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1. Introduction

In most physical phenomena, changes in spatial or temporal structure occur over
a wide range of scales. [mages are no cxception: changes in light intensity reflect
the many spatial scales at which visible surfaces are organized. It scems intuitive
that a great deal of information can be gained by an analysis of the changes in
a signal at different scales. For instance, graphs of one-dimensional functions are
a very effective tool for describing complex systems, An important reason is that
they allow direct visual access to important properties of the data, chiefly to their
changes over different scales.

The idea of scale is critical for a symbolic description of the significant changes
in images or other types of signals. Changes must be detected at different levels
of dctail and over different extents. In genera! different physical processes may
be associated with a characteristic behaviour across different scales. In an image,
changes of intensity take place at many spatial scales depending on their physical
origin. A multiscale analysis, tracing the behaviour of some feature of the signal
_across scales, can reveal precious information about the nature of the underlying
physical process. In images, for instance, spatial coincidence at all scales of zero-
crossings in the Laplacian of the intensity values filtered with a gaussian mask,
signals a physical “edge”, distinct from surface markings or shadows. Not only
is it necessary to detect and describe changes in a signal at different scales, but
in addition, much useful information can be obtained by combining descriptions
across scales.

The importance of this idea has been clearly realized in the field of vision. One
of the main contributions of visual psychophysics in the last 10 years was indeed
to show that visual information is processed in parallel by a number (perhaps a
continuum) of spatial-frequency-tuned channels (Campbell & Robson, 1968). The
bulk of the data demonstrates that the visual system analyses the image at different
resolutions. Physiological experiments a:e consistent with the psychophysics. They
suggest that in the visual pathway spatial filters of different size operate at the same
location. Furthermore, psychophysics, physiology and anatomy all show that the
spatial grain of analysis continuously changes from foveal to peripheral locations.
Receptive and dendritic ficld sizes of both retinal and cortical neurons increases
monotonically with eccentricity, in agreement with the dependency on eccentricity
of the psychophysical channels.

In the ficld of computer vision, Rosenfeld was one of the first to propose explicitly )
an edge detection scheme-based on multiscale analysis performed with filters of [}
different sizes (Rosenfeld and Thurston, 1971). A similar algorithm was suggested
by Marr (1976) though with different goals and motivations. More recently, he
has strongly advocated the use of derivatives of gaussian-shaped filters of different
, sizes with the goal of detecting changes in intensity at different scales (Marr, 1982).
i The idea was first proposed in the context of a theory of stereomatching (Marr
T and Poggio, 1979). In that scheme, analysis at the different scales was cffectively
kept separate. Later, Marr and Hildreth (1980) proposed some heuristical rules to
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combine information from the differcnt channcls. However, the important problem
of how to combine effectively the different scales of analysis at thisn carly level has
remained open , although recent work by D. Terzopoulos (1982) has successfully
applied multi-level algorithms to the problem of reconstructing visual surfaces (see
also the work by Richards et al., 1982 and by Canny, 1983 on edge detection). In
a recent conference (Cold Spring Harbour, April 1983) we lcarned from A. Witkin
a new way of describing zero-crossings across scale.!

A 1-dimensional signal is smoothed by convolution with a small (large) gaussian
filter and the zeros of the second derivative are localized and followed as the
size of the filter increases (decreascs). This procedure originates a plot of the
zero contours in the z — o plane (where o measures the size of the gaussian
- filter).2 In this way, Witkin was able to classify and label zero-crossings achieving
an effective description of a signal for purposcs of recognition and registration.
This is possible mainly because the geometry of the zero contours is surprisingly
simple. Zero-contours are either lines from small to very large scale or closed,
bowl-like shapes. Zero-crossings are never created as the scale increases. Witkin
mentioned the striking result (obtained by J. Babaud) that the gaussian filter is
the only filter with this remarkable property in 1-D (at the same conference J.
Koenderink told us that he has obtained similar results exploiting propertics of
the diffusion equation).3

We have now succeded in obtaining a proof of this result in 2D (and in fact
any number of dimensions). We have also obtained related results for zero- and
level-crossings of other differential operators, in particular for ridges and ravines
in the image intensity.

The 2-D result seems important because it:

(a) lays the necessary mathematical foundation for using multiresolution labels for
classifying zero-crossings for a symbolic description of intensity changes.

(b) justifics the use of gaussian filters and an associated linear derivative because
of their “nice” properties under changes in scale.

