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TECHNIQUES FOR LOCATING A REMOTE HF TRANSMITTER FROM

SINGLE-SITE MEASUREMENTS

1. Introduction

For answering a ship's distress call, and for similar situations, it
is important to be able to convert measurements at a single site to a rapid
determination of the position of a remote HF transmitter. The transmitter may
be located several hundred kilometers and one or more ionospheric reflections
away from the receiver. Radio direction finding (DF) measurements [Gething,
1978] can provide the frequency, azimuth angle, and elevation angle of the
incoming wavefront. Information about the ionosphere - e.g., as obtained from
sounder measurements or from a statistical model - is then fed into
propagation calculations to determine the position of the transmitter. It is
this latter aspect of the problem which is treated here.

lonosonde measurements typically provide ionospheric Information at a
given location. As a first approximation, the ionosphere could be assumed to
be constant along the raypath. Calculations are greatly simplified, and a
good initial estimate of transmitter position is often obtained. A constant
ionosphere is assumed here. The incorporation of ionospheric tilt effects
[Gething, 1978] is currently being investigated.

Magnetic effects are also neglected here. Again, calculations of
transmitter position are greatly simplified, and a good first estimate is
obtained in a timely fashion. Indeed, typical DF measurements do not identify
the polarization of the incoming ray. Hence, its ionospheric history as
extraordinary (X) or ordinary(O) mode propagation is typically unknown.
Gething [1978] points out that no-field transmitter fixes are intermediate
between those for 0- and X- mode ray traces, which can differ by 5-10%.

The propagation calculation technique depends on the type of ionospheric

information which is given. If the complete density vs. true height profile
has been determined - e.g., through computer-processing of ionograms - the
position of the HF transmitter can be computed by a direct scattering
calculation, as discussed In Section 2, or by a computer ray-tracing program.
When microcomputers are Involved the direct scattering type of calculation can

be appreciably more time-efficient. When only the virtual height profile is
available, which is given by a vertical incidence lonogram, a simple method of
processing this Information can be used which employs the Breit-Tuve and
Martyn theorems [e.g., Budden, 1966] appropriate for curved earth and flat
ionosphere. This method is discussed in Section 3. The generalizations of
these theorems for a curved ionosphere and a method based on them is given in
Section 4. Finally, the results are discussed in Section 5.

Manuscript approved May 26. 1983.
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2. IONOSPHERIC DENSITY PROFILE KNOWN

If the ionospheric electron density vs. height profile is known, and

the frequency, elevation angle, and azimuth angle of the incoming ray have
been specified by DF measurements, the HF transmitter position can be
determined by computer ray-tracing. This approach is well known, but is often
time-consuming on a microcomputer. Alternatively, a direct scattering
calculation is relatively fast and accurate for a constant ionosphere (profile
independent of range). Such calculations assume an analytic fit to the
electron density which is integrable in the expressions for range, group-path
length, and phase-path length. A summary is given by Gething [19781. A
particular technique that I have found useful employs the analytic fit of

deVoogt [1953], along with Lagrangian interpolation of tabulated density
values. It is summarized here for convenience, and to establish the notation

of subsequent sections.
The index of refraction of a collisionless plasma is

2,

where f is the radio frequency, and fN(R) is the height-dependent plasma
frequency, which is defined in terms of the electron density N by (MKS units)

The path of the ray and some relevant notation are indicated in Fig. I. The
path of the ray satisfies a spherical Snell's Law [e.g., Freehafer, 19511,
given by (cf. Fig. 1)

C 0 S C 0 A7 CO0 5 (3)
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Fig. 1 -Ray path geometry (cf. Sec. 2)
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A raypath elument trices out a ground range

Hence, X is interchangeable with D, and is from (3)

where Rt refers to the radius of reflection of the ray. At this points = 0
and the denominator of the integrand vanishes. The starting point is a set of
values fNi at discrete altitude points Hi or radius points R i where Ri
= Ro + H ( 1,2, --- , 2N + 1). In regions of the R-domain in (5)
where fN1 =0 , i.e., a free-space propagation region,

