The Concurrency Control Mechanism of SDD-1: A System for
Distributed Databases (The General Case) /

ADA131789

Philip A. Bernstein
Technical Report David W. Shipman
CCA-77-09 - James B. Rothnie
December 15, 1977

Nathan Goodman :%:::;
15 fens
7 gl yPT I
DTIC

ELECTE
AUG 25 WB3

A

APPROVED FOR PUBLIC RERERSE
DISTRIBUTION U NLIMITED

QT FILE COPY

e
N R NN R
i o T R IO T AR T2 o -

i Idl U ALY
e Tl .

L)

Computer Corporation of America
NN . .-';':",‘-'::':'.":- e e Cele e)

The Concurrency Control Mechanism of SDD-1:
A System for Distributed Databases
(The General Case)

Philip A. Bernstein
David Shipman
James B. Rothnie
and
Nathan Goodman

Technical Report
CCA-T7T7-09

December 15, 1977

APPROVED FOR PUBLIC RELEASE
DISTRIBST o Ui TED

Computer Corporation of América
575 Technology Square
Cambridge, Massachusetts 02139

This research was cupported by the Defense Advanced
Research Project Agency of the Department of Defense under
Contract No. N00039-77-C-0074, ARPA Order No. 3175-6. The
views and conclusions contalned in this document are those
of the authors and should not be interpreted as
necessarily representing the official policies, either
expressed or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government.

a3t B S B NS R A LA IOCI SRR LR S SRR IR . . - e
2,
b

A\ SDD-1 Concurrency Control Mechanism Page -i-

nt Abstract

13

ﬁ Abstract

ﬁ DD-1, a System for Distributed Databases, is a

$ distributed database system being developed by CCA. SDD=-1

X permits data to be stored redundantly at several database

2% sites in order to enhance the reliability and

’ responsiveness of the system and to facilitate upwards

. scaling of system capacity. This paper describes the

i algorithm used by SDD-1 for updating data that is stored

5 redundan;lyj

.3 /

/]

9

3 ’

. £

&

A Accesstion For

g "NTTS GRARL

Uhacrounsed O
Jutifitaum__—-—-—-—

P

7 Distribution/

4 " Aveilability @odes

M IS ‘Avail and/or

.” \Di t \l Special

5 i |

! _

\

................

v -
R ok et e Jachi e ARGV RO A REEAC RS A

1. WONOhE ST A SRR

SDD-1 Concurrency Control Mechanism Page =ii=

Table of Contents

1. Introduction 1

BANIIRY ol MWNISINW MY SRR P FLS S

. The SDD=1 Architecture y

1 Overview 4

2 Distributed Data Organization 8

= 3 Transactions 1"
Py 4 System Consistency Guarantees 14
i 5 Terminal Modules 16
» 6 Timestamps 18
~ 7 Interleaved Transactions 21
- 8 Transaction Classes 25
-~ 9 Class Pipelining Rule 28
Ee 10 Class Conflict Graphs 29
ﬁ 11 Graph Cycles and Nonserializability 35
o .12 Protocol P3 43
- .13 Protocol P2 51
- .14 Protocol P2f 60
- .15 Protocol P1 63
16 Pre-Analysis of the Class Confliect Graph 65

17 Safe Cycles 66

18 Summary and Conclusions 68

Selection and Analysis of Protocols 70

EEEESEEEESSSESE WWWWWWWW VPNV NN

.1 Logs 70

.2 Correctness Criteria 79 :
.2.1 Convergence 80 Ty
.2.2 Serial Reproducibility 81 SN
.3 Log Transformations 84 N0,
.4 Confliect Graphs . 87 RS
.5 Protocol Selection Rules 90 ey
. Proof of Serial Reproducibility 92 %ﬂ!
.1 Introduction 92 A
.2 A Formal Model for SDD-1 96 N
.2.1 A Database Design 96 Hes
.2.2 Logs 98 i
.2.3 Corflict Graphs 101 filen.
.2.4 Protocols and Protocol Selection Rules 103 A
.3 Serialization 106 N
.3.1 Conflicts 107 e
.3.2 Augmented Conflicts 111 N
.3.3 The Serialization Procedure 114 NN
.3.4 The Serialization Lemma 119 pad
.4 Showirg Nonserializable Logs are Impossible 122 o

bt el ik Rt S Jaad STV T R T el e T e T T T TS Tttt

N
.
:ﬁ SDD=1 Concurrency Control Mechanism Page ~ijijie
5
;ﬁn
5. Protocol P4, A CycleeBreaking Protocol 158
5.1 Motivation for a Cycle-Breaking Protocol - 158
5.2 Overview of P4 160
5.3 Implementation of Pi 161
5.4 Proof of Correctness for Protocol Py 164
A. Update Semantics and Fragment Definition 165 e
A.1 Insertion / Deletion Semantics 165 Sy
A.2 Fragment Updates 166 -

References 168

RSEER A A A T R A A e e AR

SDC-1 Concurrency Control Mechanism Page -1~
Introduction Section 1

1. Introduction

SDD-1 is a prototype distributed database system currently
being designed at Computer Corporation of America [ROTHNIE
and GOODMAN]. The system will use the data storage
facilities of Datacomputers [MARILL and STERN] that are
scattered around an Arpanet environment [METCALF]. This
report describes the basic approach to the problem of
redundant update in SDD=-1. Descriptions of other aspects
of SDD-1, such as retrieval and reliability, are reported
elsewhere [ROTHNIE and GOODMAN], [WONG], [HAMMER and

SHIPMAN].

Several solutions have recently been suggested to the
concurrent update problem in a distributed database system
(see discussion in [ROTHNIE and GOODMAN]). The techniques

include performing all updates at a primary site [ALSBERG

and DAY], or wusing a voting discipline to perform an

update on a data item after the sites that hold a copy of : j
that data item have agreed to the wupdate [THOMAS]. L:i
However, these methods suffer from the problem either of a
potential bottleneck on updates or of heavy communication

traffic.

Page -2- Concurrency Control Mechanism
Section 1 Introduction
;8
The approach to be discussed in this paper attempts to %&i
overcome both problems by preanalyzing those transactions %%:
that will be run frequently, so as to select those Eé:
transaction types that can be run using little or even no iii
synchronization. igg
o

The preanalysis technique determines, for each type of o
transaction, the level of synchronization required for
that transaction type. The analysis is based on knowledge
of which portions of the database each transaction will
read or write. This analysis 1is based on invariant
properties of each transaction type that are in no sense
stochastic. The major assumption is that the types of
transactions that account for most of the database
activity are predictable in the sense that they only

operate on certain restricted portions of the database.

""~

¥ J iy

The SDD-1 system will permit data to be stored redundantly

around the network without restricting any one copy of a

L
[

.-
e

logical data item to be the primary copy for updates. The

" -
'.l"',a'
«“r-a 2

% X

retrieval algorithm will be truly distributed, aggregating

data at a single site for synchronization purposes only

L

o

N when necessary [WONG]. The system will also be able to

Vi

}Q run in spite of multiple site failures and will be able to
\ recover when down sites return to operation [HAMMER and

LY SHIPMAN].

§3

1

........................
..............................

- - R . R i e I 2 T S T S R VR U - T - e - : ° -ah . - N
R i SN R Iy S R
............... - .

VAT

SDD-1 Concurrency Control Mechanism Page =3~
Introduction Section 1

In this paper we describe the formal methods used to
analyze the degree of synchronization required by
transactions in SDD-1. While we believe our method to be
quite general, the discussion will be 1limited to its

application in the SDD-1 environment.

A simplified version of the SDD-1 concurrent update
methodology was presented in [ROTHNIE et al] and
[BERNSTEIN et all. We expand this technique more
completely in Sections 2 and 3. The proof of correctness
of our synchronization rules is presented in Section 4.
In Section 5, a further mechanism 1is described which

extends the earlier results.

~ v ¥ N - - T oA . L, .
.. DA e [P L S T L. .

e e e e e gl B 2o e 1k Tos iR St R e et Ieien T I

........

N
WS R WP TP YN PV VWSV VS WY W

.....

Page =-4- SDD-1 Concurrency Control Mechanism
Section 2 The SDD-1 Architecture

2. The SDD-1 Architecture

2.1 Overview

An SDD-1 database system consists of a set of sites, each
site residing at a single node of the network. A site

provides some or all of the following subsystems:

1. data module - maintains a stored copy of portions

of the logical database and supervises read and write

operations on its copy;

2. transaction module - processes transactions, one

at a time, by communicating with data modules;

3. terminal module - provides a user interface that

routes each wuser transaction to the appropriate

transaction module for processing.

From the user's viewpoint, a transaction is entered at a
terminal and received by the terminal module that controls
that terminal. The terminal module examines the

transaction and decides which transaction module should

SDD-1 Concurrency Control Mechanism Page -5-
The SDD-1 Architecture Section 2

execute it; the transaction module may or may not reside
at the same site where the terminal module is located

(i.e., the transaction module may be at a foreign site).

The terminal module may pass certain synchronization
information to the transaction module, in addition to the
text of the transaction, to synchronize this transaction

with other transactions that ran at the same terminal.

A transaction module receives <transactions from many

different (possibly foreign) terminal modules. For each
transaction it receives, a transaction module interacts
with various (possibly foreign) data modules to obtain the
portion of the database necessary for processing the read
and write operations requested by the transaction.
Results of the transaction <(e.g. printed output) are
passed back to the' terminal module that sent the

transaction.

A data module 1is a database management facility that
processes read and write operations from (possibly
foreign) transaction modules. Certain synchronization
facilities are supported by the data module so that

transactions are able to obtain a consistent view of the

database. The synchronization facilities supplied by a
data module are entirely local to that data module and do
not require that the data module ever explicitly cooperate

(via message passing, say) with other data modules.

T

Pl AFa Setie SRR LA ol aENE aume e soen ol

SDD-1 Concurrency Control Mechanism

Page -6~

The SDD-1 Architecture

- - ---—--——-—-—u-——-——-—---.----————..—----——-._—-.-_-.

Section 2

|A Transactions

emmes [] 1 e [9

Terminal ‘
Modules .
g

f

N - \\\ | |

N ~ .

L d N AT

D A’) ,\/\ LNHnmbmmOnwo:m

|

Transactioni - . _ iee o “
Modules e]
._ . - m — READ,WRITE
. e and other
T e messages
\ . ._t e w . ‘
Data :
Modules J

Site 1 Site 2 Site n

Figure 2.1 Overview of Logical Architecture

WELE A LI

e i A em o em e e M . = B S YR en A AR e R v SR W LS WP T am D A A Gk D D SR S R WP D S S

p « TREORY et e ANRANN A A o |

PO W I W -

PO A

AN R mmw o o]

A

il
'o

22 1%

A At
’ -' -‘

PR
PR

[

........................

SDD-1 Concurrency Control Mechanism Page -7~
The SDD-1 Architecture Section 2

The three kinds of modules supported by SDD-1 constitute
three levels of virtual machines (see figure 2.1). At the
lowest 1level are the data modules. They provide a
facility for processing read and write commands
atomically. At the second level are transaction modules.
Transaction modules provide a facility for processing
transactions and guarantee that the union of all
transactions processed by an SDD-1 system is "serially
reproducible" (this concept, discussed in [ROTHNIE and
GOODMAN], will be developed in great detail in the
sequel). At the third level are terminal modules.
Terminal modules provide a user interface and guarantee
certain consistency conditions among transactio s run at
that terminal (in addition to serial reproducibility).
While we will not discuss the particular software/hardware
structure that will be used to implement the virtual
machines, one <can think of the three types of modules
being implemented as software processes, with each data

module incorporating a Datacomputer [MARILL and STERN].

L T T e AR T T e e T e L e T e T L e e T L T L T T T ST T S T e e

Ay

Page -8- SDD-1 Concurrency Control Mechanism
Section 2 The SDD-1 Architecture

2.2 Distributed Data Organization

A logical database in SDD-1 consists of a set of relations
[coDpD]. Each relation has one domain named ‘'“tuple
identifier" (TID) which is a key of the relation; that
is, no two tuples of a relation can have identical TID

values.

Each relation 1is partitioned into a set of logical

fragments. Logical fragments are defined by first

partitioning the set of all possible tuples of the

relations 1into a set of mutually exclusive partitions.

For example, the EMPLOYEE relation could be partitioned by
DEPARTMENT, so that each partition contains all of the
employee tuples in a single department. A logical
fragment consists of a projection of a partition on the
TID domain and one other domain. The inclusion of the TID
domain guarantees that the logical fragment has exactly
one tuple for each tuple of the partition from which it

was selected.

A stored copy of a logical fragment is called a stored
fragment. Stored fragments are the units of data

distribution; a stored fragment 1is either entirely

L e T Y T T T T T T N L A

2.

SDD-1 Concurrency Control Mechanism Page =-9-
The SDD-1 Architecture Section 2

YR IR,

Sealhal

present or entirely absent at a data module. Note that

B

,..
0
o

relation might conveniently be stored as a single file at

a data module so that the TID domain need not be repeated

Sl Jerwt

3

for every fragment.

\ee » T s
PRSP RN

We do not require that two stored copies of a 1logical
fragment at two different data modules be identical at all
times. The redundant update mechanism will be responsible

for only allowing consistent copies to be read.

Each 1logical fragment 1is partitioned into logical data

items, a stored copy of which 1is called a stored data

item. A data item is the smallest updatable unit in the

database.

Each logical data item may have several associated stored
data items. Hence, when referencing a logical data item,
it is necessary to choose a particular stored data item to

reference. The concept of materialization is convenient

here. Formally, a materialization 1is a total function

from the set of logical fragments into the set of stored
fragments. That is, a materialization is an assignment of

a stored fragment for each logical fragment.

Each transaction is said to run in a particular

materialization of the database. The materialization of a

several stored fragments from 4 single partition of a,

MEPI Tl G YT ol S 1

ol et v el
AP TN

Ve evava &

Page -10- SDD-1 Concurrency Control Mechanism

st

Section 2 The SDD-1 Architecture
E transaction specifies which copies of 1logical fragments
: are to be read. In order to maintain the internal

consistency of all stored copies of a particular 1logical

fragment, a transaction must perform its updates on all

TiTeva s

stored copies of each logical data item (not just the copy

specified by the materialization). As a result,
N materializations are not useful when considering write
N
. operations. The process of updating fragments will be

described later in some detail.

There are no 1logical restrictions on how to configure a
materialization, other than that each 1logical fragment

must map into a stored copy of that same fragment. A

materialization need not, for example, obtain any of its
stored fragments from the site at which it executes.

Also, two materializations may use different stored

AR NS 2 MBI P
RO RIS &

croa BT e

copies of a single 1logical fragment. Two transactions

concurrently running in these materializations may

Ter 1 BT T
. »e
LIV : .’

- therefore read different stored copies of a single logical

v
A’y

fragment concurrently. The system as a whole does not

support a single primary copy of a 1logical fragment for
all materializations. How the system avoids race
conditions in such an apparently chaotic environment is 'ihf

the main subject of this report.

...........

" .t

SDD-1 Concurrency Control Mechanism Page =-11=-
The SDD-1 Architecture Section 2

2.3 Transactions

The basic unit of a wuser computation in SDD-1 is the

transaction. Transactions are structured to execute in

three sequential steps:

1. The transaction reads a subset of the database,

called its read-set, into a workspace.

2. It does some computation on the workspace.

3. The transaction writes some of the values in 1its

workspace back into a subset of the database, called

its write-set.

The read-set and write-set of a transaction are defined on
the logical database. That is, the transaction references
only logical data items; it has no knowledge of its
materialization or of the distribution and redundancy of

stored copies.

The workspace into which data 1is read 1is, in general,
distributed. That is, various parts of the workspace may
reside at different data modules. 1In SDD-1, the execution

of a transaction 1is also, in general, distributed;

el

Page -12- ' SDD-1 Concurrency Control Mechanism :fz
Section 2 The SDD-1 Architecture PRER
-

- .

processes running at various data modules operate on the

portion of the workspace located at that data module.

-~

Ry |

These processes run concurrently and/or sequentially with
respect to one another and transfer data between data
modules as needed. The processes running at the data
modules are initiated and coordinated by the original
transaction module to which the transaction was submitted.

This function is performed by the access planner

sub-module within the transaction module. The access
planner converts the original transaction as submitted by
the user into a number of local data management processes
running at the data modules where the workspace is stored.

The algorithms used by the access planner are described in

[WONG]. Again, this distribution of processing is
entirely internal to SDD-1 and is not reflected in the

user's transaction in any way.

To process a transaction, a transaction module must obtain
the read-set data for the transaction's input and later

write its output into copies of its write-set. These

functions are performed by sending READ and WRITE

messages, respectively, to data modules.

A READ message for a transaction is sent to a data module
and 1is a request to read some of the stored data items at

that data module. Each stored item that is requested must

,,,,,,,,,,,,,,

N e g il Nk i A Btk ks SR A AU RR R Char IRt i e Diex) bt WIS NN A A
e A -

B AT =t ol ST Ay e =

AT LT ST A ¥ - B W —T——

bl BEV

"IV ATECa & &~

- A d

SDD-1 Concurrency Control Mechanism Page -13-
The SDD-1 Architecture Section 2

be the particular stored copy of a logical data item in
the read-set of the transaction that is specified by the
materialization in which the transaction runs. So, if a
transaction wants to read 1logical data item x, and the
transaction's materialization associates x with its
particular stored copy at data module alpha, then to read

X the transaction must send a READ message to alpha.

A WRITE message is sent from a transaction module to a
data module to report updates that have taken place to
certain data items as a result of executing a transaction
by that transaction module. If a transaction updates a
particular logical data item x, WRITE messages are sent to
all data modules that have a stored copy of x (not just to
the one stored copy associated with the transaction's

materialization).

A transaction module sends at most one READ message and at
most one WRITE message to any particular data module on
behalf of a single transaction. If a transaction reads
data from two stored fragments which reside at the same
data module, for example, then only one READ message will
be issued to read from both fragments. This 1is an
important point, as each data module must perform READ's
and WRITE's as atomic operations; for example, none of

the data read by a READ message can be updated by some

WRITE while the READ is being processed.

N Page -14- SDD-1 Concurrency Control Mechanism
Section 2 The SDD-1 Architecture

2.4 System Consistency Guarantees

X
?b One of the important advantages of SDD-1 is its ability to
7§ maintain multiple copies of the same logical piece of data
fa at several different data modules. It is this capability
A of SDD-1 that presents the most difficult technical
ﬁj problems. The system must maintain the consistency of all
ng copies of data and ensure that the READ requests for a
e transaction retrieve a correct state of the database. In
;: addition, transactions reading or writing data in several
ﬁr data modules must be synchronized to ensure that a
= transaction does not read partial results of another
3‘ transaction. If transactions are allowed to run in an
f§ arbitrary interleaved manner without coordination, various
> anomalies in system operation may occur. The system
;i design guarantees two properties which prevent these
ﬁ anomalies from occurring.
i. System Property 1: Convergence - If updates were to be
iz quiesced, then after some finite period of time all
?E transactions which read the same logical data item will
-

retrieve the same value for it. Essentially this means

)

that all physical copies of a 1logical data item will

eventually converge to the same value.

Nty T, LT e T e TR TR TRTE TR T AT I T e VAT AT AT e T T T T e e T A T T - T .
F'i e e e drCid BRI A i iR RO i e DRSS AR SNARA R S R AN S SRS e Tt .

SDD-1 Concurrency Control Mechanism Page -15-
The SDD-1 Architecture Section 2

System Property 2: Serial Reproducibility (or

Serializability) - The operation of the system when

running transactions 1in an interleaved manner is
equivalent to a history of operation in which each of the
transactions runs alone to completion before the next one
begins. That is, the interleaved operation is
reproducible by an equivalent one in which the
transactions run serially. By "equivalent", we mean that
each transaction produces the same output values and that
the final state of the database is the same. The concept
of serial reproducibility is crucial to an understanding

of the system and will be taken up in detail later.

These two system properties are provided at the
transaction module level. That 1is, the set of all
transactions submitted to transaction modules must satisfy
these properties. The terminal modules provide a level of
system guarantee beyond that of the transaction module.

These guarantees however are not the main subject of this

paper.

- - . . - - - T - . wot . .
WETIUE. TL. WUl S L A . S PO I NP (O I S W P W

Page -16- Concurrency Control Mechanism
Section 2 The SDD-1 Architecture

2.5 Terminal Modules

A transaction is entered at a terminal and is received by
the terminal module connected to that terminal. The
terminal médule must determine the read-set and write-set
of the transaction. This information will be wused to
decide which transaction module should execute the
transaction, as each +transaction module handles only
certain classes of transactions. For example, 1in an
airline reservation system, each transaction module may
execute transactions corresponding to flights originating
at a certain city. By examining the read-set and

write-set of a reservation transaction, a terminal module

can determine the originating city and thereby is able to

choose an appropriate transaction module to execute the

transaction.

The terminal module makes sequencing guarantees above and
beyond those of the transaction modules. The terminal
module incorporates certain synchronization information
with the transaction before sending it to a transaction
module. This information allows the transaction module to
avoid certain sequencing anomalies with respect to other

transactions entered at the same terminal.

A N et e 5 r D 5 S A I AR AU rC il DA T an Jie MNEL IFECIMEL MRS R S D B S e R A A TR L

= SDD-1 Concurrency Control Mechanism Page -17-
A . The SDD-1 Architecture Section 2
f“ The main body of this paper however concerns the design

i and interaction of the transaction modules and data
w modules. For convenience, transaction modules and data
modules will be referred to as TM's and DM's,

o respectively, in the sequel.

slalstalaftn

T Pe ba UL

o

[X

e

Y

A TURCALAUELIN

LN W

[\
L 4

e Y OP TR TR WTER TR v w e DR I Al 4 B ——

ff Page -18- SDD=1 Concurrency Control Mechanism
h Section 2 The SDD-1 Architecture

2.6 Timestamps

System property 1, convergence, 1is provided in SDD-1
through the use of a timestamping mechanism. Each TM has
a clock wused for generating globally unique timestamps.
After a clock has been read, it cannot be read again until
it has been incremented. By appending the TM number as
the low order bits of each timestamp, we ensure that every
timestamp is globally wunique within the system. This

method of generating unique timestamps was suggested in

[THOMAS].

None of the mechanisms described in this report require
that clocks running in different TM's be at all
synchronized. For reasons of efficiency however it is
necessary to assume that clock values in different TM's be
reasonably close to each other. 1In [Lamport] a method of
synchronizing clocks in a network is described that
involves pushing ahead a local clock if a message with a
future timestamp 1is received. This simple method will
keep <clocks sufficiently well synchronized for the

purposes of SDD-1.

"3 4 8
.0

R8N0 i)

"'—
PP)

SDD-1 Concurrency Control Mechanism Page -19-
The SDD-1 Architecture Section 2

Each transaction, before being run, is assigned a unique
timestamp. The transaction's timestamp will be carried on

all its WRITE messages.

In addition, timestamps are maintained for every updatable
physical data item in the database. Note that a timestamp
is associated with each physical data item, rather than
with the 1logical data item; there may be many physical
copies of a logical data item and each copy of the logical
data item has its own timestamp. This timestamp 1is the
timestamp of the last WRITE message which updated that

physical data item.

In order to implement property 1, convergence, each data
module obeys the following rule: A data item is updated
by a WRITE message if and only if the data item's
timestamp is less than the timestamp of the WRITE message.
So, to process a single WRITE message at a data module the
following procedure 1is wused. For each data item in the
WRITE message, the timestamp in the WRITE message is
compared with the timestamp of the stored data item at
that data module. If the timestamp in the WRITE message
is greater than the timestamp of the stored data item,
then the new value of the data item in the WRITE message
is written into the stored data item with the new

timestamp. If the timestamp of the WRITE message is 1less

R e A A e R O A RO B A O A A S A s T T T hOENEF AR

4
Page -20- SDD-1 Concurrency Control Mechanism
Section 2 The SDD-1 Architecture _
@

than the timestamp of the stored data item, then the
update is not performed on that data item. This is a data
item by data item check; some data items in the WRITE
message may result in update operations while others may
not. Also, if a data item in the WRITE message is part of
a fragment that is not stored at the data module, then the

update is not performed.

It will be quite common for WRITE messages to contain many
data item updates that are not performed. This will
happen when a WRITE message for a recent transaction that
~updates some data item is processed at a DM before a WRITE
message for an earlier (i.e., older) transaction that
updates the same data item. Such situations are not
errors. They are simply the way that the system reorders
updates to occur in the same order that they actually

executed.

. LBt et IRl S SaoeJhate Jhaiec S] Gt Zinde. Ty Dbt At Hhatt R i Jhuier Rus diivt S Jinot i dagn W e

| AN

SDD-1 Concurrency Control Mechanism Page -21-
The SDD-1 Architecture Section 2

e e By

A nn
SN

2.7 Interleaved Transactions

The system usually has many transactions in progress at
any one time, both because there are multiple TM's
operating concurrently within the system and because
individual TM's are processing transactions concurrently.
The resulting arbitrary interleavings of READs and WRITEs
can introduce serious problems of database consistency.
System Property 2, serial reproduéibility, deals with this

problem.

The issue of serial reproducibility arises because a
system's atomic actions are at a finer granularity than
its users' atomic ag¢tions. In our case, the users' atomic
operations are user transactions, while the system's

atomic actions can be taken to be the execution of READ

and WRITE messages at the DM's. Each DM behaves as if

READ's and WRITE's are processed as indivisible units.

That is, it is not possible for a READ operation to

.
T
o

observe the effects of only a part of a WRITE operation at

a DM. .
SN
RSN

When a system allows the execution of several user tf?f
—

transactions at the same time, then the system atomic

e 2% P P S Y SRy Sy Y PSP T AP Ul Gl U1 W G YL T ST W TP U.IP IR WL I DU P G e |

-y Ty T eaw. Lol S0 e S AN B e BVl Sd TdC U A A I AR i Aie ADi Bt Sl St oot A AN AFal Ant St BRI AR A et A AR A A iy - - -‘q
e L O e LI T I T - S

|

(

I |
— e et

" Page -22- SDD~-1 Concurrency Control Mechanism lf;”“
e Section 2 The SDD-1 Architecture ‘
operations corresponding to different user transactions
are interleaved. There is no guarantee that the behavior
of such a system conforms to the user's expectation that
e each transaction is treated as an indivisible wunit (a
- user's transaction should not examine the database during

the execution of another wuser's transaction, when the

database is possibly in an inconsistent state).

