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I BACKGROUND1

Reliability may be obtained by redundant computation and voting in

critical hardware systems. What is the best way to determine the

majority, if any, of a multiset of n votes? An obvious algorithm scans

the votes in one pass, keeping a running tally of the votes for each

candidate encountered. If the number of candidates is fixed, then this

obvious algorithm can execute in order n. However, if the number of

candidates is not fixed, then the storage and retrieval of the running

tallies may lead to execution time that is worse than linear in the

2
number of votes -- such an algorithm could run in order n

If the votes can be simply ordered, an algorithm with order n

execution time can be coded first to find the median using the Rivest-

Tarjan algorithm [7] and then to check whether the median received more

than half the votes. The Rivest-Tarjan algorithm is bounded above by

5.43 n - 163 comparisons, when n>32.

In this paper we describe an algorithm that requires at most 2n

comparisons. The algorithm does not require that the votes can be

ordered; only comparisons of equality are performed.

:J
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II THE ALGORITHM

Imagine a convention center filled with delegates (i.e., voters)

each carrying a placard proclaiming the name of his candidate. Suppose

a floor fight ensues and delegates of different persuasions begin to

knock one another down with their placards. Suppose that each delegate

who knocks down a member of the opposition is simultaneously knocked

down by his opponent. Clearly, should any candidate field more

delegates than all the others combined, that candidate would win the

floor fight and, when the chaos subsided, the only delegates left

standing would be from the majority block. Should no candidate field a

clear majority, the outcome is less clear; at the conclusion of the

fight, delegates in favor of at most one candidate, say, the nominee,

would remain standing--but the nominee might not represent a majority of

all the delegates. Thus, in general, if someone remains standing at the

end of such a fight, the convention chairman is obliged to count the

nominee's placards (including those held by downed delegates) to

determine whether a majority exists.

Thus our algorithm has two parts. The first part pairs off

disagreeing delegates until all remaining delegates agree. We call this

the "pairing" phase. Perhaps nonobviously, pairing can be done with n

comparisons. If pairing leaves any delegates standing then those

delegates unanimously favor a single candidate--the nominee--who must be

in the majority if a majority exists. The second part of the algorithm,

called the "counting" phase, determines whether the nominee received

more than half the votes. The counting phase obviously requires at most

n comparisons. The focus of this paper is on the pairing phase.

Here is a bloodless way the chairman can simulate the pairing

phase. He visits each delegate in turn, keeping in mind a current

2
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candidate CAND and a count K, which is initialized to 0. Upon visiting

each delegate, the chairman first determines whether K is 0; if it is,

the chairman selects the delegate's candidate as the new value of CAND

and sets K to 1. Otherwise, the chairman asks the delegate whether his

candidate is CAND. If so, then K is incremented by 1. If not, then K

is decremented by 1. The chairman then proceeds to the next delegate.

When all the delegates have been processed, CAND is in the majority if a

majority exists.

Proof: Suppose there are N delegates. After the chairman visits

the Ith delegate, 1 < I < N, the delegates he has processed can be

divided into two groups: a group of K delegates in favor of CAND, and a

group of delegates that can be paired in such a way that paired

delegates disagree. From this invariant we may conclude, after

processing all of the delegates, that CAND has a majority, if there is a

majority. For suppose there exists an X different from CAND with more

than N/2 votes. Since the second group can be paired, X receives at

most (N-K)/2 votes from that group. Thus, X must have received a vote

from the first group, contradicting the fact that all votes in the first

group are for CAND.

Here is a proof by simple induction on I that the delegates polled

may always be divided into two such groups after the chairman has

processed the first I delegates. After the chairman has processed the

first delegate, K and I are both 1: the group of delegates passed has 1

vote for CAND. So suppose the invariant holds after the Ith candidate,

and suppose the I delegates processed so far may be divided into two

groups, U and P, with the aforementioned properties. If after

processing the Ith delegate K is 0, then CAND is reset to the candidate

preferred by the l+1st delegate and K is set to 1. But when K is 0 the

invariant tells us that P contains all the first I delegates. Thus the

first I1 delegates may be divided into two groups: one containing only
the I+1st delegate and one that is P. If after processing the Ith

delegate K is not 0, there are two cases: the I+1st delegate votes for

or against CAND. If the I+1st delegate votes for CAND, K is

-"d
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incremented; the first I+1 delegates may be divided into two groups: U

plus the I+1st delegate and P. If the I+1st delegate votes against

CAND, K is decremented; the first I+1 delegates may be divided into two

groups as follows. Let J be any one of the delegates in U. Let the

first group be U minus J, and let the second group be P together with

both J and the I+1st delegate.

