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FOREWARD 

The Fourteenth Image Understanding (IU) Workshop sponsored by the Defense Advanced Research 
Projects Agency, Information Processing Techninues Office was held in Arlington, Virginia, on June 23rd, 
1983.  The workshop was conducted as a full day session of the Computer Vision and Pattern Recognition 
Conference presented by the Computer Society of the IEEE. 

Commander Ronald B. Ohlander, ÜSK, the Intelligent Systems Program Manager for the DARPA/IPTO, 'I 
welcomed the large audience consisting of researcli personnel involved in the Image Understanding Program, 
Government personnel from various departments and agencies, and attendees from the CVPR conference 
interested in the research efforts ongoing in this DARPA sponsored program.  He noted that the existence 
of so large and varied a conference as the CVPR, which has covered two days of tutorials and three days 
of general sessions as well as this workshop, indicates the high level of interest and wide variety of 
mature research now ongoing in the Image Processing field.  This is the second time that DARPA has 
coordinated its IU workshop with a professional society active in the field, remarked CDR Ohlander, the ,- 
first being a joint meeting in April 1981 with the Society of Photo Optical Instrumentation Engineers ** 
(SPIE).  CDR Ohlander indicated that the growing body of highly sophisticated researchers, particularly 
in the Universities but also in the general industrial community, was a paramount factor in the growing 
usefulness of IU science in both military and non military fields of endeavor.  This combined meeting, 
he concluded, is an excellent opportunity for users and theoreticians to interact to the mutual benefit 
of both groups. '_"; 

The morning and first part of the afternoon session of the workshop comprised thirteen technical ,« 
reports.  These reports were selected by the principal investigators as representing an interesting facet P 
of their research programs.  Due to the press of time, each organization involved in the program was 
limited to only one presentation.  However, in order to provide as complete a record as possible for use of 
government sponsors, all reports produced by the various researchers in the DARPA Program are included in 
this proceedings.  A few reports were presented at other sessions of the CVPR Conference and are there- 
fore published in the CVPR proceedings as well as in this volume. 

The remainder of the workshop consisted of a panel discussion on the topic of, "Most important gfl 
problems to be addressed in IU over the next few years".  This subject was included in order to elicit 
comments from the wj.de experience available in the audience as well as the expertise of the panel discus- 
sants. '•'■ - . 

This proceedings has been supplied to the Defense Technical Information Center (DTIC) and copies 
may be secured from that Agency by writing to the following address: 

Defense Technical Information Center 
Cameron Station, Bldg. //5 
Alexandria, Virginia 22314 

• 
A small charge is assessed by the DTIC for reproduction expenses.  Accession number for this 

proceedings is not yet available but will be assigned by the DTIC within the next thirty days.  Accession 
number  for previous issues are listed on the following page. 

The materials for the cover of this proceedings were supplied by Dr. Martin Herman of Carnegie- 'JL 
Mellon Lilversity.  Dr. Herman described the meaning of the process with this description: 

The layout shows the flow of events in the 3D Mosaic scene understanding system. '.•''. 
The stereo aerial photographs show part of Washington, D. C.  The 3D wire-frame 
description of the scene was produced by a process that extracted and matched '"■'/ 
junctions from the images.  A geometric modelling process then converted the wire .'/•" 
frames into a surface-based description of the scene.  The reconstructed buildings Ä~ 

' V-V-V-'■■^■■■-.•■■"..■-VV  . L-V-VVVLVV 
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are .shown In the two bottom pictures.  In the picture on the lower right, gray scale 
obtained from one of the top images is mapped onto the faces of the buildings.  The 
stereo reconstruct Ion process represents one step in the 30 Mosaic system, which 
obtains a more complete description of the scene by incrementally accuraulating infor- 
mation derived from multiple viewpoints.  The researchers on this project include 
Dr. Martin Herman, Dr. Takeo Kanade, Mr. Shigeru Kuroe, and Mr. Duane Williams. 

A more complete description may be found in Dr. Herman's paper, "Monocular Reconstruction of a 
Complex Urban Scene in the 3D MOSAIC System", reproducted in section III of this proceedings. 

Mr. Tom Dickerson of Science Applications, Inc. was responsible for the artwork and lay-out for 
the proceedings cover.  Appreciation is also due Ms. Neville Worthlngton of Science Applications, Inc. 
for her assistance with arrangements, and particularly for typing support and in putting together this 
proceedings.  Finally, our thanks to the Computer Society, IEEE, for their cooperation and assistance 
during the planning and execution for the conference and workshop.  Particularly helpful were Mr. Harry 
Hayman and Ms. Jerry Katz of IEEE and Dr. Takeo Kanade of Carnegie-Mellon University, the conference 
chairman. 

Lee S. Baumann 
Science Applications, Inc. 
Workshop Organizer 
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Imago Underslanding Research at CMU 

I aki'o Kanudc 

Computer Science Department 

drnegie-Mellon University 

Pittsburgh, PA 15213 

l  - 

The giMil.s nf Image Uiulersiainflns Reseanii til CMU have been to 

Jcn-lop bask ilwory fin undeniiinding 3-dimensional shapes and to 

liemonstntie an mlegraleti system for pbolu tnterpivlalion (ilalabase and 

huemctke/aMomalk image Interprelaiion techniques). For these goals 

lie Iknv been working in three snbareas: I) Ineremental 3D Mosaic 

System; J) Theory for Shape Understanding; and 3) MATS. This report 

reviews mtr progress since the September IQS2 workshop proceedings. 

1. Incremental 3D Mosaic System 

The Incremental .il) Mosaic system acquires a 3D surface-based 

description (or model) of a complex urban scene by incrementally 

accumulating Information derived from multiple viewpoints. Since our 

report in the September 1982 proceedings [I Icrman, Kanadc. and Kuroe 

821. we have made significant progress In two components of the system: 

the component that merges information from a new view into the 

current model, and the component that performs monocular analysis of 

an image. 

As shown in Figure I. each view of a given scene (which may bo 

either a single image or a stereo pair) undergoes analysis which results in 

a 3D wire-frame description that represents portions of edges and 

vertices of spatial stnicturcs such as Imildings, In order to update the 

current scene model (which has been obtained from previous views), the 

wire-frame description Iron) the current \iew inusl be matched with and 

merged into the current model. The matching step provides the 

coordinate transformation from the wire frames to the model and 

provides corresponding edges and vertices in the two. The combined 

result must then be converted into a new model. 

The merging step works as follows. Two objects, one In the wire- 

fratne description and the other in the model, are merged by first 

merging their corresponding pans of edges and vertices into single 

elements by weighted averages of their positions. Next hypothesized 

elements (faces, edges, or vertices) In die model that are inconsistent 

wilh    modified    elements    aic    deleted.    To    dciermine    whether 

inconsistencies exist, dependencies have been recorded for each 

hypollusis at the time of its creation, A hypothesis is dependent on all 

elements whose existence directly resulted In the creation of the 

hypothesis. Kor example, if an open polygon is completed by 

hypothesising a line connecting the two end points of the chain of 

segments, the hvnothesi/ed line is dependent on the two end lines of the 

chain. If one of these lines is modified or deleted, the hypothesis must 

also be deleted, for the conditions under which it was created are no 

longci valid. After all mergings and deletions, the remaining edges and 

vertices In the wire-frame object are added to the model object. After 

this is done For all objects. Those objects which arc incomplete are 

completed using task specific knowledge, as described in [Herman, 

Kanade, and Kuroe 82j [I lerman, K.made and Kuroe 83], 

Herman has also been developing a monocular analysis component 

for the 31) Mosaic system [Herman 83] (in this uihtmo). This component 

reconstructs the three-dimensional shape of a complex urban scene from 

a single image. His approach exploits task-speeilic knowledge Involving 

block-shaped objects in an urban scene, lirsi, linear connected 

Structures ill the image are generated: these are meant to represent edges 

and '.cilices of buildings. Next, the .1l) stnuiiires arc convened into 3D 

wire frames. I'inatly, a surface-based description of the scene is 

generated from the wire frames. 

In our daUi'.iasc. we have two different views of part of Washington, 

D(.: a stereo pair for one view and a single image for til,1 other, 

r.vcnlually v,e will merge the 3D wire frames obtained from the single 

image with the seem, model obtained from the stereo pair. 

2. Theory for Shape Understanding 

At CMU. we have been working on the geometrical aspects of image 

constraints for extracting shape from images. We have continued our 

effort In this important area to develop fundamental theories and their 

applications for recovering three-dimensional s1 ipes from images. Our 

new results include: 
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• Ihcoiy  or circular straight homogeneous gcncr.ili/cd cylinders 
[Shafcriind Kanadc83] 

• Stereo In dynamic programming in ,i three-dimensional search splice 
[Otita and Kanadc 8.1) 

• Optical flow methods for measuring ohjeet motion in an X-ray Image 

scciuciice [Cornelius and Kanadc 83) 

• A method for olitaining topological correspondence of line drawings 

of multiple \ic»s | I'liorpo and Shafcr 83| 

shape. I hen projections and contour generators arc aiialy;:ed. The 

strongest results are obtained for solids of revolution (which arc named 

Right Circular SIIGCs), for which a closed-fonn method for analyzing 

image contours is presented. Shafer .md Kanadc has shown that a 

picture of the contours of a solid of revolution is ambiguous, with one 

degree of freedom related to the angle between the line of sight and the 

solids axis. I he ambiguitj can be resolved b> other constraints such as 

those from shadow contours. 

2.1   Theory   of   Generalized   Cylinders   for 
Vision 

Motivated first work in the shadow analysis [Shafcr and Kmadc 82|, 

in which the shadow volume is a geuerali/ed cvlim, S!i I'tr and 

Kanadc [Shafcr and Kanadc 8.1] (in this volume) have investigated the 

formal properties of gcnerali/ed cylinders. In recent years, Hinford's 

gcncrall/cd cylinders have become an important tool for shape 

rcprcscnialion in image understanding systems [Brooks 81). However, 

research has been hampered I)) a lack of analytical results for these 

shapes. Shafer and Kanadc start with a definition for Straight 

Homogeneous Cletierali/ed Cylinders, those generalkcd cylinders with a 

straight axis ami with cross-sections which Have constant shape but vary 

in sWc. i'his class of shapes, while still quite large, has properties which 

make considerable analysis possible. 

The results begin with deriving fornutlac for points and surface 

normals for these shapes. Theorems arc presented concerning die 

conditions under which multiple descriptions can exist for a single solid 

2.2 Optical Flow Method tor Object Motion 
in X-ray Images 

In calculating optical (low from an image sequence. Horn and 

ScIrunck[llorn and Schunck 81] assumed that the image brightness 

corresponding to the same physical point does not change, together with 

the assumption of smoothness of velocity over the image. However, this 

assumption of zero brightness change severely limits the allowable 

motions. Rotations, translations in depth, and deformations ollen result 

in a change in the image brightness corresponding to a single physical 

point. Also, the assumptions of smoothness and zero brightness change 

do not hold at the boundary of the object. 

It was shown that the problems of assuming /em brightness change is 

magnilied when we try to apply the method to an x-ray image sequence. 

(In x-ray images, the brightness of each point depends on the amount 

and density of the mass between the x-ray source and the film.) 

Cornelius and Kanadc (Cornelius and Kanadc 8.!| (in this volume) have 

adapted the optical (low algorithm so that it can handle the brightness 

change and cope with the dlffkulty caused by the smoothness 

assumption across the boundary.    This algorithm assumes: (a) the 

I'lfiin-1:   fhc niirait «tlwluro of the  Inrremcmal  31) Mosaic 
system:   hitscs arc major modules and ellipses arc dala 
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brigluncss chunges corrcsponiliiig to a single physical point can be 

described bj the nrsi-order expansion of die imago imcnsitj runclion 

t(x.)\iy. (h) die velocity field d^, v) changes smoothly In a 

nügliborhood, unless the neighborhood contains an occluding 

boundary; (c) die rate of change in brightness {äl/di) is smooth in a 

neighborhood. An iterative procedure was devised to compute Hie 

vclocit> Held and the change of brightness (ic, change of diickncss in 

the case of x-ray images) under these conditions, 

Ihis algorithm can correctly recover the object motion (Vom the x-ray 

images of an expanding ellipsoid. We have actuall) applied the method 

to real x-ray images of a dog's heart taken on film at 60 frames a second, 

in »hich a radio-opaque dye «as injected into the pulmonary artery just 

before the image sequence was taken, lor this case, the changes in 

brightness will reflect the expansion 01 contraction movement of the 

heart in the direction perpendicular to the image plane since the dye 

rilled heart is the primary source of motion. We have generated a movie 

of the velocity vectors for an entire heart cycle and shown that it 

coincides well with the apparent motion seen in the actual cine 

angiograni. 

2.3 Stereo by 3D Search 

Ohta and Kanade [Ohta and Kanade 83] have been developing a 

stereo algorithm to obtain an optimal matching surface in a three 

dimension,I search space. Their approach is purely computational. 

When a pair of stereo images is rectified so that the epipolar lines arc 

hon/ontal scan lines, wc can search for a pair of corresponding points in 

right and left images within the same scan lines. We call this search 

imm-scailllne search. This intra-scanlinc search can be treated as the 

problem of finding a matching path on a two dimensional search plane 

whose axes are right and left scanlines. A dynamic programming 

technique can effidently handle this search [Maker 82]. The intra- 

scanlinc search alone, however, does not take into account mutual 

dependency between scanlines in a image: that is, liiter-svmiliiiemrch is 

necessary to find the consistency across scan lines. 

As shown in Figure 2, we cast the problem of stereo as that of finding 

a matching surface (i.e., a set of matching paths) in a three dimensional 

search space, which is a stack of the 2-0 search planes and whose axes 

are left-image x position, right-image x position and the scan lino (y 

position of image). Vertically connected edges provide the consistency 

constraints across the scan line axis. Thus, stereo involves two searches: 

one is intra-seanline search for possible correspondence and the other is 

inter-scanline search  for consistency between connected edges.    Ohta 

and Kanade employ dv namic programming for both searches. 

I he matching is based on edges, and the positions of edges are 

obtained as /ero-crossings of the 11)1 aplncian (taken along each scan 

line) in both left and right images. I he intra-scanlinc search locates 

man; partial paths for each pair of led and right scan lines, as candidates 

of components which may consist of the linal matching surface. The 

inter-scanline search uses those partial paths as elements, and searches 

for the combination of them which is most consistent with connected 

edges. I hose two searches proceed simultaneously. The criteria (i.e.. the 

cost lunction) in the search involve a monotonicitj assumption, the 

similarity of intensitv between edges, and surface smoothness. 

Our main task domain is urban aerial photographs, hut images in 

i'tier domains are also used to show the pet form,nice of our stereo. 

Iigure .1 is a typical example of aerial stereo images, llgure 4 (a) shows 

the disparity map obtained, and Iigure 4 (b) shows an isometric plot of 

the depth map. Notice that the detailed structures of the roof of the 

building and the bridge over the highway arc clearly extracted. The 

output of this stereo program will be used as another source of 31) 

information in the Incremental Jl) Mosaic system. 

3. MAPS 

MAPS is a large integrated image/map database system for photo 

interpretation tasks. It contains high resolution aerial photographs, 

digili/ed maps and other cartographic products, combined with detailed 

31) descriptions of man-made and natural features in the Washington 

15. C, area [MeKeown and Kanade 81][McKcown and Denlingcr 82]. 

In the September 1982 proceedings, MeKeown [McKcown 82] reported 

the addition of the concept map to facilitate inquiries at the symbolic 

level. Since then, the concept map has been used to build a hierarchy 

tree data structure which represents the whole-part relationships and 

spatial containment of map feature descriptions [MeKeown 83] (in this 

volume). Unlike regular decomposition methods such as quad-lrce 

organizations, the hierarchical containment tree permits a hierarchical 

search in the database based on natural relations among features which 

are intrinsic to the conceptual map and may have some analogy with 

how humans organize a "map in the head" to avoid search. Thus die 

hierarchy tree improves the speed of spatial computations by quickly 

constraining search to a portion of the database. 

As an application of MAPS, MeKeown has started investigation of 

rule-based   systems    for    the   control    of   image    processing   and 
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3D MATCHING SURFACE 2D MATCHING PATH 

LEFT IMAGE 
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RIGHT IMAGE 
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SCANLINE 
Y 

li^urc 2:   Ihc thtcc (timoiiMunil soaroh space for slcrco matching 

l'iuiirc M  A example of aerial stereo images. 
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(.i) 

(b) 

l''iuurc •): (a) Disparin map nblaincd; (b) Isnmctric plot nfilic depth 

map Nulc th.il Ihc dt'tailcd slruiiurcs of the roof of the 
building and the bridge over ilic freeway arc detected. 
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iiilcrprcuition with respect to a wwrld model. I lie SPAM system 

[McKcown ,iiul Mel Vnmm 83] is a system for testing the Idea of using 

the fumbination of task independent low-level image processing tools, a 

rule-based system .md a m.ip database expert. 

4. Systolic Array Proccosors for Vision 

loecther with the VI SI group of CMU, we have started Investigating 

applicittions of systolic array processors made oli'SCs (Programmable 

Systolic Chips) [Kisher ei al. 83] [lislier. ct al. A 83] Ui image processing. 

hxamplc tasks we are considering include: smoothing, edge detection, 

optical flow, iterative image registration, and matching by dynamic 

progmmming. We expect one to three orders of m„gniiude 

improvements in the speed of performing these image processing tasks 

o\er conventional machines. 
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IMAGE UNDERSTANDING RESEARCH 
AT COLUMBIA 
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New York, NY 10027 

Abstract 

The Image Understanding Project at Columbia has 
centered its efforts on basic "middle-level" vision 
research: the representations and algorithms concerned 
with deriving surface information from low-level 
aggregate cues. At present, the effort has four major 
concerns; theory and analysis, integrated s\stems, image 
research aids, and high-speed hardware. This report on 
our first full year summarizes our progress in each of 
these areas. 

