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ABSTRACT

A number of tests are compared for testing the hypothesis

of a constant intensity against the alternative of an increasing
SR

intensity function in 4 nonhomogeneous Poisson prOCCSL; The

powers of the tests are deterpined by Monte Carlo simulation

against altcrnatives which are increasing at an exponential

rate, a power rate (Weibull intensity}), and a logarithmic

rate. A few exact powers are also obhtained.

The study includes the well known lLaplace test statistic
which i1s known to be appropriate against cxponentially increasing
alternatives, the most powerful test for the shapc paramcter
in a Poisson process with Weibull intensity, the likelihood
ratio test against arbitrary NHPP alternatives, two nonparametric
tests for trends based on Kendall's tau and Spearman's rho,

and a4 test based on an F-statistic.




1. INTRODUCTION

Non-homogencous Poisson processes (NHPP) provide models
for a variety of physical phenomena. For instance, if at
each failure, a system is repaired to its condition at the
time of failure and placed in servicec again, then the
failures are often modelled by a NHPP provided the repair
times can be neglected. In some of these situations, it may
be reasonable to assume that the intensity, A(-}, is
nondecreasing and so tests of HO: A(+) 1s constant versus
Hl: A(+) 1is increasing are of interest. This would indicate
whether the simple homogeneous Poisson process (HPP) mav he
adequate, or whether a more general NHPP model is required.

Suppose that a NHPP is observed for T* units of time with
n failures and failure times 0 <« Tl < TZ S e T Tn T,

(Of course, the number of failures is a random variable, which
we denote by N.) We comparc several of the tests which arc
available in the literature for HO versus Hl in this time
truncated framework, and similar conclusions should hold for
their counterparts based on data truncated on the number of
failures., One of the earliest tests is attributed to Laplacc
and is based on the statistic L = X?=1T1/T*. Under ”0’ the
Ti/T* are distributed as the order statistics from a unifornm

distribution on (0,1), so L behaves as the sum of uniform

random variables and in particular, has an approximate

normal distribution with mcan n/2 and variance n/12. Henoe,
”0 is rejected if L > n/2 + zl_“(n/IZ)l/z, where I is the




1-a th quantile of a standard normal distribution. Cox (1955)
showed that this test is appropriate for testing ¢ = ) versus
B > 0 in A(t) = ueBt. Bartholomew (1956) gave an cxpression
for its power (see also Bates (1955)) and showed that it
compares favorably with the one-sided Kolmogorov-Smirnov test,
Ascher and Feingold (1978) further discuss its use in the
study of repairable systems.

Another family of intensity functions, which is quitece

1

flexible, is X2 (t) = (B/e)(t/O)b- for k,0 » 0. Because this

is the failure rate for the Weibull distribution, the
corresponding process has becen called the Weibull Poisson
Process (WPP). Inferences for a WPP are discussed in Crow
(1974, 1982), Saw (1975), Finkelstein (1976), Lece and lLec
(1978), Engelhardt and Bain (1978) and Bain and Engeclhardt
(1980). The earlier paper by Crow gives tests for = with ¢
a nuisance parameter. In testing g=1 versus #:1, which is

equivalent to testing H, versus H g=1 is rejected for

0 1’
small values of Z = 2{?=110g(T*/Ti), which has a chi-squarcd

distribution with 2n degrees of {reedom under H” and is UMY

in this WPP setting.
Boswell (1966) developed the likelihood ratio test (LRT),

conditional on n failures, for ”0 versus I, and an arbitrary

1

NHPP. The maximum likelihood estimator of X(+) under H o 1l

0 ]

is shown to he zero on IO,TI) and constant on lTk’Tk+l) for

k= 1,2,...,n with T, = T* and

A(Tk) = maxl<u<kmink<81n(6'“+])/(TH+1'T4)'




A computation algorithm is also given there (cf. p. 1567),

The LRT rejects for large values of
W= 20]0_ Tog(A(T,)) + log(T*/n) i,

and letting xz(k) denote a chi-squared variable with k degrees
of freedom

n 2 :
PiW>w] = Zkzlp(k,n)r[x (k+1) - w]

for large n, where the P(k,n) arc given in Table ALS of
Barlow et al. (1972).