Serial reproducibility requires that a system operating in
e an interleaved manner is equivalent to a system in which
2 each transaction is processed in its entirety before
another one 1is begun. In other words, for any given
E interleaved execution, there exists an ordering of atomic
transactions, called a serial ordering, which 1is
equivalent to the interleaved operation which in fact
occurs. By "equivalent" we mean that each transaction in

the interleaved ordering reads the same data as it would

have read 1if the transactions had been run one at a time

in the serial order (and hence, will produce the same

output). Note that serial reproducibility requires only -
R
that there exists some serial order equivalent to the .
d actual interleaved operation. There may 1in fact be

several such equivalent serial orderings.

The modelling of correct concurrent operation by the

- concept of serial reproducibility is based on the

P RN I WAL I RGP R A AL VA R O A S R WA G P S - —ala alaia sl s &' s ala a.a.a e

.........................

SDD-1 Concurrency Control Mechanism Page -23- fﬁfi
The SDD-1 Architecture Section 2 R

:;:E
assumption that each wuser transaction will preserve] q
database consistency if it runs atomically. That is, if fifi
only one transaction were allowed to execute at a time, TE
and if the database state 1is consistent, then after ffi?
executing a transaction the database state will be _;ﬁ
consistent. So, a serial ordering of transaction ;i}j

executions will, by induction, result in a consistent
database state. Since a serially reproducible history of
operation is equivalent to some serial ordering, then the
serially reproducible history results in a consistent

database state as well.

If a system does not guarantee serial reproducibility then
anomalies can result from operation of the system.
Consider, for example, the following scenario in SDD-1.
We assume a single copy of data item x, which initially
has the value x=0. There are two transactions in the
system; transaction i sets x:=x+1, and transaction j sets
x:=x+2. The following sequence of events occurs:

Transaction i reads x=0

Transaction j reads x=0 R

Transaction j sets x:=

Transaction i sets x:= frj;

% Any execution of the two transactions one after the other

would have resulted in setting x to 3. The result of the

I . AP T A T T Y T T T T L A O L P P U S U S WO S W WA WY W WOty S

e
Ry
N

oot

e

I}

A A
. 1a s

BdAs 4 i

'\ ‘Il

"2

L
<

t.'2 o

Page -24- SDD-1 Concurrency Control Mechanism
Section 2 The SDD-1 Architecture

interleaved execution was to set x to 1, contrary to the
user's intention. To guarantee serial reproducibility, we
need a mechanism that prevents these kinds of undesirable

interleavings.

. . B . . T e .
S G W < a2 el S S e A m e ot mh e ol bl el

Aol ol o, s

[AN R I A TS A A LA ALA B S S S AT AR A AC AMAS AR AR SRS AR R
s =t

2 }
Jl

Ei 1?
- SDD-1 Concurrency Control Mechanism Page -25- AR

The SDD-1 Architecture Section 2

2.8 Transaction Classes

The problem of interleaved transactions is not unique to
distributed systems. Numerous solutions have been devised
for non-distribuﬁed systems, most notably locking
mechanisms. These techniques do not, however, generalize
well to distributed systems. A number of proposals have
been suggested for extending locking mechanisms to
distributed systems that contain redundant data. These
techniques are reviewed in [ROTHNIE and GOODMAN]. We
feel, however, that such techniques require unacceptably

large amounts of network transmission and delay whenever

there is considerable data redundancy.

Yet at first glance the network transmission seems to be

necessary. How can one TM safely proceed to run a

transaction without first consulting other ™'s to

determine that it does net interact badly with

transactions currently executing elsewhere?

Our solution to this problem is to have the DBA establish o
a static set of transaction classes. Each transaction ifjg
class is defined in terms of its 1logical read-set and A

=4

write-set and 1is assigned to run at a particular TM. A

A .o .S om A s A s a2 a e a ma’. &l

L .'l h)

i3 F

KOs ()
LA V]

-4

4 Pl

.
a o

1oate!

| R

.0‘..l' 5 }

P ..'

¥ 1
.

Page -26- SDD-1 Concurrency Control Mechanism
Section 2 The SDD-1 Architecture
transaction can run in a class if the read-set and
write-set of the transaction is contained (respectively)
in the read-set and write-set of the class. Classes need
not be disjoint, so a transaction may fit into more than
one class. In this case, the decision as to which class
should be chosen 1is made by the terminal module that
accepts the transaction. The terminal module will
normally choose a class that requires the least amount of
synchronization, and 1is therefore the 1least expensive

class (synchronization-wise) to use.

The predefined classes reflect the typical transactions
that are intended to run at each site in the network.
Since each TM is aware of the complete set of transaction
classes assigned to foreign transaction modules, it can
know exactly what potential conflicts its own transactions

have with those that might be running at other TM's.

From the information contained in the class definitions, a
TM can determine the degree and nature of coordination
necessary to ensure a serially reproducible ordering of
transactions. We believe that, for many kinds of
applications, the most frequent determination will be that
no coordination whatsoever is actually required to run a
transaction. In such a case, the transaction is just

immediately executed, since it does not interact Dbadly

.—‘.'.‘.'.'_“"--'.'-.‘.-..-.». i

SDD-1 Concurrency Control Mechanism Page =27~
The SDD-1 Architecture Section 2
with transactions submitted elsewhere. In other cases, an
analysis of the class definitions might indicate that the
pending transaction could be involved in a potential
N conflict and some coordination is necessary with respect
l to particular foreign classes. OQur purpose here is to
develop a method of determining exactly what conflicts
- occur and to provide coordination mechanisms that

eliminate the conflict.

If the problem of determining exactly what conflicts might
occur required run-time calculations when each transaction
was introduced at a class, then the concurrency control
mechanism would potentially be quite expensive. Actually,
since the class definitions are static, the computations
checking for potential conflicts can be done once, when
the class definitions are selected. Selecting the
appropriate coordination mechanism at run-time amounts to
a table 1look-up. So, the only significant run-time

overhead 1is the coordination mechanism itself. 1If no

coordination is found to be necessary, then the run-time ;j};
overhead is negligible. This is in contrast to locking 1§fﬂ
mechanisms which always set 1locks, whether or not the T}E;
synchronization is really required. e
. ,,.....
L

-~

"""""""" PO U T TP W0 W SR e Secoliunediue

N A . LR S r...
. e v

SRR A

v

< vt

a9

-y
ey e

-y 22T 2 2 el 2 A Ny O W v oy W T e oW T
Amad s AR TAA NN A N - IR A S S i A S A A R RSO A -

Page -28- SDD=-1 Concurrency Control Mechanism
Section 2 The SDD-1 Architecture

2.9 Class Pipelining Rule

The first question to address 1is the issue of the
serializability of transactions which execute in the same
class. To ensure this, we require that within a class all
of the transactions are actually executed serially, one

after another. This is expressed as follows-

Class Pipelining Rule: For any particular data module
and transaction class, READ and WRITE messages from
that class arrive and are processed in timestamp

order.

The class pipelining rule forces transactions that run in
a single class to be processed serially at all DM's in the
same order. So, two transactions from a single class are
never interleaved at a single DM nor are they processed by
two DM's in two different orders. This is sufficient to
guarantee noninterference of any two transactions that run

in a single TM.

AT

........................

.........
...

SDD=-1 Concurrency Control Mechanism Page -29-
The SDD-1 Architecture Section 2

2.10 Class Conflict Graphs

Given the set of <class definitions, we need to detect
potentially harmful interactions between classes. The
approach used to resolve these questions involves the

construction and analysis of a class conflict graph.

A class definition specifies a 1logical read-set and
write-set and a materialization. This 1is the only
information required to determine class conflicts. From
the read-set and the materialization, the READ messages
needed by the class can be predicted. From the write-set,
the WRITE messages needed by the class can be predicted,
since a WRITE message must be sent to all copies of the
logical write-set. Since all READ and WRITE messages are
predictable, we will be able to predict all possible

harmful interactions between classes.

A class is represented in the class conflict graph as
three types of nodes connected by edges. The three types
of nodes are e, r and w nodes.

An e node represents the execution of a transaction which

-

runs in the class. A class superscript (e.g. el)

Page -30- SDD-1 Concurrency Control Mechanism
Section 2 The SDD-1 Architecture

designates the class identifier for the transaction class.
(Throughout this report, transactions will be indicated by

lower case letters, and transaction classes by lower case A

R
letters with an overscore.) The graph includes exactly ;,f]!

one e node per class.

An r node represents the processing of a READ message to
retrieve data for transactions in the class. A
superscript represents the class identifier and a

subscript indicates to which DM the READ message would be

3
sent (e.g. ralpha represents a READ message from a
transaction in <class J to DMalpha)' (Lower case Greek

letters denote DMs.) For any class, there is one r node
for each DM which stores part of the class's (physical)

read-set.

A w node represents the processing of a WRITE message
issued by a transaction running in the class. Again, a
superscript indicates the class identifier and a subscript
indicates the DM to which the WRITE message would be sent

i .
(e.g. Woamma)+ For any class, there is one w node for
each DM on which a copy of (some of) the write-set items

lie.

Edges connect the e node for s particular class with the r
and w nodes for that class. These edges are called

vertical edges, because of the convention that, for each

. ...‘-'-"-'v '. - T e o0 M - w T e . - N : - . . - N y
R G G G Sl S P NI W VLD U TS A Sy Ui e iy vy Y W 3 I G P L . P G AT Y T |

SDD-1 Concurrency Control Mechanism Page -31-
The SDD-1 Architecture Section 2

class, r nodes are drawn above the e node and w nodes are

drawn below the e node.

Figure 2.2 illustrates the representation of a class whose
read-set lies in two datamodules and whose write-set lies

on four datamodules.

After all the predefined transaction classes have been
placed in the graph, additional edges are added to

indicate interactions between the classes.

and the other to DM,

- #

Vertical V ol -2_ This is transaction class 14

Edges

2

i

Data must be written to four DM's:x & » ¢

i

Figure 2.2 Representing transaction classes in the graph

There are two READ messages, one to DMy

Page -32- SDD-1 Concurrency Control Mechanism
Section 2 The SDD-1 Architecture
Where two <classes have a read/write intersection, a
diagonal edge 1is drawn. The edge is drawn between an r
node which represents the reading of some particular
physical data item and a w node which represents the
writing of that same item (see Figure 2.3). Note that
such a diagonal edge only connects r and w nodes with the
same DM subscript, since a physical data item resides at
only one DM, If the intersection of one class's read-set

and another's write-set spans more than one DM, then

several diagonal edges connect the two classes (see Figure

2.4).

- . - e - - — D L an e A - D R L G A D e e R e WD AR = e R e e W W = -

Figure 2.3 - The .diagonal edge indicates that class i
reads some data item from DM, which can be written
by class Jj.

PPN LY SRR PR AP NPT X S0 U S U Uy TR YT U, U T IPRL DU D W U B T VY G P iy WU U SO Wi JPNE T U TSP R U W W S SRl VIETuAs Sy s |

A A R S S At A A A A G AR AR e A i S A e T PR R
-

e

»

2

b SDD-1 Concurrency Control Mechanism Page -33-

L~ The SDD 1 Architecture Section 2

;l ------------ e R el

Figure 2.4 - Here two diagonal edges connect the two classes
since the read/write intersection exists at both DMy

and DM}

Horizontal edges are drawn between e nodes of two classes

that have a logical write/write intersection (see Figure

2.5).

The graph must contain all classes and all possible }f g
b A
F vertical, diagonal and horizontal edges. ffjg
E The conflict graph is used to determine unsafe f_;;
& interactions among a set of classes. By "unsafe" we mean 3fi€
v. .' "..'.
b1 S
H O
e R
b
1)
i

RN : 4

- - . P B - . . . - - N s, s AT . . .
LL' PRSP) - (. PR S WS < S d " et o WV TR TS F VLA Te T IV T T T W R R T SR e nayy

e T R W gge VR TTIREENTNE T T T e Y W 8w W s v e
T L A RTTE AT T ST Ehi ~
b S N S b 4 A Sad Sl TadiBadCae A gt AN 0 ot SN AL LSO - Lo .

A e I R R L T I e -

Y

. Page -34- SDD~1 Concurrency Control Mechanism
- Section 2 The SDD-1 Architecture

i -
T, r}
@ y

e
o \ |
i i i
Wee wi wq

Figure 2.5 - A horizontal edge is added to the graph
when two classes write the same data item.

that the classes can interact in such a way that there is

no serial ordering of transactions that is equivalent to
the interleaved execution that actually occurred. The

interpretation of the diagonal and horizontal edges

applied to a given interleaved execution is the key to _féf?
determining transaction serializability. "-f
7

.
PP RV WYy

[~
N . '- B o o

p - -1
I.. ..."
N i R
R

‘ .

- {

*

Ai;';i'.;_,:;;i;»,"_‘;-;i;:;l_;'_;:_;'..A‘—A’“..'L" - ‘;“_A"A'-" A";'-;L PO AP Y = e PO WP SO Ay Gy e PP - N PN Y A'A'—J

SDD-1 Concurrency Control Mechanism Page -35-
The SDD-1 Architecture Section 2

2.11 Graph Cycles and Nonserializability

Suppose the system executes in a manner that permits the
interleaving of READ and WRITE messages from different
transactions. We call such an interleaved execution a
log. If the execution 1is not interleaved, that is, if
transactions execute serially one after the other, then we
call the execution a serial log. Our goal 1is to only
permit the system to produce logs that are serially
reproducible. This means that for each log resulting from
the execution of the system, there must exist a serial log
that produces the same effect on the database. We say
that two 1logs are equivalent if they produce the same

effect on the database.

Of course if the transactions in a 1log are arbitrarily
reordered into a serial log, the resulting serial log will
not necessarily be equivalent to the given log. The
conflict graph helps us to characterize precisely those

serial 1logs that produce the same effect as a given log.

Consider diagonal graph edges. A diagonal edge represents

a read/write intersection between two classes. If one

transaction from each of the two classes appears in the

€
'
v
2

ey v SR Jens st Tt et Tt Taget
. T

g I

.
-

PN T UL A U Y

S-S fhadh S s ~gheds Jhode Mioss Sanin Ahadet e _iheedt Ry e dhebt Al B RN
Chats St Siate Shal Shadt “Shett et Jads Sani ettt oSS Rl S A oA A R P

Page -36- SDD-1 Concurrency Control Mechanism
Section 2 The SDD-1 Architecture
given log, then 1in any equivalent serial log the
transactions should appear in the same relative order as
their intersecting READ and WRITE messages were processed
in the given log. For if the READ message of one
transaction preceded the WRITE message of the other in the
given log, but the transactions appear in the reverse
order 1in the serial log, then in the serial log the READ
message may read different values for some of 1its inputs
in the serial 1log than reads in the given log. So, the
transaction corresponding to the READ may produce a
different output in the serial log than in the given log.
That is, the two 1logs are not necessarily equivalent.
This is just to say that only some serial reorderings of
the given log are possible, given the existence of this
diagonal edge. (Actually, the above claim about
permissible serial reorderings is somewhat too strong, as
shown in [PAPADIMITRIOU et all. However, the reasons are
quite technical in nature and are not needed to gain an

understanding of the interpretation of conflict graphs.)

Consider classes I and J in figure 2.3. We denote READ
and WRITE messages wusing a notation similar to that of
node labels. The processing of the READ message for

transaction i at DMalpha is denoted R the

i .
alpha’
processing of the WRITE message for transaction i at

. i
DMalpha is denoted walpha'

PN AP, A0 0 IR AW Wl DOl JPU W WA D g Ty Weer v PR -y

'

N_;.!i
R
o0

1 3
L I

|
|

r o, Lo
b Ig

W WU TN YN LN W, W W W ST T T W P T S S e
~ - @ a1 le e Ny Tl T N T N PRI

R 1R

. SDD-1 Concurrency Control Mechanism Page -37-
o The SDD-1 Architecture Section 2
ji Assume two transactions, say 1 and j, are running
:: concurrently in classes 1 and J respectively. If the READ
> i -

5; message Ralpha is processed at DMalpha before the WRITE
ii message wglpha is processed, then any equivalent serial

ordering must have transaction i precede transaction j.
This must be so, for otherwise transaction i would have
read the results of the update made by transaction j. On

the other hand, if the WRITE message WY

alpha is processed

i

before the READ message Ralpha’

then transaction j must

precede transaction 1i.

To reiterate, a diagonal edge 1implies a particular
Eelative ordering in any serial log that is equivalent to
the given interleaved execution. The particular ordering
that is chosen depends on the particular order in which
READ "and WRITE messages were processed; however the

~elative serial ordering of transactions from classes with

a diagonal edge connecting them is not arbitrary.

Horizontal edges also affect possible reorderings of
transactions. A horizontal edge indicates an intersection
of write-sets. Whenever two transactions write the same
data, the update from the transaction with the greater
(i.e. 1later) timestamp takes precedence over the update
from the transaction with the smaller (i.e. earlier)

timestamp. If two transactions in different classes

I T T W SR W G W U WV G WA S WOy WD Wy o s P re Bl

e e T T e T e T e e T & e T AT e e e T T

Page -38- SDD-1 Concurrency Control Mechanism
Section 2 The SDD-1 Architecture
appear in an interleaved execution and have a write/write
intersection, then they must appear in timestamp order in
any equivalent serial log. Otherwise, the effect of the
intersecting write messages would be reversed, thereby
producing a different database state. Notice that it is
the timestamp order of the transactions and not the order
in which the WRITE messages were processed that is
significant here. This is because the rule by which WRITE
messages are processed uses the timestamps, not the order
of arrival of the WRITE messages, to determine which write

operations are actually applied.

S0, a horizontal edge also implies a particular relative

ordering of certain transactions in any serial log that is

equivalent to the given interleaved execution. This
ordering 1is always the timestamp ordering of the

transactions that have the write/write intersection.

I
et Yy !
o it .
. . .
OV g

i

. P e e a e e . R TR, T -
: PP L L PR AP R o <! .
AR IR e e e R R) [EIA
N ORI T RN . SR s
. : i . + 4 . . Ve . . . ' . s . P
o Sttt s .".' R Y S, N

In the same way that diagonal and horizontal edges
restrict the ways in which transactions can be reordered
without wupsetting the resulting database state, paths of
edges can restrict reorderings of transactions as well.
For example, a particular diagonal edge may imply that
transaction i must precede transaction j and an adjacent
horizontal edge may indicate that transaction j must

precede transaction k (see figure 2.6). So, the net

- . . T R

S e IR
Lot LTy o Lo
P L A T K
N P AL P T
PP . AR

PO LI N O

-~

4
}
:
R
:
;

SDD-1 Concurrency Control Mechanism Page -39-
The SDD-1 Architecture Section 2
] effect of this path 1is that transaction i must precede
N transaction k, even though no single edge may connect
) 3 3
r’ r
ok
Wy

Figure 2.6 - A path between two classes in the graph indicates
that transactions in those clasges must be serialized in some
particular order,

their respective classes in the conflict graph.

PN @ S

Now, suppose again that we have a conflict graph and a log
of interleaved transactions. Suppose that for each pair

of transactions, say i and j, the log and graph edges

never imply both that i must precede j and ¢that j must

precede i in the serial reordering. That is, either i and 9_:!

- —11?:-.. .l '.‘

J can appear in an arbitrary order, or there is only one

order that will do. Then it is easy to see ihat there

must be a serial 1log equivalent to the given log. Any -9

Page -40- SDD-1 Concurrency Control Mechanism
Section 2 The SDD-1 Architecture
serialization that preserves the relative orderings that

are demanded by the graph serves the purpose.

However, suppose instead that there are two transactions
such that one path in the graph requires that they appear
in one order and another path in the graph requires that
they appear in the other order. Then there 1is no
equivalent serial log that includes these two
transactions, for whatever order that they appear in the
serial 1log, the graph indicates that they must also
appear in the other order. 1In this case, there are two
different paths connecting the two transactions' classes
in the graph. These two paths constitute a cycle in the
graph. So, apparently a cycle in the graph corresponds to
a non-serializable execution of transactions. If there
are no cycles, then there is at most one path connecting
any pair of <classes. Hence, the graph can only require
that two transactions be serialized one way or the other,
but never both ways. So, a cycle-free graph implies that
every log is serializable, and no _ synchronizatio

wh: ever is required. The preceding informal argument

demonstrating this fact will be proved quite rigorously in

Section 4,

Consider the cycle in Figure 2.7 consisting of two

diagonal edges and four vertical edges. If we examine a

PITR N N W T A I P Y P P DR Y R R R S R A

..............
.............................

a
fﬁ SDD-1 Concurrency Control Mechanism Page =-41-
C The SDD-1 Architecture Section 2
_ - 3 g
N ‘ wﬂ

\.'\. A T

¢ = 3 S

A d S
Figure 2.7 - Cycles represent situations in which PRt
non-serializability 1s possible. =

case of concurrent transactions in each of the two classes

and the particular sequence of events in which the READ

message R;eta is processed before the WRITE message wgeta’

and the READ message Réamma is processed before the WRITE
i

message
g wgamma’

then there is no serial ordering of the

two transactions which is equivalent to their interleaved

b -
1 J
"pbeta~"beta edge

requires that the transaction in class I occurs before the

ordering. This follows because the

F‘.t‘ . . - 3 i . .
- transaction in class), yet the rgamma'wgamma edge implies

the opposite relative ordering. Therefore, it must be the

case that no equivalent serial ordering exists.

Ty,

Page -42- SDD-1 Concurrency Control Mechanism
Section 2 The SDD-1 Architecture
We have shown that potentially dangerous interleavings can
be identified by a cycle in the class conflict graph. So,
as long as no cycles exist, the class pipelining rule is
sufficient to guarantee serializability. Where cycles do
exist, some synchronization among classes is required. 1In

SDD-1, this synchronization is accomplished by protocols.

PN S0
e ." (RN PN
AN , e] o »

o 2 n anouseduas B AR LILILINE] + 1 AP ERASRARAP SRS I SOOI

...............

SDD-1 Concurrency Control Mechanism Page =43~
The SDD-1 Architecture Section 2

2.12 Protocol P3

When a cycle exists in the conflict graph, then an
interleaved execution might be such that a pair of
transactions, i and j, must be serialized with i preceding
J and j preceding i, clearly an impossibility. Protocol
P3 prevents this situation by making the following

guarantee: If two transactions belong to two classes

connected by a diagonal edge in a cycle, then the

timestamp order of the two transactions is the same as the

relative ordering dictated by the diagonal edge. For

i w3
alpha’ "alpha
and transaction i executes in class I and j executes in

example, suppose the edge (r) lies on a cycle

- . : i
class J. Then, assuming protocol P3 is observed, Ralpha

if and only if the timestamp of

: J
is processed before walpha
i is smaller that the timestamp of j. Before describing
how P3 accomplishes this task, let us first examine how P3

prevents nonserializable executions.

Consider again transaction i and j above. Since they
apparently must be serialized in both orders, there must
be two independent paths connecting them in the graph,

such that one path requires that i precede j and the other

PN P PRI P TEP PR Pu Pl YU P W

S W |

Page -4l4- SbDb-1 Concurrency Control Mechanism
Section 2 The SDD-1 Architecture
requires that j precede i. Suppose the timestamp of i is
smaller than that of j. So, the path that requires j to
precede 1 in the serial reordering is trying to serialize
them in reverse timestamp order. But suppose every
transaction pair connected by a diagonal edge in this path
observes P3. Then each such pair must be serialized in
timestamp order, as P3 requires. Consider a pair of
transactions connected on the path by a horizontal edge.
Following the discussion about horizontal edges 1in the
last section, they too must be serialized in timestamp
order. Thus, every pair of transactions in the
interleaved execution that corresponds to a graph edge
along this path must be serialized in timestamp order.
The net effect (by induction on the lenéth of the path) is
that. the entire path requires that i and j be serialized
in timestamp order. But this is a contradiction, since
the chosen path was one that required the transacticns to
be serialized in reverse timestamp order. The conclusion
is that all paths in the graph between I and] require
that i and j be serialized in timestamp order. Protocol
P3 prevents the case that there are two independent paths

-

between I and J that require opposite relative orderings.

To implement protocol P3, we need to synchronize the READ
and WRITE messages of transactions that correspond to the

endpoints of a diagonal edge in a cycle. To explain the

A

.....

...................

SDD-1 Concurrency Control Mechanism Page -45-
The SDD-1 Architecture Section 2
operation of P3, suppose that the edge (ri J) is

alpha’ walpha
a diagonal edge in a cycle; so, for each transaction i in

class T, gl has to run P3 against class J at DM

alpha alpha“

This is accomplished by appending a read condition to each
i A .

read message Ralpha‘ The read condition includes the

timestamp of transaction i, say TSi, and the name of the
class against which P3 is being run, in this case J. A
data module, upon encountering a READ message with the
attached read condition < TSi,3 >, must not process the
READ until it is certain that all WRITE messages from J
with timestamps prior to TSi have been received and
processed, and that it has not processed any WRITE
messages from J with a timestamp greater than TSi. This

i

ensures that the READ messages Ralpha

is processed before
a WRITE message from J if and only if TS; is smaller than
the timestamp of the transaction corresponding to the
WRITE message. That is, it guarantees that the diagonal
edge forces transactions from ¢the ¢two classes to be

serialized in timestamp order. We refer to this mechanism

as protocol P3, and would say, for example, that

transactions in «class 1 run protocol P3 against

transactions in class) at DMalpha'

Several problems arise about the operation of protocol P3.
Suppose the DM has already processed a WRITE message from

the specified class J with a timestamp greater than TSi.

e PP Gy W Y

Lo el

r.'.'.'.'-'.'.'.‘-'.“\'. WA TR LT Te T il
e P o N

v it Mia it Shagy Jhngh Sthest Seatd it it i

Page -U46- SDD-1 Concurrency Control Mechanism
Section 2 The SDD-1 Architecture
In this case, the READ message must be rejected by
DMalpha‘ The initiating TM then assigns a new timestamp
to the transaction and resubmits its READ requests.

Notice that all READ messages must be resubmitted 1if any

READ message is rejected.

