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1. INTRODUCTION

Lightweight composite materials have been used for many years in the

aerospace industries. Some of the most needed design informations are the

failure mechanism and the failure criteria. Determination of the failure

mechanism and the failure criteria requires in general a rigorous stress

analysis at the singular point in the material. The lack of such an

analysis is one of the impediments in understanding the failure mechanism

and in determining the failure criteria. In the case of layered composite

materials in which each layer is of orthotropic material, experimental

observations indicate that the failure modes are in general either along

the interface between the layers or transverse to the layers. For instance,

consider the layered composite shown in Fig. 1 in which each layer is a

fiber reinforced composite laminate. The fibers lie in the plane of the

layers although the orientation e of the fibers may vary from layer to

layer. When the composite is subjected to an extensional strain in the

x3-direction, a delamination may occur along the free-edge MN. The stress

singularities at the free-edge such as the point M were investigated in

[1]. It was shown in [1] that, except for certain special combinations of

the ply-angles on both sides of the interface, the stresses have the

-Klogarithmic singularity at the free-edge in addition to the r (K > 0)

-Ksingularity. Moreover, unlike the r singularity whose existence depends

on the stacking sequence of the layers and the complete boundary conditions,

the existence of the logarithmic singularity at point M depends only on

the ply-angles on both sides of the interface. Instead of the delamination,

a transverse crack shown by the dashed line may occur in the layer. There

are stress singularities along the transverse crack edge MQ which is on

A1
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the interface between two layers and hence may initiate a delamination along

the interface. The nature of the singularities at the crack edge such as

point 0 is the main interest of this investigation.

For this purpose, we take point 0 as the origin of the rectangular

coordinate system (X1 ,x2 3 ) in which the x2 = 0 plane is the interface

while the transverse crack lies on the x = 0 plane, Fig. 1. In the

(x2,x3) plane, Fig. 2, the x3-axis is the interface between the two materials

and a crack in material 1 is located along the negative x2-axis. The

deformation at and near the origin 0 is certainly three-dimensional, i.e.,

the displacements u. are functions of x., x. as well as xI . However,
1 1'

it was shown in [2] that, to the first order of approximation, the order of

singularity at point 0 is affected by the dependence on x only to the

extent of the strain component Eii at point 0. Since the problem is

linear, we will first study the singularity at point 0 due to the dis-

placement field in which u. are functions of x2 and x3  only. We will

then study the singularity at point 0 due to a uniform extension in the

xl-direction and see if additional singularities are present.

When the materials on both sides of the interface are isotropic, the

singularity at the tip of a crack which is normal to and ends at the inter-

face has been studied by many investigators (see [3-8], for example). In

real composites, each layer is a fiber reinforced laminated material and

hence should be regarded as an anisotropic material. The problem of a crack

* terminating at the interface of two anisotropic materials does not seem to

have been investigated, although the case of orthotropic materials was

studied in [9,10]. In Section 2 we present the basic formulations for aniso-

tropic materials in two-dimensional deformation. Instead of using

S , -. . --- h& w - - ... 4.
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Lekhnitskii's approach [11] which breaks down in degenerate cases [12] and

requires a special treatment for the degenerate cases, we employ the

analysis which was originally due to Stroh [13] and further developed by

others [14,15] for studying surface waves in anisotropic elastic solids.

In Section 3 we study the stress singularities at a crack tip in a homo-

geneous anisotropic elastic material, i.e., the material is not layered.

The same problem was studied in [16,17] for anisotropic elastic solids

whose material property is symmetric with respect to the x, = 0 plane, and

in [18,191 for general anisotropic materials. By a different approach

from that of [16-19], we show that K = 0.5 is a triple root singularity

for a crack tip in a homogeneous anisotropic medium. In Section 4 we

formulate the equations for determining the order of singularities at the

tip of a crack which is normal to and ends at an interface between two

general anisotropic materials. We also show how one can determine the

number of roots K in a given region in the complex K-plane. Numerical

Sexamples are presented in Section 5 in which both materials across the

interface are of the same orthotropic materials although the orientations

of the axes of symmetry are different. It is shown that there are three

positive roots for K and that all three have the values between 0.333

and 0.698. The fact that we have three positive K and that they are near

the value 0.5 is not surprising in view of the results obtained in Section 3

for the crack in a homogeneous anisotropic medium. Finally, in Section 6 we

study the stress distribution near the tip of the crack which is normal to

the interface subject to a uniform extensional strain in the x-direction.

