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1. INTRODUCTION

Lightweight composite materials have been used for many years in the

aerospace industries. Some of the most needed design informations are the

failure mechanism and the failure criteria. Determination of the failure

.
;
!
)
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mechanism and the failure criteria requires in general a rigorous stress
analysis at the singular point in the material. The lack of such an
analysis is one of the impediments in understanding the failure mechanism
and in determining the failure criteria. In the case of layered composite
materials in which each layer is of orthotropic material, experimental
observations indicate that the failure modes are in general either along
the interface between the layers or transverse to the layers. For instance,
consider the layered composite shown in Fig. 1 in which each layer is a
fiber reinforced composite laminate. The fibers lie in the plane of the
layers although the orientation 6 of the fibers may vary from layer to
layer. When the composite is subjected to an extensional strain in the

xs-direction, a delamination may occur along the free-edge MN. The stress

singularities at the free-edge such as the point M were investigated in
[1]. It was shown in [1] that, except for certain special combinations of

the ply-angles on both sides of the interface, the stresses have the

logarithmic singularity at the free-edge in addition to the t = (k > 0)

singularity. Moreover, unlike the -r-|< singularity whose existence depends

YT
A RN

on the stacking sequence of the layers and the complete boundary conditions,

‘- .

the existence of the logarithmic singularity at point M depends only on

T,

g the ply-angles on both sides of the interface. Instead of the delamination,
- : a transverse crack shown by the dashed line may occur in the layer. There

are stress singularities along the transverse crack edge MQ which is on
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E“. the interface between two layers and hence may initiate a delamination along

the interface. The nature of the singularities at the crack edge such as

point O 1is the main interest of this investigation.

For this purpose, we take point O as the origin of the rectangular

coordinate system (xl,x,,xs) in which the X, = 0 plane is the interface

while the transverse crack lies on the Xz = 0 plane, Fig. 1. 1In the

(x,,x.) plane, Fig. 2, the xs-axis is the interface between the two materials
“ 9

and a crack in material 1 is located along the negative xz-axis. The

deformation at and near the origin O 1is certainly three-dimensional, i.e.,

) x3 as well as xl' However,

it was shown in [2] that, to the first order of approximation, the order of

the displacements u, are functions of x

singularity at point O is affected by the dependence on x, only to the

1
extent of the strain component ¢ at point 0. Since the problem is

11
linear, we will first study the singularity at point O due to the dis-
placement field in which u, are functions of X, and Xz only. We will
then study the singularity at point O due to a uniform extension in the
xl-direction and see if additional singularities are present.

When the materials on both sides of the interface are isotropic, the
singularity at the tip of a crack which is normal to and ends at the inter-
face has been studied by many investigators (see [3-8], for example). In
real composites, each layer is a fiber reinforced laminated material and
hence should be regarded as an anisotropic material. The problem of a crack
terminating at the interface of two anisotropic materials does not seem to
have been investigated, although the case of orthotropic materials was

studied in [9,10]. 1In Section 2 we present the basic formulations for aniso-

tropic materials in two-dimensional deformation. Instead of using
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Lekhnitskii's approach [11] which breaks down in degenerate cases [12] and
requires a special treatment for the degenerate cases, we employ the
analysis which was originally due to Stroh [13] and further developed by
others [14,15] for studying surface waves in anisotropic elastic solids.

In Section 3 we study the stress singularities at a crack tip in a homo-
geneous anisotropic elastic material, i.e., the material is not layered.

The same problem was studied in [16,17] for anisotropic elastic solids
whose material property is symmetric with respect to the X; = 0 plane, and
in [18,19] for general anisotropic materials. By a different approach
from that of [16-19], we show that Kk = 0.5 is a triple root singularity
for a crack tip in a homogeneous anisotropic medium. In Section 4 we
formulate the equations for determining the order of singularities at the
tip of a crack which is normal to and ends at an interface between two
generél anisotropic materials. We also show how one can determine the
number of roots K in a given region in the complex k-plane. Numerical
examples are presented in Section 5 in which both materials across the
interface are of the same orthotropic materials although the orientations

of the axes of symmetry are different. It is shown that there are three
positive roots for Kk and that all three have the values between 0.333

and 0.698. The fact that we have three positive Kk and that they are near
the value 0.5 is not surprising in view of the results obtained in Section 3
for the crack in a homogeneous anisotropic medium. Finally, in Section 6 we
study the stress distribution near the tip of the crack which is normal to
the interface subject to a uniform extensional strain in the xl-direction.
We show that a uniform stress solution exists and hence no additional stress

singularity is present due to the uniform extension.
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2. ANISOTROPIC MATERIAL IN TWO-DIMENSIONAL DEFORMATION