A more serious problem is how to guarantee that a DM has
received all WRITE messages through some particular time,
The solution lies in the class pipelining rule. Recall
that READ and WRITE messages from a class to a DM must be

processed in timestamp order. If DM wants to process

alpha
all WRITE messages from J up to but not past time TSi, it
simply processes all WRITE messages from J until it
receives one with a timestamp greater than TSi. It holds

this WRITE message until R is processed, thereby

i
alpha

satisfying the read condition attached to Ri

alpha“

Unfortunately, if class J 1is 1idle because it has no
transactions to process, DMalpha may need to wait for a
long time wuntil a message timestamped later than TSi
arrives from J. To handle this problem we have TM's send
out NULLWRITE messages to appropriate DM's. A NULLWRITE
message sSpecifies a class and a timestamp. It is
semantically equivalent to a WRITE message that does not
update any data. When a DM receives such a NULLWRITE

message, it can be sure that it has received all WRITE

haay Jngh Shes Sihast-ati b Shder- S dr S S - uh A i e i A A S S R AU S A S T

........

SDD-1 Concurrency Control Mechanism Page -47-
The SDD-1 Architecture Section 2
messages from the 1indicated <class through the given

timestamp.

TM's will send out NULLWRITEs on a periodic basis. 1In
addition, a TM may be specifically requested to send a
NULLWRITE for a particular class and timestamp. This
specific request is in the form of a SENDNULL message and
may be sent by either another TM or a DM. A discussion
and analysis of various strategies for sending NULLWRITE

and SENDNULL messages will appear in a later report.

To 1illustrate the use of protocol P3 for eliminating bad
interleaved executions, let us reconsider the anomalous
scenario discussed in section 2.7, this time adding a bit

more structure to the problem.

We assume a single copy of data item «x, residing at

D with initial value x=0. Class I has been defined

Malpha’

Lo run at T™ with read-set = {x} and write-set = {«x}.
alpha

Class J has been defined to run at TM with read-set =

beta
{x} and write-set = ({x}. The class graph in this
situation 1is shown in figure 2.8. Notice that a cycle is
present and that transactions in <class I must run P3

against class J and that transactions in class J must run

P3 against class 1.

L. T TP S
s e W e e alaam o o P WL g . Besadhendhne ducedum

PO P YOI G- U Sl S U Sl S W Wy e 3 -

- e S v _onTTN Ty a

:j
o Page -48- SDD-1 Concurrency Control Mechanism j;hf
N Section 2 The SDD-1 Architecture S

- —— - — - - S e A A S D - = e -

Class: i 3
Transaction Module: M M
Readset: x} from DMy €;f> from DM,
Writeset: (x) (x)

i 3
Graph: T W fx

e
i

]
W

Figure 2.8 - Class Conflict Graph for Example in
Section 2.12,

A transaction, i, arrives at TMalpha of the form x:=x+1.

T

Malpha assigns the transaction to class 1 and gives it

timestamp TSi‘ A transaction, j, arrives at TMbe of the

ta

form x:=x+2. TMbeta assigns the transaction to class 3

and gives it timestamp TSJ. TSi and TSj cannot be equal
because all timestamps in the system are unique. Let us

assume that 'I‘Sj < TSi. Now the following sequence of

events occurs:

I T . - — ke P T A

L atete ddh ndih Bae

SDD-1 Concurrency Control Mechanism Page -49-

The SDD-1 Architecture Section 2
o i S
‘ 1. TMalpha sends a READ message, Ralpha’ to DMalpha .i
jf to retrieve the value of data item x for transaction

i. This READ includes a P3 read condition against
class J. The READ message cannot be immediately -®
processed because WRITE messages through time TSi

from c¢lass J have not yet been received at DMalpha'

beta to .ﬁ

retrieve the value of data item x for transaction j.

2. ™ sends a READ message, Rglpha, to DMy ha

The READ message can be immediately processed (the

- r .
presence of a class 1 READ message at DMalpha with

timestamp TSi > TSj insures that all WRITE messages

from class I have been received through time TSJ).

A A]
L T

The result of the READ is x=0. %]
3. TMbeta sends a WRITE message for transaction j to -
DMalpha setting x:=2.

4, TMbeta sends a NULLWRITE message to DMalpha with

timestanmp TSJ, > TSi. (This message may be a

response to a SENDNULL request from TMalpha' The

class pipelining rule requires that this message

could not be sent before the WRITE message with time

TSj < TSj,). The READ message for transaction i can

now be processed. (The presence of the NULLWRITE

message at DMalpha with timestamp TSj, > TSi
satisfies the P3 read condition.) The result of the

READ is x=2.

YT YTy v s
o Dttt l: e o
. P » o

- -I
PO WL SPRE GR P S ar. - - s

Page -50- SDD-1 Concurrency Control Mechanism
o Section 2 The SDD-1 Architecture
1 5. M sends a WRITE message for transaction i to
" alpha
f: DMalpha setting x:=3. Notice that this WRITE message

overwrites the wearlier value of x=2 because the
earlier value was associated with timestamp TSj and

the current WRITE message has timestamp TSi>TSj.

The final value of data item x is 3, as expected. The
anomalous interleaving that was described in the example

of section 2.7 has been prevented by the use of protocol inﬁ

P3. o

We have seen that by locating graph cycles, by finding

every class that 1lies at the r-end of a diagonal edge
embedded in a cycle, and by having transactions 1in that
class run protocol P3, we <can guarantee that all
interleaved executions will be serializable. However,
there are situations in which weaker protocols (i.e.,
protocols that allow more concurrency) than P3 may be
used. This 1leads us to a discussion of protocols P2 and

pP2f.

¢ -

| A P T P I P PRI TP R A G TP W S UL S S U L S U APWAPY SPRAFS IS W S WS v - |

SDD-1 Concurrency Control Mechanism Page ~51-
The SDD-1 Architecture Section 2

2.13 Protocol P2

The main opportunity for weakening the P3 protocol arises ﬁ'ii

in connection with the transactions that participate in a *“qa
conflict graph only with their read-nodes. These »jﬂ%
read-only transactions contribute to non-serializability jf}j%

only because they may observe certain WRITE messages being

processed 1in reverse timestamp order. For example,

-

suppose we have classes I, J, and k connected by the edges

(w! J) and (r?d K

alpha’ Talpha alpha’ walpha) as shown in figure

2.9. Class] is a read-only transaction whose read-set

intersects the write-sets of classes 1 and k. Suppose

transactions i, j, and k execute in classes I, J, and Kk
(respectively) such that k is timestamped before i which

is timestamped before j. At the following

DMalpha’
: . . i X
sequence of events might occur: first walpha is
k
alpha

processed, then RJ is processed, then W is
alpha

processed. In this case, even though k is timestamped i 'f
¥ earlier that i, from j's point of view transaction i P

‘ - —
FT precedes transaction k, since it sees i's update but has S

T

St

not yet seen k's update. That 1is, this interleaved
execution requires that +transacticon 1 be serialized in »;!

front of transaction k, which 1is the reverse timestamp

D ot et i
Dy
1

T~ A o e T e . S A

............

Page =52~ SDD-1 Concurrency Control Mechanism
Section 2 The SDD-1 Architecture

IOy ZERCAA AN 53 B

order. If another path in the conflict graph connected I

3 R
3 to k such that the interleaved execution required the iﬁﬁkf
ST 3

timestamp ordering, then the impossible requirement that i . w.i

both precede and follow k in the serial reordering means l :;;

that the execution is not serializable. In the previous T

. . Jj . T —d

section we showed that if Ralpha ran P3 against 1 and k va.’

(due to the two diagonal graph edges), then this

non-serializable situation could not arise. However,

. Jj A .
there is a weaker protocol that Ralpha can run in this

i
L
J
i
e b
i i i .3 3 k k
__ B S R | o& &
N
;'.; Figure 2.9 - A transaction reading from two other

transaction classes may force a relative ordering of these
classes' transactions in equivalent serial orderings.

IAENEAEN - ARRCIMACANCE

DN PR UL WA VR DAy I TN I PRI TPy I WU S G Y T P A SR G S S UM TS W U S A A A

." ‘ L-.'.-. ., '..:

. SDD-1 Concurrency Control Mechanism Page -53~

- The SDD-1 Architecture Section 2

- situation that has the same effect. : .ﬁ

: . i . RO
The effect we want to produce is that if walpha is SN

- . k i i

. timestamped after walpha and walpha is processed before

| J k . J

o Ralpha’ then walpha is processed before Ralpha as well.

§i If this condition is made to be true (by some protocol)

j i k .
then Ralpha cannot observe walpha and walpha to execute in

reverse timestamp order. The protocol that has this

effect is called P2.

Protocol P2 applies to a read message Rglgha if and only
: T i J
if there are classes 1 and k such that (walpha’ "alpha’

k
walpha) is a subpath 1in a cycle in the conflict graph
(where j runs in class j). In this case, we say that

J . .

Ralpha must run protocol P2 against classes T and k at
; J
DMalpha' If protocol P2 is used, then Ralpha need not run

protocol P3 against I and k, as would normally be

indicated by the diagonal edges. Since P2 prevents Rglpha

from observing transactions in I and k in reverse

timestamp order, RY will not interfere with

alpha

serializing transactions in I and kK in timestamp order, as
desired.
To run RY under P2 against 1 and k, DM must

alpha alpha

- ensure that, at the time Rglpha is processed, there is a o
timestamp TSO, such that all WRITE messages from classes 1 f,,!

and k whose timestamps are 1less than TSo have been

PP U T VPN T T

Page -54- SDD-1 Concurrency Control Mechanism
Section 2 The SDD-1 Architecture

L processed at DM and no WRITE messages from classes 1

alpha’
and k whose timestamps are greater that TSo have been
processed. The specific timestamp, TSO, is not given by

the READ message RY

alpha but rather is selected by DM

alpha“

As long as there exists some TSo through which WRITEs from

the classes I and k .ave been processed but beyond which
J .

they have not been processed, then Ralpha will only be

able to observe transactions in classes 1 and Kk to have

been run in their relative timestamp order.

The implementation of protocol P2 requires an extension to
the read condition mechanism. Since the DM is expected to
choose a convenient 'I‘So (cf. P3 where the timestamp is
prespecified in the READ message), the timestamping in the
read condition cannot be determined until the READ message

is processed. So, a named timestamp marker may be

supplied 1in place of a particular timestamp in the read
condition. Whenever a DM encounters a timestamp marker in
a read condition, it may choose an appropriate time
itself, with the proviso that when two or more read
conditions are given for a single READ message, all
timestamp markers with the same name must be assigned the

same timestamp value.

J T J
For Ralpha to run P2 against classes 1 and k, R

alpha's

READ message must include two read conditions, <TSM, I>

- Lt N e YN . S LN PR - . .
. B DN - - . N - . c . . L. , . o
MY P I T T, T T T T T . S W IR S -y W M S S S TSP S~ R

A AN N
AU N

SR =1 DK

o
>

''''''''''

SDD-1 Concurrency Control Mechanism Page -55-
The SDD-1 Architecture Section 2
and <TSM, J>, where TSM is a timestamp marker. By

satisfying the read conditions, DM fulfills the

alpha
protocol P2 condition against classes I and k, as desired.

It is interesting to note that protocol P2 1is strictly

. : j
weaker than P3 in the following sense. 1If Ralpha runs P3

. - j o
against classes I and k at DM then Ralpha satisfies

alpha’
the P2 constraint against I and k as well. The converse

is not true. Since P2 always permits more concurrency
than P3, it is always advantageous to run P2 in place of

P3 where ever possible.

An example will 1illustrate the use of protocol P2.
Suppose there are two data items of interest, x and vy,

which reside at both DM and DM initially x=0 and

beta’
y=0. We assume there is an integrity constraint requiring

that y§x2. Three classes have been defined. Class I runs

alpha

at TMalpha’ reads x from DMalpha and writes x. Class)
runs at TMalpha' reads x from DMalpha and writes y. Class
k runs at TMperqs 2nd reads x and y from DM .. . A class

conflict graph for this configuration is shown in figure
2.10. Notivice that a cycle 1is present and that
transactions in class J must run P3 against transactions

in class I at DM and that transactions in class k

alpha

must run protocol P2 against classes 1 and J at DMpata-

FU ST P WA I UUr WA DI WAL WA U W i (I YO WP SUNT T W Wl PPy Wit/ U W i W L Gl W . DRPEE T S L Y A Y e

Tetuv Vv - CHPCIA YA Jea i i A B T e s DR e Sty Claia ate—td Bat Aram D e B s A oa ot sl P e A e b SR Bl B B AT
.......................... . LEEASEAS - SRt e T e - ST e L N

: Page -56- SDD-1 Concurrency Control Mechanism

5 Section 2 ‘ The SDD-1 Architecture

-,

;:: Class: 1 3 k

.. Transaction

i Module: TM« ™ o TM‘

o Readset: (x from DM (x) from DM gx,y> from DM
{ Writeset:

El Graph:

Yo Ve

Figure 2.10 - C(Class Conflict Graph for Example in Section 2.13

Transaction i is received at TM requests to perform

alpha’
the computation x := x+1, is assigned to class I, and is

given timestamp TSi. Transaction j 1is received at
2

™ ,1pha® Tequests to perform y := x°, is assigned to class
J, and is given timestamp TSj>TSi. Transaction k is §+4%
'% received at TMbeta’ requests to print the values of x and

y on the user's terminal, is assigned to class k, and is

given timestamp TSk>TS Notice that each of these

j°
transactions preserve the constraint that y < x2. No

..............

...............
..........

P DWW N L I PR Y AR STy G R ! - I AP U P U S WY G Wy Y U U R Y

..................
...............................

A
N
.l
'J
.l
L
R
9
e
L
1 3
N
".
3
-
s
’
s
5
"
[
K
L
L
L
4
. d

,L

SDD-1 Concurrency Control Mechanism Page -57-
The SDD-1 Architecture Section 2

4
e oafatals

2

. [N
Y St
ety o
, o '
8 o, e

serial ordering of the transactions could invalidate this

-

condition.

First, we consider an anomalous scenario in which

transaction k does not run protocol P2 as is required:

1. TMalpha sends a READ message ¢to DMalpha for
transaction i and retrieves x=0.
2. TMalpha sends WRITE messages to DMalpha and DMbeta

for transaction 1i. Each WRITE message contains

timestamp TSi and the assignment x := 1.

3. DM processes the WRITE for transaction i (but

alpha
DMbeta has not yet done so).
4, TMalpha sends a NULLWRITE message for class 1 with
timestamp TSi' > TSJ to DMalpha'
3 5. TMalpha sends a READ message to DMalpha for
. transaction j and retrieves x=1. (The P3 read
; condition on this READ message is immediately

satisfied because of the previously received

NULLWRITE message.)

6. TMalpha sends WRITE messages to DMalpha and DM, ... ;;;Eg
for transaction j. Each WRITE message contains ;ﬁ?fj
timestamp TSj ard the assignment y := 1. AR

—=®

L ST M PP U P T U P S PO TN PR S GNP G ST Ry WS W WS Sadata

T
K - Datn SLAEACLS

4

Page -58- SDD-1 Concurrency Control Mechanism

Section 2 The SDD-1 Architecture
T. DMalpha processes j's WRITE message.
8. DMbeta processes j's thTE message.
9. TMbeta sends a READ message to DMbeta for

transaction k, retrieving x=0, y=1.

10. Transaction k prints x=0, y=1 on the user's

terminal.

11. DMbeta processes the WRITE message from 1,

thereby setting x=1.

The user has seen an impossible state of the database
(i.e., x=0, y=1) printed by transaction k, with y > x2.
The problem is that k is reading both the input and output
of another transaction, j. However, k is reading the new

value of the output but an old value of the input on which

that output is based.

If k had run protocol P2 as required, then this situation
could not have occurred. By replacing steps (9)-(11) with
the following, we obtain a correct scenario in which k

satisfies P2.

9. ™ sends a READ message to DM for

beta beta
transaction k. The P2 read condition requires that
WRITE's from classes 1 and J .e processed through

some common time. Now J .s been processed through

=

.................................

SDD-1 Concurrency Control Mechanism Page -59-
-3 The SDD-1 Architecture Section 2
i time TSj but class I has not been processed through
= that time yet.

LN
PRV

10. DMbeta processes the WRITE message for 1.

NS LA

.
4

11. A NULLWRITE message arrives at DM_ . for class i

with timestamp TSi,>TSj.

12. DMbeta can now process the READ message from Kk,

.

5
8
x
=
z
T
X

since WRITE's from both I and J have been processed

through time TSj. It retrieves x=1, y=1.

13. Transaction k prints x=1, y=1 at the user's

terminal.

Notice that it was not necessary for transaction k to use
protocol P3 to obtain a correct result. It only had to
wait until WRITE's from classes I and J had been processed

through time TS,

j not through time TS (its own

k
timestamp).

A R

TYTM VATV

.o

7. T TR LTLTRE T,
y

DI T I P P A R Wy WA TR PR PRIPE U WY P Y PR VL WA S - 'Y PP WY PR YN W SN W Y TS S SR U Y " |

................................

Page -60-
Section 2

SDD-1 Concurrency Control Mechanism
The SDD-1 Architecture

2.14 Protocol Pe2f

Protocol P2f is quite similar to protocol P2. It is used

in cycles that contain a w-r-e-r-w subpath such as the

3 .3 k . .
J, rgeta’ wbeta) shown in Figure

1 3
alpha’ " alpha’

2.11. The "f" in P2f refers to the fact that reading 1is

subpath (w e

being done from a foreign DM. As in a P2 subpath, a

transaction in class j is able to observe an ordering of

transactions in classes I ... k; protocol P2f is designed
to ensure that the observed ordering 1is always the
i timestamp ordering of the transactions. If the above
. subpath 1is part of a cycle, then each transaction, j, in

class J must run P2f against I .. DMalpha and k at DMy 4o

This means that there must be a timestamp, say TSO, such

that all WRITE messages from I timestamped before TSo and

none timestamped after TSo are processed before RY

alpha at

DMalpha’ and all WRITE messages from k timestamped before
TSo and none timestamped after TSo are processed before

J
Rbeta at DMbeta'
(against I) at one DM and half of P2 (against k) at

Protocol P2f essentially runs half of P2

another DM.

W—‘ o h IR TR TR T T T TYIELE T T T AT T R TR T TR T A FATIE WYY ST T T T T ';}
- o
%3 SDD-1 Concurrency Control Mechanism Page -61- ;.1
-, The SDD-1 Architecture Section 2 1
S v
3 : ’*—.—4
1 ‘
;') - {
b _ _ R
[i j P —
t:: l; ; r;‘](rg Yo r t 4 7 _ :

1] AR L
L Ve Wy Yy wﬂ vs : ;)
Figure 2.11 - A w-r-e-r-w subpath calls for the use of R

protocol P2-F when it forms part of a cycle

LR I

LT Tt
8 i N B

A . s .
L FERRIN S
L L
AL W . . . » L
PR o
oo e,
bk b PO SRS S)

e

Since reading is being done from two separate DM's, it is

hauh d
[l

RAal S ataas FASLIRonss - SR ALASERERStS ¢ B SCAUIEULILINS U SACMA MRS JRARANS
.

not possible to use the timestamp marker mechanism. (If

,,”...
O PR
N . ¥ P
.

N S
. .
s Jene

timestamp markers were used, it would be necessary for the
two DM's involved to carry on a conversation to determine
a mutually satisfactory timestamp to substitute for the
marker. This kind of synchronization overhead is exactly
what we are trying to avoid.) 1Instead, the TM issuing the
READ messages chooses a timestamp (i.e., TSo above) and
includes a read condition on each READ with this
timestamp. That 1is, if J must run P2f against 1 at

and k at DM then a transaction j in class J

DMalpha beta’

: I Ty s nd
includes the read condition <TSO, 1> in Ralpha and <TSO,

—— —w Sl T L2 N et A I A e e I e A
| e e R b PIR R I AT A) Pl A . . R .

|

-

M ®

Fi Page -62- SDD=-1 Concurrency Control Mechanism o
X Section 2 The SDD-1 Architecture '

v __.,4

1 o 4

8 k> in Rgeta for some chosen value of TS_. Unfortunately,]

choosing a TSO for P2f is not quite as nice as using
;- timestamp markers in P2, because the P2f READ messages
have a greater likelihood of being rejected or having to
wait. The primary difference between read conditions
issued as part of protocol P3 and those issued as part of
protocol P2f is that the read condition timestamp for

protocol P3 must be the same as the timestamp of the

issuing transaction while the read condition timestamp for

protocol P2f may have any value.

PR TP I DT PN WP L ST WL P L DL I I UL I AT A T, VI T VR P W P P TPULIPT SO Sy W W WV W YO TR Wy U S S S W PP S S |

vy 7
oy

R TR
P

i/

vy T T
e e e e

PR e e L TR T T T T T T e T e T e e e Y e
r Rt M B TSI A Arah e dra o Srabieti i enmi e baatan. oA SR JENACHERCINL I SN S SR R LR >

SDD-1 Concurrency Control Mechanism Page -63-
The SDD-~1 Architecture Section 2

2.15 Protocol P1

If a transaction class appears in the graph but does not
run one of protocols P2, P2f, or P3, then we say it runs
protocol P1. That is to say, protocol P! is the protocol
that 1involves no synchronization other than the data item

timestamping rule and the class pipelining rule.

P1, P2, P2f, and P3 provide a graduated set of mechanisms
in terms of concurrency and synchronization expense. A
goal in designing a particular application is to
distribute the data and define the classes to use the

lower numbered protocols most frequently.

Page -64- SDD-1 Concurrency Control Mechanism
Section 2 The SDD-1 Architecture

Graph Topology » Protocol Requirement -]

(the subpath shown
is part of a cycle)

- - .___..‘}
i @,
T, 4
4
Transactions in class 1 must —
run protocol P2 with respect : ".?
- A to classes } and k. -
rE rg T ;;
« . |
1 e
e . -
- - Transactions in class 1 must
wg w} run protocol P2-F with respect
i to classes § and k.
T,
o
t
! 7.’.1?;-
! Transactions in class 1 must Ry
¢ ® run protocol P3 with respect]
el ot J& to class k. R
¢ ~~¥
- s Transactions in class I must N
e} ’ S run protocol P3 with respect to
~ . class 3.
~
® *
w} Wi

Figure 7.12 - Protocol requirements are suggested by the
graph topology

S rSCEAive T R Ale e Ach AT A S A e L S S

......

S+ PRI

SDD-1 Concurrency Control Mechanism Page -65-
The SDD-1 Architecture Section 2

2.16 Pre-Analysis of the Class Conflict Graph

Figure 2.12 summarizes the results so far, 1illustrating
how particular graph topologies indicate that particular

protocols must be run.

-~ - ¥, & F"
. d R

If it were necessary to compute graph edges and cycles

;[:'.
L 3
t

before executing each transaction, the cost of doing so
would clearly be prohibitive. Fortunately, this is not
necessary. The <class definitions are specified by a DBA

at application design time and at that time the class

conflict graph can be computed and analyzed. The result

of such an analysis will be a list of read conditions for

P L
< PP TN Y

each class. Note that a class may have more than one or . ;;-‘
-

two read conditions which it must use. This 1is because K
:

the class may be a part of several cycles.

When a transaction is entered at a TM, the TM first
determines its read-set and write-set. It then determines
to which c¢lass that transaction belongs (if the
transaction can run in more than one class, the class with
the fewest synchronization requirements 1is chosen).
Having identified the transaction's class, only a table
lookup 1is required to determine what read conditions the

transactior must use.

@

) e hcr T

Page -66- SDD-1 Concurrency Control Mechanism
Section 2 The SDD-1 Architecture

2.17 Safe Cycles

It happens that there are graph cycles which never cause a
non-serializable interleaving of transactions. In
particular, any cycle which does not contain a vertical
edge is always safe. Thus, a cycle composed entirely of
diagonal edges or entirely of horizontal edges will never
lead to a serializability problem and classes 1lying on
such cycles can safely run P1 (at least insofar as the
safe cycles are concerned). The cycle shown in Figure
2.13 is an example of a safe cycle.

Figure 2,13 - A cycle is safe if it contains no vertical edges

- T T W Y T W g e v AT N e TLYUW O WTTR T T T e e e T e U T P R R SR S S R S
.............................. 2 I . ~ P - . -

[T
T
P

SDD-1 Concurrency Control Mechanism Page -67-
The SDD-1 Architecture Section 2

This result is not immediately apparent through intuitive
understanding and is illustrative of the fact that a more
formal and precise treatment of serializability criteria

is needed.

(Some intuitive wunderstanding can be gained, however,

through the following arguments. First, 1if the cycle

consists entirely of horizontal edges then a
serializability problem cannot arise because horizontal
edges always imply a timestamp ordering of the
transactions. Second, if the cycle consists entirely of
diagonal edges then all the nodes on the cycle have the
same DM subscript. Also such a cycle consists of a series
of W-R-W subpaths. Remember from the discussion of

protocol P2 that on such a subpath the reading transaction

may observe a particular ordering of the writing
transactions and that the observed ordering depends on the
actual order in which the WRITEs were processed by the DM,

Since all of the WRITEs on the cycle are being processed

by the same DM, it must be the case that the reading

transactions all observe the same relative ordering among
the writing transactions and hence all transactions on the

cycle will be serializable.) T

SR

Page -68- SDD-1 Concurrency Control Mechanism
Section 2 The SDD-1 Architecture

2.18 Summary and Conclusions

E' In reviewing the concepts presented in section 2, it is

(‘ helpful to distinguish between three kinds of properties

of an SDD-1 system: iﬂﬁa

1. properties that are intrinsic to the way the SDD-1 o

software operates;

2. properties that arise from database design
4 decisions. -~ |
1
R
]
)
3

3. properties that arise from the analysis of the

N] .
I Y IR e A

database design.

In category (1) are the way data modules process READ :ﬁfp
messages and WRITE messages, the way clocks operate, the
pipelining rules, and the way each protocol works. In :Jﬂ!
category (2) are the choice of the location of SDD-1 sites N
Tf on the network, the choice of 1logical fragments, the {;;i
ﬁ: location of physical fragments, the configuration of .;Jg
materializations, the choice of read-sets and write-sets .

for each class, and the assignment of materializations to L

B TR .
, . S
st
.] ‘ lv' . "' l" l-. ~.’ !.’ *
N PN AV

each class. Finally, in category (3) is the assignment of

protocols to each class.

hM ¢ e e e M e s .