1 Introduction 
Understanding Project at Columbia is 

In our first full year, we 
The Image 

new and small, but growing. 
have acquired an operating laboratory, and defined and 
attacked    our    research    concerns. (Currently,    our 
experimental base consists of a VAX 750 with Crinnell 
27.). with CMU image and graphic software operating on 
I'sClPI and other images. Additional hardware and 
software enhancements are planned.) 

Our research emphasis is on that level of image 
understanding that moderates low-level cues into surface 
information. We have developed several new algorithms 
that make some of these transformations possible, and 
have begun to cpiaintify their accuracy, work is under 
way to integrate several of these surface-constraining 
algorithms into a coherent, distributed system; two 
separate free-running algorithms have been executed and 
are being refined. Because the algorithms and their 
control is complex, we are implementing various graphic 
ways in which the rich intermediate data can be 
represented easily to the experimenter. Lastly, we have 

some low-level vision algorithms for 
being independently developed at 

devised and simulatec 
a novel supercomputer 
Columbia. 

2 Theory and Analysis 

Much of our theoretical work concerns the 
calculation of surface orientation constraints from low- 
level image cues. One representation that has proven 
very useful for this and other tasks is the gradient space— 
independently of whether the image is taken under 
orthographic or central projection. We have helped to 
summarize some of its most salient properties (especially 
those under projettiun) in a type of researcher's reference 
card [Shafer 83. Shäfer 82]. We have also highlighted 
some of the difficulties that can occur under perspective; 
algorithms known for their utility under orthography can 
fail in unexpected ways [Kender sSaj. 

Many of the algorithms we have devised for our 
middle-level work are derived from a central 
methodological paradigm called "shape from texture" 
[Kannde 83; Kender 82b]. We have now applied the 

paradigm in two additional areas, deriving additional 
surface constraint relations and procedures. (Versions of 
these two papers nnpear in this proceedings.) 

The first area concerns gravity, which induces 
certain preferred scene orientations. We have shown how 
gravitationally-related labels such as "vertical" can be 
used in the gradient space, and how such knowledge can 
generate additional constraints on surfaces [Kender 83a; 
Kender 83b]. In particular, we have shown that sensor 
parameters, surface parameters, and environmental labels 
mutually interact so that knowledge of any two constrains 
the third; further, often this knowledge can be 
heuristically derived using Hough-like methods. 

The second area concerns linear extents: image 
primitives that possess measurable length. We have 
shown how assumptions of equality of extent provide 
surfaces constraints, sometimes in non-intuitive ways 
[Kender 83c], In particular, under orthography, lengths 

behave very much like right angles; under perspective, 
certain configurations induce several simple iconic (image 
plane) geometric constructions for vanishing points. 

Lastly, we (David Lee) have initiated the analysis of 
the error behavior of a few of these algorithms." We 
believe that a fruitful framework is that of the 
information-centered approach under independent 
development at Columbia. We expect to be able, given a 
desired accuracy of surface orientation, to derive lower 
limits on the resolution necessary in the image, or on the 
confidences necessary in the image primitive array. 

3 Integrated Systems 
We (Mark Moerdler) have started work on the 

design and implementation of a middle-level vision system 
that integrates knowledge about surfaces from multiple 
independent sources. Present design is patterned on the 
blackboard model of perceptive systems. Each source 
d. rives surface information on the oasis of one particular 
shape algorithm. 

Two such sources have been coded. Although 
primitive and under refinement, their results are shown in 
the figures following this report. Figure 1 shows a 
synthetic image ("Manhattan Sunrise ) with two surfaces 
sharing a common orientation; the lower surface is 
composed of two textures. In Figure 2, an algorithm 
based on equal extents, applied to the "waves", generates 
multiple vanishing points, very near the actual (but 
invisible) vanishing line. In Figure 3, an algorithm based 
on the detection (J adinearilies in random textures (Peter 
Weseley), applied to the "sand", generates a smear of 
vanishing points that straddles the vanishing line. Since 
vanishing lines map one-to-one into surface orientations, 
these two algorithms implicitly calculate local slant and 
tilt. 

4 Image Research Aids 
One problem with the development of image 

understanding systems is the vast amount of complex 
intermediate data that they produce. In particular, the 
middle levels of vision arc replete with partial assertions 
about the underlying surfaces. 
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Since surfaces have two parameters of orientation and one 
Parameter of depth, and since each image point may have 
multiple surface hypotheses, the problem of observing and 
understanding an executing system becomes one of 
human-compatible graphic economy. 

We (Paul have begun  research  into the U' (Caul Douglas) have begun research 
various modalities of human vision that can be exploited 
in this task. Primarily, we are constructing a surface 
svnlhesis system that will artificially texture (locally 
planar) regions of an image in ways that suggest their 
orientations. Additionally, we have begun to explore the 
ways in which orientation uncertainty and/or constraints 
can be graphically displayed by means of icons, motion, or 
color. Our initial icons are Dased on "sequins" fcirclea 
seen in perspective). 

5 High-speed Hardware 
Several   parallel   machine  architectures  have  been 

mmosed that perform image understanding algorithms at 
gb speed,.   The NON-VON supercomputer being built at 

Columbia is a tree structured one.   Its primary processin«- 
system  consists of a  very  large  number of very  small 

elements   (PLs),   each   containing   a   small 

pro 
bid 

aiicl   some   hardware   for   performing 
al operations.   The PEs are connected 

processing 
amount   of   RAM 
arithmetic and logical op  
together in the form of a complete binary tree. We 
[Hussein Ibrahim) have found that this architecture lends 
itself easily and naturally to the representation and 
manipulation of binary images by quad trees. 

A binary picture at its finest resolution is stored in 
the leaves of the free, with each PE holding one picture 
point.    Higher    iwaU    ;„    iun    <-„„     ?._. levels    in    the tree   represent   coarser 

tree   can   be   done   in resolutions;   building   the   quad 
logarithmic time. Connected components can bo found us 
time proportional to the number of nodes actually 
representing regions in the tree. Several other algorithms 
lor region properties again take logarithmic time. These 
algorithms have all been tested on a simulator We 
expect to develops the usual complement of image 
processing routines, with a target task in mind. 
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Figure 1:    "Manhattan Sunrise" synthetic image 
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Figure 2:    Equal extent method applied to waves.. Figure 3:    Colinearity method applied to image; 
leftmost vertical quarter only. 
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MIT PROGRESS IN UNDERSTANDING IMAGES 

T. Poggio. S. I Hinan and the staff 

The Artificial Intelligence Laboratory, Massachusetts Institute of Technology 

Our overall approach to the study of vision is based 
on a number of representations of the visible world, 
reviewed in previous Image Understanding Proceedings. 
Our work to date has concentrated primarily on the 
initial representations such as the primal sketch and 
reflectance maps, and the computation from them of 
depth, surface orientations, and material properties. 
Our current emphasis is on the integration of the 
different sources of information, the analysis and 
representation of shape, the refinement and evaluation 
of the individual modules, the extension of our approach 
to deal with time varying images and moving objects, 
and the transfer of our results to real timei hardware 
implementation. In this report we review -our recent 
work on the analysis of edge detection, the measurement 
of visual motion, the correspondence problem, the 
refinement and evaluation of stereo algorithms, the 
detection of depth discontinuities, the integration of 
surface maps, and the interpretation of shape from 
contours, and the acquisition of objects with photometric 
stereo,    f    .. 

1. Edge detection analysis 

Much of our work on edge detection, discussed in 
previous Image Understanding Workshops, used the zero- 
crossing contours in the image filtered through V2G filters 
of different sizes. Any edge detector scheme to be used in 
practical applications must show considerable robustness 
and immunity to various types of noise. Continuing his work 
aimed at developing a practical real time stereo-matching 
system, Nishihara has examined recently the effect of 
image noise on the V2G convolution and the zero-crossing 
contours. In parallel with the effort of developing further 
our standard edge detection techniques and improving their 
reliability, we are also pursuing new approaches to the 
edge detection problem. In particular, we are developing, 
implementing and testing a new line finder . In another 
investigation we are characterizing general properties of 
edge detection schemes. We have also established some 
results connecting the locations of zero-crossings with the 
principle lines of curvature of a surface. We now review 
each (,r th^se four topics in turn. 

Noise Sensitivity of Zero-crossings 

Distortions due to noise can be considered as pertur- 
bations of the. shapes of regions of constant sign in the 
convolution output. Zero-crossing patterns are generally 
stable in the presence of low to moderate image noise levels. 

The most common serious distortion of these patterns— 
for stereo matching—occurs when two adjacent regions of 
constant sign merge or a single region splits as a function 
of noise introduced by the cameras or changing camera 
position. 

Only a small number of pixels need change sign at 
strategic locations in order for such merges and divisions to 
occur, resulting in a large scale change of the zero-crossing 
geometry. The frequency of these changes is low in a high 
quality image, but they cannot be avoided when noise is 
present and contrast is low, a ubiquitious phenomenon in 
practical images. This distortion turns out, however, to be 
strongly confined to specific spatial neighborhoods of the 
image where the convolution mag^tude is small. Outside 
these neighborhoods, the convolution sign is constant and 
stable, even for relatively large noise levels. The sign- 
representation dual of the zero-crossing also promises to 
yield more easily to a careful statistical analysis. Nishihara 
is investigating ways in which the approach can be used 
to improve noise tolerance in stereo matching [Nishihara, 
1982, 1983). 

Optimal edge detection operators 

Canny [1983] has investigated the problem of deriv- 
ing an optimal edge detection operator from a precise 
formulation of detection and localization [Binford 1981]. 
He finds that the optimal shape is (approximately) the 
first derivative of a Gaussian. An important property of 
an edge detector is that it should produce edge tokens 
that are accurately located. It should also have a low prob- 
ability of misclassification of edges (i.e. it should produce 
few erroneous edges and still be able to detect weak or 
noisy edges). In particular, the operator should not produce 
multiple responses to a single edge. The ability to cor- 
rectly classify potential edge points relates directly to the 
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signal-to-noise ratio of the output of the operator, which 
is frequently used as the design criterion for an optimal 
detector. The localizing ability of the edge detector is often 
either ignored or only indirectly treated. 

Canny's derivation consists of three steps. First, the 
design is constrained to linear operators only. Second, the 
optimal linear operators are combined in a non-linear way 
that is again optimal (or near optimal) with respect to 
the criteria of detection and localization. Finally, the edge 
points output from the non-linear detector are processed 
by a line-following procedure which assigns labels to the 
segments of contour and to each segment a set of parameters 
that describe the type of edge transition (amplitude of the 
step, uncertainty in amplitude, uncertainty in position). The 
resulting operators have been implemented in microcode 
on a LISP machine, and form the basis for our work 
on smoothed local symmetries and shape from contour. 
The operator has also been applied to textured images to 
generate hierarchical texture descriptions. 

The linear operator is directly optimized with respect 
t»' both signal-to-noise ratio and localization. Canny shows 
t.iat there is an uncertainty principle relating the two 
quantities and that, because of noise, an edge cannot 
be simultaneously detected and localized with arbitrary 
precision. There is a unique operator shape (approximately 
the first derivative of a Gaussian) that attains this limit. 
The width of the operator determines the tradeoff in output 
signal-to-noise ratio versus localization. A narrow operator 
gives better localization but poorer signal to noise ratio 
and vice-versa. To handle variations in the signal to noise 
ratio in the image, operators of several widths are used. 
Where several operators respond to the same edge, one of 
them is selected by the algorithm so as to give the best 
localization while preserving an acceptable signal-to-noise 
ratio. When the one dimensional formulation is extended 
to two dimensions, the same criteria of optimality are used. 
This leads to a system of directional operators, with their 
noise estimation and edge detection all being performed 
independently. 

The automatic switching between operators requires 
local estimation of the noise energy in the operator outputs. 
This is difficult because there is little information available 
at the operator outputs to indicate whether a response is du 
to an edge or to noise. Canny has developed a scheme that 

uses a model of an edge (in this case a step edge) to predict 
the response of each opcraior. lie then removes responses 
of this type to leave the response due to noise alone. The 
noise estimation is done from the outputs of the operators 
rather than directly from the image, because detection and 
localization performance is determined by that component 
of the image noise parallel to the operator direction, and 
which lies within the bandwidth of the operator. Where 
image noise is not spectrally flat, and in particular where 
there is fine texture (element size much smaller than the 
operator width), the texture may be modelled as directional 
noise, and the detector will still be able to respond to weak 
edges in directions where there is little texture energy. 

The detector is being evaluated in comparison with 
several oth^r well-known detectors, such as the Marr- 
Hildrcth Laplacian of Gaussian operator (1980) and the 
second directional derivative detector of Haralick (1982). 
Experiments are being performed using the operator as the 
front end for the Marr-Poggio stereo algorithm (Crimson 
1981a,b) as well as subjective evaluations of the detector 
output on a variety of natural images, in particular on 
images that contain boundaries between textured regions. 
The multiplicity of operators enables the detector to locate 
intensity changes that are occurring at different scales in 
the image. The use of directional operators allows it to find 
weak linear edges when the signal to noise ratio is very 
poor. It is felt that linear edges form an important subclass 
of intensity changes and that they occur often enough in 
real images to warrant special treatment. The traditional 
problems with highly directional operators were that they 
tended to extend the boundaries of objects beyond corners 
and gave polygonal responses to curved surfaces. These 
are dealt with in the new detector by the addition of 
applicability constraints for each directional operator based 
on how well the image locally approximates a linear edge. 

The detector has also been used as the front end for 
two hand-eye vision programs. The first of these simply 
tracks contours drawn on some surface. The second takes 
the raw edges that mark the boundaries of objects and 
produces bounding polyhedra of minimum additional area. 
The latter will be used in conjunction with automatic path 
planning programs. 

Parallel to Canny's development of an optimal edge 
detector, Poggio and Torre have begun an investigation. 
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presently in progress, of edge detection by dividing the 
problem into two main steps: a derivative operation and 
a filtering operation to reduce the noise. Each of these 
steps can be characterized in general terms. If the detection 
of edges is based on detection of extrema in the output 
of the filter then directional derivatives should be used 
in connection with directional odd filter functions. If edge 
detection is to be performed via zero-crossing detection then 
rotationally symmetric differential operators must be used 
together with symmetric filter functions. If the differential 
operator is linear the two steps of differentiation and filtering 
commute and associate with interesting implications for 
fast hardware. For nonlinear dillerential operators the two 
operations in general must be performed separately and 
furthermore their order is important. Poggio and Torre have 
examined in particular two rotationally symmetric operators 
: the second directional derivative along the gradient - a 
non-linear operator - and the Laplacian - a linear operator. 
It is easy to show that there are edges that escape detection 
by the Laplacian but not by the second derivative along the 
gradient. Furthermore, the zero-crossings of the Laplacian 
coincide with the zero-crossings of the second directional 
derivative along the gradient if, and only if, the mean 
curvature of the intensity function is locally zero. 

Three classes of filters have been analyzed in detail: 
bandliraited,   support  limited   and   filters   with   minimal 
uncertainty in space and frequency. The filters of the first 
class can be synthetized in  terms of linear and circular 
prolate functions; in the second class, Haar functions are 
the most interesting basis for optimal filters;   the third 
class leads to the study of Hermite functions. Poggio and 
Torre derive formulae for computing the uncertainty of an 
arbitrary filter using its decomposition in Hermite functions. 
They  also observe that a filter of minimal  uncertainty 
combines maximum localization in space with a minimum 
number of zeros in its output to Gaussian white noise. 
In particular,  the second derivative along the gradient, 
successively smoothed by a circularly symmetric Gaussian 
filter is a near-optimal scheme in terms of these criteria. 
In a separate investigation, we report on a 2-D version of 
Logan's theorem, which gives sufficient conditions for the 
completeness of the zero-crossing representation in the case 
of directional bandpass filters [Poggio et al.. 1982]. 

Lines of curvature and zero-crossings 

In recent years, workers in vision have shown con- 
siderable interest in the principal lines of curvature of sur- 
faces. For example, curvature patches have been proposed as 
a representation for visible surfaces [Brady 1983) and there 
exist various schemes for dividing objects into parts based 
on extrema and zeros of curvature [Brady 1983, Hollerbach 
1975]. There is also some evidence from line drawings 
[Stevens 1981] that curves in an image are interpreted as 
hoes of curvature. However, it has been suggested that the 
principal lines of curvature of a surface can only be com- 
puted indirectly and with great difficulty. The complexity 
of the calculations also implies poor numerical behaviour 
and excessive sensitivity to noise. 

Yuille [1983] proves some results about zero crossings 
and the principal lines of curvature of a surface. He relates 
the image to the underlying surface geometry by the image 
irradiance equation [Horn 1977] and suggests that the 
principal lines of curvature can be computed directly from 
the image. 

Various directional zero crossing operators are con- 
sidered. It is shown that directional zero crossings do not 
necessily correspond to physical zero crossings (i.e., those 
that correspond to sharp changes in the image irradiance) 
A result is derived that implies that directional zero cross- 
ings are physical only if their direction is along the line of 
greatest change of the image irradiance. Such directional 
operators have been argued for by Canny [1983] and Poggio 
and Torre [see Poggio, 1982, 1983). Conversely, a probabil- 
istic argument shows that the directions of greatest change 
of the image irradiance are most likely to be along the 
lines of principal curvature. This suggests that many, if 
not most, of the physical zero crossings are directional zero 
crossings along the principal lines of curvature. 