4



III EXAMPLES

Suppose there are three candidates, A, B, and C, and 3uppose that

the delegates are polled by the chairman in the following order:

AAACCBBCCCBCC

After the chairman has visited the 3rd delegate, candidate A is

leading with 3 votes:

Votes CAND K

A A A C C B B C C C B C C A 3

In processing the next three delegates, the chairman pairs off the

three A votes against three other votes (two for C and one for B).

After the sixth delegate has been visited, K is 0 and the vote of the

seventh delegate makes B the leading candidate.

Votes CAND K

AAACCBBCCCBCC B 1

However, the next delegate cancels out B's short-lived ascendancy and

the ninth and tenth delegates give C the lead by two votes.

Votes CAND K

AAACCBBCCCBCC C 2

The next delegate diminishes C's lead by one, but the last two raise it

to 3 by the time the pairing phase terminates. The claim is that if any

candidate has a majority, it is C.

5
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Here is a simple example of the final state of the pairing phase on

a ballot in which no candidate has a majority:

Votes CAND K

AAABBBC C 1

The votes for A and B cancel one another out and C wins the pairing

phase by default. Had the delegates been polled in a different order, A

or B might have won.

1' 6
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IV THE FORTRAN IMPLEMENTATION

Suppose the delegates are in an array A of length N. The

subroutine MJRTY below takes A and N as input and sets BOOLE and CAND to

communicate the results. BOOLE will be set either to .TRUE. or to

.FALSE.. If BOOLE is set to .TRUE., there is one (and only one)

majority element in A and CAND is set to that element. If BOOLE is set

to .FALSE., there is no majority element in A.



SUBROUTINE MJRTY(A, N, BOOLE, CAND)
INTEGER N
INTEGER A
LOGICAL BOOLE
INTEGER CAND
INTEGER I
INTEGER K
DIMENSION ACN)
K=O

C THE FOLLOWING DO IMPLEMENTS THE PAIRING PHASE. CAND IS THE
C CURRENTLY LEADING CANDIDATE AND K IS THE NUMBER OF UNPAI 7D VOTES
C FOR CAND.

DO 100 I = 1, N
IF ((K .EQ. 0)) GOTO 50
IF ((CAND .EQ. A(I))) GOTO 75
K = (K - 1)
GOTO 100

50 CAND = AI)
K = 1
GOTO 100

75 K = (K + 1)
100 CONTINUE

IF ((K .EQ. 0)) GOTO 300
BOOLE = .TRUE.

IF ((K .GT. (N / 2))) RETURN
C WE NOW ENTER THE COUNTING PHASE. BOOLE IS SET TO TRUE IN
C ANTICIPATION OF FINDING CAND IN THE MAJORITY. K IS USED AS THE
C RUNNING TALLY FOR CAND. WE EXIT AS SOON AS K EXCEEDS N/2.

K 0
DO 200 I = 1, N
IF ((CAND .NE. A(I))) GOTO 200
K (K + 1)
IF ((K .GT. (N / 2))) RETURN

200 CONTINUE
300 BOOLE = .FALSE.

RETURN
END

°h
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Note that the algorithm fetches the elements of A in linear order.

Thus, the algorithm can be used efficiently when the number of votes is

so large that they must be read from magnetic tape. One tape rewind may

be necessary after the first phase.

In some applications it may be assumed that a majority candidate

exists. For example, in the SIFT aircraft control system [10], where

reliability is achieved with redundant processors and software voting,

the failure rate of the individual processors is sufficiently low to

permit the assumption that on a given flight a majority of the working

processors agree on each vote. If it can be assumed that a majority

exists, the counting phase may be eliminated. More importantly, the

algorithm can then be implemented to poll the delegates in real time

(rather than store the votes for batch processing).

The FORTRAN code above contains one minor improvement not mentioned

in the convention floor-fight analogy. After the pairing phase has

terminated, we test K against N/2. If K is greater than N/2, we

announce that CAND is the majority candidate without bothering 6ith the

counting phase, because we know there are at least K votes for CAND.

