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Abstract

The assessment of probability on the basis of evidence is viewed as a

thought experiment that yields an expression of degree of belief. Theories of sub-

jective probability are viewed as tools or languages for analyzing evidence and

expressing degree of belief. This article focuses on two probability languages:

the classical Bayesian language and the language of belief functions (Shafer,

1976). We describe and compare the semantics (i.e., the meaning of the scale)

and the syntax (i.e., the formal calculus) of these languages. We also analyze the

designs of thought experiments afforded by the two languages and discuss their

implications.
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1. Introduction

The assessment of probability on the basis of evidence may be viewed as a

thought experiment. It involves asking questions of our mind, much as physical

experiments ask questions of nature. And the design of the experiment, the

choice of questions asked, is of crucial importance.

Often one design is superior to another simply because the questions it

asks can be answered with greater confidence and precision. Suppose we want to

estimate, on the basis of evidence readily on hand, the number of eggs produced

daily in the United States. One design might ask us to guess the number of

chickens in the country and the average number of eggs laid by each chicken

each day. Another design might ask us to guess the number of people in the

country, the average number of eggs eaten by each person, and some inflation

factor to cover waste and export. For most of us, the second design is manifestly

superior, for we can make a reasonable stab at answering the questions it asks.

When we are simply guessing about matters of fact, we may not find it

necessary to worry about subtle points of language. But when we turn from

guessing facts to making probability judgments--when we ask, for example, how

probable it is that more than 100 million eggs are produced each day in the

United States-we inevitably face such subtleties.
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In order to make judgments of probability we need a theory of probability.

In the first place we need a numerical scale or at least a qualitative scale (practi-

cally certain, very probable, fairly probable, etc.) from which to choose degrees of

probability. And we need canonical examples for each degree of probability in

this scale-examples where it is agreed that that degree of probability is appropri-

ate. For complex judgments we also need a calculus--a set of rules for combining

simple judgments to obtain complex ones.

Using a theory of probability means, essentially, comparing the problem

with which we are concerned with the theory's scale of canonical examples and

picking out the canonical example that matches it best. This comparison may be

a complicated process. Ingenuity may be required in order to make the canonical

examples and their similarity to our problem vivid to our imagination. And it

may be necessary to break the comparison down into separate comparisons of res-

tricted aspects of our problem or our evidence with the scale of canonical exam-

ples. It is in recombining the judgments resulting from these separate comparis-

ons that the theory's calculus comes into play.

Thought of in this way, a theory of probability is very much like a

language. At its base is a vocabulary--a scale of degrees of probability. Attached

to this vocabulary is a semantics-a scale of canonical examples that show how

the vocabulary is to be interpreted and psychological devices for making the

interpretation effective as a means of matching real problems to the scale. And

elements of the vocabulary are combined according to a syntax--the theory's
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calculus.

In this essay we shall call different theories of probability "probability

languages." This way of speaking encourages, we think, sensible attitudes

towards the comparison of different theories of probability. It encourages us to

think of theories of probability as flexible tools, whose success in providing

insight in particular problems will often depend on the skill of the user. And it

encourages us to recognize that the individual judgments made in one theory of

probability are not always directly translatable into another.

Once we have set out a theory of probability or a probability language, we

must still address the problem of design. How do we use the language to con-

struct probability judgments in a particular problem? The basic theme of this

essay is that we should study different probability languages in terms of the

designs they make possible.

1.1 Evaluating and Comparing Designs

How can we evaluate designs for making probability judgments?

As we have already seen, in thinking about the estimation of egg produc-

tion, a fundamental consideration is our ability to answer the questions the

design asks us.
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An analogy with surveying may be helpful. (Lindley, Tversky & Brown,

1979). There are usually many different ways of designing a land survey: there

are many choices as to what angles and lengths we measure. We make these

choices on the basis of the accuracy and precision with which we can make the

different measurements.

In the case of thought experiments, whether and how well we can answer

the questions a design asks us is a matter of psychology and practicality--it is a

matter of how our knowledge and experience is organized, first in our mind and

secondarily in other sources of information available to us. Examples of insight-

ful ways of assessing uncertain quantities are discussed by Raiffa (1974), and

Singer (1971) describes an intriguing example of a thought experiment regarding

the total worth of property stolen by heroin addicts in New York City in the

course of one year.

In many cases, the quality of a design for a thought experiment cannot be

assessed until the experiment is at least partially carried out. Only then can we

see to what extent we have been able to answer the design's questions, to what

extent these questions capture intuitive insights we already had, and to what

extent the experiment creates new insights.

The result of carrying out a probability thought experiment with a given

design is an argument, or an analysis of one's evidence. The preceding para-

graphs suggest that this argument or analysis, rather than the probability
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language itself or even the design, is the ultimate unit of comparison in evaluat-

ing and comparing probability languages. The ultimate question, when we apply

different probability languages to the same problem, is which argument or

analysis is most cogent, insightful, thorough, and reliable in its treatment of the

evidence.

The evaluation of a probability thought experiment is internal in a sense

in which the evaluation of a physical experiment need not be. One way to evalu-

ate competing designs for a physical experiment, like a land survey, is to apply

them to instances where the truth is known; the results will show which design is

best. But such empirical evaluation of final results is not always possible in the

case of probability judgments. The evaluation of a probability thought experi-

ment should, in a sense, be empirical--it should be an evaluation of how well the

thought experiment worked. But it is necessarily an evaluation of the cogency of

the whole process rather than an evaluation of the accuracy of the final result. In

the case of probability we cannot always separate theoretical argument from

empirical validation.

We shall study two different theories of probability in this essay: the Baye-

sian theory and the theory of belief functions. We think of these theories as

alternative languages, languages in which probability judgments can be created.

We think of them, that is to say, as tools. This point of view leads us to address

different questions than those that are commonly raised in the philosophical and

psychological literature.
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We do not focus here on the question of whether these theories are accu-

rate descriptions of how people think. We ask instead whether people are capa-

ble of using the theories and whether they can use them to given ends--whether,

for example, they can use them to formalize and refine certain intuitively reason-

able patterns of thought. Nor do we address here the question of whether the

theories are "normative"--it it seems premature to prescribe the use of a given

tool before we have an adequate understanding of how well and to what ends it

can be used. Furthermore, the prescriptions can only be relative to a given set of

alternative tools and to a usually ill-defined set of problems.

It fits our talk about tools to call our view of probability "constructive."

We do not think that people come to the task of probability judgment with

well-structured beliefs hidden in their psyche and waiting to be "elicited". No

doubt they come with some beliefs already formulated. But the process of judg-

ment, when successful, gives new and greater structure to one's beliefs and also

tends to render less structured initial beliefs obsolete. So it seems more

illuminating to talk about constructing probabilities than to talk about eliciting

them. (Shafer, 1081).

Different theories of probability are often treated as either-or alternatives.

But it is clear that the same persnn 'ian use -iore than one language or tool, and

so our view leads us to ask whe.,r % jp ion might find a design based on one

theory better for one problem and a design based on another theory better for
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another. This possibility will be at the back of our minds throughout this essay.

Which, we will ask, are the most successful Bayesian designs? Where do these

designs work best? And where are they less successful than designs based on

other theories?

1.2 Examples

With the help of some simple examples we can indicate in a general way

what we mean when we write about different designs for probability judgment.

In the first of the following examples, we ask whether a swimmer is likely to win

a half-completed race. In the second, two scientists assess the probability of com-

peting paleontological hypotheses. We will return to these examples again in

Sections 3 and 4 below.

The Free-Style Race

We are watching one of the last men's swim meets of the season at Hol-

sum University. We have followed the Holsum team for several season, so we

watch with intense interest as Curt Langley, one of Holsum's leading free-stylers,

gets off to a fast start in the 1650 yard race. As Curt completes his first 1000

yards, he is swimming at a much faster pace than we have seen him swim before.

His time for the first 1000 yards is 9:25. His best previous times for 1650 yards

have been around 16:25, a time which translates into about 9:57 at about 1000

yards. The only swimmer within striking distance of him is a member of the

visiting team named Cowan, whom we know only by name. Cowan is about half
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a lap (about 12 yards or 7 seconds) behind Curt.

Will Curt win the race?

The first question we ask ourselves is whether he can keep up his pace.

Curt is known to us as a very steady swimmer--one who knows what he is capa-

ble of and seldom, if ever, begins at a pace much faster than he can keep up

through a race. It is true that his pace is much faster than we have seen before-

-much faster, in particular, than he was swimming only a few weeks ago. And it

is possible that there has been no real improvement in his capacity to swim--that

he has simply started fast and will slow down before the race is over. But our

knowledge of Curt's character and situation encourages us to think that he must

have trained hard and greatly improved his endurance. This is, after all, his

senior year, and the championships are near. And he must have been provoked

to go all-out by Jones, the freshman on the team who has lately overshadowed

him in the long-distance races. We are inclined to think that Curt will keep up

his pace.

