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1. Introduction

One of the most important tasks for the visual guidance of manipulators is

the determination of the attitude of an object relative to a camera. This attitude

information determines the direction from which an end effector should approach

and grasp the object. If the object lies on a horizontal table, the gravity direction

may constrain this attitude [1]. In the general case, however, one has to determine

the attitude by comparing information provided by a camera with some internal

model of the object.

Historically, this attitude-determination problem has been solved by comparing

an observed silhouette with some internal shape description [2-51. These edge-based

approaches work well in determining the attitude of an isolated object lying on

a uniform background provided the object is able to rotate only in the plane of

support. In other words, these algorithms work well on binary images. However,

edge-based methods have difficulties in extracting the contour of a particular object

from a set of many overlapping objects, which are typical in a bin-picking problem.

Recent work in Image Understanding [6-9] has let to techniques for computing

local surface gradient by various means. Such methods include: shape from shading

[10-13], photometric stereo [14-16], shape from contours, and shape from texture

[17-28]. This local gradient representation is referred to as a needle map[22], or 2 D

sketch of the scene [23-24]. Since this local information is obtained over a whole

region within some boundaries, it is more robust than silhouette information which

comes only from the boundaries. This paper focuses on the problem of determining

the attitude of an object from this surface normal representation.

2. Needle map and Extended Gaussian image

A needle map is an assignment of surface normals to patches of an object

corresponding to pixels in the image. A needle map is expressed in a viewer-centered

coordinate system. Each surface patch is projected onto the image plane. Each

surface normal is expressed with respect to the line of sight. Thus, a needle map

describes surface orientation relative to the viewer. On the other hand, the usual
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Figure 1. A spike model and EGI. The normals on a spike model can be moved
to a common point of application. Then, the locus of their end points lies on the
surface of a unit sphere. The distribution of these end points is called the extended
Gaussian image.

internal model describes an object based on characteristics of the object such as its

center of mass, and axis of least inertia. Such a method describes surface orientation

relative to the object mass center and is called an object-centered coordinate system

[22,24,25]. These two kinds of coordinate systems are independent of each other.

Our purpose is to determine the transformation between them using an extended

Gaussian image [22,26,28,291.

Roughly speaking, the extended Gaussian image of an object is a spatial

histogram of its surface normals. Let us assume that there is a fixed number of

surface patches per unit surface area and that a unit normal is erected on each

patch. The collection of these normals, which are like porcupine's quills, is called

a spike model of the object [22]. These normals can be moved to a common point

of application so that the locus of their end points lies, then, on the surface of a
unit sphere. This mapping is called the Gauss map; the unit sphere is called the

Gaussian sphere [22] (See Fig 1). If we attach a unit mass to each end point, we will

observe a distribution of mass over the Gaussian sphere. The resulting distribution

of mass is called the extended Gaussian image (EGI) of the object [1,8].

Let us define a visible hemisphere. Commonly, one observes an object from one

2
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direction. So we always obtain only one half of the EGI over a Gaussian hemisphere.

This hemisphere will be referred to as the visible hemisphere. The pole of the visible

hemisphere corresponds to the line of sight. Each point on the visible hemisphere

corresponds to the surface orientation whose inner angle between the line of sight

is no more than ,. In the following discussion we will work with this EGI over the

visible hemisphere. Also we will normalize the distribution of EGI mass to have a

unit mass over the visible hemisphere.

Even though an EGI can be produced from a spike model based on the object-

centered coordinate system, the EGI can be easily interpreted in the viewer-centered

coordinate system. In this case, an apparent image of an object varies with the

following factors: (a)translation of the object, (b)expansion of the object, (c)rotation

of the object. The normalized EGI is independent of (a) and (b). The EGI rotates

in the same way as (c) as will be shown next:

(a) Neither the surface normals nor the Gauss mapping depend on the position

of the origin. Thus, the resulting EGI is not affected by translation of the object.

(b) If the object expands, the total mass over the Gaussian hemisphere increases.