Finally, Yuille proves some results about the distribu- 
tion of zero crossings along lines of curvature The start- 
ing point is the work of Crimson on surface consistency 
[Gnmson 1981bJ. With relatively weak assumptions about 
the reflectance function. Crimson derived neccessary and 
sufficient conditions in one dimension for the occurcnce of 
directional zero crossings in the image irradiance in terms 
of the surface geometry. He then used some probabilistic 
assumptions about the reflectance surface to extend this 
result to two dimensions and prove the Surface Consistency 
Theorem. This theorem was the basis for his theory of 
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surface interpolation. 

Yuille shows, without any probabilistic assumptions, 
that Grimson's result can be generalized to give necessary 
and sufficient conditions for the occurence of directional 
zero crossings along the principal lines of curvature. We call 
this result the Line of Curvature Theorem. It suggests 
that many, if not most, of the physical zero crossings can 
be associated with points on the lines of principal curvature 
which are near the extrema of the principal curvatures. 
This supports the view that lines of principal curvature can 
be computed directly from the image. In turn it supports 
the curvature patch representation. 

2. The computation of visual motion 

In the area of visual motion analysis, Hildreth and 
Ullman have explored a zero-crossing based approach to 
the computation of the two-dimensional velocity field from 
the changing image [Hildreth & Ullman, 1982; Hildreth, 
1982, 1983; Ullman & Hildreth, 1983]. The starting point 
was the work of Marr and Ullman (1981), in which the 
initial detection of motion takes place at the location of 
zero-crossings in the output of the convolution of the image 
with a V2G operator. The main computational reason for 
restricting initial motion measurements to the zero-crossings 
is that they correspond to locations in the image for which 
the gradient of intensity is locally maximum, and hence 
yield the most reliable motion measurements [Hildreth, in 
press]. Hildreth and Ullman have extended the work of 
Marr and Ullman, to allow for the computation of the 
projected two-dimensional velocity field that results from 
the general motion of three-dimensional surfaces in space. 

Due to the aperture problem, local measurements 
of movement in the changing image only provide the 
component of velocity in the direction perpendicular to the 
local orientation of a zero-crossing contour. In particular, 
let V(s) denote the velocity field along a contour (s denotes 
arclength). V(s) can be decomposed into components 
perpendicular and tangent to the curve: 

V(S) = ^(sju^s) + j;T(s)uT(s) 

u-L(s) and uT(s) are unit direction vectors perpendicular 
and tangent to the contour, and v-L(s) and v^{a) are the 
magnitudes of the two velocity components. The first term 

in the above expression can be measured directly from the 
changing image. The second term cannot, and must be 
recovered to compute the velocity field V(s). 

The main theoretical problem for this recovery is that 
V(s) is not specified uniquely by information available in 
the changing image. Additional constraint is required to 
compute a unique velocity field. Drawing from the work of 
Horn and Schunck (1981) on the optical flow computation, 
we use an additional constraint of smoothness of the velocity 
field. Physical surfaces are generally smooth, compared with 
their distance from the viewer; under motion, they usually 
generate smoothly varying velocity fields. To compute a 
single velocity field,  we find the velocity field which is 
consistent with the changing image, and varies the least. 

Through a mathematical analysis, it was found that the 
above smoothness constraint can be formulated in such a 
way that a unique velocity field solution is guaranteed. In 
particular, the local change in V(S) is given by $; a scalar 

measure of this change is given by its magnitude, |^|. 
The total variation of velocity over an entire contour can be 
obtained by integrating this local measure over the curve. 
The velocity field computation then seeks the velocity field 
that is consistent with the changing image, and minimizes 
total variation in velocity along contours. It can be shown 
analytically, that there exists a unique velocity field that is 
consistent with the measurements of v-L(s) obtained from 
the image, and that minimizes the particular measure of 
total variation given by: /|tf |8d«. 

There are two classes of motion for which the velocity field of 
least variation is the correct physical velocity field, assuming 
orthographic projection of the scene onto the image. 
The first consists of arbitrary rigid objects undergoing 
pure translation. The second consists of three-dimensional 
objects, whose edges are straight lines, undergoing rigid 
rotation and translation in space. For the class of smooth 
curves in rotation, the velocity field of least variation is, in 
general, not the physically correct one. However, it is often 
qualitatively similar. For examples in which the true and 
smoothest velocity fields differ significantly, it appears that 
the smoothest velocity field may be more consistent with 
human motion perception. 

The velocity field computation has been implemented 
using a standard iterative algorithm from mathematical 
programming, known as the conjugate gradient algorithm. 

>..-. 
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If there are n parameters to compute (in our case, the x and 
y components of velocity), this algorithm is guaranteed to 
converge to the final solution in at most n steps. The method 
has been applied to a number of images. Qualitatively, it 
appears to give good results for unrestricted motion. We 
plan to evaluate the method further on both synthetic and 
natural images in the near future. 

To summarize, the computation of the two-dimensional 
velocity field consists of two main steps: (I) initial motion 
measurements are obtained along zero-crossing contours, 
and provide the component of velocity perpendicular to the 
contour, and (2) motion measurements are then integrated 
along the contours, to compute the two-dimensional velocity 
field V(s) that minimizes total variation, given by the 

measure: /|^|2rfs. Formulated in this way, a projected 
two-dimensional velocity field can be computed for rigid 
and non-rigid surfaces undergoing general motion in space. 
The computation can be implemented with standard op- 
timization algorithms. Computational experiments support 
the feasibility of this approach to motion measurement. 

3. The correspondance problem 

A very general approach to the correspondence problem 
in either stereo or motion consists of taking a large 
set of local measurements for each pixe! of the image 
and matching the most similar sets between the two 
images. These measurements can be regarded as nonlinear 
functionals representing the "primitives" on which the 
matching process operates. Matching constraints, dictated 
by the specific problem, may easily ensure uniqueness of 
matching. Although a large set of primitives may appear 
rather cumbersome and difficult to compute, massive 
parallel processing which begins to be feasible with the 
new solid state technologies, makes a scheme of this type 
quite attractive. Furthermore, the resulting specificity of 
matching primitives may avoid the extended use of complex 
constraints which are more difficult to implement in a highly 
concurrent system. 

The main problem is the choice of the appropriate 
class of functionals. Poggio has considered the abstract 
computational properties of a specific class of nonlinear 
functionals, i.e., polynomial functionals [Poggio, 1983]. 
For the correspondance problem in ideal noise-free and 
distortion-free images, a complete set of linear functionals 

can be proved to be sufficient: nonlinear functionals cannot 
impro/e the matching (since linear functionals separate 
points in a Danach space). In practice, however, the number 
of measurements is finite and actually relatively small; under 
these conditions nonlinear operators might represent more 
compactly the relevant information. For instance, zero- 
crossing maps of V2C convolved images can be considered 
as the output of a quadratic functional operating on the 
image with support equal to the underlying Gaussian. 
Kass and Poggio are presently exploring correspondence 
schemes based on sets of nonlinear functionals. This effort 
is motived by a recent algorithm developed by Kass to 
solve the correspondence problem and based on a large 
set of linear functionals. The algorithm is based on the 
paradigm of combining independent measurements. The 
underlying idea is that if a dozen or so independent 
indications of correspondence can be combined, then no 
single measurement need be dependable in order for the 
combination to be quite reliable. A set of nearly independent 
linear filters based on first and second derivatives of Gaussian 
smoothed images was used by Kass. He was able to show 
that a particular computation based on these measurements 
can reliably determine correspondence for textured images 
with signal to noise ratios of two or more. An algorithm 
performing this computation has been applied to a few 
natural images with encouraging results. The algorithm 
and its implementation are discussed in detail in these 
Proceedings [Kass, 1983]. 

4. Refiaements and evaluation of stereo algorithms 

In previous IU reports, we have described the theory 
and implementation of Marr and Poggio's theory of human 
stereo [Marr and Poggio, 1979; Crimson and Marr, 1979; 
Crimson 1980, 1981a, 1981b]. The input to the stereo 
matcher is obtained by convolving the left and right 
images with a number of Difierence-of-Caussian Dters and 
locating the zero-crossings in each such convolution. The 
matching proceeds in a coarse to fine manner, finding 
zero-crossings of the same contrast sign and roughly th« 
same image orientation, within a predetermined range along 
horizontal slices of the rectified images, based on the general 
distribution of zero-crossings. As a consequence of testing 
the algorithm on a wide range of natural images, a number of 
modifications to the published algorithm have been made. 
First, the matching of zero-crossing points independent 
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of  their   local   context   may   lead   to   isolated   incorrect 
matches. In the original published algorithm, a continuity 
constraint is applied using statistical measurements over 
areas   of  the   image.   While   this   was   demonstrated   to 
be sufheient on  a range  of test  images,   it occasionally 
led to incorrect matches near surface discontinuities or 
occlusions.  Similar to  the work  of Mayhew and  Frisby 
[1981] and Baker and Binford [1981], we have developed 
a continuity constraint that checks for consistency along 
zero-crossing contours that typically correspond to a single 
physical edge. This constraint implicitly incorporates the 
zero-crossing orientation constraint, and may be considered 
as being equivalent to matching a zero-crossing contour 
from   one   image  against  an  envelope   about  a  contour 
in  the other image.  Second,   we  have  also investigated 
the sensitivity of the algorithm to vertical disparity and 
other   image  distortions.   We  have  found   that  there   is 
tradeoff between the resolution of disparity information 
computed   by  the  algorithm  and   the  sensitivity of the 
algorithm to vertical disparity. Computational experiments 
on aerial photographs have led us to redefine the matching 
algorithm   to   match  zero-crossings  from   a  line  in  one 
image   to   zero-crossings   lying  within   2   or  3   lines  of 
the  corresponding   line   in  the  second   image,   reducing 
the resolution of the available disparity information, but 
enabling the algorithm to match rectified images containing 
small  residual  amounts  of vertical  disparity. As in  the 
original algorithm, vertical disparities beyond this range 
are handled by explicitly changing the vertical alignment of 
the images. Interestingly, psychophysical data suggest that 
human stercopsis relics on a registration process mediated by 
appropriate eye movements, to correct for vertical disparities 
larger than about 4'-7? (Nielsen and Poggio, forthcoming). 
We are presently exploring in a computational analysis 
the properties of the registration process with the goal of 
implementing this stage as an integral part of our stereo 
algorithm. In a separate investigation, Nishiharaand Poggio 
[1982]  have found additional support for the matching 
primitives used in our stereo algorithms. They have shown 
that the  sign  of  the  convolved  images  or equivalently 
the zero-crossings, contain sufficient information for the 
matcher to operate successfully even in random-line stereo 
pairs invented by Julesz and Spivack and claimed to require 
the computation of vernier cues. 

The main emphasis of work on the Crimson implemen- 

tation of the Marr-Poggio theory in the past year has 
been in applying the algorithm to aerial photography. The 
images tested have contained a variety of scenes. Included 
in these are two stereo pairs of sections of the University of 
British Columbia, provided by the Faculty of Forestry. One 
is of a combination of apartment complexes and natural 
terrain, (including several hundred foot high Douglas firs). 
The second is of a hospital complex, with a variety of 
different sized buildings. The third pair, supplied by Boeing 
Corporation, is of a complex highway intersection. The 
fourth pair, supplied by the Defense Mapping Agency, is of 
natural terrain, as is the fifth pair, supplied by the Army 
Engineering Topographic Labs. The sixth pair, supplied 
by Stanford University, is the CDC synthetic images of a 
building complex. An informal evaluation of the results in 
currently underway in conjunction with ETL. 

The performance of the matching algorithm can 
be evaluated on two grounds, matching efficiency and 
disparity localization. Matching efficiency refers to the 
actual correspondence process applied to the zero-crossings 
contours. While the specific numbers clearly depend on 
the particular structure of the images, for these types 
of images we typically find that on the order of 75 to 
80 percent of the available zero-crossings are assigned a 
correspondence (and that this usually represents on the 
order of 10 percent of the image for normal sized DOG 
filters). Of these matched zero-crossings, usually on the 
order of 99.5 percent of them are correct, in that they are 
matched to the correct zero-crossing contour in the second 
image. Disparity localization refers to the accuracy of the 
disparity values associated with a match, a value that is a 
function of the localization accuracy of the Marr-IIildreth 
edge detector as well as of the matching process itself. An 
evaluation of the localization accuracy of the algorithm on 
these images is currently underway jointly with ETL. 

A different algorithm, which also represents an evolu- 
tion of the original stereo theory, has been developed 
by Nishihara with the goal of perfecting a high speed, 
noise tolerant stereo matcher. Specifically we arc studying 
techniques for minimizing a matcher's sensitivity to such 
distortions in noisy signals as might occur in low contrast 
images and in applications where lower quality cameras 
are used. Nishihara has found that noise sensitivity can be 
reduced significantly by trading off resolution for reliability 
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in much the same way lliat Marr and Poggio (197j) o finally 
proposed trading off resolution for disparity range. 

He has implemented a prototype matcher : s;n^ these 
results on top of the realtime convolution hardware he 
developed earlier with N. Larson (Nishihara & Larson, 
1981). The system currently produces a 16 by 16 array 
of depth measurements every 15 seconds from vidicon 
camera images having order 10-20 percent noise levels. The 
matching volume of the device is approximately a cube 
with depth resolution somewhat better than its present 16 
by 16 spatial resolution. Conversion to microcode from lisp 
should allow a doubling of the resolution obtained while 
maintaining or reducing the matching time. 

5. Integrating surface maps 

Computational vision requires the construction of rich 
descriptions of surface shape. Marr and Nishihara's 2^-D 
sketch [Marr, 1982], a viewer-centered description of the 
visible surfaces in a scene, is an important intermediate rep- 
resentation on the road to surface analysis and, ultimately, 
to object recognition. 

In previous reports we have described work by Crimson 
and Terzopoulos on the interpolation of shape information 
in locations were it is not specified exactly by the image. 
In addition to extensions of the surface interpolation 
theory and the problem of computational efficiency, our 
recent effort in the recovery and representation of surface 
information concentrated on the problem of integrating 
information of surface shape from different sources. This 
section summarizes the work by Terzopoulos and by 
Crimson in this areas. The following section describes our 
research in a related area - the problem of detecting and 
dealing with discontinuities. 

Current work by Terzopoulos examined four problems 
in the visual analysis of surfaces. The four are: (i) the 
constraint integration problem; (ii) the discontinuity 
problem; (iii) the interpolation problem; and (iv) the 
computational efficiency problem. Some of the work 
on interpolation of smooth surfaces from raw, scattered 
constraints on surface shape [Crimson, 1981a,b; Brady and 
Horn, 1983; Terzopoulos, 1982], and investigations inlo 
computational efficiency, which came to fruition in the 
development of an extremely eflicient multilevel surface 
reconstruction algorithm [Terzopoulos,  1982, 1983), have 

been described in previous reports. We shall therefore 
concentrate here on recent advances in our study of the 
constraint integration. 

Integrating Constraints from Several Visual Sources 

Lach visual modality constitutes a distinct source of 
partial information constraining surface shape. Processes 
such as stereupsis and analysis of motion naturally generate 
local depth constraints, while processes such as shape 
from shading, texture, and contours naturally provide 
local surface orientation constraints. Surface reconstruction 
necessitates the integration, over several sources, of these 
two classes of scattered constraints. 

Sjrface reconstruction was formulated in terms of a 
physical model — a variational problem describing the 
equilibrium of a thin, flexible plate subject to constraints. 
It involves the following plate energy functional: 

In the generalized formulation, the influence of various 
constraints on the plate interpolating surface is governed 
by additive penalty functionals [Terzopoulos, 1983b]. Depth 
constraints are handled by the functional 

1 (x„!/,)eD L 

while orientation constraints are handled by 

so that the total energy functional to be minimized (over 
an appropriate Sobolev space of admissible functions) is 
S[v) = £p[v) -f £d{v) + £0[v). The reconstructed surface 
is the minimizing function v = u{x,y) representing a thin 
plate surface at equilibrium, subject to the influence of 
either scattered depth constraints, or scattered orientation 
constraints, or both. In this way, all available constraints 
generated by various sources are employed as an integrated 
whole, and the reconstructed surface is the best possible in 
view of the available information. 

1 7 

■-•/■■I"--:-----:--:---:---. -   . - «      ■.    .■           ••.-•.■- 



To summarize. Terzopoulos' work in surface reconstruc- 
tion, as described in the last report, has been successfully 
generalized to deal with the constraint integration problem. 
He is currently refining and testing his computational theory 
of visible-surface representations, aiming toward a more 
complete understanding of the structure of the 2|-D sketch. 
In addition, he is exploring the applicability of techniques 
that have proven to be valuable in surface reconstruction, 
such as the finite element method and multilevel relaxation 
methods, to other problems in low- and intermediate-level 
vision, including lightness, shape from shau 5, and optical 
flow. Preliminary results are encouraging. 

Combining stereo and shape-from-shading 

Previous reports have described our work on surface 
reconstruction, mostly based on constructing complete 
surface representations, consistent with the image irradiance 
information, from stereo depth data. While acceptable 
surface reconstructions can be obtained strictly from depth 
information, it is clear that additional boundary constraints 
would lead to more accurate surface representations. In 
order to seek such additional boundary information, we 
have investigated the mathematical relationship between 
the Marr-Poggio theory of stereo and Horn's work on 
shape from shading. Crimson [1982b] has shown that if the 
reflectance map [Horn and Sjobei^ 1979] is known, then 
given a pair of stereo matched depth contours it is possible to 
determine the surface normal along the depth contour. The 
proof suggests a technique for finding surface normals that 
is essentially analogous to photometric stereo, pioneered 
by Horn, Woodham, and Silver [1978]. Conversely, it is 
possible in principle to determine certain visible surface 
characteristics from stereo information. Suppose that the 
reflectance map is of the form 

R[fi) = p (1 — a)[n - 5) + a{n - h)k 

where p is the albedo, a determines the convex combination 
of the specular and matte components of the reflectance, 
and k is the degree of specularity. Provided one can identify 
points of high curvature along the zero-crossing contours, 
it is possible to determine the values of the parameters k,p 
and Q for the corresponding portion of the image (since the 
values could change with changing surface material). Using 

an interocular separation consistent with the separation of 
human eyes, the technique is most effective at a distance 
of about one meter. The technique may find application to 
'vide angle stereo, however, where the numerical stability 
of the algorithm is expected to increase. 