Indeed, one could make such a test every time K is incremented in the

first loop. This would sometimes allow the algorithm to avoid making

the second pass through the votes. Whether the running time of the

algorithm is improved when such a test is inside the loop depends upon

the distribution of the votes.

We have failed to find a variation of the first phase of the

algorithm that obviates the second phase.



V THE FORTRAN VERIFICATION SYSTEM

The informal proof sketched above may be convincing evidence that

the algorithm computes the majority element if one exists. However, of

more practical importance is whether the FORTRAN code implements the

algorithm correctly and executes without error on all FORTRAN

processors. There are many potential sources of error in the code that

are completely ignored by the "proof" above. Is the program really a

legal ANSI FORTRAN program? Does it violate any of the rules about

aliasing and second level definition? Have we correctly analyzed the

flow of control? Have we considered all the possibilities at run time?

For example, ANSI FORTRAN permits individual elements of an array to be

"undefined" (e.g., uninitialized). In such cases, even the meaning of

an equality test is left unspecified by ANSI. A more obvious run time

worry is that N might be so large that one of the arithmetic operations

causes an overflow. Furthermore, the proofs are very informal. Are

they correct? Have cases been ignored? Have false or unwarranted

properties about "unanimity" and "majority" been assumed?

To permit the reliable verification of many FORTRAN programs we

have implemented a mechanical verification system for FORTRAN. That

system has been used to verify MJRTY and other subprograms. Before

presenting the formal specifications that were verified, we briefly

sketch our verification system.

The system handles a subset of both ANSI FORTRAN 66 [9] and ANSI

FORTRAN 77 [1]. The subset is described precisely in [4]. Informally

stated, the subset includes all the statements of FORTRAN 66 except the

I/O, EQUIVALENCE, DATA, and BLOCK DATA statements. However, certain

restrictions are placed on some of the remaining statements. For

example, we allow only named COMMON blocks, we require that all

10



arithmetic statements be fully parenthesized to permit straightforward

overflow analysis, 2 and we prohibit REAL arithmetic because we do not

have a machine independent semantics for floating point operations.

Here, expressed informally, is what we mean when we say that our

system has established the "correctness" of a subprogram:

If a FORTRAN subprogram is accepted and proved by our
system and the program can be loaded onto a FORTRAN processor
that meets the ANSI specification of FORTRAN and certain
parameterized constraints on the accuracy of arithmetic, then
any invocation of the program in an environment satisfying the
input condition of the program will terminate without run time
errors and will produce an environment satisfying the output
condition of the program.

This statement is made more precise in [4].

Our FORTRAN verifier is a standard Floyd-King-style system [5),

[6), [2], [8) consisting of two parts: a FORTRAN analyzer (syntax

checker and verification condition generator) and a mechanical theorem-

prover. For those readers unfamiliar with Floyd-King-style

verification, we briefly describe our system below.

Input to the analyzer consists of the FORTRAN subprogram (function

or subroutine) to be verified, the mathematical specification of the

subprogram, and all the subprograms somehow referenced by the candidate

program. Each referenced subprogram must have been previously verified

by the system. A specification consists of two mathematical formulas,

called the "input assertion" and the "output assertion." The first

describes those states in which the program may be properly invoked.

The second describes the states produced by the program. In addition to

the input/output assertions, each loop in the subprogram must be cut by

an inductive assertion--a mathematical formula describing the machine

state each time execution arrives at the indicated point in the program.

All the formulas are written in the formal logical language described in

[3).

11



The analyzer checks that the program satisfies all our syntactic

requirements and then generates mathematical formulas called

"verification conditions." If these can be proved--i.e., derived

symbolically from a certain set of axioms using certain rules of

inference--then, whenever the program is invoked in an input state

satisfying the input assertion it produces a state satisfying the output

assertion.

In general, there is one such formula for each assertion-free path

between any two assertions. The formula for such a path requires

proving that, if the assertion at the beginning of the path is true and

one is led down the path by the tests, then the assertion at the end of

the path is true. In addition, formulas are generated to establish that

no array bound errors, overflows, or other run time errors occur, and

that the program terminates. (See [4].)