SDD-1 Concurrency Control Mechanism Page -69-
The SDD-1 Architecture Section 2

The description we have presented of the SDD-1 redundant
update mechanism has a serious defect. We have shown that
certain situations cause serializability problems and have
introduced mechanisms to resolve those problems. Yet how
can we be sure that we have 1identified all possible
dangerous situations? And how can we be sure that the
protocols prevent all possible instances of these

dangerous situations?

We believe that in order to fully understand these 5
results, to be confident of their correctness, and to use

them intelligently in designing systems, we must prove

their correctness in a precise and formal manner. This is iff
the purpose of the Sections 3 and 4. ;%ffz

PSR et it GearI s Sui aAr-h il arie St bt o Jte S JNOCIMAN At st Al aui i S it A i M S RN B S O g S R it e dre A e e Santy Juibd
___________________ - I - e St ST - R o - . .

- Page -70- SDD-1 Concurrency Control Mechanism
- Section 3 Selection and Analysis of Protocols

3. Selection and Analysis of Protocols

3.1 Logs

To develop the criteria for selecting a protocol for each
class, we need a formal model for transaction processing.
The model we have chosen, called 1logs, consists of a
string of symbols that represents the execution of
- transactions, READ messages, and WRITE messages. Our
- claim will be that 1logs embody all of the information
about system execution that is needed to reproduce its
- input-output behavior. Verifying this claim will permit
us to use logs as a formal model for investigating other

aspects of the behavior of SDD-1.

There are three kinds of events that are of interest for
building logs : READ messages, WRITE messages, and 1local
transaction execution, We represent the processing of a
READ message for a transaction, a, at a data module,
alpha, by R:lpha' We represent the processing of a WRITE

message for a transaction, a, at a data module, alpha, by

SDD-1 Concurrency Control Mechanism Page =71~

Selection and Analysis of Protocols Section 3
a . .

walpha‘ Finally, we represent the local execution of a

transaction (in its transaction module), a, by E?. In the

sequel, we will use lower case Roman letters near the
beginning of the alphabet to represent transactions, and
lower case Greek letters near the beginning of the

alphabet to represent data modules.

The behavior of each data module is modelled as a string
of R's and W's, which represents the order in which READ
messages and WRITE messages were processed (as opposed to
received) by the data module. We call such a string a

local data module log. Each local data module log must

obey certain syntactic constraints that represent physical
properties that data modules must satisfy. In a 1local
data module log, say for data module alpha, the following

must hold:

D1. All R's and W's must have the same subscript,
alpha, since they are all processed at data module

alpha.

. a
For each transaction, a, at most one Ralpha
a . .
one walpha can appear, since each transaction
send at most one READ and one WRITE message to

given data module.

PPN O W VR PRy W WO WA T WP WA S W DI W WPy g e PP P S SO A S S P P

DA
. 8) ;“.

- I Y A A s
"|< ST AN A AN
' Lt T . e’

Eﬁ |
3
"

Page -T2- SDD-1 Concurrency Control Mechanism
Section 3 Selection and Analysis of Protocols

The behavior of classes 1is modelled as a string of E's

called a global transaction 1log, which represents the

order in which transactions were executed as reflected by
their timestamps. The only syntactic constraint on a
global transaction log is

E1. For each transaction, a, only one g2 appears,

since a transaction receives only one timestamp.

A global transaction 1log induces certain additional
syntactic restrictions on a local data module log, which
indicate the proper orderings based on the pipelining
rules. In a 1local data module log, say for data module
alpha, the following must hold: if transaction a and
transaction a' run in the same class and E@ ~recedes Ea'

in the global transaction log, then

. - a a'
D3. (R-R pipelining) 1If Ralpha and Ralpha appear,
a a' .
then Ralpha precedes Ralpha’
. s a a'
D4. (W-W pipelining) If walpha and walpha appear,
a a' .
then walpha precedes walpha’
. a a’
D5. (W-R pipelining) 1If walpha and Ralpha appear,
a a'
then walpha precedes Ralpha'

A

LM o S e e Aart Aupe it dh S/l SMARYS Sri i S S A 40 I Ate A Jhincibing S Shiie ol Sub S e A ot Janil Sk SRl Bttt At daud Ui aankt el S I 20ge R S Cagt .V*j.

@)
SDD-1 Concurrency Control Mechanism Page -73- ~§
Selection and Analysis of Protocols Section 3 L
A log models an execution history of transactions on the *———:
database. S

To obtain a complete picture of the effect that logs have
on the database, we require the following additional

information, relating to database design:

for each transaction - the read-set of the transaction,

the write-set of the transaction, and the class in

which the transaction ran;

for each data module - the set of physical fragments f,”#‘

that is stored there; and

for each class - the materialization it wuses for :”Eﬂ—
-

reading.

For the sake of economy of the model and to enhance
mathematical tractability, we will normally 1leave the
transactions wuninterpreted (in the sense of the program

schema theory [Mannal). That is, for each 1logical data

item in the write-set of each transaction, we associate a B
unique uninterpreted function letter that maps all of the

read-set into that write-set data item.

Given the above database design information, we must add
two more syntactic constraints on local data module 1logs

1

3

:

that guarantee that all of the relevant READ and WRITE ! unﬁ
S

[W O A Py P A PO P S -— - . B P

P o7 Ty TR T T R TRET T T T e ™

.y v, v
ok N

| DO
¥

7
¢
[

A MO
.. ‘...-.-.‘a‘l.l

Page -TU- SDD-1 Concurrency Control Mechanism
Section 3 Selection and Analysis of Protocols
messages are actually issued. If g8 «ppears in the global

transaction log, then

1. If some _ata item in the read-set of transaction a
is obtained by the materialization of the class
under which transaction a runs from data module

alpha, then appears in alpha's local data

a
Ralpha
module log.

2. If some data in the write-set of transaction "a 1is

obvious semantic constraint that the logs accurately

- }

a 3 _‘,.;.l..j

stored at data module alpha, then walpha appears 1in _—
alpha's local data module log. R

In addition to these syntactic constraints, there is the ?E&;
oL

o

represent the order in which R's and W's (in the case of a
local data module 1logs) or E's (in a global transaction

log) actually were processed.

Suppose we have a global transaction log and a collection ‘f?}

of local data module logs that represent the execution of
the system during sowme period. These logs can be merged

into a single global system 1log by satisfying the

following conditions:

.
.
.
¥

i

— e

SDD-1 Concurrency Control Mechanism ° Page -75-

Selection and Analysis of Protocols Section 3
G1. All symbols in the global transaction log
appear 1in the global system log and appear in the
same order (e.g., if g2 precedes Eb .u the global

b

transaction 1log, then E? and E appear in the

global system log and g2 precedes Eb).

G2. For each local data module log, all symbols in
the local log appear in the global system 1log and

appear in the same order.

G3. For each transaction, a, and for each data
. a .
module, alpha, if Ralpha appears in the global
system log then E? also appears 1in the global
a a
system log and Ralpha precedes E".

G4. For each transaction, a, and for each data

. a .
module, alpha, if walpha appears 1in the global

system log then E2 also appears in the global

a a '
system log and E° precedes walpha' -2
Given a global 1log and 1its associated database design ' _;

information, we would like to show that this model 1is

sufficiently powerful to reproduce the essential aspects

of SDD-1 operation.

.

........

Page -76- SDD-1 Concurrency Control Mechanism
Section 3 Selection and Analysis of Protocols
Claim C The log model of SDD-1 operation is «complete in
(g the sei'se that given an initial value for all data items
in the database, a 1log, and an interpretation of the
; function symhols for transactions, then there 1is a
mechanical procedure that could analyze the 1log and
reproduce the exac. value history of each stored data item

at each data module.

The essence of claim of C is that timestamping information
for transactions and the parameters of READ and WRITE
- messages are not needed in order to duplicate the actual
operation of the system, given that the log and associated
transaction and data distribution information is provided.
To prove this claim formally, we would need a formal model
for the operation of SDD-1 (at the level, say, of a RAM or
- Turing machine) and a formal model of logs. Then we would
need to show an isomorphism between the value histories of
all stored data items of each model. We will not perform

this tedious task. Rather we will demonstrate an

interpreter that can si-julate 3DD-1's operation with only
the information available in 1logs and the associated
transacti~u and data distribution information. We argue

j along intuitive lines only that the interpreter is indeed

i

simulating correctl:.

3 A AR Y Sy ~ > L 3 Ao d o 3 e PR P ey IS A PN Py .

SDD-1 Concurrency Control Mechanism Page =77~
Selection and Analysis of Protocols Section 3

The 1interpreter maintains a simulated physical copy of
each stored data item in each data module. Instead of
storing a timestamp with each stored data item, we
assocliate the transaction name of the 1last transaction
that successfully wrote 1into that data item. Given the
total ordering of E's 1in the global system 1log, this
"transaction label" will be sufficient to reproduce all of

the essential timestamping information in the system.

Given the database design information, we can obtain the
read-set and write-set associated with each R and W in the
log. We also assume that for each uninterpreted function
letter in a transaction there is an interpretation (i.e. a

program).

Now, to wexecute a global system log, the interpreter
begins by initializing all stored data items to their
initial state and their associated transaction labels to
NULL. It then selects log symbols, one at a time
proceeding from left to right; for each symbol it does the

following:

a

i. If the symbol is a read, say Ralpha’

then read
that portion of the read-set of transaction a that is
stored at data module alpha according to the
materialization of the class in which transaction a

executes. Store these values 1in a temporary work

space associated with transaction a.

PP D DY LI G S Y

.._-‘1
e
e
R
) -

.I

!
}
_.4

.

Page -78- SDD-1 Concurrency Control Mechanism
Section 3 Selection and Analysis of Protocols
ii. If the symbol 1is an E, say Ea, execute the

irterpretation of transaction a on the read-set
values< stored in 1its workspace. The resulting
write-se® values should be stored back into its

workspace.

a

alpha’ then for

iii. If the symwbol is a write, say W
each data item in the write-set of transaction a that
also is stored at data module alpha, take the value
of the data item and store it in the stored data item

at alpha with transaction label = a if and only if

one of the following holds:

1. the transaction label for the data item at

alpha is NULL; or

2. the transaction label for the data item at
alpha 1is some b where Eb precedes E? in the

global system log.

First, notice that .we parameters (i.e. conditions) of
read messages 2are not needed, in that the global system
log alrerdy specifies exactly which WRITE messages are
processed ahead of each READ message. Second, the
conditctions for performing WRITE messages are exactly those
induced by the timestamping rules. The use of ordered E's

the log to embody timestamping information is a crucial

. J
)

K]

DR
RN

: A
.

'

SDD-1 Concurrency Control Mechanism Page -79-
Selection and Analysis of Protocols Section 3

conceptual simplification that makes the proofs in 1later

sections possible. Were we forced to wuse actual :jjf;

l';:' S
timestamps 1instead, the notation would be much more T
difficult to understand and manipulate. ——

3.2 Correctness Criteria

To determine how to assign protocols to classes to yield
correct system operation, we must first develop precise
conditions for correct system operation. We define two

conditions that characterize the correctness of

distributed database systems such as SDD-1. One

condition, called convergence, states that all copies of

each logical data item must be “converging" toward the

same value. The other condition, called serial

X reproducibility, essentially states that the values toward

which the database is converging are mutually consistent.

E We proceed more formally with a discussion of each of

- these criteria. e

" —— L ML AR AL A AR T
I._ ...EA e e e “. e '~.

LB e SV S Pt At i S i - S Al A . anih Ak L SR AL N T e e D

Page -80- SDD-1 Concurrency Control Mechanism
Section 3 Selection and Analysis of Protocols

3.2.1 Conrergence

A log 1is conver ent if, given a database state in which

all stored copies of each data item are equivalent, then
the 1log transforms that state into another state with the
same property. (In the sequel, we wuse "log" to mean

"global system log".) A system is convergent if all of

the logs it can generate are convergent. One way to 1look
at system convergence is to imagine that if the processing
of E's were to stop at any time and all WRITE messages for
completed E's were processed, then the resulting log would

be convergent.

Theorem CONV Let L be a log generated by SDD-1. If for

each E in L all of E's WRITE messages are in L, then L is

convergent.

Proof Consider an arbit.ary logical data item, x, and let
E? be the 1last transaction execution which has x in its
write-set. Since all write messages for transaction a are
eventually processed (by hypothesis), for each data
mc ule, alpha, that nas a stored copy of x, w:lpha will be
the last WRITE mecsage in L that successfully updates x.

Hence, all copies of x will be equivalent. Q.E.D.

.

sl avenlh BRGNS Pl oS T T ET AT AT ETwWTET WIS T T s s e e R S T T Te e e T T e e e e e
Pt YA AL R A RN T

SDD-1 Concurrency Control Mechanism Page -81- f‘ij
Selection and Analysis of Protocols Section 3 .

Corollary SDD-1 is convergent,

3.2.2 Serial Reproducibility

We define two logs, L1 and L2, to be equivalent if for all
initial database states and for all interpretations of the
transactions, L1 and L2 leave the database 1in the same

final state. In a 1log L, we say that a READ message

a
SQLRE?

" " b 3 :
.eainf.om a messi%e walEha if T

i. There is a stored data item x at alpha that is _3523
~af

in the read-set of a and the write-set of b; and B

. b a
1i. walpha precedes Ralpha

in L; and
b

iii. walpha successfully wupdates x when it 1is

processed (i.e., Eb appears later in L than x's

v i b 3 .
current transaction label when walpha is processed);

and

b

. w 3 C
iv. There is no ¢ such that W follows walpha’

Vé alpha

c a . o
rd walpha and precedes Ralpha in L, and W successfully - @
b

writes into x (i.e., wapha is the last write
a

operation into x before Rapha).

Y

e
rL
. S

The notion of '"reading from" characterizes log equivalence

PPN

in the following sense.

TS e e Ty T e,
. PR

e
dd

w Okl T L TR T TR TR LT BT R A e e N T T T e N T, N A TN Y WL TR Ty YT YR T Y Y
IS, S A g N T e e T T T T T o T T T SUATT T BACHRRRE

Page -82- SDD-1 Concurrency Control Mechkanism
.ection 3 Selection and Analysis of Protocols

Theorem E Let L1 and L2 be logs that contain the same set

of transactions. If every R reads each of its data items
from the same W in both L1 and L2, then L1 is equivalent

to L2. T

Proof The proof uses Herbrand interpretations to show that

each data item displays the same final value in both logs.
This is a standard program schema theoretic result and can

be found (for example) in [MANNA].

Theorem E can be extended to be both a necessary and
sufficient condition for equivalence by incorporating the
notion of "deadness" as in [Papadimitriou et al].
However, for 1later results, we only need the sufficient

condition for equivalence.

We define a log to be serial if for each transaction a in

the 1log, all R2 symbols immediately precede E® and all W@

symbols immediately follow E2. That is, a serial 1log 1is

of the form:

i a a -a a a b b b,,b
e Ralpha"'RomegaL walpha"'womegaRalpha"'RomegaE walpha]
:) Rc Rc c ,,C wc

omega alpha "°° “omega alpha """ "omega

- A log is serially reproducible if it is equivalent to a

serial log. A Gsystem is safe if all of the 1logs it can

generate are serially reproducible. The use of serial

reproducibility as a correctness criterion has been used

¥~ S

SDD-1 Concurrency Control Mechanism Page -83-~
Selection and Analysis of Protocols Section 3

by many researchers [ESWARN et all, [GRAY et al], and
[HEWITT] and arises from the following model. Our goal is
to show that the database is maintained in a '"consistent"
state, where '"consistency" is characterized, say, by a
predicate which is true for all consistent states. We
assume that every transaction preserves the consistency of
the database: given a copy of its read-set that is
consistent then it will produce a copy of its write-set
that 1s also consistent. Clearly, every serial log
preserves database consistency if each of its transactions
preserves database consistency; 1in this <case, all data
items are wupdated cosynchronously, because all WRITE
messages of a transaction are processed before the next
READ message 1is processed. Since a serially reproducible
log is equivalent to a serial log, serially reproducible

logs preserve consistency as well,

SDD-1 guarantees serial reproducibility by the rules that
govern the selection of protocols for classes. That 1is,
if every class executes all of its transactions according
to the prespecified protocols, then the 1log of all
transactions executed by all classes 1s serially
reproducible. In the remainder of Section 3 we will
develop these protocol selection rules. In Section 4 we
will prove that they do in fact make SDD-1 1logs serially

reproducible.

-

B

Page -84- SDD-1 Concurrency Control Mechanism
Section 3 Selection and Analysis of Protocols

3.3 Log Transformations

To determine if a log is sericlly reproducible, we will ?ff,;
define an effective procedure to transform a log 1into an ffjt
equivalent serial one. The procedure 1is based on |
equivalence preserving transformations on logs. These ;;ff%
transformations are in the form of "switching rules", };f%
v i.e., equivalence preserving rules for switching adjacent i”é’f

log symbols. Each of the following switching rules is of
the form "... x1 x2 ... = ... x2 x1 ... under condition
«j C", which means that if symbols x1 and x2 are adjacent in
' a log and they satisfy condition C, then they can be
switched and the resulting log is equivalent to the 1log

before the switch.

a b _
Ralpha Rbeta o=

~ ... where a and b run in different classes

b a

TR1. beta Ralpha

R

- a b _ b a
: TR2. ... Ralpha Rpeta *++ = cen Rbeta Ralpha

where alpha # beta

P .

L24Rl I St S st St S M g
...........

SDD-1 Concurrency Control Mechanism
Selection and Analysis of Protocols

b b

_ TR3. ... E? E° ... = ... EP g®@
a =

E

write-sets.

a b
TRY4., ... W walpha

alpha

-
-

a b _
: TRS. . & @ walpha Wbeta . e @ :
if alpha # beta
-
e b

a
TR6. ... Ralpha wbeta

if alpha # beta

LR }
1n

~y YT
PP

et

b -

a
TRT. ... R Walpha -** =

alpha

transaction a's read-set and

write-set.

they preserve log equivalence.

of the transformations. Q.E.D.

Page -85-
Section 3

where a and b

run in different classes and have nonintersecting

b a

walpha walpha

if a and b run in different classes

b a
wbeta walpha

b a
wbeta Ralpha

b a

walpha Ralpha

if a and b run in different classes and there

is no stored data item at alpha that is common to

transaction b's

Theorem TR The transformations TR1 - TR7 are sound, i.e.,

Proof Follows directly from theorem E and the definitions

dineesinecinendin o diedinbiliontdicdiuhalind

T
i

RS - PRI

e N, R TR T e T A N L R TR R N S AN T (T T T T N TR TN T X W T e W OUY T W W W 7T T e e e e ey
N e [. . - ‘ . MR Lo e [SERSE R it Bl
. L PR <.

Page -86- SDD-1 Concurrency Control Mechanism

Section 3 Selection and Analysis of Protocols
We note in passing that the transformations TR1 - TR7 are
in no sense complete with respect to equivalence,. That
is, given tvo equivalent logs, L1 and L2, there may be no
sequence of applications of TR1-TR7 to L1 that yields L2.
There are several reasons for this. First, all of the
transformations prese-ve the pipelining rules in addition
to equivalence, which thereby weakens them. Second, the
transformations preserve certain timing information, which
in some cases 1is not needed to preserve equivalence.
Finally, pairwise switching 1is not sufficient to handle
all equivalence situations; 1logs can be constructed which
have entire sublogs that can be switched in an equivalence
preserving way, such that no sequence of pairwise switches
can reproduce the sublog switch. These observations are
parenthetical to the results that follow, since the

soundness of TR1 - TR7 is all that is required.

< SDD-1 Concurrency Control Mechanism Page -87-
. Selection and Analysis of Protocols Section 3 SR
1
R
;;!
S
. 3.4 Conflict Graphs :ét
-
———
~@)
From TR1 - TR7 we can derive the set of invalid switches,
i.e., those switches that are not permitted by TR1 - TRT.]
These invalid switches correspond to potential conflicts o
between transactions and, as we will see, can lead to
non-serially reproducible logs. The invalid switches,

. NTR1. ... R® b where a and b run in

X alpha Ralpha

the same class.

a b .
NTRZ2. .o walpha walpha where a and b run 1in
the same class.
- a b b a
. NTR3. .o Ralpha walpha .. or ... walpha Ralpha

where either a and b run in the same class or

there is a stored data item at alpha that is common
to transaction a's read-set and transaction b's

write-set. '.

. -
 »
Page -88- SDD-1 Concurrency Control Mechanism
Section 3 Selection and Analysis of Protocols
a a :
NTR4. ... Ralpha ET ... o
\ @
. a ,a -
: NTRS. ... E walpha ;
' S
-9
NTR6. ... E° E® where a and b run in the same ;‘vi
,\‘ 9
class or have intersecting write-sets. fif
. 3 . :j.:..:.‘-]
It is easily checked that these are the only pairs that -@f
X cannot be switched using TR1 - TR7.)
- The above conflicts can be modelled by a node-labelled : ji
2 undirected graph whose nodes represent generic log symbols if;j
R
. and whose edges represent potential conflicts between log N
- symbols. The graph 1is defined over a finite set of ;533
(- = - .
&® classes, denoted {a,b,c,...z}, and associated with each ,f{?
e class is a read-set, a write-set, and a materialization. E
L
i We define a conflict graph CG = <V,E> as follows (it ,'-3-7‘
denotes set union): j f:
o V = {e?: all classes 3} + {r? : all classes a
alpha °
W —
o and all data modules alphal + {walpha: all classes g.*
j; a and all data modules alphal D
P X
P - .
‘ E = Evert * Ehoriz * Ediag o
=

B - - .o v LA AR -_—
- K e N W T T g pepe—y—r B B s ava saved) v T

SDD-1 Concurrency Control Mechanism Page -89-
- Selection and Analysis of Protocols Section 3
2 . (B 3 . - o
:] Eert ° {(ralpha’ e)-. fll classes a and all data _.-;
a a . - .
modules alphal + {(e®, walpha) : all classes a and g

all data modules alphal

- ((e@. &Py . 5
Ehoriz = {(e“, €7) ¢+ all classes a,b where the

..'.\
-]

write-sets of a and b have a nonempty intersection}

;: E = {(r‘5 w5 - =
- diag ~ alpha’ “alpha) : all classes a,b and all

-~ data modules alpha such that the portion of b's

write-set stored at alpha has a nonempty

intersection with the portion of a's read-set which

is stored at alpha under a's materialization}

The notions of vertical, horizontal and diagonal edges
derive from the following convention for drawing conflict
graphs. For each class a, we draw all of a's r nodes in a :-":!ﬂ
row, beneath which we uraw a's e node, beneath which we i?f:}
draw a's w nodes in a row. (See figure 2.2.) The E

vert

edges connect each e to all of its r's and w's; these -;—ﬂﬂ

edges are (in a manner of speaking) vertica. Groups of
nodes for different classes are arranged in a row (see

” figure 2.3). The E edges connecting e's in different

horiz .

classes are therefore horizontal, and the E edges

diag

connecting an R and W from different classes are diagonal.

|
.

2

\

)

1

1

1

= We have found these conventions to be very convenient when _';!
)

discussing conflict graphs.

4
.
_ﬁ'.l
Page -90- SDD-1 Concurrency Control Mechanism :
Section 3 Selection and Analysis of Protocols
- —d
e
g
3.5 Protocol Selection Rules o]
- ‘;:
A conflict graph -~ycle that ccntains a vertical edge can R
lead to a nonserializable log, because the edges of the fg
—
cycle can correspond to conflicting (and hence ~|¥
4
unswitchable) symbols in the log. The rules for selecting -
which protocols to use for each READ message in each class ‘
are built around cycles in the conflict graph. We ;;é"
conclude Section 3 by enumerating these rules. 1In Section 3
4 we prove that if all transactions obey these rules, then
- p
all logs are serially reproducible. The rules are: , “’q
a . . . JORRAR
PSR3. If ralpha lies on a ¢ e in the conflict graph and _ :
. b a a _a
the cycle conEalns thf subpat? (wglpha’ ralpha’ e, wbeta) | “'ﬁ
b a a c O
or the sub (walpha’ Malpha’ © 7 ©) for some classes b and ‘
¢ and some data module beta, then for each transaction a
.= a . T
in a, run Ralpha under protocol P3 with respect to b. __-of
3 3 . . .
PSR2F. If ralpha and "beta lie on a cycle 1n_the confllct YTﬁ
. . b a ,.A‘
graph fnd vne czcle contains the subpath (wbeta’ "beta’]
ed ré we - . 9]
' " alpha’ T"alpha) for some classes b and ¢, then for T
. 3 - a a ‘.
each transaction a in a, run Ralpha and Rbeta under
protocol schema P2F against b .t beta and against ¢ at ‘
-@
alpha. -

e T . A S o T e A Dt L i = - -

.......

F

¢

t;- SDD-1 Concurrency Control Mechanism Page -91-
o Selection and Analysis of Protocols Section 3
=

q

a

ralpha lies on a cycle in the conflict graph and

PSkRe. If

the cycle both contains a vertical edge and contains the

- Ine = =

L « ; D a c _ - -

- subpath (walpha’ "alpha’ walpha) for some b and ¢, then
. . L= a

'I for each transaction a in a, run Ralpha under protocol P2

- against b and ¢ at alpha.

These protocols must be satisfied for all cycles in the
conflict graph. That 1is, if an r lies on several cycles

:i and thereby satisfies several of the PSRs, then that READ

message must include conditions to satisfy all of its
PSRs. If an r satisfies none of the above PSRs, either
because it lies on no cycles or because none of the cycles
on which it lies have the wundesirable properties, then
that r can run protocol P1. It is expected that under a
sultable database design and for many applications, most

transactions need only run under protocol schema P1.

Theorem SR If all of the trarsactions in a log use the

correct protocol as outlined by the protocol selection

o | rules, then the log is serially reproducible.
Proof GSee Section 4.

r¢ Corollary SDD-1 is safe.

