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ABSTRACT

A number of tests are compared for testing the hypothesis

of a constant intensity against the alternative of an increasill,,

intensity function in a nonhomogeneous Poisson process,. The

powers of the tests are deteripined by Monte Carlo simulation

against alternatives which are increasing at an exponent ia]

rate, a power rate (Weibull intensity), and a logarithmic

rate. A few exact powers are also obtained.

The study includes the well known Laplace test statistic

which is known to be appropriate against exponentially increasin,

alternatives, the most powerful test for the shape parameter

in a Poisson process with Weibull intensity, the likelihood

ratio test against arbitrary NI]PP alternatives, two nonpar.aiil r ic

tests for trends based on Kendall's tau and Spearman'S rho,

and a test based on an F-statistic.



1. I NTRODUCT I ON

Non-homogeneous Poisson processes (NIIPP) provide models

for a variety of physical phenomena. For instance, if at

each failure, a system is repaired to its condition at the

time of failure and placed in service again, then the

failures are often modelled by a NIIPP provided the r-epair

times can be neglected. In some of these situations, it 1o:Y

be reasonable to assume that the intensity, A(.), is

nondecreasing and so tests of 110: X(.) is constant versus

HI: X(.) is increasing are of interest. This would indicate

whether the simple homogeneous Poisson process (IIPP) may he

adequate, or whether a more general NIIPP model is required.

Suppose that a NHPP is observed for T* units of ti me with

n failures and failure times 0 < T I , 1' T T*.

(Of course, the number of failures is a random variable, ihich

we denote by N.) We compare several of the tests which are

available in the literature for 1t0 versus t 1 in this time

truncated framework, and similar conclusions should hold for

their counterparts based on data truncated on the number of

failures. One of the earliest tests is attributed to Laplace

and is based on the statistic L = 0 1 /T*. tnder 10 the

T./T* are distributed as the order statistics from a uni forml
1

distribution on (0,1), so L behaves as the sum of uni form

random variables and in particular, has an approximate

normal distribution with mean n/2 and variance n/12. Iei , c,

If0 is rejected if 1, > n/2 + z (n/12) 1/2- were z I is the

Lb
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1-a th quantile of a standard normal distribution. Cox (19551

showed that this test is appropriate for testing = versus

> 0 in X(t) = ae~t. Bartholomew (1956) gave an expression

for its power (see also Bates (1955)) and showed that it

compares favorably with the one-sided Kolmogorov-Smirnov test.

Ascher and Feingold (1978) further discuss its use in the

study of repairable systems.

Another family of intensity functions, which is quite

flexible, is X(t) = ( i/e)(t/O) for 0, 0. Because this

is the failure rate for the Weibull distribution, the

corresponding process has been called the l'eibull I'oisson

Process (WPP). Inferences for a WIll are discussed in (rot

(1974, 1982), Saw (1975), Finkelstein (1976), Lee and lec

(1978), Engelhardt and Bain (1978) and Bain and FIngelihardt

(1980). The earlier paper by Crow gives tests for -ith .

a nuisance parameter. In testing v =l versus i'>1, which is

equivalent to testing i0 versus Ill, -"=l is rejected for

small values of Z = 2 n log(T*/T) , which has a chi-squaredsalvleof 2i I i

distribution with 2n degrees of freedom under 11 0 and is MIl'1

in this WPP setting.

Boswell (1966) developed the likelihood ratio test LRT(,

conditional on n failures, for t1 versus 1I1 and an arbitrarY

NIIPP. The maximum likelihood estimator of >(.) under lo Q II

is shown to he zero on fO,T 1 ) and constant on Tk ,Tk for

k = 1,2,...,n with Tn+I = T* and

('rk) = maxl kmink 4(-r+ 1)/('l't l -T')

i f



A computation algorithm is also given there (cf. p. 1507).

The LRT rejects for large values of

W = 2I n  log(X(Tk)) + log('I*/I)

2
and letting X (k) denote a chi-squared variable with k deg ree.

of freedom

n'W W '(k, n) P[ 2- (k+ 1)

for large n, where the P(k,n) are given in Table A.S of

Barlow et al. (1972).

If the intensity is increasing the inter-failure times,

Tk-i' k = 1,2,...0,n (T00), should tend to decrease.

Hence, nonparametric tests for trends using either Kenda]J'I

tau or Spearman's rho could be considered for test in, IirH

versus H1  (For a discussion of these tests as tests of trend,

see Hollander and Wolfe (1973, p. 19().)

