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THREE=DIMENSTONAL ANALYSIS OF COMPOSTTE PLATES WITH
MATERTAL NONLINEARITY

I". Kllp}nns;nny; A. Nanda, and J. N. Reddy

ABSTARCT

A tully three-dimensional analysis of laminated plates with mater-
ial nonlinearitv is presented. The modif ied Romber-Osgood relation is
used to compute the principal elastic moduli in the plane of the laminae.
The elastic-plastic model with Hill's criterion is also used in the studv.
A shear deformation plate theory is also used to compare the results
obtained by the three-dimensional model.

INTRODUCTION

Considerable research effort has gone in the past into the analvsis
of laminated composite plates. Much of the earlier research was confined
to analvses based on the laminate plate theory of Reissner and Stavskv [1].
Extension of the classical laminate theory to thick plates is due to Yang,
Norris, and Stavsky [2]. Closed-form solutions of this theory were pre-
sented by Whitney and Pagano[3], and Reddy and Chao [«]. Reddy and his
colleagues [5-8] and Spilker[9] presented finite-element analyses based
on the shear deformation plate theory. A state of plane stress was assu-
med in all plate theories, and the individual lamina and hence the laminate
is assumed to behave in linear elastic fashion. The finite-element analvsis
of laminated plates using the three-dimensional elasticity theory has been

conducted by Lin [10], Dana [11], Dana and Barker [12], and Kuppusamy and

Reddy [13]. The studies in [10-12] were limited to linear elastic analyses ———mm=

while that in [13] was geometricall nonlinear. None of these studies consi- E?
1
dered material nonlinearity or elasto-plastic behavior in the analyses. O]
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Criffin, Kamat and Herakovich [14] included mater{al nonlinearity
through a elastic-plastic model with strain hardening to study

laminated plates subjected to inplane lovads. Pifko. Levine, and Armen
115) presented a similar study. Nonlinear material properties were
introduced via one-dimensional Ramberg-Osgood representations by Renieri
and Herakovich {16]. All of these studies were mainly intended to
compare laboratory test data in one-dimensional tension tests with
tlhose predicted by FEM/Ramberg-0Osgood relation. Plate bending problems
were not studied.

The present study involves a fully three-dimensional analvsis of
composite plates using the finite element method and includes material
nonlinearity. Apparentlyv, the present study is the first one to
consider the material nonlinearitv in three-dimensional finite-element
analysis of composite plates. The material nonlinearity is introduced by,
1) uncoupled one-dimensional modified Ramberg-Osgood model; and 2)
elastic-plastic model using modified Hill's criterion for anisotropic
media. The finite elements developed in [5] and [13] are extended to
account for material nonlinearities. Some of the results from the
three-dimensional nonlincar analysis are compared with those of shear

deformable (2-D) theory.

FINITE ELEMENT FORMULATION
Here we present a displacement finite element model for an elastic
body. The kinematic description of an elastic body yields the following
equations of equilibrium (in the absence of body forces and

moments)

0 (1,1 = 1,2,3) (1)

a =
i3,
and x4 are the Cartesian coordinates.

where oij are the stress components,
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The linear stress-strain constitutive relationship ie

]

= ( .
ij ijki k1

K1 contains the material constants, -« is the strain tensor.

where Cij K1

The field equations are to be adjoined by the boundarv conditions
specified for the problem. The finite element model associated with the
variational form of the equation (see [17]) over an arbitrarv element
of the finite element mesh is given by

{6u, . o,.) dx dx2 dx, = t u_ds (3)

where § denotes the variational symbol and t is the surface traction on
re.

The displacements u, are assumed in terms of nodal displacements

through interpolation functions. These are expressed in matrix form as:
{uy = [N] {q} (4)

where 'q: is the nodal displacement vector and (N] is the interpolation

matrix.

For a three-dimensional eight-node brick element, one has

=1 [ =
N, =g (Less) (L+ YY) (+ee) i=1,...8 (5

where s, Yv,and t are the local coordinates (i.e., in the element).
The strain-displacement relations can be expressed in terms of the

column of nodal displacements as

[k} = (8] iq° (6)




where [B] is the matrix consisting of the derivatives of the
interpolation functions, Ni' Substituting Eqs. &) and (6) into Eq. (3)

and taking the variation, one obtains the element equation

(K®] {q} = RS} (7)
where
«k®1 = | (817 (¢ (Blav (8)
0
and
{R®} = applied force vectora[ {t }[N]Tds (9)

re
The ¢lement equations are assembled in the usual manner to obtain

the global equations, which have the general form

(x] {Q} = {(r! (10)

Equation (10) is solved for {Q} after introducing the essential

boundary conditions. The secondary quantities, i.e., strains and

stresses in each element are then computed.

MATERIAL MODELS

Two different nonlinear material models are con3idered. They are,
1) Modified Ramberg-Osgood model; and 2) elastic-plastic model with
modified Hill's criterion for anisotropic media.