6. Finding Discontinuities 

The geometric properties of surfaces are almost cer- 
tain to be discontinuous at certain locations in the scene. 
Depth discontinuities occur along occluding c ntours, while 
orientation discontinuities occur along surface creases. 
Discontinuities in surface geometry are usually, but not 
always, reflected in image intensities. Terzopoulos [1983a] 
decomposes the discontinuity problem into three sub- 
problems: (i) the detection of discontinuities in surface 
geometry, (ii) the explicit representation of these discon- 
tinuities, and (iii) a characterization of their influence on 
visible surface reconstruction. 

He argues that the first subproblem has a widespread 
basis in early visual processing. The detection of discon- 
tinuities is certain to require the conjunction of simultaneous 
events in several visual modalities; for example, the coin- 
cidence of texture boundaries or motion boundaries with 
sudden disparity changes. If early visual processes are made 
sensitive to such events, many prominent discontinuities 
in surface geometry may be hypothesized before surface 
reconstruction begins. On the other hand, discontinuities 
which are subtle or hidden in the primal sketch, such as 
those which typically occur in random dot stereograms must 
await detection until the surface reconstruction stage, when 
a full depth map becomes available. Terzopoulos has ex- 
perimented with a simple method for detecting and localiz- 
ing depth discontinuities during the surface reconstruction 
process. Localization involves finding inflections in the 
bending moments of the plate interpolating surface, while 
detection relies on the occurrence of significant disparity 
gradients. The method may b^ conceptualized as a type 
of edge detection over a tentative, dense depth map, and 
it amounts to thresholding according to the magnitude of 
the surface gradient at zero crossings of the Laplacian of 
the surface. Constraints on binocular imaging geometry can 
dictate appropriate bounds on the threshold. 

The thin plate surface reconstruction model also 
suggested  how to apply  the  finite  element  .nethod  to 
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appropriately inhibit surface interpolation across discon- 
tinuites, once they have been made explicit. In par- 
ticular, the surface reconstruction algorithm was general- 
ized to handle depih discontinuities (i.e., occluding con- 
tours) and surface orientation discontinuities (i.e., creases). 
Generaliüation involves "breaking" the interpolating plate 
along depth discontinuities and "joining" plate patches 
by strips of membrane along orientation discontinuities, 
thus reconstructing piecewise smooth surfaces. [The math- 
ematical details are presented in Terzopoulos, 1983b]. Once 
discontinuities have been detected, say, by the method 
described in the preceding paragraph, the reconstructed 
surface may be improved by a few additional relaxation 
iterations. 

7. Shape description 

Smoothed local symmetries 

The description of two- and three-dimensional shape is 
crucial for recognition. Brady [1982a, 1982b] has developed 
a representation of two-dimensional shapes that combines 
certain features of two-dimensional projections of general- 
ized cylinders [Nevatia and Binford 1977, Brooks 1981] and 
the symmetric axis transform (SAT) [Blum and Nagel 1978]. 
The representation has been applied to determine where to 
choose grasp points on a lamina for a two-fingered robot 
hand. 

The smoothed local symmetries representation has four 
components. First, local symmetry is defined in a way that 
differs from that implicit in the SAT. Second, axes that are 
smooth loci of local symmetries are computed. In this way, 
smoothness of axes is made explicit, rather than being left 
implicit as in the symmetric axis transform. Third, axes 
whose region of support is wholly subsumed by the support 
of some other axis are deleted. The resulting smoothed 
local symmetries are given a parametric description called 
a frame. Finally, a shape is decomposed into sub-objects for 
which smoothed local symmetry descriptions are computed 
individually. The axes act as local coordinate frames and 
constrain the generation of descriptions of an entire shape 
by combining the descriptions of subshapes, 

A pilot implementation of smoothed local symmetries 
was reported in [Brady 1982c]. It repeatedly used an algo- 
rithm, based on the mean value theorem, for determining 
the points at which a line entering the shape at a given 

orientation to the tangent emerges from the shape. In 
this way the local symmetries at a point could be found 
iteratively. The pilot implementation worked well, but was 
very slow. 

Recently Asada and Brady [1983] have developed an 
algorithm that computes an approximation to the smoothed 
local symmetries of a shape. First, a set of feature points 
are computed on the shapes bounding contour, as found by 
the Canny edge detector. The feature points are points of 
high curvature or points of inflexion, and they are found 
by a process analogous to edge finding but applied to 
the orientation of tie curve (a one-dimensional function 
of arclength). Features analogous to those computed for 
the original primal sketch [Marr 1976] are extracted and 
interpreted. Second, the shape is approximated by best 
fitting straight lines and circles to the feature points found 
in the first stage. Asada and Brady have worked out 
the smoothed local symmetries generated by two contours 
of constant curvature, and these are fit to the segments 
produced in the second stage. Finally, the smoothed local 
symmetries are used to match a database of shape models for 
recognition and inspection. Her ■ and Brady have developed 
a sampling algorithm for computing the smoothed local 
symmetries of a shape. The main emphasis of their work is 
developing algorithms for removing locally plausible axes 
that are of minor significance globally. 

Bagley and Brady [1983] generate elaborate shape 
descriptions using a hierarchy of shape models incorporat- 
ing general geometric knowledge and, at a higher level, 
application-specific information. These models combined 
with concavities in the boundary allow isolation of sub- 
shapes. They associate with each subshape a local refe-encc 
frame to characterize the joining of subshapes and to help 
choose among multiple interpretations. 

The computation of shape from contour 

An important goal of early vision is the computation 
of a representation of the orientation of visible surfaces. 
Many processes contribute to achieving this goal, stereop- 
sis and structure-from-motion being the most studied in 
image understanding. Three other important contribute 
ing processes are shape-from-contour, shape-from-texture- 
gradients, and shape-from-shading. Several psychophysical 
demonstrations show that shape-from-contour is significantly 
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more powerful than shape-from-lexture-gradients. Similarly, 
Barrow and Tenenbaum [1981, Figure 1.3 IT] suggest that 
shapc-frorn-contour is a more effective clue to shape than 
shape-from-shading. 

Brady and Yuille have investigated the compulation of 
shape-from-contour. Many shapes arc perceived as images 
of surfaces which are oriented out of the picture plane. 
Slam judgements are not determined by familiarity with 
contours, but on more general knowledge of shapes and 
surfaces. The method proposed by Brady and Yuille is 
based on such general knowledge, namely a preference for 
symmetric, or at least compact, surfaces. Note that the 
contour does not need to be closed in order to be interpreted 
as oriented out of the image plane. In general, contours are 
interpreted as curved three-dimensional surfaces. 

Brady and Yuille ddvelop an extremum principle for 
determining three-dimensional surface orientation from 
a two-dimensional contour. Initially, they work out the 
extremum nrinciple for contours that are closed and that 
are assumed a priori to be the images of planar surfaces. 
They discuss how to i nd this approach to open contours 
and how to interpret contours as curved surfaces. 

The extremum principle maximizes a familiar measure 
of the compactness or symmetry of an oriented surface, 
namely the ratio of the area to the square of the perimeter. 
It is shown that this measure is at the heart of the maxi- 
mum likelihood approach to shape-from-contour developed 
by Witkin [1981] and Davis, Janos, and Dunn [1982]. The 
maximum likelihood approach has had soms success inter- 
preting irregularly shaped objects. However, the method is 
ineffective when the distribution of image tangents is not 
random, as is the case, for example, when the image is a 
regular shape, such as an ellipse or a parallelogram. The ex- 
tremum principle interprets regular figures correctly. Brady 
and Yuille show that the maximum likelihood method ; p- 
proximates the extremum principle for irregular figures; but 
that the maximum likelihood method does not compute the 
correct slant for an ellipse. Witkin [1981, Figure 5] provides 
empirical evidence that the maximum likelihood method 
computes a good approximation to the perceived tilt but 
underestimates the slant. Brady and Yuille prove that the 
maximum likelihood method consistently overestimates 
the slant of an ellipse. A more thorough investigation of 
the difference between the Extremum Principle and the 

Maximum Likelihood method is needed. 

Kanade [1981, page 424] has suggested a method 
for determining the three-dimensional orientation of skew- 
symmetric figures, under the "heuristic assumption" that 
such figures are interpreted as oriented real symmetries. 
Brady and Yuille prove that the extremum principle 
necessarily iiucrprcls skew symmetries as oriented real 
symmetries, thus dispensing with the need for any heuristic 
assumption to that effect. Kanade shows that there is a 
one-parameter family of possible orientations of a skew- 
symmetric figure, forming a hyperbola in gradient space. 
He suggests that the minimum slant member of the one- 
parameter family is perceived. In the special case of a real 
symmetry, Kanade's suggestion implies that symmetric 
shapes are perceived as lying in the image plane, that 
is having zero slant. It is clear from the example of an 
ellipse that this is not correct. Our method interprets real 
symmetries correctly. 

8. Object acquisition and shape from shading 

Photometric stereo as developed by Horn, Woodham 
and Silver [Horn, et. al., 1978; Woodham, 1981] provides 
shape and surface orientation from multiple images of the 
same scene, taken under different conditions of incident 
illumination. 

Suppose two images are obtained by varying the 
direction of the incident illumination. Each picture element 
in the two images corresponds to the same physical 
point, since the imaging geometry remains unchanged. 
The reflectance map is changed, however, and the two 
values for each point can determine the surface orientation. 
(Three views provide complete disambignation in all cases.) 
Photometric stereo can be implemented very efficiently in 
terms of a look up table set up in an initial calibration phase 
in which an object of known shape is imaged under the 
different lighting conditions. Recently, Ikeuchi and Horn 
have applied this technique to the ^.dicult problem of bin 
picking. 

One of the remaining obstacles to the widespread ap- 
plication of industrial robots is their inability to deal with 
parts that are not precisely positioned. Present methods for 
automating assembly operations require separate feeding 
of the parts, with position and attitude carefully control- 
led.  Ikeuchi and Horn  have demonstrated a system for 
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automatically directing a mechanical manipulator to pick 
one object at a time out of a pile. The attitude of the 
object to be picked up is found using a histogram of the 
orientations of visible surface patches. Surface orientation 
is determined using photometric stereo applied to multiple 
images, taken with differing lighting. The resulting needle 
map, giving the orientations of surface patches, is used 
to create an orientation histogram which is a discrete ap- 
proximation to the extended Gaussian image. This is then 
matched against a synthetic orientation histogram obtained 
from protoypical models of the objects to be manipulated. 
Such models may be obtained from CAD databases. 

The system uses stored models of the objects and can 
identify which of several parts is seen. The output of this 
process has been used to direct a mechanical arm to pick 
up the part. The method is not restricted to cylindrical 
parts or even solids of revolution. Extended light sources 
can be used in arbitrary positions and the objects need 
not be restricted to ones having particularly favourable 
reliective properties. As we mentioned, the system adapts 
to these two variables using a calibration object of known 
shape. A second calibration step is needed to determine 
the transformation between the coordinate system of the 
manipulator and that of the camera. This type of approach 
may prove very useful in practical applications. We now plan 
to explore the potential advantages of coupling photometric 
stereo with Nishiahra's stereoalgorithm discussed in Section 
3. 
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Our 
program 

with a library 
can be Invoked 

this research 
to  fundamental 

principal objective in 
is to obtain solutions 

problems in computer vision; particularly those 
problems that are relevant to the development of 
an automated capability for Interpreting aerial 
imagery and the production of cartographic 
products. 

0«T plan is to advance the state of the art 
in selected core areas such as stereo compilation, 
feature extraction, linear delineation, and Image 
matching; also, to develop an '"expert system" 
control structure which will allow a human 
operator to communicate with the computer at a 
problem oriented level, and guide the behavior of 
the low level Interpretation algorithms doing 
detailed image analysis. . 

Finally, we p^lan to use the DARPA/DMA Testbed 
as a mechanism for transporting both our own and 
IU community advances, in image interpretation and 
scene analysis, to DMA, ETL, and other members of 
the user community. 

INTRODUCTION 

A major focus of our current work is the 
construction of an Expert System for Stereo 
Compilation and Feature Extraction. Our intent in 
this effort is to develop a system that provides a 
framework for allowing higher level knowledge to 
guide the detailed interpretation of imaged data 
by autonomous scene analysis techniques. Such a 
system would allow symbolic knowledge, provided by 
higher level knowledge sources, to automatically 
control the selection of appropriate algorithms, 
adjust their parameters, and apply them in the 
relevant portions of the image. 

Recognizing the difficulty of completely 
automating the interpretation process, the expert 
system will be structured so that a human operator 
can provide the required high level information 
when there are no reliable technique« for 
automatically extracting this information from the 
available imagery. As new research results become 
available, the level of human Interaction can be 
progressively reduced. 

The expert system we are building can thus be 
viewed as an intelligent user-rlevel interface for 
guiding semiautomated image processing activities. 
Such a system is envisioned as a rule-based system 

of processes and activities, which 
to carry out specific goals in the 

domain of cartographic analysis and stereo 
reconstruction. The system would depend on the 
human user for those types of information not 
easily extracted from the given imagery, and allow 
the computer system to take over in those areas 
where the utility of automated analysis has been 
clearly demonstrated. 

Development of the expert system control 
structure is a research task still in an early 
stage of accomplishment. The remainder of this 
report will describe pogress in research 
supporting the development of potential scene 
analysis components of the system, as well as other 
Image Understanding research of a more basic 
nature. We also briefly describe the status of the 
DARPA/DMA Testbed effort now approaching 
completion. 

II   RESEARCH PLANS AND PROGRESS 

A.   Development of Methods for Modeling and Using 
Physical Constraints in Image Interpretation. 

Our goal in this work is to develop methods 
that will first allow us to produce a sketch of the 
physical nature of a scene and the illumination and 
imaging conditions, and next permit us to use this 
physical sketch to guide and constrain the more 
detailed descriptive processes — such as precise 
stereo mapping. 

Our approach is to develop models of the 
relationship between ph'sical objects in the scene 
and the intensity patterns they produce in an image 
(e.g., models that allow us to classify intensity 
edges in an image as either shadow, or occlusion, 
or surface intersection, or material boundaries ILI 

the scene); models of the geometric constraints 
induced by the projective imaging process (e.g., 
models that allow us to determine the location and 
orientation of the camera that acquired the image, 
location of the vanishing points induced by the 
interaction between scene and camera, location of a 
ground plane, etc.); and models of the illumination 
and intensity transformations caused by the 
atmosphere, light reflecting from scene surfaces, 
and the film and digitization processes that result 
in the computer representation of the image. 

These models, when instantiated for a given 
scene, provide us with the desired "physical" 
sketch.  We are  assembling a  "constraint-based 
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Stereo system" chat can use this physical sketch to 

resolve the amhlgultles that defeat conventional 
approaches to stereo modeling of scenes (e.g., 
urban scenes or scenes of cultural sites) for which 
the images are widely separated in either space or 
time, or for which there are large featureless 
areas, or a significant number of occlusions. 

Recent publications of our work in this area 
are cited in the references [1-4, 9-12]. 

B.   Stereo  Compilation:   Image  Matching  and 
Interpolation 

We are implementing a complete state-of-the- 
art stereo system that produces dense range images 
from given pairs of intensity images. We plan to 
use this system both as a framework for our stereo 
research, and as the base component of our planned 
expert system. 

There are five components of this stereo 
system: a rectifier, a sparse matcher, a dense 
matcher, an interpolator, and a projective display 
module. The rectifier estimates the parameters and 
distortions associated with the imaging process, 
the photographic process, and the digitization. 
These parameteto are used to map digitized image 
coordinates onto an ideal image plane. The sparse 
matcher performs two-dimensional searches to find 
several matching points in the two images, which It 
uses to compute a relative camera model. The dense 
matcher tries to match as many points as possible 
in the two images. It uses the relative camera 
model to constrain the searches to one dimension, 
along epipolar lines. The interpolator computes a 
grid of range values by interpolating between the 
matches found by the dense matcher. The projective 
display module allows interactive examination of 
the computed 3-D model by generating 2-D projective 
views of the model from arbi.: drily selected 
locations in space. Initial versions of all 
components of the system have been implemented. 

Present research in this ;ask is focused 
primarily on the image correspordence (matching) 
and interpolation problems. With respect to image 
matching, the following major issues are being 
addressed: 

* What is a correct match? 

* How does one measure the  performance of a 
matcher? 

* Whot causes existing matching techniques to 
fall? 

* How can one improve  the  performance  of 
matching techniques? 

Since there are no reliable analysis 
techniques for evaluating the performance of 
matching algorithms when applied to real world 
images, we must evaluate them by extensive testing. 
To expedite such testing, a database of images and 
ideal match data (ground truth) is being assembled. 
For example, we have acquired data from the ETL 
Phoenix test site that were produced specifically 
for testing matching techniques. Every point in 
the database we are constructing contains 
annotations that indicate the categories of 
matching  problems  for  that  point,  and  other 

information that might be useful to evaluate the 

performance or guide the application of matching 
techniques. 