To permit consideration of arithmetic overflow, our verification

system permits formal talk about the "least inexpressible positive

integer" and the "greatest inexpressible negative integer" on the host

FORTRAN processor. Typical input assertions for programs must specif;

the relations between the input variables and these otherwise

unspecified constants. We assume that ANSI FORTRAN processors compute

the correct results and cause no arithmetic overflow on primitive

INTEGER arithmetic operations (i.e., +, -, *, /, and **) in which the

inputs and the mathematically defined result are all strictly between

the least and greatest inexpressible integers. 3

The second part of the verification system is a mechanical theorem-

prover that attempts to prove the formulas generated by the analyzer.

The theorem-prover, which is described in [31, is entirely responsible

for the correctness of each proof.

12



VI FORMAL SPECIFICATION

The precise input assertion for MJRTY is that N is a positive

integer, that N+1 is strictly less than the least inexpressible positive

integer, and that every element of A is defined. N 1, rather than

merely N, must be expressible because the ANSI standard permits I to

obtain the value N+1 immediately before the termination of the DO-loop:

DO 100 I = 1, N

The output assertion for MJRTY is

The final version of BOOLE is .TRUE. or .FALSE. (that is,
BOOLE may not be returned "undefined").

* The elements of A are not changed.

* If BOOLE is set to .TRUE., then the final value of CAND is
defined, and the number of times CAND occurs in A is more
than N/2.4

* If BOOLE is set to .FALSE., then for all X, the number of
times X occurs in A is less than or equal to N/2.

We phrase these requirements in terms of the mathematical function,

CNT(X,A,I,J), which may be read as "the number of times X occurs in A

from I through J inclusive." CNT is a typical example of a concept that

must be introduced into one's underlying logical theory to specify a

program. CNT may be defined recursively for all I>O and J>O as follows:

CNT(X,A,I,J)

(if J=O or J<I, then 0
otherwise, (if X=A(J), then 1+CNT(XA,I,J-1)

otherwise, CNT(X,A,I,J-1)))

Our mechanical theorem-prover verifies that there exists a function

satisfying the above equation before the equation is added as a new

axiom. Without such a check, the user of a verification system might

inadvertently "overspecify" a concept and permit correctness proofs

based on contradictions in the underlying specification.

13
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We cut the first DO-loop in MJRTY with an invariant at the bottom

of the loop, just before I is incremented and tested against N. In our

informal proof the invariant required that the I delegates processed

thus far could be divided into a unanimous group for CAND of size K and
a group that could be paired into disagreeing delegates. Since the

algorithm does not explicitly keep track of any such division of the
delegates, we reformulated the invariant in a slightly weaker fashion.

The reformulation is based on the observation that, if a collection of

delegates can be paired in such a way that paired delegates disagree,

then the collection has no majority.5 Here is the actual invariant used:

(1) 0 < I & 0 < K < I < N

(2) CAND is always defined.

(3) The number of times CAND occurs in A from 1
through I is at least K.

(4) The number of times CAND occurs in A from I

through I, minus K, is no greater than (I-K)/2.

(5) For all X other than CAND, the number of times
X occurs in A from 1 through I is no greater
than (I-K)/2.

Although conjuncts (1) and (2) were ignored in our informal proof,

they are essential in a careful proof. Conjunct (3) establishes that we

have at least K votes for CAND. Let those K delegates constitute the

"unanimous group." The I-K remaining delegates are the "majority-free

group." Conjunct (4) says that CAND does not have a majority in the

majority-free group; ignoring the K votes in the unanimous group, the

number of votes for CAND thu far encountered is less than (I-K)/2.

Conjunct (5) says that no other candidate has a majority in the

majority-free group. We count the votes for candidates other than CAND
over the entire interval proccssed, rather than just over the majority-

free group, since we do not really know where the majority-free group

is. But we know that the unanimous group contributes nothing to the

tally of a candidate other than CAND.6

14



As the counting phase is trivial, we shall not discuss it.

VII THE FORMAL PROOFS

The FORTRAN analyzer produced 61 verification conditions for MJRTY.

Most of the conjectures established that array bounds are not violated,

that arithmetic operations cause no overflows, and that variables and

array elements are defined when required.