In the rectangular coordinate system (x,,xs), let the displacements

equations can be written as

Eij = (Bui/ij + Suj/axi)/z (1)
97 T Cijkpkp (2)
aciz/ax2 + Bcis/ax3 =0 (3)

where repeated indices imply summation and .
“ijkp T Sjikp T kpij )

are the elasticity constants. A general solution for Eqs. (1,2,3) can be

obtained by letting

u, = uif(Z) (3)

2= X, +px3 (6)

— -'?'. "

where p and v; are constants to be determined and f 1is an arbitrary

function of Z [13-15]. Substituting into Egs. (1,2,3) we obtain

Oij = Tij df/dz (7)
D,V = O (8)
where
Ti5 = (Cijk2 TP 5k3) % (9)
- 2
Dix = %i2k2 "PLCok3 " Cisk2) TP Cisks (10)

For a non-trivial solution of Vs it follows from Eq. (8) that the deter-

minant of Di must vanish. That 1is,

k

uy (i=1,2,3) and hence the strains eij and the stresses Oij be functions

of x, and Xz only. The strain-displacement, stress-strain and equilibrium
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“Dik” =0 (11)

This results in a sextic equation for p. Since the eigenvalues p are all

non-real [11,13], there are three pairs of complex conjugates for p which

will be denoted by pL and ﬁL (L=1,2,3) where an over bar denotes the :

B
complex conjugate, and three pairs of associated eigenvectors Vi and R
Gi p (L=1,2,3). It should be pointed out that some elements of T3 given ‘

by Eq. (9) are related to each other. We can show from Eqs. (4), (8) and

(10) that T.,. = T.., and
1]

J1
T2 ® P3|
(12)
= - = 2

T22 7 "PTa3 = Pisg ;
They agree with Lekhnitskii's results in [11] except that Tag is taken as :
unity in [11]:. However, Tgg may vanish in degenerate cases [12] and hence *
Lekhnitskii's approach requires a special treatment whenever Tg3 = 0. ]

The general solution for the displacements and stresses can now be

] written as i
;i u = %; {Ui,LfL(ZL)'*Gi,LgL(ZL)} (13) :
Fi ;5 = EE {Tij,Lde(ZL)/dZL"%ij,LdchzL)/dzL} (14) 1
Eg where the summation is over L=1,2,3 and fL and g are, respectively, 3
arbitrary functions of ZL and ZL' Notice that Eq. (13) contains six é
arbitrary functions. When p has a double root, the solution given by ]

Eq. (13) is not general unless one has two independent v associated with
the douple root p. Similarly, Eq. (13) may not be a general solution when ;

p is a triple root. A modified solution which maintains its generality
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when p has a multiple root was given in [20]. For is: tropic materials,

p =1 and is a triple root. However, one of the triple roots is associated
with the anti-plane deformation while the other two which can be considered
a double root are associated with plane strain deformations [21].

To study the singularities at a crack tip, we let

£.(2) = Ain'K/(l-K)

= - sl-x
g (ep) = B2 /(I'K)

(L not summed) (15)

where K, AL and BL are arbitrary constants which may be complex. Intro-

ducing the polar coordinates (r,¢):

X, = T coso , Xz = r sin¢ (16)

Equations (13) and (14) can be written as

_ 1k l-K - -1 -K
u; =T ZL{ALUi,LcL BlYi, 1oL } (1-%) (17)
_ K -K ==K
=T %{ALTij,LCL *B 755 oL } (18)
where
CL = cos¢-+pL51n¢ 19)

We see that if the real part of «k 1is positive, Oij is singular at r = 0.

When « 1is real, one may choose without loss of generality [1]

= A = ia. ) 2
B A (aL-rlaL)/Z (20)

where ay and EL are real constants. Equations (17) and (18) then have

the real expressions

u; = 1< EE {aLRe<ui’Lct'K)-+aLIm(u )}//(1 K) (21)
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-< -K ~ -K
= r - o Xa)
Oij T %‘{aLRe<Tij,L’L >'+aLIm<Tij,L5L >} (22)

where Re and Im stand for real and imaginary, respectively.