We are currently investigating a hypothesize - 
verify approach to local matching. Potential 
matches are verified by examining the image for 
compliance with the assumptions of the matching 
operator's model. For example, area correlation 
matching operators assume that correctly registered 
image patches will differ only by Gaussian noise. 
A simple verification technique is to examine the 
statistics of the polnt-by-point difference between 
the hypothesized alignment of the patches for 
conformance with that model. Image anomalies, such 
as moving objects or occluding contours, will 
typically produce a difference image that has a 
highly structured geometry, indicating the shape 
and location of the anomaly. Such anomalous areas 
can be removed from the region over which the 
correlation is computed, and the process Iterates 
until either an acceptable match criterion is 
satisfied, or too many points are removed from the 
region. 

In many cases (e.g., occlusion and featureless 
areas) local matching techniques are not capable of 
producing the required correspondences over regions 
of significant extent. We intend to use the 
information provided by the "physical sketch" (see 
previous section) to detect such situations, and to 
select alternative means for obtaining the required 
depth information. 

As indicated above, when a stereo pair of 
images are matched, we generally can do no better 
than to compute a sparse depth map of the imaged 
scene. However, for many tas..s a sparse depth map 
is inadequate. We want a complete model that 
accurately portrays the scene's surfaces. To 
achieve this goal, we must be able to obtain the 
missing surface shape information from the shading 
of the Images of the stereo pair. 

To understand the relationship between image 
shading and surface shape, we built a differential 
modil [10,11] that relates shape and shading but, 
unfortunately, does not provide a complete basis 
tor a shape recovery algorithm [12]. However, the 
information available In image shading does allow 
the building of a surface interpolation algorithm 
that finds i surface that is consistent with the 
image shading. We are proceeding with such a 
development. 

As image shading alone does not provide 
sufficient information to find surface orientation, 
further shape information sources in the image are 
needed. We are evaluating additional scene 
attributes that encode shape information in their 
image, and the models necessary to recover the 
corresponding shape information. 

Feature Extraction: Scene   Description, 
Partitioning, and Labeling 

Our current research in this area addresses 
two related problems: (1) representing natural 
shapes such as mountains, vegetation, and clouds, 
and (2) computing such descriptions from image 
data.   The  first  step  towards  solving  these 
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problems  Is to obtain a model  of natural surface 
shapes. 

A model of natural surfaces is extremely 
important because we face problems that seem 
Impossible to address with standard descriptive 
computer vision techniques. How, for instance, 
should we describe the shape of leaves on a tree? 
Or grass? Or clouds? When we attempt to describe 
such common, natural shapes using standard shape- 
primitive representations, the r -suit is an 
unteallstically complicated model of something 
that, viewed introspectively, seems very simple. 
Furthermore, how can we extract 3-D Information 
from the image of a textured surface when we have 
no models that describe natural surfaces and how 
they evidence themselves in the Image? The lack of 
such a 3-D model has restricted image texture 
descriptions to being ad hoc statistical measures 
of the image intensity surface. 

Fractal functions, a novel class of naturally- 
arising functions, are a good choice for modeling 
natural surfaces because many basic physical 
processes (e.g., erosion and aggregation) produce a 
fractal surface shape, and because fractals are 
widely used as a graphics tool for generating 
natural-looking shapes. Additionally, we have 
recently conducted a survey of natural Imagery and 
found that a fractal model of imaged 3-D surfaces 
furnishes an accurate description of both textured 
and shaded image regions, thus providing validation 
of this physics-derived model for both image 
texture and shading. 

Encouraging progress relevant to computing 3-D 
Information from imaged data has already been 
achieved by use of the fractal model. We have 
derived a test to determine whether or not the 
fractal model is valid for particular image data, 
developed an empirical method for computing surface 
roughness from image data, and made substantial 
progress in the areas of shape-from-texture and 
texture segmentation. Characterization of Image 
texture by means of a fractal surface model has 
also shed considerable light on the physical basis 
for several of the texture partitioning techniques 
currently in use, a..d made It possible to describe 
image texture in a manner that Is stable over 
transformations of scale and linear transforms of 
intensity. 

The computation of a 3-D fractal-based 
representation from actual image data has been 
de-nonstrated. This work has shown the potential of 
a fractal-based representation for efficiently 
computing good 3-D representations for a variety of 
natural shapes, including such seemingly difficult 
cases as mountains, vegetation, and clouds. 

This research is expected to contribute to the 
development of (1) a computational theory of vision 
applicable to natural surface shapes, (2) compact 
representations of shape useful for natural 
surfaces, and (3) real-time regeneration and 
display of natural scenes. We also anticipate 
adding significantly to our understanding of the 
way humans perceive natural scenes. 

D.   Linear Delineation and Partitioning 

A basic problem in machine vision research is 
how to produce a line sketch that adequately 
captures the semantic information present in an 
image. (For example, maps are stylized line 
sketches that depict restricted types of scene 
Information.) Before we can hope to attack the 
problem of semantic interpretation, we must solve 
some open problems concerned with direct perception 
of line-like structure in an image and with 
decomposing complex networks of line-like 
structures into their primitive (coherent) 
components. Both of these problems have important 
practical as well as theoretical Implications. 

For example, the roads, rivers, and rail-lines 
In aerial Images have a line-like appearance. 
Methods for detecting such structures must be 
general enough to deal with the wide variety of 
shapes they can assume In an Image as they traverse 
natural terrain. 

Most approaches to object recognition depend 
on using the information encoded in the geometric 
shape of the contours of the objects. When objects 
occlude or touch one another, decomposition of the 
merged contours is a critical step in 
interpretation. 

We have recently made significant progress In 
both the delineation and the partitioning problems. 
Our work in delineation [5] is based on the 
discovery of a new perceptual primitive that is 
highly effective In locating line-like (as opposed 
to edge-like) structure. 

Our work on decomposing linear structures Into 
coherent components [6] Is based on the formulation 
of two general principles that appear to have 
applicability over a wide range of problems In 
machine perception. The first of these principles 
asserts that perceptual decisions must be stable 
under at least small perturbations of both the 
Imaging conditions and the decision algorithm 
parameters. The second principle is the assertion 
that perception is an explanatory process: 
acceptable precepts must be associated with 
explanations that are both complete (i.e., they 
explain all the data) and believable (i.e., they 
are both concise and of limited complexity). 

These nev delineation and partitioning 
algorithms have produced excellent results :n 
experimental tests on real data [5,6]. 

Ill   STATUS OF THE DARPA/DMA 
IMAGE UNDERSTANDING TESTBED 

[8], 
Details of this work can be found in Pentland 

The   DARPA/DMA  Im 
established  at SRI as 
Understanding  research 
coherent body of softwa 
hardware  environment, 
features  and  capabillt 
contributed  software 
evaluations  have  been 
modules  (e.g., see  the 
these proceedings).   In 

age Understanding Testbed 
part  of the  DARPA  Image 
program  constitutes  a 

re  running in a  standard 
Demonstrations  of   the 

ier,  of all  1U community 
are  available;   detailed 
carried  out  for  selected 
paper  by K.  Laws [7] in 
this capacity, the Testbed 
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o Abstract 

Research on intelligent systems for image understanding focusses 
on a successor to the ACRONYM system, and its application in a 
rule-based stereo mapping and interpretation system. Some ele- 
ments of a rule-based stereo system have been implemented. A 
new modeling system is under construction, and a new graphics 
system for display of generalized cylinders has achieved initial 
results. Research has continued on segmentation/aggregation 
in the figure-ground problem for grouping candidate objects. 
Implementation experiments are underway for an array of vi- 
sion processors. Fundamental mathematical results have been 
obtained on matching processes. Inference rules for interpreting 
surfaces from images were demonstrated formally in a mathe- 
matical logic programming system. Results have been obtained 
in specializing certain vision programs by automatic methods to 
produce efficient programs. 

The objectives of this research are to develop algorithms for 
high performance image understanding modules, to implement 
an intelligent vision system, and to demonstrate its application 
in photointerprotatton and cartography. The ACRONYM sys- 
tem was developed as the first intelligent system.  Research lias 
uhitied to its SUCCESSOR,    xc. \   
A rule-based stereo mapping system is under construction. 
Various members of the group have built elements for a 
demonstration described in (l)aker 83]. This work was .supported 
in pail by RADC. These include: an evaluation of I'entland's 
shape from shading program; an extended version of Baker's pro- 
gram which includes edges from [Marimont 82]) a stereo registra- 
tion and rectification program by Meiler; generic building models 
and typical building examples by Cray; stereo matching of or- 
thagonal trihedral vertices by Malik and liinford; monocular and 
stereo inference rules by Malik and liinford; example rules for a 
rule-based stereo system. 

Miller and Lowry have continued progress toward building a 
small array of image processors [Lowry 82]. Other work has 
begun in the architecture of algorithms for image understanding. 

Cowan has begun implementation of a new modeling system for 
SUCCESSOR. Rublee and Selkcr have investigated the user in- 
terface for an intelligent geometric editor. Chclberg lias inves- 
tigated the constraint system and rule base of ACRONYM, using 
a large set of aircraft models. Minor problems were identilied 
and fixed, lie is investigating more powerful mechanisms for 
the constraint system. Lowry has done initial work in prob- 
lem formulation for a class of computational geometry problems. 
[Scott S.'ij has implemented a general system for calculating the 
terminators (visible boundaries of curved surfaces) for a broad 
class of generalized cylinder models. The algorithm, capable 
of parallel implementation, calculates the perspective image of 
a Ceneralised Cylinder, from arbitrary viewpoint, with hidden 
surface removal. It applies to a wide class of cylinders. The lime 
taken will bo proportional to the total length of I lie contours, 
independent of the number of edges.   'Hie algorithm solves for 

one closed-loop contour-generator at a time, testing its contour 
(in the image plane) for intersection with visible scgements of 
previous contours. 

[Lowe 83] have extended the analysis of the figure/ground prob- 
lem, which we formulate as the discovery of non-random struc- 
ture in images, whether interpreted as surfaces in three space, 
or as patterns and texture in the plane. Uniform, non-random 
structure has an interpretation of common phyiscal origin. 
Marimont has worked at finding edges in intensity surfaces. A» a 
subproblem of segmenting intensity surfaces, he has investigated 
segmenting curves. Results have been obtained for the problem 
of determining a smooth curve through two samples, each with 
point, tangent vector, and curvature. 

[Blicher 83] has developed some fundamental mathematical 
theory underlying vision. lie defines a mathematical structure 
which can be used as a framework for studying many vision prob- 
lems. Drawing on dilferential topology, he uses the framework 
to prove a theorem regarding the stereo matching problem. The 
main result is that without constraints on imaging geometry, 
matching of typical pictures requires at least 2 color dimensions 
for unlrjueness. lie also presents some theory about the topology 
of isu-brightness contour lines, which is useful in understand- 
ing (he behavior of systems which track some value, e.g. zero- 
crossings. The paper provides vision researchers with a view of 
some of the powerful results of modern differential topology; the 
methods used are applicable to stereo, motion stereo, optic flow, 
and matching. 

[Ketonon 83] is investigating ways of formally expressing facts 
about images. In particular, he can show that some of the 
coincidence assumptions stated in [I'inford 8l| can actually be 
proved in a suitable formal framework. 

[Coad 83] describes the automatic generation of special purpose 
vision programs. The starting point for the automatic construc- 
tion process is a description of a particular 3D object. The result 
is a special purpose program for recognizing and locating that 
object in images, without restriction on the orientation of the 
object in space. Thus each object description is analyzed in ad- 
vance, and then "compiled" into an efTicient program for detect- 
ing that object in images. The method has been implemented 
and tested on a variety of images with good results. Some of 
the tests involved images in which the target objects appear in a 
Jumbled pile. The current implementation is not fully optimized 
for speed. However, evidence is giver; that image analysis times 
on the order of a second or less can be obtained for typical in- 
dustrial recognition tasks. (This time estimate excludes edge 
finding). 

Perceptual Orgaiiination 

We have a practical objective which is to implement more general 
interpretation in ACRONYM. A short term goal is an improved 
ribbon finder, coupled with a mechanism for making canonical 
clusters of ribbons.   ACRONYM matches predicted ribbons or 
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is now established as a technology transfer tool 
that can be utilized by appropriate agencies to 
evaluate the applicability of the contributed scene 
analysis techniques. 

Documental on of the Testbed is entering Its 
final phase. Final drafts of the User's manual, 
the Programmer's manual, and the System Manager's 
manual are available and will soon pass through the 
required editing and approval procedures. Drafts 
of the evaluation reports for the Chough and 
Phoenix programs are also complete. We are 
currently completing both the evaluation report for 
the Relaxation package and the user-level 
documentation of those contributions for which no 
detailed evaluation is planned. More extensive 
studies of the various approaches to stereo 
compilation now available on the Testbed will be 
integrated into the ongoing research effort on the 
stereo problem. 

The Testbed Is now sufficiently well-defined 
that exact copies of the entire system can be 
configured, if desired. SRI, under a separate 
contract, is just completing the Installation of a 
Testbed copy (hardware and software) at the US Army 
Engineer Topographic Laboratories (ETL) at Fort 
Belvolr. A Lisp Machine will be added to the ETL 
configuration later in the year. SRI will also be 
supplying Lisp Machines and Lisp Machine software 
to the DMAHTC and DMAAC branches of the Defense 
Mapping Agency. SRI has been closely involved in 
efforts to ensure that the upgrade of the DMA 
AFES/RWPF facilities to the VAX-11/780 CPU can 
incorporate the Image Understanding Testbed 
capabilities, as well as supporting the Lisp 
Machines. 

The Testbed software system and its utilities 
are being prepared for export to university 
researchers in the IU program as well as to other 
U.S. Government agencies interested In 
establishing Testbed copies. SRI has developed a 
simple license agreement to help protect Testbed 
contributors and restrict use of the software to 
appropriate academic and govei lent research 
environments. 
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ollipsea with observed ribbons or ellipses; Uion it tests wbcllier 
clusters of image elements s.itisl'y object constraints in three 
space. Typically, matching single ribbons is weak, while match- 
ing all pairs, triples, and n-tnpics of ribbons is combinatorially 
unattractive. Limiting the combinatorics leads to introducing 
proximity grouping, then to a thorough investigation of grouping 
mechanisms from first principles. 

We have studied fundamental properties of perceptual organiza- 
tion. The botlom-up process of grouping related image features 
plays an important role in 3-D inference, model-based recogni- 
tion, and matching processes such as stereo correspondance. Wo 
measure the signilicance < i' image relations as inversely propor- 
tional to the probability that they would have arisen by accident 
from the surrounding distribution of features. This is a general 
measure that requires no prior knowledge of the scene, and can 
therefore be applied uniformly at the earli-st stages of the image 
interpretation process. 

Because the image relation^ are likely to have arisen from 
properties of the scene rather than through an accident of image 
formation, they provide a reliable basis for matching against 
models. ACRONYM currently relies on ribbons and elipses as 
its perceptual description of an image, but this set could be ex- 
panded to include all reliably detectable relations. Typically 
relations which are non-accideulal will be qtiasl-lnvarlant with 
respect to viewpoint, This means thai, these relations can be 
used for stereo correspondance matching, at a higher and more 
robust level than simple edge points. 

We have also studied the complexity of the process of forming 
image relations. It would be combinatorially expensive to ex- 
amine all possible relations between image features. Therefore, 
we have used diameter-limil.ed grouping processes applied at mul- 
tiple scales and overlapping locations. At any scale, the number 
of alternatives for forming relations must be low, or none will be 
attempted. In this way, computation is limited by complexity 
rather than by prior limits on scale or density. Some of this work 
is the basis for estimates concerning architecture of intermediate- 
level vision. 

We have currently implemented a curve description program 
which looks for non-accidenLal linear or curvilinear structure in 
edge data. This program is able to detect significant structure 
occuring at multiple scales in the same edge. It requires no prior 
knowledge of the noise properties in an edge, but uses the given 
data to estimate the scales at which the curve exhibits the most 
significant structure. 

Stereo "Vision 

Haker has modified the stereo system to include edges from 
[Marimont 82j. The system now uses improved edge operators 
and includes edge extent in seeking optimal correspondence. The 
system now deals with stereo pairs in which epipolar lines arc not 
coincident with the camera raster. To bring this about, Meiler 
made a program to determine epipolar lines from the camera 
transform data of [Cennery 77]. To perform the interpolation of 
surfaces based on intensity interpolation, Mcller's program was 
made to produce images rectified to epipolar geometry. 

A system was developed for input of hand-segmented images as 
a basis for developing higher level inference and correspondence 
functions independent of the development of segmentation algo- 
rithms. 

Orthogonal trihedral vertices (OTVs) are an important struc- 
tural element in buildings. OTVs were analyzed in part by 
[Liebes 81], Malik and Binford provided an analysis for general 
orientation in perspective. The analysis was implemented as 
an inequality to lest candidate OTVs; all OTVs and some non- 

OTVs are accepted by the inequality. An algorithm determines 
the angle in space from a single image. Clearly, corresponding 
views of an OTV must imply the same orientation in space. 

Malik and Binford have determined new monocular inference 
rules which have applicability to stereo, including a generalized 
support interpretation. They have produced a stereo inference 
rule which imposes a sign reversal constraint on pairs of vectors. 
If two images of a pair of vectors are to correspond, the z- 
component of their cross product (determined entirely by image 
quantities) must not change sign. 