If Curt does keep up his pace, then it seems very unlikely that Cowan

could have enough energy in reserve to catch him. But what if we are wrong?

What if he cannot keep up his pace?

Here our vision becomes more murky, and we search for an understanding

of what might be going on. Has Curt deliberately put his best energy into the

first part of the race? Or has he actually misjudged what pace he can keep up?
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If he is acting deliberately, then it seems likely he will soon slow down, but not to

a disastrously slow pace; and in this case it seems to be a toss-up whether Cowan

will catch him. If he has misjudged what pace he can keep up. on the other

hand, then surely he has not misjudged it by far, and so we would expect him to

keep it up almost to the end and, as usually happens in such cases, to try so hard

to keep it up to the very end that he "collapses" with exhaustion to a very slow

pace. And there is no telling what would happen then--whether Cowan would be

close enough or see the collapse soon enough to take advantage of the situation.

There are many different designs that we might use to assess numerically

the probability of Curt's winning. There is even more than one possible Bayesian

design. The Bayesian design suggested by our qualitative discussion is a design

that assesses the probabilities that Curt will keep up the pace, slow down, or Col-

lapse and the conditional probabilities that he will win under each of these

hypotheses and then combines these probabilities and conditional probabilities to

obtain his overall probability of winning. We call this a total-evidence design

because each probability and conditional probability is based on the total evi-

dence. In Section 3 below we will formalize and carry out this total-evidence

design. We will also carry out a somewhat different Bayesian total-evidence

design for the problem. In Section 4 we will carry out a belief-function design for

the problem.
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The Hominids of East Turkana

In the August 1078 issue of Scientific American, Alan Walker and Richara

E. T. Leakey discuss the hominid fossils that have recently been discovered in the

region east of Lake Turkana in Kenya. These fossils, which are between a mil-

lion and two million years of age, show considerable variety, and Walker and

Leakey are interested in deciding how many distinct species they represent.

In Walker and Leakey's judgment, the relatively complete cranium speci-

mens that have been discovered in the upper member of the Koobi Fora Forma-

tion in East Turkana are of three forms: (I) A "robust" form that had large

cheek teeth and massive jaws. These fossils show wide-fanning cheekbones, very

large molar and premolar teeth and smaller incisor and canines. The brain case

has an average capacity of about 500 cubic centimeters, and there is often a bony

crest running fore and aft across its top, which presumably provided greater area

for the attachment of the cheek muscles. Fossils of this form have also been

found in South Africa and East Asia, and there has been general agreement that

they should all be classified as members of the species Australopithecus robustus.

(II) A smaller and slenderer (or more "gracile") form that lacks the wide-flaring

cheekbones of A but has similar cranial capacity and only slightly less massive

molar and premolar teeth. (Ill) A large-brained (c. 850 cubic centimeters) and

small-jawed form that can confidently identified with the Homo erectus specimens

found in the Java and northern China.
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The placement of the three forms in the geological strata in East Turkana

shows that they were contemporaneous with each other. How many distinct

sp(,ci(e do they represent? Walker and Leakey admit five hypotheses:

1. I, HI. and HI are all forms of a single, enormously variable species.

2. There are two distinct species: one, Australopithecus robustus, has I as

its male form and U as its female form; the other, Homo erectus, is

represented by MI.

3. There are two distinct species: one, Australopithecus robustus, is

represented by I; the other has HI, the so-called Homo erectus form,

as its male form, and the gracile form as its female form.

4. There are two distinct species: one is represented by the gracile form

1H; the other, which is highly variable, consists of I and H1I.

5. The three forms represent three distinct species.

Here are the items of evidence, or arguments, that Walker and Leakey use

in the qualitative assessment of the probabilities of these five hypotheses:

(i) Hypothesis I is supported by general theoretical arguments to the

effect that distinct hominid species cannot co-exist after one of them has

acquired culture.

(ii) Hypotheses I and 4 are doubtful because they postulate extremely

different adaptations within the same species: the brain seems to

overwhelm the chewing apparatus in I, while the opposite is true in III.

(iii) There are difficulties in accepting the degree of sexual dimorphism
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postulated by hypotheses 2 and 3. Sexual dimorphism exists among living

anthropoids, and there is some evidence from elsewhere that hints that

dental dimorphism of the magnitude postulated by hypothesis 2 might

have existed in extinct hominids. The dimorphism postulated by

hypotheses 3, which involves females having roughly half the cranial capa-

city of males, is less plausible.

(iv) Hypotheses I and 4 are also impugned by the fact that specimens of

the type I have not been found in Java and China, where specimens of the

type III are abundant.

(v) Hypotheses 1 and 3 are similarly impugned by the absence of speci-

mens of type IH in Java and China.

Before specimens of type Ill were found in the Koobi Fora Formation, Walker

and Leakey thought it likely that the I and 11 specimens constituted a single

species. Now on the basis of the total evidence, they consider hypothesis 5 the

most probable.

What Bayesian design might we use to analyze this evidence? A total-

evidence design may be possible, but it is natural to consider instead a design in

which some of the evidence is treated as an "observation" and used to "condi-

tion" probabilities based on the rest of the evidence. We might, for example.

first construct a probability distribution that includes probabilities for whether

specimens of Type I and II should occur in China and then condition this distri-

bution on their absence there. It is natural to all this a conditioning design. It is
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not a total-evidence design, because the initial (or "prior") probabilities for

whether the specimens occur in China will be based on only part of the evidence.

In Section 3 below we will work this conditioning design out in detail. In

Section 4 we will apply a belief-function design to the same problem.

2. Two Probability Languages

In order to make numerical probability judgments, we need a numerical

scale. We need, in other words, a scale of canonical examples in which numerical

degrees of belief are agreed upon. Where can we find such a scale?

The obvious place to find examples where numerical degrees of belief can

be agreed upon is in the picture of chance. In this picture, we imagine a game

which can be played repeatedly and for which we know the chances. These

chances, we imagine, are facts about the world: they are long-run frequencies,

they can be thought of as propensities, and they also define fair betting rates--

rates at which a bettor would break even in the long run.

There are several ways the picture of chance can be related to practical

problems, and this means we can use the picture to construct different kinds of

canonical examples and thus different theories or probability languages. In this

essay we shall consider iwo such languages: the Bayesian language, and the

language of belief functions. The Bayesian language uses a scale of canonical

examples in which the truth is generated by chance and our evidence consists of
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complete knowledge of the chances. The language of belief functions uses a scale

of canonical examples in which our evidence consists of a message whose meaning

depends on known chances.

We will pay the greatest attention to the Bayesian language. Since it is

the probability language that is most familiar to most readers, it is the most con-

venient vehicle for introducing the idea of design for probability thought experi-

ments. We will study the language of belief function as well in order to provide a

contrast to Bayesian ideas and in order to emphasize that our constructive view

of probability, while not implying that all probability languages have equal nor-

mative claims, does leave open the possibility that no single language has a

preemptively normative status.

2.1 The Bayesian Language

As we see it, a user of the Bayesian probability language makes probabil-

ity judgments in a particular problem by comparing the problem to a scale of

examples in which the truth is generated according to known chances and decid-

ing which of these examples is most like the problem. The probability judgment

P(A) = p, in this language, is a judgment that the evidence provides support for

A comparable to what would be provided by knowledge that the truth is gen-

erated by a chance setup that produces a result in A exactly p of the time. This

is not to say that one judges the evidence to be just like such knowledge in all

respects, nor that the truth is in fact generated by chance. It is just that one is



Weighing Evidence
17

measuring the strength of the evidence by comparing it to a scale of chance set-

ups.

The idea that Bayesian probability judgment involves comparisons with

examples where the truth is generated by chance is hardly novel. This idea can

be discerned in the axiomatic foundations of modern Bayesian "personalism".

(See, for example, Savage, 1954, pp. 33-40.) And it is sometimes invoked by prac-

tical Bayesian statisticians. In a recent article by G. E. P. Box (1980), for exam-

ple, we find the comment that the adoption of given Bayesian probability distri-

bution means that "current belief ... would be calibrated with adequate approxi-

mation by a physical simulation involving random sampling" from the distribu-

tion.

We believe, however, that the constructive aspect of the comparison with

chance setups is not sufficiently emphasized in current Bayesian thinking. The

personalist axioms assume, in effect, that every problem can be compared success-

fully to a scale where the truth is generated by known chances. Similarly, Box's

formulation may give the impression that a well structured system of beliefs

exists before the comparison, which is needed only for calibration. On the other

hand, our position is compatible with the approach of Diaconis and Zabell (1982)

who treat probability assessment as a constructive process and discuss useful

Bayesian designs.