We show that a uniform stress solution exists and hence no additional stress

singularity is present due to the uniform extension.

L
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2. ANISOTROPIC MATERIAL IN TWO-DIMENSIONAL DEFORMATION

In the rectangular coordinate system (x2 ,x3), let the displacements

u. (i =1,2,3) and hence the strains E.. and the stresses a.. be functions
1 1j 13

of x1, and x. only. The strain-displacement, stress-strain and equilibrium

equations can be written as

E = (aui/ax + au /ax)/2 (1)

(J. ... Ek (2)13j = ijkp kp(2

30i/ax + 3/a x = 0 (3)

i2 13 3

where repeated indices imply summation and

Cijkp =cjikp = ckpij (4)
jikp kpi

are the elasticity constants. A general solution for Eqs. (1,2,3) can be

obtained by letting

u u. f(Z) (5)

Z= x + px 3  (6)

where p and u. are constants to be determined and f is an arbitrary

function of Z [13-15]. Substituting into Eqs. (1,2,3) we obtain

G.. =T df/dZ (7)1J j

DikUk = 0 (8)

where

T = (C +k2  PCik3)Uk (9)

D =c + C +C 2 C(10) 1
ik i2k2 P(ci2k3 i3k2) +p Ci3k3 (

For a non-trivial solution of u., it follows from Eq. (8) that the deter-
1

minant of D must vanish. That is,
ik



IDikii = o (11)

This results in a sextic equation for p. Since the eigenvalues p are all

non-real [11,13], there are three pairs of complex conjugates for p which

will be denoted by p and p (L= 1,2,3) where an over bar denotes the

complex conjugate, and three pairs of associated eigenvectors ui and

(L =1,2,3). It should be pointed out that some elements of T given

.,L i

by Eq. (9) are related to each other. We can show from Eqs. (4), (8) and

(10) that T.. = T.. and

T12 13

(12)
T22 = -PT23 = P2T3 3

They agree with Lekhnitskii's results in [11] except that T 33 is taken as

unity in [11]. However, r33 may vanish in degenerate cases [12] and hence

Lekhnitskii's approach requires a special treatment whenever T3 3 = 0.

The general solution for the displacements and stresses can now be

written as

i{UiLfL(ZL)/L+iL Ld / (13)
L

Oij T {Tjj df L(Z L)/dZ L i~,L dg L (2L)/d2 L} (14)

where the summation is over L =1,2,5 and f and g are, respectively,

arbitrary functions of ZL and L' Notice that Eq. (13) contains six

arbitrary functions. When p has a double root, the solution given by

Eq. (13) is not general unless one has two independent u. associated with

the douple root p. Similarly, Eq. (13) may not be a general solution when

p is a triple root. A modified solution which maintains its generality

[. •
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when p has a multiple root was given in [20]. For is, tropic materials,

p = i and is a triple root. However, one of the triple roots is associated

with the anti-plane deformation while the other two which can be considered

a double root are associated with plane strain deformations [21].

To study the singularities at a crack tip, we let

fL(ZL) = ALZK/(1-K)

(L not summed) (15)

gL(Z ) = BZLK /(i-K)

where K, A and B are arbitrary constants which may be complex. Intro-
L L

ducing the polar coordinates (r,o):

x= r cosp, x. = r sino (16)

Equations (13) and (14) can be written as

i- A L- L~il I</iK )u.- rK E ALiL K B LLK}/ (17)

L

Lr 2{LijL LK+L ijL LK(8

where

= cosp +pLsino (19)

We see that if the real part of K is positive, a.. is singular at r = 0.ij

When K is real, one may choose without loss of generality [1]

BL AL = (aL + iaL)/2 (20)

where aL and L are real constants. Equations (17) and (18) then have
L L

the real expressions

u i = r L LaRe ui'LCL ) +LIm ji'LL (i-K) (21)
1 L
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< .=r aLae ii L:L) +aIm Tij L l (22)r L a L

where Re and Im stand for real and imaginary, respectively.