In this paper, we will first state and prove the one-dimensional result. ' We will then
show that only a spccific 2-D extension is valid. Zero-crossing of linear derivatives
have the "nice scaling behaviour” if and only if the image is filtered by a 2-D
rotationally symmetric gaussian. In particular, the laplacian-of- a-gaussian filter
suggestcd by Marr and Hildreth has nice scaling behaviour. The second directional
derivative along the gradient, however, does not: no filter exists that can ensure a
nice scaling behaviour of the zeros of this derivative. We have then, the following
results:

! Witkin's prize-winning paper will appear in the 1983 1JCAI Proceedings (Witkin, 1983). We
reccived a preprint after this memo went to press,

2J. Stansficld first described — for analysing commoditics trends (Stansficld, 1980) — the idca of
plotting zero-crossings over scale, but did not develop it.

3 After completion of this memo we were informed that a technical report containing the 1D proof

is now ready, with the title “Uniqueness of the gaussian kernel for scale-space filtering,” by J.
Babaud, A. Witkin and R. Duda, Fairchild 'I'R 645, Flair 22).
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(a) for linear derivative operations—in particular, for the laplacian—the gaussian
is the only filter with a nice scaling behaviour.,

(b) for the nonlinear directional derivative, no filter will give nice scaling behaviour.

2. Assumptions and results

We will consider filtering the image I with a suitable filter F and then consider
the behaviour of the zero crossings as we change the scale of the filter. We make
five assumptions about the filter, and impose them as boundary conditions.

(1) Filtering is shift-invariant and, hence, a convolution. We write this as

Fallz) = [ Fla— I(s)ds.

(2) The filter has no preferred scale length. In two dimensions standard results
of dimensional analysis (Bridgman, 1922) give F(z,0) = 1 f(), where o is the
scale of the filter. The factor L ensures that the filter is properly normalized at
all scales.

(3) The filter recovers the whole image at sufficiently small scales. This is expressed
by Limo.g, F(z,0) = §(z), where 6(z) denotes the Dirac delta function.

(4) The position of the centre of the filter is independent of . Otherwise, zero
crossings of a step edge would change their position with change of scale.

(5) The filter goes to zero as {z| + oo and as o — oo.

As will become apparent, our results are independent of scaling the z axis. We
usually require that we scale this axis so that the filter is radially symmetric, and
state theorems with respect to such axes. However, we can relax this requirement
by rescaling the axes.

Figure (1) shows the typical scaling behaviour of zero crossings in one dimension
observed by Witkin. Figure (2) shows possible behaviour of zero crossings which
is never empirically observed when the filter is a Gaussian. The generic properties
of the zero-crossings curves in the z,o0 plane can be derived from the [mplicit
Function Theorem. To yield a CT curve the theorem requires that the Laplacian of
the filtered image is C*. Therefore the filter must be reasonably smooth. Observe
that filtcring with a gaussian will ensure a C*™ output for all images, because of
the cquivalence with the Cauchy problem for the diffusion equation. The Implicit
Function Thcorem may break down at degenerate critical points when all first
derivatives of the filtcred image vanish together with the Hessian.* These points
arc non-generic in the sense that a small perturbation will destroy them. Observe
that "true” zero-crossings can only disappear in pairs in the z, 0 plane. Only trivial
zeros that do not cross zero can disappear by themselves, They are, however, non
generic.

In onc-dimension, the zero crossings obey

* Zeros of the Hessian correspond to zeros of the gaussian curvature,
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This equation gives z as an implicit function of g, i.e., z = z(o). If we vary z and
o so that (2.1) is still satisfied, we obtain

d _ % ogi:—‘)f:'_(:%‘)f(c)dc 22)
do IZ (555 1(6)ds

So the tangent to the curve is uniquely defined at a point, as are all the higher
order dcrivatives. This prevents the behaviour shown in Figures 2b, 2¢ with the
possible exception of the nongeneric cases, when the Implicit Function Theorem
breaks down.,

The curve in Figure 2(a) is more interesting because it corresponds to a pair
of zero crossings being “created” as the scale increases. The Implicit Function
Theorem does not rule out this case. It therefore secms natural to require a filter
such that this never occurs. In the following three sections, we will prove some
theorems showing that such a filter can only be a gaussian and, moreover, that not
all differential zero-crossings operators can obey this property. More precisely, we
prove:

Theorem 1. In one-dimension, with the second derivative, the gaussian is the only
filter—obeying our five boundary conditions—which never creates zero crossings
as the scale increases.

Theorem 2. In two-dimensions, with the laplacian operator, the gaussian is the
only filter obeying the boundary conditions which never create zero crossings as
the scale increases.

