility phase information is not very important).

Speech signals normally are no stationary signals but they change their waveforms with-
in very short sections, lasting in the mean about 20 to 30 ms. If we choose a sample
frequency of 8 kHz such a segment or block of 20 ms contains 160 samples of the origi-
nal speech waveform. This array of 160 samples will be called a vector and all discrete
transform operations c¢an Dbe interpreted as operations within an n-dimensional vector
space 1in this case e.g. a 160-dimensional vector space. We call such operations which
concentrate only on a well defined short segment of a signal waveform short-time opera-~
tions. This means, we suppose the speech signal would not change its parameters within
this short segment (which is not really true, but the error is small enough).

The principle of a signal transformation can be easily understood by the vectcr opera-
tion shown in Fig. 5. Here only a two-dimensional signal space is shown. The signal vec-
tor KT is described by its two components (x1, x2), but the mathematical principles are
always valid for higher dimensional signal spaces too. The task of the transformation is
to transform the basic set of values into a new transformed space which would be better
adapted to the characteristics of the signal.
The original n-dimensional signal vector

.Y
*
Ko=iw (N
Kn
shnuld be transformed into a new vector Y by a linear operation
T
Y s AT(X -p) 2)

Here ﬁT is a transformation matrix whose column vectors are the basis functions of the
new coordinate system. The vector p adds a shifting operation by which the centering of
the new coordinate system could be further enhanced in respect to the signal vectors X.
Now the new coordinates(y1, Vz)are much better suited to describe the original vectors
with smaller numbers. The value range of a quantizer for such a transformed signal can
therefore be much smaller than that of the original quantizer.

One of the most important transforms is the Fourier transform. Here the new basic vec-
tors are the Sine and Cosine functions. The original speech vector after Fourier trans-
formation is expressed in terms of Sine and Cosine waves. The result is normally called
a spectrum or a frequency domain representation of the speech signal. This sort of rep-
resentation is very advantageous because every linear system like the vocal tract pro-
duces harmonic waves, and there is a clear evidence that the human ear makes a frequen-
cy analysis.

Fig. 6 shows such a digitally computed speech spectrum of the German word "sieben". The
frequency axis ranges to about 4 kHz and the duration of the digit was about 800 ms. A
new short time spectrum 1is computed every 10 ms. Here we can see that the following
spectrum differs only slightly from the preceding one. Only when the explosion of the
sound /b/ happens we notice a very fast onset of this sound after a pause in which the
explosion has been prepared. The spectral energy is marked by the darkness of the dis-
crete points and we can see that e.g. in the case of the sound /I/ there are about three
frequency areas with high energy, at about 500 Hz, 2600 Hz and 3100 Hz. The pattern of
these formants is relatively constant during the sound. On the other side the formant
change from the sound /@& / to /n/ is quite well marked. Every short-time spectrum has
about 100 points and so the frequency distance between neighbouring points is about 40
Hz. This is a frequency distance which normally 1is comparable to the human ear's fre-
quency selectivity.
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Fig. 5: Principle of transformation in vector domain
In practice the matrix operation from Eq. 2 1is done via a very efficient procedure

called the Fast Fourier Transform FFT. The number of multiplications necessary is about
n+ldn, where n is the number of points. Here we need about 660 multiplications every 10
ms, or one multiplication might last maximally 15 ps. This is quite a long time for
modern signal processors which can do this transform in real time. For many applications
in speech processing 100 points are too much and so groups of points are joined to make
a more rough spectral analysis, a digital variant of the long known bandfilter analysis.

Short -time spectrum
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Fig. 6: Spectral pattern of the German word "Sieben" (engl. "seven").

2.2 Autocorrelation

We have seen that speech signals are linear superpositions of harmonic waves. This means
at the same time that consecutive samples are highly correlated, a speech curve is not
stochastically jumping. But far beyond this fact there are still periodicities in the

signal which result from the pericdic excitation of voiced sounds. Such periodicities
can be easily detected by autocorrelation. Fig. 7 shows the principle. The speech
samples x(m) -here we prefer not to use the vector writing- are delayed for a varying

number of samples k and the delayed and non-delayed signal are multiplied to form the
autocorrelation function . (m +K)
. +
p(k) » gx(m) A (3)

where n is the number of samples which the speech cegment contains.
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Fig. 7: Principle of autocorrelation analysis.