Cos S (6)

which is to be evaluated between limits of the free-space region. In the
ionospheric region of the R-domain, where the electron density is
non-vanishing, the contribution to (5) can be evaluated by fitting a parabola
(deVoogt, 19 3) to an adjacent triad of values of Ri2 fi 2 . Then
the radicand in Eq. (5) in the associated radius interval can be written in
the form

in the associated radius interval P-<R-_Q. A different set of coefficients
A,B,C,P, and Q is associated with each triad of mesh points. The coefficients
for the J'th such triad involve the mesh points at 2J-l, 2J, and 2J+1
(J-l,2,---,N). For example, P(J) - R2J_ 1 and Q(J) - R2J+I . This
procedure is specified for a triad of points in Appendix A, where the range
contribution from these points is indicated (see (A8)]. The total ionospheric
contribution involves a sum over J of such range contributions.

Appendix A also includes an evaluation of group path length, which will be
used in a later section. The contribution to group path length from a raypath
length element ds is

(8)

4
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Hence, from (3) and Figurc 1

For a range of R where plasma density vanishes,

ICL~cs2. (10)

which is to be evaluated between limits of the free-space region. The

ionospheric contribution is facilitated by (7) and is again the summation over

J of contributions from triads of adjacent points, as indicated 
in Appendix A

[cf (A9)]. The above procedure is easily implemented on the computer.

3. VIRTUAL HEIGHT PROFILE GIVEN - A SIMPLE METHOD

In case vertical ionosonde measurements are taken, or oblique

ionosonde measurements are converted to this form, the data available consists

of a plot of vertical time delay T of a pulse vs frequency f. Virtual

height h' is defined as
i

(7I= !- 
(IV)

It is intarestin: that a simple and quite accurate method exists which uses

this data in conjunction with Breit and Tuve's theorem and Martyn's theorem

for a flat ionosphere [Budden, 1966], although the earth's curvature is

otherwise taken into account. The Idea is that, even though the total range

may exceed 1000 km, only a small part of the raypath occurs in the ionospheric

region in many instances. Hence, the earth's curvature can be neglected for

the ionospheric portion of the raypath, in which case the above theorems can

be used.
The algorithm for determining range from measured frequency f and

elevation angle So is described next with reference to Figure 2:

-- --------------------------------- ALGORITHM I

(1) Guess a range D, and x D/2R O
(2) Calculate I 1=f/2 - O - X and C = cos i

(3) Determine P' from Martyn's equivalent path theorem

where

A0 (/CosX

5
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Fig. 2 - Illustration of notation (cf. Sec's 3,4)
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(4) Determine a new D from the Breit-Tuve theorem.
The law of sines gives

which can be inverted to give

X = -- I / . ('z) co,4

(5) Compare the new value of D = 2 RoX with the old value to see if it
is within tolerance. If so, terminate the calculation. If not, go

back to (2) and repeat the ensuing steps with the value of X just

calculated in (4).

The preceding algorithm is tested for the case of a simple F-layer. The

layer is modeled as a simple "quasi-parabola", which has the form (Croft and
Hoogasian, 19681

(R 7 ~ Z. / ZR,), (12)

where Rb is the radius of the bottom of the layer, Rm is the radius of the
layer maximum, and Ym is its semi-thickness (Rb = Rm - Ym)" It will

be noted that for layers of this form, the form of (7) is exact, and the
relevant integrals are thus easily calculated. The parameters of the layer

used for calculations are fp - 10 MHz, Hb = Rb - Ro = 230 km, and Ym

= 120 km. The calculated virtual height profile is shown in Figure 3, and the
results of the preceding computerized algorithm are shown in Table 1. Ranges
are carried out to two decimal places for the purpose of comparison of the DF
range values with the exact range values. The exact values are calculated for
this simple case, using the results of the preceding section and Appendix 1.