If the intensity is increasing the inter-failure times,
Tk_Tk—l’ k =1,2,...,n0 (TOLO), should tend to decreasce.
Hence, nonparametric tests for trends using cither Kendall's
tau or Spearman’s rho could be considered for testing H”
versus Hl' {For a discussion of these tests as tests of trend,
see Hollander and Wolfe (1973, p. 190).)

Barlow ct al. (1972, p. 197) observed that the failure
times could be divided into two parts and the ratio
(n-d)Td/(d(Tn-Td)) used as a test statistic for trend. Of
course, an increasing intensity should correspond to a larger
value of this ratio. If the intensity is constant, then

. ik .
Y. /3 Ty,
1 J/“):l 1

where the Y.l are independent exponential variables with a

. . . -k
conditional on n failures, lk can be expressed as )i=

common mean. Hence, H, is recjected il this ratio, which we

0
denote by 'y cxceeds the 1-a th quantile of the F distribution
with 2d and 2(n-d) degrees of freedom. We considered the test

with d = [n/2] and the one with Td TR 07 However, the

d+1°




latter test is only applicable if both of the intervals

(0,T*/2] and (T*/2,T*] contain failures and the former test is

applicable whenever n > 2, For small truncation times this
difference can be appreciable and so in that which follows,
we only consider d = [n/2].

Section 2 contains the results of a study which comparcs
the powers of the tests described above and in Scction 3,

our recommendations based on this study are given.




2.  POWER COMPARISONS

Some of the tests discussed in the last section arc
clearly appropriate for certain families of intensitics,
for instance the test based on Z is UMPU in the WPP sctting,
and it would be of interest to study their power {unctions
for a broad range of intensities. On the other hand, some of
the tests, such as W, arc designed to be more omnibus and
information concerning the loss of power incurrced when using
them instead of a test which is optimal in a particular

situation would be uscful.

Because of the complex naturce ot some of the power functions

involved a Monte Carlo study was conducted. The tests basced
on L,Zz,W,F Kendall's tau {(which wc¢ denote by K) and Spearman's
rho (which we denote by S) are compared. The following result
is the key to gencrating a NHPP with intensity (). [T

l(t) = th(s)ds is strictly increasing and {Sk} denotes the
failure gimes for a HPP with A=1, then {E-I(Sk)} are the
failure times for NHPP with intensity (). (°(t) is the
expected number of failures in (0,t].) Intensity functions
which are exponential, of the Weibull type, logarithmic and
those that increase but have a horizontal asymptote ave
considered. A particular value of T* may be appropriate

for one intensity function but not for another, that is it mav
give rise to a rcasonable amount of data for onc intensity
function and no data (or a very large sample size) for another.

So the truncation timec will be allowed to vary with 3 (-) and




in particular T* is chosen so that the expected sampice size,

E{N), is 10, 20 or 40, i
If X(-) is an intensity function with corresponding mean
function, A(:) and Ae(t) = A(t/8)/6, then A“(t) = A(6t). Hence,

the failure times for the process with intensity 2 _ (-) can

J

A

be expressed as n'l(SJ)/e where the Si are the failure times
for a Poisson process with =1, All gf the tests considered
are scale invariant and so we need only consider “=1. In
particular, we consider processes with intensities ot the

form A(t) = 8t 1 with 8=1,2,4, M (t) = «cl with «= .5,1,2

A) = (xM 1y

(a-l)!)/Z?;é(xj/j!), which is the f{ailure rate
of a gamma distribution, with a=2,4 and A{t) = log(t+1).
The gamma intensity was chosen because it increcases slowly and
in fact approaches a constant as t » «, However, [or such
alternatives the data beyond some point in time resembles
that for a constant intensity. The tests considered do not
have enough power in such cases to makc interesting comparisons,
If one wishes to discriminate against this kind of an intensity
several replications ot the process should be obscrved for an
initial time interval rather than observing one process,
For this reason the study of the GPP was not complcted and no
further results concerning it are given here.