Of course we can do this operation only within a short-time segment because the speech
characteristics change. The correlation function @(k) shown in Fig. 7a is near 1 at very
small values of k. This means that neighbouring samples are quite similar. The next peak
marks the periodicity of this voiced speech signal. The value kp of the pitch period can
be easily found by peak picking.

The autocorrelation function is narrowly related to the power spectrum of a signal. The
Fourier transform of the power spectrum is the autocorrelation function. The autocorre-
lation function is still a time-domain function and therefore it gives information con-
cerning the time domain characteristics of the speech signal.

2.3 Linear Prediction /3/

Linear prediction is based on the autocorrelation characteristics of a signal. High cor-
relation values (k) mean that on the average a sample x. is very similar in its value
to a sample x, where the number k =(j-i). So in the mean It is possible to estimate the

value X j fromjthe preceding value xj.
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Fig. 8: Linear prediction of signals
a) Principle
b) Recursive prediction scheme
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The estimated value of the sample x(nT) in Fig. 8, where T is the sampling period, is

;(\(WT) =Za,b~;{(m-i)r_] (4)
)

The aj are called the predictor coefficients and they are computed from the autocorrela-
tion function by minimization of the predictor error between the estimated and the real
value of the signal:

(¢ = [(x0nT) - Za X[ TI)'} L wtc

EqQ. 5 1leads to an algorithm for calculation of the predictor coefficients by a set of
linear equations. We can write this again in vector form

(5)

Ma = s (6)

where M is a matrix consisting of all the averaged products x(n-i)ex(m-i), a is the vec-
tor of the predictor coefficients a,and s is the vector of the cornelation coefficients
x(n)ex(n-i). The scheme of such a prediction system in Fig. 8b shows that the estimated
signal ¥ has to be subtracted from the original signal. The predicticn error € then is
minimal if the predictor coefficients are well adapted tc the original signal.

In Fig. 9 the original speech signal and the resulting error signal € are shown. It can
be seen that the error is maximal when the excitation pulse starts a new pitch period.
In this moment the free oszillation of air in the wvocal tract is interrupted and the
prediction fails.
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Fig. 9: Speech signal and error in linear prediction.
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Fis. 10: Inverse filtering of a speech spectrum.
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In the spectral domain Fig. 10 interprets linear prediction as a process of inverse fil-
tering. The transfer characteristic of the predictor filter is in a least square sense
adapted to the envelope of the speech spectrum. The line structure of such a voiced
speech signal <c¢an only be reconstructed by predictors with very many coefficients, at
least 100 coefficients. For the reconstruction of the spectral envelope like that in
Fig. 10 we need about 10 to 14 coefficients. A different sort of predictor for such a
periodic structure would be a comb filter. That is a predictor with only few coeffi-
cients but the delay between the used speech sample is equivalent to the periodicity
predicted. Because the periodicity in the human voice changes in a relatively fast man-
ner it will be necessary to control the delay time of such a comb filter predictor adap-
tively, and therefore it is necessary to know the exact value of the pitch period.

2.4 Pitch Analysis /6/

The algorithms for pitch analysis described should only be representatives for the more
complex signal processing techniques which are called feature extraction techniques in
Fig. 3. Such algorithms are often not only based on strict mathematical operations but
also on some empirically defined rules. Fig. 11 shows first two examples of preprocess-
ing the speech signal for pitch analysis. The first one is the Autocorrelation Function
(ACF) already treated 1in chap. 2.1 and the second is the Average Magnitude Difference
Function AMDF which is a sort of simplified autocorrelation avoiding the multiplication

AMDF (k) = &/ xfm) - X (m + k) f (7)
m
This equation 1is quite similar to equation (3). The most important difference lies in
the fact that the ACF has a maximum at its best periodicity value k and the AMDF has a
minimum at this point (besides the fact that AMDF only has positive values).
Fig. 11 shows different examples of voiced speech signals and their resulting ACF and
AMDF. Both functions are only computed for values around the expected pitch period, not

for very small values of k and not for very large ones. Small values of k correspond to
high pitch frequencies and vice versa.
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Speech sigral Autocorrelation Average magnitude
function difference function
Fig. 11: Periodicity analysis based on Autocorrelation Function ACF or Average

Magnitude Difference Function AMDF.