Segmentation and Representation of Curves 

We have developed an algorithm to compute a segmentation and 
representation of digital curves, applicable to edges extracted 
from images, intended to facilitate higher-level analysis of curves. 
A number of psychological and mathematical considerations have 
led us to segment curves at extrema and zeroes of estimated 
curvature. Psychological data suggest that humans segment 
curves at extrema, and that humans are insensitive to deriva- 
tives of order higher than two (curvature is closely related to 
the second derivative), further, zeroes and extrema of curva- 
ture have mathematical properties of invariance under certain 
geometric transformations which enable reliable estimation of 
curvature characteristics independent of the curve's position and 
orientation. A related conjecture currently being investigated is 
whether suitably chosen invariants of space curves map stably 
under perspective projection into extrema and zeroes of curva- 
ture of the image plane curve. 

We estimate curvature at all scales, and a pyramid of curvature 
estimates is constructed suitable for detection and representation 
of linear and hierarchical relationships among the estimates. We 
use this pyramid to evaluate robustly the significance of of cur- 
vature changes at one scale in the context of others; we thereby 
eliminate the need for extensive prior knowledge of sensor noise, 
for instance. ICstimatcs of significant curvature changes arc 
retained at all scales, so tasks needing only rough estimates are 
not computationally overburdened by unnecessary detail, while 
those able to use high accuracy elfectively achieve optimal per- 
formance. 

SFlinca for Visdon 

We have completed a preliminary implementation of a new type 
of spline based on intrinsic, geometric properties of curves. We 
argued above that digital curves should be segmented at extrema 
and zeroes of curvature. This new spline takes as input two 
points, two tangents, and two curvatures, and returns a curve 
which is: in agreement with the input data at the two points; 
continuous; continuous in tangent; continuous in curvature, with 
curvature varying monotonically along the curve. Curvatures at 
the endpoints cannot be of different signs, although one can be 
zero and one nonzero. If our curvature estimates are consistent 
with the assumption that curvature is continuous, this restriction 
poses no problem, since placing knots at all zeroes and extrema of 
curvature implies that no two adjacent knots can have curvatures 
of opposite sign (if they did, there would be a zero of curvature 
between them, and therefore a knot). 

Curvature must change monotonically between knots to avoid 
introducing spurious curvature extrema, i.e. extrema not present 
in the curve underlying our curvature estimates. If the cur- 
vatures at the two points to be splined are ki and A^, with 
k[ less than fca, then the statement that curvature incrj.-xses 
monotonically betwee kf and k2 is mathematically equivalent to 
the statement that there exist no curvature extrema between ki 
and ^2 (assuming curvature is continuous). Since the perceptual 
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and malhomatleal importance ol'curvaturc exlrema dictated Uie 
placement of knots at thnrn, It is crucial that t,hc spline Intro- 
duce no curvature oxtrema not present In the data. In recogni- 
tion of the Importance of this characteristic, we refer to those 
uplines as monotone curvature splines. The current Implemen- 
tation relies on the relationship between evolutes and involutes, 
a construct from classical dilTereritial geometry. The spline it- 
self is the involute, determined hy a trivial calculation (Vorn the 
evotulc; finding the cvoluto is Hie computationally hard part. 
The evolute is not determined uniquely from the input data. We 
have chosen to use four circular arcs, primarly for the sake of 
computational efllciencyj the resulting evolute is continuous, and 
continuous in tangent, but not in curvature. It is a fortuitous 
aspect of the relationship between evolutes and involutes that 
the involute's curvature is conlinous. An iterative procedure is 
used to find the evolute; it converges in test cases satisfactorily 
and rapidly, although more testing needs to bn done. 

Prediction of Generalized Cylinders 

This is the first stage of a system for manipulating generalized 
cylinder models. It includes a generalization of the formulation 
of [Shafer 8;i] for the prediction of the terminator for generalized 
cylinders. The algorithm can be divided into two parts. Kirst 
(A), solution for the visible parts of the contour-generators, and 
secondly (IS), region growing to get visible surfaces. The first part 
is the principal one. It has two subparts, which arc repeated, and 
together find one contour-generator. Rach contour-generator is a 
closed loop, intersecting no others, which divides the surface into 
forward (vi-.i'de if unoccluded), and backward facing (invisible) 
areas. The square root of the size of eacli visible area, is a 
measure of the length scale over which things are happening in 
that region of the GC. 

The first suhpart (Al), steps over the GC with step length 
proportional to the square root of the area of the region it is 
contained by, until either the whole surface has been covered, 
in which case the algorithm stops; or a step containing a new 
contour-generator is found. In this case, the step is then bisected 
down to an exact solution. A test to sec whether each step 
jumps a new contour-generator can be made since, whenever 
the direction (forward or back), that a surface point is facing, 
differs from the direction predicted by the regions of the existing 
contour-generators, then there must be an undiscovered contour- 
generator passing nearby. This means that if one stepping point 
has the same predicted, and actual surface direction, and the 
next does not, then a new contour generator passes through the 
Intervening step. This interval is reduced, using bisection, with 
the condition that one end o'f the interval must have the same 
predicted, and real surface directonn, while the other end must 
not. 

The solution is handed over lo the second subpart (A2), which 
propagates it around the whole contour-generator, back to its 
start, making a list of the solutions as it goes, and noting the 
ones where the contour-generator becomes visible or occluded. It 
works by stopping along the contour-generator tangent 2, to get 
a guess for the next solution point, which is Newton-llaphson 
iterated to a sullieient accuracy. If the Newton Raphson does 
not converge, several points around a small circle are tested 
to find an interval to bisect down to ttie next solution. The 
step length is taken proportional to curvature of the contour, to 
get uniform interpolation accuracy between the known contour 
points.'!,1. Bach step is projected to the image, and checked for 
intersection with those previously projected steps, which tiave 
not. been shown to be hidden. When an intersection is found, the 
exact positions of the occluding and occluded conlour-generator 
points are calc.ulatedß. Finally the whole contour is checked 
against possible surrounding contours. 

To convert to a form implementable in parallel; step Al is done 
independently, at different places and then A2 is used to form 
contour- generator segments, which can be simply joined up into 
the complete- contour lists. lOither way, each list of contour points 
is now followed down, keeping count of the marked occluded 
points, to produce lists of just the visible ones. 

Automatic Generation of special 
purpose vision programs 

Chris Goad's work concerns the automatic generation of special 
purpose vision programs. 

In many practical applications of automated vision, the vision 
task takes the form of recognizing and locating a particular three 
dimensional object in a digitized image. The exact shape of the 
object to be perceived is known in advance; the purpose of the 
act of perception is ordy to determine its position and orientation 
relative to the viewer. This is model based vision in its strict 
form. Most industrial applications of vision have this property, 
and also the property that the same object (or, more precisely, 
objects of the same shape), must be located in many images. 

Goad's work concerns a scheme for exploiting this kind of situa- 
tion which involves automatically constructing special purpose 
vision programs. The starting point for the automatic construc- 
tion process is a description of a particular 3D object. The result 
is a special purpose program for recognizing and locating that 
object in images, without restriction on the orientation of the 
object in space. Since this special purpose program lias a com- 
paratively limited task to perform, it c*n be much faster than 
any general purpose vision program vouc1 be. Thus each ob- 
ject model is analyzed in advance, ; nd th MI "compiled" into 
an ellicient program for detecting th it object in images. The 
method has been Implemented and tested on a variety of images 
with good results. Some of the tests involved images in which the 
target objects appear in a jumbled pile. The current implemen- 
tation is not fully optimized for speed. However, evidence is 
given that itnage analysis times on the order of a second or less 
can be obtained for typical ' 'dustrial recognition tasks. (This 
time estimate excludes edge finding). 

Mathematical Analysis 

from the camera transform data of (Gennery 77]. To perform the 
interpolation models. II, includes a generalization of the formula- 
tion of [Shafer 82) [Ketonen 8.'!] has implemented a formal repre- 
sentation of geometry in the KKL system, lie has demonstrated 
that some of the coincidence assumptions stated In [Hinford 81] 
can actually be proved in a suitable formal framework. 

It follows from his analysis that many of the "Impossible" pic- 
tures of HulTman in [2] can be detected by simpler and more 
general means than the ones used by Huffman, Glowes or Waltz. 
Given that these methods are simpler (even if not complete), 
they may be closer to the process actually used by the human 
visual system. 

One should not expect formallsatlons of theories to have tan- 
gible connections with succesl'ul implementations of algorithms; 
Artificial Intelligence programs need not be based on the 
paradigm of theorem proving. However, the clarification of the 
formal concepts underlying these systems can be of great impor- 
tance in terms of program architecture and further development. 

In Hlichcr's work, a unifying abstract mathematical structure 
is presented for a number of vision problems, notably stereo, 
motion stereo, optic flow, and matching. The structure Is sum- 
marized in  Kig.   (*') of lilicher's paper;  he defines the various 
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"UNDERSTANDING OBJECTS, FEATURES, AND BACKGROUNDS", 
AND CONTRACT DAAK70-83-K-0018, "AUTONOMOUS VEHICLE NAVIGATION" 

Azriel Rosenfeld 
Larry S. Davis 

Center for Automation Research 
University of Maryland 
College Park, MD 20742 

ABSTRACT 

This report summarizes the work done during 
the final two years of Contract DAAG53-76-C-0138, 
"Understanding Objects, Features, and Backgrounds. 
It also outlines plans for work to be conducted 
during the comiag three years on Contract DAAK70- 
83-K-0018, "Autonomous Vehicle Navigation." 

1.  UNDERSTANDING OBJECTS, FEATURES, AND 
BACKGROUNDS 

1.1. Introduction 

In June 1976 the U.S. Army Night Vision and 
Electro-Optics Laboratory awarded Contract DAAG- 
53-76-C-OIJ8 to the University of Maryland for 
research on "Algorithms and Hardware Technology 
for Image Recognition."  Funding for this con- 
tract was derived primarily from the Defense 
Advanced Research Proj jets Agency under DARPA 
Order 3206.  During the following 21-month period, 
the University developed and tested advanced al- 
gorithms for detection of tactical targets on 
Forward-Looking InfraRed (FLIR) imagery.  Concur- 
rently, on a subcontract, the Westinghouse Defense 
Systems Division designed charge-coupled device 
(CCD) layouts for implementing many of these algo- 
rithms in hardware, and also fabricated a CCD chip 
that implemented one basic algorithm, histogram- 
ming/sorting.  The results of the work done during 
the first 21 months of the contract are documented 
in detail in a Final Report dated March 1Q78 [Al]. 

In April 1978 the contract was extended for a 
two-year period, under the new title "Image Under- 
standing Using Overlays." During this phase of 
the project, numerous algorithms were developed 
and tested for object detection and extraction from 
images, as well as for image and region represen- 
tation.  On a subcontract, Westinghouse investi- 
gated the implementation of some of these algori- 
thms in general- or special-purpose digital hard- 
ware.  Westinghouse also conducted tests of one 
class of algorithms known as "relaxation" tech- 
niques.  The results of the work done during this 
period are documented in a series of technical and 
semiannual reports, are are summarized in a Final 
Report dated May 1980 [A2]. 

In May 1980 the contract was extended for a 
final two-year period (later extended, at no addi- 
tional cost, through December 1982), under the 
title "Understanding Objects, Features, and Back- 
grounds." During this phase of the project, fur- 
ther studies were conducted, in collaboration with 
Westinghouse, on object segmentation and recogni- 
tion, feature extraction and background analysis, 
multi-resolution image processing techniques, and 
analysis of time varying imagery.  This work was 
documented in a series of project status reports 
[Bl-3] and Technical Reports [Cl-32], and is sum- 
marized in this Final Report. 

Principal Investigators on this project at 
the University of Maryland were Profs. Azriel 
Rosenfeld and Larry S. Davis, and at Westinghouse, 
Dr. Glenn E. Tlsdale and Mr. Bruce J. Schachter. 
The project monitor at NVEOL is Dr. George R. Jones. 

1.2. Object segmentation and recognition 

a) Comparative  segmentation  study 

A comparative study of object extraction 
techniques applicable to FLIR imagery was 
conducted jointly by Maryland and Westing- 
house, using a database of 52 Images collected 
by Westinghouse from Army, Navy, and Air Force 
sources.  Techniques tested by Maryland in- 
cluded two variations of a relaxation method 
as well as new methods based on multiresolu- 
tion image representations, known as "pyra- 
mids." One of the pyramid-based methods out- 
performed all the other techniques tested. 
The results of the Maryland study are docu- 
mented in detail in a technical report [C19], 
while Westinghouse's study is documented in 
a Westinghouse report. 

b) New segmentation techniques 

As a supplement to the main segmentation 
study, several new segmentation techniques 
were developed under the project.  Two methods 
developed on earlier projects were extended 
from single-band to amltlband imagery.  One 
of these improves the detectability of clus- 
ters in a histogram or scatterplot by sup- 
pressing pixels that lie on edges [Cl].  The 
other, known as "Superspike," converts the 
peaks in a histogram or scatterplot into sharp 
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spaces and mappiiiga prcscni In pcrlbrming nwitliing, and Uicir 
rdaktonahlps and proporUca. This is dono in a Fairly abstract 
way, so as to bo applicable lo many (iilTcrcnl, typos of vision 
|)rol)li!in. For example, the same formalism describes perspective 
as well as orthogonal projection, unusual camera geometries, and 
projection onto a plane or a sphere, etc. lilicber believes that this 
type of langnage can eventually be converted into a computer 
language for describing a computational environment for vision. 

Ideas from modem differential topology are presented and ap- 
plied to the general matching problem, a common approach to 
stereo matching, delined as follows. Given 2 picture functions 
/•'i,/'2 : M" -> ltn, one linds regions KuKi C M'2 and a l-l 
matching function qn : K\ —► K2 such that F\ = I'^oy^. Ditcher 
proves a "2-color theorem": that generically for monochrome 
pictures (n = I) there is a large infinity of solutions, but for 2 or 
more colors (n > 2) the solution is unique. In the monochrome 
case, the solutions can be quite different, matching the same 
point to widely separated target points. Though the theorem 
literally deals with matching grey levels, it is equally valid for 
a derived function, such as the output of a lateral inhibition 
operator, a smoother, or an edge filter, although oidy areas lack- 
ing occlusion are considered. 

"Generic" is a central concept in differential topology, which 
means "almost always" in a precise way, allowing one to exclude 
pathological or unlikely behaviors which cannot be encountered 
in practice, thus making many problems tractable. This can find 
application as well in inferring structure from images. 

The proof of the theorem for the monochrome ease is based 
on a very simple intuitive argument involving sliding iso- 
brightness contours along themselves. Independently of proving 
the theorem, to flesh out the intuition, lilicber presents some 
facts about bow such contour lines can look. Altbougb no use 
is made of it in the paper, such information in itself is use- 
ful for matching, as topological structure is invariant for small 
perturbations, hence it is important to classify the possibilities 
into a small discrete set. Also, this theory is useful for under- 
standing any real-valued function on a picture, for example the 
/.cro-crossings of an edge finder, or the values of some curvature 
parameter, say Gaussian curvature, or oven some local Fourier 
coellicienl, as one might use for a texture system. 

equation-free sentence: 

Ideas from modern differential topology are presented and ap- 
plied to the general matching problem, a common approach to 
stereo matching, defined as follows. 

Given 2 picture functions, one linds 2 regions and a 1-1 
matching function between them sucb that the match- 
ing function preserves grey level values. 
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spikes (thus making them trivially detectable) 
by a process of iterated local averaging in 
which the histogram is used as a guide  !• 
selecting those neighbors with which a given 
pixel should be averaged [C26].  A third 
method, "bimean clustering," identifies the 
two "best" subpopulations in a histogram by 
finding the pair of values that gives a best 
fit to the histogram in the least squares 
sense [C20]. 

c) Object identification using constraint 
filtering 

The conventional approach to recognizing 
targets in FL1R imagery is to extract poten- 
tial target regions using segmentation tech- 
niques, and then carefully analyze the proper- 
ties of each region independently in order to 

determine whether or not it could be a target. 
We have investigated a complementary approach 
based on comparisons among regions rather 
than analysis of individual regions.  After 
the image is segmented, we give each region 
a set of possible labels - e.g., "sky," 
"ground," "smoke," "tree," "tank." We then 
attempt to eliminate labels from the regions 
based on their relationships with other re- 
gions (relative property values, relative 
positions, etc.).  This method performed 
successfully in a small set of tests; it eli- 
minated the "tank" label from all the non- 
tank regions but kept it for all the tank 
regions [C25].  This approach should be of 
interest as a supplement to existing target 
recognition algorithms. 

1.3. Feature extraction and background analysis 

a) _Edge and corner extraction 

Feature detection (e.g., edge detection) 
is an important adjunct to object recognition, 
and also plays an (important role in image 
matching (e.g., fof object tracking and time- 
varying imagery analysis).  Three feature 
detection studies wtre conducted on this pro- 
ject.  The optimal approach to edge detection 
developed by Hueckel, which finds the best- 
fitting step function to a given image neigh- 
borhood, was applied to derive optimal edge 
operators for a class of small neighborhoods 
[C28].  A basic new method of evaluating edge 
detector output, based on consistency of the 
edge output data, was developed and success- 
fully tested [C8].  A simplified method of 
corner detection was developed based on de- 
tecting discontinuities in one-dimensional 
projections of the image; this method elimi- 
nates the need to apply computationally ex- 
pensive higher-order derivative operators at 
every point of the image [C13]. 

b) Blob and ribbon extraction 

Work was also done on the detection of 
higher-level features such as "blobs" and 
"ribbons" in an image.  (A blob is surrounded 

by consistently facing edges, »hile a ribbon 
is characterized by "antiparallel," oppositely 
facing edges.)  Edge linking schemes were 
developed for detecting sucli features based 
on compatibility of the edges with respect to 
both geometry and gray level [C2],  Quantita- 
tive measures for edge compatibility were also 
developed for assessing both closedness [C3] 
and antiparallelness [C4]. 

c) Texture analysis 

In connection with image background charac- 
terization, two texture analysis studies were 
conducted.  An approach to texture analysis 
based on average strength of match with vari- 
ous local patterns was implemented; it was 
found to perform better than several standard 
methods [C18].  The idea of applying texture 
measures to arrays of terrain elevation 
data was also briefly explored; if such 
data were available at sufficient reso- 
lution, it would provide a useful supple- 
ment to intensity-based texture analvsis 
[C15]. 