It is seen from Table I that the flat ionosphere approximation, inherent

in the algorithm, works very well for small elevation angles and for
frequencies beneath fp. Errors for the 11 MHz (f > f ) case do not
approach 1% until the-elevation angle exceeds 500. Tge portion of the

raypath in the ionosphere becomes long enough at this point, that the flat
ionosphere approximation begins to break down. Sensitivty to the
approximation also increases for the large elevation angles, where the large,
rapidly varying (with frequency) values of virtual height come into play. The
11 MHz ray escapes the layer altogether for elevation angles greater than
63.930. The elevation angles greater than 600 correspond to Pedersen or
"high" ray propagation [Budden, 19661. It is especially for these rays that
the preceding algorithm breaks down.

7
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TABLE 1. DF RANGE DETERMINATION FROM VIRTUAL HEIGHT PROFILES

(cf. Sec. 3)

FREQ. El. Angle DF RANGE EXACT RANGE ERROR
(%t) (o)0 (kmn) (kmn) M%

11 10 1889.75 1888.82 .05

15 1482.18 1481.11 .07

20 1210.04 1208.81 .10

25 1020.91 1019.56 .13

35 779.89 778.28 .21

45 632.10 630.13 .31

55 535.32 530.38 .93

60 513.07 504.12 1.78

61 519.31 504.89 2.86

62 544.50 511.64 6.42

8 10 1846.90 1846.67 .01

15 1432.07 1431.81 .02

20 1151.30 1151.02 .02

30 805.52 805.24 .03

40 598.65 598.45 .03

50 451.97 451.88 .02

60 331.39 331.49 .03

70 220.33 220.53 .09

80 110.69 110.84 .14
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It is worth noting that convergence of the preceding algorithm is rapid,
even if the starting guess for the range is grossly inaccurate. For example,
for the 11 MHz ray and an elevation angle of 50, if one initially guesses a
range of 200 km, the calculated range is within about 1% of its final value of
2513.6 km after three iterations. Convergence to six significant figures and
two decimal places is obtained after seven iterations.

4. IMPROVEMENTS FROM CURVED IONOSPHERE GENERALIZATIONS

The algorithms of the preceding section can be improved at high elevation
angles by generalizing the Breit-Tuve and Martyn equivalent path theorems
beyond the flat Ionosphere approximation. The Breit-Tuve theorem relates
group-path length to X (- '/Ro) in Figure 1. From (3) and (8)

0_/ = - R - A7 to Vpo (13)

The ray follows a straight line in free space up to the ionosphere. If the
curvature of the ionosphere could be neglected, then the Breit-Tuve theorem
would allow for the calculation of group path length, much as if the ray
continues its straight-line path in the ionosphere, unaffected by it, up to F
in Figure 2. If this were true, the radius R could be deduced from the law of
sines in Figure 1 as

Cos c6. C C *X) (14)

Substitution of this equation in (13) and integration over the total range
does yield the curved-earth, flat ionosphere Breit-Tuve theorem used in step
(4) of the algorithm of the preceding section. In the ionosphere, however,
the ray actually follows the dashed path shown in Figure 2, where it gets
reflected at the radius Rt = Ro + Ht . The improvement suggested here is
to approximate R in (13) by (14) for O4RiRt, where Rt corresponds to

*t, and then to set R - Rt for X t ! X XD, where XD corresponds to
the total range. Hence, one obtains from the integral of (13) over X from 0
to XD ( D/2Ro)

where, (15)

'YC = A1'6 ;i c 0s ( 'c 0,A )

and Rt, the reflection radius, is obtained from

2.