Weighing Evidence
18

There is a tendency among some personalist Bayesians to leave aside alto-

gether the comparison to a scale of chance examples and to define "personal pro-

babilities" in terms of a person's preference among bets. But the definition of

probability in terms of bets does not address the problem of constructing proba-

bilities. Once we admit that this job has not already been done by some genie in

the back of the mind--once we admit that coherent preferences among a myriad

of bets are not hidden in the mind waiting to be elicited-we must also admit

that in order to construct these personal probabilities we must do more than

query ourselves about the attractiveness of various bets. We must study the evi-

dence and compare it to evidence in situations where we have a good understand-

ing of what bets are reasonable-i.e., games of chance.

Bayesian Semantics

The task of Bayesian semantics is to render the comparison of our evi-

dence to the Bayesian scale of canonical examples effective-to find ways of mak-

ing this scale of chances and the affinity of our evidence to it vivid enough to our

imagination that we can meaningfully locate the evidence on the scale.

By concentrating on different aspects of the rich imagery of games of

chance, we can isolate different ways of making the Bayesian scale of chances

vivid, and each of these ways can be thought of as a distinct semantics for the

Bayesian probability language. Three such semantics come immediately to mind:

a frequency semantics, a propensity semantics, and a betting semantics. The fre-
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quency semantics compares our evidence to the scale of chances by asking how

often, in situations like the one at hand, the truth would turn out in various

ways. The propensity semantics makes the comparison by first interpreting the

evidence in terms of a causal model and then asking about the model's propensity

to produce various results. The betting semantics makes the comparison by

assessing our willingness to bet in light of the evidence: at what odds is our atti-

tude towards a given bet most like our attitude towards a fair bet in a game of

chance?

It is traditional, of course, to argue about whether probability should be

given a frequency, a propensity, or a betting interpretation. But the perspective

front which we are approaching the question is not, so traditional. From our per-

spective these "interpretations" are merely devices to help us make what may

ultimately be an imperfect fit of our evidence to a scale of chances. Which of

these devices is most helpful may depend on the particular problem and the par-

ticular evidence. And even in a particular case we do not pretend that there

exists, prior to our deliberation, some particular frequency or numerical propen-

sity in nature or some betting rate in our mind that should be called the proba-

bility of the proposition we are considering.

Which of these three Bayesian semantics tends to be most helpful in

fitting our evidence to the scale of chances? We believe that the frequency and

propensity semantics are central to the successful use of the Bayesian probability

language, and that the betting semantics is much less valuable.
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The applicability and usefulness of both the frequency and the propensity

semantics are clearly contingent on the nature of our evidence. It may or may

not be the case that our evidence can be interpreted in terms of estimated or con-

jectured frequencies. And it may or may not be the case that our evidence lends

itself to interpretation in terms of a causal model. But it is, we believe, precisely

when our evidence can be cast in the form of relevant frequencies or causal

models that the Bayesian probability language can give us insight into the force

of that evidence. Good Bayesian designs ask us to make probability judgments

that can be translated into well-founded judgments about frequencies or about

causal structures.

Since we readily think in terms of causal models, the propensity semantics

often seems more attractive than the frequency semantics. But this attraction

has its danger; the vividness of causal pictures can blind us to doubt as to their

validity, and there is all too much room in causal thinking for over-optimism.

Thus a simple design based on frequency semantics can sometimes be superior to

a more complex design based on propensity semantics. We may, for example.

obtain a better idea about how long it will take to complete a complex project by

taking an "outside view" based on how long similar projects have taken in the

past than by taking an "inside view" that attempts to assess the strength of the

forces that could delay the completion of the project (Kahneman & Tversky,

1982).
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The betting semantics has a generality that the frequency and propensity

semantics lack. We can always ask ourselves about our attitude towards a bet,

quite irrespective of the structure of our evidence. But this lack of connection

with the evidence is also a weakness of the betting semantics.

In evaluating the betting interpretation of probability one must distinguish

logical from psychological considerations. Ramsey (1931) and his followers have

made an important contribution to the logical analysis of subjective probability

by showing that it can be derived from coherent preferences between bets. This

logical argument, however, does not imply psychological precedence. Introspec-

tion suggests that people typically act on the basis of their beliefs, rather than

form beliefs on the basis of their acts. Thus, the gambler chooses to bet on Team

A rather than on Team B because he believes that A is more likely to win. He

does not commonly infer this belief from his betting preferences.

It is sometimes argued that the prospect of monetary loss tends to concen-

trate the mind and thus permits a more honest and acute assessment of the

strength of evidence than that obtained by thinking about that evidence directly.

But there is very little empirical evidence to support this claim. Although incen-

tives can sometimes reduce careless responses, monetary payoffs are neither neces-

sary nor sufficient for careful judgment. In fact there is evidence showing that

people are sometimes willing to incur monetary losses in order to report what

they believe (Lieblich & Lieblich, 1969). Personally, we find that questions about

betting do not help us think about the evidence; instead they divert our minds to
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extraneous questions: our attitudes towards the monetary and social ('OUSO-

quences of winning or losing a bet, our assessment of the ability and knowledge

of our opponent, etc.

Bayesian Syntax

It follows from our understanding of the canonical examples of the Baye-

sian language that this language has the same syntax as the theory of chance. Its

syntax consists, that is to say, of the traditional probability calculus. A proposi-

tion that a person knows to be false is assigned probability zero. A proposition

that a person knows to be true is assigned probability one. And in general pro-

babilities add: if A and B are incompatible propositions, then P(A or B) = P(A)

+ P(B).

The conditional probability of A given B is, by definition,

p(i)- _P(A and B) (1)
P( B)

If B1 , ... , Bn are incompatible propositions, one of which must be true, then the

rule of total probability says that

= n (2)P(A) E ZP(Bi)P(AIBi),
i-I
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and Bayes's theorem says that

P(B1 IA) P(BiIP(A I Bi) (3)
n

P(Bi)P(A I Bi)
i-I

As we shall see in Section 3 below, both total-evidence and conditioning designs

can use the concept of conditional probability. Total-evidence designs often use

(2), while conditioning designs use (1). Some conditioning designs can be

described in terms of (3).

2.2 The Language of Belief Functions

The language of belief functions compares evidence to canonical examples

where the meaning of a message depends on known chances, or so-called objec-

tive probabilities.

By this we mean examples of the following sort. We know a chance

experiment has been carried out. We know that the possible outcomes of the

experiment are ol,...,on and that the chance of oi is pi. We are not told the actual

outcome and we receive a message that can be fully interpreted only with

knowledge of the actual outcome. For each i there is a proposition Ai, say, such

that if we knew the actual outcome was oi then we would see that the meaning of

the message is that the truth is in Ai.
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What degrees of belief are called for in an example of this sort? How

strongly should we believe a particular proposition A?

For each proposition A, set

m() = {piAi- =A}

This number is the total of the chances for outcomes that would show the mes-

sage to mean A; we can think of it as the total chance that the message means A.

Now let Bel(A) denote the total chance that the message implies A; in symbols,

Bel (A) -, {m(B) j B implies A}.

It is natural to call Bel(A) our degree of belief in A.

We call a function Bel a belief function if it is given by the above equation

for some choice of m(A). By varying the pi and the Ai in our story of the uncer-

tain message, we can obtain any such values for the m(A), and so the story pro-

vides canonical examples for every belief function.

We call the propositions A for which m(A)>0 the focal elements of the

belief function Bel. Often the most economical way of specifying a belief func-

tion is to specify its focal elements and their "m-values."
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When we use the language of belief functions to report on what the evi-

dence has to say about a particular proposition A, we often report both Bel(A)

and

P1(A) 1-Bel(not A).

We call P1(A) the plausibility of A. It measures how plausible A remains in light

of the evidence.

Semantics for Belief Functions

We have based our canonical examples for belief functions on a fairly

vague storv: we receive a message and we see, somehow, that if oi were the true

outcome of the random experiment, then the message would mean Ai. One task

of semantics for belief functions is to flesh out the story in ways that help us

compare real problems to it. Here we shall give three ways of fleshing out the

story. The first leads to canonical examples for a small class of belief functions,

called simple support functions. The second lead; to canonical examples for a

larger class, the consonant support functions. The third leads to canonical exam-

pies for arbitrary belief functions.

(i) A Sometimes Reliable Truth Machine. Imagine a machine that has two

modes of operation. We know that in the first mode it broadcasts truths. But

we are completely unable to predict what it will do when it is in the second
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mode. We also know that tile choice of which mode the machine will operate in

on a particular occasion is made by chance: there is a chance s that it will

operate in the first mode and a chance 1-s that it will operate in the second

mode.

It is natural to say of a message broadcast by such a machine on a partic-

ular occasion that it has a chance s of meaning what it says and a chance 1-s of

meaning nothing at all. So if the machine broadcasts the message that E is true,

then we are in the setting of our general story: the two modes of operation for

the machine are the two outcomes ol and o2 of a random experiment; their

chances are Pi = s and P2 = I-s; if ol happened then the message means A, -

E, while if o, happened the message means nothing beyond what we already

know--i.e., that it means A,, = e, where e denotes the proposition that asserts

the facts we already know. So we obtain a belief function with focal elements E

and 0; m(E) = s and m(8) = 1-s.