Theorem 3. In two-dimensions, with the directional derivative along the gradient,
there is no filter obeying the boundary conditions which never creates zero crossing
as the scale increases,

In section (5), we show that results similar to Theorems 1 and 2 can be extended to
all lincar differential operators (in particular, directional derivatives) and therefore
to other features of the image, such as ravines and ridges (but not peaks) in the
image intensity. These thcorems can be extended to any dimension, but we will
not give these extensions here.

It should be emphasized that, although zero crossings can only annihilate themselves
in pairs, the intensity change corresponding to a zero crossing could become
arbitrarily smaller as sigma incrcases. The zero crossing would then become so
weak that for practical purposes the curve may terminate.

3. The I-D case

Let the image be 7 and the filter be F. We consider the zero crossings in the
filtered image.
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Fale)= [ Flz— olig)i

Denote f:.—‘(F + I) by E. Hence the zero crossings are the solutions of

E(z) = 0. (3.2)

These form curves in the £ — o plane. The condition that zero crossings are not
created at larger scales is that for all such curves o(z) the extrema of o(z) are not
minima. Hence, for all points z, such that ¢'(z,) = 0, we require that ¢"(z,) < 0.

Let ¢t be a parameter along a curve in ¢ — z space. Then

dE _9Edz | dEdo

@ T a (3.3)

On a curve of zero crossings, E = 0, and so 4€ = 0 on such a curve. We can
choose the parameter ¢ to be z. Then, using the Implicit Function Theorem, we
obtain:

do _ —E,
dz  E,°

(3.4)

This result vanishes at z, if and only if

E.(z,) = 0, (3.5)

and we calculate

]

dza(ZO) — —-En(:to) (3 6) :

dz? Eo(z,) ' :

1
Thus, our filter must be such that if 1
E(z,) = Ex(z,) =0 (3.7 -

then d
1

E:z(xo) )

——= > 0. 3.8 .

i (38) :
The Diffusion Equation can be written as i
8°E  10E y

327 " 500 (39) 3

1
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Note that by the substitution ¢t = ‘123. we obtain the standard diffusion equation,
If the filter F' is a gaussian,

RN “ 474

| F(z) = Ly {:iz} (3.10)
= o Pigerh '
: then it will obey the diffusion equation of which it is the Green function and
hence E(z) will also obey the equation. Thus, = = 1 and so a gaussian filter

will always satify conditions (3.7) and (3.8). ’

We now show that the gaussian is the only filter which satisfies the conditions and
obeys the boundary conditions specified in section (1).

Consider an image which is the sum of delta functions:

I(¢) = Y Aib(¢ — &) (3.11)
i=1
It is possible to generate any image in this way by taking the limit as n — oo.
Set
T(:L‘) = Fzz(x)c (3-12)
® Equations (3.7) and (3.8) vield
- 3 AT(z,— ) =0 (3.13)
=1
Y ATz, — ) =0 (3.14)
i=1
and

. Aszz(xo — fn)

1=1

?:1 A«'To(xo —_ ft’)

> 0. (3.15)

We can construct a counter example if we can solve the simultaneous equations
for any z,,¢...¢. and any positive €2

3 AT(z,— ) =0. (3.16)
t=1

i AiTI(Io - ft) = 0. (3.17) :

1=1




i A{Tz:(zo b gg) == —£2. (3-18)
1=1
3 AT, (zo—¢)=1. (3.19)
1=1

We can write these as a matrix equation:

T(zo—¢) ... T(zo— ) /A 0
Tz(-"o - fl) e Tx(xo - §n) . 0
= 3.20
Tzz(zo — fl) ces sz(za - gn) . —£2 ( )
Ta(Io - S.]_) o To(.’L'a - s.n) An 1

Using Appendix (1) a necessary and sufficient condition for it to be impossible
to solve these equations for any values of z,,¢;...¢, is that there exists a vector
A == (M1, Nz, X3, \¢) independent of z such that

MT(z) 4+ NoTx(z) + N3Tzz(z) + MTo(z) =0 (3.21)
and
—A3f2 2 #£0 (3.22)
Equation (3.22) will be satisfied for all positive £2 if and only if
A3hg < 0 (3.23)
Our boundary condition (2) means that F(z), and hence T'(z), cannot depend on

any scale length. The )\'s are independent of z and so to make (3.21) dimensionally
correct (Bridgman, 1922) we set

)‘l == 22—’ XZ = 9—, X3 == C’ X4 pomd j (32’1)
] o [ 4
and rewrite it as
aT bT. d
— + -z + CTII = —Ta (325)
g c o

Condition (3.23) implies that ¢ is positive.