(R= / - ( o
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The price pald for this guneralization of the Bruit-Tuve theorem is loss of

simplicity. The details of the ionospheric true-height density profile now

creep into the r-Sult, because of the dependence of Rt on f.
In Table 2, various relations between P' and D are tested for the

quasiparabolic F-layer used for Table 1. D is computed exactly, and P' is

computed from the relation being tested. The first and second columns give

frequency f and elevation angle 0o. The third column gives exact values of
group path length P', which were calculated along with the exact values of

range D given in Table 1. The fourth column is the Breit-Tuve result for

P ,ie., PBT', which relation was used in the algorithm of Sec. 3. The

fifth column is the value of P' from (15), ie., PRl'. The sixth column

gives P' from the Maliphant and Muldrev [1963] relation, i.e., PIM' This
relation was used by Smith [1970] in his method for extracting ionospheric
profiles from oblique incidence ionograms. The relation can be simply

obtained from (15) by replacing the square-bracketed term there by R0Xp.
It is seen from Table 2 that PBT' is accurate for all but the highest

elevation angles for f >f (- 10 MHz). It is also seen that PRl' is
remarkably accurate for afl the elevation angles listed. The errors for
PMM' are largest in Table 2, but they are only in the range 1-2% for high

values of elevation angle when f >fp.
Martyn's equivalent path theorem relates group path length for oblique

propagation to virtual height for the vertical path associated with the same
reflection altitude. A generalization of this relationship beyond the flat
ionosphere approximation in step (3) of the algorithm in Sec. 3 is derived in
Appendix B. For greater generality, an E-layer is included in the analysis
along with the F-layer. Just as with (15), the application of the results
requires some knowledge of the ionospheric density-true height profile, which
can be obtained from processing the virtual height profile. The reflection
height Ht - Rt - Ro is found from the solution of (16). Then the
solution for the equivalent vertical incidence frequency fv is given by

Scos (17)

It will now be useful to define a density profile parameter

which involves the slope of the density at R [cf. (2)]. In terms of this

parameter it is found in Appendix B that

If __ -IR; Cos"A A -*4 (5A) Vz(P
(19)
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TABLE 2. COMPARISON OF GROUP PATH LENGTHS CALCULATED FROM THREE BREIT-TUVE

TYPES OF RELATIONS (cf. Sec 4)

FREQ. El. ANGLE EX CT P PBT PRI PM
0

(MHz) () (km) (km) () (km)

11 10 1984.30 1984.38 1984.32 1989.38

15 1589.92 1590.04 1589.95 1591.10

20 1336.35 1336.55 1336.40 1335.60

25 1170.83 1171.16 1170.91 1168.85

35 993.03 993.85 993.22 989.10

45 936.40 938.31 936.81 930.16

55 978.85 983.73 979.78 968.60
60 1073.50 1083.01 1075.05 1058.74

61 1110.72 1122.23 1112.48 1094.29

62 1164.85 1179.53 1166.92 1146.02

8 10 1938.26 1938.28 1938.26 1943.45

15 1534.97 1535.00 1534.98 1537.02

20 1270.06 1270.10 1270.07 1270.45

30 966.24 966.35 966.27 965.14

40 813.65 813.89 813.71 811.72

50 733.92 734.34 734.02 731.28

60 693.75 694.42 693.91 690.46

70 676.09 677.04 676.30 672.19

80 670.25 671.43 670.51 665.92
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where AE(f,Bo) is the contribution of E-layer retardation (=0 for no

E-layer). AE is given by (B2) and (B4) of Appendix B. It can be evaluated

for typical E-layer distributions by fitting a quasiparabola to the observed

E-layer profile, and then using the formulae of Sec. 2 and Appendix A. This

quasiparabola can even be directly obtained from the virtual height profile.

Its contribution will often be insignificant in HF-DF applications. The

parameter R corresponds roughly to the bottom of the F-layer, but, more

accurately,B t contains the dependence on h'(fv) through

$/,,.= %<-0  A -K~i Vz(~-h~/A. (20)

where
A -

~) (21)

and

(22)

Equations (16-22) constitute the proposed generalization of Martyn's

equivalent path theorem. It is evaluated in Table 3 as PR2' for the
quasiparabolic F-layer case of Tables 1 and 2, and is compared with the flat

ionosphere approximation in step (3) of the algorithm in Sec. 3, denoted by

PM' in Table 3. The rest of the parameters are identical with those of Table
2.