We may also use c.. instead of c and write Eqs. (2) and (4) as

ijkp

'. = c . .i ,j c. = c.. (23)

where

a, =a a,' a2 =3 2  = a°l3

(24a)
24 = 023 G5 = 113 G 6 = G12

£1 :11 ' 2 : 22 ' 3 33
(24b)

E 2E E ?E S : E 6 2E1
S23 ' 5 13 6 12

We will also write the inverse of Eq. (23) as

s.. . , s3 s . (25)

where s.. are the elastic compliances.

3. SINGULARITIES AT A CRACK TIP IN A HOMOGENEOUS ANISOTROPIC MATERIAL

In this section we assume that material 1 and material 2 in Fig. 2

are the same material. Therefore, there is no interface and the crack is

in a homogeneous medium. This problem has been studied in [16,17] where

the material property is assumed to be symmetric with respect to the

x, = 0 plane. No symmetry is assumed in this section. Sih and Chen [18]

and Hoenig [19] also studied the problem without assuming the symmetry,

but the analysis presented here will show that K = is a root of multi-

plicity three. The boundary conditions at the crack surface are

.:0 at t=±7T (26)33,6
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From Eq. (19) we have

e at =- (27)

and application of Eq. (26) to (18) yields

''j L_ r +B L T=jLe f 0 (28)

LT3jLeKTi BLT 3 j Le = 0 (29)
L

where j =1,2,3. Equations (28,29) may be written in matrix notation as

K(K)q 0 (30)

where q is a column matrix whose elements are AL  and BL  (L 1,2,3),

while K is a 6x6 square matrix and is a function of K. For a nontrivial

solution of q we must have

II(K) = 0 (31)

which provides the roots K.

KTi -< i
Notice that when K = , e = -e = i and the left-hand side of

Eq. (28) is identical to that of Eq. (29) except the minus signs. Hence the

first three rows of K are identical to the last three rows except the

signs and the rank of K is no more than 3. This means that K = is a

root of multiplicity of at least 3 and that there are at least 3 independent

solutions for q in Eq. (30) associated with K = .

To find q, i.e., A and B for K = , let

LL L

~ jT SL J = IT3  
1  (32)

Js

-O.

A-
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where 6. is the Kronecker delta. Thus regarding T3jL as a 3x3 matrix,

x*. is the adjoint matrix and J is the determinant. Assuming that
3j,L

J $ 0, the solution given by

A J1 k T* BL_ 1 _k (33)L 2 v=- s 3s,L L 2r2 s 3s,L

satisfies Eqs. (28,29) when K = . k (s =1,2,3) in Eq. (33) are arbitrary
5

real constants. With Eq. (33), Eq. (18) can now be written as, noticing

that K ,

G. (r, ) = J---* T k (34)
( 2 r) 2 3s,L ij,L L

Equation (34) provides three independent solutions for the stress dis-

tribution near the crack tip. Notice that at 0 = , Eq. (34) for i = 3

has the expression, after using Eqs. (19) and (32),

C3 j(r,0) - 1 k. j 1,2,3 (35)
(2r)' '

Hence k. are the stress intensity factors. It is shown in the Appendix
3

that the solution associated with k3  can be identified with the solution

near the tip of a crack length 2a due to a uniform symmetric tensile stress

033 at infinity. Similarly, the solutions associated with kI and k2

can be identified with the solutions near the tip of a crack length 2a due

to uniform antisymmetric shear stresses a31 and 032' respectively, at

infinity.

Equation (34) is not valid when J = 0. However, J = 0 implies that

J = 0 and the rank of K is no more than two. It follows that K = is

a root of multiplicity of at least four when J = 0. This is not possible
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because for the special case of a crack in an isotropic material it is known

that K = is a root of multiplicity three.