Yet, the EGI mass is normalized so as to have a unit mass over the hemisphere. Thus,

.' the normalized EGI does not change upon object expansion. This characteristic

is very convenient in object recognition. In general, the distance between the TV

camera and the object changes in each situation. Thus, the apparent size of an

object will also vary, although the normalized EGI derived from the image is

independent of the apparent size.

(c) When an object rotates, its EGI also rotates. Fortunately, the EGI rotates

in the same manner as the object. In other words, this rotation does not effect the

relative EGI mass distribution over the sphere. Th., is analogous to the fact that

the relative distribution of continents on the earth does not change as the earth

rotates (See Fig. 2). Thus, if an observed EGI is identical to one part of the model's

EGI, we can find which part of the object is observed at that time, thus we can

find the object's relative attitude.

3
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Figure 2. EGI rotation. When an object rotates, its EGI also rotates in the
same manner as theaon. We an observed EI is identical to one part of the

prototypical EGI, we can find which part of the object is observed.

3. Constrairns from a global EGI distribution

Generally speaking, the apparent image depends on the transformation between

the viewer-centered coordinate system and the object-centered coordinate system.

This transformation has six degrees of freedom: three degrees of freedom in position

and three degrees of freedom in attitude. From characteristics (a) and (b), an

observed EGI does not depend on the position freedom. The EGI only depends on

the attitude freedom. Thus, matching an observed EGI with a model EGI involves

three degrees of freedom. There are two degrees of freedom corresponding to which

point on the Gaussian sphere is perpendicular to the line of sight. The remaining

degree of freedom comes from rotation about the line of sight.

We will use two constraints to reduce these degrees of freedom. Although

a brute force technique, such as search through the space of possible attitudes,

can be used [28,29], we will reduce this search space using constraints before EGI

4
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comparison. The EGI mass center position constrains the line of sight. Furthermore,

the EGI inertia direction constrains the rotation around the line of sight.

3.1. Coordinate Definition

The following discussion will refer three local coordinate systems: (1) a

coordinate system attached to the prototype Gaussian sphere, (2) a coordinate

system attached to the observed Gaussian hemisphere, and (3) a coordinate system

on the observed image plane.

The Z axis of the prototype Gaussian sphere agrees with the S-N axis of the

sphere, the X-Y plane corresponds to the cross section along the equator. These

axes are denoted by Xp, Yp, Zp.

On the observed Gaussian hemisphere, the S-N axis corresponds to the line of

sight direction. The X-Y plane is the base plane of the hemisphere. This coordinate

system is denoted by Xo, Y, Z,. The coordinate axes are rotated about the Zp axis

until Xo is perpendicular to the Zp - V plane, where V is the line of sight. This

means that X., Yo, Z, is rotated around the Zp axis by ( + ), where 0 is the

azimuth angle of the line of sight as shown in Fig. 3. Then, the coordinate system

is rotated by 0 around the X,, axis until the Z. axis agrees with V, where 0 is the

zenith angle of V. Thus, the resulting coordinate transformation may be written

as

X = -XP sin 40 + Y cos 4' (1.1)

Yo= -Xp cos 0 cos- Yp cos 0 sin + Zp sin 0 (1.2)

Zo XP sin 0cos + Y sin 0 sin + ZP cos 0. (1.3)

Finally, the image plane is assumed to be tangent to the visible Gaussian hemisphere

at the north pole. Its coordinates are denoted as X, Y. So,

X, = X (2.1)

""i = Y (2.2)

3.2. EGI mass center

Elevation of the EGI mass center from the hemisphere base plane gives

a constraint on the line of sight. Even though the EGI mass center over the
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Zp
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V (line of sight) =

- Xo

Yp

Xp

Figure 3. The relationship between two coordinate systems. Xo, Y, Z is rotated
around the Z, axis by (€ +-  ), Then, the coordinate system is rotated by 0 around

the Xo axis until the Z, axis agrees with the line of sight, V.

whole sphere is at the center of the sphere, the EGI distribution over a visible

hemisphere always has some bias. Since this mass center is different for different

visible hemispheres, correspondence of the EGI mass centers becomes a necessary

condition for correspondence of the EGI distribution. Thus, comparing the observed

EGI mass center with the prototype's reduces the freedom of the line of sight.