Barlow et al. (1972, p. 197) observed that the failure

times could be divided into two parts and the ratio

(n-d)Td/(d(T n-T d)) used as a test statistic for trend. Oif

course, an increasing intensity should correspond to a larger

value of this ratio. If the intensity is constant, then
,-k /,n+ l

conditional on n failures, 1 k can he expressed as )=l Y "I1I .I

where the Y. are independent exponential variables with a

common mean. Hence, I 0 is rejected if this ratio, which et,

denote by F, exceeds tile I-,x th quantile of the 1 (list rihut ion

with 2d and 2(ii-d) degrees of freedom. We considercd thc It",e

with d = n/2I and the one with Td 1'/2 T d+ I w lraever, the
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latter test is only applicable if both of the intervals

(0,'r*/21 and (T*/2,T*I contain failures and the former test is

applicable whenever n > 2. For small truncation times this

difference can be appreciable and so in that which follows,

we only consider d = [n/2].

Section 2 contains the results of a study which compares

the powers of the tests described above and in Section 3,

our recommendations based on this study are given.



2. POWER COMPARISONS

Some of the tests discussed in the last sect ion arc

clearly appropriate for certain families of- intensiti ,

for instance the test based on 2 is UNPIJ in the hP' stc ttin ,

and it would be of interest to study their powei" fUn tloll:

for a broad range of intensities. On the other hand, Somt, of

the tests, such as W, are designed to be more oiuinihu> jn,]

information concerning the loss of poi-or incurred htlii i ,

them instead of a test which is opt imal in a particular

situation would be useful.

Because of the complex nature of some of the pow r i' nCt iolnl

involved a Monte Carlo study was conducted. The tests 1Wis'd

on L,Z,W,F Kendall's tau (which we denote by K) and Spea aiiin's

rho (which we denote by S) are compared. The follotin', result

is the key to generating a NIIPP with intensity I-.. ifIt
.\ (t) = (s)ds is strictly increasing and {k denotes the

failure times for a HIP' with A=1, then {.' (S ) are the

failure times for Nl111 ' with intensity (-) . " (t) is the

expected number of failu res in (0,t].) lIntensity functions

which are exponential, of the Weihull type, logarithmic and

those that increase but have a horizontal asymptote are

considered. A particular value of T* may be appropriate

for one intensity function but not for another, that is it may

give rise to a reasonable amount of data for nel' illt, lten I

function and no data (or a very large sample size) for another.

So the truncation time will be allowed to vary with ( and



in particular T* is chosen so that the expected sampie si>*,

E(N), is 10, 20 or 40.

If X(.) is an intensity function with corresponding muean

function, A.) and X0 (t) = X(t/o)/(3, then , ( (t) = Hence,

the failure times for the process with intensity ),-(-) can

be expressed as A 1(S )/0 where the S. are the failure times3 1

for a Poisson process with A=1. All of the tests considered

are scale invariant and so we need only consider 1=1. In

particular, we consider processes with intensities of the

form X(t) = t - 1  with i=1,2,4, A(t) = et  with t= .71,1,2

\(t) = (x,- 1/(a-l)!)/(-j (xJ/j!), which is the fai lure rate

of a gamma distribution, with i=2,4 and X(t) = logct+]).

The gamma intensity was chosen because it increases slowly and

in fact approaches a constant as t * ,. flowever, for such

alternatives the data beyond some point in time resembcles

that for a constant intensity. The tests considered do not

have enough power in such cases to make interesting comparisons.

If one wishes to discriminate against this kind of an intensity

several replications of the process should be observed for an

initial time interval rather than observing one process.

For this reason the study of the GPP was not completed and no

further results concerning it are given here.

Table 1 contains Monte Carlo estimates of the powers for

the tests and alternatives described above. These estimates

are based on 5000 iterations. rests with a nominal significance

level of a = .05 are considered, however the LRT is known to

have larger true significance level. For instance, with

'" f



with E(N) = 10 and a target level of .OS its estimated siini fic :ncc

level is .004. Experimenting we found that a nominal level of i1l

yields an est imated level of approximately .05 for t he LR'l and iL

range of sample sizes being considered. Clearly, this is a

disadvantage of the LRT in this situation. As can be seen from

Table 1 the significance levels for the other tests are VCv

close to .05. Of course, the Z a7d F tests are exact.

To give some idea of the accuracy in these estint (lcd

powers, we consider the power of Z for l. 1. Since

A(t) t , the failure times have the saime joint distributions

as S1 /  with the Si as before, and T* = (I Condit ional

on n failures, the distribution of Z is the same as ./. under

\(t) 1. So the power of Z at is

e' l -l1:(N) (F(Nj)nP) (2n ji 2n) (n!(I -c)

n--

where X'(2n) is the ,-th quantile of a chi-squared dist ribut ion

with 2n degrees of freedom. The first row in Table I gives the

(Aact powers computed from this formula. The largest discrepancy

between these exact and estimated powers is .004.