We call such a belief function a simple support function. Notice its non-

additivity: the two complementary propositions E and not E have degrees of

belief Bel(E) = s<I and Bel (not E) = 0.

It is natural to use simple support functions in cases where the message of

the evidence is clear but where the reliability of this message is in question. The

testimony of a witness, for exar, le, may be unambiguous, and yet we may have

some doubt about the witness's reliability. We can express this doubt by
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comparing the witness to a truth machine that is less than certain to operate

correctly.

(ii) .4 Two-stage Truth Machine. Consider a sometimes reliable truth

machine that broadcasts two messages in succession and can slip into its

untrustworthy mode before either message. It remains in the untrustworthy

mode once it has slipped into it. As before, we are unable to predict whether or

how often it will be truthful when it is in this mode. We know the chances that

it will slip into its untrustworthy mode: r, is the chance it will be in

untrustworthy mode with the initial message, and r, is the chance it will skip

into untrustworthy mode after the first message, given that it was in trustworthy

mode then.

Suppose the messages received are El and E2 , and suppose these messages

are consistent with each other. Then there is a chance (1-r)(l-r2) that the mes-

sage "Ej and Es," is reliable, a chance (1-rl)r2 that the message "El" alone is reli-

able, and a chance rlr2 that none of the message is reliable. If we set.

P, - (1-r1 )(1-r2), A, = El & E2.

P2 = (1-rl)r 2, A2  El,

.11
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P3 r1ro A3 -- ,

then we are in the setting of our general story: there is a chance pi that the mes-

sages mean A i.

Notice that AI,A., and A3 are "nested": A, implies A2, and A,, implies A3.

In general, we call a belief function with nested focal elements a consonant sup-

port function. It is natural to use consonant support functions in cases where our

evidence consists of an argument with several steps; each step leads to a more

specific conclusion but involves a new chance of error.

(iii) A Randomly Coded Message. Suppose someone chooses a code at ran-

dom from a list of codes, uses the chosen code to encode a message, and then

sends us the result. We know the list of codes and the chance of each code being

chosen--say the list is ol ....on, and the chance of oi being chosen is pi. We decode

the message using each of the codes and we find that this always produces an

intelligible message. Let A, denote the message we get when we decode using oi.

Then we have the ingredients for a belief function: a message that has the

chance pi of meaning Ai.

Since the randomly coded message is more abstract than the sometimes

reliable truth machine, it lends itself less readily to comparison with real evi-

dence. But it provides a readily understandable canonical example for arbitrary

belief functions.



Weighing Evidence
29

Syntax for Belief Functions

Our task, when we assess evidence in the language of belief functions, is to

compare that evidence to examples where the meaning of a message depends on

chance and to single out from these examples the one that best matches it in

weight and significance. How do we do this? In complicated problems we cannot

simply look at our evidence holistically and write down the best values for the

m(A). The theory of belief functions provides, therefore, a set of rules for con-

structing complicated belief functions from simple, more elementary judgments.

These rules constitute the syntax of the language of belief functions. They

include rules for combination, conditioning, extension, conditional embedding,

and discounting.

The most important of these rules is Dempster's rule of combination. This

is a formal rule for combining a belief function constructed on the basis of one

item of evidence with a belief function constructed on the basis of another, intui-

tively independent item of evidence so as to obtain a belief function representing

the total evidence. It permits us to break down the task of judgment by decom-

posing the evidence.

Dempster's rule is obtained by thinking of the chances that affect the

meaning or reliability of the messages provided by different sources of evidence as

independent. Consider, for example, two independent witnesses who are com-

pared to sometimes reliable truth machines with reliabilities s, and s,,
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respectively. If the chances affecting their testimonies are independent, then

there is a chance ss that both will give trustworthy testimony, and a chance

sl+ s2-sls2 that at least one will. If both testify to the truth of A, then we can

take S1+ s2-sis 2 as our degree of belief in A. If, on the other hand, the first wit-

ness testifies for A and the second testifies against A, then we know that not both

witnesses are trustworthy, and so we consider the conditional chance that the

first witness is trustworthy given that not both are: sl(1-s2)/(1-sls2), and we

take this as our degree of belief in A.

For further information on the rules for belief functions, see Shafer (1976,

1982).

3. Bayesian Design

We have already distinguished two kinds of Bayesian designs: total-

evidence designs, in which all one's probability judgments are based on the total

evidence, and conditioning designs, in which some of the evidence is taken into

account by conditioning. In this section we will study these broad categories and

consider some other possibilities for Bayesian design.

3.1 Total-Evidence Designs

A Bayesian total-evidence design, we have said, is any design that deter-

mines a probability distribution by making probability judgments all based on

the total evidence. There are many kinds of probability judgments a total-
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evidence design might use, for there are many mathematical conditions that can

help determine a probability distribution. We can specify quantities such as pro-

babilities, conditional probabilities, and expectations, and we can impose condi-

tions such as independence, exchangeability, and partial exchangeability.

Two Total-Evidence Designs for the Free-Style Race

The Bayesian design for the free-style race suggested by our discussion in

Section 1.2 above is an example of a total-evidence design based on a causal

model. This design involves six possibilities:

A, = Curt maintains the pace and wins.

A,, = Curt maintains the pace but loses.

A3 = Curt soon slows down but still wins.

A4 = Curt soon slows down and loses.

As = Curt collapses at the end but still wins.

A6 = Curt collapses at the end and loses.

The person who made the analysis (the story was reconstructed from actual

experience) was primarily interested in the proposition

A = (A, or A3 or A5 } = Curt wins,

but her insight into the matter was based on her understanding of the causal

structure of the swim-race. In order to make the probability judgment P(A), she

first made the judgments P(Bi) and P(AIBi), where
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BL = I-\l or A., } = Curt maintains his pace,

B., = \A or A\l = Curt soon slows down,

B3 = {A5 or A6} = Curt collapses near the end,

and she then calculated P(A) using the rule of total probability--in this case, the

formula

P(A) = P(BI)P(A I Bl)+ P(B2 )P(A I B 2 )+ P(B3 )P(A I B3 ). (4)

She did this qualitatively at the time, but she offers, in retrospect, the quantita-

tive judgments indicated in Table 1. These numbers yield P(A) = .87 by (4).

This example brings out the fact that the value of a design is very depen-

dent on the experience and understanding of the particular person carrying out

the thought experiment. For someone who lacked our analyst's experience in

swimming and her familiarity with Curt Langley's record, the design (4) would

probably be worthless. Such a person might find some other Bayesian design use-

ful, or he might find all Bayesian designs difficult to apply.

Insert Table 1 about here

Though it is correct to call the design we have just studied a total-

evidence design, there is a sense in which its effectiveness does depend on the fact

that it does allow us to decompose our evidence. The question of what the next



Table1

P(B1 ) =.8 P(AI) =.9

P(B2 ) =.15 P(AIB) =.5

P(B3) = 05 P(A BD3) = .7
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event in a causal sequence is likely to be is often relatively easy to answer pre-

cisely because only a small part of our evidence bears on it. When we try to

decide whether Curt will still win if he slows down - i.e., when we assess

P(A I 3) -- we are able to leave aside our evidence about Curt and focus on how

likely Cowan is to maintain his own pace.

Here is another total-evidence design for the free-style race, one which

combines the causal model with a more explicit judgment that Cowan's ability is

independent of Curt's behavior and ability. We assess probabilities for whether

Curt will (i) maintain his pace, (ii) slow down, but less than 3%, (iii) slow down

more than 3e, or (iv) collapse. (Whether Curt slows down 3% is significant

because this is how much he he would have to slow down for Cowan to catch him

without speeding up.) We assess probabilities for whether Cowan (i) can speed up

significantly, (ii) can only maintain his pace, (iii) cannot maintain his pace. We

judge that these two questions are independent. And finally, we assess the pro-

bability that Curt will win under each of the 4x3 = 12 hypotheses about what

Curt will do and what Cowan can do.

Table 2 shows the results of carrying out this design. The numbers in the

vertical margin are our probability judgments about Curt, those in the horizontal

margin are our probability judgments about Cowan, and those in the cells are

our assessments of the conditional probability that Curt will win. These numbers
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lead to an overall probability of

(.85x. lOx .5)+ (.85x.70x 1.0)+ ••.88

that Curt will win.

Notice that this design asks for judgments about what Cowan can do

rather than judgments about what he will do. This is because our evidence

about Cowan consists merely of our general knowledge about swimmers in the

league. The numbers .10, .70, and .20 are based on our general notion that

perhaps 20% of these swimmers are forced to slow down in the second half of a

1650-yard race and that only 10% would have the reserves of energy needed to

speed up. We are, in effect, thinking of Cowan as having been chosen at random

from this population.