From Table 3 it is seen that the flat ionosphere Martyn's theorem PM'

values are quite accurate for the smaller elevation angles. Beyond 500 the

errors increase with elevation angle, approaching several percent for the
Pedersen rays. This is similar to the situation in Table 1. Associated

errors in Table 2 for the flat ionosphere Breit-Tuve theorem are substantially

less for high elevation angles. It therefore appears that most of the error

at high elevation angles in the algorithm of Sec. 3 arises from the use of

Martyn's theorem there. By contract, it is seen that the generalization PR2'

is extremely accurate for all elevation angles. This is somewhat surprising

in view of the approximation (B5) used in (B7) of Appendix B, which is

apparently offset by (B9).

13



TABLE 3. COMPARISON OF GROUP PATH LENGTHS CALCUALTED FROM TWO tiARTYN

TYPES OF RELATIONS (cf. Sec. 4)

FREQ. EL. ANGLE EXACT P' PiM PR2'

11 10 1984.30 1985.35 1984.30

15 1589.92 1591.18 1589.93

20 1336.35 1337.88 1336.35

25 1170.83 1172.69 1170.84

35 993.03 995.83 993.05

45 936.40 940.98 936.45

55 978.85 989.37 979.04

60 1073.50 1101.61 1074.04

61 1110.72 1152.10 1111.46

62 1164.85 1240.87 1166.01

8 10 1938.26 1938.53 1938.26

15 1534.97 1535.28 1534.97

20 1270.06 1270.41 1270.06

30 966.24 966.69 966.24

40 813.65 814.16 813.65

50 733.92 734.44 733.92

60 693.75 694.20 693.76

70 676.09 676.37 676.09

80 670.25 670.34 670.25

14
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Because of the high accuracy of the derived generalizations of the flat

ionosphere theorems of Breit-Tuve and Martyn, these generalizations can form
the basis of a highly accurate algorithm for range deterwination at any
measured elevation angle. The algorithm is given next.

ALGORITHM 2

(1) Determine the reflection radius Rt from eq. (16)

(2) From the calculations of eq's (17) - (22), determine the group path
delay P' in terms of the density slope at Rt, the virtual
height at the frequency fv given by eq. (17), and some
characteristics of the observed E-layer.

(3) Determine range from P' according to eq. (15), i.e.,

"a (23)

where Xt is given by eq. (15). This algorithm is different in character
from the simple algorithm of Sec. 3. Note, for example, that it is not
iterative.

5. DISCUSSION
Within the approximations of constant ionosphere and no magnetic

field the simple algorithm of Sec. 3 is sufficiently accurate for range

determination in most cases. The only breakdown occurs at high elevation
angles (cf. Table 1), in the region of Pedersen ray propagation for f>fp,
and this arises principally from the use Martyn's equivalent path theorem for

a flat ionosphere.
Curved ionosphere generalizations of the Breit-Tuve and Martyn theorems

are derived in the preceding section, and are shown to be capable of removing
the inaccuracies in the algorithm of Sec. 3. Unfortunately, additional
complication is introduced. Not only is the virtual height vs frequency
profile required, but also the density vs. height profile in the vicinity of

the reflection height must be known. The latter is required in order to be
able to determine the reflection height and the slope of the density at this

height. Partial knowledge of the electron density vs. height profile is the
typical outcome of processing the virtual height profiles from vertical
ionosonde measurements ([Titheridge, 1959] and [Budden, 1966]). For example,
electron density valley values behind (above) an E-layer peak remain unknown.
It is conceivable, therefore, that enough about the density profile is known

that the algorithm at the end of Sec. 4 can be applied, but that not enough of
the profile is known to enable application of a ray-tracing program or a
direct-scattering algorithm of the type given in Sec. 2. Even when the direct
scattering calculation is possible, it may well be that the algorithm of Sec.
4 is simpler to apply. This depends on the type of data and both
data-handling and computing power which are available at the time.

15



Curved ionosphere generalizations of the Bruit-Tuve and Martyn theorems
may turn out to be useful in other applications too. For example, the use of
(15) may enhance the accuracy of density profile extraction from oblique
incidence ionograms by a method similar to that of Smith [1970). In
conjunction with such a procedure it may be that conversion of oblique

incidence ionograms to virtual height profiles would be facilitated through
use of (16)-(22).