) S .
e .. -
) S\~ PP S ST WY

" > o daties B e et A diiabe Sl S bse Mimne St hene Saut Eauil S Shatt SaiCEhadt Madh Bl B AL AN)
Fr\ T v e NS ."}T. L IO AN P PR

- Page -92- SDD-1 Concurrency Control Mechanism
N Section 4 Proof of Serial Reproducibility

4. Proof of Serial Reproducibility

Y, 48, R e e
UL

4,1 1Introduction

'l -‘l I.l ." "l ..l' E

This section contains a proof of theorem SR, which
demonstrates that the SDD-1 protocol selection rules 1lead
to serially reproducible logs. Since the proof is rather
long and its details may not be of interest to all
readers, we will first present a brief overview of the
- proof. To prove the theorem formally, we need to
formalize the concepts of the previous sections. This

formalism is presented in Section 4.2. The proof itself

5 comes in two parts and is presented in Sections 4.3 and
4.4,

: This proof only includes protocols P1, P2, P2f, and P3. A

? proof that also embodies protocol P4 has been produced and

-

will appear in a later report.

3

To prove that all logs are serially reproducible, we
assume the converse and show a contradiction. That is, we

i assume that there is some 1log, say LOGgiven» which

e i T I P e e A N A S S AR St T T P L S

...............

Ay
i;lf';'., &

-? SDD-1 Concurrency Control Mechanism Page -93-
}ﬂ Proof of Serial Reproducibility Section 4
3
4 resulted from the correct operation of SDD-1 and that
;ﬁ LOGgiven is not serially reproducible. The general
) approach we will take is to try to serialize LOG.,.,
3

using the transformations TR1 - TR7. When we get stuck,
§£ as we must since I_.OGgiven 1S not serially reproducible, we
§§ examine the "stuck" log and derive from the log certain
e properties of the conflict graph that demonstrate that
'Ef LOGgiven must have violated the protocol selection rules
f: (PSRs) . Thus, the proof proceeds in two stages: first,
”i the attempt to serialize LOGgiven; second, the
f construction of the PSR contradiction.
,3 To serialize LOGgiven’ we begin at the left end of the log fyﬁy
N and ¢try to serialize each R so that it is adjacent to its)
. ': :&-‘ .'-\-
ﬁ corresponding E and each W so that it is adjacent ¢to its RO
& . . -_\:.:f
7 corresponding E. Suppose, for example, that we are trying lig;

P

, P a . a _ ;
‘g to serialize Ralpha to be adjacent to E. By applying
] switches permitted by TR1 - TR7 of adjacent symbols in the
o
¥, a a a
- sublog that separate Ralpha from E°, we try to move Ralpha
% closer to E2. That is, we try to move each symbol in this
o - a a
3 sublog either to the left of Ralpha or to the right of E°. }
N If we can move all of the symbols in this sublog out of .
= o
-) . R a a s
? ‘ the way, then we will end up with Ralpha adjacent to ET. ey
ﬁ We can apply essentially the same procedure to move each e
3 w? to be adjacent to EZ. %J?
M o

Page -94- SDD-1 Concurrency Control Mechanism

Section 4 Proof of Serial Reproducibility
Since LOGgiven is not serially reproducible, this
procedure that tries to serialize LOG8iven will eventually
fail to be able to serialize some R or W. Suppose that
a c v a
Ralpha cannot be serialized with E°. Then we have a
a a . .
sublog of the form Ralpha ... E in which every

intermediate symbol 1is in conflict with some symbol both
on its right and on its left, since otherwise the symbol
would have been removed by the above applications of TR1 -
TR7. Similarly, had we gotten stuck by a wglpha' we would
have obtained a sublog E? ... “:1pha with the same
property. Finding this blocked sublog completes the first

stage of the proof.

. a a
Suppose, again, that the blocked sublog is Ralpha oo ET.

The sgcond stage of the proof begins with the observation
that since every symbol in the sublog conflicts with some
symbol on its left and right in the sublog and since every
conflict corresponds to an edge in the conflict graph,

a

then there is a path from R to E? in the conflict

alpha
- a a
graphf Furthermore, we know that the edge (Ralpha’ E®) is
a
in Evert’ hence completing a cycle. Since Ralpha lies on

a cycle, it is subject to the PSRs. By analyzing the

blocked sublog in more detail, enumerating the possible

a
alpha

and those that could be E2's conflicting left neighbor, we

symbols that could be R 's conflicting right neighbor

alpha violated a

show that in each and every case either R

....................

.........

LAY
("’-

.
v '..' i M

1":_"

.
K 18 R

-.l.
H}

[}
N
H

i)
e

b

'-.-;.L..u.u'_u‘

Trcel el

Y]

§ SNV

(3

WFErayre)

-t el el

I

s et elass.

SO X T
.

. e, e

SDD-1 Concurrency Control Mechanism Page -95-
Proof of Serial Reproducibility Section 4

protocol it was supposed to use according to the PSRs or

that LOG must have violated one of the pipelining

given
rules. The conclusion, then, must be that this blocked

sublog could not have arisen in the process of trying to

serialize LOG The very same kind of argument can be

given®

. . a a
applied if the blocked sublog E° ... walpha had resulted
from stage one. So, the attempt to serialize must

inevitably succeed and LOG is serially reproducible.

given

There are numerous pitfalls in this line of proof that
require a rigorous approach to be taken. We proceed, now,

with this rigorous development.

Page -96- SDD-1 Concurrency Control Mechanism
Section 4 Proof of Serial Reproducibility

4.2 A Formal Model for SDD-1

4.2.1 A Database Design

A database design for SDD-1 is a ten-tuple

D = <DELTA, KAPPA, LAMBDA, SIGMA, MATZN, logical,

matzn-of-class, stored-data, readset, writeset)>

where the components of D are defined as follows (upper
case components are sets and lower case components are

functions):

1. DELTA = {alpha, beta, gamma, delta,...} is the set

of all data modules.
2. KAPPA = {a,b,c,...} is the set of all classes.

3. LAMBDA is the set of all logical fragments.

XX

" I
SN TN

Y

¥

-2
SR A

{ S0

LR o

R

VRYTE

 XGENOETE [SO N,

o

ot el
T

L 4

it

-

R PR Te

N>

SDD-1 Concurrency Control Mechanism Page -97-
Proof of Serial Reproducibility Section 4

4, SIGMA is the set of all stored fragments.

5. 1logical: SIGMA -> LAMBDA. Each stored fragment
sigma in SIGMA 1is a physical incarnation of some
logical fragment specified by logical(sigma).

6. MATIN = {matan, matzn,, matzng, ...} is the set of -
all materializations. Each materialization is a
total function and matzniz LAMBDA -> SIGMA such
that for each lambda in LAMBDA,
logical(matzni(lambda)) = lambda.

7. matzn-of-class: KAPPA -> MATZN. Each class a in
KAPPA runs in some materialization, specified by
matzn-of-class(a).

8. stored-data: SIGMA -> DELTA. Each stored fragment
sigma in SIGMA is stored at a data module,
specified by stored-data(sigma).

9. readset: KAPPA -> 2LAMBDA ' paop class 3 in KaPPA

has a readset that is a subset of LAMBDA, specified

by readset(a).

Page -98- SDD-1 Concurrency Control Mechanism
Section 4 Proof of Serial Reproducibility

10. writeset: KAPPA -> 2LAMBDA pooh class 3 in

KAPPA has a writeset that is a subset of LAMBDA,

specified by writeset(a).

When designing a database, one has to specify data
distribution and class structure by specifying each of the

above ten components.

4.2.2 Logs

The execution of the system is completely characterized by
a log. Logs are built on transactions. We define a
transaction set over a database design D to be a
four-tuple TAU(D) = <TN, transclass, transreadset,

transwriteset> where the components of TAU are:

1. TN = {a,b,c,d,...} is a set of transaction names.

transclass: TN -> KAPPA. Each transaction a in TN

runs in a single class specified by transclass(a).

IN -> pLAMBDA

transreadset: . Each transaction a
in TN has a readset that is a subset of LAMBDA,
specified by transreadset(a), such that
transreadset(a) is contained in

readset(transclass(a)).

— e Tw T T T ® T T WU @R "8 F F Tl e e e & = _ ",
o T R St i R S AR AR R R el <A S~ A A R A M CIICILCMERSC AU A SR S at T .

‘I

.}

N

y

% SDD-1 Concurrency Control Mechanism Page -99-
4 Proof of Serial Reproducibility Section 4
3 4, transwriteset: TN -> 2LAMBDA. Each transaction a
! in TN has a writeset that is a subset of LAMBDA,
g

X specified by transwriteset(a), such that
N

i transwriteset(a) is contained in
A writeset(transclass(a)).

:

o

l

A log is a string defined over a database design D and a
transaction set TAU. The symbols of a 1log, L, are

selected from the set R +E +W ('+' is set union) where

- a .
: R = {Ralpha : all a in TN, all alpha in DELTA}
1 E={€® : all a in TN}
3
3 _ (y@) .
: = {walpha : all a in TN, all alpha in DELTA}.

A well-formed log, L, satisfies the following

restrictions:

1. No element of K + E + W appears more than once in

L.

2. For each a in TN, if E? appears in L then for all
alpha in DELTA:

i. if
3 matzn-of-class(transclass(a))(readset(transclass(a))

has a non-empty intersection with

-1 a
stored-data '(alpha), then Ralpha appears in L and

precedes EZ;* and

-
Fldy

§57

Page -100- SDD-1 Concurrency Control Mechanism
Section 4 Proof of Serial Reproducibility

© WA AL
POk

ii. if transwriteset(a) has a nonempty intersection

'y 8
..
2

: -1 a .
with stored-data "(alpha), then walpha ~ppears in L

ALy

and E? precedes w2

(Note: by "precedes" we

A alpha’

) mean "appears somewhere in the string to the left

b

N of".)

A

‘N

i

Y A well-formed 1log, L, satisfies the pipelining rules if

$ for each a and a' where E? precedes E2' in L and

E transclass(a) = transclass(a') then

% 1. (R=R rule) for each alpha in DELTA where Ralpha and

- a' : a

i Ralpha are both in L, Ralpha precedes Ralpha’

- 2. (W-W rule) for each alpha in DELTA where walpha and

‘-: a' a

2 Halpha are both in L, walpha precedes walpha’

§ 3. (W=R rule) for each alpha in DELTA where walpha and

_:l a]

3 Ralpha are both in L, walpha precedes Ralpha

1} * This definition implies a READ message is sent to alpha

: if the materialization obtains part of the class read-set

A from alpha, even if the particular transaction does not «
3 read any data from alpha. 1In the implementation of SDD=-1, L
o read conditions make it possible to avoid sending the READ :
) messages in the atter case, by adding extra read T
.. conditions to the next READ message that goes to alpha ROOE
’ from transclass(a). b |
% o0
Y .
:- o
' »

"‘u ‘r'v*I;x. } .

x R \ X 0 L e T e

................
.................................

SDD-1 Concurrency Control Mechanism Page -101-
Proof of Serial Reproducibility Section 4

A system is well-formed and satisfies the pipelining rules

if all of the logs it can generate have these properties.

Unless explicitly stated otherwise, in the sequel we
assume that all 1logs are well-formed and satisfy the

pipelining rules.
4.2.3 Conflict Graphs

We redefine conflict graphs, the protocols, and the

protocol selection rules in terms of the above formalism.

A conflict graph
CG(D) = <VERTICES, EDGES>
is a vertex-labelled undirected graph defined over a

database design D as follows:

VERTICES = {”:1pha‘ all 3 in KAPPA, all alpha in DELTA} +
{e?: all 3 in KAPPA} +

{"glpha‘ all 3 in KAPPA, all alpha in DELTA}

EDGES = EDGES + EDGEShoriz + EDGESdiag

vert
EDGEOvert-: _

a a,. - . .
{(ralphé' e“): all a in KAPPA, all alpha in DELTA}

+ {e?, wgpha): all a in KAPPA, all alpha in DELTA}

...

..

.................................
..
.....................................

Page -102- SDD-1 Concurrency Control Mechanism
Section 4 Proof of Serial Reproducibility

EDGES = {(e?, eD

horiz) : a # b and the intersection of

writeset(a) and writeset(b) is nonempty}

a b . =
= {(r walpha) :a#£b

EDGES alpha’

diag
and the three-way intersection of
matzn-of-class(a)(readset(a)) and
logical'1(writeset(5)) and stored-data'1(alpha)

is nonempty}

In a conflict graph, CG(D), a path is a sequence (a1, as,
, an) where for each i, 1 < i <n, (ai, aj,q) 1is an
edge of CG(D). If a, = a, and no edge appears twice in

the path, then the path is called a cycle.

An edge (ai, aj) in CG(D) is called heterogeneous if the
two nodes have different superscripts (i.e., are in

different classes). A path (or cycle) is nonredundant if

each class is a superscript in at most two heterogeneous

edges in the path (or cycle).

P P A
B A BT T AR e R S
o at-"a N
- e e e e e T L

......................

...........................

SDD-1 Concurrency Control Mechanism Page -103-
Proof of Serial Reproducibility Section 4§

4.2.4 Protocols and Protocol Selection Rules

The protocols are now defined purely in terms of logs.

The timestamping mechanisms described in Section 2 can be

thought of as a method of implementing the protocols.

. a . N .
A read operation Ralpha satisfies protocol P2 in 1log L

with respect to classes {51,...,5n} in KAPPA if there

. . a . .
exists a transaction b such that Ralpha satisfies the
b

"partitioned writes property" with respect to E° and

- - . a . .
{a1,...,an}. A read operation Ralpha satisfies the
b

partitioned writes property with respect to E and

{51,...,5n} in log L if for each transaction c¢ with EC in

L and transclass(e) in {a,,...,a }:

1. 1f E® precedes Eb and w:lpha appears in L, then

wC a

alpha precedes Ralpha in L; and

- b c c .
2. If (b = ¢ or E” precedes E~) and walpha appears in

a c Ef}

L, then Ralpha precedes walpha’ T
. . a a ; L
: Two read operations Ralpha and Rbeta' satisfy protocol P2f Rt
: = = = = Y
- with respect to classes {a1,...,am} and {am+1,...,an} KR

(respectively) in log L if there exists a transaction, b,

.....................

......................

Page -104- SDD-1 Concurrency Control Mechanism
Section 4 Proof of Serial Reproducibility

such that R:lpha satisfies the partitioned writes property
b

. - - a . .
with respect to E° and {a1,...,am} and R .. satisfies the

b

partitioned writes property with respect to E and

{am+1,...,an}.

a

A read operation Ralpha

satisfies protocol P3 with respect
to {a;,...,a,} in log L if it satisfies the partitioned

writes property with respect to E2 and {51:""5n}'

Two remarks should be made regarding these protocols.

First, the protocols are mutually compatible in the

. . . a . . ;
following sense: if Ralpha satisfies protocol P3 with

respect to {51,...,5m} and R2

beta satisfies protocol P3

a
beta

satisfy protocol P2f with respect to {51,...5 } and

m
{a

,a .}, then R

a
m+1?2°°°*'"n alpha and R

with respect to {a

- N a
.,an} (respectively) and Ralpha (for example)

m+1’°"

satisfies protocol P2 with respect to {51,...§m}. Second,

protocol P2 allows a single R to satisfy P2 with

a
alpha
respect to two different sets of c¢lasses wusing two

different transaction b's. That is, R can satisfy P2

a

alpha

with respect to {51,...,5n} because it satisfies the
b

partitioned writes property with respect to E and

{a

1,...,5n} while in the same log it satisfies P2 with

respect to {51,...,Em} because it satisfies the
P

partitioned writes property with respect to and

{51,...,5m}. Yet, there may be no single EP" such that

R o T T L T VAW T TN T T L e I T e e e e

SDD-1 Concurrency Control Mechanism Page -1#5-
Proof of Serial Reproducibility Section 4

Rglpha satisfies the partitioned writes property with
respect to both sets. This subtlety cannot be haandled by
the read conditions described in Section 2 without some

modification.

We complete our formal model by defining the protocol
selection rules (abbr. PSRs). Let CG(D) be a conflict
graph over the design D and let L be a log defined over D

and transaction set TAU. Then L satisfies the protocol

selection rules if each of the following hold:

P§R1.

a - _ .
ralpha (where a = transclass(a)) 1lies on a

For all alpha in DELTA and a in TAU, if

nonredundant cycle in CG(D) in a subpath of the

b a a a b
ff‘m (wglphg’ ralpha' e wbeta) or (walpha'
a a c o= . .
ralpha' e®, e”) for some b, ¢ in KAPPA and beta in
. a . . a . .
DELTA, then Ralpha is in L and Ralpha satisfies

protocol P3 with respect to class b at alpha in L.

PSR For all alpha, beta in DELTA and a in TAU,

20

. a a - . .
: if ralpha and Cheta (a = transclass(a)) lie on a

\ nonredundant cycle in CG(D) in a subpath of the

) b a a a c

- . - - a a
and ¢ in KAPPA (b % c), then Ralpha and Rbeta

a
alpha

), for some b

a
and Rbeta

] P2f with respect to {c, and {b} respectively in L.

b appear in L and R satisfy protocol

............... fe Mt et Lttt e

WS EARLALEES SR C LN AR NSRS IS I A i i-i S-S S0 AT RS T I e T T TR . SR
.

Page -186- SDD-1 Concurrency Control Mechanism
Section 4 Proof of Serial Reproducibility

PSR3. For all alpha in DELTA and a in TAU, 1if

a - .
[alpha (a = transclass(a)) lies on a nonredundant

cycle that contains a vertical edge in CG(D) in a

b a c
subpath of the form (walpha' ralpha' walpha)’ for

some b and ¢ :n KAPPA (b % c), then Rglpha appears

in L and Rglpha satisfies protocol P2 with respect

to {b, ¢} in L.

A system satisfies the protocol selection rules if for any

database design D and transaction set TAU, all logs

defined over D and TAU satisfy the protocol selection

rules.

4.3 Serialization

Theorem SR If a system is well-formed, satisfies the
pipelining rules, and satisfies the protocol selection
rules, then all logs that it can generate are serially

reproducible.

The first stage of the proof of this theorem is to develop
an algorithm, called the serialization procedure, that
attempts to serialize a given log. If the procedure gets
stuck, then certain conditions are shown to hold by lemma

S (the serialization lemma).

" NPT PRI UL AU S G0 W W Mg W . S e o PR ~

e e TSR e e R Ch AR I A I S AN MEIMEMENL &AL AN st AR AR S i et i i et et T SiCidc gt SRS ‘.‘:.::.:'_.
& e
1 SDD-1 Concurrency Control Mechanism Page -107- e
g Proof of Serial Reproducibility Section 4 RN
'.‘) .

X 4,3.1 Conflicts

We begin by defining a new log symbol, called a composite
] atom, which is an adjacent group of symbols (R's, W's, and

an E) that all have the same superscript (i.e., all in the
g same transaction) and include an E. The symbolic notation

for a composite atom is A?(R R

alpha=1’***"alpha-m’

3 walpha-(m+1)""’walpha-n]’ which 1is equivalent to the
;- sublog
X a a a ya a

Ralpha-1 T Ralpha-m E walpha—(m+1) ce walpha-n'

Frequently, we will simply write A% for the composite

PRI SRR INS «

atom, as an abbreviation. Note that not all R%'s and wo's

that appear in a log must be members of A2. The only log

-

symbol that must be a member of A? is Eg°. Also, note that

since for each transaction, a, no more than one E? occurs
in a log, therefore only one A® can appear in a log. The

introduction of composite atoms 1is simply a notational

AR TR A T

convenience so that groups of symbols for a single

transaction can be handled as a unit.

PVl

We define an atom to be either a composite atom or an :i

isolated R or W that is not adjacent to its corresponding

N
4 -
o

P B BRI I T AC A T B I e o e L e S e S s e L g g e e L L T T TR T R
'.’.::-:,. :1

Page -108- SDD-1 Concurrency Control Mechanism : '?!

Section 4 Proof of Serial Reproducibility -

. : i

E (i.e. is not a member of a composite atom). In the

Sy e e e
: . AR
oA
B TR "
N AR R
et L~

sequel, we assume that all logs consist of atoms. That

ER P

¢
‘ll
'I

f.l’,r 141‘-
¥,
2Tl ot
YL
-~ XY

o
1,

1.

is, all E's are replaced by A's. To do this, the 1log
transformations, TR1 - TR7, and conflicts, NTR1-NTR6, must

be extended ¢to handle A's. The extensions are direct

»
*
L.

. .
.

consequences of the original transformations and conflicts
and the definition of atom. Since we only need conflicts
in our proof, we will only extend conflicts and not bother
with the transformations. In the following, note that

composite atoms are never split up. The conflicts are:

a b -
NTRI'. ...Ralpha Ralpha"' where transclass(a) =
transclass(b).
a b
NTR2'. "‘walpha walpha ... where transclass(a) =
transclass(b).
a b
NTR3'. "‘Ralpha walpha o ue or e o
b a : _
walpha Ralpha ... , where either transclass(a) =

transclass(b) or the three-way intersection of
matzn-of-class (transclass(a))(transreadset(a)) and

logical'1(transwriteset(b)) and

stored-data'1(alpha) is nonempty.

SDD-1 Concurrency Control Mechanism Page =109~
Proof of Serial Reproducibility Section 4

a a
NTRu'. ‘e Ralpha A”...

aya
NTRS'. ... A walpha oo

NTR6'. .o AaAb ... where at 1least one of
following hold:

i. transclass(a) = transclass(b), or

ii. transwriteset(a) and transwriteset(b) have

a non-empty intersection, or

iii. R . is in A3 and WD) . is in AP and

a b
Ralpha walpha conflict by NTR3', or
. a H b b
iv. walpha is in A" and Ralpha is in A and
a b
walpha Ralpha conflict by NTR3'.
' a b bpa
NTR7 e ees RalphaA cee OF ...A Ralpha e where
either
b b a b
i. walpha is in A and Ralpha walpha

conflict by NTR3', or

< a : : b
ii. Ralpha is in A

and transclass(a)

transclass(b).

LA AL C LA,

X}
i P

LORALA S

-
‘
-
-
.
-
+
-
4

Page -110- SDD-1 Concurrency Control Mechanism
Section & Proof of Serial Reproducibility
a b bya
NTR8'. e walpha A .. Or ,..A walpha ces where

either
. b X : b b a
i. Ralpha is in A and Ralpha walpha
conflict by NTR3' or
ii wb is in Ab and transclass(a) =
' alpha

transclass(b).

Lemma C If a pair of adjacent atoms in log L are not in
conflict, then the 1log resulting from switching these

atoms is equivalent to L.

Proof Follows directly from Theorem TR in Section 3.3.

Q.E.D.

o -
PN

oS

) ¥ v

s-9_ v
Lt e® B
UL R RAN

RO

-
Sl

PR AN

48
.

SN

L ST

..........

SDD-1 Concurrency Control Mechanism Page -111~
Proof of Serial Reproducibility Section 4

4.3.2 Augmented Conflicts

In the second stage of the proof, we will frequently draw
contradictions regarding possible orderings of atoms in a
log by appealing to certain protocols. However, after a
log has been partially serialized, many of the atoms will
no longer be in the same order in which they appeared in
the original log before any attempt was made at
serialization. Therefore, the faect that a partially
serialized 1log violates the PSRs does not necessarily
imply that the given log violates the PSRs. That 1is, it
is only the given log which, by hypothesis, must satisfy
the PSRs. Hence, we are unable to draw the desired

contradiction.

What we require is a proof mechanism to guarantee that
certain protocol violations in a partially serialized 1log
imply the same violations in the given log. To do this,
we 1introduce additional conflicts (called augmented
conflicts), so that while trying to serialize a given log,
we do not destroy some of the protocol information. These

additional conflicts can be reflected in additional edges

in the conflict graph (called augmented edges). We

proceed by defining these concepts formally.

C N R ST T R N
..............
......

hd - L -"‘>‘~--'.-.-~- . . - - - - - AN - . .~ - .
ot oy & '9"‘-\"4“-"".-‘ P L I L S PR RE TS PR JAPCIUCI R I LR
L W YRR W TR I AT PR Y I I I I S i St iy G W A0 P ID PP B - AT VAT Wl Wi WDV S S . -

,,,,,,,
L T T R R T L i o A P T R A S P o o A)
..

........

Page -112- SDD=-1 Cuncurrency Control Mechanism
Section 4 Proof of Serial Reproducibility

All augmented conflicts are between pairs of E's. Since

we have replaced E's by A's for the purposes ot the proof,

we will state the augmented conflict rules in terms of

A's.

b

ANTRp, ...A%A°, .. if there is a transaction ¢ in

TAU (c # a, ¢ # b) and an alpha in DELTA such that

R:lpha must (according to the PSRs) satisfy P2 with

respect to transclass(a) and transclass(b) at

alpha.

ANTRPZf: ...AaAb... if there is a transaction ¢ in

TAU and alpha and beta in DELTA such that RS
alpha
and Rgeta must (according to the PSRs) satisfy

protocol P2f with respect to transclass(a) and

transclass(b) respectively.

ANTRP3: ...AaAb ... if there is an alpha in DELTA

such that either Rglpha must (according to the
Rb

PSRs) run P3 with respect to b or alpha

(according to the PSRs) run P3 with respect to a.

must

Two atoms are in augmented conflict if they conflict by

NTR1' - NTRS' or by ANTR, - ANTR3.

''''''''

L0V 5;'!.":'

[G A~ 4 A
a2 [] ML

i o -
.4 O
2 Vatata s

»
o

. ‘
B
PRI

SDD=-1 Concurrency Control Mechanism Page -~113-
Proof of Serial Reproducibility Section 4

Corollary C-AUG If a pair of adjacent atoms are not in

augmented conflict in 1log L, the 1log resulting from

switching these atoms is equivalent to L.
Proof Follows immediately from lemma C. Q.E.D.

Each of the above conflicts must generate an edge in the

conflict graph. We define an augmented conflict graph,

ACG(D)=<VERTICES, EDGES + EDGESa >, as a vertex labelled

ug
undirected graph defined over database design D where

VERTICES and EDGES are identical to those in CG(D) and

EDGESaug is:

EDGESau = EDGES

g aug"P3 + EDGESaug_PZf + EDGESaug-Pz

EDGES {(e?, eP): for all classes 3,6 in KAPPA

aug-P3 ~
such that there exists an alpha in DELTA such that

a

ralpha lies on a 2onredungant Sycle in CG(Dz in a
a a a b
sgbpath iwalpﬂa’ Talpha' € “beta) ©F (walpha'
a a c -
"alpha'® ' ©) for some beta in DELTA and € in
KAPPA.}

_ a
aug-P2f ~ (e,
such that there exists a ¢ in KAPPA and an alpha

EDGES e®): for all classes a, b in KAPPA

c c
alpha and "beta

on a nonredundant cycle in CG(D) in a subpath

and beta in DELTA such that r lie

b e c .c a
(”beta’ "beta’ © ralpha’ walpha)}'

S .
........