Similar comparisons can be made for the 1, test since it is

based on approximate normal distributions. For a NIIPP, given

that there are n failures in the interval (0,T*I, the failure

times are distributed as the order statistics of a random

sample of size n from the density f(t) = A(t)/A(T*), 0 t

and f(t) = 0 otherwise. Since 1. can he expressed as the sum

of the unordered observations from this density divided by T*,

it has conditional mean

W= n 1(LIN=n) n ftA(t)dt/(r*A(T*))

Ai



and conditional variance

2 V 1(, N=n) = n{ (t)dt/(1* ('2 1) 2

Hence, the power of 1, is approximately

(1e  (,',( *)) {1-n) ) (n(/ (2-e 112

2.
lowever, in the WPP case the formul as for and 2 S ip I i fy to

n n

= nL'/I+l) and (j n+/( ; +2)-(/((+l))-]n n

The fourth row in Table 1, which is labeled 1. Iapprox.), I. ives

the approximate powers computed using the fo rmuIlas and the Fi fth

row (labeled L(est.)) gives the Monte Carlo estimates of

these powers. [he largest discrepancy between the app roxi mat(

and Monte Carlo values occurs for LN) = 1I0 and §;=2 and the

difference in this case seems to be due prima r ily to the no rmlal1

approximation. One could obtain a further check on accuracy.

Bartholomew (1955) gives the power of L for exponential

intensities, conditional on n failures, and this could he used

with the law of total probability to obtain a formula for the

power of L for such alternatives. Because of the complex nature

of the conditional power this has not been carried out.

To aid in the comparison of these tests, relative efficiuocle>

are estimated. For each case considered, for instance the

WPP with =2 and E(N)=10 is one case, the relative efficiency

of a test is its power divided by the largest of the six

powers for that case. Table 2 contains the estimated relative

efficiencies, that is the ratio of the estimated powers. The

test was the most powerful for the logarlthmic and Weibull



alItern at ives. (Ili thle case WIT, . 2 and 1.(N) =201 t he lACI

that thle estimated relat ive effit- iencv of'- is less thaii )ii(.

is due to Monte Carlo error. RecallI is JU11 in til

sect t i n i a nd t he t ru e p)o werI i s 9 ) The 1, test 111o < rot

powlertuL for thle eXponen01t al Intensites.

It should he noted that the mminimum of the rel at y e

efficiencies o01 : in our study is .011. (We denote 11i iMuL;i

relative efficiency by v RL.,) iThis is thle largest MR1. o t

thle six tes;ts- Studied and so we recommend the -- test i f' o e

wishes to discriminate against intensities Ii thle iif

considlered. The NiRII for thle LP'l(W) is . 819, for 1, it 1 8 I

for Spearilan 's rho (S ) it is .530 and for Kendall i's tanm K

it is S521 and for thle F test it is .522. I F one is n 1 t

concerned with the possibilIity of slowly increasingo intens it I .

such as the logarithmic intensitY, then thle 1, test could he

used which has an estimated MI over that range of .05. Ilo%\ever,

the increase in MIZE is not large and it seems to he best to ulse

Iand protect against the possibility of- slowly increasimg

intensities. For thle situations cons idered here the nonpa ranet ric

tests can not he recommended, but if' thle di stribult ion aIsnulptiomu

on inter- fal lure times is in question, one might wish to

consider one of them. (There is very little di ffecrence Ii

their MRZs.) The 1: test performis better f or large lI(N) than

f orI smal Ie r 1:(N) , but its performance for s lowl y inc reas ing

intensities is not strong. The LRT was designed to discriniinat c

against all nondecreasing intensities which are niot constant.

1 f one were concerined about ve ry no nregular intensi ties W~ Could lie

considered, hut such intensities were not considered here.



3. CONCLUSIONS

In testing for an increasing intensity in a Poisson

process, the : test performs quite well for the range of

alternatives studied here, that is for logarithmic, WeihimlI

and exponential intensities. In fact, its efficiency relative

to the other five tests considered is at least 9( and Cor

the logarithmic and Weibull intensit ies it is the mo.st

powerful of the six. For alternatives of the type .Studi ed

here the I test is recommended.

ACKNOWLEDM LN'T: The authors would like to thank Mr. Tuan

Tran for writing the computer program for the Monte (arlo

studN .



B 1 BI. IO(;RAPIIY

1. Ascher, If. li. and Feingold, I1. (1978). "App I i cat i oi '
Lap Iace' s test to repai rable system rel iabi I it I y"
P)roc. lnt Con f. on Re iabi Ii tv and Ma i ntainab i lit V
-( -ci 't - Po-ur--La ITffT -Sia-on Des Sc iences I- I)es Art s,
France) , 219-225.

2. Bain , 1,. J . and lngelhardt , M. L. (1981)). "'In fererices
on the parameters and current system re 1i ab iI i ty for a
time truncated eibull Process". Technometrics 22 121-2 .