This elevation A(v) at the direction, v is obtained as

.A(v) - fV.H. Z(s, t)EGIM(s, t)%/EG - F 2dsdt,-. = (3)
f fV.H. EGIM(s, t)Vki-7F2dsdt

wher (s,t) is a parameterization over the Gaussian hemisphere, EGIM(s, t) is EGI

* mass there, and V.14. stands for a visible hemisphere of v. (Xo(s, t), Yo(s, t), Zo(s, t))

6
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Z Axis
0

Surface Normal
Visiblehemispher Z , Z

K EGIM(s,t)

E2TM(s,t)Z (s,t)

Figure 4. The visible hemisphere and the EGI mass. Z,(s, t) is equal to the cosine
of the angle between the surface normal and the Z, axis. Thus, Z,(s, t)EGIM(s, t)
denotes the projected area.

denotes the coordinate value of the point (s, t) on the Gaussian hemisphere in the

observed coordinate system X 0 , Y,,, Z, E, F, G are the first fundamental form of

the Gaussian hemisphere of the parametrization (s, t) [30, pg.2681. VEG - F2 may

be regarded as a jaccobian from (s, t) to the hemisphere surface. Note that the line

of sight, v is equivalent to the Z, axis from the definition.

We will call this elevation the projection area ratio, because this value equals

the ratio of projected area to surface area. Since EGIM(s, t) is equivalent to the

surface area of patches whose normal is (X 0 (s, t), Y,(s, t), Z0 (s, t)), the denominator

represents the total surface area. On the other hand, Z0(s, t) is the cosine of the angle

between the surface normal and the Z, axis (line of sight). Thus, Z0(s, t)EGIM(s, t)

denotes the projected area on the base plane. Since the image plane is parallel to

the base plane, the numerator represents the proje!ted area on the image plane.

Fig. 4 shows this relationship between the surface normal and the image plane.

The projection area ratio removes only one degree of freedom similar to the

reflectance ratio [111. Fig.5 shows a series of iso-projection-ratio contours of an

ellipsoid projected on the stereographic plane [11] for graphical clearness. Each

contour line represents possible lines of sight which would give the same projection

7
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g

Figure 5. The projection area ratio. Iso-projection-ratio contours of the ellipsoid
are drawn on the stereographic plane. Comparing an observed ratio with this
diagram prunes the freedom of lines of sight.

ratio. The ellipsoid is X' + Y +(-)2 = 1. The origin of the stereographic plane

is aligned with the Zp axis direction. The stereographic plane axes, f, g agree with

the Xp, Yp axes, respectively. Observing the ellipsoid from the long axis direction

gives a smaller projected area than looking at it from the direction perpendicular

to the axis. Yet, the surface area is the same. Thus, points near the origin, which

correspond to the direction near the long axis, give smaller ratios than far points on

the stereographic plane. Therefore, iso-ratio contours are concentric circles around

the origin of the stereographic plane.

3.3. EGI inertia direction

The Gaussian hemisphere can also be rotated about the candidate line of sight.

This degree of freedom is determined using the 2D EGI inertia axis. This inertia

axis is defined on the tangential plane (image plane) to the visible hemisphere at

the north pole. Although, it is possible to use the EGI mass center position for

this purpose, we prefer the EGI inertia direction for the following reason. The least

inertia direction can be determined in any distribution. On the other hand, the

EGI mass center position could occur along the line of sight, for example, if the

distribution is symmetric with respect to both the X,, o axes; in this case, the

8
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Figure 6. An example of EGI inertia direction. This direction constrains the
freedom around the line of sight.

alignment cannot be determined. It is true that if an EGI distribution is rotationally

symmetric, then we cannot determine the least inertia direction either. Iowever,we

need not worry about rotation for rotationally symmetric EGI distributions.

The following calculation gives this axis direction.

I..(v) f J EGIM(s, t)Xo(s, t)X 0 (s, t) /EG - F 2dsdt (4.1)

I1V(v) = J fv.. EGIM(s, t)Xo(s, t)Y(s, t) /EG - F 2dsdt (4.2)

IYY(v) f fv EGIM(s, t)Yo(s, t)Y 0 (s, t)VEG - F 2dsdt (4.3)

I..(v), Ixy(v), Iy(v) gives the principal inertia direction for the line of sight v,

1 21XV(v)
ce(v) tan-' I-- (52 I-(v) - IY,(v) (5)

Thus, a(v) gives the direction of the minimum inertia axis on the image plane.