Now T = f}’f so F will also satisfy (3.25) although it is possible to add a term ¢

1 "
o F where di;‘f == 0. However, this term will not satisfy the boundary condition
(5) as z ~» oc and so we discard it.
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Thus, we have shown that we can always construct a counter examplc unless our
filter F obeys to the equation

P TRy B ARy

aF b d
F + ;Fz + CF:I = ;Fa (326)

with ¢ positive. It is shown in Appendix (2) that the only solution of this equation
obeying the boundary conditions is the gaussian. Hence we obtain Theorem (1).

4. The 2-D Case

We now consider the two-dimensional case when the zero crossing op  tor is the
laplacian V2 and the image depends on z = (z,y). Again, we consider .. filtered
image

Fea@=[ [ Fla—grad (4.1

We set

E(z) = V}{F » I(z)} (4.2)

The zero crossings are solutions of E(z) = 0 and form surfaces in the three-
dimensional (z o) space. Our requirements that zero crossings are not created at
larger scales is satisfied if the extrema of these zero crossing surfaces are either
maxima or saddle points. Minima are forbidden. Thus, if we have a surface o(z, y)
and there is a point (z,,y,) with

az(zo: yo) = Uy(xo; yo) =0 (4'3)

we cannot have o,y = 0 and both

021 > 0, ayy > 0- (4.4)
Let ¢t be a parameter of a curve of the surface E(z) = 0. Then,

dE OEdx  0Edy . OEdoc

— jut A Wihdniputl 4.5
dt dz dt dy dt do dt (4.5)

Since we are on the zero crossing surface, we have 4€ = 0 and setting ¢t = z and
then t = y, we obtain

Y\ STV YN |- SVOPSPLVGIRTSN - SO

_ —E

= 4.6
Oz g, ( )

aa_-

A =]
PR . VPR
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Oy = B, (4.7)

Suppose we are at an extremum (zo,y,). Choose the z and y axcs so that they
coincide with the directions of principal curvature at (z,, y,). Then we calculate

-I I .' l‘ 5 ' ' . -'

'_I':J:I(ono)
\Yo) = ——r0Z2] 4.8
UII(IO yO) Ifo(zmyo] ( )
'—Eyy(zmy )
Oyy(Toy yo) = —— i 20220 4.9
yy( (/] yO) Iba(zo,yo) ( )
It should be ecmphasized that (4.8) and (4.9) ure true only at an extremum of 1

o(z,y) and only if the z and y axcs are taken along the directions of the lines of
curvature (this ensures ozy = 0).

As in the 1-D case, it follows that the conditions (3) and (4) will always be satisfied %

if E obeys the Diffusion Equation. Since if o;:(z,,y,) and oyy(z,,3,) are both
positive, (4.8) and (4.9) imply that g:;’ and %;(I’;’ are both negative. Thus,
a gaussian filter will always obey our condition.

We now show that if the filter is not a gaussian, we can construct a counter-cxample.
The argument is a gencralization of the proof of Theorem 1. Let

PO VE

n
I() = 3 Ab(s —¢,) (4.10)
i=1
Set s ;
T(z) = V*F(z) " (4.11) ]
We can construct a counter-example if we can solve the matrix equation for any )
Zo,¢1- - $n and any positive €2 and £2:
T(zo—¢1) - T(zo—6a) A 0
T,;(fto - §l) cee TI(IO - (n) 0
(=) - Tw—s) ||| _| o (.12
Tz:(xo - gl) . Tyzz Lo — S.n) ' “E% ’.1'
Tyy(ro — 1) Tyy(2o — ¢n) A' —¢2 |
Tolzo — 1) - Tolzo— ¢n) " 1
Using. Appendix (1), a necessary and sufficient condition for no solution to exist i
for all zo,¢1,..., ¢ is that we can find X = (X}, ..., \g) such that ]

M(2) + NaTo(2) + ATy () 4 MTee(1) | NsTyy b NeTal2) =0 (4.13)

10 !:
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and

—ON — N5+ X #O0 (4.14)

Equation (4.14) can be satisfied for all positive ¢ and €2 if and only if:

Ais > 0, Ighg < 0. (4.15)
Again, boundary condition (2) implics the \'s arc of form

a b b —d
M=, = -al,)\3= f,k4=cl,)\5=62,)\6= - (4.16)

and T satisfies

aT b b d
— + _sz + _2Ty + 1Tz + C2Tyy = —T,
o o '

~T, (4.17)

- with cye9 > 0 and ¢;d > 0. -

F will satisfy (4.17) up to a term 3 with V2 = 0, which we can discard because
of boundary condition (5).

