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rHIEI;-)I)MENS IONA]. ANALYSIS OF COMl"OSlIIi: PlATES WI Il
MAF.I A! NNINEAR ITY

1'. KupF, USamy, A. Naida, and .I. N. Rddv

ABSTART'

A fullV three-dimensional analysis of laminated plates with mater-
ial non linearitv is presented. The modified Romhe r-Osgood relation is
used to compute the principal elastic moduli in the plane of the laminae.
The elastic-plastic model with Htill's criterion is also used in the study.
A shear deformation plate theory is also used to compare the results
obtained hy the three-dimensional model.

I NTROI)UC'I ON

Considerable research effort has gone in the past into the analysis

of laminated composite plates. Much of the earlier research was confined

to analvses based on the Laminate plate theory of Reissner and Stavskv [i].

Extension of the classical laminate theory to thick plates is due to Yang,

Norris, and Stavsky [2]. Closed-form solutions of this theory were pre-

sented by Whitney and Pagano[3], and Reddy and Chao [4]. Reddy and his

colleagues [5-8] and Spilker[9] presented finite-element analyses based

on the shear deformation plate theory. A state of plane stress was assu-

med in all plate theories, and the individual lamina and hence the laminate

is assumed to behave in linear elastic fashion. The finite-element analysis

of laminated plates using the three-dimensional elasticity theory has been

conducted by Lin [10], Dana [11], Dana and Barker [12], and Kuppusamy and

Reddy [13]. The studies in [10-12] were limited to linear elastic analyses

while that in [13] was geometricall nonlinear. None of these studies consi-

dered material nonlinearity or elasto-plastic behavior in the analyses.
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Criffin, Kamat and Ilerakovich 1141 included material nonlinearity

through a elastic-plastic model with strain hardening to study

laminated plates subjected to inplane loads. Pifko, Levine, and Armen

[151 presented a similar study. Nonlinear material properties were

introduced via one-dimensional Ramberg-Osgood representations by Renieri

and Herakovich 1161. All of these studies were mainly intended to

compare laboratory test data in one-dimensional tension tests with

those predicted by FEM/Ramherg-Osgood relation. Plate bending problems

were not studied.

The present study involves a fully three-dimensional analysis of

composite plates using the finite element method and includes material

nonlinearity. Apparently, the present study is the first one to

consider the material nonlinearity in three-dimensional finite-element

analysis of composite plates. The material nonlinearity is introduced by,

1) uncoupled one-dimensional modified Ramberg-Osgood model; and 2)

elastic-plastic model using modified Hill's criterion for anisotropic

media. The finite elements developed in (51 and (13] are extended to

account for material nonlinearities. Some of the results from the

three-dimensional nonlinear analysis ire compared with those of shear

deformable (2-D) theory.

FINITE ELEMENT FORMULATION

Here we present a displacement finite element model for an elastic

body. The kinematic description of an elastic body yields the following

equations of equilibrium (in the absence of body forces and

moments)

o = 0 (i,j 1,2,3) (1)

where aij are the stress components, and 
xi are the Cartesian coordinates.



The linear stress-strain cnpt itut iv' relat ionsh i[ i'

ij ijkl k1

where Cijkl contains the material constants, '-ki is the .-train tensroi.

The field equations are to be adjoined by the boundary conditions

specified for the problem. The finite element model associated with the

variational form of the equation (see 1171) over an arbitrary ilment

of the finite element mesh is given by

[6ui ij I dxI dx2 dx3  f tm um ds (3)
e Fe

where 6 denotes the variational symbol and t is the surfac,. traction 1)n

e

The displacements u are assumed in terms of nodal displacements

through interpolation functions. These are expressed in matrix form as:

{u -- (NJ fq }(4)

where q, is the nodal displacement vector and (N] is the interpolation

matrix.

For a three-dimensional eight-node brick element, one has

I

Ni  U + ( + YY) ( + tt i = ,...8 (5)

where s, Y,and t are the local coordinates (i.e., in the element).

The strain-displacement relations can be expressed in terms of the

column of nodal displacements as

[k] [B1 Jq (04)



where JBI is the matrix consisting of the derivatLves of the

interpolation functions, N.. Substituting Eqs. (4) and (6) into Eq. (3)

and taking the variation, one obtains the element equation

[Ke = Re } (7)

where

[K e l  ( BI T [C] [Bldv (8)

and

{Re} = applied force vectr=f {t }[NJ Tds (9)
re

The element equations are assembled in the usual manner to obtain

the global equations, which have the general form

[K] {Q1 = {R} (10)

Equation(O)is solved for {Q) after introducing the essential

boundary conditions. The secondary quantities, i.e., strains and

stresses in each element are then computed.