We may also use Cij instead of «c, and write Eqs. (2) and (4) as

ijkp
J. =c..e, , c.. =¢C.,. (23)
i ij7) ij ji
where
°p %1 9279 93 = 933
(24a)
9793 95793 % = 912
1T %110 f2 7 Ep €3 = £33
(24b)
=D = 2 =
€4 % “F25 0 E5 T “Ei5 €6 = €12
We will also write the inverse of Eq. (23) as
g, = s..0, , S.. = §., (25)
1 1) )] 1) Jj1

where sij are the elastic compliances.

3. SINGULARITIES AT A CRACK TIP IN A HOMOGENEOUS ANISOTROPIC MATERIAL

In this section we assume that material 1 and material 2 in Fig. 2

are the same material. Therefore, there is no interface and the crack is

in a homogeneous medium. This problem has been studied in [16,17] where
the material property is assumed to be symmetric with respect to the

X; = 0 plane. No symmetry is assumed in this section. Sih and Chen [18]
and Hoenig [19] also studied the problem without assuming the symmetry,
but the analysis presented here will show that «k = % 1is a root of multi-

plicity three. The boundary conditions at the crack surface are

(26)
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From Eq. (19) we have

and application of Eq. (26) to (18) yields

-KTi - KW} _ l
%;{ALTSj,Le *BTs5,10 } =0 (=8)
KTL - ~KT1
ZL {ALTSJ’L +BLT3J,L } =0 (29)

where j=1,2,3. Equations (28,29) may be written in matrix notation as
K(<)q = 0 (30)

where is a column matrix whose elements are A, and B (L=1,2,3),

L L

while K 1is a 6x6 square matrix and is a function of k. For a nontrivial

[ ]

solution of q we must have

Ik || =0 (31)

which provides the roots «.

Notice that when «x =, KM = KM Ly the left-hand side of
Eq. (28) is identical to that of Eq. (29) except the minus signs. Hence the
first three rows of K are identical to the last three rows except the
signs and the rank of K is no more than 3. This means that « =% 1is a
root of multiplicity of at least 3 and that there are at least 3 independent

solutions for q 1in Eq. (30) associated with « =l

To find q, 1i.e., AL and BL for k=%, let

* = = ke
%TSj,LTSS,L Ioig T o= lrgg (32)

js




where st is the Kronecker delta. Thus regarding Tsj L

is the adjoint matrix and J 1is the determinant. Assuming that

as a 3x3 matrix,

*
35,1
J # 0, the solution given by

J-lk T* 3

A s 3s,L (33)

1
* = —
L 2/ J ksTSS L’ BL 2y/?2

satisfies Eqs. (28,29) when «k = 4. ks (s=1,2,3) in Eq. (33) are arbitrary

real constants. With Eq. (33), Eq. (18) can now be written as, noticing

that « = %4,

-l
oLtk (34)

(r‘p)'(z 'ZRe I s, LT, L5

Equation (34) provides three independent solutions for the stress dis-
tribution near the crack tip. Notice that at ¢ = 0, Eq. (34) for i = 3

has the expression, after using Eqs. (19) and (32),

330 = —Hk , j=1,2,3 (35)

(2r)*

Hence kj are the stress intensity factors. It is shown in the Appendix
that the solution associated with k3 can be identified with the solution
near the tip of a crack length 2a due to a uniform symmetric tensile stress
023 at infinity. Similarly, the solutions associated with k1 and k2
can be identified with the solutions near the tip of a crack length 2a due
to uniform antisymmetric shear stresses 031 and 032, respectively, at
infinity.

Equation (34) is not valid when J = 0. However, J = 0 implies that

J = 0 and the rank of K 1is no more than two. It follows that k =% is

a root of multiplicity of at least four when J = 0. This is not possible
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because for the special case of a crack in an isotropic material it is known

that k =% 1is a root of multiplicity three.

4. SINGULARITIES AT THE TIP OF A CRACK NORMAL TO AN INTERFACE

We will now proceed to determine the singularities at the tip of a
crack which is normal to the interface between two anisotropic materials as
shown in Fig. 2. Equations (17) and (18) for the displacements and the
stresses apply to materials 1 and 2. To distinguish notations in material 2
from those in material 1, we will add a prime to all notations referring to
material 2 except «k which is the same in both materials and r and ¢
which have unambiguous definitions. Since material 1 is divided into two
parts by a crack, the displacements and the stresses in both parts need not
be given by the same_expressions. We will therefore use a superscript (+)