For example, Fig.6 shows the axis directions of the ellipsoid. A needle depicts

the minimum inertia direction for each line of sight. Since this axis direction is

unique for each line of sight, this axis constrains the degree of freedom around the

direction completely. The resulting direction thus indicates the way a prototype

should be aligned with respect to the observed EGI.
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4. Implementation of EGI

4.1. Tessellation of the Gaussian sphere

In order to represent and manipulate an EGI on a computer, one must tessellate

the Gaussian sphere uniformly. A continuous surface such as an elliptic surface

is mapped to a continuous EGI mass distribution. A tessellated sphere is needed

to represent this image in a computer. The tessellation method must provide a

uniform division of the Gaussian sphere. Since we cannot predict the line of sight,

a tessellation method should have the same angular resolution in every direction.

Thus, each cell on the tessellated sphere is required to have the same area and the

same distance from its adjacent cells.

The projection of a regular polyhedron onto a sphere has this property [31]. A

regular polyhedron has faces of equal area, which are evenly distributed in direction

with respect to the center of gravity. Thus, projecting edges of a polyhedron onto

the circumscribed sphere with respect to the sphere center tessellates the sphere

uniformly.

Since the highest order regular polyhedron is the icosahedron, we have to use

a geodesic dome [32]. A geodesic dome is obtained by division of each triangle of

the tessellated sphere into smaller triangles. We use a geodesic dome from a two

frequency dodecahedron, because the geodesic. dome has a more uniform facet area

distribution than other domes of the same tessellation order [31].

Our computer representation of the tessellated dome has a hierarchical

structure. Each cell on one level contains both pointers to sub-cells on the next

level and the direction of the center point of the cell. Since we chose a two

frequency dodecahedron, the top level cell contains pointers to twelve cells from

a dodecahedron. The second level has 60 triangular cells from a one frequency

dodecahedron. The lowest level contains 240 triangular cells from a two frequency

dodecahedron (See Fig. 7.). The data structure also maintains distance measures

between neighboring cells.

10
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12

600

240 cells

Figure 7. The tessellated dome. The tessellated dome contains 240 triangular
cells from a two frequency dodecahedron.

The tessellated dome is used for two purposes. One is to accumulate an EGI

image. A particular object surface patch corresponds to a cell with a given surface

orientation on the dome. Measured surface area will be added to the corresponding

cell. The cumulative image on the dome is the distributed version of the object's

EGI. The other purpose is to sample the possible line of sight. Since the cells are

distributed uniformly over the dome, the center position of each cell can define the

spatial direction. Therefore, the line of sight space is sampled uniformly by this

dome.

4.2. Normalized EGI

In the case of a convex object, we only need to store the complete EGI image

over the Gaussian sphere in a computer. Since every surface patch whose orientation

belongs to the visible hemisphere of v is always observed from the direction v,

the EGI obtained from the direction v is exactly the same as the half image of

the complete EGI over the hemisphere. Thus, we can derive an EGI over a visible

hemisphere by rotating the complete EGI and taking the EGI image over the upper

hemisphere. Fig 8 shows some EGIs of convex objects.

* .In the case of a non-convex object, a surface patch, whose orientation belongs

to the visible hemisphere may be is hidden by another part of the object. This

11
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Side
view

Top
view

Cylinder Ellipsoid

Figure 8. EGIs of convex objects.

occlusion problem requires us to recalculate the EGI for each line of sight. This

can be done using either a geometrical modeler [33] or a mathematical expression

of the object.

The EGI of a non-convex object can be expressed using four parameters. The

line of sight can be expressed using two parameters. A EGI mass distribution at a

line of sight is expressed using another two parameters. Namely,

EGI EGIM(s, t, sl, ti), (6)

where (sl, ti) denotes the line of sight expressed on the prototype Gaussian sphere

Xp, Yp, Zp. (s, t) denotes a point on the visible hemisphere defined by (sl, t1). Note

that (se, ti) is similar to the light source direction and (s, t) is similar to the surface

orientation of the reflectance map (11].