4. SINGULARITIES AT THE TIP OF A CRACK NORMAL TO AN INTERFACE

We will now proceed to determine the singularities at the tip of a

crack which is normal to the interface between two anisotropic materials as

shown in Fig. 2. Equations (17) and (18) for the displacements and the

stresses apply to materials 1 and 2. To distinguish notations in material 2

from those in material 1, we will add a prime to all notations referring to

material 2 except K which is the same in both materials and r and

which have unambiguous definitions. Since material 1 is divided into two

parts by a crack, the displacements and the stresses in both parts need not

be given by the same expressions. We will therefore use a superscript (4)

to denote quantities referred to material 1 in the x3 > 0 region and a

superscript (-) to denote quantities referred to material 1 in the x3 < 0

region.

The stress-free boundary conditions at the crack surface are

o =0 at =T3j

(36a)
a3j =0 at p=-Tr

and the continuity conditions at the interface are

+
U. - u.1 1

at f=/2 (36b)+

2j -02j = 0

11 1

at p = -1/2 (36c)
CY2j -a 2j =0
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where i,j = 1,2,3. Use of the expressions for u. and a.. from Eqs. (17)1 13

and (18) in Eqs. (36a), (36b), (3oc) results in 18 equations for the eighteen

coefficients AL, B+, A', B', A and B (L =1,2,3) which can again be
L' L'L L L

written in the form

pK(K)q Q (37)
+

where K is now an 18x18 square matrix and the elements of q are AL' BL,

AL', B A and B- (L=1,2,3). For a nontrivial solution of q, we must

have

II = 0 (38)

It should be pointed out that for real K one could use the real

expressions for u. and a.. in Eqs. (21) and (22). We again obtain 181 13

equations in the form of Eq. (37) in which the elements of q are aL ,a L LP
aL a' and a The elements of the 18x18 matrix K are real.

The roots K of Eq. (38), whether real or complex, can be found

numerically when the elasticity constants c.. and c'. of both materials

are known. In the complex plane K, one can find the number of roots K

in a given region by using the following theorem [22]: If a function I(K),

whose only singularities inside a closed contour C of the K-plane are

poles and whose value is not zero at any point on the contour, then

ifdP/dK dK = N- P (39)

C

where N is the number of zeros and P is the number of poles inside C.

In our problem p = fll and Eq. (39) can be written as

1fdjZn IKII = N (40)

C
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'Jecause ILII is bounded and hence there is no pole. In view of the fact

that

Zn Zn I4I +iargp (41)

Equation (40) reduces to

N : (arg IKio)c (42)

where (f) denotes the change in the value of f in going around the con-
C

tour C. Equation (42) implies that if IlKIJ has N roots inside the

contour C in the K-plane, the locus of IIKII when plotted on the complex

IIKI plane encircles the origin N times as K goes around the contour C.

This is a useful result which can be employed to determine the number of

roots in a given region.

S. NUMERICAL EXAMPLES

For numerical examples we will assume that each layer in the composite

shown in Fig. 1 is an orthotropic material with respect to the (xl' x2 ' x3)

axes where x2 = x2 and the x3-axis is the fiber direction which makes an

angle 0 with the x 3-axis. We further assume that all layers are identical

orthotropic materials although the ply-angle 0 may vary from layer to

layer. Referring to the (xl1 x2 23) axes, the following engineering con-

stants for two different orthotropic materials are taken from [25] and [24],

respectively.