‘# PO A AT R Y P ad AR A AR IO I AC AR IR - by -.-_".::-.-0-1_ _‘:‘ '_'-'_"-" ."_7-'_"_'. ARSI A A
X
-
’ Page -114- SDD-1 Concurrency Control Mechanism
2 Section 4 Proof of Serial Reproducibility
EDGES b

aug-P2 = {(e?, e°): for all classes 3a, b in KAPPA

~ i M
L

v

N such that there exists a ¢ in KAPPA and an alpha
EE in DELTA such that rglpha lies on a nonredundant
s cycle in CG(D) in a subpath (wélpha’ rglpha’
2 WP).

E§ alpha

X We reiterate that the augmented conflicts are required
;§ only to retain certain ordering information between E's in
g a log, so that this information is not destroyed while
: trying to serialize a log.

5

2

f% 4.3.3 The Serialization Procedure

» The serialization procedure takes a non-serial 1log and
. tries to serialize it by switching adjacent atoms that are
_2 not in augmented conflict. The actual serialization is
3 done by the procedures MOVELEFT and MOVERIGHT which scan
N the sublog that separates the two atoms to be serialized
;i and tries to remove atoms from that sublog, thereby
ff bringing the two atoms closer together. The procedure SP
i; repeatedly calls MOVELEFT and MOVERIGHT until the two
E? atoms have been serialized or until the two atoms cannot
g' be brought closer together. The choice of which atoms to
; serialize 1is made by SERIALIZE, which quits if either the

SDD-1 Concurrency Control Mechanism Page -115-
Proof of Serial Reproducibility Section 4

given log has been completely serialized or there are two

atoms which cannot be serialized.

SERIALIZE: PROCEDURE (Lin, Loyt LEFTATOM, RIGHTATOM)
RETURNS (BOOLEAN);

* .

/%*The procedure takes Lin as input. If Lin is

successfully serialized, it returns TRUE. If not, it
returns FALSE, and the 1log Lout is the partially
serialized log where LEFTATOM and RIGHTATOM is the pair of

atoms that could not be serialized.¥*/

Lout = Lins

DO FOREVER;

Select the leftmost atom in Lo that is either

ut
i. an atom A? and there is an alpha with

a . a
Ralpha 10 Loyg Put Raypp, is
not in Aa; or
.. a . a .
ii. an atom walpha in Lout but walpha is

not in Aa;
IF there is no (i) or (ii) THEN RETURN (TRUE);

IF (i) is the case satisfied above

THEN BEGIN LEFTATOM := rightmost R? in Lou but

t

Page -116- SDD-1 Concurrency Control Mechanism
Section 4 Proof of Serial Reproducibility

not in A%; RIGHTATOM := AZ; END;

ELSE BEGIN LEFTATOM := A?; RIGHTATOM := W END;

a .
alpha’

o IF NOT SP(L_ .,

THEN RETURN (FALSE);

LEFTATOM, RIGHTATOM)

ELSE MERGE LEFTATOM and RIGHTATOM into

o . a single Aa;

END

END SERIALIZE;

SP: PROCEDURE (LOG, LEFTATOM, RIGHTATOM) RETURNS
(BOOLEAN) ;

TEMP1 := TEMP2 := TRUE;

x DO WHILE ((TEMP1 or TEMP2) and (LEFTATOM is not
2 adjacent to RIGHTATOM));

TEMP1

MOVELEFT (LOG, LEFTATOM, RIGHTATOM);

TEMP2

MOVERIGHT (LOG, LEFTATOM, RIGHTATOM);

END;

. .,
Flsd ot r

IF (LEFTATOM is adjacent to RIGHTATOM)

THEN RETURN (TRUE);
ELSE RETURN (FALSE);

e SDD-1 Concurrency Control Mechanism Page -117-
¥ Proof of Serial Reproducibility Section 4

MOVELEFT: PROCEDURE (LOG, LEFTATOM, RIGHTATOM) RETURNS

(BOOLEAN);

TEMPLOG := LOG; TEMPOUT := FALSE;

DO FOR EACH atom, X, between LEFTATOM and RIGHTATOM
in LOG beginning with the right neighbor of LEFTATOM

and moving right;

DO WHILE ((left neighbor of X in TEMPLOG is not in
augmented conflict with X) AND (right neighbor of

X is not LEFTATOM));

Switch X with its left neighbor in TEMPLOG;

END;

IF (right neighbor of X in TEMPLOG is LEFTATOM)
THEN TEMPOUT := TRUE;

END;

LOG := TEMPLOG;

RETURN (TEMPOUT);

END MOVELEFT,;

Page -118- SDD-1 Concurrency Control Mechanism
Section 4 Proof of Serial Reproducibility

MOVERIGHT: PROCEDURE (LOG, LEFTATOM, RIGHTATOM) RETURNS
(BOOLEAN);

TEMPLOG := LOG; TEMPOUT := FALSE;

DO FOR each atom, X, between RIGHTATOM and LEFTATOM
in LOG beginning with the left neighbor of RIGHTATOM

and moving left;

DO WHILE (right neighbor of X in TEMPLOG is not in
augmented conflict with X) AND (left neighbor of X
is not RIGHTATOM));

Switch X with its right neighbor in TEMPLOG;

END;

IF (left neighbor of X is RIGHTATOM)

THEN TEMPOUT := TRUE;

END;

LOG := TEMPLOG;

RETURN (TEMPOUT);

END MOVERIGHT;

..........

...............................

SDD-1 Concurrency Control Mechanism Page =119~
Proof of Serial Reproducibility Section 4

4.3.4 The Serialization Lemma

If the serialization procedure, SERIALIZE, is given a 1log
that is not serially reproducible, then certain properties
must be true of the output of SERIALIZE. These properties

are summarized in lemma S presented in this section.

First, we require two new definitions. A log, L1, is a
projection of a log, L,, if L, can be obtained from L,
simply by excising atoms from L2. A log, L, is blocked if
every atom in L 1is in augmented conflict with both its
left and right neighbors in L. Our goal in lemma S will
be to construct a blocked projection of the log that

SERIALIZE outputs.

Lemma S Let LOG be a well-formed log defined on the

given
database design D. If LOGgiven is not serially
reproducible, then
I. SERIALIZE (LOGgiven’ LOGout’ LA, RA) returns
FALSE;
[a

II. every atom of the form W to the left of RA

alpha

in LOGO is a member of Aa;

ut

....................................

A A ad T8 e - LA 'Y T S
TR A e * o LN AR N e e s At T TR T eI TR e T EAPUI TR Tl il P

T

.n_' .l_‘-, i

g
()
s &

LI SRV

)
b

Pt
»

R
RAR Y

puetat

» B il

. d d R
.\ > O KR AL BRyH
P)

R
do

Bl ey
...........

Page -120- SDD-1 Concurrency Control Mechanism
Section 4 Proof of Serial Reproducibility

II1. every atom of the form A% to the left of RA in

LOG has no R?'s in LOG_,, that are not members of

out
a
A"

ut

IV. there is a blocked projection, LOGblocked’ of
LOG such that

out

i. LA and RA are the leftmost and rightmost

atoms of LOGblocked respectively;
ii. there is an a in TAU and an alpha in DELTA

such that either (LA = R and RA = A%) or (LA

a
alpha

_ ,a _ ya
= A° and RA = walpha)°

Proof (Part 1) Since only equivalence preserving
transformations are attempted by SERIALIZE (by corollary

C-AUG), if LOG is not serially reproducible then

given
SERIALIZE must fail to serialize it and therefore returns

FALSE.

(PARTS II and III) The last atom selected by SERIALIZE was
the leftmost atom that was either a W not in any A or an A
Wwith an outstanding R. Hence, there can be no atoms to

the 1left of RA in LOGout with either of these properties.

(PART IV) Construct LOGblocked from LOG,, as follows:
Excise all atoms to the left of LA and to the right of RA

in LOGout' Let X be LA's right neighbor. Let Y be an

atom in the log somewhere to the right of X that conflicts

............. L e e e R

AELNA AL IR SRS S YA ¢ B AL

T KIS Y AT VR T

SDD-1 Concurrency Control Mechanism Page =121~
Proof of Serial Reproducibility Section 4

with X. There must be such a Y, for otherwise MOVERIGHT
would have moved X to the right of RA. Excise all atoms
in LOGout between X and Y. If Y # RA, then set X := Y and
find a Y to the right of X that conflicts with X as
before. Repeat this process until Y = RA. The resulting
log, LOGblocked’ is a projection of LOGout and is blocked
(by construction). Furthermore, by the choice of LA or RA

in SERIALIZE, IV (ii) must hold. Q.E.D.

While lemma S shows that every non-serially reproducible
log will fail to be serialized by SERIALIZE, it does not
claim that if a 1log is serially reproducible then
SERIALIZE will succeed. This converse is not in general
true, for the transformations we use are not complete, as
mentioned in Section 3.3. If we were able to find a more
complete set of transformations, then this might permit us
to weaken our protocols; for some of the serially
reproducible 1logs that are not serializable under our
current transformations may no longer require a strong

protocol to guarantee that they will not occur.

- e

-
..

Page -122- SDD-1 Concurrency Control Mechanism
Section 4 Proof of Serial Reproducibility

4.4 Showing Nonserializable Logs are Impossible

The proof of theorem SR is embodied in two major lemmas.
We first present the structure of the proof and then

proceed to the lemmas.

Theorem SR If a system 1is well-formed, satisfies the

pipelining rules, and satisfies the protocol selection
rules, then all 1logs that it can generate are serially

reproducible.

Proof Assume the theorem is false. Then there is a log,

say LOGgiven’ which is well-formed, satisfies the

pipelining rules, and satisfies the protocol selection
rules, but 1is not serially reproducible. By lemma S,

SERIALIZE (LOG_. LOG

given’ LA, RA) returns false and, by

out’
IV(ii) there is a transaction a in TAU and an alpha in

DELTA where either (LA = R? and RA = A?) or (LA = A®
alpha
and RA = W@). These possibilities are shown below to

alpha

be impossible by lemmas RA and AW respectively. Hence,

the conclusions of lemma S were false, But this is

0
,.,.

d
a
oo
|
S
N
“d
v
L
1

Ll

possible only if the hypothesis of lemma S is false. So,

the hypothesis that LOG was not serially reproducible

given

v
$ e e
s P

must be false. Q.E.D.

P U T R S

T e

Gt .

. N N

. P P
I

. e LS

o ey e e e e e - el . . . oo R
ML A AP U G AT O VSRR VN W N e o a2 2") N GNP R NPT Y YA T W WU G G G S i

- SDD=-1 Concurrency Control Mechanism Page -123-
N Proof of Serial Reproducibility Section 4§

To prove lemmas RA and AW we will wuse the following

2 lemmas.

>

; Lemma P Let L be a blocked log over transaction set TAU

N and database design D such that the leftmost atom 1is in

_§ class a, the rightmost atom is in class b, and the log has

; no atom in class ¢. Then there is a path in CG(D) which

TJ is not incident with any node in class ¢.

E Proof If @ = b, then the lemma is trivially true. If 3@ # fﬁi:

E; b, then since the 1log 1is blocked, each atom is in iﬁé;ﬂ

; augmented conflict with its neighbors. Each such conflict 5%;1

j corresponds to an edge in ACG(D), sc there is a path from fi;x

3 a to b in ACG(D) that is not incident with ¢. To find a ?
new path in CG(D) we need to replace each edge in the old ;jﬁg;
path that is in EDGES, by a path in CG(D). Consider fjf'

K some edge, say (ea, eF), in the path in EDGESaug. If the ?aia

2 edge is in EDGESaug-P3’ then replace it by the path (ea, . @i

: wglpha’ ”zlpha' ef) that must exist by definition of f;

' EDGES, . p3. 1If the edge is in EDGES, . poe, then there :i
is a class, g, and data modules alpha and beta such that Ef%ﬂ

d g g g f e?) is

d
the subpath (e”, walpha’ ralpha’ ") Theta’ “beta’
in CG(D) and there is a path in CG(D) from d to T that is o
- e n
? not incident with g. If g # ¢, then replace (ea, e?) by S

y the subpath (which is not incident with ¢). If g = ¢,

i then replace (ed, er) by the other d - T path. If the AN

........
...................................

Page -124- SDD=1 Concurrency Control Mechanism

Section 4 Proof of Serial Reproducibility
edge 1s in EDGESaug-PZ' then there is a class, g, and-a
datamodule, alpha, such that there is a subpath (ed,
d & £ ef) in CG(D) and there is a path

walpha’ ralpha’ walpha’
in CG(D) from d to T that is not incident with g. If g

¢, then replace (ed, ef) by the subpath; else replace it

by the other d - P path. If all edges in EDGESaug are

replaced in this way by paths in CG(D) that are not
incident with class ¢, then we have constructed a path in
CG(D) with a node in «class c. To make the path
nonredundant, simply replace each nontrivial subpath whose
endpoints are in the same class by vertical edges. This

nonredundant path then satisfies the lemma. Q. E. D.

Lemma B Let L be a log defined over transaction set TAU

and database design D. Let Lou be a log obtained from L

t
by the serialization procedure, and let Léut be a

b

projection of Lo Let X2 and Y° be symbols (i.e., not

ut”®
atoms) that are in augmented <conflict such that x@

b

precedes Yb in L! Then X2 precedes Y~ in L.

out’

Proof Since the serialization procedure never switches
atoms that are in augmented conflict, X2 and Yb must have

appeared in the same order in L and Lo The same must

ut”®

hold in L' since the latter is a projection of L

out’ out*

Q. E. D.

)

SDD-1 Concurrency Control Mechanism Page -125-
Proof of Serial Reproducibility Section 4

Lemma RA Let LOG be a log defined over database

given
design D and transaction set TAU such that it is
well-formed, satisfies the pipelining rules, and satisfies

the protocol selection rules. Then it is not possible

that SERIALIZE(LOGgiven, LOG,,¢» LA, RA) returns FALSE
: _ pa _ a4 :
with LA = Ralpha and RA = A® tor some a in TAU and alpha

in DELTA.

Proof Assume that the lemma is false. Then, SERIALIZE
returns FALSE and, by 1lemma S, there is a blocked

projection of LOG say LOG leftmost and

blocked’ whose
PR a a . .
rightmost atoms are Ralpha and A“ respectively. That is,

out’

. a a
LOGblocked is of the form Ralpha ... A".

. . . a . <
Beginning with A®, scan left in LOGblocked until the first
occurrence is found of an Ra' where Ra' is not in its

beta beta
] .
A2 and transclass(a') = transclass(a). (Note: possibly

alpha = beta, and possibly Rbeta = Ralpha') Now, starting
. a' . . . a"
with Rbeta’ scan right in LOGblocked until the first A

is found with transclass(a") = transclass(a).

We want to show that A?" is actually A2. So suppose not,
?

i.e., a" # a. Since Rgeta is not in Aa' (by

construction), by lemma S part III, E? must precede Ea' in

LOG,, .. Since E® and E?' conflict, by lemma B E? preceded
L}
g2 in LOGgiven (or EZ = Ea'). Since transclass(a") =

Ea"

transclass(a), and since and E2 conflict in

................

......

-«

R

L v v) 4 M 2o gl o Saon Bt Biue e Jiin e RARAR Al sl an k- and o v Bedl sl 2a irs
AR A I v s BCI e st b et i e e A e A= e A A AR b e A i/

Page -~126-~ SDD-1 Concurrency Control Mechanism
Section 4 Proof of Serial Reproducibility

LOG by lemma B E2 preceded E? in LOG By

blocked’ given®
]
lemma S part III, A2 must contain all of its R's,

. . a" ; a' a" i
including Rbeta‘ Since Rpeta precedes Rbeta in LOGy;cked

a' . . a'l a'
and Rbeta conflicts with Rbeta’ by lemma B Rbeta preceded
all , . a" a' R .
Rbeta in Locgiven’ But since E preceded E° , this is a
violation of R-R pipelining. S0, we have a" = a, as

- : . a
desired. That is, LOG) .,eq is Of the form R,

a'
beta

= transclass(a) appears between R

a a' a" .
... A® ... A® , such that no A with transclass(a")

ai
beta

R

and A2, B

)
We create a new log, Locblocked’ by excising from

al e
LOG | jokeq those atoms to the 1left of Rpeta @and those DR

between A? and A% Since A% - A?' confliet, LOG. N
: ’ blocked NS

4 s ' . a'

is indeed blocked. So, LOGblocked is of the form Rbeta

... 4% 22" (where possibly a' = a).

Consider Rg;ta‘ There are only two kinds of atoms that ;ﬁ%ﬁ
can be Rg;ta's conflicting right neighbor: either an ’
a" - . b

Rbeta where transclass(a") = transclass(a'); or a wbeta

where transclass(a') # transclass(b) and the three-way
intersection of
matzn-of-class(transclass(a'))(transreadset(a’')) and
logical"(transwriteset(b)) and stored-data~!(beta) is

nonempty. By choice of Rg;ta' Rg;ta is not possible., So,

'
Rﬁeta's right neighbor must be wgeta' (Note: possibly

alpha = beta). By lemma S (part II), Wb is a member of

beta
AP,

.....................

.....

SDD-1 Concurrency Control Mechanism Page -127-
Proof of Serial Reproducibility Section 4§

blocked*

- at b b c,a'
is of the form RbetaA [...wbeta...]...x A® .

is blocked, Xx€ and A% are in augmented

Let X¢ be the left neighbor of A% in LOG That is,

1
LOGblocked

)
Since LOGblocked
conflict. (Note: possibly ec=b, Ab=x°). By the above

argument regarding Aa", transclass(a) # transclass(e).

In the remainder of this proof, let a = transclass(a), b =

transclass(b), and ¢ = transclass(c).

Claim RA-path There is a nonredundant path in CG(D) from

a node labelled b to a node labelled ¢ such that the path

passes through no other node labelled a.

This claim, which follows directly from lemma P, will be

applied repeatedly in the remainder of the proof.

In the remainder of the proof, we analyze the ways in
which X© can be in augmented conflict with Aa, and show
each possible conflict to be impossible. Since the only
assumption made so far is that the 1lemma 1is false, the
contradiction that X® does not conflict with A% will prove

the lemma.

X€ can only be in augmented conflict with Aa' due to one

of NTR,' - NTR8', ANTR ANTR

1
(by construction), NTR

p2? p2re ©F ANTRP3. Since ¢ £ a

,'» NTR,', NTR,', NTRg', NTRg'(1),

and NTR7'(ii) cannot be the cause of the conflict. NTR3'

trivially does not apply, since it does not apply to an A.

...

Page -128- SDD-1 Concurrency Control Mechanism ' u!!
Section 4 Proof of Serial Reproducibility SR

NTRg' cannot apply because by lemma S, X¢ cannot be a WC S

. C e s
that is not a member of A~ . The remaining cases are

NTR6'(ii), NTR6'(iii), NTR6'(iv), NTR7'(i), ANTR

%y P2’
- ANTR,,., and ANTRp,; they are subsumed by the following
. cases:
2 ¢ _ ,C. . . . c
- I. X~ = A"; there is a gamma in DELTA with wgamma
; . c a . a, _

in A and Rgamma in A“; and the three-way

A intersection of matzn-of-class(a)(transreadset(a))
2 and logica1'1(transwriteset(c)) and

stored-data'1(gamma) is nonempty.

II. there is a gamma in DELTA such that either X©

c C _ ,C c N cy. a .
Rgamma or (X~ = A~ and Rgamma is in A7); wgamma is
= in Aa; and the three-way intersection of
matzn-of-class(c)(transreadset(c)) and

logical'1(transwriteset(a)) and stored-data'1(gamma)

is nonempty.

V5"

AR P

c

III. X = A® and the intersection of transwriteset(c)

and transwriteset(a) is nonempty.

Iv. X% = A® and A®-A? are in augmented conflict by

ANTRP ANTR or ANTR_,.

2’ pef’ P3

We analyze each of the four cases in detail.

..
.............................

! SDD-1 Concurrency Control Mechanism Page -129-
K Proof of Serial Reproducibility Section 4
{ .
B c c . c - . a . L
5 Case I (X~ = A" and contains wgamma’ A" contains Rgamma’ i
. a c . S
B Rgamma and wgamma conflict) T
g DI

' : a' b b "
_ LOG,) sokeq 1S Of the form Ry . A°L.. W o ...]... = ,_Of
» c c a a a' A
; A [“'wgamma] A ["'Rgamma"'] AT . -
~ ’ .4
> There are two subcases to consider: beta # gamma and beta :
. = gamma.
- Subcase beta # gamma

' -
) .o _ - . e
; From the-a b-and c a confllct in EOGblocked’ the g?&_
N a b c a LT
N edges (rbeta’ wbeta) and (wgamma’ rgamma) are in
CG(D).
L a a

: By-deflnltion of EDGES, .., the edges (ry .., e) and 3
y (r2 e?) are in CG(D). L

r ’
gamma

By claim RA-path, there 1is a nonredundant path in

% ~ b c
o) CG(D) from Wheta to wgamma

any nodes in class a. Graphically, we have the cycle

that does not pass through

*SS

noted in figure 4.1.

This cycle and the protocol selection rules imply

: a' a' . . -
. Rgamma and Rbeta must satisfy protocol P2f against c¢
and b (respectively) at gamma and beta

(respectively). The following sequence of inferences

leads to a contradiction.

- -

Page -130- SDD-1 Concurrency Control Mechanism

Section 4 Proof of Serial Reproducibility
Nonredundant Cycle, for Case I of Lemma RA Figure 4.1
ra s
beta rgamma
b ¢
“beta 'wgamma

a nonredundant path with
no nodes labelled a

i. Since E? and Ea' are in augmented conflict and

g2 precedes Ea' in LOG lemma B E®

blocked’ by

1
precedes E? in LOG By R-R pipelining,

given

a a' .

Rgamma precedes Rgamma in LOGgiven‘

.. a . . c

ii. Rgamma conflicts with wgamma’ so by lemma B

a c .

Rgamma followed wgamma in LOGgiven'

iii. By (i), (ii) and transitivity, wgamma
e - a' .
- precedes Rgamma in LOGgiven'
; iv. By definition of NTR,, E® and E® are in
¥
1! augmented conflict. So by lemma B, Eb precedes EC
- in LOGgiven‘

T W TR W W WIRTIUA W W W TR W W T T, Ty, T R T e g e g g T T R T AN
[.-'.'.' Bt A AT AR A TR ML e D e I M A Vb S Sttt R LA NP A i it S A-at bt nh Sras Soul Snge anine LANE ey suay o v

SbD=1 Corcurrercy Control Mechanism Page =131~
Proof of Serial Reproducibility Section U

. '
v. Sirce Rgéta ard wgeta conflict and Rgeta

precedes) 1 a'
beta 1P LOGpioekeqs Dby lemma B Rpepq

b in LOG

precedes wbeta

given-

vi. But (iii), (iv), and (v) constitute a

violation of the partitioned writes property for

a' a' . - -
Rbeta and Rgamma with respect to b and c
respectively. So, a' violated protocol P2f, a

contradiction. This proves case I, subcase beta #

T
) AR

gamma.

Subcase beta = gamma

t
Ir this case, LOGblocked is of the form:

a' b b c c a a a'
RbetaA ["'wbeta"']"'A ['°'wbeta"']A [R JA° .

1)
If a = a' then Rgeta isn't wunique 1in the 1log, a

. . ' . ; a' a
corntradiction. If a # a'; then since Rbeta and Rbeta

. 1 a' a .
cor.flict, by lemma B Rbeta precedes Rbeta in
: -a a' . a

LOGgiven‘ Since E° and E cor.flict, by lemma B E

precedes Ea' in LOG This is a violation of R«R

given®
pipelining. Contradiction!

. c _ c c C . e _ yC,
Case 1II (either Rgamma = X or Rgamma is in AT = X7
a is ir A?; and RS and w2 conflict)

gamma ‘ ! gamma gamma

LOG, is either of the form

blocked

H
.
X
.
"
X
.
. 5
.

3
=N Page -132- SDD-1 Coricurrer.cy Cortrol Mecharism ST
== Sectior. 4 Proof of Serial Reproducibility T

1 . a' b b c a a a' ——«
1! RE o tal’l o WPeta. .). REammar®l - W2anna. .. 14 _:'._0!

'.;: or
b

WP 1...A%0...RS 1490, . .w8 18",

al
R A L... beta® " " gamma" "

- beta
R . . !
;i' From the conflicts in LOGblocked’ the edges (r

) are in CG(D).

a wb)
beta’ "beta

S c a
508 ard (r
e (gamma’ wgamma

By definitior of EDGES the edges (rd . ,e®) ard

a a
5 (e",w
- gamma

vert’
) are ir. CG(D).

By <claim RA-path, there is a rnonredurdant path from w

b
beta
C

to rgamma that does not pass through any node in class a.

So we have the rnorredundant cycle shown in figure 4.2,

This graph and the protocol selection rules implies that

3; Riéta must satisfy protocol P3 with respect to b at beta.
: b

By ANTR,., E

'
precedes E? in LOGblocked’ by lemma B E

A LOGgiver' By the same argument, we deduce that @
“ a' . _ b
o precedes E in LOGgiven'

al . . al
E irn LOGgiven' Since Rbeta

and E? are in augmerited cornflict. Sirce EP

b precedes E? in

By transitivity, E precedes

and W2

beta conflict, by lemma

a'

B Rpersq Precedes Wgeta ir. LOG This is a violatiorn

given-
of P3, a contradiction, thereby proving case II.

Case III (x® = aC and the intersectior of

trarswriteset{c) and trarswriteset(a) is nornempty.

. Ve Ta Mg Ta
MORORA JMCRMN F AR A iR A st i Srun i IS N Aot v T A SN

SDD-1 Cor.currer.cy Cortrol Mechar.ism Page -133-
Proof of Serial Reproducibility Sectior. 4
Norredurdar.t Cycle, for Case II of Lemma RA Figure 4.2
c a
rgamma ,:beta
i/"\\\\~ :\\\\
S AN e’ ™
N ™~
X | 3 N
w\L\ N ¥gamma . "beta

‘wx\,,ﬂ__,mvxﬁ,/*”/};';;;;edundant path with
no nodes labelled a

. . a' b b c,a,a’
LOG is of the form R A ["'wbeta"‘]"'A AA°

blocked beta

(This argument is essertially the same as Case II.)