MATERIAL MODELS

Two different nonlinear material models are considered. They are,

1) Modified Ramberg-Osgood model; and 2) elastic-plastic model with

modified Hill's criterion for anisotropic media.

Modified Ramberg-Osgood Model

For an anisotropic linear elastic medium, the stress-strain

relationship (2) can be written in a matrix form as:



A A12 A ( O (0

0 All A- A,) 0 0 nC 2

3A A A3 A3 0 C) 3

4  0 A0 4 0 (

0 0 0 A 5
555

6 0 0 0 A6 6  6

where A to A are given in terms of engineering constant-, E F 2 , F11
11 66 2I'

12' '21' '13' '31' '23' 32' "'12' (;13 and G2 3  (see [181). If the

stress-strain relationship is nonlinear, then the coefficients A vary
ij

during deformation. If it is assumed that the nonlinearity can be

represented by uncoupled stress-strain behavior for each of the strain

components, then a suitable curve fitted to the experimentally observed

stress-strain behavior car, serve as the material constitutive law. The

Ramberg-Osgood relation used here is one such procedure.

For each of the strain components the stress-strain relationship

can be simulated by the Romberg-Osgood relation (see [19,201) as

Im
L (12)

F;.

where E = strain, 0 stress, E. = the initial modulus,and X and m are the

parameters defining the curve (see Figure 1).

A modified stress-strain relationship can be derived from the above

law as:
E. - E

o E. - E m E/r (13)

[I + i ]_-R)
0
p

The tangent modulus can now be defined as

E- E

F do F (4*t =d -t m tn + F (14)- p

- - . . . .. r. .. . .. . .
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Figure 1. Ramberg-Osgood Model
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The above equation is used to calculate the F values at every

straini level and update the stiffness matrix in the finite element

tormulat ion.

Elastic-Plastic Model

An incremental formulation is used here. It is assumed that

O e Op 0t- L + . i =12,., ( 15)
i i,..","

where incremental total strain, Oe incremental elastic strain and

ii
-P incremental plastic strain.

The Hooke's (2) law in incremental form is given by

o
A . i,j 1,2,... 6 (16)i ii j

where A.. the constitutive matrix given in Eq.(1l).

As per the modified Hill's criterion for an orthotropic medium, the

following yield function is used (261:

2f(0.) F(o 2 - 3)
2 + G( - C12 + (1 - 2)2 + 2L(0 5 ) 2

+ 2M(G 6 ) 2 + 2N( 0
4 ) = 1 (17)

where ( = yield function, and material parameters F, G, H, L, M, and Ni

are defined in terms of yield strengths as:

2F = 1+1 1II
Y z X

1 1 1
2G = -~+ -

x z Y
1 1 1 (18)

2H = -7 + -2+

x Y Z

1 1 1
2L = 2M=- , 2N =

R 2S 2
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where XY, and Z are the normal yield strengths in the material principal

directions and R,S and T are the shear yield strengths.

The normality condition is:

= 0a1p , . . . (19)
i o.

where X can be evaluated from the consistency condition give by

dl ) 0 i 1,2,... ,h (20)
Thi

It can be obtained that

1 D.f i = 1,2 .... 6 (21)
K i

if
where K Df., D. f.A..,and f if

1j 1] i l
I

Substituting Eq. (16), (19) and (21) into Eq. (15), one obtains the

constitutive equation

0
a = Cij Ej i,j = 1,2,..., 6 (22)

where Cii is the elastic-plastic matrix which should be updated for

nonlinear analysis at each step.

The nonlinear analysis is carried out by the incremental method

combined with iterative correction for the load vector at every load

step (see [271). The following iterative process is adopted:

a. the load increment is applied and the elastic stress and

strain increments are obtained.

b. The yield function f(o) is calculated for each element. For

the elements where f .1 0, the elasto-plastic strain increments

are calculated using the elastic-plastic matrix [see Eq.(22)].

The stresses are modified in the proportion of the strain



increment to art it icial lv make f > 0. Tie di tference in the

stresses are treated as the initial stresses.

C. The residual load vector is computed from the initial stresses,

and step (b) is repeated. The iteration is carried out

the residual vector becomes very small (say one percent of the

load vectar in the preceding iteration). Once convergence

is achieved, the next load increment is added and rho- whole

iteration procediire, is repeatcd.

RESULTS

In order to validate the elastic-plastic model used here, the

problem of an isotropic plate with a notch (see Fig. 2) is solved by

using the formulation developed here for the three-dimensional analysis.