. It is shown in Appendix (2) that the only solution of (4.17) which obeys our
i ﬁ conditions is the product of two onc-dimensional gaussians. If we make the
additional assumption of symmetry, we obtain a two-dimensional symmetric
gaussian. Hence, the gaussian is the only filter which satisfied our condition,
N and we have proven Theorem 2. There is an additional property of gaussian
> filters: allowed zero-crossing surfaces in the z,y, o space cannot have saddle points
with positive mean curvature H. The result of this section forbids the existence of
upside-down mountains (in the z,y,o plane) and also of upside-down volcanos.
Sections of the zero-crossings surfaces normal to the z,y plane may appear as
suggesting that lines of zcro-crossings are created. In fact, because of saddle points
. of the surface, zeros can be traced continuously along the zero-crossing surface to
& smaller and smaller scales.
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5. Further results

It is clear that the methods of proof we have developed do not only apply to zero
- crossings. For example, consider the one-dimensional case and look for solutions
of

dren=0 (5.1)
X

‘These correspond to maxima and minima of the filtered signal which we call pcaks

and troughs. If we set £ = &(F xI) and duplicate the arguments of section (2),

11




g LA A A gul Ay -
B SOOI~ AOOAOOEL B~ MO

. T v . e - - T e It S - - iy - ) - 23 4 - e 2l
I Wt Y e R L e e o L T R N W e r——y D e P gy
RS KBt A e P Ty ————y———

we find that having a gaussian filter is a necessary and sufficient conditicn for
peaks and troughs not to be created.

More generally, if L(z) is a differential operator in any dimension that commutes
with the diffusion equation, then solutions of

L(F » I) = const (5.2)

will not be created if and only if the filter is gaussian. Zeros of all linear differential
operators can be encompassed by Theorem 1.

In particular, in two dimensions, surfaces obeying £(F * T) = 0 can only be
created by a non-gaussian filter. Thus, ridges and ravines whose creation necessarily
involves creation of zeros along some direction, can only be created, as the scale
increases, by a non-gaussian filter. The argument, however, does not apply to
extremum points (non degenerate critical points, such as peaks and pits, where all
derivatives vanish simultaneously).

6. Directional operator

We have considered the two-dimensional case when our operator is the second
directional derivative along the direction of the gradient in the filtered image. Let

H@) = [ [ Flz — 9Ilg)as. (6.1)
The directional operator is
da _ 1 0H 4 (6.2)
dt lgg'axj oz;

using the summation convention on the j indices. The second directional derivative
along the gradient is then

) dzH . [{iHjHij

de2 HH, (63)

where H; = g—:%,Hij = ggi;—;; and we use the summation convention. We set

E(z) = Hi(z)H;(z)!y;(z) (6-4)

The zero crossings lie on the surface o(z,y), where E(z) = 0. Our condition is
that if we have a point (z,, y,) where

az(xov .’/o) = Uy(zo: yo) =0 (6'5)

12
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and the z and y axes are along the direction of the lines of curvature of the o(z, y)
surface at that point, then it is impossible for both o,; and oy, to be negative, i.c.,

022(2o, yo) <0, ayy(xo, yo) <0 (6.6)

We use the Implicit Function Theorem to obtain

—FE
0 = Ea’ (6.7)
_EV
=% (6.8)
and we calculate
_ —Ezz(zo;yo)
0::(20, yo) = Ea(zo, ” (6.9) ‘
- w(zo;yo) 6.10 ’
Oyy(Zo, ¥o) = Ey(203) (6.10)
Again, note that if E obeys the Diffusion Equation, then the conditions (6.5) and

(6.6) cannot be satisfied. However, E is no longer a linear function of the filter,
and so we cannot directly obtain a condition the filter must satisfy. Now set

[g)= 3 Adb(z — ¢a) (6.11)
a=1
L we find
- HiHHiy = Ay g AyFi{0)F5(B)Fi(1) (6.12)
*! where the summation convention applics to a, 8,4 as well as to 1, 5.
We define
be T(apy) = G{FLIF(OIFs(1) + FOIFy()Fis(x)
’ + Fy(@) F5(7)Fi5(8) + Fi(B)F;(7)Fij(e) (6.13)
E« + Fi()F;()Fi{B) + Fi(v)F;(B)Fij(e)}
i’ and write (6.12) as
H, I Hyj = T(afy)AaAgA, (6.14)

13

T P . . T Y T T L e . T P 3



P A T e B Y S ot St "= a A *a Sttt et S gt At St Jebt St S SIV APE St v M " " MJMaL Sadh Senth ma aarus e a4
- = L A . - . . .~ -~ . . . - - . . - o - .