1.4. Multi-resolution image analysis 

a) Background and related work 

A potentially powerful new approach to 
image analysis, now under development at our 
laboratory, is based on the use of a "pyra- 
mid" of auccessively reduced-resolution ver- 
sions of the given image.  Initial work on 
image segmentation using pyramids was done 
under NSF sponsorship.  During the summer 
of 1982, a workshop on "Multiresolution 
Image Processing and Analysis" was held, 
also under NSF sponsorship, at which about 
25 research groups presented recent results 
that make use of multiresolution image rep- 
resentations in various ways.  The pyramid 
image representation also has the advantage 
of compatibility with the quadtree region 
representation, which was extensively studied 
during an earlier phase of this project, and 
which is being further studied in connection 
with cartographic data base applications 
under the sponsorship of the U.S. Army En- 
gineer Topographic Laboratory. 

b) Segmentation and representation 

One way of using the pyramid representation 
segmentation is to define links between pixels 
and their "parents" at consecutive levels of 
the pyramid, based on mutual similarity; this 
gives rise to subtrees of the pyramid, and 
thus defines a partition of the image, where 
each part consists of the pixels that are 
the leaves of a given subtree.  A number of 
variations on this basic approach were investi- 
gated [C6], and it was also generalized to 
multlspectral imagery [Cll].  In connection 
with quadtree region representation, earlier 
work on the generation of an image row by row 
from its quadtree was extended to include 
several new algorithms [C7]. 
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c) Feature extraction and encoding 

Pyramids can also be used to extract and 
represent features such as edges and blobs 
in an image.  If we use mutual similarity 
as a basic for linking "edgels," rather than 
pixels, in a pyramid representation, we ob- 
tain "trees" of edges which allow us to de- 
tect the major edges in an image, at the 
higher levels of the pyramid, and then locate 
these edges precisely at ttv; full-resolution 
level [C14].  Pyramids can also be used to 
encode edges (or curves) detected in an image, 
vielding successively coarser approximations 
as long as the edges crossing a given block 
of the image can be compactly approximated 
[C5].  These approximations can then be used 
as an aid in linking together edge segments 
that lie on long lines or smooth curves [C30], 
Two approaches to blob extraction using pyra- 
mids were also investigated.  One of these 
uses pixel linking to construct subtrees of 
the pyramid such that leaves of each subtree 
are the pixels that belong to a compact, 
homogeneous piece of the image [C24].  Ano- 
ther approach is based on the fact that any 
blob shrinks to a (local) "spot" at some 
level of the pyramid; it detects blobs by 
constructing an edge pyramid and detecting 
pixels that are locally surrounded by edges 
[C21] .  This method outperformed all the 
others that were tested in the comparative 
study of FLIR image segmentation techniques 
(see above. Section 1.2a). 

1.j. Time-varying imagery analysis 

a) Image matching 

One approach to detecting and analyzing 
motion in an image sequence is to identify 
sets of corresponding points in successive 
frames of the sequence.  This is usually 
done by searching for matches to pieces of 
one fram° in the other frame.  In order to 
obtain sharp matches, it is desirable to 
use pieces that contain distinctive, high- 
contrast features such ;s corners (they 
are preferable to edges because the match 
to an edge is insensitive to displacement 
in the direction along the edge).  Some suc- 
cessful experiments in image matching using 
corner features are described in [C12].  A 
supplemental experiment, reported in [C17], 
showed that local intensity-based matching 
in the neighborhood of a feature point can 
be used to unambiguously locate match peaks 
in those cases where the results of the 
feature matching are ambiguous. 

b) Motion estimation and smoothing 

Another approach to motion detection, ap- 
propriate in cases where the rate of motion 
does not exceed one pixel per frame, in- 
volves using the space and time derivatives 
of the image intensity at each pixel to 
estimate a motion vector at that pixel.  This 
method yields reliable estimates of motion 

components only in directions where there 
are rapid changes in gray level.  Thus in 
a smooth region it yields no useful informa- 
tion; at an edge it yields only the compo- 
nent of motion In the direction across the 
edge; but at corner pixels it yields two 
components, thus allowing the entire motion 
vector to be estimated [C16].  Given a re- 
gion in the image representing a rigid object 
moving parallel to the image plane, we can 
estimate motion vectors at the corners of 
the object and "propagate" these estimates 
around the edges of the object to deter- 
mine Its motion (translation and rotation). 
This approach to motion estimation was de- 
veloped in a series of reports [C22,C23,C29] . 

The motion vector fields obtained from 
snail image neighborhoods are noisy.  If 
they are smoothed by simple local averag- 
ing, incorrect results are obtained at the 
boundaries of moving objects.  A better 
approach is to use nonlinear smoothing 
techniques based on selective local aver- 
aging; this does not blur sharp edges 
[C31].  A related problem is that of 
smoothing the Images in a sequence by 
averaging successive frames; here one can- 
not simply average corresponding pixels, 
but must introduce displacements in order 
to allow for the motion.  In this connec- 
tion, one need not know the entire motion 
vector, but only its component in the gra- 
dient direction, since errors in the tan- 
gential direction will not cause edges 
to become blurred [C32]. 

c) Optical flow analysis 

The changes in an image sequence due to 
the motion of the observer relative to the 
scene, rather than to object motion, are 
known as "optical flow." Given an array of 
motion vectors representing optical flow, 
methods have been developed of inferring 
the parameters of the observer's motion 
(translational and rotational) and of de- 
riving the relative distances between the 
observer and the points ^n the scene.  Al- 
gorithms for deriving relative scene dis- 
tance and local surface orientation from 
optical flow are presented in [C9], while 
a method of deriving the observer's in- 
stantaneous direction of motion from opti- 
cal flow, and of decomposing his motion 
into translational and rotational components, 
is developed in [CIO] . 

1.6. Status reports 

As mentioned in the Introduction, three pro- 
ject status reports wore issued [BI-3] suminarizing 
the work done during this phase of the project. 
The first and third of these reports were also 
published in the Proceedings of the two DARPA 
Image Understanding Workshops that were held dur- 
ing this period (April 1931 and September 1982) . 
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At a meeting of the principal investigators 
on the DARPA Image Understanding Program, held 
in January 1982, it was decided to prepare a Final 
Report on the overall program.  The University of 
Maryland was asked to draft the portion of this 
report dealing with two-dimensional image analysis 
techniques ("low-level vision").  An edited ver- 
sion of this draft was also issued as a technical 
report [C27]. 

2.  AUTONOMOUS VEHICLE NAVIGATION 

This project is concerned with developing 
navigation techniques for an autonomous outdoor 
ground vehicle.  The vehicle will have access to 
a stored database containing information about the 
terrain on which it is to operate, and will have 
sensory input from a passive optical or IR sensor. 
The key problem in navigating the vehicle is to 
relate the sensory input to the stored data in 
order to determine the location of the vehicle and 
the locations of landmarks or goals, and to plan 
paths (from the current location to a goal) that 
satisfy given constraints.  Additional tasks, on 
which preliminary work will also be done, relate 
to short-range sensing (e.g., for obstacle avoid- 
ance) and to real-time analysis of time-varying 
Imagery. 

Since this project was initiated quite re- 
cently, this report provides only a general out- 
line of the planned tasks.  A vehicle and a test 
site have been tentatively selected.  Westlnghouse 
will gather data regarding the site (e.g., high- 
resolution terrain model and sample imagery) and 
will also design and assemble the vehicle system 
Maryland will develop algorithms for processing the 
imagery, relating it to the stored data, and plan- 
ning paths for the vehicle.  When these algorithms 
have achieved adequate performance, Westlnghouse 
will adapt them to run on the vehicle's on-board 
computer, after which they will be tested under 
real-world conditions.  Concurrently, Maryland 
will continue to study problems related to short- 
range sensing and real-time processing.  Maryland's 
work during the Initial months of the project has 
dealt primarily with time-varying imagery analy- 
sis; a paper reporting on one aspect of this work 
appears elsewhere in these Proceedings. 
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The major focus of our DARPA funded research 

program revolyes around issues of dynamic image 
processing. Wg have been examining techniques for 
recovery of environmental information, such as 
depth maps of the visible surfaces, from a sequence 
of images produced by a sensor in motion. 
Algorithms that appear robust have been developed 
for constrained sensor motion such as pure 
translation, pure rotation, and motion constrained 
to a plane. Interesting algorithms with promising 
preliminary experimental results have PISO been 
developed for the case of general sensor motion in 
images where there are several significant depth 

for scenes with multiple 
objects. A general 
algorithm for efficient 

also been developed  for 

discontinuities,  and 
independently  moving 
hierarchical  parallel 
feature matching has 
applications 
registration. 

of  motion,  stereo,  and 

fK 

image 

In addition, we have been designing a highly 
parallel architecture that integrates aspects of 
both parallel array processing and associative 
memories for real-time implementation of motion 
algorithms. Finally, there has been a continuation 
of the VISIONS static image interpretation project, 
with interesting results in top-down processing of 
a set of ooraplex outdoor house scenes.,. Each of the 
above research topics is documented -. in papers 
appearing in these proceedings [1-6] 

I.  QUANTITATIVE MOTION PROCESSING FOR 
RECOVERY OF ENVIRONMENTAL DEPTH 

1.1.  INTRODUCTION 

The major goal in motion processing is the 
recovery of the motion parameters of the sensor and 
each independently moving object. The computation 
of environmental depth of visible surfaces follows 
in a rather straightforward manner. This has 
generally involved two stages of processing: 
computation of a feature displacement field 
followed by inference of motion parameters and 
environmental depth. We will present several 
algorithms for performing this computation in 
independent stages, and in several restricted cases 
of  sensor  motion  some new alternatives for 

combining the two stages in a robust manner. 

The set of image displacements from two or 
more images is an approximation to optic flow. 
During this stage of the processing one faces the 
well-known correspondence problem, which involves 
the matching of corresponding image points of an 
environmental feature in the pair of images. The 
second stage involves inference of environmental 
information from the optic flow or the displacement 
field. This becomes a problem of separating the 
translational and rotaUonal components of the flow 
field. 

Rotation of the sensor induces ima^e 
displacements that are a function only of the 
rotational parameters and image position; in 
particular the feature displacement between images 
is not a function of the depth of its environmental 
surface point. 

The translational motion of the sensor carries 
all of the environmental cues. For purely 
translational motion, the image displacement paths 
are determined by radial flow lines emanating from 
a single point in the image plane, that is the 
intersection of the translational axis with the 
image plane (also referred to as the focus of 
expansion - FOE). The size of displacements along 
these paths are a function of environmental depth 
and distance from the FOE. Thus, the problem of 
general motion becomes one of decomposing the 
rotational and translational effects of motion, and 
then using the image displacements from the 
instantaneous component of translational motion to 
compute depth. 

1.2. RESTRICTED CASES OF SENSOR MOTION 

Our primary technique for depth inference has 
been derived in Lawton's forthcoming doctoral 
dissertation [7]. He has shown that in the cases 
of restricted sensor motion - pure translation, 
pure rotation, and motion constrained to a plane - 
one can bypass, or at least simplify, the 
correspondence problem by combining the computation 
of the motion parameters with the determination of 
image displacements. 
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1.3.  RECOVERY OF DEFfH FROM GENERAL SENSOR MOTION 

Let us illustrate with the case of pure 
translational motion [3], There are two ui.known 
sensor parameters which can be specified by the 
intersection of the translation axis with the image 
plane (the FOE). For a given FOE, the flow lines 
emanate radially from this point, and therefore the 
matching of an image point in one frame to its new 
position in the second frame has been reduced to a 
one-dimensional search along the straight line 
between the FOE and the image point. While there 
may still be spurious high correlations possible, 
the number of incorrect good matches will be 
greatly reduced over the usual two-dimensional 
correlation process. In cases of the incorrect FOE 
there is a strong probability that many points will 
have poor correlations at all points along the 
hypothesized displacement path. The shape of the 
resulting error function can be improved by 
selection of "interesting" image points of high 
contrast (boundaries) and high curvature (corners). 

The determination of the translational motion 
parameters has now become a search process using a 
global error measure which is the sum of the errors 
of the best match on each point's flow path. The 
search process consists of two phases: a global 
sampling of the error measure, and then a local 
search at a finer sampling to determine the 
minimum. The error function appears to be very 
well behaved in a series of experiments on real 
scenes, and the algorithm seems rather robust. 

In the case of pure rotation, the basic 
technique can be applied with minor differences. 
The search space for the correct rotational 
parameters is three-dimensional: two parameters 
for the axis of rotation and one for the magnitude 
of rotation. The algorithm can proceed in the same 
manner by choosing a set of distinguished points, 
and then compute a global error on a coarsely 
sampled parameter space. This problem is actually 
slightly more constrained than the first, because 
here the third dimension of the amount of rotation 
will directly constrain the image motion of all 
points simultaneously, while in the translational 
case each point had to be matched independently 
(because of differences in environmental depth). 

In the case of motion restricted to a known 
plane, there are only two degrees of freedom. 
Translational motion will be constrained to the one 
dimension of the line represented by the 
intersection of the known plane and the image 
plane. The axis of rotation nk'st be perpendicular 
to the plane, and therefore we must only determine 
the degree of rotation. 

A set of experiments have proven these 
algorithms to be very robust in real scenes, 
including the outdoor roao sequence from William's 
thesis [10] and industrial image domains supplied 
by the General Electric Corporation. 

As we have pointed out earlier, the flow 
fielus produced by a sensor undergoing general 
motion are difficult to interpret until they have 
been decomposed into their rotational and 
translational components. Once this has taken 
place, environmental depth can be recovered from 
translational displacements. Analytical techniques 
for performing this computation are extremely 
complex and can be quite sensitive to the errors 
that are typical in the computation of displacement 
fields. It is not feasible to exploit the approach 
of the previous oases where potential motion 
parameters were tested by computing a global error 
measure of lack of consistency across a set of 
image features. In the previous cases the 
dimensionality of the sear space was no greater 
than three, but here it Is a five-dimensional 
search space, and the computational demands may be 
excessive. In addition the error function cannot 
be expected to be well-behaved so that simple 
optimization techniques probably would not work. 

Recently Lawton and Rieger [2] have described 
a surprisingly simple technique that promises to be 
rather robust in noisy, low resolution and/or 
sparse displacement fields. It depends upon the 
scene containing a sufficient number of depth 
discontinuities of sufficient depth diffelonce. 
Thus, a scene with several objects at distinct 
depths, or a single object of reasonable size 
against a textured background, will permit this 
technique to be effective. 

Consider distinct surface features at 
different depths on an occlusion boundary. Sensor 
rotation causes an equal rotational displacement 
because these points appear at the same image 
location. Thus, the only difference in their image 
displacement is caused by a difference in 
translational displacement. This leads to an 
algorithm which will exploit nearby image points 
which are at different depths. Note, however, that 
occlusion need not be determined because 
differences can be taken of all nearby flow 
vectors. They will be oriented on radial flow 
lines, emanating from the instantaneous axis of 
translation which can be determined by an 
optimization procedure. There are several 
approaches to determining the axis of translation, 
such as the use of a Hough transform to select the 
point that most nearly lies at the intersection of 
these vectors. die to practical noise 
considerations, a global error measure is used to 
evaluate each possible value for the direction of 
the translational axis in a coarse to fine search. 
The error measure used is the sum of the magnitudes 
of the error angles of the difference vector field 
and the set of radial field lines. Once the 
instantaneous axis of translation is determined, 
then the rotational component is overconstrained, 
can be determined and then subtracted out. 
Environmental depth of image points can then be 
computed from the translational displacement. 
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The algorithm is not quite so straightforward 
because there may not be many reliable image 
displacement vectors that are at different depths 
and near each other. To the degree that they are 
not at sufficiently different depths, their 
difference vector will be short and prone to error. 
To the degree that they are not near each other, 
their rotational components will differ and 
introduce error. Thus, practical considerations in 
the application of the algorithm remain. However, 
several experiments have shown very promising 
results. 

It should be noted that occlusion boundaries 
of independently moving objects will not satisfy 
the conditions for applying this algorithm, and 
thus the next algorithm complements this work. 

1.4.  SCENES WITH MULTIPLE INDEPENDENTLY MOVING 
OBJECTS 

The algorithms that we have just described do 
not confront the additional complexity introduced 
when there are multiple independently moving 
objects. The global types of constraints that were 
described earlier no longe; apply across the entire 
image. The case of a sensor moving through a 
static environment can be equivalently viewed as an 
image of a single rigid object with associated 
motion parameters. However, if there are 
independently moving objects, they will have 
different motion constraints and introduce possibly 
serious errors in the global search of the 
parameter space for a single set of motion 
parameters. Thus, the goal is to decompose the 
image, and thereby separate the information in each 
flow field, so that motion of each object can be 
recovered. 

The approach outlined here is presentee by 
Adiv [4]. It involves a generalized hough 
transform, proposing solutions to some of the 
problems found in this technique. Hough techniques 
are relatively insensitive to noise and can deal 
with partially incorrect or occluded data. Here, 
such a transform will be used to group a set of 
displacement vectors which satisfy the same motion 
parameters. However, there are a set of problems 
that must be considered: non-adjacent elements can 
vote for the same image transformation, there are 
difficulties in the detection of the motion 
parameters of small objects, and fine resolution of 
the motion parameter space can require large 
amounts of memory and computation time. 