Insert Table 2 about here

We are also judging that Curt's training and strategy are independent of

this random choice. Curt's training has probably been influenced mainly by the

prospect of the championships. And we doubt that Cowan's ability and personal-

ity are well enough known to Curt to have caused him to choose a fast start as a

strategy in this particular race.



Table 2

Cowan

can speed up can only main- cannot main-
significantly tain pace tain pace

Curt .10 .70 .20

maintains pace .85 .5 1.0 1.0

slows less than 3% .03 .2 1.0 1.0

slows 3% or more .07 0 0 .5

collapses .05 .2 .7 .8
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\Vhen we compare the design and analysis of Table 2 with the desilil Ve

carried out earlier, we see that we have profited from the new design's focus on

our evidence about Cowan. llaving made the analysis, we feel that the force :-,iu

significance of this evidence is now more clearly defined for us. On the other

hand, we are less comfortable with the conditional probability judgments in the

cells of Table 2; some of these seem to be pure speculation rather than assess-

ments of evidence.

Total-Etidence Designs Based on Frequency Semantics

In the two designs we have just considered the breakdown into probabili-

ties and conditional probabilities was partly determined by a causal model. In

designs that depend more heavily on frequency semantics, this breakdown

depends more on the way our knowledge of past instances is organized.

Consider, for example, the problem of deciding what is wrong when an

automobile fails to start. If a mechanic were asked to consider the possible

causes for this failure, he might first list the major systems that could be at fault,

(fuel system, ignition system, etc.) and then list more specific possible defects

within each system. This would result in a "fault tree" that could be used to

construct probabilities. The tree would not have a causal interpretation, but it

would correspond, presumably, to the way the mechanic's memory of the fre-

quencies of similar problems is organized. Fischhoff, Slovic, and Lichtenstein

11078) have studied the problem of designing fault trees so as to make them as
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effective and unbiased as possible.

Here is another simple example, based on an anecdote reported by Kahne-

man and Tversky (1982). An expert undertakes to estimate how long it will take

to complete a certain project. He does this by comparing the project to similar

past projects. And he organizes his effort to remember relevant information

about these past projects into two steps: first he asks how often such projects

were completed, and then he asks how long the ones that were completed tended

to take. If he focuses on a particular probability judgment--"the probability that

our project will be finished within seven years," say--then he asks first how fre-

quently such projects are completed and then how frequently projects that are

completed take less than seven years.

Why does the expert use this two-step design? Presumably because it

facilitates his mental sampling of past instances. It is easier for the expert to

thoroughly sample past projects he has been familiar with if he limits himself to

asking as he goes only whether they were completed. He can then come back to

the completed projects and attack the more difficult task of remembering how

long they took.

The emphasis in this example is on personal memory. The lesson of the

example applies, however, even when we are aided by written or electronic

records. In any case, the excellence of a design depends in part on how the infor-

mation accessible to us is organized.
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The probability of completing a project within s yven ,ears (:in. ),,,.

be zssessed using propensity instead of fre luencv ,un' or is. Jst,, 1 f ' "

ing our project to other similar projects, we 'ouid concentrate on our know,,dg,

of the capabilities of the group undertaking the project and assess the propensitv

of the group to complete the project and its propensity to do so within seven

years if it does so at all. Alternatively, we could use a more complicated calls:l

model that tar¢es account of the steps involved in the project. The anecdote

related by Kahneman and Tversky suggests, however, that frequency semantics is

superior to propensity semantics for this problem because it is less likely to pro-

duce unrealistically optimistic results.

Total-Evidence Designs for Distributions of Random Quantities

Spetzler and Stael von Holstein (1975) have discussed in detail the problem

of design for the construction of probability distribution for unknown quantities.

One way to construct a probability distribution is to specify percentiles,

beginning with the median, then the quartiles, etc. Spetzler and Stall von Hol-

stein call this design "the interval tecl.ique." One begins by thinking about a

number and adjusts that number up or down until one feels that the unknown

quantity is as likely to be greater than the number as it is to be less. This

defines the median. The interval below the median is similarly divided to yield

the first quartile, etc. The simplicity of this design is attractive, but a number of

experiments, beginning with Alpert and Raiffa in 1969, have reported that the
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initial focus on the median tends to lead to a distribution that is too tightly con-

centrated around that median.

The design favored by Spetzler and Sta*6l von Holstein runs roughly as fol-

lows: (i) specify upper and lower bounds for the unknown quantity; (ii) test these

bounds by considering the possibility of even more extreme values, and adjust

the botinds if necessary; (iii) consider various values between these bounds, in a

haphazard order, and for each value, assess the probability that the unknown

quantity is less than that value, checking that each assessment is consistent with

the ones alrea y made; (iv) continue this process until a cumulative distribution

function for the unknown quantity has been constructed in sufficient detail; (v)

check the cumulative distribution function by setting it aside and using the inter-

val technique to assess the median and quartiles.

What semarLics is used by Spetzler and Sta*;l von Holstein's design? How

do they match their belief that an unknown quantity is less than a certain value

to the Bayesian scale of canonical examples? They report that they do so in a

way direct and graphic way. They use a "probability wheel"--a disk resembling

the spinner used in children's games of chance. The disk has adjustable blue and

orange sectors, and the person making the probability judgment is asked to

adjust the sectors so as to match the event that the unknown quantity is less

than the given value with the event that the pointer will end up in the orange

sector after the disk is open. They sometimes phrase the question in betting

terms--they ask the person making the judgment to match events in the sense
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that they would be equally willing to bet on either. Thi use of betting language

seems too superficial, however, to be called an example of betting semantics. The

essential semantics is simply a direct comparison to a game of chance.

Spetzler and Stahl von Holstein's design must be considered a total-

evidence design; all the judgments are based on the total evidence. The ;we:akness

of the design is that it does not particularly focus attention on that evidence.

Total-Etidence Designs Based on Expectations?

From a purely mathematical point of view, it is often possible to construct

a probability distribution from knowledge of expectations. And expectations,

though they appear only as derived quantities when probabilities are interpreted

as frequencies or causal propensities, have a direct betting interpretation. So if

we took the betting semantics for the Bayesian theory seriously, we would want

to consider Bayesian total-evidence designs based on direct judgments of expecta-

tion.

Consider, for example, a design based on moments. The expected value of

the iA power of a random quantity X is denoted by E(XV) and called the ill

moment of X. Mathematical theory tells us that if a random quantity X has a

finite range, then its distribution can be approximated to any desired degree of

accuracy from knowledge of a finite number of the moments. (See, for example,

Kendall and Stuart, 1977, pp. 89-90.) Hence we can imagine a design that con-

structs a probability distribution for an unknown quantity X from judgments
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E(X), E(X2) . . E(Xn). We would assess each E(X') by asking ourselves what

price our total evidence seems to justify for a contract that would return the

unknown amount X.

In practice, designs based on moments or other expectations do not seem

to be very useful, and this fact can be attributed to the weakness of the betting

semantics. The personalist view of probability, with its emphasis on introspec-

tion and the "elicitation" of probabilities and expectations, encourages the idea

that an expectation is as easy to "elicit" as a probability--both probabilities and

expectations are prices for gambles and both can be determined by introspection

about one's gambling preferences. But as soon as we begin to look at evidence,

expectations seem much less accessible. Usually evidence can be related to fre-

quencies or propensities much more readily than to prices for gambles.

3.2 Conditioning Designs

Bayesian conditioning designs can be divided into two classes: observa-

tional designs and partitioning designs. In observational designs, the evidence to

be taken into account by conditioning is obtained after probabilities are con-

structed. In partitioning designs we begin our process of probability judgment

with all our evidence in hand, but we deliberately partition this evidence into

"old evidence" and "new evidence", assess proabilities on the basis of the old evi-

dence alone, and then condition on the new evidence.



Weighing Evidence
41

It should be stressed that a conditioning design always involves two steps:

constructing a probability distribution and conditioning it. The name "condi-

tioning design" focuses our attention on the second step, but of course the first is

the more difficult one. An essential part of any conditioning design is a subsidi-

ary design specifying how the distribution to be conditioned is to be constructed.

This subsidiary design may well be a total evidence design.

Likelihood-Based Conditioning Designs

Bayesian authors often emphasize the use of Bayes' theorem. Bayes's

theorem, we recall, says that if B1 , . . . , Bn are incompatible propositions, one of

which must be true, then

P(BiIA) = P(B)P(A I B)(

E P(Bi)P(A I Bi)

If A represents evidence we want to take into account, and if we are able to

make the probability judgments on the right hand side of (5) while leaving this

evidence out of account, then we can use (5) to calculate a probability for Bi.