We can store this four dimensional EGI distribution in a two dimensional table.

Since tessellation cells on the dome can be ordered along a one dimensional row, an

EGI mass distribution for the line of sight v, can be represented as a one dimensional

12
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vector. The possible lines of sight are also ordered in one dimension. Therefore,

an EGI can be stored in a two dimensional table, with each row corresponding

one possible line of sight. Each element contains an EGI mass (surface area)

corresponding to the surface orientation for that line of sight. Since (X,, Y, Z) is

defined for each line of sight, it is convenient for matching to define the orientation

of each column at each row based on each (Xo, Yo, Zo).

A discrete version of the projection ratio A(v) for the line of sight v, is obtained

by,

Av = [Zo(i) EGIM(v,i)]
_i=IEGIM(v, i)

where n is the total cell number of the v row. EGIM(v, i) is an EGI mass of (v, i)

component. Zo(i) is the Zo coordinate of i column. Note that (Xo, Yo, Zo) is defined

at each line of sight.

The following calculation gives this axis direction at the line of sight v.

I,,(v) = E EGIM(v, i)Xo(i)Xo(i) (8.1)
i=l,n

IE(v) = E EGIM(v, i)Xo(i)Yo(i) (8.2)
i=l,n

I,,~(v) = EGIM(v, i)Yo(i)Yo(i)(8)

From these values of Ixx(v),Ixy(v),yy(v), the principal inertia direction is obtained

in the same manner as for the continuous case.

1)tan_|  21y(v)
cr(V) (-)tan (9)

2 I'X(V) - IYY(

This a(v) gives the direction of the minimum inertia direction.

Storing constraint information adds two additional columns for each row. The

first column keeps the projection ratio. The second column stores the original

inertia direction relative to (Xo, Yo). The EGI mass distribution over the remaining

elements is rotated so as to agree with the Xo axis. We will refer to this recalculated

EGI as the normalized EGI (NEGI). Comparing NEGI from an observed needle

13
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map with NEGI on the table need not to worry about the freedom of rotation

around the line of sight.

4.3. Extension for Partial Observation

Real applications often require us to determine surface orientation from a

partial region of the hemisphere due to occlusion or some characteristics of the

input device. For example, the photometric stereo system can determine surface

orientation only where all of the three light sources cast their rays directly. Thus,

it is necessary to extend the above mentioned constraints to be applicable to the

case of partial observation.

Eg.(3) integrates the EGI mass over the visible hemisphere. Taking integration

only over a certain part of the visible hemisphere defines the projection ratio on

that partial area. This partial area can also define the least inertia direction and

the NEGI there. In other words, all projection ratios, EGI inertia directions, and

NEGI's are functions of the area where the EGI mass is integrated.

Let us define a circular region on the Gaussian sphere as an integration area

and refer to it as a visible disk. The center of the circle is located at the line of sight.

The radius of the visible disk is called the prospect angle w. The visible hemisphere

is a special case of the visible disk which has prospect angle w = . Taking w =

gives the projection ratio of Eg(3). On the other hand, when w approaches zero,

the projection ratio is idential to a delta function which is infinite at the point

where surface normal exists, and zero elsewhere. We can define various constraints

on various visible disks between these two extreme cases. For example, Fig.9 shows

how the iso projection-ratio contours of an ellipsoid X 2 + (Y) 2 + (Q)2 - 1 vary

with prospect angle. Line of sight directions are expressed on the stereographic

plane, where the f,g axis coincides with the x,y axis of the ellipsoid. The r axis

denotes the projection ratio at the direction (f, g).

So far we have defined the projection ratio, the least inertia axis, and NEGI

for visible disks. We will expand the 2D EGI lookup table into a 3D table. As

mentioned above, the first dimension denotes lines of sight. The second dimension

corresponds to surface normal directions. And the third dimension corresponds to

14
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49

w=50" w=70" W=90"
SX2+( ) 2+( Z) 2.1

Figure 9. Variation of iso-projection-ratios due to the prospect angle.

prospect angles. This third dimension does not need to have as fine a mesh as the

other two dimensions; usually, five or ten tessellating are enough. This 3D table,

thus, looks up the projection ratio axis direction, and NEGI, on a certain line of

sight over a certain visible disk.