We can produce a counter-example if we can satisfy

( T:(apv) AeApAy 0
T, (aﬂ'y) .o * _ 0 ‘
szz(aﬂ'Y) e : - _e% (()15)
Tiy(aBy) ... : —£
\ Ta(aﬁ‘Y) cee J * 1
It follows from Appendix (2) that no solution exists if there is a A = (A1, M2, A3, A\g, X5, \g)

such that

MT(aB7) + M2 Tz(aB) + MsTy(aB7) + MTzz(aB7)

+ AsTyy(aBv) + NeTo(aBy) =0
(6.16)

but

— % — 25+ Ng #£ 0. (6.17)

As in section (3), we can use dimensional arguments to show this means that
T(afB~) satisfies the generalized Diffusion Equation.

However, since we require solutions to (6.15) of specific form A, AgA, it is possible
that there are no solutions of (6.15) even if T(af+v) does not obey the generalized
Diffusion Equation. To rule this out, we must show that it is possible to find a
solution of form A, AgA,. From Appendix (2) it is possible to get a solution By,
of

T(aﬂ'ﬂ Baﬂ'y

|0 (6.18)
Ta(‘;ﬂ'ﬁ

if and only if the vector

lics in the spaced spanncd by the

14
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To(afB7) )
as a, 8,v vary. Denote 5
0 \
0 )
0
—~ :
—~ b
1 v

by £ and

.8l
w
-2
A -,

T (af)

by T%p,. where i =1 to 6.

Each T*(aBv) is symmetric in all indices a,8 and vy and so there are N =

'i("—ﬂgﬂﬂ such vectors. They have only six components each and so they are not
linearly independent. There will be at least N — 6 linearly independent vectors

gff},,, such that

¥ Tp®, =0, p=1 to N—6. (6.19)
afy

If T(op,) does not obey the generalized Diffusion Equation there will be at least T
one solution B,g, to (6.18). The general solution is of form 3
3
- N—6
? Bupr+ X by, (6:20) :
- r=1 )

where u is arbitrary.
We now ask under what conditions can we find A, and u which satisfy

3 N—6 N
Bapy + 2 Hpsapy = AafAphy (6.21) :
p:
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From the form of (6.15) it is clear that scaling the A's will not affect the counter-
cxamplc Hence, satisfying (6.21) is equivalent to finding an A, such that A ApA,
lics in the N-5 dimensional vector space spanned by B(,m,ca[,,,, 'faﬂv . A
necessary and sufficicnt condition is that A,AgA, is pLI‘andlclllar to the five
vectors which span the complement of this N-5 dimensional space in the full N
dimensional space.

Let the five vectors be Pagy, Qapys Tapy Xapy and Yap,. It will be possible to
solve (6.21) and hence (6.15) if we can satisfy

PapyAaApAy =0
QapyAaApAy =0
TapyAaAsAy = 0. (6.22)
XapyAaAgAy =0
YapyAaAsA, = 0.

These are a system of five simultancous cubic equations in n variables. If we take

n sufficiently large, it will always be possible to solve them (Yuille, in preparation).

Thus, unless T(aB~) obeys the generalized Diffusion Equation, it will always be
possible to construct a counter-example.

We now show that no reasonable filter will satisfy these requirements,

First suppose we have a gaussian filter G(z, o)

6lz,0) = Serp(55) (6.23)

where m is an arbitrary number.

Then we find
Gile) = ——(:ﬂz fokt ggp = te] (I = g") } (6.24)
—&;j (z2—¢)®. (2—¢a)(z—), (2 —¢,)
Gyj(a) = ;—":;%ezp{— 507 }+ — L ezp{— = (6.25)
So we obtain
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_ (e—w@)? (E—9)P (@—g)
Tlapy) = 2"”{—" 207 202 20° }
1
X (e — o) (e— ) —(a—g0) (e —51) — (& — ) (2 — o)
(2 — a)*(z — ) (z—¢)*(z— )
+ o2 (§_§7) ‘0,2 . l—f_@_)
(z— ¢p)*(z — ¢a)
+ _-02 z— S_'l)}
(6.26)
As shown in Appendix (2), the general Diffusion Equation can be written
b b d
;‘Tz + ;2T,, +aTe + oy =T (6.27)
If we substitute (6.26) into (6.27) we see that ¢, Ty, + c3Tyy contains a term
g—¢ ) (z—¢) (z—¢)
g glatea) o Eoof Eog)h EogF o o