to denote quantities referred to material 1 in the x_, > 0 region and a

3
superscript (-~) to denote quantities referred to material 1 in the Xz < 0
region.
The stress-free boundary conditions at the crack surface are
+
GSj =0 at ¢ =
- (36a)
GSj =0 at ¢ = -m
and the continuity conditions at the interface are
uf-—uf =0
i
at ¢ = m/2 (36b)
ol -c'. =0
2) 2]
u, -u, =0
i i
at ¢ = -m/2 (36¢)
! - -
czj-ch 0

a-a_sn -

[ |
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where 1,j=1,2,3. Use of the expressions for u, and oij from Eqs. (17)

and (18) in Eqs. (36a), (36b), (3oc) results in 18 equations for the eighteen

. . + + [] [] - - - . N
coefficients AL, BL’ AL, BL’ AL and BL (L=1,2,3) which can again be

written in the form

K(<)g = 0 (37)
where K 1is now an 18x18 square matrix and the elements of q are A:, B;,
AL, BL, AL and BL (L=1,2,3). For a nontrivial solution of q, we must
have

ke[l = o (38)

It should be pointed out that for real «k one could use the real
expressions for u, and Gij in Egqs. (21) and (22). We again obtain 18

+
are a_,

L
5;, aL, af, ai and 5;. The elements of the 18x18 matrix K are real.

equations in the form of Eq. (37) in which the elements of

[Ee]

The roots «k of Eq. (38), whether real or complex, can be found
numerically when the elasticity constants cij and cij of both materials
are known. In the complex plane k, one can find the number of roots «
in a given region by using the following theorem [22]: If a function Y(x),
whose only singularities inside a closed contour C of the k-plane are

poles and whose value is not zero at any point on the contour, then

1 dy/dk _
27ri/ g d<=N-P (39)

where N 1is the number of zeros and P is the number of poles inside C.

In our problem Y = ||K|| and Eq. (39) can be written as
S f dfen K|} = N (40)
2mi
C
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decause [[K|| is bounded and hence there is no pole. In view of the fact

ek b ut ot

that
tny = tn |y| +iargy (41)
3
Equation (40) reduces to 1
P
_ 1 ),
N = 5 (arg ||5||)C (42)
where (f)C denotes the change in the value of f in going around the con- ]
tour C. Equation (42) implies that if |[|K|| has N roots inside the d
contour C in the k-plane, the locus of |[|K|| when plotted on the complex
IIK|| plane encircles the origin N times as « goes around the contour C,.
This is a useful result which can be employed to determine the number of 4

roots in a given region.

5. NUMERICAL EXAMPLES

For numerical examples we will assume that each layer in the composite
Y

axes where 22 = x2 and the is-axis is the fiber direction which makes an

shown in Fig. 1 is an orthotropic material with respect to the (il, X

angle 6 with the xs-axis. We further assume that all layers are identical R
orthotropic materials although the ply-angle 6 may vary from layer to
layer. Referring to the (§l, 22, §3) axes, the following engineering con- q

stants for two different orthotropic materials are taken from [235] and [24],

i SN

respectively. 1
Composite W g
;
(Typical high modulus graphite/epoxy, [23]) b
6 . ]
E1 = E2 = 2.1 x 10" psi 1
E, = 20 106 i q
3 = X psi1 ? (43) ]
6 . 1
Gy =Gyz = Ggp = 0.85 x 10~ psi 1
1
Yy T V31 T V3 T 0.21 )
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Composite T

(T300/5208 graphite/epoxy, [-4])

6 \
E, = E, = 1.54x10° psi
E; = (20x10° psi)
6 - (44)
Gy, = G,g = Gy, = 0.81x10° psi
VT Vg = Vg, = 0.28 }

In Eqs. (43) and (44), Ei are the Young's moduli, Gij the shear moduli
and Vij are the Poisson's ratios [25]. They are related to sij [25,26],
and hence Sij can be computed. Since Eij’ Gij and vij given in

Eqs. (43) and (44) are referred to the (§1, 22, §3) axes, sij so obtained
will be denoted by gij' Its inverse eij is obtained by using the equa-
tions derived in [25]. Finally, we obtain i and cij which are
referred to the (xl, X5 x3) axes from gij and eij (see [2,12]) when the
ply-angle 6 in material 1 is given. For a different ply-angle 6' 1in
material 2, we obtain sij and cij in the same way.