When we use Bayes's theorem in this simple way, we are carrying out a

conditioning design. Leaving aside the "new evidence" A, we use the "old evi-

dence" to make probability judgments P(Bi) and P(AlBi). Making these judg-

ments amounts to constructing a probability distribution. We then condition
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this distribution on A. Formula (5) is simply a convenient way to calculate the

resulting conditional probability of Bi.

Moreover, we are carrying out a particular kind of conditioning design.

The subsidiary design that we are using to construct the probability distribution

to be conditioned is a total-evidence design that just happens to focus on the pro-

babilities P(Bi) and P(AI B), where A is the new evidence and the Bi are the pro-

positions whose final probabilities interest us. Since the conditional probabilities

P(A I Bj) are called "likelihoods", we may call this kind of conditioning design a

likelihood-based conditioning design.

Both observational and partitioning designs may be likelihood-based.

Bayesian theory has traditionally emphasized likelihood-based conditioning

designs, and they will also be emphasized in this section. At the end of the sec-

tion, however, we will give an example of a conditioning design that is not

likelihood-based.

A Likelihood-Based Observational Design: The Search for Scorpion

The successful search for the remains of the submarine Scorpion, as

reported by Richardson and Stone (1971), provides an excellent sample of a

likelihood-based observational design. The search was conducted from June to

October, 1968, in an area about 20 miles square located 400 miles southwest of

the Azores. The submarine was found on October 28.
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Naval experts began their probability calculations by using a causal model

to construct a probability distribution for the location of the lost submarine.

They developed nine scenarios for the events attending the disaster and assigned

probabilities to those scenarios. They then combined these probabilities with

conditional probabilities representing uncertainties in the submarine course, speed

and initial position to produce a probability distribution for its final location on

the ocean floor. They did not attempt to construct this probability distribution

for the final location in continuous form; instead they imposed a grid over the

search area with cells about one square mile in size and used their probabilities

and conditional probabilities in a Monte Carlo simulation to estimate the proba-

bility of Scorpion being in each of these approximately 400 cells. They then used

these probabilities to plan the search: the cells with the greatest probability of

containing Scorpion were to be searched first.

Searching a cell meant towing through the cell, near the ocean bottom, a

platform upon which were mounted cameras, magnetometers, and sonars. The

naval experts assessed the probability that this equipment would detect Scorpion

if Scorpion were in the cell searched. So when they searched a cell and condi-

tioned on the fact that Scorpion was not found there, they were, in effect, using a

likelihood-based conditioning design to assess new probabilities for its location.

This example is typical of likelihood-based observational designs. The

probabilities required by the design were subjective judgments, not known objec-
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tive probabilities. (The assessed likelihood of detecting Scorpion when searching

the cell where it was located turned out, for example, to be over-optimistic.) But

these judgments were made before the observation on which the experts condi-

tioned was made. In fact, these judgments were the basis of deciding which of

several possible observations to make--i.e., which cell to search.

A Likelihood-Based Partitioning Design: The Hominids of East Turkana

Let us now turn back to Walker and Leakey's discussion of the number of

species of hominids in East Turkana one and a half million years ago. They

begin, we recall, by taking for granted a classification of the hominids into three

types: the "robust" type I, the "gracile" type II, and the Homo erectus type HI.

They were interested in five hypotheses as to how many distinct species these

three types represent:

B, = One species

B2 = Two species, one composed of I (male) and U (female).

B3 = Two species, one composed of III (male) and II (female).

B4 = Two species, one composed of I and II.

B5 = Three species.

We summarized the evidence they brought to bear on the problem under five

headings:
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(i) A theoretical argument for B1.

(ii) Skepticism about such disparate types as I and HI being variants of
the same species.

(iii) Skepticism about the degree of sexual dimorphism postulated by B2

and B3

(iv) Absence of type I specimens among the type III specimens in the
Far East.

(v) Absence of type II specimens among the type III specimens in the
Far East.

How might we assess this evidence in the Bayesian language?

Partitioning design seems to hold more promise in this problem than

total-evidence design. Except for items (i) and possibly (ii), the evidence cannot

be interpreted as an understanding of causes that generate the truth, and hence

there is little prospect for a total-evidence design using prol -nsity semantics. We

also lack the experience with similar problems that would be required for a suc-

cessful total-evidence design using frequency semantics. And since it is the diver-

sity of the evidence that complicates probability judgments in the probkn, a

design that decomposes the evidence seems attractive.

Which of the items of evidence shall we classify as old evidence, and which

as new? The obvious move is to classify (i) as old evidence and to treat. (ii)-(v) as

our new evidence A. Thus we will assess probabilities P(B1 ), . . . , P(B5) and con-

ditional probabilities P(A IB1), " ,P(A 1 B5) and then calculate P(Bi I A), which

equals P(Bi)P(AI B i) divided by the sum P(BI)P(AIB)+P(B)P(A\ B2 )
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+ P(B3 )P(AI B3)+ P(B4)P(AIB 4)+ P(B5)P(AI B5). The apparent complexity of

this expression is lessened if we divide it by the corresponding expression for Bi.

obtaining

P(B I A) P(B) P(A I B) (6)

P(BjIA) P(B) P(AIBj)'

or

P(BiIA) P(Bi) (7)
P(Bj I A) P(Bj)

where L(A I Bi:B j ) = P(A I Bi)/P(A I Bj) is called the likelihood ratio favoring Bi

over Bj.

Expression (7) represents a real simplification of the design. Since the pro-

babilities P(B1 I A),...,P(B5 A) must add to one, they are completely determined

by their ratios P(B I A)/P B j A). Therefore equation (7) tells us that it is not

necessary to assess the likelihoods P(A I Bi)/P(A I Bj). It is sufficient to assess

their ratios L(A I Bi:Bi).

One further elaboration of this design seems useful. Our new evidence A

can be thought of as the event that types I, H and IMI should be so disparate

(items of evidence (ii) and (iii)) and that specimens of types I and II should not be
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found along with the type III specimens in the Far East (items of evidence (iv)

and (v). We can write

A= A, and A2 ,

where A1 is the event that the types should be so disparate and A2 is the event

that types I and II should be absent from the Far East. The two events A, and

A,, seem to involve independent uncertainties, and this can be expressed in Baye-

sian terms by saying that they are independent events conditional on any one of

the five hypotheses:

P(A I Bj) = P(A I Bi)P(A I B1 ).

Substituting this into (6), we obtain

P(BI A) P(B) P(Al I Bi) P(A2 jB1)

P(BjIA) P(Bi) P(A I B1) P(A2 IB),

or

P(B1 IA) P(Bi)
- L(A I B:B)L(A2 j:eB),

wP(ABa A) P (Bi )

where L(il B i:ei) --- P(AlI ej)/P(hj I Bi) and L(A,, Iei:ei) P-- (i., B i)/P(iA l Bi).
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Wre are not, of course, qualified to make the probability judgments called

for by this design; it is a design for experts like Walker and Leakey, not a design

for laymen. (If we ourselves had to make probability judgments about the vali-

dity of Walker and Leakey's opinions, we would need a design that analyzes our

own evidence, and this consists of their article itself, which provides internal evi-

dence as to their integrity and the cogency of their thought, our knowledge of the

standards of Scientific American, our knowledge of the nature and history of this

area of science, etc.) It will be instructive, nonetheless, to put ourselves in the

shoes of Walker and Leaky and to try to carry out the design on the basis of the

qualitative judgments they make in their article. As we shall see, there are

several difficulties.

The first difficulty is in determining the prior probabilities P(Bi) on the

basis of the evidence (i) alone. This evidence is an argument for B1, and so

evaluation of it can take the form of a probability P(Bn), say p(B1 ) = .75. But

how do we divide the remaining .25 among the other Bi? This is a typical prob-

lem in Bayesian design. In the absence of relevant evidence, we are forced to

depend on symmetries, even though the available symmetries may seem artificial

and conflicting. In this case, one symmetry suggests equal division among

B2, B3, B4, B5 , while another symmetry suggest equal division between the

hypothesis of two species (B2, B3, B4,) and the hypothesis of three species (B5 ).

The P(Bi) given in Table 3 represent a compromise.
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Now consider A l , the argument that the different types must represent

three distinct species because of their diversity. The design asks us, in effect, to

assess how much less likely this diversity would be under the one-species

hypothesis and under the various two-species hypotheses. Answers to these ques-

tions are given in the column of Table 3 labeled "L(Al I Bj:B 5)". These numbers

reflect the great implausibility of the intra-species diversity postulated by B, and

B4, the marginal acceptability of the degree of sexual dimorphism postulated by

B.,, and the implausibility, especially in the putative ancestor of Homo sapiens, of

the sexual dimorphism postulated by B3. Notice how fortunate it is that we are

required to assess the likelihood ratios L(A, I Bi:B5) = P(Al I Bi)/P(Aj I1B5) and

not, say, the absolute probability P(A, j B5). We can think ab')ut how much less

likely the observed disparity among the three groups would be if they represented

fewer than three species, but we would be totally at sea if asked to assess the

unconditional chance of this degree of disparity among three extinct hominid

species.