In the case of autocorrelation analysis the first peak is well detectable and enough
different from the next peaks which correspond to other frequencies but which are not
the real pitch. The AMDF does not show such a clear distinction between the first and
the second minimum. Pitch errors could be possible more easily.

To avoid pitch errors which in some speech coders can destroy speech quality a logic
postprocessing 1s necessary. The basic principle is to use a probabili stic model which
can learn from the history of pitch contours of the special speakers using the system.
So the area for searching maximum or minimum can be restricted and the often possible
octave jumps which double or half the original pitch can be avoided.

There are many additional processing stages necessary if e.g. the speech signal is dis-
torted or heavily band-limited. The principal strategy to detect periodicities always
uses a sort of autocorrelation or its variants like AMDF.
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3. SYSTEMS FOR DIGITAL SPEECH TRANSMISSION

Long term research in digital speech has led to a multiplicity of different techniques
for speech coding which all are based on the principal algorithms described in chapter
2 but which of course possess many specialities. Most of these systems only have scien-
tific value. Therefore we will describe only those systems which have a real practical
significance.

3.1 Pulse Code Modulation /2/

This 1is the most important and the oldest method to code and transmit speech signals.
The basic scheme in Fig. 12 is quite simple. The sampled signal is quantized as it has
been described already in Fig. 4 Usual data for sampling rate is 8 kHz corresponding to

Coder Decoder
R K3y
C D
0 13
D 6L kbis C X

Fig. 12: Pulscode modulation.

a voice frequency bandwidth of 4 kHz and the quantization is done with 8 bit/sample. So
the resulting data rate is 64 kb/s. That is quite a high rate which can not be transmit-
ted over ncrmal telephone channels or over HF charnels. The quantization in PCM is done
in a logarithmic manner, small signal values are quantized more precisely than larger
values. In this way the signal-to-noise ratio SNR remains constant at a level of about
38 dB for a large dynamic range. This value is better than some degraded analog tele-
phone lines.

3.2 Differential Pulscodemodulation DPCM, Deltamodulation /7/

The principal scheme of DPCM is shown in Fig. 13. It is quite similar to Fig. 8 because
DPCM needs a predictor which in the most simple version can be a delay for one sample.
Then the quantizer Q has to quantize only the difference between consecutive samples.
With only slight degradation it is then possible to code speech signals with about 40
kb/s. Every difference sample then is quantized with 5 bits, again in a logarithmic
manner.

X . £,

g 16kb/s g 2O %
¥
X n |tos0kb/s | o R

Prefictor

-9 ]

Fig. 13: Differential Pulscodemodulation DPCM or Deltamodulation.

If the data rate of 40 kHz is too high there are further possibilities to reduce the am-
plitude of the error signal by using a better predictor. This error signal can be quan-
tized with 3 or 4 bits/sample. By further reduction of the speech quality which could
only be done in commercial or military applications some 2 bits/sample are still a pos-
sible quantizer dimension.

The quality of such a DPCM system can be enhanced by adaptively controlling the predic-
tor coefficients as has been shown in Fig. 8. Such a system is then called Adaptive Dir-
ferential Pulse Code Modulation ADPCM. The adaptive control can help to make a 16 kb/s
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system sounding like a 24 kb/s-system but it cannot help tc make a well sounding @& kb/s
system.

A slightly different variation of these principles is deltamodulation. The principal
scheme of this technique is identical to Fig. 13, but we now use only a 1-Bit-quantizer,
which makes hardware very simple. Because a coding with 1 bit/sample is not possible
with normal DPCM, we must use a much higher sampling rate. Through this method the dif-
ferences between consecutive samples will become much smaller, and can so be quantized
with 1 bit. There is still another problem: A 1-bit quantizer can only quantize two val-
ues, normally 0 and 1, but for speech we need the values -1 and +! as speech slopes go

up and down. Therefore we must leave out the value 0 and the quantizer jumps between -1
and +1. The waveforms of such a delta modulator look like that in Fig. 14a. For very
fast signal slopes tne delta modulator cannot follow with its fixed step size. The now

used Continuously Variable Slope Delta modulator CVSD avoids this drawback by changing
the step size of the quantizer. This is in effect similar to changing the predictor
parameters.