With the elasticity constants cij and cij associated with the ply-
angles 6 and 6' in materials 1 and 2 so determined, the formulation in
Section 4 provides the matrix K and the roots of the determinant [|K||
furnishes the desired roots. In Table 1 we list the roots k for the
Composite W given by Eq. (43) for combinations of (8/6') angles in which
both & and 6' assume the values between -90° and 90° with an increment
of 15° degrees. Since the values of « for (-a/b) and (a/-b) composites

are identical, it is sufficient to consider © > 0 only. In Table 2 we

*The value of Ez in [24] is 22 x10% psi. The calculations presented in
Table 2 and Figs. 4 and 6 were inadvertently based on Ez =20 x 106 psi. How-
ever, a few sample calculations with the correct Ez show that the errors
on K are no more than 1%.
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list the roots «k for composite T. In both tables, « =% 1is a triple
root when 6 = 6' and when 0 = -8' = 90°. This is expected since when
8 =06"' and 6 = -6' = 90° material 1 and material 2 have the same fiber 1
orientation and hence there is no real interface between material 1 and
material 2. Thus the crack is in a homogeneous material and the analysis
in Section 3 shows that « =) 1is a triple root. For all other combina-
tions of (6/6') there are three non-equal roots of positive «.

Notice that the values of « are identical for (6/90) and (6/-90).
Likewise, «k's are identical for (0/9') and (0/-6') as well as for
(90/6') and (90/-6'). Some of the roots are not easy to locate. For
instance, two of the three roots for (0/90) in Composite T differ by only
10-5. At the first calculation we only located the root « = 0.697726 and
completely missed the other two roots. Great effort and care were
exercised in locating the two roots which are very close to each other.

We also used Eq. (42) to verify numerically that there are indeed three
positive roots for «.

The results presented in Tables 1 and 2 are shown in graphs in
Figs. 3-6. In Fig. 3 contour lines for the largest «, denoted by SE
are shown for Composite W and the corresponding contour lines for

Composite T is shown in Fig. 4. 1In Figs. 5 and 6 the contour lines for

(Kl- K3) where Kg is the smallest of the three roots are shown for

Composite W and Composite T, respectively. In view of symmetry, only
half of the contour lines are shown in Figs. 3-6. In both composites

we see that the largest «k, occurs at (0/-90) which is identical to

1

(0/90). At (0/90), Kl = 0.676635 for Composite W and Kl = 0.697726 .

for Composite T. The largest difference between K1 and Ky occurs - |
approximately at (30/-40) for both Composite W and Composite T.
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6. UNIFORM EXTENSION

We will consider in this section the problem in which the composite

shown in Fig. 2 is subject to a uniform extensional strain € in the

xl-direction. For this purpose, we add the term ¢.§ to the right-hand

1°i1*1
sides of Eqs. (5), (13), (17) and (21) for the displacements uy and the

term Cij 1181

With these modifications, application of the boundary and interface condi-

to Egqs. (7), (14), (18) and (22) for the stresses Oij [1,27].

tions, Eqs. (36), results in the following system of equations

r "K(k)q = g,b (45)

+ + ' ' = = : -
where the elements of q are AL, BL’ AL, BL’ AL and BL while b con
tains cijll' Since the right-hand side of Eq. (45) is independent of r,

we let k = 0 and obtain

K(0)q = &b (46)

Equation (46) provides q if K(0) 1is not singular. If K(0) is singular,
a solution may still exist if b is orthogonal to the left eigenvectors of
K(0). However, when k = 0 Eq. (18) indicates that oij are constants and
the stresses are uniform. Therefore, instead of solving Eq. (46), we will
use an alternate approach employed in [1] to find a uniform stress solution

which satisfies the prescribed uniform extensional strain ¢

1
To this end, we first solve 01 from the first of Eq. (25):
o, = (el/sll) -Rjoj , (G #1) . (47)
We then eliminate 9 from the rest of Eq. (25) to obtain
e = Rij0j+ R.le1 s A#1, j#1) (48)

Sndeda
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where
Rl = sil/sll
(49)
=s..-5..R
ij ij ilj
The free surface conditions, Eq. (36a), imply that
O'+-‘O'+—+—O
3% °9%F+°
- - - (50)
0, =0, =0g = 0

in the entire region occupied by material 1 because the stresses are uniform.
The continuity conditions across the interface ¢ = *w/2 as given by

Eqs. (36b,c) can be shown to be equivalent to

el =gt = ¢ el =e! = ¢l el = ¢! = ¢l
178175 3° %37 %3 5° % T &5
+ ) - + ' - + ' - (51)
02 = 02 = 0'2 04 = 04 = 04 06 = 06 =g