gdm+6 202 202 202

All other terms in (6.27) will be of this form multiplied by powers of (z —g,j), (z—
¢g) and (z—¢ 7). From (6.17), ¢, and ¢z have the same sign and so it is impossible
for Z to be zero and, hence, (6.27) cannot be satisfied if the filter is a gaussian.
Now suppose we have a filter which satisfics this requirement. Set $, = ¢a +¢5
and integrate T(cBv) with respect to ¢, and ¢;. We find

[ [ Fila— s File — s )Fsla + (¢, + ¢,)s dsy = Fis Fy  Fi(32)  (6:29)
Hence, with ¢, = ¢+ ¢,, we have

/ / T(afy)ds,ds, = Fi * Fj + Fy;(3z) (6.30)

This will still satisfy the generalized Diffusion Equation since T(af7) obeys this
equation for all valucs of ¢, $p and Sy From Appendix (2), the solution to the

generalized Diffusion Equation is P » f(z), where f is an arbitrary function and
(z+bio)d

P(z,0) = ;Tczp{—- AndL }ezp{— (li’ﬁ‘_’)f ii.}

6.31
h 202 ¢ 202 c3 ( )

We have
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F; « Fj » Fy;(3z) =lP * f(z) (6.32)

The boundary condition (4) means that b; = by = 0 and we can scale the z and
y axcs to make P a gaussian. Thus

FixFj» F"]‘(3.‘L) =G x f(z) (6.33)

We Fourier transform this equation denoting the fourier transform of a function
g(z) by Tg(w).

TR T ()T Fiw) = TOET f(3) (6.34)
But we have
TFi(w) = —iwi TF(w) (6.35)
and
(o) = exp( 22} (6.39)
Hence,
MTFWP = exp{ g} TS (3) (637
and
7w = (LGt eep( 2207y (6:38)

Thus F is the convolution of a function with a gaussian and obeys the Diffusion
Equation. But, as shown in Appendix 2, the only such filter which satisfics the
boundary conditions is a gaussian.

So a filter which obeys the conditions (6.16) and (6.17) must be a gaussian, and yet
a gaussian cannot satisfy these conditions, Thercfore, for this dircctional operator,
it is impossible to satisfy our requirement. Notice that if the gradient direction
does not change rapidly the second directional derivative along the gradient can be
approximated by the second denivative along the z axis, where the z axis is chosen
in the direction of the gradient. The arguments of section 5 then show that no
7ero-crossings arc created if, and only if, the filter is gaussian. If these assumptions
are satisficd ot one scale, they may break down at larger scales because of the
mfluence of other parts of the image. We thercfore expect that at large scales

18
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. zero-crossings may be created even for gaussian filters, unless the image is very
N simple (for instance an isolated straight step-edge).

{ 7. Conclusions

The behavior of the zero- (or level-) crossings is more complex in two dimensions
than in one dimension. In the 2-D case, two zero crossing contours can merge
into one closed contour as the scale increases. The zero-crossing surface has
a one-dimensional crossection (for given y, say) that corresponds to an allowed
one-dimensional case. In 2-D, however, the “complementary” situation can also
occur: a closed zero-crossing contour can split into two as the scale increases, just
as the trunk of a tree may split into two branches. This occurs at saddle points
{ of the zero-crossing surface. This case would correspond in 1-D to the “creation”
‘ of a zero-crossing (imagine a one-dimensional section of the zero-crossing surface)
which is forbidden. In 2-D, however, no new zero crossing is created, since the
: corresponding surface is continuous down to zero scale. We have constructed
- two-dimensional examples of both these two cases, using the gaussian filters. Both
examples would also work for all other filters.

R e

Several other functions have been proposed for filtering images. We expect that
they only give a nice scaling behavior for values of ¢ for which they approximate
' u the solution of the diffusion equation. The DOG (difference of gaussians) does not
- satisfy the diffusion equation, but is a good approximation except when o is very

small. One-dimensional real Gabor functions (the product of a gaussian and a

sine or a cosine) approximate the solution of the diffusion equation only for large

values of ¢. Our conditions are violated even more by the sinc function which
only satisfies the diffusion equation at best in a weak asymptotic sense. Figure

3 shows an example of the zero-crossings generated by the gaussian and the sinc

filter.