Table 1 contains Monte Carlo estimates ol the powcers for
the tests and alternatives described above. These estimates
are based on 5000 iterations. Tests with a nominal signilicance o

level of o = .05 are considered, however the LRT is known to

have larger true significance level. For instance, with .




with E(N) = 10 and a target level of .05 its estimated significance

level 1s .004. Lxperimenting we found that a nowinal level of (ol

vields an estimated level of approximately .05 for the LRT and the

range of sample sizes being considered. Clearly, this is a

disadvantage of the LRT in this situation. As can be secn {rou

Table 1 the significance levels for the other tests are very

close to .05, Of course, the Z and F tests arc exact,

To give some idea of the accuracy in thesce estimated

powers, we consider the power of Z for & - 1. Since
A(t) = tB, the failure times have the same joint distributions
as S;/B, with the Si as before, and T* = (E(N))}/h. Conditional
on n failures, the distribution of Z is the same as I/: under
A(t) - 1. So the power of 2 at + is

e "N gy e Cn 1/ e e T

2
where x;(Zn) is the a-th quantile of a chi-squared distribution

with 2n degrees of freedom. The first row in Table 1 pives the

caact powers computed from this formula. 'The largest discrepancy

between these exact and estimated powers is .004.

Similar comparisons can be made for the L test since it 1is
based on approximate normal distributions. For a NHPP, given
that there are n failures in the interval (0,T*], the failurc
times arce distributed as the order statistics ol a random
sample of size n from the density f(t) = A(t)/A(T*), 0 - t - 1%
and f(t) = 0 otherwise. Since L. can be expressed as the sum
of the unordered observations from this density divided by T%*,
it has conditional mean

T*
uo o= E(L|N=n) = n[ tA(t)dt/ (T*A(T*))
0




i O AR i A e e o e e

e e e AR s i i

and conditional variance

2 2 2, 2
of = V(L|{N=n) = n{| t2A0)dt/(T*"2(T*))-u"t.
n 0 n
Hence, the power of I is approximately
e SAT*) 0y N s > e I N T B
2n=le (L(T*)) {1-%((n/2 bt (n/12) )/ RPN R R I
llowever, in the WPP case the formulas for . and di simplify to

. nig/(#+1) and qi = n[E/(b+2)-(¢/(ﬁ+l))2].

The fourth row in Table 1, which is labeled L fupprox.}, gives
the approximate powers computed using the formalas and the fitth
row (labeled L(est.)) gives the Monte Carlo estimates of
these powers. The largest discrepancy between the approximate
and Monte Carlo values occurs for E(N) = 10 and 2=2 and the
difference in this case seems to be duc primarily to the normal
approximation. One could obtain a further check on accuracy.
Bartholomew (1955) gives the power of L for exponential
intensities, conditional on n failures, and this could be used
with the law of total probability to obtain a formula for the
power of L for such alternatives. Because of the complex nature
of the conditional power this has not been carricd out,

To aid in the comparison of these tests, relative cfficicencies
are estimated. For each case considered, for instancc the
WPP with B=2 and E(N)=10 is one casec, the reclative efficicncy
of a test is its power divided by the largest ol the six
powers for that case., Table 2 contains the estimated relative

efficiencies, that is the ratio of the ecstimated powers., The

test was the most powerful for the logarithmic and Weibull




alternatives. (In the case WPP, =2 and L(N) = 20 the fact
that the estimated relative cefficiency of 2 is less than onc
15 Jdue to Monte Carlo error. Recall 2 is UMPU in this
setting and the true power is .9999,.) The I test was most
powertul for the exponential intensities.,

It should be noted that the minimum of the relative
efficiencies of Z in our study is 914,  (We denote mininum
relative etftficiency by MRL.) This is the largest MRE of
the six tests studied and so we recommend the 2 test if one
wishes to discriminate against intensities in the range
considered. The MRE for the LRT(W) is .819, tor I, 1t 1+~ 830,
for Spearman's rho (S) i1t is .530 and tfor Kendall's tau (k)
1t is .521 and for the F test it is .522. 11 once is not
concerned with the possibility of slowly increasing intensitics,
such as the logarithmic intensity, then the L test could be
used which has an estimated MRE over that range of .95. Jflowever,
the increase in MRE is not large and it seems to bhe best to use
Z and protect against the possibility of slowly increasing
intensities. For the situations considered here the nonparametric
tests can not be reccommended, but it the distribution assumption
on inter-failurc times is in question, one might wish to
consider one of them. (There is very little difference in
their MREs.) The F test performs better for large L(N) than
for smaller E(N), but its performance for slowly incrcasing
intensities is not strong. The LRT was designed to discriminate
against all nondecrcasing intensities which are not constant,