Composite W

(Typical high modulus graphite/epoxy, [23])

E1 = E2 = 2.1 x 106 psi

66
EG 20 x 10 psi

G12 G 23 = G3 1 = 0.85 x 10 psi

V 21 =v 31 v32 =0.21
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Composite T

(T300/5208 graphite/epoxy, ['4])

6E = E = 1.54x10 psi
1 2

E3  (20 x 106 psi)* 6

6 (44)

G =G 0.81x 10 psi12 23 = G31

V2 1  V3 1  V 32 =0.28

In Eqs. (43) and (44), E. are the Young's moduli, G.. the shear moduli
1 1J

and v.. are the Poisson's ratios [25]. They are related to s.. [25,26],

and hence s.. can be computed. Since E.., G.. and v.. given in

Eqs. (43) and (44) are referred to the (x x x3) axes, s.. so obtained

will be denoted by .. Its inverse c.. is obtained by using the equa-

tions derived in [25]. Finally, we obtain s.. and c.. which are

referred to the (xI , x2, x3) axes from sij and ci. (see [2,12]) when the

ply-angle e in material 1 is given. For a different ply-angle 0' in

material 2, we obtain s!. and c!. in the same way.ij 1]

With the elasticity constants c.. and c!. associated with the ply-

angles 0 and 0' in materials I and 2 so determined, the formulation in

Section 4 provides the matrix K and the roots of the determinant 111

furnishes the desired roots. In Table 1 we list the roots K for the

Composite W given by Eq. (43) for combinations of (e/6') angles in which

both e and 0' assume the values between -90* and 900 with an increment

of 150 degrees. Since the values of K for (-a/b) and (a/-b) composites

are identical, it is sufficient to consider 0 > 0 only. In Table 2 we

*The value of E3 in [24] is 22x106 psi. The calculations presented in

Table 2 and Figs. 4 and 6 were inadvertently based on E3 =20x10
6 psi. How-

ever, a few sample calculations with the correct E3 show that the errors
on K are no more than 1%.
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list the roots K for composite T. In both tables, K = is a triple

root when 0 = e' and when e = -0' = 90' . This is expected since when

e = e' and 6 = -8' = 90° material 1 and material 2 have the same fiber

orientation and hence there is no real interface between material 1 and

material 2. Thus the crack is in a homogeneous material and the analysis

in Section 3 shows that K = is a triple root. For all other combina-

tions of (e/6') there are three non-equal roots of positive K.

Notice that the values of K are identical for (6/90) and (e/-90).

Likewise, K's are identical for (0/0') and (0/-e') as well as for

(90/6') and (90/-e'). Some of the roots are not easy to locate. For

instance, two of the three roots for (0/90) in Composite T differ by only

-5
10 . At the first calculation we only located the root K = 0.697726 and

completely missed the other two roots. Great effort and care were

exercised in locating the two roots which are very close to each other.

We also used Eq. (42) to verify numerically that there are indeed three

positive roots for K.

The results presented in Tables I and 2 are shown in graphs in

Figs. 3-6. In Fig. 3 contour lines for the largest K, denoted by Ki,

are shown for Composite W and the corresponding contour lines for

Composite T is shown in Fig. 4. In Figs. 5 and 6 the contour lines for

(K 1 - K ) where K3  is the smallest of the three roots are shown for

Composite W and Composite T, respectively. In view of symmetry, only

half of the contour lines are shown in Figs. 3-6. In both composites

we see that the largest K1 occurs at (0/-90) which is identical to

(0/90). At (0/90), <I = 0.676635 for Composite W and <i = 0.697726

for Composite T. The largest difference between K and K3 occurs

approximately at( 30/-4 0) for both Composite W and Composite T.



6. UNIFORM EXTENSION

We will consider in this section the problem in which the composite

shown in Fig. 2 is subject to a uniform extensional strain E in the

xl-direction. For this purpose, we add the term 16il x to the right-hand

sides of Eqs. (5), (13), (17) and (21) for the displacements u. and the1

term ci.ll I to Eqs. (7), (14), (18) and (22) for the stresses a.i [1,27].