From the cornflicts in LOG. a by

he co blocked’ the €dBES (Thopqs Wpeiq
ard (e?, e®) are ir CG(D).

o a ay, ,
By defirition of EDGES, .y, the edge (rbeta’ e®) 1is in
CG(D).
By claim RA-path, there is a norredundant path from wgeta

to e® that does not pass through any rode irn class a. So,

we have the ronredundart cycle showr in figure 4.3.

This graph and the protocol selectior rules imply Rg;ta
must satisfy P3 with respect to c at beta. By ANTRP3, Eb

ard E? are in augmernited cornflict. Sirce Eb precedes E? in

LOG by lemma B EC precedes E2 in LOG

blocked'’ By the

given’

P i L AR A L S SR A i AL DR el S el ot

s Page =-134- SDPD=1 Corcurrercy Control Mecharism

. Sectior 4 Proof of Serial Reproducibility
i‘ same argument, we deduce that E? precedes E2' in LOGgiver'
o e b a' . . a'

- By trarsitivity, E~ precedes E irn LOGgiven' Sirce Rbeta
- b : a' b :

o ar.d wbeta cor.flict, by lemma B, Rbeta precedes wbeta ir
F LOGgiven' This violates P3, a contradietion, thereby
fﬁ Norredur.dart cycle, for Case III of Lemma RA Figure 4.3

a
rbeta

b

“beta

a nonredundant path with
no nodes labelled 3

—— - - - - D D D D - G G D R D R G D ., G D D D D WD D P D G IR GP Gh Gh WD S G G D W GD D an . e e

provirg case III.

CASE IV (X% = A® and A® - A? are in augmented conflict by

ANTR ANTR or ANTR

p2 porf: p3*)

LOG is of the form

|
blocked

a' b b c,aa'’
RbetaA ["'wbeta"']"'A ATAT .

a wB
beta’ “beta
claim RA-path, there is a nonredundart path in CG(D) from

From the log, the edge (r) is in CG(D). From

a rode ir. ¢ to a rode ir. b that does not pass through any

rode ir a. There are now three subcases to consider for

2 SDD-1 Corcurrency Corntrol Mecharnism Page =135~ ;Eﬁjf
e Proof of Serial Reproducibility Sectior. 4 Sl
1 B
% each of ANTRP2, ANTRp, . ard AN'I‘RP3 -- the only ways that 'ﬂi%

A® - A% car be ir augmer.ted cornflict.

Subcase IV - ANTR.,

By ANTR there is a class, d, and a data module, gamma,

p2’
such that there is a nonredundant cycle ir CG(D) with the

subpath

c d a
(wgamma’ rgamma’ wgamma)'
c d

ard
gamma’ rgamma)

So, we carn deduce that the edges (w
3 3

gamma’ “gamma
EDGES

(r) are in CG(D). By definition of

a
- beta’_
a b
(rbeta’ wbeta)

rorredurdart path ir CG(D) of

a

gamma) are irn

the edges (r e?) and (ea, W

vert'’

CG(D). Herce, giver above, we have the

b ra
beta’ "beta’

a Wi,

(w , W
gamma

e

To complete a ronredundant cycle, we reed an independent

0 1f 3 = b, then we RN

a
ror.redur.dant path from wgamma to “heta”

are dor.e sir.ce the edges

d a b b b b
(rgamma’ wgamma)’ (rgamma’ e, (e”, wbeta)
suffice.
a d
If- d # §, ther the edges (wgamma’ rgamma) ard
(r¢ ¢) together with the known ronredundant path

gamma’ wgamma
from ¢ to b suffices. (If the path intersects d, thern the

"t} LA IO N A -8 7. 4.7V
CALCLIOM - § DRcia s o

e ———— T

Page =136« SDD=-1 Concurrency Control Mechanism

Section U Proof of Serial Reproducibility

(ra wE) edge can be removed and replaced by
gamma’ “gamma -

vertical edge(s) cornecting Foamma ©O the € = B path.)

So, we have a nonredundant cycle (see figure 4.4).

a'
Rbeta
with respect to b at beta. However, P3 is violated in the

By the protocol selection rules, must satisfy P3

following way. By ANTR,; and the cycle, E? and EP are in

augmented conflict. So, since Eb

b

precedes g3 in

t
a .
LOGblocked’ by lemma B, E~ precedes E° in LOG As

given®

. a a' .
deduced earlier, E precedes E in LOGgiven' By
b . a'
given’ Since Rbeta

. . b a' b :
conflicts with wbeta’ by lemma B Rpets Precedes Wg. .. in

Locgiven' This violates P3, a contradiction, thereby

transitivity, E precedes Ea' in LOG
proving the subcase.

Subcase IV ANTRP2f

By ANTRp,., there is a class, d, and two distinct data
modules, gamma and delta, such that there 1is a
nonredundant cycle in CG(D) with the subpath
¢ d d . d a
(wgamma’ rgamma’ € Tdelta’ wdelta)’

We can now continue exactly as in subcase IV = ANTRP2,

yielding the same P3 violation (see figure 4.5).

Subcase IV « ANTR

P3
By ANTRP3, there is a data module, gamma, such that there

SDD-1 Concurrency Control Mechanism Page -137-
Proof of Serial Reproducibility Section 4
Norredundant Cycles, for Case IV-ANTRP2 Figure 4.4

of Lemma RA

Subcase b = d

r5 rB
Y beta gamma
~.
eS
\ 5
wgamma l wbeta

(s :

W a W
Z\Peta Weamma gamma
~;_’_\~’ a nonredundant path with
- no nodes labelled a
If the B - ¢ path intersects d, then we have vertical

edge(s) from ra to the path, thereby completing the

gamma
cycle in a slightly different way.

---.---------------'

is a nonredundant cycle in CG(D) with either the subpath

PR * 4 NN

R Pt Y
.
Sl

.......................

Page -138- SDD-1 Corcurrercy Cor.trol Mecharnism
Sectior. 4 Proof of Serial Reproducibility
Norredurdart Cycle, for Case IV =- ANTRP2f Flgure 4.5
3 i i
beta delta gamma

a
C

a
w W
1 \bit:a/v\/\di];t:/‘/\// wgamma
a nonredundant path with
no nodes labelled a

c _c a a
e r
(e”, gamma’ wgamma’ e”)
- - = -
or (e2, r@ e).

gamma'’ wgamma’

We treat each subpath as a separate case.

s .3 3 a «-’§
Subcase IV - ANTRP3 - (e”, rgamma’ Woamma® ©) }?:&‘

a i i -
gamma’ wgamma) is in CG(D). e

We can deduce that the edge (r€
We car now continue exactly as in Subcase IV =- ANTRP2,

yieldirng the same P3 viol. tion. (See figure 4.6.)

a _a c c
Subcase IV = ANTRP3 - (e%, fgamma’ Wo amma e’)
Sirnce ea- ec are in EDGES there is a norredundant

aug=-P3’

path from e? to e® that does not pass through any r@

. a
(ircluding Fheta

). From claim RA-path, there is a

nonredundant path from ¢ to b that does rot pass through

. .w
s" "8

»TEEER .S T

L 0% i o Wike e W' iy WY -+ DG

N e T TV W ST TV Y VOV Y TR KT s I I T I TEE Y T T I YV N WL YI Y TS TR YT

.................................

SDD=1 Cor.currency Control Mechanism Page =139~
Proof of Serial Reproducibility Section 4
Norredundant Cycle for Case IV-ANTRp3 - Figure 4.6
c .c a a
(e”, rgamma’ Woamma® ©) of Lemma RA

a c
r r
beta gamma

\ W
1 gamma
“— \\\\\i.nonredundant path with
— no nodes labelled a

ary a rode. By corcatenating the a - ¢ and ¢ - b paths

and elimirating any redundart subpaths, we obtain a

ronredundart path from e? to eb cortaining no r? node.

a b
beta’ wbeta)’
which therefore completes a nonredurdant cycle containing
a b
(rbeta’ “beta
selection rules, R

This path does rot pass through the edge (r

) (see figure 4.7). So, by the protocol
3 ., must satisfy P3 with respect to B
at beta. We now continue as in subcase IV ANTRP2,
yieldirg the same P3 violation. This completes case 1V,

arnd the proof of lemma RA. Q. E. D.

Lemma AW Let LOGgiven be a log defined over database
desigr. DELTA and transaction set TAU such that it is
well-formed, satisfies the pipelinirg rules, and satisfies
the protocol selectior. rules. Ther. it is not possible

that,

Page =-140- SDD=-1 Cor.currercy Control Mecharnism
Section 4 Proof of Serial Reproducibility

Nonredurdant Cycle for Case 1V - ANTRP3 - Figure 4.7

(e?, r2 ¢

c\
mma RA
gamma’® “gamma® ©) in Lemma

r a .
beta gamma

a path with no r@ node

a nonredundant path with
no node labelled a

SERIALIZE (LOG,; .., LOG, ¢, LA, RA) returns FALSE with
LA = A% and RA = Walpha fOT some a in TAU ard alpha in |

Proof Assume that the 1lemma is false. Then, SERIALIZE
returns FALSE and, by 1lemma S, there is a blocked
projection of LOGout’ say LOGblocked’ whose leftmost and
rightmost atoms are A2 and w:1pha respectively. That is,

. a a
LOGblocked is of the form A°... walpha‘

Consider w:l There are only two kinds of atoms that

pha’
a e . . . a'
can be walpha's cor.flicting left neighbor: either walpha
(which by lemma S part II must be corntained in Aa') where

b

alpha (which may or

trarnsclass(a') = transclass(a), or R

may not be contained in Ab) such that the three-way

.........

LT TR T T TR TR TNVR T RN Y M AN e A N A

-
LR

SDD-1 Corcurrency Corntrol Mecharism Page =141~
Proof of Serial Reproducibility Section 4

intersectior of
matzr.-of-class(transclass(b))(transreadset(b)) ard

logical'1(transwriteset(a)) ard stored-data'1(alpha) is

ror.empty.

Suppose wgipha is the conflicting rneighbor. Since w:ipha
precedes ard corflicts with w:lpha’ by 1lemma B w:ipha
precedes wglpha in LOGy;,c,. Sirce E? precedes ard
corflicts with E®' in LOG., .. ., by lemma B E? precedes
g2’ in LOGgiven‘ But sirnce trarsclass(a) =
transclass(a'), this violates W-W pipelining. So, wgipha
carrot be W2 's left conflicting neighbor. Therefore,

alpha

LOGblocked is either of the form

a b a
A ...Ralpha walpha or
a b b a
A .. .A ["'Ralpha"'] walpha'

We rnow show that transclass(a) # transclass(b). Assume

. b b . b a .
rot. Sirnce E” follows Ralpha ir LOGout’ E” follows E° in
LOGout' Sirnce transclass(a) = transclass(b) and E®
precedes Eb in LOGout’ by lemma B g2 precedes E® in

. b
LOGgiven‘ Sir.ce transclass(a) = trarnsclass(b), Ralpha ard
a C . : b a .
walpha corflict; sirnce Ralpha precedes walpha in
b a .
LOGblocked’ by lemma B Ralpha precedes walpha in LOGgiven'
This violates W-R pipelirirng, a contradiction. So,

trar.sclass(a) £ trarsclass(b).

Page =142~ SDD=-1 Concurrercy Cortrol Mechanism
Sectior 4 Proof of Serial Reproducibility

b

Begirnring at Ralpha’

scan to the left through LOG; cyeq

uritil the ftirst atom with a superscript of a" where

transclass(a) = transclass(a") is found. Say this is X2 .,
(Note: possibly X2 = A%.) Now, begirning with X2", scan

to the right in LOG til the first atom with a

blocked Y¢

superscript of b' where transclass(b') = trarsclass(b) is

fourd. Say this is Yo', (Note: possibly yP' - AP or yP'

b

= Ralpha’

) Thus, LOG is either of the form

blocked

a a" b!' b a
AT, X7 LY Ralphawalpha

A2, ..x2". . .yP' .. .aP[.. RO

.A alpha "

a
] walpha‘

c

Corsider the 1left neighbor of Yb', say 1

possibly z% = Xx2".) By choice of YP', transclass(b') #

(Note:

trar.sclass(c). In the remainder of this proof, let a =

transclass(a), b = transclass(b), and ¢ = transclass(e).

Recall a # b, and ¢ # b by construction.

]
We row construct a new log, Locblocked’ by excising from

]
LOGy) eckeq those atoms (if any) separating A2 from X2" and

b).

. . b! b
those atoms (if any) separating Y from A” (or Ralpha

Clearly, the resulting 1log, LOG is a blocked

]
blocked’
is of the form

LOGblocked
b a
alphawalpha or
c,b',b b
LZTYT A ["'Ralpha"'

projection of LOGblocked'
a3x3" .. .z%¢P R

a

a a"
X7 .. alpha®

A Iw

.................

aPe e ™.

------ P

SDD=1 Cor.currer.cy Cor.trol Mecharism Page =143-
Proof of Serial Reproducibility Sectior. 4

Claim AW-path There is a ronredundant path ir CG(D) from
a rode with a 1label superscripted such that the path

passes through ro other rode labelled b.

This claim, which follows directly from lemma P, will be

applied repeatedly ir the remainder of the proof.

We aralyze the ways ir. which z¢® car be ir augmer.ted

cor.flict with Yb'

ar.d show each possible cor.flict to be
impossible. Sirce the only assumption made so far is that
the lemma is false, the contradictiorn that z® does rot

cor.flict with Y°' will prove the lemma.

2¢ car orly be ir. augmer.ted corflict with Yb' due to ore

of NTR; - NTKS, ANTR,,, ANTR,,., or ANTRp3. Sirce ¢ £ b,
M] 1}] 1] 1 3 1 3
NTR1, NTR2, NTR3, NTRu, NTRS, NTR6(1), ard NTR%(ll)
car.r.ot be the cause of the conflict. NTRé and NTRé do

rot apply, because rno W car appear in the sublog urless it
is cortaired ir. ar A, by lemma S, part II. The remaining

cases are NTRé(ii), NTRé(iii), NTRé(iv), NTR%(i),

ANTR ANTR p3’ They are subsumed by the

P2’ pe2f’
following cases:

ard ANTR

I. 2% = A% there is a beta ir DELTA such that wgeta is
. c b' _ b! b! . . b' _ b!
ir. A ard either Y = Rbeta or Rbeta is in A =Y

ard the three-way irtersectior of
matzr.-of-class(b)(transreadset(b')) ard

e N T A T T T A T T L T T L e e e e
ﬁ? Page =144~ SDD=-1 Corcurrerncy Control Mecharism
i Sectior. 4 Proof of Serial Reproducibility
}\ logical'1(transwriteset(c)) ard stored-data~1(beta) is
-

i: rorempty.
.

¥ II. there is a beta ir DELTA such that either 2° = Rgeta
S cc _ .c. yb' _ ,b! b' . . b'.
ﬁ: or Rbeta is irn A = 727; ¥ = A ard wbeta is ir A"
-;7 ard the three way irtersection of

: matzn-of-class(c)(trar.sreadset(c)) ar.d

logical'1(transwriteset(b')) and stored-data~!(beta) is

r.orempty.

IIT. 27 = A-; Y = Ab'; ard the irtersectior of

trarswriteset(c) and transwriteset(b') in nonempty.

Iv. z% = a ard A%-a are ir augmented conflict by
ANTRPZ’ ANTRPZf, or ANTRP3‘ We analyze each of the four

cases in detail.

b'
beta or

corflict.)

CASE I (2% = A® cortains W either YP = R

AL ELI beta’

.) b' _ ,b'. b' e
Rbeta is ir A =Y ; and Rbeta ar.d wbeta

1
LOGblocked is of the form:

aya' c c b! b a
ATX® ...A [“'wbeta"'] RbetaRalphawalpha

b

. b . . b!' . . .
where possibly R is ir. A ard possibly Ralpha is 1irn

beta
Ab. There are two subcases to consider: alpha = beta and

alpha # beta.

., TR W

-

......................

e SDD=1 Concurrency Control Mechanism Page ~145- S
L Proof of Serial Reproducibility Section 4 T

Subcase alpha = beta

}

_ - . ST

p]

From conflicts irn LOGblocked' the edges (rbeta’ wbeta) and 4
(r

B 3 . . _ ——~
alpha’ walgha) exist in CG(D). Since alpha = beta, o)

wC) = (rb w®)
beta’ “beta’ ~ alpha’ “alpha’’ -

_ . ¢
By claim AW-path, there is a nonredundant path from walpha

(r

a

to walpha

that does not pass through any node in class b.

D A M D D D W D D D AP P D D e D P D L D A D ED M P D D D P P D P P P P G D G P NP WP D ED D D Y P W W

Norredurdart Cycle for Case I (alpha = beta) Figure 4.8 S
of Lemma AW B

b
r‘betazalpha

a wc
PN NN | beta

a nonredundant path with 5 ﬁi
no nodes labelled b R~

So, we have the nonredundant cycle noted in figure 4.8,

a . . .
If ¢ = a, then walpha is not unique in the 1log, a

contradiction. So, ¢ ¥ a.

ot

Either ¢ = 3 or £ 3. Suppose & = a. Then E® and E@ S

conflict and by lemma B, Ea precedes ES in LOG . . -
glven NN
a

. c
Sirce w and walpha

?; alpha alpha

- precedes W3, .. in LOGgj,o,- This violates W-W

conflict, by 1lemma B we

pipeliring, a corntradiction. Hence ¢ # a. -

A A S s e S amrese-aagE Sai- SRRt S GNP A A Pali A i Rl

Page =-146- SDD=1 Cor.currercy Corntrol Mecharism
Sectior. 4 Proof of Serial Reproducibility

The «cycle ard the protocol selectior rules imply Rtt))éta : .4

must satisfy P2 with respect to 8 arnd ¢ at alpha. By T

a

c . . c
lemma B, E° precedes E~ irn LOG Sir.ce walpha ar.d

i

U]

3

3

b .~

ﬁi ANTR,, £2 and E% are ir augmerted cornflict ard so, by
given’

b

b' . c a' .
Rbeta conflict, by 1lemma B, walpha precedes Ralpha in

= , . _ b . . i
%i LOGgiven‘ Sirce beta = alpha, Rbeta cor.flicts with ST
b b b .

y_ Ralpha’ so by lemma B, Ralpha precedes Ralpha ir LOG

- o b

- Similarly, Ralpha

giver*

a .
precedes walpha ir. LO so by

Ggiver.-’

a

trarsitivity, precedes walpha ir. LOG

RP.
alpha But
bv
alpha

givern~

this says that R violates P2. Cortradiction!

Subcase alpha # beta

blocked’ beta’ “beta
) exist ir. CG(D).

ﬁ

EI From conflicts ir LOG, the edges (rb ¢) ard
;- z a

(ralpha’ walpha

b b
the edges (rbeta’ e) and

By defiritior of EDGES

- vert’
e?) exist in CG(D).

o b

- (ralpha’
c S
- beta 1
to wieta that does rot pass through any nodes irn class 5. '“j'*".f’

By claim AW-path, there is a nonredundart path from w

-ﬂ So, we have the ronredurdart cycle noted in figure 4.9.

: This cycle ard the protocol selection rules imply that ‘

b b b b
Raipha’ Ffoeta 279 Raipnar Bpeta

both have to satisfy P2f]
with respect to a at alpha and ¢ at beta. lﬁﬂﬁ

L N - . . -) . . . R . .
2t o . L. . PP . VU, I R < LA WY T A W W WD TP a PUBFC P .

AL Sl s JndeSad Mt el MadC g Sl eIk Sed e Sl SR s AN it T AN JRa0 i Pt re A B - dE T it A0 AN AN S s A At St AN St Afeh Sntd BN ek et
AR NN N AL A A N e . - Lt . .

SDD-1 Corcurrer.cy Control Mechar.ism Page -147-
Proof of Serial Reproducibility Sectior. 4

Norredurdart Cycle for Case I Figure 4.9
(alpha # beta) of Lemma AW

b D
r'alpha beta

\\\\\\v///

c
" —/\/\'————\ w
“alphafa A AT beta

a nonredundant path with S
no nodes labelled b -

. b bt . .

We first show that E precedes E in LOGgiven‘ By }T
ANTR 5 E? ard E® are ir. augmerted conflict, so by lemma .
: a . cC . . b’ . . "
B, E° precedes E~ ir LOGgiven‘ Sirce Rbeta corflicts with

C b' o] . .
wbeta' by lemma B Rbeta follows wbeta ir LOGgiven' Since

a o] b' a .
E precedes E~, by P2f Ralpha follows walpha in LOGgiven' Lo

. b a . .

But sirce Ralpha precedes walpha in LOGgiven (by lemma B),

b b .

Ralpha precedes Rbeta in LOGgiven' Hence, by R=R gy
. L. b b' . R
pipelirirg, E~ precedes E irn LOGgiven' ..”ﬁ

b b R
We row rnreed to show E precedes E" in LOG_, , to R
given g
establish a cortradictiorn. To prove this, we first show]
h of the followi i £ ' ~%
each o e following properties o LOGblocked'
i. b £ b';
L. b' . . b"
ii. Rbeta is rot in A"
iii. Rb is rot in Ab;

alpha

S e . . .
LIRSV TR VPP W, N S e P P SO T P O S P I P T o A I P P T NP A

Page -148- SDD-1 Concurrency Cor.trol Mecharism

Section 4 Proof of Serial Reproducibility

iv there 1is ro Ab" ir. LOG betweer. Rb' ar.d
' : out * "beta "
b . Yy L
Ralpha with trarsclass(b") = b.
. 3 . ['

This sufficiently restricts the form of LOGblocked so that

we will be able to obtair. a corntradictiorn.

i. Suppecse b = b' Ther. Rb' =z Rb ar.d Rb must

) ‘ "beta beta) alpha

satisfy P2f with respect to ¢ at beta ard a at alpha

(respectively). By ANTR £2 and E° are in augmerted

pef’
. a ¢
cor.fliect, so by lemma B, E precedes E~ 1ir LOGgiven'
. c . . b b . .
Sirce wbeta conflicts with Rbeta ar.d Ralpha cornflicts with

a c b b
walpha’ by lemma B, wbeta precedes Rbeta and Ralpha

a . . .
precedes walpha in Locgiven' But this violates P2f,
contradiction! So, b = b'.
.. b Lo b
ii. Suppose Ralpha is in A”Y. By part III of lemma S,
b . . b . b . . c
Rbeta is also ir AY. Since Rbeta conflicts with wbeta ar.d
b . . a .
Ralpha coriflicts with walpha’ we obtain the same P2f
. . . b . . b
violatior. as (i). So, Ralpha is not ir A".
1]
iii. Rgeta is not in Ab' by the same argument as (ii).
. . bll . b' b
iv. There is no other A in between Rbeta and Ralpha by
the same argument as (ii).
.-1
t . -.;
[From (iv) ard part II of lemma 3, we conclude that every RN
. s
. . b!' b . . =
F’ atom ir class b ir between Rbeta and Ralpha in LOG, ., 1is f*?é%

ar R that 1is not contained in an A. Cornsider ore such
n " 1
b - b Rb!

: gamma ir. this sublog. Each neighbor of gamma must be
! . b . d .

E either arother Rgamma ir b or a wgamma whose writeset
.

Y.
P

b,

PRSP U TR DA R TP S-S S0 U S ORI SNy CEr VR Wy Pos W IS WS T

..

SDD-1 Cor.currercy Control Mecharism Page =149~
Proof of Serial Reproducibility Sectior. 4

irtersects the readset of b" as per NTR By lemma S part

3

) d b
I, wgamma must be ir A~ . Hence, the sublog betweer Rbeta

ard Rb

alpha is of the form:

c,b! b

d
RbetaR [

wd 7., .a%C...wE

b
A "*“beta gamma]Rgémma"‘

b
bdta - - Rbéral

by Af[f l... ete

b b
gamma "'wgamma : "'Ranha"

'Ralpha

a
walpha'

Cor.sider orne pair of Rb's ir. this sublog that have ro R's Ef::

L ir. class b ir. between them. For example, consider R

by afy

f g g
odmmah Lo e Woanmaee-Jo o ABLL W

b ;;’i
delta-*IRdR1ta- :;fﬂ?

b b

We wart to show that E 4 precedes E°5 irn LOG

by
gamma

given®

cor.fliets with arnd

. ! b
ir LOGy) akeq’ PY lemma b, Rggmma precedes

Suppose gamma = delta. Sirice R

b
precedes Rggmma

ir. LOG Suppose gamma # delta. By 1lemma P,

b
Rggmma giver~

there 1is a path in CG(D) from T = transclass(f) to

g = trarsclass(g) that does rot pass through any node in
b f b

b
B. From the log, the edges (rcamma® Ygamma) 359 (Tgeitar

wgelta) are in CG(D). By -definition of EDGES .., the

§ edges (rgelta’ es) and (e®, rgamma) are in CG(D). So, we
2: have a rnonredundant (P2f) cycle. Since Rzgmma cor.flicts
~ with wgamma ard Rggmma conflicts with W8 ., by lemma B,
ggmma precedes wéamma and wgelta precedes Rzgmma in

LOGgiven' By ANTRP2 or ANTRP2f (dependirg on whether or

not T = g), EB ard Ef are in augmer.ted conflict, so by

f

lemma B, E° precedes E® in LOG By P2f, sirce R

b
ggmma

giver.'

I‘\ L Wt e .::ﬂ_ - " .'.) __‘ - A '-‘ - R Lt el Sl e S e AR A
Page =150- SDD=1 Corncurrerncy Control Mechanism
Sectiorn 4 Proof of Serial Reproducibility
follows w8 ther RP must follow W{ Since

delta’ ‘ ggmma gamma’
b f b b
Rggmma precedes wgamma’ Rggmma precedes Rggmma (by 1lemma
B). Hence, by R=-R pipelining Ebu precedes Eb5.
Recall that the log between R, and R® is of the
beta alpha
form:
c b’ b b d d e e
A RbetaRbAta"'RbgtaA ["'wbeta"']"'A ["'wgamma"']
b b f f
Rgémma"'RgammaA ["'wgamma"'] .ete.
By R-R pipeliring E° precedes EP2 in LOG By the
‘ given-

b

above argumert, E 2 precedes Eb3, so by the transitivity

b'

E precedes Eb3. By R=-R pipelining and transitivity, Eb'

precedes EPY4 in LOG By continuing the induction or

given®

and R

b’
the number of R's in b in betweer R alpha’

beta
b This establishes a

we

have that E precedes Eb in LOG

given’
corntradiction, thereby completing case 1 for alpha # beta.