Deltamodulated
signal

Input sigral

ﬂﬂﬂﬂﬂﬂ n nr”— Output of

Deltamodutator

Adaptive Deltamoduiation
TIVSDY

input signal

Linear Deltamodulation

Fig. 14: Deltamodulation signals
a) linear deltamodulation of analog signals
b) linear and adaptive deltamodulation

Fig. 14b shows trat such an adaptation can have a faster impulse response than the
normal linear deltamodulation. During the last years much more sophisticated methods
have been developed to code the error singal in an adaptive way. This means to code and
recreate a differential signal like that in Fig. 9 but to transmit only very few
parameters. All the methods used are in principle similar: The error signal consists of
periodic peaks and in between there is some signal which looks like noise, but is not
only noise. Therefore a spectral analysis of this error or residual signal is done, the
most important spectral components are coded and transmitted and at the receiver the
residuum might be reconstructed. The most important task is to keep the periodicity
structure as in Fig. 10 undestroyed. The basic scheme of such a system is shown in
Fig. 15. Because now a synthetic error signal is constructed, this can be done by using
some information from the original signal too. Therefore the analysis can be done with
information from the original and the error signal /8, 11/.
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Fig. 15:

3.3 Transform Coding /9,

10/

Contrary to predictive

coding which is
does the important operations in the frequency domain.

Baseband or residual coder

set of samples x is transformed into a spectral
transform a much simpler but equally efficien

domain.

t transform has

operating in the time domain, transform coding
Fig. 16 shows the basic scheme. A

Besides the well known Fourier
been introduced, the

discrete Cosine Transform DCT. The basis vectors of this Transform have some similarity
with the Cosine functions from the Fourier transform, but are in their exact shape quite
different. These ‘"cosine" functions have much similarity with speech signals and so a
representation of speech with these functions is very efficient.
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Fig. 16: Transform coding
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a) Basic scheme of a transform coder
b) Basic functions for an 8-function Cosine transform.
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The sampled speech signal vector x has to be transformed blockwise into the vector y
which in a very sophisticated manner nhow must be coded and transmitted. Within the re-
ceiver both operations are done in a reverse way to reproduce a signal as natural as
possible. To ‘take a good block length we use again the same aspects which have already
been important at predictive coding. A block shculd not be much longer than the statio-
nary phase of a speech sound. For a normal articulation rate this would be about 30 ms.

The most important gain in transform coding results from the fact that it is possible to
quantize the spectral lines with quite different numbers of bits according to the var-
iance of these lines. To estimate the var.ances of the different spectral lines it is
necessary to get an averaged spectrum of the block to be coded. This can be done like
the scheme in Fig. 17. Fig. 17a shows an average long term spectrum of speech. A block
spectrum normally is quite different as Fig. 17b shows. For this short time spectrum now
an averaged spectrum is constructed whose lines can be interpolated to get a realistic
estimated spectrum as a basis for bit assignment within this block (Fig. 17¢). This op-
eration has to be repeated for every block. For example in blocks with unvoiced speech
signals the normal averaged spectrum will rise to higher frequencies and so look quite
contrary to the spectrum in Fig. 17.

Q) b) <)

Short time spectrum
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Averaged Spectrum

Fig. 17: Estimation of the basis spectrum of a speech block.
a) Long-term averaged speech spectrum
b) Actual block spectrum and averaged spectrum
¢) Estimated basis spectrum of the block

The side information additionally necessary has to be transmitted over a special
channel. Of course it is also possible to make a much more sophisticated preanalysis of
the spectrum to minimize the number of spectral lines which really must be coded. Here
e.g. information about the periodicity can be included again.