Insert Table 3 about here

Finally, consider A,2, the absence of specimens of type I or II among the

abundant specimens of type IID in the Far East. This absence would seem much

less likely if I or U were forms of the same species as III than if they were not,

say 100 times less likely. This is the figure used in Table 3. Notice again that



Table 3

P(B1 ) L(A1 I Bi:Bs) L(A2 IBi:Bs) P(B I A)

B1  .75 .01 .01 .00060

&~ .05 .50 1.00 .19083

B3  .05 .05 .01 .00020

B4  .05 .01 .01 .00004

B5 .10 1.00 1.00 .79033
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we are Spared the well-nigh men:ingl..,s tAk of assessing absolute probabilities:

we do not have to say how likely it is that East African species of hominids

should have failed to appear in the Far East.

As the last column of Table 3 shows, the total evidence gives a fairly high

degree of support to B5, the hypothesis that there are three distinct species. This

is Walker and Leakey's conclusion.

Hlow good an analysis is this? There seem to be two problems with it.

First, we lack good grounds for some of the prior probability judgments. Second.

the interpretation of the likelihoods seems strained. Are we really judging that

the observed difference between I and III is 100 times more likely if they are

separate species than if they are variants of the same species? Or are we getting

this measure of the strength of this argument for separate species in some other

way?

The Role of Likelihood Ratios

In the preceding example we noted that it is sufficient, in a likelihood-

based partitioning design, to assess likelihood ratios; absolute likelihoods need not

be assessed. This point is further discussed by Edwards, et al., 1968.

In a likelihood-based observational design, on the other hand. we usually

assess absolute likelihoods, not just likelihood ratios. This is because in an obser-

vational design we must be prepared to condition on any of the possible
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observations. If. for example, the possible observations are A and not A, then we

both L ( Bi.) =P(AI Bi)
need to have in hand both L(A B; (I) and

P(not Aj Bi)
L(not AI :B) = P(not A BJ) But since P(AIBJ+P(not AIBi)

= P(AI B i)+ P(not A I B) = 1, the likelihood ratios L(A Bi.:B) and

L(not A IBi:B j ) fully determine the absolute likelihoods P(AIBi) and P(AIBi).

The Choice of Neu, Evidence

How do we decide which evidence to take as new evidence in a partition-

ing design?

In the preceding example we identified certain evidence as new evidence

because we found better grounds for probability judgment when we thought

about the likelihoods of its happening than when we thought about it as a condi-

tion affecting the likelihoods of the possible answers to questions of direct

interest.

Sometimes we treat evidence as new evidence because of its psychological

salience. The salience of evidence can give it excessive weight in total-evidence

judgments. By putting such salient evidence in the role of new evidence in a par-

titioning design, we gain an opportunity to make probability judgments based on

the other evidence alone. Spetzler and Stall von Holstein (1975, p. 346) give the

following example:
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a company had to decide whether or not to introduce a new product

that was considered to have a high demand potential. The product was

test marketed and there was a slightly unfavorable outcome; the revised

assessment of the market said there was a low demand. This revision was

made in spite of past experiences with similar market tests that had been

less than accurate in predicting the final market size and in contrast to the

strong prior judgment indicating a high demand.

The market test is salient because it is more specifically related to the new pro-

duct than the other evidence is. Spetzler and Stahl von Holstein suggest that the

tendency to overvalue this salient evidence could be checked by using it as new

evidence in a partitioning design.

Bayesian Statistical Theory

Traditionally, Bayesian statistical theory has been concerned with what we

have called likelihood-based observational designs. This is because the theory has

been based on the idea of a statistical experiment. It is assumed that one knows

in advance an "observation space" -- the set of possible outcomes of the experi-

ment -- and a "parameter space" -- the set of possible answers to certain ques-

tions of substantive interest. One assesses in advance both prior probabilities for

the parameters and likelihoods for the observations.
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Many statistical problems do conform to this picture. The search for Scor-

pion, discussed above, is one example. But Bayesians have gradually extended

their concerns from the realm of planned experiments, where parameter and

observation spaces are clearly defined before observations are made, to the

broader field of "data analysis". In data analysis the examination of data often

precedes the framing of hypotheses and "observations". This means that the

Bayesian data analyst will often use partitioning designs rather than genuine

observational designs.

We believe that Bayesian statistical theory will better meet the needs of

statistical practice if it can outgrow its preoccupation with observational designs

and learn to deal explicitly with the problems involved in partitioning designs.

More attention needs to be paid to the problem of framing in partitioning

designs: the principles that should govern the selection of evidence that is to be

treated as new evidence.

A Partitioning Design that is not Likelihood-Based

Our study of partitioning designs should include consideration of designs

that are not likelihood-based.

Here is a problem that suggests a partitioning design that is not

likelihood-based. Gracchus is accused of murdering Maevius. Maevius's death

brought him a great and sorely needed financial gain, but it appears that Maevius

and Gracchus were good friends, and our assessment of Gracchus's character
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suggests only a slight possibility that the prospect of gain would have been

sufficient motive for him to murder Maevius. On the other hand, some evidence

has come to light to suggest that beneath the apparent friendship Gracchus actu-

ally felt a simmering hatred for Maevius, and Gracchus is known to be capable of

violent behavior towards people he felt had wronged him. The means to commit

the murder is not at issue: Gracchus or anyone else could have easily have com-

mitted it. But we think it very unlikely that anyone else had reason to kill Mae-

vius.

Our partitioning design uses the fact of Maevius's murder as the new evi-

dence. We consider the propositions.

H = Gracchus hated Maevius,

GI = Gracchus intended to kill Maevius,

SI = Someone else intended to kill Maevius,

GM - Gracchus murdered Maevius,

SM - Someone else murdered Maevius,

NM - No one murdered Maevius.

Using the old evidence alone, we make the following probability judgments:

P(H) = .2, P(GIIH) = .2, P(GlInot H) = .01;

P(SI) = .001, and SI is independent of GI;

P(GMIGI and SI) = .4, P(SMIGI and SI) = .4, P(NMIGI and SI) =.2;

P(GMIGI and not SI) - .8, P(NMIGI and not SI) - .2;

P(SNMISI and not GI) - .8, P(NMISI and not GI) = .2;



Weighing Evidence

P(.NM.Inot GI and not SI) =I.

Combining these judgments, we obtain

P(GI) = P(GI I H)P(H)+ P(GI not H)P( not H)

= (.2)(.2)+ (.8)(.01) = .048,

P(GM) = P(GM Inot GI)P(not GI)+ P(GM I GI and SI)P(GI)P(SI)

+ P(GM I GI and not SI)P(GI)P(not SI)

= (0)(.052)+ (.4)(.048)( .001)+ (.8)(.048)(.900)

= .03838.

Similarly,

P(SM) =.00078 and P(NMV) = .06084.

Finally we bring in the new evidence -- the fact that Maevius was murdered. We

find a probability

P(GM I ot NM) .03."38 9
P(GMnot M) =.03838+ .00078=.8

that Gracchus did it.

One interesting aspect of this example is the tact that the "newv evidence"

-- the fact that Mlaevius was murdered -- is actually obtained before much of the

other evidence. Only after Miaevius's death would we have gathered the evidence

against Gracchus.
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3.3 Other Bayesian Designs

What other Bayesian designs are possible in addition to total-evidence and

conditioning design.

A large class of possible designs is suggested by the following general idea.

Suppose one part of our evidence lends itself to a certain design d, while the

remainder of our evidence does not fit this design, but seems instead relevant to a

limited number of the judgments specified by a different design d'. Then we

might first construct a distribution P0 using d and considering only the first part

of the evidence, and then switch to d', using the total evidence, to make those

judgments for which the second part of the evidence is relevant and obtaining the

other judgments from P0.

An interesting special case is the case where the total evidence is used only

to construct probabilities Pl, . . , pn for a set of mutually incompatible and col-

lectively exhaustive propositions A, . . . An, so that the final distribution P is

determined by setting P(Aj) = pi and P(B IAi) = P0(B I Ai) for every other propo-

sition B that is considered. In this case we call the design a Jeffrey design.

Here is an example of a Jeffrey design. Gracchus is accused of murdering

Maevius, and the evidence against him is just as in the preceding example, except

that it is not certain that Maevius has been murdered. Perhaps Maevius has

disappeared after having been seen walking along a sea-cliff. We partition our
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evidence into two bodies of evidence--the evidence that was used in the probabil-

ity analysis above, and the other evidence that suggests Maevius may have been

murdered. We use the first body of evidence to make the analysis of the preced-

ing section, obtaining the probabilities obtained there: a probability of .03838

that Gracchus murdered Maevius, a probability of .00078 that someone else did,

and a probability of .96084 that no one did. We label this probability distribu-

tion P0. Then we use total evidence to assess directly whether we think Maevius

has been murdered or not. Say we assess the probability of Maevius's having

been murdered at .95. We then obtain a conditional probability from P.:

Po(Gracchus did it IMaevius was murdered) = .98. The final result is a probabil-

ity of .05x.98 = .931 for the event that Gracchus murdered Maevius.