. o] o] c . . c _ ,C. b!

Case II (either Rbeta = 2~ or Rbeta is in Z2° = A~; wbeta
: . b b! b!' ¢ .

is in A =Y wbeta and Ry ¢, conflict)

LOGblocked is of the form
aya’' c b'r,b' b a i c
ATXT . Rpopgh [wbeta]Ralphawalpha' where possibly Ry ..
is in AS.

b

beta’) 2rd

' -
. : c
From conflicts ir LOGy; . eq: the edges (ry .., W

b a
(ralpha’ walpha

) are in CG(D).

R T T s T W

Lt 2

.....
...................................

SDD-1 Corncurrency Control Mechanism Page =151~ -
Proof of Serial Reproducibility Section 4 -
(‘ By claim AW-path, there is a rnonredurdant path from wglpha 5{;
- to rgeta that does not pass through any rode in class b. e
. Norredundant cycle for Case II of Lemma AW Figure 4.10 =
R B g i
- ralpha beta T
{ K
. 3 - -
:: (—\walpha wbeta . _‘.
. -\ a nonredundant path with o
T no nodes labelled b Lo e
So, we have the norredundant cycle noted in figure 4.10. EE
‘ b =
- The cycle and the protocol selectiorn rules imply Ralpha _fd
: must satisfy P3 with respect to & at alpha. By ANTR,g, E2 e
~ MR
5 is in augmented conflict with Eb. Since Eb follows E? in T
] b a .] _
LOGy i ockeq (because Ralpha follows E¥ in LOG,, . ,eq)s DY S
. a b . , b A
3 lemma B, E precedes E in LOGgiven' Since Ralpha)
-* . : a b a - :'.;:
. corflicts with walpha’ by lemma b, Ralpha precedes walpha -
irn LOGgiven' But this means that Ralpha violates P3 with .
respect to a at alpha. Conctradiction! 3
Case III (z¢ = A% yP' = aAP'; the intersection of -
X trarnswriteset(c) and transwriteset(b') is norempty)

N ')
- LOGblocked is of the form

........................

Page -152- SDD=1 Concurrerncy Control Mecharism R]
Section 4 Proof of Serial Reproducibility -
. .
aya' c,b'Lb a
ATXT ... ATA Ralphawalpha ;';fg
e ' s B i
Fr;m conflicts in LOGblocked’ the edges (e~, e~) and LT
a . s T
(rglpha’ walpha) are in CG(D). By definition of EDGES .t —
b C ‘
(e”, ralpha) is in CG(D).
By claim AW-path, there is a nonredurndant path from w:lpha

to e that does not pass through any nodes irn class b.

Norredurdart Cycle for Case III of Lemma AW Figure 4.11

b
r'alpha

(o]}

a nonredundant path with
no nodes labelled b
So, we have the nonredurdant cycle noted in figure 4.11.
b
Ralpha
must satisfy P3 with respect to a at alpha. The remairnder

The cycle and the protocol selection rules imply

of the argumert is identical to case II.

c

case IV (2% = A® ard A%-a®" are in augmer.ted cornflict by

'
ANTRPz, ANTRpop, oOF ANTRP3)‘ LOGblocked is of the form
aya’ c,b',b a . o] , . b
ATXT ...27Y Rbetawalpha where possibly Rbeta is in A".

) __11.—.;‘¢".‘._..r

A)
FRras

Ejz;;d{-:hh

SDD-1 Concurrency Control Mechanism Page -153-
Proof of Serial Reproducibility Section 4

b a
From the log, the edge (ralpha’ Walpha
c

L]
claim AW-path and the sublog X2 ...2%, there is a

) is in CG(D). From

rornredundant path in CG(D) from a node in ¢ to a node in a
that does not pass through any node in b. There are now
three subcases to consider for each of ANTRP2, ANTRP2f,

ard ANTRP3 -- the ornly ways that A®-aP' can be in

cornflict.

Subcase 1V - ANTRP2

By ANTR there is a class, d, and a data module, beta,

p2’
such that there is a nonredundant cycle in CG(D) with the

d b

c
subpath (wbeta’ rbeta’ wbeta)'

We want to show a subpath

b b _b a
(wbeta’ € ralpha’ walpha -
definition of EDGES the edges (wP

) in a cycle in CG(D). By
b b
vert’ beta’ €) and (e,
b : - c
rglpha) ate in CG(D). If d # a, then the subpath (Wpeta

Tpeta’ wbeta) and the nonredundant path from ¢ to a that

does not pass through b are sufficient to complete the

a
beta’

a
, walpha) from

cycle (see figure 4.12). If @ = a, then the edge (r

b
wbeta

EDGES
v

a a
beta’ ©)
are sufficient to complete the cycle (see figure

a

) and the edges (r and (e

ert
4,12). So, we have a nonredundant cycle in CG(D) with the

(b b b a

subpath (w .., e, ralphg' walpha)‘ Hence, by the

protocol selectior rules, rglpha must satisfy P3 with

b
alpha

and the cycle, E? and Eb

respect to a at alpha. However P3 is violated by R

ir the followirg way: By ANTRP3

Page -15U- SDD=1 Corcurrency Control Mecharnism ,;.j!

Sectior 4 Proof of Serial Reproducibility RN

Nonredundant Cycles for Subcase IV -- Figure 4.12 o
ANTR

p2 of Lemma AW

\ =
W b “beta
alpha Wheta
» a nonredundant path with

N

o nodes in b

a nonredundant path with
no nodes in d

. . . a b

are ir augmented conflict. So, since E“ precedes Ralpha
. b . ! a

which precedes E” in LOGblocked’ by lemma B, E precedes

b . . b . . s
E ir LOGgiven‘ Since Ralpha conflicts with walpha’
b a , ‘ _

Ra1pha Precedes Wi, p. in LOGgy,en- This violates P3, a

contradictior.

Subcase IV = ANTRP2f

By ANTRp,., there 1is a class, d, and two distinect data
modules, beta and gamma, such that there is a cycle 1in
CG(D) with a subpath RN
WA a I —®

beta’ "beta’ ' "gamma’ “gamma’’ S

We canvproceed exactly as in Subcase IV = ANTRP2 yielding

the same P3 violation (see figure 4.13).

SDD-1 Coricurrency Control Mechanism Page =155~

Proof of Serial Reproducibility Section 4

Norredur.dant Cycles for Subcase IV -- Figure 4.13
ANTRP2f of Lemma AW

d d

rgamma "beta

ed
c

W 1ph Wgamma
alpna g nonredundant path with

_Po nodes labelled b

nonredundant path with
no nodes labelled d

Subcase IV - quﬂﬂi

By ANTR there is a data module beta, such that there is

P3’
a cycle ir CG(D) with either the subpath

c ¢ b b
(e”, wbeta’ rbeta’ e’)
or
(e€ ¢ b eb).

! rbeta’ wbeta'

We treat each subpath as a separate case.

c c b b
Subcase IV = ANTRp3 - (e, Theta’' "beta’ ©)

geta, ”Eeta) is in CG(D),

b b
a;d by definitior of EDGESvert (wbeta’ e’)

ralpha) are in CG(D) (see figure 4.14a). As in subcase IV

We car deduce that the edge (r

and (eb,

Ao SR AU S S s R P T S

........

Page =156~ SDD=-1 Concurrency Cortrol Mecharism f?
Section 4 Proof of Serial Reproducibility -
Norredurndart Cycles for Subcase IV == Figure 4.14 -
ANTR of Lemma AW o
P3 o

.5 X
alpha beta >
I~] E .:
eb e sl
a b **
“alpha "beta S
nonredundant path with LT
no node labelled b Lo
PRI
(a) L

b b

‘ nonredundant path

= c
eb e’ _

nonredundant path with

no nodes labelled b

(b)
b . . .
- ANTRPZ’ Ralpha must satisfy P3, but violates P3 1in
. LOG _. , a contradiction.
- giver

- . . - e o ’ [P Y P

SDD=-1 Corcurrency Corntrol Mecharnism Page ~157- »1!

Proof of Serial Reproducibility Section 4 o

c .c b b .
Subcase IV = ANTRP3 - (e, Wyeta’ Tbeta’ ©) .

By these augmented edges and ANTR,,, there is a path from _ﬁfjj

b c b . ,
e to e~ that does not pass through rgamma (including

b
ralpha

we can proceed to a P3 violation as 1in Subcase IV -

). This completes the cycle (see figure 4.14b) and

ANTRPZ' Q. E. D.

PRS- PE T .

€ 5o

_‘1 _‘: b

APt
« 8-
LGS

PO U AT AT VAN Sl SO WS WP VIO IP WA TP UL WD P W G S U WY R Gy Am e Do Boadnda ial onan A m a L;__;J;L‘A,;.;.'.A,:.j

Page -158- SDD-1 Concurrency Control Mecharism
Section 5 Protocol P4, A Cycle=Breakirng Protocol

5. Protocol P4, A Cycle-Breaking Protocol

5.1 Motivatior for a Cycle-Breakirg Protocol

From a logical standpoint, {P1, P2, P2f, P3} are a
sufficient set of mechanisms to correctly execute all
transactions ir all classes. That is, with these protocol
schemas alore, serial reproducibility can be guaranteed.
However, from an efficiency standpoint, these protocol
schemas have a serious problem. The problem is that a
sirgle class car cause cycles in the confliet graph and
thereby force many classes to rur exper.sive protocols,

ever. though very few transactions are ever run in that

P T T R T Ty T Pl I Satt St ek A S Nt S A T

While we expect that the vast majority of transactiors
that we wish to execute are predictable ard belorg to
predefired classes, we still want to be able to execute ar
unexpected transactior that does rnot fit into any of our
class definitions. Ore way to accomplish this 1is to

defire a very "large" class, call it C that has a

total’

P P T T R T s N LI U S G . W T I A S U U S St RS SR I W WIS N S PR RIS

1

RACHUR & 8 Ry ARl ~ S

2
2
v
»
L[:

SDD-1 Concurrency Control Mechanism Page =-159-
Protocol P4, A Cycle-Breaking Protocol Section 5

read=-set ard write-set that includes the entire logical
database. Every conceivable trarsactior car fit into

Ctotal’ so this apparently solves the problem. But the

cost 1is enormous, for C induces a two=class cycle

total
with every other class in the system. So, every class has

to rur P3 against Ctotal’ and Ctotal has to run P3 against
every other class. Since P3 1s the most expensive
protocol schema, this is an unfortunate state of affairs.
It is especially unforturate because transactions will

rarely need to execute in C since most transactions

total’

fit 1into other 1less expensive classes,. So, Ctotal
irtroduces considerable synchronization overhead for
synchrorizing against a ec¢lass that will rarely run a

transaction.

In gereral, any class 1in which transactions are only
infrequertly run, but which ereates many cycles in the
conflict graph, exhibits this phenomenon. Clearly, the
problem of proliferation of cycles is especially acute ir
Ctotal’ However, other classes with smaller read-sets and

write-sets may manifest the same problem.

To alleviate these problems we introduce a new protocol
schema, called P4. the purpose of P4 is to "break" cycles
ir the conflict graph. That is, if a class runs P4, then

other <classes that are in a cycle with the P4 class can

T T T e

Page -160- SDD=1 Concurrency Control Mecharnism
Sectior 5 Protocol P4, A Cycle=Breaking Protocol
behave as if the cycle did not exist (and, therefore, rur
P1 with respect to that cycle). In other words, the
protocol selectior rules only apply to cycles that do not

conrntain a class that runs P4.

That we nreed a P4 cycle-breaking protocol is clear. 1In oo
the remainder of this section, we discuss how such a

protocol can be implemented. .

5.2 Overview of P4

Ore way to implement P4 is to shut off the system so that
o reWw transactions can be introduced. After all
outstanding WRITE messages have been processed, then the
system has quiesced. Assuming every class was running the
correct protocol, the log (up to this point) should be
serially reproducible. Now, we run the P4 transaction.
After all of this trarsaction's WRITE messages arrive and
are processed, it 1is safe to start up the system again,

allowing rew transactions to be run. What we have dore is

turr. off the system, wait until a serially reproducible

database state 1is reached, run the P4 to completiorn, and

ther. start up the system agair. The P4 transaction

> = v T v w e .
VYT T =
i oo

partitiors the 1log ir half, and each half is serially
reproducible (sirce the other trarsactions are running the =@

correct protocols). L

por; ﬁmvvv—'
. . L. L B R R
- ' . . R . S a, .
. P I . : I
. . P A o
. s - . ‘
. P st .
P > . : O . - G tetatat,
. v S . et oot T LT AV O I

Rt Attt et Sasit Attt Shate. Jhati IRttt Jhnii it o S et e S i o A S S S N ROTE R R A e " P A S S
--- T . .

SDD=-1 Concurrency Control Mechanism Page -161=~
Protocol P4, A Cycle-Breaking Protocol Section 5

The degradation of performance that results from shutting
off the system, even temporarily, is likely to be severe.
So, the above P4 algorithm is unacceptable. To weaken it,

we observe that the P4 need only synchronize against other

classes that lie on the cycle 1irncluding the P4 class,
since only classes on cycles can cause non=-serially
reproducible logs. Also, we note that even these classes

need not quiesce completely before the P4 runs. All that

we rneed is the weaker condition that the log be equivalent
to some log in which all of the classes have quiesced
before the P4, With these observations in mind, a much

weaker P4 can be derived.

5.3 Implementation of P4 vifib

Protocol schema P4 differs structurally from the other
3 protocol schemas in two ways: First, P4 requires some
i~ direct communication between transaction modules. By this
ﬁ! commun’ication, the P4 class requests that certain other
;" transaction modules perform synchronization to avoid
conflicting with the P4 transaction. Second, P4 requires
t! ar. augmented form of read condition. Recall that a

standard read condition is a pair <(timestamp, {classes}>.

For P4, the timestamp may be interpreted as a "minimum

4 q
= Page =162- SDD-1 Concurrency Corntrol Mecharism R
A Sectiorn 5 Protocol P4, A Cycle-Breaking Protocol R
¢ . “:_j:r:j
ﬁ time", i.e., <mintime=timestamp, {classes}>. This _F
: . @
-2 conditior is satisfied if all WRITE messages from o
.- RSRIINE
[{classes} timestamped less tharn '"timestamp" have been el

received. It does not require that no messages from fﬁ‘?ﬁ

B

classes timestamped greater than "timestamp" be received

(as in stardard read conditions).

To implement P4, we use three additional types of messages

- that are sent from TM's to TM's (not from TM's to DM's).

A PYU-ALERT message is sert from a P4 class to some other

class. A P4-ALERT message includes the P4 class's name
and timestamp as its parameters. A class responds to a
P4-ALERT with either a P4-ACC (i.e., an acceptance) or a

P4-REJ (i.e., a rejection).

To rur a transaction t y in the P4 class ¢

p one performs

Py’
the following steps:

1. Choose a timestamp for tPN’ say TSPM‘

2. Sernd a message P4=-ALERT (TSPu) to every class that

lies on the cycle in CG(D).

[}
.
O

Wait for the PU-ACC's to be received from all —

classes to which a PY4-ALERT was sent. If a PU4=REJ

RO ¢ SLNLADNERENL AN
w

is received, then restart the protocol from step 1.

.
1

i

PO Y. -4

g

T Y CRRAr S Baar ns. Sae atate At die- di-usliraiUil et SR S DY h At B) Y)

o SDD-1 Corncurrency Control Mechanism Page =163-
ﬁ; Protocol P4, A Cycle=Breaking Protocol Section §

4, Construct the READ messages for tPM- For each data

module, alpha, to which a read message wWill be

sent, irclude a condition <TSPR’Ci> for each class :}j&

c c. . RO
C; such that the edge (rafgha’ waipha) lies on the e

cyecle. tqu

Whern a transaction module receives a PH-ALERT(tPu, TSPM)

for a particular class, Cy it performs the following

steps:

1. If the class has run or begun running a transaction
with a timestamp greater than TSPM’ then respond to

c by sending P4-REJ. Otherwise, send P4=ACC and

PU
do not run another transaction in 4 timestamped

earlier than TS

message to DM These conditions are in

alpha’

Pu . .':"‘.

)

L)

2. For the next transaction run in c;, for each ?f"i
datamodule alpha and each class °j such that edge ﬂﬂfﬁ

e, e 'fi::.-:.':
(raipha’ waipha) lies orn a cyele with CPM’ include 'ﬁkﬁf

the condition <mintime=TS,,, cJ.>, in the READ -

addition to those normally included by 4 in its

read messages.

- @
P—-~-——:1‘
w“
STy
R
o)
LY
.".‘
T

T At T e e e et e e e e N A A e aaaa " At et et ata. atatatat s ata alatatatat ala tate atatas

Page =164~ SDD-1 Concurrency Cortrol Mecharism f!

Section 5 Protocol P4, A Cycle-Breaking Protocol

It should be emphasized that (2) is only performed fecr the ;;;%

first transaction executed in Ci with timestamp greater v ;qé

thar TS, . Later trarnsactions in ¢, can run P1 again, ;i’?i

with respect to this P4 cycle. ;;%%
®,

5.4 Proof of Correctress for Protocol P4

A proof of serial reproducibility incorporating protocol
P4 has been developed and will appear in a later Technical

Report.

......

pary . PR W U TP NP G T P P LI W

F'{',i. k) i

SDD=1 Corcurrency Control Mechanism Page ~165-
Update Semantics and Fragment Definition Appendix A

A. Update Semantics and Fragment Definition

A.1 Insertior / Deletion Semantics

The basic update operatiorn in SDD=1 is a WRITE message
that changes the value of existing data items (see Section
2). To enable insertions and deletions using this write
message format, we augment each relation by a special
boolean domain named "Existence-bit" (abbr. E-bit). From
a logical viewpoint, every TID value is "present" in the
sense that it can be refererced. We distinguish Dbetween
TIDs that label real tuples and those that label ar empty
slot for a tuple by the E=-bit: If E-bit=1 then the tuple
exists 1in the relation; otherwise, the tuple does not

exist.

Using this model, we define four operation on relations:
RETRIEVE, DELETE, INSERT, and CONDITIONAL INSERT. These
are the kinds of operations that we expect users will want
to perform orn SDD=-1 relations, and they essentially

correspond to standard query language commands. RETRIEVE

v T F s WA LT e W T Y R e e et et s B e e BT

Page -166- SDD-1 Coricurrency Control Mecharism
Update Semantics and Fragment Definition Appendix A

selects a portion of a relation to be read; it orly reads
tuples with the E=-bit = 1. DELETE simply sets E=bit = 0
for the tuples to be deleted. INSERT sets E-bit = 1 for
the TID values for tuples to be inserted. CONDITIONAL
INSERT inserts TIDs provided they do not already exist, by
checking that E-bit = 0 before setting E-bit = 1. This
latter operation may be needed to avoid overwriting

already existirng tuples.

The E«bit domain must be used in determining the read-set
and write-set for a class of transactions. Insert and
delete operations are in conflict precisely insofar as
they both use the E-bit domain, and this conflict may

require adding some edges to the conflict graph.

A.2 Fragment Updates

Recall the definition of logical fragments. First

partition the relation according to a set of restrictions
and then define each logical fragment to be a projection

of a partition on the TID domain and orne other domain.

That fragments are defined 1logically creates certairn
problems on updates. If the restriction qualification

that defines a fragment uses domain D, say, then updates

T Sl . . e, e s CL e e "']
A I R R P P I DS D A WP, PR WAL W WAL UL P DS WS WG AL VU0 VPR VRGP WAV U0 W U ONE AP SO S o P o W

-
¢ SDD-1 Corcurrency Control Mechanism Page -167-
Update Semantics and Fragment Definition Appendix A

to a D=-value may cause a tuple to "migrate" from one

partition (and hence fragment) to another. For example,
if the EMPLOYEE relation 1is partitiored based on the
DEPARTMENT domain, then moving an employee to a new
department causes a tuple migration to a different
partition. Since fragments in different partitions are
stored as independant files, often at different data
modules, the tuple migration requires WRITE messages to
y delete the tuple from one fragment and add it to another.
Wher. determining the read-sets and write-sets of a
transaction c¢lass, potential tuple migrations must be
cor.sidered, since additional WRITE messages may be
required to maintain the consistency of the fragment

within its definition.

=

e
_;Z;.‘ i
S
R
BRI .._!

-
3
6

'
0

“ 7
s 7
, .
ol
.
e
s

44 0. " _2.

BT

. P 'l.l .

. R

. - L T

N . e
A e Lo _a

.................
....................
................

Page -168-~ SDD-1 Concurrency Control Mechanism
References

References

[(BERNSTEIN et all
Bernsteir,, P.A.; Goodmar, N; Rothnie, J.B.,; and
Papadimitriou, C.A. "Analysis of Serializability
in SDD=-1: A System for Distributed Databases
(The Fully Redundant Case)", First International
Conference on Computer Software and Applicatiorns
(COMPSAC T7T7), IEEE Computer Society, Chicago
Illinois, November 1977. (Also available from
Computer Corporation of America, 575 Technology
Square, Cambridge, Massachusetts 02139 as

Techrnical Report No. CCA=77=-05).

[CODD]
Codd, E. F., "A Relational Model of Data for Large
Shared Data Banks" CACM, 13 (1970), pp. 377-387.

[LAMPSON ard STURGIS]
Lampson, B.; and Sturgis, H. "Crash Recovery in a
Distributed Data Storage System", unpublished
paper, Computer Science Laboratory, Xerox Palo
Alto Research Center, Palo Alto California 94304,
1976.

B P P T T e S T

A SDD-1 Concurrency Control Mechanism Page -169-

- References
[ESWARAN et all

:] Eswaran, K.P.; Gray, J.N.; Lorie, R.A.; Traiger,

I.L. "The Notions of Consistency and Predicate

Locks in a Database System", CACM, Vol. 19, No.

¢+ @& Fa b 4+ & 4
P PN .
’ S P IC CBR T

. 11, November 1976. e
2 R
}‘ L
9 [(GRAY et al] oot
p Gray, J.N.; Lorie, R.A.; Putzolu, G.R.; Traiger, R
X Y
- I.L. "Granularity of Locks and Degrees of e
2 Consistency in a Shared Database", IBM Research ffii
Report RJ1654, San Jose California, 1975. ; ;:
[HAMMER and SHIPMAN] o
Hammer , M.M.; and Shipman, D.W. Resiliency ‘ R
Mechanisms in SDD=-1" Technical Report in progress.
Computer Corporation of America, 575 Techrnology

Square, Cambridge, Massachusetts 02139.

(HEWITT]

Hewitt, C.E. '"Protection and Synchronization in
Actor Systems", Artificial Intelligence Laboratory
Working Paper No. 83, Massachusetts Institute of

Technology, November 1974.

4
i
1
-

Page -170- SDD=-1 Concurrency Control Mecharism
o References
i [MANNA]

Manna, Z. Mathematical Theory of Computation,

McGraw=Hill, New York, 1974.

. [MARILL and STERN] T

;]
" -
N Marill, Thomas; and Sterr.,D.H. "The Datacomputer: =
A Network Utility", Proceedings AFIPS National —~ﬁi

Computer Conference, AFIPS Press, Vol. 44, 1975.

(METCALFE]

RIRNE

Metcalfe, R.M. Packet Communication, Technical

Report No. TR-114, Laboratory for Computer
Science, M.I.T., Cambridge Massachusetts, December

1973.

[PAPADIMITRIOU et all

Papadimitriou, C.A.; Bernstein, P.A.; and Rothnie,

5:
%ﬁ J.B. "Some Computational Problems Related to
ke Database Concurrency Control", Conferernce on
Theoretical Computer Science, University of ;,ﬂﬂ{

Waterloo, Waterloo Ontario, August 1977.

[RCTHNIE and GOODMAN]

Rothrie, J.B.; and Goodman, N. "An Overview of the

-nibtieis > STRIEETNR §

Prelimirary Design of SDD-1: A System for ..

A

Y ‘- a 4 t i m an

B 3 AU

SDD=1 Corncurrency Control Mecharnism Page =-171-

Referer.ces

Distributed Databases", 1977 Berkeley Workshop on
Distributed Data Maragemerit and Computer Networks,
Lawrence Berkeley Laboratory, University of
Califorria, Berkeley California, May 1977. (Also
avalilable from Computer Corporation of America,
575 Technology Square, Cambridge Massachusetts

02139, as Technical Report No. CCA=77-04).

[ROTHNIE et al]

Rothrie, J.B.; Goodman, N.; and Bernstein, P.A.
"The Redundant Update Algorithm of SDD=-1: A System
for Distributed Databases (The Fully Redundant
Case)", First International Conference on Computer
Software ard Applications (COMPSAC T77), IEEE
Computer Society, Chicago Illinois, November 1977.
(Also available from Computer Corporation of
America, 575 Technology Square, Cambridge,
Massachusetts 02139, as Technical Report No.

CCA-77-02).

[THOMAS]

Thomas, R.H. "A Solution to the Update Problem for

Multiple Copy Databases Which Uses Distributed
Coritrol", BBN Report No. 3340, Bolt Beranek and

Newman Inc., Cambridge Massachusetts, July 1975.

Page =172- SDD=-1 Corcurrency Control Mechanism
Refererces

[WONG]

Wong, E. "Retrieving Dispersed Data from SDD=1: A

System for Distributed Databases", 1977 Berkeley

= Workshop or Distributed Data Management and
- Computer Networks, Lawrence Berkeley Laboratory,

University of California, Berkeley California, May
1977. (Also available from Computer Corporation
of America, 6575 Technology Square, Cambridge
Massachusetts 02139, as Technical Report No.

- CCA=T77=-03).

}
L

LI

t . N ', 3 *
A st ta
[PV alcaaate s

..-'—'A‘
Lo
.‘.1
Lt

3

‘Q"u
]

._.:.q
RPN

S
. Lo oo -
o RPN P , o

s P . .

. R R . PR
RENE 3 PR 3 BN
A Lo, v Kl e .
g ol e g L d