From Eqs. (50) and (51), the stresses 0; , 0; and 0; in the regions

T/2 < ¢ <M -mM<P<-w/2 and -m/2 < ¢ < w/2, respectively, have the

following non-zero components:

+ +

oi = (ol, 02, 0, 0,0, 06)

Oi = (01,02, 0,0,0,06) (52)
o t ] '

Oi = (ol, 02, 03, 0, 05, 06)

where the superscripts +, - and a prime are omitted for 9, and ¢ in

view of Eq. (51). Using Eq. (52) in Eq. (48), the expressions 63 and o

in material 1 are

3 = R3p0, *R3eTg +RSE

[u]
I

5 = Rgp9p *R5e06 * ReE

m
]
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17
while the expressions for €5 and €g in material 2 are
= '
€3 % R3p%; *R3303 * Ryg0g + RyT6 *+ R3S
(54)
= '
€5 = Rgp9; +Rg303 + Rgg0g +Reg0g + Reey
Again, the superscripts +, - and a prime for 83 and es are omitted in

view of Eq. (51).
For the composite considered in Eq. (43) and (44), the material

property in each layer is symmetric with respect to the x, = 0 plane and

2
hence [24,25],

S =3 =s =53 =s =s = s =5 =0 (55)

. . . - [} = = 1 = o . .
This implies that R36 = R36 R56 R56 0 and elimination of €, and

55 from Eqs. (53) and (54) reduces to

t t t [}
(R, = Rg))0) +R3303 +R300 = -(Ry-R)E)

(56)

-(R!. -R )€

(Ré2 5209, +R! _o! +R! _o! ¢~ Re

53’3 5575 1

Equations (56) provide a one-parameter family of solutions for o., 0. and

2> 73
1’ 01 and ci are determined from Eq. (47).

This completes the solution for non-zero elements of the stresses shown in

Jé. g, is arbitrary while q.

Eq. (52). It is not difficult to see from Eqs. (52) and (47) that gl =37

1 1
Equations (56) have no solutions if
R.. - R R. Ro R, - R
?2 32 ?3 ) _%s 4 ? 3 (57)
Rsy = Rgy Rgs Rgs Rg - Rg

For the composites considered here, Eqs. (57) do not hold and a uniform
stress solution exists for a given extensional strain 81' Hence, there is
no additional stress singularity at the crack tip due to the uniform

extension for the composites considered here. If Eqs. (57) held, one

would have a logarithmic stress singularity at the crack tip (1].
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7. CONCLUDING REMARKS

We have shown that the stress singularity at the tip of a crack which
is normal to and ends at an interface between two anisotropic elastic media
-K . -
has the form r where K 1is a root of Eq. (38). We show that there are
in general three distinct positive roots of «, say K (s=1,2,3). Foreach Kg»
Eq. (37) furnishes the associated 9 whose elements are AL, BL in
Eq. (18). Since 9 1s unique up to a multiplicative constant, say Cso

the solution given by Eq. (18) for « =« < and «_ can be superimposed

) R 3

and written as

-K -K K
= 1,(1) 2 (2) 3 ,(3)
Gij clr oij *e,T cij +c3r Jij (58)
where ng) (s=1,2,3) are known functions of ¢. The analysis presented
here provides Kg and Ggi) {s=1,2,3). The unknown constants c» S

and cs have to be determined from the complete boundary conditions of the
whole composite. One could use the solution obtained here to form a special
finite element at the crack tip and use regular finite elements elsewhere to
find a complete solution numerically for the stress distribution in the com-
posite with a crack.

It should be pointed out that Eq. (38) provides, besides the three

positive « presented here, infinitely many negative k whose real part is

negative. Thus to increase the accuracy in the special finite element at
- the crack tip, one may add as many terms as one pleases to the right-hand
%;. side of Eq. (58). These additional terms are non-singular at the tip of the
= crack.
le
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APPENDIX

4

-

-l Consider a crack of length 2a located on the x,-axis between x, = -a
: 2

and x, = a 1in an infinite anisotropic elastic material subjected to a

-
“

- - @ . -~ 0
uniform tensile stress 033 as well as a uniform plane shear stress ¢,
>

-

P (Fig. 7) and a uniform antiplane shear stress O?l (not shown in Fig. 7)

E at infinity. The surface of the crack is stress-free. This problem was
studied in [16,17] in which the material property is assumed to be symmetric