The use of curved ionosphere generalizations may seem questionable when

one accepts 5-10% inaccuracies from the neglect of ionospheric tilts and
mangetic fields. It is only the use of Martyn's theorem for flat ionosphere

at high elevation angles and frequencies (f)'fp) that results in errors

of this magnitude. In other cases, the use of the simple algorithm in Sec. 3
is attractive. Development of techniques in DF applications for making

corrections due to the magnetic field and ionospheric tilts should justify
more extensive use of the curved ionosphere generalizations of the Breit-Tuve
and Martyn theorems.

Throughout this paper, attention has been principally directed to range

determination in HF-DF applications. The latitude and longitude of the HF
transmitter are easily found from azimuth and range by the use of simple

spherical trigonometry formulae.
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APPENDIX A

DIRECT SCATTERING CALCULATION OF RANGE AND GROUP PATH LENGTH

Given three adjacent mesh points Rl, R2 , and R3 with associated
values of G - R2fN 2, where fN is the plasma frequency. A quadratic
fit to G(R) on the interval [RI,R 3 ] is given by Lagrangian Interpolation:

6 (R-,)(R-R ) + (-R 3 )(-,) (R-R,)(R-R,)
G -=G, ,-90 rP,- R) +  - + 6:3

3 (R-R 3 )(R-R 1) (R-R,)(R-9) (Al)

where Cijk is the familiar Levi-Centa tensor, (- 0 if any two indices are
equal, otherwise - +1, -1 for an even, odd permutation of indices) and the
summation from 1 to 3 is understood for repeated indices. Then in eq. (5) if
the text, one can write (cf (1) of text)

Cos ' (A2)

where

(Ri k

B _ _ _ _ _ _ _ _ _(A3)

17
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which is analytically inLegrable. If there is a reflection point Rt in the
interval, such that

(A7)

then the upper limit R3 should be replaced by Rt. Hence, assuming the
electron density is non-vanishing in the interval, it is found that

~ (A8)

R3

From Eq. (9) of the text and (A2) above, the ionospheric contribution to
group path length from the given triad of points is similarly obtained. It is

(A9)

where R3 should be replaced by the reflection pt. Rt, if such a point
exists in the interval.
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APPENDIX B

GENERALIZATION OF MARTYN'S THEOREM

From equations ((I) and (9) of the text, group path length for an oblique
path Is given by

- (Bi)

where

vanishes at Rt, the reflection radius in the F-layer. The frequency is

assumed to be large enough that an E-layer present is penetrated. Let the
bottom of the F-layer be located at RBF. Then from (10) of the text

"4?BF  V Q (R -

where AE is the retardatation length due to the E-layer in the region RBE 4
R<_RTE. It is given by

__ _ ( /~(AOCS,. (B4)

The approximation is now made that for the integral in (B2), Q(R) can be
replaced by an expression which is valid when R is near Rt:

~ (B5)

where

I (R) 4 2 C(B6)

Then (B3) becomes

If , -Rsip (B7)

19

-I I ... aK



Evidently, this expression is suspect when Rt is very close to the layer

maximum. The corresponding expression for vertical incidence (Oo - Tr/2)) is

R R.- /-P , 7/T)+ (& R /Q 4

where (B8)

is now the frequency that enters this expression, in order that reflection

takes place at the same height Ht as for the oblicue incidence propagation.
Here, Qv '(Rt) in (B8) is given by (B6) with 00 - r/2 and with f
replaced by iv. Every radius R in these equations is associated with an

altitude H, defined by H - R - Ro. It is proposed to generalize Martyn's
equivalent path theorem by using (B8) to eliminate RBF from (B7). In this
way a new relation between P'/2 and h'(fv) is obtained. From (B8), the

expression for Hlris

A~-K 'LK ;Z (B9)

where

K - -I (Blo)

D+ - ', <) - a= (I,, , ,/z.)
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