4. ANALYSIS SYNTHESIS TELEPHONY

Fig. 1 has given a principal scheme how the speech signal is produced by the human vocal
apparatus. All the operations necessary can be done with digital signal processing too.
The exitation function is separated into an impulse and noise function. These produce
voiced or voiceless sounds. The three main resonance systems throat cavity, mouth cavity
and nose cavity are rather complex mechanical filter systems. There is no principal
problem to realize such filters with electronic means. Thus we can build an electronic
speech synthesizer but we need to compute the signals for controlling all the parameters
which are necessary to produce a naturally sounding and highly intelligible speech sig-
nal. These are the pitch frequency to control the pulse frequency of the impulse genera-
tor and information about the position of the voiced/unvoiced switch. The control param-
eters for the articulation cavities can be taken together into a unified filter whose
transfer characteristic can be handled in a very flexible manner. The difficulty there-
fore is not to realize the synthesizer but to get good control parameters and to compute
them in real time. 'hen we can construct an analysis-synthesis system for speech trans-
mission, a vocoder.
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Fig. 18: Linear predictive coder LPC.

These both generators are alternativley switched to the synthesizer filter by a voiced/
unvciced control signal. Tnis excitation signal works like the error signal in an ADPCM
coder, but is a quite synthetic signal. The synthesizer filter is a recursive predictor
filter whose transfer characteristic can be controlled like that shewn in Fig. 10. Some
resonances can be produced which modulate the flat spectral envelope of the excitation
signal's spectrum. So the resulting speech spectrum has the usual formants. The last
stage in synthesis makes an adaptive control of speech energy before the digital-to-ana-
log converter remakes the analog signal.

The analyzer needs much more operations. The calculation of the predictor coefficients
is done as already described in chapter 2. The same 1is with pitch detection. The
definition of voiced/unvoiced signal must include very different parameters. So the
first correla- tion coefficients are as well included as the low pass filtered original
signal and the zero crossings of the original signal. All these parameters say something
about the spectral content. High low-pass energy means that more low frequencies are
within the signal and the probability is high that there is a voiced sound. Otherwise a
high zero crossing rate can mean that the signal is of high-frequency content and could
be an unvoiced signal. At last the AMDF function is still used whose maximum to mini-
mum ratio gives some hint or there is a voiced or unvoiced sound.

To realize such an LPC vocoder with a universal signal processor makes very fast digi-
tal technology necessary because every second some hundred thousand multiplications and
adds are necessary for the analysis part and the synthesis part. All these cal) cula-
tions have to be done with at least 16 bit accuracy. A first model of such a vocoder is
shwon in Fig. 19. It can transmit speech with a bit rat of 2400 b/s, a data rate that
can be transmitted over practically all today existing communication channels. Vocoders
are in military use for encrypting the digital bit stream. Analog speech signals cannot
be encrypted, they only can be scrambled, a technique by which secure voice transmission
is not possible. Because the speech quality of such LPC vocoders is quite goocd, they
will receive wide acceptance in the next years for commercial and military use.
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Hardware realization of an LPC vocoder terminal.

Fig. 19:

5. SPEECH OUTPUT SYSTEMS /13/

The LPC vocoder nas shown that it is possible to produce high quality speech signals
with electronic means. Therefore vocoders became important not only for speech transmis-
sion but for speech output from computers and for voice messaging where speech signals
have to be stored and reproduced on demand. The most simple systems for speech output
are announcement systems. In the last years very flexible inquiry systems have been in-
troduced where people can get information via telephone, e.g. about railway or airline
departures. The speech signals which have to be produced in such a system can be based
on prestored words or sentences or the system can create quite new speech signals from
basic knowledge about speech production.

The first sort of speech output systems are half-synthetic /14/. Such systems consist of
the the blocks shown in Fig. 20.

C Text nput

Editing : Speech output

| system

|

|

——— o =
Speech h | Digital eech
pee: Speec - Wordmemory |1 Connecting | .o speech | Sp
nput analys:s (7] fules =1 synthesizer output

-

Rhythm Melody

Fig. 20: Segment based half-synthetic speech output system.

The text which should be spoken has first to be analyzed. This is done not directly with
the speech analysis system but by a text analyzer. Words and phrases which should be
combined from the stored segments have to be identified and the combinatorial rules
which define the later necessary control of prosodic parameters muct be fixed. Then the
vocabulary has to be spoken and analyzed on its LPC parameters. These parameters can be
stored and the quality of the speech might be directly tested by synthesizing the in-
tended speech signals. Especially the combinations have to be tested to verify the
naturalness of rhythm and melody in the final system. The speech synthesizer today is
always an LPC synthesizer. Former used channel vocoders or analog speech concatenators
cannot produce speech with a high quality.