Modified Ramberg-Osgood Model

For an anisotropic linear elastic medium, the stress-strain

relationship (2) can be written in a matrix form as:




~r

-11 A” AIZ Al’) 0 0 0 I
()2 AIL’ A?'Z /\?_‘ 0 0 0 L2
g ¢
3 ) AIB 1\?,3 A33 0 0 0 3 an
04 0 0 0 AA[. 0 0 L&
0S 0 0 0 0 A55 0 o
9 L— 0 0 0 0 0 A66 L6

where A11 to A66 are given in terms of engineering constants E], E2, F%‘

Yoo Yy Vg0 V310 Y30 “3n0 012, 013 and G23 (see {18]). If the
stress-strain relationship is nonlinear, then the coefficients Aij vary
during deformation. 1If it is assumed that the nonlinearity can be
represented by uncoupled stress-strain behavior for each of the strain
components, then a suitable curve fitted to the experimentally observed
stress-strain behavior can serve as the material constitutive law. The
Ramberg-0Osgood relation used here is one such procedure.

For each of the strain components the stress~strain relationship
can be simulated by the Romberg-Osgood relation (see [19,20]) as

m

=) 12y

where ¢ = strain, ¢ = stress, Ei = the initial modulus,and » and m are the

parameters defining the curve (see Figure 1).

A modified stress-strain relationship can be derived from the above

law as:

S S - S
° E,-E mi/m ‘& (13)
(1+ -2 ]
p

The tangent modulus can now be defined as

E
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Figure 1. Ramberg-Osgood Model
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The above cquation is used to calculate the F values at every

e ey

strain level and update the stiffness matrix in the finite element

formulation.

Flastic-Plastic Model

Ty

W)

An incremental formulation is used here. It is assumed that

¥
!
)] s [ ._‘
Voo P i o1,2,.0.0,6 (15) 4
i i i !
P
] O
where - = incremental total strain, ﬁ% = incremental elastic strain and :
i i H
9? = 1incremental plastic strain. '
3
The Hooke's (2) law in incremental form is given by ;é
L.
0
8 =a € £, = 1.2,...,6 (16)
i ij 3

where Aij = the constitutive matrix given in Eq.(1ll).
As per the modified Hill's criterion for an orthotropic medium, the

following yield function is used [26]:

2 2 2 2
2f(°i) = F(o2 - 03) + c(o3 - 01) + H(°1 - 02) + 2L(°5)
. 2”“’6)2 . zw(g)2 -1 (a7

where 1 ( }) = yield function, and material parameters F, G, H, L, M, and N

are defined in terms of yield strengths as:

2F =

T
Y Z X
1 1 1
TR
i i 3
X Y Z
L

(18)
2“ = + +
n-L, om-L o h
2 ) N




where X,Y, and 7 are the normal yield strengths in the material principal }’
directions and R, and T are the shcear yield strengths. !

The normality condition is:

S W i 1,2,...,6 (19)
i 30,
1

.

where A can be evaluated from the consistency condition give by

Fr——

ar = 9y i 1,2,...,6 (20) A
RIS |

1 P

4

It can be obtained that e
1 ;j

— i
_— - 1 = 'i

A % Difi i 1,2...,6 (21) '

where K = D f., D, = f A ,and f, = =—.
11 i j 1] 1 3

Substituting Eq. (16), (19) and (21) into Eq. (15), one obtains the

constitutive equation

i;j = 192)--‘96 (22)

1
o
e

i ij
where Cij is the elastic-plastic matrix which should be updated for
nonlinear analysis at each step.

The nonlinear analysis is carried out by the incremental method
combined with iterative correction for the load vector at every load
step (see [27]). The following iterative process is adopted:

a. the load increment is applied and the elastic stress and

strain increments are obtained.

b. The yield function f(0) is calculated for each element. For

the elements where f ~ 0, the elasto-plastic strain increments

are calculated using the elastic-plastic matrix [see Eq.(22)].

The stresses are modified in the proportion of the strain




increment to artificially make f > 0. The differences in the
stresses are treated as the initial stresses.

C. The residual load vector is computed from the initial stresses,
and step (b) is repeated. The iteration is carried out
the residual vector becomes very small (say one percent of the
load vectur in the preceding iteration). Once convergence
is achieved, the next load increment is added and the whole

iteration procedure is repeated.