The notch stress vs. displacement is shown in Fig. 1. The yieldstrength

of the material is 30 kg/mm2 and E =0.2xl0 kg/mm and v = 0.3. The

present three-dimensional analysis consists of 72 brick elements; the

maximum notch stress at the end of six, seven, and eight iterations is,

2
respectively, 19, 21 and 23 kg/mm2 . The convergence trend indicates

2that the maximum stress value will he lower than 23 kg/mm2. Results of

a two-dimensional (plane stress) analysis of the same problem is

available in Reference 23. The maximum notch stress was 19 kg/mm2 and

this was obtained by using 245 two-dimensional plane elements and 51

iterations. From the classical slip line solution of this problem the

2maximum notch stress is 18 kg/mm . Considering the fact that coarse

mesh and fewer iterations (8 iterations) are used in the present study,

and the present study Is based on the three-dimensional formulation of

the problem, one can conclude that the results obtained here are

reasonably good.
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A symmetric three-layer squart, laminate (0*/900/00) of dimen-

sions a x a x h and subjected to uniformly distributed vertical load

of intensity q on the top surfact. is analyzed. The plate is simply

supported on all the edges. Taking advantage of the symmetry, only a

quarter plate is analyzvd.

The material ot the lamina is i-TSutiuVd to have the following

properties with respect to the material symmetry axes:

Linear Elastic P'arameter-.

El = 1.725 x 108 kN/m ? (25 x 106 psi)

E = F 6.89 x 106 kN/m 2 (106 psi)
2 3

'12 (1 13 3 !0 6  M t) X 10 psi)

G 13 .78 x LO kN/m (0.2 x 10 psi)

112 = \3 3 = 0.25.

Parameters in the Ramberg-Osgood Model

E. E m
Ip p

E 25xi06 psi 5x106 psi 5xlO 3 psi 2

(1.726x.108 kN/m
2 ) (0.3e '.xl() kN/mr) (0.345x10 kN/m

2

E2=E 3  lx 06 psi 2xl05 psi 5xlO 3 psi 2

(6.89xi06 kN/m ) (1.392xi06 kN/m 2)(0.345xlO
5 kN/m )

Plasticity Parameters

Two different analyses are carried out here using 1) high strength

model with the yield stresses X = 10,000 psi Y = 4000 psi and Z = 4000

psi and 2) low strength model with yield stresses X = 5000 psi, K = 2000

psi and X = 2000 psi.



Plots of the nod imens ionalz 17ed def lect ion vr'A1 nmndiMen'sion-

alized load are presented in Figs. 1- S t,, side-to-thickness ratios

a/h , 10, 20 and 100. The figuret al.,o contain results obtained by

the use of the modified Ramberg-Osgood model in the two-dimensional

laminated plate theory (see [5, 131). For a/h ratios 5 and 10 (see

Figs. I and 4). the results are in close agreement in the initial stages

of the load, and the deflections predicted v.' the plate theorv are lower

than those predicted by three-dimensional theory in higher load levels.

For (a/h) = 20 (see Fig. 5), the results obtained by the plate theory do

not agree closely with those of the three-dimensional elasticity theory.

This is due to the fact that full integration (2x2x?) is used in the 3-D

analysis, which results in -;o-called lockin' ol ,lement stiffness

coefficients [131.

The deflections obtained in three-dimensional analysis using the

Ramberg-Osgood model and elastic plastic model are also compared in Fig.

4 for a/h = 10. A similar comparison is shown for (a/h) = 100 in Fig. 6.

It is observed that the Ramberg-Osgood model is able to predict an

average of the deflections produced bv the plasticity models. Figures 6

and 7 contain similar results for stresses at the Center o0 the

plate. Here also, the Ramberg-Osgood model predicts an average of the

stresses compared to the stresses predicted by the elastic-plastic

models. This observation is encouraging to recommend the use of 'ke

Ramberg-Osgood model for design purposes because the Ramberg-Osgood

model is much simpler than the elastic-plastic analysis which requires

many iterations at each load level. These figures clearly demonstrate

the effect of material nonlinearlty on the behavior of a simply

supported composite plate subjected to uniformly distributed load.
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CONCLUSIONS

A fully three-dimensional analysis of cross-ply laminated plates

with geometric nonlinearity is presented. Two types of material nonlinear

models are used: (1) uncoupled one-dimensional modified Ramberg-Osgood

relation, and (2) elastic-plastic model with modified Hill's criterion

for anisotropfc media. It is observed that the uncoupled Ramberg-Osgood

model was able to predict the average material behavior compared to the

elastic-plastic model. The dflections obtained by the three-dimensional

analysis using the uncoupled Ramberg-Osgood model are compared with those

obtained by the shear deformation plate theory. Reasonable agreements

are seen at lower load levels up to the plate side to thickness ratios

a/h = 10.
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