3. Barlow, R. E. , Bartholomew, 1). J , Bremner, J . M. and
Brunk, Ht. D. (1972). Statistical Inferences tinder Order
Restrictions, Wiley, NeIV York. -.

4. Bartholomew, 1. J. (1956). "Tests for randomness in a
series of events when the alternative is a trend".
JRSS,B. 18 234-239.

S. Bates, G. 1:. (1955). "Joint distributions of time in ICrxa I s
for the occur rence of successive accidents in a ,e ner:j I Ic
Polya Scheme". Ann. Math. Statist. 20, 705-720.

6. Boswell, i. T. (1966). "Lstimating and testing trend
in a stochastic process of Poisson type". Ann. Math. Statist.
37, 1564-1573.

7. Cox, 1). R. (1955). "Some statistical methods connected
with series of events". JRSS,B. 17, 129-104.

8. Crow, L. If. (1974). "Reliability and analysis for complex
repairable systems". Reliability and Biometry, F. Proschan
and R. J. Serfling, editors. SIAM, Philadelphia, 3-9-410.

9. Crow, L. H. (1982). "Confidence intervals procedures for
the Weibull process with applications to reliabil itv
growth". Technometrics 24, 67-72.

10. Engelhardt, M. E. and Bain, L. i. (1978) . "Pred iCt ion
intervals for the Weibull process". 'echnomet r i c 20, 11,7 - I ('.

11. Finkelstein, J. (1976). "Confidence bounds on the para
meters of the Weibull process". I'echnometrics 18, 115-117.

12. Hollander, I. and Wolfe, 1. A. (1973). N o npar a iietric
Statistical Methods, Wiley, New York.

13. Lee, L. and Lee, S. K. (1978). "Some results on inference
for the Weihull process", Technometrics 20, 41-45.

14. Saw, J. G. (1975). "Tests on the intensity of a Poisson
process". Comm. Stat. 4, 777-782.



12

TABLE 1. Estimated powers for testing If0 versus ItI

Weibull Intensity: A(t) =

1.0 2.0 4.)

Test 10 20 40 10 20 40 10 20 10

Z (exact) .0500 .0500 .0500 .6209 .8989 .957 .9785 .9999t 1. (1((W

: (est.) .052 .053 .052 .624 .902 .995 .970 .996 1.()()()

iI  .052 .048 .050 .511 .797 .978 .953 .999 1 . 000

L(approx.) .0500 .0500 .050 .5721 .8558 .9893 .9787 .999 1.0000

L(est.) .054 .050 .047 .593 .855 .989 .973 1000 1.000

S .049 .050 .049 .331 .534 .783 .542 .774 .958

K .046 .052 .052 .325 539 .786 .541 .782 .957

F .052 .046 .046 .381 .614 .905 .852 .990 1. 0 0 0

Exponential Intensity: A(t) = e

0.5 1. 0 2.0

'rNst 10 20 40 10 20 40 10 20 40

2 .762 .981 .997 .608 .940 .996 .436 .844 .994

IV1  .729 .984 1.000 .582 .939 1.000 .400 .818 .998

L .805 .993 1.000 .656 .972 1.000 .477 .89.12 1.000

S .484 .832 .986 .395 .778 .981 .290 .670 .90-

K .476 .833 .987 .383 .777 .981 .274 .608 .966

F .620 .956 1.000 .481 .892 1.000 .343 .740 .995

Logarithmic Intensity: X(t) = log(t+l)

Z(N) Z W 1, S K I

10 .362 .311 .321 .205 .202 .206

20 .529 .444 .439 .294 .298 .276

40 .770 .650 .643 .426 .429 .422

1. The nominal level for the W test was .04.



TABIi 2. Estimated relative efficiencies.

Logarithmic Intensity Weibull Intensity: * It )-,t

x(t)=log(t+l)

2.0 4.0

1est 10 20 40 10 20 40 1 20 40

1.000 1.000 1.000 1.000 1.000 1.000 1.000 .990 1.0())

W1 .859 .839 .844 .819 .884 .983 .97o .999 1.00

L .888 .830 .835 .950 .948 .994 .997 1.000 1. 000

S .S6o .556 .553 .530 .592 .787 .555 .774 .958

K .558 .563 .557 .521 .598 .790 .554 .782 .957

F .569 .522 .548 .611 .681 .910 ,873 .99 1 .0)

tExponential Intensity: A(t) =a

Ct

0.5 1.0 2.1)
E (N

Test 10 20 40 10 20 40 10 20 4)

Z .947 .988 .997 .927 .967 .996 .914 .946 .994

W .906 .991 1.000 .887 .964 1.000 .839 .917 .998

L 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

S .601 .838 .986 .602 .800 .981 .608 .751 .96-

K .591 .839 .987 .584 .799 .981 .574 .749 .96o

F .770 .963 1.000 .733 .918 1.00) .719 .830 .9,95

1The nominal level for the W test was .04.