RESULTS

In order to validate the elastic-plastic model used here, the
problem of an isotropic plate with a notch (see Fig. 2) is solved by
using the formulation developed here for the three-dimensional analysis.
The notch stress vs. displacement is shown in Fig. 1. The yieldstrength
of the material is 30 kg/mm2 and E =O.2x105kg/mm2 and v = 0.3. The
present three-dimensional analysis consists of 72 brick elements; the
maximum notch stress at the end of six, seven, and eight iterations is,
respectively, 19, 21 and 23 kg/mmz. The convergence trend indicates
that the maximum stress value will be lower than 23 kg/mmz. Results of
a two-dimensional (plane stress) analysis of the same problem is
available in Reference 23. The maximum notch stress was 19 kg/mm2 and
this was obtained by using 245 two-dimensional plane elements and 51
iterations. From the classical slip line solution of this problem the
maximum notch stress is 18 kg/mmz. Considering the fact that coarse
mesh and fewer iterations (8 iterations) are used in the present study,
and the present study is based on the three-dimensional formulation of

the problem, one can conclude that the results obtained here are

reasonably good.
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A symmetric three-layer square laminate (0°/90°/0°) of dimen-
sions a x a x h and subjected to uniformlv distributed vertical load
of intensity q, on the top surface is analvzed. The plate is simply
supported on all the edges. Taking advantage of the symmetry, only a
quarter plate is analyzed.

The material ot the lamina is aissumed to have the following

properties with respect to the material symmetry axes:

lLinear Elastic Parancters

. 8 2 6 .
1.725 x 10" kN/m™ (25 x 10 psi)

El =
6 2 6 .
EZ = R3 = 6.89 x 10 kN/m~ (10 psi)
f 2
GLZ = 015 = 3,65 x 100 eN/mt (005 x 106 pei)
. 6
Gyy = 13.78 x 10° kn/m (0.2 x 107 psi)
\)12 = V3l = ,'32 = 0.25.
Parameters in the Ramberg-Osgood Model
E E m
1 p p
6 6 . 3
E] 25x10° psi 5x10° psi 510~ psi 2
) 8] )
(1.726):108 KN/m™) (0.345x10° kN/m™) (0.345x105 kN/mz)
6 5 3
E2=E3 1x10° psi 2x10” psi 5x10° psi 2

(6.89x10° kN/m?)  (1.392x10° kN/m®)(0.345%10° kN/m’)

Plasticity Parameters

Two different analyses are carried out here using 1) high strength

mode]l with the yield stresses X = 10,000 psi Y = 4000 psi and Z = 4000

psi and 2) low strength model with yield stresses X = 5000 psi, X = 2000

psi and X = 2000 psi.
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Plots of the nondimensionalized deflection vercus nondimension-
alized load are presented in Figs. 3 - 5 tor side-to-thickness ratios
a/h = 5, 10, 20 and 100. The figurcs alvwo contain results obtained by
the use of the moditied Ramberg-0Osgood model in the twe-dimensiona)
laminated plate theory (see [5, 13]). For a/h ratios 5 and 10 (see
Figs. 3 and 4), the results are in close agreement in the initiul stages
of the load, and the deflections predicted by the plate theorv are lower
than those predicted by threce-dimensional theorv in higher load levels.
For (a/h) = 20 (see Fig. 5), the results obtained bv the plate theory do
not agree closely with those of the three-dimensional elasticity theory.
This is due to the fact that full integration (2x2x2?) is used in the 3-D
analysis, which results in so-called locking of olement stiffness
coefficients [13].

The deflections obtained in three-dimensional analysis using the
Ramberg-0Osgood model and elastic plastic model are also compared in Fig.
4 for a/h = 10. A similar comparison is shown for (a/h) = 100 in Fig. 6.
It is observed that the Ramberg-Osgood model is able to predict an
average of the deflections produced bv the plasticity models. Figures 6
and 7 contain similar results for stresses (wx\ at the center ot the
plate. Here also, the Ramberg-Osgood model predicts an average of the
stresses compared to the stresses predicted by the elastic-plastic
models. This observation is encouraging to recommend the use of the
Ramberg-0sgood model for design purposes because the Ramberg-Osgood
model is much simpler than the elastic-plastic analysis which requires
many jterations at each load level. These figures clearly demonstrate

the effect of material nonlinearity on the behavior of a simply

supported composite plate subjected to uniformly distributed load.
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Uniformlv Distributed load q, (S = a/h = 10).
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CONCLUSIONS

A fully three-dimensional analysis of cross-ply laminated plates
with geometric nonlinearity is presented. Two types of material nonlinear
models are used: (1) uncoupled one-dimensional modified Ramberg-Osgood
relation, and (2) elastic-plastic model with modified Hill's criterion
for anisotropic media. It is observed that the uncoupled Ramberg-Osgood
model was able to predict the average material behavior compared to the
elastic-plastic model. The dflections obtained by the three-dimensional
analysis using the uncoupled Ramberg-Osgood model are compared with those
obtained by the shear deformation plate theory. Reasonable agreements
are seen at lower load levels up to the plate side to thickness ratios
a/h = 10.
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“The study deals with a fully three-dimensional analysis of laminated composite
plates accounting for material nonlinearity. The finite-element method with
trilinear interpolation of the three displacements is used to model layers of
the laminate (both in the plane of laminae and through®the thickness of the
laminate). The modified Romberg-Osgood material constitutive relation is used
to update the principal moduli in the plane of the laminate. The elastic-plastic
model with Hill's criteria for anisotropic criteria is also used to analyze
laminates. The shear deformable plate-theory element is also used in the studﬂ -
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