[f one were concerned about very nonregular intensities W could be

considered, but such intensities were not considered here,

At 0. it -
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3. CONCLUSIONS

In testing for an increasing intensity in a Poisson
process, the I test performs quite well for the range of
alterpnatives studied here, that is for logarithmic, Weibull
and exponential intensities. In fact, its efficiency relative
to the other five tests considered is at lcast 209 and for
the logarvithmic and Weibull intensitics it is the most
powerful of the six. For alternatives of the type studied

here the Z test is recommended.
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TABLE

L(N)
Test 10
Z{exact) .0500
Z(est.) .052
il .052
L(approx.) .0500
L(est.) .054
S .049
K .046
F .052
)
lTest 10
Z .762
wl .729
L .805
S .484
K .476
F .620
‘f‘-135t
E(N) Z
10 .362
20 .529
40 .770

1. Estimated powers

Weibull Intensity:

1.0

20 40
L0500 ,0500
053 .052
.048 . 050
.0500 .0500
.050 .047
.050 .049
.052 .052
.0406 .046

Exponential Intensity:

0.5

20 40
.081 . 997
.984 1.000
.993 1.000
.832 .986
.833 .987
.956 1.000

Logarithmic

w! L
L3 L3210
444,439
650  .643

10

L6209

624
.511

.5721

.593
. 331
.325
. 381

10

.608
.582
.656
.395
.383
.481

Intensity:

S
.205
.294
.426

for testing HO versus H

¢ -

A(t) = utL I

%4

2.0

20 40 10
.8989 L9957 L9785
.902 .995 L9706
.797 .978 .953
.8558 .9893 ,9787
.855 . 989 .073
.534 .783 .542
.539 .786 .541
.614 .905 .852

A(t) = uet

[$3

1.0

20 40 10
. 940 .996 .436
.929 1.000 .400
.972 1.000 LA477
.778 .981 .290
L7177 .981 274
.892 1.000 .343

A(t) = log(t+1)

K IF
.202 L 200
.298 270
.429 422

1. The nominal level for the W test was .04.

1

20

.96

L0999

. 9999
1,000

i
o« 0!

.782

L 990

.844
.818
.892
L0670
668
. 7406

]

10

L0000
000
LU00
L0000
L000
958
957
L 000

40

. 904
L9998
000
L9067
L9606

995




E(N)

TABLE

Y

“

Estimated

Logarithmic Intensity

10

1.000
.859
.888
. 560
.358
. 569

10

.947
.906
1.000
.601
.591
.770

A(t)=log(t+1)

Exponential

0.5

20

.988
.991
1.
.838
.839
.9063

000

40

1.000
.844
.835
. 553
. 557
.548

40

.997
1.000
1.000

. 986

.987
1.000

10

1.000
.819
.950
. 530
.521
LO0l11

Intensity:

10

.927
.887
1.000
.602
. 584
.733

1The nominal level for the W test was

Weibull
2.0
20 40
1.000 1.000
. 384 LO83
.948 .994
.592 .787
.598 .790
.681 910
A(t) =
a
1.0
20 40
.967 .996
.964 1,000
1.000 1.000
.800 .981
.799 .081
.918 1,000
.04,

relative efficiencies.

Intensity:

B

1o

1.000
L9970
L9907
. 555
. 554

873

10

.914
.839
1,000
.608
.574
719

Alt)=rt

20

L0480
L 000
000
.77
.782
L4990

940
017
1.
.751
. 749
. 836

0Qo

.

1
1
1

1

-1

J0

L 000
L1000
L0000

L 000

40

994
L9008

1.000

067
L300

995