‘ with respect to the Xy = 0 plane and in [18,19] for general anisotropic

tf materials. We will present an alternate expression for the solution in the

entire plane, not just near the crack tip as in [19]. For the present

]
L- - .
F] problem, it suffices to consider the associated problem in which the crack

surface is subjected to the stresses

J,. = i on -a < x, <a (A1)
and the stresses vanish at infinity. To this end, we choose in Eqgs.(13,14)

. _ - N .72 o 2 _ - k

f, =8, = AZ, - a7 - I (A2)

where AL are arbitrary complex constants. We then have the solution for

the displacements

L’
tions, Eq. (Al): ]

{
= 2 _ a2y - -
uy 2;‘, Re {AU; | ((zL a?) LL>$ (A3)
and the stresses
3. Re{a . 1 (\4)
J.. = e A T.. ~ R :
- 1] T Lij,L\(Z7-a7)"
:
}9 which vanish at infinity. To determine A we apply the boundary condi- L
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B %; Re 1ALT55,L <*.-i(az--:c%)'2 ) » TAsx,ca (as)

Equation (AS) is satisfied if we let

oo
> TSj,LAL = 0, (A6)
L
or
= J-lgo t* A7
AL J 3 3 s L (A7)
where T:s | 1s defined in Eq. (32). We therefore obtain the solution
I35,
u, = 3 Re {JTtTy /( Sayioz oh (A8)
i r L i,L5 3s
YA
= 3 Re |uit L ) (A9)
T as Lt ij, L\ (z2-22)"* 3s
L
To find the stress distribution near the crack tip, say x, = a,
notice that as ZL-a =0
z (Zy-a) +a i
L L - -k
(2 -a%) (2,-3 )" (Z;+a )
If we let ZL- a = rcL and
k.= V& oy (ALL)
s 3s

Equation (A9) reduces to Eq. (34). Thus the solution associated with k3 in

o]
Eq. (34) is due to the uniform symmetric tensile stress O35 applied at
infinity while that associated with k1 and k2 are due to, respectively,

. - . 0 w .
the uniform anti-symmetric shear stresses 931 and O34 applied at

3 - o . . 03 - . o
infinity. It should be pointed out tnat the solution associated with 933
is not necessarily symmetric with respect to the X5 axis even though the
3 ' 3 K3 x
loading at the infinity is. Likewise, the solutions associated with 031

e .
and 0;, are not necessarily anti-symmetric with respect to the X, axis.
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9 0 o] o] o) o] o]
0 15 30 45 60 75 920
0"
o .676635 | .676012 | .672441 | .660488 | .630471 | 567537
90 .500212 | .502156 | .505068 | .504813 | .502297 | .500314 } .5
.5 .500222 | .500236 | .500227 ; .500165 | .500048
o .675051 | .665411 | .646234 | .616354 | .571159 .499859
75 .500189 | .500305 { .500401 | .500415 | .500269 .5 .499688
.433918 | .446234 | .466560 | .485037 | .496300 .432561
o .665263 | .642118 | .605628 | .557636 .503704 | .498608
60 .499839 | .500352 | .500735 | .500673 .5 .499085 | .497668
.379767 | .404849 | .441810 | .477316 .430024 | .371402
o .643963 | .606474 | .556388 .522801 | .515052 | .495691
45 .499012 | .500092 | .500639 ) .498293 | .496531 | .495008
.369508 | .407075 | .456342 .443947 | 388842 | .345965
o .609394 | .557954 .543655 | .558434 | .533668 | .494600
30 .498562 | .499986 .5 .498192 | .495380 | .493226 | .492252
.391694 | .442491 .445399 | .400299 | .364378 | .339747
o .560499 .557552 | .592813 § .595139 | .553905 | .497659
15 .499279 .5 .498554 | .495627 | .492603 | .490548 | .489828
.438704 .444039 | .400073 | .369244 | .349787 | .340358
.562178 | .609785 | .631434 | .620457 | .566078 | .5
0 .5 .498904 { .496201 | .493110 | .490626 { .489298 | .489038
.441309 | .397243 | .367864 | .350305 | .342401 | .341108
o .560499 | .612345 | .644542 | .651651 | .628243 | .564345 | .497659
-15 .499279 | .497112 | .494473 | .492080 | .490464 | .489824 | .489828
438704 | .392438 | .364451 | .349195 | .342609 | .341721 | .340358
o .609394 | .645821 | .662510 ! .656327 | .621931 | .552727 ?.494600
-30 .498562 | .496706 | .494839 | .493276 | .492378 | .492163 | .492252
.391684 | .361115 | .347946 | .344694 | .346998 | .349080 : .339747
o .643963 | .665377 | .668725 | .651255 | .608061 | .538511 ; .495691
-45 .499012 | .497882 | .496774 | .495887 | .495504 | .495550 | .495008
.369508 | .352528 | .351288 | .357999 | .367486 | .368791 : .345965
o .665263 | .674013 | .666989 | .641375 | .592892 | .526260 . .498608
-60 .499839 | .499331 | .498824 | .498455 | .498378 | .498488 : .497668
.379767 | .373635 | .381746 | .396175 | .410685 | .409137 | .371402
o .675051 | .674923 | .663730 | .638493 | .593334 | .523618 §.499859
=75 .500189 | .500080 | .499972 | .499903 | .499878 | .499848 : .499688
.433918 | .435943 | .447918 | .462126 | .474130 | .476682 | .432561
o .676635 | .676012 | .672441 | .660488 | .630471 | .567537 |
-90 .500212 | .502156 | .505068 | .504813 | .502297 | .500314 .5
.5 .500222 | .500236 | .500227 | .500165 | .500048