The visible disk can be found from an observed needle map. At first, an observed

needle map is converted into a unnormalized EGI on the Gaussian sphere. We can

determine an inscribed circle of the obtained EGI distribution. This inscribed circle

determines a visible disk which has smaller radius and whose prospect angle is

contained in the table. The circle center determines a new pseudo line of sight. The

radius determines the observed prospect angle. EGI mass distribution is normalized

so as to have unit total mass and the least inertia axis aligned with the X axis over

this visible disk. The NEGI at the angle from the table will be compared with the

obtained NEGI.

This method works for the following partial observation: (i) An imaging

system can determine surface orientation partially. (ii) A curved convex object is

occluded by another object. Even in the case that we can observe the whole visible

hemisphere, it is better to use NEGI on visible disks of the prospect angle 70 or 80

degrees, for accuracy.
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5. Matching Function

A matching function determines a similarity measure between an observed

NEGI and the NEGI table. The matching function checks whether each column has

a similar amount of EGI mass to the corresponding table column. More precisely, the

following operation is done at each column inside of the visible disk. A cumulative

sum represents the similarity of row v. Note that this operation is done only when

row v's projection area ratio is similar to the observed ratio.

if EGIMobserve(i) = 0.0

do nothing

if EGIMbseCve(i) W 0.0
A IEGIMob.ev(i)-EGIMOde(vi+e)I

EGIMob.trvt(i)

d = distance(i, i + e)

if d < dstandard, and A < Astandard

add EGIMbseve(i) • (1 - A) . cosd to total point, S(v).

EGIMberve(i) is observed NEGI mass at i cell, EGIMOd(V, i + e) is EGI

mass at (v, i + e) cell of the table, and distance(i, i + e) is the inner product

between the cell directions. A is the relative error of EGIModet (V, i + e) assumed

to correspond to EGIMobserte(i). Thus, the first term represents how important the

EGIMmodel(i) is. The second term represents how different the two mass is. The

third term represent how far the two mass is. If EGIModd (V, i) has the exactly

same mass as EGIMbse'rt(i), (1 - A) = 1 and d = 1. Then, EGIMobserve(i) is

added to the total point. If this correspondence is established at each column i, the

total point becomes 1, because total EGI mass is 1. This value is the highest score

this matching function gives.

EGIMobserve(i) are compared not in the column order, i but in nonincreasing

order of EGI mass. In order to avoid one prototype cell being put in correspondence

with more than one observed cell, a part of the prototype mass at a cell which

passes the similarity check is discarded in the amount of the corresponding observed

mass.
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The direction having the highest score is determined as the observed line of

sight. The lookup table also registers how many degrees the prototype is rotated

so as to align the least inertia axis with the X axis. Obviously, we know how many

degrees the observed image is rotated so as the least inertia axis into coincidence

with the X axis. These two angles gives the rotation angle of the observed image

around the line of sight.

6. Experimerts

6.1. Synthesized image

Consider the simple example of an ellipsoid XP + YP + - observed

from the direction inclined from the Zp axis by an angle of 10 degrees. The surface

normal will be derived analytically and used to generate a needle diagram. The

algorithm will be applied to the synthesized needle diagram. The result will be used

as a basis for judging the performance of the algorithm.

In order to know the performance of the NEGI matching process, we will not

use the projection ratio constraint. We will measure the similarity at each 10 degree

interval from 0 through 90 degrees. The prospect angle is assumed to be 60 degrees.

A 40 x 40 synthesized needle-diagram was generated. At each image point the

outer surface normal of the ellipsoid was calculated. For graphical clearness, each

surface normal is depicted as a needle shown in Fig. 10.

Line of
.sight ........... ...................

. ........ . . . . . . . . . . . . ....... ..... .............

. . . . . . . . . . . . .. ....... .. .. ,:...