The mechanical theorem-prover proved all 61 conjectures. Most of

the proofs were immediate either from the axioms and definitions in the

"basic FORTRAN theory" [4] (e.g., the definition of the negative

integers in terms of the Peano numbers), from the definition of CNT

(e.g., if X is A(I+1) and I>0 then CNT(X,A,1,I+I) is 1+CNT(X,A,1,I)), or

from elementary arithmetic lemmas (e.g., the theorem that for all

naturals M and N, N/2 < M iff N < 2M). Several of the paths to the

invariants and to the output assertion required that the user help the

system.

The user of our system can help the system prove a "hard" theorem

by suggesting that it first prove some key lemmas. When the system

proves a theorem for the user, it stores the theorem for use in future

proofs. Thus, by bringing to the theorem-prover's attention previously

unrecognized truths, the well-trained user of our system can get the

theorem-prover to prove formulas that would otherwise be beyond the

system's competence. However, the user of our system does not have to

be trusted. The machine--not the human--is responsible for the validity

of the final proof; the user cannot maliciously or inadvertently cause

the system to accept falsehoods, because the system proves for itself

every fact used.

To get all 61 theorems proved, we had to instruct the theorem-

prover t, r,-ove five lemmas about CNT. The two most interesting ones

were as t, .lows:

15
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* CNT is monotonic: the number of times X occurs from I
through I is less than or equal to the number of times it
occurs from 1 through J if 0 < I < J. Without knowing
this, the theorem-prover could not approve our exiting from
the counting phase as soon as K exceeds N/2 lest subsequent
processing of the remaining delegates decrease K.

• The number of times X occurs from 1 through I (1>0) is no
greater than I. This ensures that K in the second loop
will never exceed I (and thus incrementing K will never
cause an overflow).

These two lemmas are proved by the system with mathematical induction on

the length of the interval scanned.

The other three lemmas we proved were required because of

inadequacies in the theorem-prover itself. For example, when MJRTY

exits because K is 0 at the end of the counting phase, the theorem-

prover knows that CAND has no majority and that no X other than CAND has

a majority. It must prove that no X has a majority. The proof is

obvious if one merely asks, "Is X equal to CAND or not?" and considers

the two cases. Without an explicit theorem stated by the user, the

theorem-prover failed to consider such a case split. The other two

lemmas were necessary for similar reasons and indicate inadequacies in

our system that we hope to repair in the future.

The entire effort of specifying MJRTY and getting the 61

verification conditions proved required about 20 man hours. Most of the

time was spent identifying problems caused by incorrectly written

invariants, overcoming inadequacies in the theorem-prover by identifying

appropriate lemmas, and struggling with the still awkward interface to

our FORTRAN verification condition generator. It requires about 55

minutes of computer time to prove the final list of 66 theorems. The

time was measured on a Foonly F2 Computer (about 30% as fast as a DEC

2060) running INTERLISP-10. A total of 42 minutes was required for

theorem-proving, 8 minutes for garbage collection, and 5 minutes for

printing out the proofs.

Readers interested in obtaining the system's complete English

description of its proofs may contact the authors.

16



FOOTNOTES

1 Robert S. Boyer and J Strother Moore are with the Computer Science
Laboratory of SRI International, Menlo Park, California, 94025. The
research reported here was supported in part by NASA Contract NAS1-
15528, NSF Grant MCS-7904081, and ONR Contract N00014-75-C-0816.

2 ANSI permits the compiler to associate A+B+C to either the left or
right. The overflow analysis is different for the two cases. We
therefore require the programmer to write (A+(B+C)) or ((A+B)+C), which
according the ANSI standard, determines the run time association. We
have implemented this requirement in a simple but conservative way: all
arithmetic expressions must be fully parenthesized. Thus the code for
MJRTY contains unnecessary parentheses, e.g., in K:(K+1). A more
elaborate expression grammar could eliminate the unnecessary
parentheses.

3 In addition, for division we require that the denominator be nonzero.

4 By "/" we denote the integer "floor" of the real quotient.

5 The converse also holds for collections with an even number of members.

6 It is easy to see by the construction of a counterexample that (4) and
(5) do not imply (3). Nevertheless, if one modifies the code so that K
is not tested against N/2 before entering the counting phase, one can
omit conjunct (3) of this invariant. That is, unless the program exits
early when K exceeds N/2, a demon within the first loop is permitted to
raise K above the count of CAND (within the constraint imposed by (5))
without causing the algorithm to perform incorrectly. We do not know
how to interpret this lack of constraint.
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