For further examples of Jeffrey designs, see Shafer (1981).

3.4 Conclusion

Our study of Bayesian design has not produced any startling new

discoveries. None of the particular designs we have considered will seem novel to

applied statisticians or decision analysts. We hope, however, that the vocabulary

we have introduced will help bring what is commonplace in Bayesian practice

into the mainstream of Bayesian theory.

Our examples have illustrated the point that probability analyses are, in

the end, only arguments. Our two analyses of the free-style race are more or less
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convincing arguments that Curt will win. But there is no absolute sense in which

it can be said that either gives true or correct probabilities.

4. Belief-Function Design

Because of the importance of Dempster's rule of combination in the theory

of belief functions, belief-function designs tend to emphasize the decomposition of

evidence more than Bayesian designs. Here we illustrate this point by presenting

belief-function designs for the free-style race and the hominid problem.

For further examples of belief-function design, see Shafer, (1981, 1982).

The Free-Style Race

The second of the two Bayesian total evidence designs that we gave for

the free-style race (section 3.1 above) was based on independent judgments about

Curt and Cowan. We gave Curt an 85% chance of maintaining his pace, a 3%

chance of slowing less than 3%, a 70% chance of slowing more than 3%, and a

5% chance of collapsing. And we gave Cowan a 10% chance of being able to

speed up, a 70% chance of only being able to maintain his pace, and a 20%

chance of being unable to maintain his pace. Since we were using the Bayesian

language, we compared our evidence to knowledge that the evolution of the race

actually was governed by these chances. It is equally convincing, however, to

interpret these numbers within the language of belief functions. We compare our

knowledge about Curt to a message that has an 85% chance of meaning that he
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will maintain his pace, etc., and we compare our knowledge about Cowan to a

message that has a 70% chance of meaning that he can only maintain his pace,

etc.

Formally, we have a belief function Bell that assigns degrees of belief .85,

.03, .07, and .05 to the four hypotheses about Curt and a second belief function

Bel, that assigns degrees of belief .10, .70,and .20 to the three hypotheses about

Cowan. Judging that our evidence about Curt is independent of our evidence

about Cowan, we combine these by Dempster's rule. If no further evidence is

added to the analysis, then our resulting degree of belief that Curt will win will

be our degree of belief that Curt will maintain his pace or slow less than 3%

while Cowan is unable to speed up:

(.85+ .03)(.70+ .20) = .792.

And our degree of belief that Cowan will win will be our degree of belief that

Curt will slow 3% or more and Cowan will be able to at least maintain his pace:

(.07)(.10+ .70) = .056.

These conclusions are weaker than the conclusions of the Bayesian

analysis. This is principally due to the fact that we are not claiming to have evi-

dence about what will happen in the cases where our descriptions of Curt's and
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Cowan's behavior do not determine the outcome of the race. If we did feel we

had such evidence, it could be introduced into the belief-function analysis.

The Homninids of East Turkana

Recall that Walker and Leakey considered five hypotheses:

B = One species.

B, = Two species, one composed of A (male) and B (female).

B3 = Two species, one composed of C (male) and B (female).

B4 = Two species, one composed of A and C.

B5 = Three species.

In our Bayesian analysis in Section 3.2 above we partitioned the evidence into

three intuitively independent arguments:

(1) A theoretical argument for Bl.

(2) An argument that the three types are too diverse to be separate

species. This argument bears most strongly against B, and B4, but

also carries considerable weight against B3 and some weight against

B2.

(3) The fact that neither A nor B specimens have been found among

the C specimens in the Far East. This provides evidence against

hypotheses B1, B3, and B4.
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Let us represent each of these arguments by a belief function. Making roughly

the same judgments as in the Bayesian analysis, we have

(1) Bel l, with ml(Bl) = .75 and m,(9) = .25,

(2) Bel2, with mo(B5 ) = .5, m2(B2 or B5) = .45, m2(B2 or B3 or B5) -

.04. and m(E))=.O1, and

(3) Bel3, with m3(B2 or B5) = .99 and m3(9) = .01.

Combining these by Dempster's rule, we obtain a belief function Bel With

m(B5) = .4098, m(B or B5) = .4994, m(B2 or B3 or B5 ) = .0004,

m(Bl) = .0003, and m(O) = .0001. This belief function gives fair support to B5

and overwhelming support to of B2 or B5: Bel (B) = .4998 and Bel (B2 or B5 )

.90092.

These belief-function results can be compared to the Bayesian results of

Section 3.2, where we obtained P(B5 ) = .7093 and P(B2 or B5 ) = .0092. The

different results for B5 can be attributed to the different treatments of the first

item of evidence, the argument against coexistence of hominid species. In the

belief-function analysis, we treated this argument simply as giving B, a 75%

degree of support. In the Bayesian analysis we had to go farther and divide the

remaining 25% among the other four hypotheses.
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5. The Nature of Probability Judgment

Our understanding of proability begins, as this paper began, with the idea

that probability judgment is a kind of mental experimentation. The comparison

of our evidence in a particular problem to a scale of canonical examples is an

experiment. Sometimes it is a sampling experiment--as when we search, in our

mind or on a bookshelf, for examples on which to base a frequency judgment.

Sometimes it is more like a physicist's thought experiment, as when we try to

think through the ways a causal story might go. In any case it is an experiment

whose result is not known and not determined in advance.

The act of probability judgment is constitutive. A probability judgment is

a creation, not a discovery, it is useful, in this respect, to draw an analogy

between "probability" and affective words such as "love" and "loyalty". A

declaration of love is not simply a report on a person's emotions. It is a.. o part

of a process whereby an intellectual and emotional commitment is created. So

too with probability.

Probability and Evidence

A probability judgment depends not just on the evidence on which it is

based but also on the process of exploring that evidence. The act of designing a

probability analysis usually involves reflection about what evidence is available

and a sharpening of our definition of that evidence. And the implementation of a

design involves many contingencies. The probability judgments we make may
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depend on just what examples we sampled from our memory or other records or

just what details we happen to focus on as we examine the possibility of various

scenarios (Tversky & Kahneman, 1983).

It may be helpful to point out that we do not use the word "evidence," as

many philosophers do, to refer to a proposition iu a formal language. Instead we

use it in a way that is much closer to ordinary English usage. We refer to "our

evidence about Cowan's abilities" to "our memory as to how frequently similar

projects are completed," or to "the argument that distinct hominid species can-

not coexist." The references are, as it were, ostensive definitions of bodies of evi-

dence. They point to the evidence in question without translating it into state-

ments of fact in some language. This seems appropriate, for in all these cases the

evidence involves . rguments and claims that would fall short of being accepted as

statements of fact.

Evidence, as we use the word, is the raw material from which judgments

both of probability and of fact are made. Evidence can be distinguished in this

respect from information. Information can be thought of as answers to questions

already asked, and hence we can speak of the quantity of information, which is

measured by the number of these questions that are answered. Evidence, in con-

trast, refers to a potential for answering questions. We can speak of the weight

of evidence as it bears on a particular question, but it does not seem useful to

speak of the quantity of evidence.
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Mental and Extra-mental Experimentation

Though we have directed attention to the notion of mental experimenta-

tion, we want also to emphasize that when a person undertakes to make a proba-

bility judgment he is not necessarily limited to the resources of his memory and

his imagination. He may also use paper, pencils, books, files, and computers.

And he need not necessarily limit his sampling experiments to haphazard search

of his memory and personal bookshelves. He may wish to extend his sampling to

a large-scale survey, conducted with the aid of randomization techniques.

There is sometimes a tendency to define human probability judgment

narrowly--to focus on judgments people make without external aids. But it may

not be sensible to tr to draw a line between techniques and tools of judgment

that are strictly mental and ones that are extra-mental. Psychologists who wish

to offer a comprehensible analysis of human judgment should, as Ward Edwards

(1975) has argued, take into account the fact that humans are tool-using

creatures. On the other hand, statisticians and other practical users of probabil-

ity need to recognize the continuity between apparently subjective judgments

and supposedly objective statistical techniques. The concept of design that we

have developed in this paper is meant to apply both to probability analyses that

use sophisticated technical aids and those that are made wholly in our heads.

We believe that the selection of a good design for a particular question is a

researchable problem involving both technological and judgmental aspects. The

design and analysis of probability thought experiments therefore represents a
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challenge to both statisticians and psychologists.

University of Kansas
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