With these modifications, application of the boundary and interface condi-

tions, Eqs. (36), results in the following system of equations

r K(K)q E (45)

where the elements of q are AL' BL A', BL, AL and B while b con-

tains ci.1 l. Since the right-hand side of Eq. (45) is independent of r,

we let K = 0 and obtain

K(O)q = slb (46)

Equation (46) provides q if K(O) is not singular. If K(O) is singular,

a solution may still exist if b is orthogonal to the left eigenvectors of

K(O). However, when K = 0 Eq. (18) indicates that a.. are constants and1J

the stresses are uniform. Therefore, instead of solving Eq. (46), we will

use an alternate approach employed in [1] to find a uniform stress solution

which satisfies the prescribed uniform extensional strain I'

To this end, we first solve aI from the first of Eq. (25):

*1 = (el/s1 l)-R.. , (j 1) . (47)

We then eliminate aI from the rest of Eq. (25) to obtain

Fi Ri l ' (i + R, j e 1) (48)

1 j.il

*-



16

where

R s I / 11
(49)

R. =j s -s IR.Rij = ij i ilJ

The free surface conditions, Eq. (36a), imply that

a3 a 4 5  0

(50)
0 G as 0
3 4 5

in the entire region occupied by material 1 because the stresses are uniform.

The continuity conditions across the interface = tT/2 as given by

Eqs. (36b,c) can be shown to be equivalent to

+ + + (Sl)

2 2 2 4 4 4 06 6

From Eqs. (50) and (51), the stresses o. , o and a' in the regions
i 1 1

/2 < < T, -7T < < -Tr/2 and -71/2 < < ir/2, respectively, have the

following non-zero components:

+
G = (1 + 2, 0, 0, 0, 06)

.- 0 = (- 2 0, o, 0, (52)1 1' 2' 3 Oo6)

0! =(., 0;I , 0, 0* 6

where the superscripts +, - and a prime are omitted for 02 and 06 in

view of Eq. (51). Using Eq. (52) in Eq. (48), the expressions e3 and E..

0~b 3
in material 1 are

=3 =R a +R a +R E
3 32 2 36 6 3 1

(53)

es = R52y2 + 56a6 + 5 1sC
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while the expressions for E_ and E in material 2 are
35

E: R. a G R +R1 +R35a'+ +R' + R',:
R32 2 333 355 366 31

(54)
E 5 R a' a + R '+R + R'522 533 555 566 51

Again, the superscripts , - and a prime for C.3 and s5  are omitted in

view of Eq. (51).

For the composite considered in Eq. (43) and (44), the material

property in each layer is symmetric with respect to the x2 = 0 plane and

* hence [24,25],

s14 : 16 = 24 s26 s534 = 36 S 54  S 56 =0 (55)

This implies that R36 R36 R56 R5 0 and elimination of E3 and
36 3;6 56 56 03

F5  from Eqs. (53) and (54) reduces to

(R32 32 2  333 5a -

(56)
(R-R )a2 +R' +RIo = -(R R - E;2 - R52 2  5s~3 3 R55 5  R5 5- R) 1

Equations (56) provide a one-parameter family of solutions for a 2 , 3 and

a,'. a6 is arbitrary while a+, c and a' are determined from Eq. (47).
6 1 1

This completes the solution for non-zero elements of the stresses shown in

Eq. (52). It is not difficult to see from Eqs. (52) and (47) that G1 = Ul.

Equations (56) have no solutions if

R R2 RR' R -RR 2 -R 32  R33 35 3 3-- : -- #(57)
R52 -R 52  R3 R55 R; RS

For the composites considered here, Eqs. (57) do not hold and a uniform

stress solution exists for a given extensional strain EI" Hence, there is

no additional stress singularity at the crack tip due to the uniform

extension for the composites considered here. If Eqs. (57) held, one

would have a logarithmic stress singularity at the crack tip [i].
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7. CONCLUDING REARKS

WVe have shown that the stress singularity at the tip of a crack which

is normal to and ends at an interface between two anisotropic elastic media

-K
has the form r where K is a root of Eq. (38). We show that there are

in general three distinct positive roots of K, say Ks (s=1,2,3). Foreach K

Eq. (37) furnishes the associated qs whose elements are AL, BL in

* Eq. (18). Since s is unique up to a multiplicative constant, say cs,

the solution given by Eq. (18) for K = i' K 2 and K 3 can be superimposed

and written as

- 1  (1) -K 2 (2) - (3)
(. =c r a.. +c r a.. + c.r . (58)ij 1 z] j ij

here provides K and u.s)  (s =1,2,3). The unknown constants cI, c2s i ' 2

-i and c. have to be determined from the complete boundary conditions of the

whole composite. One could use the solution obtained here to form a special

finite element at the crack tip and use regular finite elements elsewhere to

find a complete solution numerically for the stress distribution in the com-

posite with a crack.