The editing stage must not be connected directly to the system as in Fig. 20, but
sometimes it is practical if there is a possibility to change the vocabulary through the
user and so it would be necessary to integrate some new words into the system.
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Such half-synthetic speech output systems are often used as public announcement sys-
tems or for special commercial announcement like airport information systems for air-
line pilets. The information can be transmitted via telephone or radio channels. Some-
times it is necessary to have simultaneously many output channels for many customers
with quite different announcements. Then a system like that in Fig. 21 can be helpful.
The speech segments are stored in a large data base and a multiplexer and control unit
with short-time memory composes the intended announcements for the special customer. The
customer 1itself can control the information he wishes through the telephone dial or use
speech input where possible. Half-synthetic systems of course have a limited vocabulary
which can only be changed with some effort. Therefore the ultimate speech output systems
will be a total synthetic text-to-speech system /15/.

Cantrol
— - - =
1
>—>{ Synthesizer  * —— -
Syntnesizer 2 Subscriber
Multiplexer . A line oo
interface .
Synthesizer m —N@

Fig. 21: Multiplex speech output.

The basic structure of a text-to-speech system is shown in Fig. 22. The text input first
has to be segmented 1into 1its basic elements. This of course is very language depen-
dent. In German e.g. there are a large number of compound words. In English words are
only concatenated to build a composite unit. For English it could be satisfying to use a
large vocabulary with all the phonetic transcriptions of every word including informa-
tion about the prosodic parameters like stress or melody, in German this is not possible
because stress changes dependent from the word combinations. From this linguistic-phone-
tic processor we get out a precise description of the articulatory parameters. A human
speaker knowing all these agreements should be able to speak the text perfectly even if
he would not know the language.

Lingutstic Acoustic
Processin control Speech
Text 9 Phonetic Control Speech
ex Phoretic text sound signal synthesizer signal
Processing transitions

Fig. 22: Principle of text-to-speech synthesis

The next stage in the processing knows all the rules for articulation which are impli-
citly known to the human speaker by a long term use of his articulatory apparatus.
This stage knowshow a sound changes if a transition from this sound to a next one has to
be made. With all this knowledge this stage calculates the parameters to control the
final speech synthesizer which 1is again an LPC synthesizer, controlled by pitch,
voiced/unvoiced and LPC coefficients. A text-to-speech system gives total freedom in
vocabulary. The most serious drawback is that it can only be used for one language. But
this is a common problem in speech output. 1In half-synthetic output systems it is pos-
sible to concatenate or store very flexibly different languages but it is not quite
easily possible to change this vocabulary. In the text-to-speech synthesis systems vo-
cabulary changes are easy but language changes are not possible if the system is not
multilingual by its construction /17/. Here much research work has still to be done to
develop a really well sounding mutlilingual system.
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6. FUTURE SYSTEM ASPECTS

Speech coding and transmission will in commercial telecommunication systems more and
more be integrated into speech recognition and synthesis systems. This enables not only
the normal man-to-man communication but also a flexible integration of data input and
output from EDP systems. A simplified version of Fig. 3, with emphasis on the telecommu-
nication and data processing aspect can make this more clear in Fig. 23. One very impor-
tant aspect of ideas for total voice systems must integrate transmission techniques.

@ LPC | Channel : ea] LPC --C
D} —{ Codec ‘ : } Codec |. {Q
- — 4

[ o
i~ 1 |

Recognition Synthesis
processor processor
|
i
-1 EDP d

Fig. 23: Speech processing and telecommunication.

Speech coding for transmission has prepared many of the important parametér and feature
processing techniques necessary to recognize and synthesize speech signals. Speech
coding will in the future too bring deeper knowledge about the important characteris-
tics of speech signals because human judgement about speech quality always is very crit-
ical. Speech analysis and synthesis can learn from that.

Another important aspect is that speech coding techniques have prepared efficient dig-
ital processing systems working in real time. The same or slightly modified processors
can be used in recognition and synthesis of speech. So both techniques can learn and
profit from each other to promote the total voice system.
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