Table 1 Values of « for the r ©
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0'9 0 15° 30° 45° 60° 75° 90°
.| -697726 | 695390 | .687400 | .670249 | .636110 | .570493
90° | .5 .501422 | .503731 | .504020 | .502055 | .500028 .5
.499990 | .499970 | .499959 | .500004 | .500055 | .499923
o | -694552 | .682182 | .658683 | .623468 | .573597 .500075
75° | .499899 | .499923 | .500018 | .500173 | .500205 .5 .499786
.433166 | .446108 | .465858 | .484789 | .496796 .429903
. | -681455 | 655864 | .615433 | .562256 .503193 | .498302
60° | .499252 | .499572 | .500057 | .500366 .5 .499057 | .497881
.380013 | .405261 | .440977 | .476460 .428481 | .367957
, | 655675 | .615621 | 561314 .523662 | .515275 | .496507
45° | .498169 | .499132 | .500048 .5 .498551 | .496552 | .496224
.370945 | .408413 | ,456362 .440550 | .385476 | .341936
.615974 | .561933 .543669 | .559222 | .534343 | .495858
30° | .497892 | .499414 .5 .498709 | .496016 | .493379 | .491924
.393350 | .443807 .441797 | .394947 | .359462 | .334337
.| -562542 .556290 | .591495 | .594666 | .553999 | .498878
15° | .499066 .5 .499047 | .496372 | .493174 | .490735 | .489680
.439371 .441155 | .395197 | .363520 | .343852 | .333397
§ i .561734 | .608589 | .630402 | .620348 | .566821 | .5
o' .5 .499106 | .496752 | .493751 | .491033 | .489363 | .488944
! | .439862 | .393682 | .362960 | .344491 | .335554 | .333540
g oﬁ .562542 | .614806 | .646999 | .654617 | .632281 | .568975 | .498878
b 215% | .499066 | .497105 | .494775 | .492462 | .490645 | .489711 | .489680
| .439371 | .391399 | .361050 | .344079 | .335970 | .333613 | .333397
’ | -615974 | 653467 | .670723 | .665388 | .632110 | .562294 | .495858
-30° | .497892 | .496339 | .494834 | .493407 | .492360 | .491864 | .491924
| .393350 | .360418 | .344095 | .338249 | .338301 | .339280 | .334337
o | -655675 | .678402 | .682644 | .666150 | .623644 | .551195 | .496507
-45° | .498169 | .497416 | .496660 | .495899 | .495381 | .495156 | .496244
.370945 | .350987 | .345625 | .348752 | .355521 | .357113 | .341936
;
, | -681455 | .691616 | .685470 | .660390 | .611548 | .539832 | .498302
-60° | .499252 | .499019 | .498713 | .498389 | .498218 | .498183 | .497881
| 380013 | .370260 | 373343 | .383591 | .395570 | .396061 | .367957
o' .694552 | .695563 | .684047 | .657219 | .609624 | .537075 | .500075
-75°% | .499899 | .499852 | .499759 | .499696 | .499704 | .499720 | .499786
.433166 | .431371 | .438689 | .450101 | .461274 | .463714 | .429903
o | 697726 | .695390 | .687400 | .670249 | 636110 | .570493
-90° | .5 .501422 | .503731 | .504020 | .502055 | .500028 .5
| .499990 | .499970 | .499959 | .500004 | .500055 | .499923
Table 2 Values of k for the r ¥ singularity in Composite T
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