Figure 10. A synthesized needle diagram.
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The first task is to obtain an NEGI from this needle diagram. The surface

normal at each image point determines the corresponding cell on the Gaussian

sphere. Then, EGI mass is added to the cell's EGI mass, where -y is the angle

between the surface normal and the line of sight direction. The distribution of EGI

mass defines a visible disk. The cumulative mass over the disk is normalized so

as to have a unit total mass. Note that both deriving the least inertia axis and

normalization is done within the visible disk whose prospect angle is 60 degrees.

Fig.11 shows the NEGI obtained from the needle map.

Figure 11. NEGI obtained from the needle diagram.

We will compare the NEGI with prototypical NEGI's registered in the lookup

table. Fig. 12 shows some NEGIs in the table. Sinilarity scores are obtained using

the matching function. As indicated in Fig.13, the similarity has its maximum

value at 10 degree.

06 30o 60°  90"

Figure 12. Some NEGIs in the lookup table.
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Sim larity

1.0

0.5

I.

100 300 600 900

Figure 13. Similarity scores over the candidate directions. The similarity change
has its maximum value 1.0 at 10 degree.

6.2. Donuts Experiment

The algorithm is applied to the scene shown in Fig.14 for visual guidance of

a manipulator. Note that a simple silhouette matching does not work well in this

case.

Figure 14. Input scene (a pile of objects).
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The donuts needle diagrarn is obtained using the photometric stereo system

[14-16]. Fig.15 shows the needle diagram obtained. The photometric stereo system

can determine surface orientations for areas whose prospect angle is no more than

50 degrees.

wit itracuvs g6sostesmnt reion. Fig 17 shw hetre

.- '.\ \ t -

The proecio raio th les inri a, and th NE G ar calae fro

surac roml at th agtrgo.Fg1.sosteotie EI

I I

Sigure a5 dnt has needediagram obtined axis the photoeri smplin diretem.ns.

'''x

regoints select a 9 degnres s of a

Figureh1.Theprjetineediohe diagramstained b the etc sreo sctedfm.

K surface normals at the target region. Fig.18. shows the obtained NEGI.

Since a donut has a rotational symnictry axis, the necessary sampling directions

are points along a 90 degrees section of a great circle on the Gaussian sphere
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A

.4

Figure 16. The segmented regions.

... ...ii i ii ii;. 

ii~ : ,: ... ..........
i ! ?............ ... .............

Figure 17. The target region selected.

containing the symmetry axis. At 10 degree increments along the great circle, the

NEGI, projection ratio, and the least inertia axis direction are calculated using a

mathematical model of the donut shape. Since we know that the prospect angle

is 50 degrees, only one layer of the 3D lookup table is calculated. Since directions

near the axis may have relatively large error in the least inertia axis direction,

NEGI's rotated by a small amount around the exact alignment are also registered

in the lookup table. Fig.19 shows the output of the algorithm which indicat q the

approach direction of the end effector of the arm.

21



Ikeuthi FG |

a I /

/ \

/ N

Figure 18. NEGI obtained from the target region.

Figure 19. An approach direction of an end effector.

7. Concluding Remarks

This paper determines the attitude of an object using an extended Gaussian

image. The attitude of an object has three degrees of freedom. The freedom is

greatly reduced if we apply constraints derived from a global distribution of EGI
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mass. One constraint comes from EGI mass center position. The otthor constraint

is based on the least EGI mass inertia direction. After reducing the attitude

possibilities with these constraints, a final decision is made comparing it with

the model's EGIs in certified attitude. The best fitting attitude is selected as the

observed attitude of the object.

In case that there exist a various kinds of object in a scene, we can make

an extended NEGI table joining each NEGI table of each object. The matching

process may follow the same procedure described above. Usually the EGI matching

can determine the most likely attitude of the most likely object. In the worst case,

however, since EGI matching is a necessary condition for congruence of general

objects, we have to examine position information to identify the object. In this

case a decision process can make a final decision comparing the observed position

information with the information produced from a geometical modeler [331 at the

determined attitude [1]. Since the attitude is already determined, the calculation

cost of the geometrical modeler is cheap.
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