Y e

il i

It is interesting that our proof implies that the difference equation is the only
linear equation that has, with suitable boundary conditions, a nice scaling behavior
of its solutions. This may have some implications in physics.

el Siedededed

_ In summary, we have shown that the gaussian is the only filter that guarantees a _
P nice scaling behavior of the zero- and level-crossings of linear differential operators. )
- Notice that the gaussian need not be symmetric: elongated directional filters,
obtained by stretching the axes, also have a nice scaling behaviour. We are
presently studying the practical use of the scaling diagrams (in 2-D) for a symbolic
representation of images, as suggested by Witkin, and, in particular, for solving the ,
correspondance problem in stereo. In this context, the robustness of the “scaling ?
representation” under small perturbations of the image is clearly critical and has ]
to be carcfully studicd. ‘
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Figure 3 Examples of the zero-crossings of the second derivative of the gaussian
(a) and of the sinc filter (b) for the same input function
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If we have a matrix equation

Appendix 1

Bz=g

bin b1
. J=rankl .
bmu bml

the necessary and sufficient condition for a solution is that

bln

bmn

a

Gm

)\l(blly veey bln) +...4+ xm(bmlr AEE bmn) =0

xxa1+...+Xmam#0-

Appendix 2

bFy

F
a"§+_+CFu=
o o

bFz

Suppose we have a generalized Diffusion Equation of form

dF,

dF,

— + = —
o o

1 .
F(z,0) = —- w,o0)e "“idw
(z,0) m/f( )

PO A T W S Y g -

Y—iw)

4

f+ed—w)f =~

21

dof
o do

)

(1)

(2)

Hence a necessary and sufficient condition for the non-existence of a solution is
that we can find a vector A = (\y,...,\m), such that

(3)

(4)

(1)

We can remove the first term by the scaling F — o—(/9)F, Consider the remaining

(2)

(3)

where f(w,o) is the Fourier transform of F(z,¢) with respect to z. Combining
(3) and (2) we obtain

(4)
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We integrate and get

PP ST S

f(w,0) = glw){e = =TT} (5)

where g(w) is a function of integration independent of o.
Hence, substituting (5) into (3) gives us

1 igre meaddy
F(z,0) = — w){eT ¢TI T e W dw 6
(,0) m/g(){ } (©)

Note that we are considering equations for which c¢/d is positive and so the integral
is well defined. We now apply the convolution theorem to (6) and get

Pla0) = — [\a—s. o) )

where u(¢) is the fourier transform of g(w) and \(z, ¢) is the fourier transform of
{eT1 ™97}, We calculate

d1l _—g(r1po)?
Nz,0) = \/;;ei_c?df( +bo) (8)

Thus the general solution to (1) is of form

F(z,0) = L,(a—l)\/? / eichlz—s ) L (9)
v2r ¢
We now impose the boundary conditions stated in section (1). First, note that
\(z,0) is a gaussian with centre z = —bo. The requirement that the centre of the
filter does not move implies that b = 0.
Write
F(z,0) = o? / L_\/gleffr(z—c)’“(g)dc (10)
Vartco ]
|
and consider the limit as ¢ tends to 0. Now,
9
Limgrsg—— \ﬁleﬁ“"‘)z = §(z — ¢) (11)
Var ¥ €9 ]

where 6 denotes the Dirac delta function. If (3) is non-zero the limits of F(z, o)
will either be undefined or zero. Hence our boundary condition (3) foreer » = 0. ]
Morever, substituting into (10) we obtain
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Limg, ,oF(z,0) = u(z) (12)

and condition (3) means that u(z) must be the delta function. Hence, on
substituting this back into (10) the only solutions of (1) which satisfies our boundary
condition is the gaussian

1 dl
G(z,0) = — ———e”’“’ 13
@)= ——\c, (13)

This analysis can be extended to the two dimensional generalized Diffusion
Equation

by Fy

A similar argument shows that the only solution obeying the boundary condition
in a two-dimensional space is

2
G(z,y,0) = 1 /4 i%eﬁfﬁeﬁgf’ (15)
\/ﬁ; ci1yc0
We usc the symmetry requirement of section (1) to set ¢; = c,. Then we obtain
23 H
G(z,y,0) = -l—gle"" > (16)
27 co?

We can scale the o-axis by \/5 and write (13) and (16) as

1 1 -3
G(I, 0) = E;C# (17)
and
G(z,y,0) = —1r-a—e:'v:r_za"Ll (18)

respectively. This ensures that ¢ is the standard deviation of the function.
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