It should be pointed out that Eq. (38) provides, besides the three

positive K presented here, infinitely many negative K whose real part is

negative. Thus to increase the accuracy in the special finite element at

the crack tip, one may add as many terms as one pleases to the right-hand

side of Eq. (58). These additional terms are non-singular at the tip of the

crack.
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APPENDIX

Consider a crack of length 2a located on the x2-axis between x = -a

and x, = a in an infinite anisotropic elastic material subjected to a

uniform tensile stress a0, as well as a uniform plane shear stress c32

(Fig. 7) and a uniform antiplane shear stress a31 (not shown in Fig. 7)

at infinity. The surface of the crack is stress-free. This problem was

studied in [16,17] in which the material property is assumed to be symmetric

with respect to the x1 = 0 plane and in [18,19] for general anisotropic

materials. We will present an alternate expression for the solution in the

entire plane, not just near the crack tip as in [19]. For the present

problem, it suffices to consider the associated problem in which the crack

surface is subjected to the stresses

o = -0-. on -a < x- < a (Al)

and the stresses vanish at infinity. To this end, we choose in Eqs.(13,14)

tL = L= - - L (A2)

where AL are arbitrary complex constants. We then have the solution for

the displacements

ui = Re ALUiL Z -a2) 2-ZL (A3)

and the stresses4 I)
L Re A ',_T (A4)

ijRe ALTij,L (2 -12)

which vanish at infinity. To determine AL, we apply the boundary condi-

tions, Eq. (Al):

4 ,



II
(3 2

L-~- < x,, )

3= j Re ALT 3 jL ti(a2 - x ) , -a < a (AS)
L -

Equation (AS) is satisfied if we let

AT3 i AL = a. (A6)

Ti-.. L 3i
L

or

A = J- t (A7)
L 3s 3s,L

where T.sL is defined in Eq. (32). We therefore obtain the solution

U. Re JTt LUL - 211- (A8)

1i a 3sL ijL (2 - a2z) 2  3s

To find the stress distribution near the crack tip, say x., a,

notice that as Z -a =0
L

ZL (ZLa)a-
- i -I =~-l (AYz~a) (AlO)

(ZL-a )(Za Z \2)L

If we let ZL -a r L  and

=rk va (All)

Equation (A9) reduces to Eq. (34). Thus the solution associated with k. in

Eq. (34) is due to the uniform symmetric tensile stress a.. applied at

infinity while that associated with k1  and k2  are due to, respectively,

the uniform anti-symmetric shear stresses 1  and aF, applied at

infinity. It should be pointed out that the solution associated with a33

is not necessarily symmetric with respect to the x axis even though the

loading at the infinity is. Likewise, the solutions associated with a31

and C.,2 are not necessarily anti-symmetric with respect to the x axis.
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.369508 .407075 .456342 .443947 .388842 .345965

.609394 .557954 .543655 .558434 .533668 .494600

30 .498562 .499986 .5 .498192 1 .495380 .493226 .492252
.391694 .442491 .445399 .400299 .364378 .339747

.560499 .557552 .592813 .595139 .553905 .497659

Is .499279 .5 .498554 .495627 .492603 .490548 .489828
.438704 .444039 .400073 .369244 .349787 .340358

.562178 .609785 .631434 .620457 .566078 .5
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.643963 .665377 .668725 .651255 .608061 .538511 .495691
4 -45 .499012 .497882 .496774 .495887 .495504 .495550 .495008
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4
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Table 1 Values of K for the r singularity in Compsoite W

, I. . . . ..
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Table 2 Values of K for the r- singularity in Composite T
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Fig. 1 Geometry of an angle-ply laminated composite
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