The suggested solution to these problems 
involves a modified multipass approach. In each 
pass windows are located around potential objects 
by the degree to which the displacement field is 
locally inconsistent with previously found motion 
transformations. The Hough transform is applied 
separately to the displacement vectors in each 
window. Thus, the sensitivity of the Hpugh 
transform to local events is increased and the 

motion parameters of small objects can be detected 
even in a noisy displacement field. A 
multiresolution scheme in both the image plane and 
the parameter space reduce the computational cost, 
while still maintaining accuracy. 

The algorithm has been shown to be efficient 
and robust in extracting motion parameters from 
artificial images with objects undergoing 2D 
motion. It involves a 4-dimensional parameter 
space of horizontal translation, vertical 
translation, rotation (in the image plane) and 
expansion/contraction. 

The current research invovles the extension of 
this approach to 3D motion and to real scenes. 
This extension is non-trivial because displacement 
vectors in the 2D motion case involve four 
parameters with two constraints; thus, each 
displacement vector "votes" for a two-dimensional 
hyperplane of the parameter space. In the case of 
3D motion when surface depth is unknown, there will 
be 5 motion parameters, and each displacement 
vector provides only one constraint; i.e., each 
will vote for a four-dimensional subspace of 
parameter cells. Thus, the signal to noise ratio 
in the parameter space will be much lower, and with 
the presence of noise in real images, the 
determination of peaks in generalized Hough space 
will be chrllenging. 

II.  FEATURE MATCHING BY HIERARCHICAL CORRELATION 

Feature matching algorithms are important in 
problems involving motion detection, image 
registration, and stereo vision. Hierarchical 
correlation provides a computationally efficient 
feature matching strategy. They can be implemented 
in hierarchical parallel hardware architectures, 
and they can also be implemented on a sequential 
machine to run very efficiently using a coarse to 
fine matching strategy. 

Glazer, Reynolds, and Anandan [4] have 
developed a hierarchical matching algorithm that 
consists of matching band-passed versions of the 
images at different levels of resolution. The 
filters approximate convolution of a Laplacian and 
a Gaussian (del-squared-G) of different sizes. 
Alternative computational techniques for 
implementing the band-pass filter are being 
examined. Oie technique involves computing the 
del-squared-G at the finest level followed by a 4x4 
Gaussian centered on 2x2 windows to reduce the 
resolution by a factor of two on each axis. These 
algorithms are computed in the processing cone [8] 
of the VISIONS Image Operating System [9]. 

The matching is performed first on the low 
frequency structures occurring at the coarsest 
levels of the images; thus providing a coarse to 
fine strategy for matching higher frequency 
information at the levels below. This reduces the 
problem of false matches when, for example, there 
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is high frequency texture with somewhat repetitive 
patterns.  Thus  all useful information of the 
image is utilized at different  levels:   low 
frequency information at coarser levels and highc-i 
frequency information at finer levels. 

The correlation strategy utilizes the 
observation that at some sufficiently coarse level, 
the maximum displacement jf an image event between 
a pair of images is at most one pixel. This 
restricts the search at that level to a 3x3 area 
and provides an estimate of displacement within + 
1/2 pixel accuracy. The projection of this 
estimate to the next finer level provides an 
estimated displacement of + 1 pixel and allows 
search to again be restricted to a 3x3 area, with 
the process repeating downward. There are two 
significant computational advantages of this 
process. The number of correlation matches 
considered is 9*logD instead of (2D+1)**2, where D 
is the maximum displacement possible at the finest 
level of resolution. In addition, an 8x8 
correlation window size was used at all levels, and 
this would require a window of size (8D)**2 to 
capture the same amount of information in a single 
level Of search across correlation positions. 

The algorithm has shown in practical 
experiments to be effective in determining even 
small amounts of rotation, seems to be insensitive 
to noise, and of course is very efficient. 
Experiments have shown that it may not be necessary 
to apply the algorithm to restricted sets of 
interesting points that have a high degree of 
distinctiveness (such as corners). Sane 
experiments have shown consistently correct results 
using all points, and thus might work on an 
arbitrary sampling of points. 

III.  A CONTENT ADDRESSABLE ARRAY 
PARALLEL PROCESSOR (CAAPP) 

Our research environment has maintained a 
continuous interest in parallel architectures and 
parallel algorithms. Real-time motion processing 
will require between one and two orders of 
magnitude more computational power than static 
vision. Thus, VLSI technology and massively 
parallel machines are obvious research directions. 

Weems, Levitan, and Foster [11] have developed 
a design for a Content Addressable Array Parallel 
Processor (CAAPP) and nave been applying it to the 
motion algorithms with Lawton [5]. The CAAPP is 
both a 512x512 Single Instruction Multiple Data 
(SIMD) array processor and an associative memory. 
The design is based on a 64x6M array of custom VLSI 
chips and is intended to act as a slave processor 
for a general purpose computer system. Each chip 
then contains 64 cells, an instruction decoder, and 
some miscellaneous logic. There are eight basic 
instruction types recognized by the chip, each 
performed in parallel by the constituent cells. 
Most instructions take one minor cycle time (100 

nanoseconds) to execute. Inter-cell communication 
is bit serial and is accomplished by a four-way (N, 
0
) E, W) cell interconnect network, allowing for 
three types of edge treatments: dead-edging, 
circular wrap, and zig-zag wrap. The entire memory 
may be bulk-loaded in one video frame time (1/30 
second). 

A very interesting application developed for 
the CAAPP (that makes use of the associativity and 
array processing capabilities) is an effective 
means of quickly and accurately decomposing a flow 
field into its rotational and translational 
components to recover the parameters of sensor 
motion. The algorithm is an exhaustive .search 
procedure via a top-down parallel correlation of a 
set of rotational and translational flow field 
templates to find a component pair which most 
closely accounts for the motion depicted in a given 
flow field. Currently, 1000 rotational templates 
and 200 translational templates are used. Each 
cell contains the horizontal and vertical 
components of a flow vector, each specified with 10 
bits of precision. 

Experiments have been performed with a CAAPP 
simulator on a VAX 11/780 using a wide variety of 
motions and simulated environments. In all cases 
examined, the translational template closest to the 
actual translational motion was selected. The 
rotational template was always close to the actual 
rotational motion, but was sometimes not the 
closest template. The procedure proved to be 
resistant to limited Gaussian noise as well as to 
limited random spike noise in the original flow 
field. The CAAPP timing calculations revealed that 
the algorithm could perform the 
rotational-translational decomposition in slightly 
more than 1/4 second. Given fabrication techniques 
available in the immediate future, execution times 
can be expected to be significantly improved. 

Using the CAAPP strictly as a parallel array 
processor it is of course possible to perform 
standard image processing operations such as 
convolution. For example, a simple 3x3 Gaussian 
mask convolution can be done in 98 microseconds on 
the CAAPP. It should be noted that the time 
required to perform a convolution on the CAAPP is 
constant for a given image size and only varies 
depending on the size and complexity of the mask. 
For example, a 10x10 mask of 8 bit multipliers 
applied to an image of 16 bit pixels (with the same 
number of pixels as the previous example) would 
require on average approximately 30 milliseconds 
(about one frame time). The method used is not 
restricted to square masks and is actually easily 
adapted to such shapes as annuli and disjoint 
areas. 
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IV.  RULE BASED STRATEGIES FOR 
IMAGE INTERPRETATION 

As part of the VISIONS long-term project for 
the interpretation of static images, we have 
developed an experimental testbed for examining 
issues in knowledge directed processing. Weymouth, 
Griffith, Hanson and Riseman [6] have oeen 
developing a rule based image interpretation system 
which has been effective in interpreting a set of 
complex outdoor scenes. The system utilizes world 
knowledge in the form of simple object hypothesis 
rules, and more complex interpretation strategies 
attached to object and scene schema, to reduce the 
ambiguities in image measurements. 

D-jscriptions of scenes, at various levels of 
detail , are stored in a set of schema hierarchies 
[12]. A schema graph is a data structure defining 
an expected collection of objects, such as a house 
scene, the expected visual attributes associated 
with the objects in the schema (each of which can 
have an associated schema), and the expected 
relations among them. This stored knowledge can be 
used to infer the presence and location of other 
objects, or verify uncertain hypotheses via spatial 
consistency of object labels. However, in order to 
use this knowledge there must be a basis for 
partial interpretations. 

In the initial stages, there are few if any 
image hypotheses, and development of a partial 
interpretation must rely primarily on general 
knowledge of expected object characteristics that 
are independent of other hypotheses. We propose an 
approach to object hypothesis formation which is 
both simple and effective. It relies on convergent 
evidence from a variety of measurements and 
expectations. The rules involve sets of partially 
redundant features each of which defines an area of 
feature space which represents a "vote" for an 
object. The features include color, texture 
shape, size, image location, and relative location 
to other objects. For example, in an outdoor scene 
taken with a camera in standard position, one would 
expect grass to be of medium brightness, to have a 
significant green component, to embody a modest 
degree of texture, to be located somewhere in the 
lower portion of the image, ate. These 
expectations are translated into a rule which 
combines the results of many measurements into a 
confidence level that the region (or group of 
regions) represents grass. 

Convergent evidence from multiple 
interpretation strategies is organized by top-down 
control mechanisms in the context of a partial 
interpretation. The extreme variations that occur 
across images can be compensated for somewhat by 
utilizing an adaptive strategy. This approach is 
based on the observation that the variation in the 
appearance of objects (region feature measures 
across images) is much greater than object 
variations within an image. One such strategy 
extends a kernel interpretation derived through the 
selection of object exemplars, which are regions 
that represent the most reliable image specific 
hypotheses of a general object class. The use of 
exemplar strategies and other top-down strategies 

results in the extension of partial interpretations 
from islands of reliability. Finally a 
verification phase can be applied where relations 
between object hypotheses are examined for 
consistency. Thus, the interpretation is extended 
through matching and processing of region 
characteristics as well as semantic inference. 

Experiments are being conducted on a set of 
fifteen "house scene" images. Thus far, we have 
been able to extract sky, grass, and foliage (often 
separating trees and bushes) from nine house images 
with reasonable effectiveness, and  have  been 
successful in identifying houses and their parts 
including shutters (or windows), house wall and 
roof in three of these images. The interpretation 
strategies use many redundant features, each of 
which can very often be expected to be present. 
The premise is that many redundant features allow 
any single feature to be unreliable. The features 
utilized include those mentioned earlier (color and 
texture attributes, shape, size, location in the 
image), as well as relative location to identified 
objects, and similarity in color and texture to 
identified objects. Object hypothesis rules were 
employed as described in previous sections, and 
additional object verification rules  requiring 
consistent relationships with other object labels 
are being de' eloped. 
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1.   Robust Vision Operators 

1.1.    Parameter Networks and the Hough Transform 

One of the most difficult problems in vision is 
segmentation. Recent work has shown how to calculate 
intrinsic images (e.g., optical flow, surface orientation, 
occluding contour, and disparity). These images are 
distinctly easier to segment than the original intensity 
images. Such techniques can be greatly improved by 
incorporating Hough methods. The Hough transform idea 
has been developed into a general control technique. 
Intrinsic image points are mapped (many to one) into 
'parameter networks' [Mallard, 1983], This theory explains 
segmentation in terms of highly parallel cooperative 
computation among intrinsic images and a set of 
parameter spaces at different levels of abstraction. 

The most recent application of these ideas are to 
improved shape-from-shading calculations which work on 
several spaces [Mrown et al., 1983] and motion extraction 
[Hallard & Kimball, 1983]. This domain specific effort is 
closely linked to our new work on a more general theory 
of Hough-like computations and general implementation 
techniques for them. 

The theory is also useful in analysis of cache-based 
Hough Transform implementations. It is an appealing idea 
to use a small content-addressable store to accumulate 
Hough transform results, rather than a potentially huge 
multi-dimensional array. The initial technical issues were 
discussed in [Brown & Sher, I982J. We are currently 
pursuing  VLSI implementations. 

1.2   Hough Transform Implementation 

Harlier work on the Hough transform [Mrown   1983' 
Mrown & Sher, 1982] has led in three directions. 

1) Research toward a theory of cache accumulator 
arrays [Loui, 1983; Mrown & Feldman, 1983] 

2) Experiments   with   complementary   HT   and 
cache management strategies [Mrown et al., 1983] 

3) Hardware (VLSI) designs for HT vole caches 
[Sher & Tevanian, 1983]. 

Work in each of these directions is in progress; some 
of the cited references are draft documents. The behavior 
of caching schemes for accumulation of voles in the 
Hough transform is equivalent to the statistical problem of 
estimating the mode of a distribution using only a finite 
memory for vote tallies, and is a generalization of the 
familiar 'secretary' ('maximum of a sequence,' 'beauty 
contest') problem. Ixnii's document explores this avenue 
for analysis. The experiments with HT implementation are 
to see how well the peak-sharpening provided by 
complementary HT performs with real images on complex 
shapes. Work on cache architectures (hierarchical schemes, 
cascaded caches) is ongoing. 

The VLSI design project produced a circuit for vote 
cacheiug that can be cascaded to provide a cache of any 
length. Work on improving the efficiency and power of 
the design will continue this summer. 

1.3    High  Level Planning 

In general, problem solvers cannot hope to create plans 
that are able to specify fully all the details of operation 
beforehand and must depend on run-time modification of 
the plan to insure correct functioning. The run-time 
planning idea becomes particularly important when 
different plan segments' are being explored concurrently, 
These communicating segments may require sophisticated 
actions e.g. (do FLANX until PLANy). These issues are 
being studied by [Russell] in the context of a cooperative 
planning and execution system for manipulation tasks. 

2.   Computing witli Connections 

We are continuing our interest in problem-scale 
parallelism, both as a model of animal brains and as a 
paradigm for VLSI. Work at Rochester has concentrated 
on connectionist models and their application to vision. 
The framework is built around computational modules, 
the simplest of which are termed p-units. We have 
developed their properties and shown how ihey can be 

applied to a variety of problems [Feldman & Mallard, 
1982]. More recently, we have established powerful 
techniques for adaptation and change in these networks 
[Feldman, 1982]. 
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A major milestone was achieved with Sabbah's thesis 
on massively parallel recognilion of Origami-world objects 
[Sabbah, 1982]. Sabbah's work extended the connectionist 
methodology to a problem domain with several 
hierarchical structural levels, The resulting program is, to 
our knowledge, the most noiseresisianl system for dealing 
with this level of complexity. One outcome of Sabbah's 
effort has been a project to build a general purpose 
simulator for massively parallel systems [Small el al„ 
1982], 

The general conneclionisl simulator has been well 
tested and is being used in a number of applications, One 
project involves a quite detailed simulation of motor 
control networks of the occuloniotor system [Addanki, 
1983]. Another application is to a spreading activation 
model of word sense disambigualiun and related problems 
m natural language understanding [Coltrell & Small, 
1983], A major new effort involves modelling conceptual 
knowledge (such as that needed for high level vision) in 
connectionist terms. The simulator has also been a starting 
point tor some of our efforts towards VLSI realization of 
connectionist machines (Section 5), 

For a VLSI design couse, a circuit was designed to 
implement key aspects of the "connectionist" 
computational paradigm [Rainero & Kaut/, 1983], This 
cited document is a course project report, and the exercise 
was mainly useful in isolating particular technical 
problems that must be addressed in any such parallel, 
activation passing computer, 

3.    Motion 

Our interest in motion has centered around methods 
for extracting rigid body parameters from optic How and 
intensity images. These parameters are extremely useful in 
navigation and target tracking, Currently these nine 
parameters (origin, translational velocity, rotational 
velocity) can be extracted from 
technique [Hallard & Kimball, 1983] 
the   use   of  these   parameters  to 

tlow via a Hough 
We are also pursuing 
speed   up   the   tlow 

computations themselves [Stuth et al„  1983] 

4.   Shape 

The description and recognition of complex shapes 
continues to be a major focus of the project. The analysis 
of the dot product space representation has been improved 
to handle certain pathological cases, and has been 
generalized to accommodate different criteria for the 
goodness of the representation. 

This simple concept of shape has been applied to the 
problem of reconstructing three-dimensional surfaces from 
very sparse data. The key idea is to use appropriate shape 
descriptors to hypothesize a transformation which accounts 
for the difference in shape between successive contours. 
When the hypothesized transformation is minor, very 
simple-minded surface reconstruction techniques are 
sufficient. When there are major differences in shape or 

position between successive contours, om methud 
hallucinates new contours, using the hypothesized shape 
transformation [Sloan &  Hrechanyk,  1981], 

Hierarchical descriptions of shapes were considered in 
[Hallard & Sabbah, 1981] in a preliminary fashion. Our 
previously reported shape model [Hrechanyk & Hallard, 
1982] concentrated on problems of view nivariaiice and 
attention shilling within a single prototype. This model has 
been extended to handle the problems of extracting 
primitive shape descriptions from noisy images. Our work 
was motivated by dissatisfactions with smoothness criteria 
for intrinsic image conputations. Our current model uses 
correspondences called view frames as primitives. This 
model allows gestalt grouping to be modelled as well as 
parallel search tor prototypes and parameter tracking 
[Hrechanyk &  Hallard, (this Proceeding)]. 

The practicality of shape from shading computations 
and their interaction with the determination of other 
image parameters (such as illuminant position) was 
addressed by two papers in the ["all, 1982 DARPA Image 
Understanding Workshop. Since then we have 
implemented a multi-resolution shapefrom shading 
algorithm that exhibits high efficiency and accuracy in 
surface reconstruction of large (128 x 128) irregular shapes 
(figure 1). We are now applying the algorithm to real 
images, and want to investigate scenes with non 
Lambertian reflectance functions that are unknown 
apriori. We want to explain how humans in fact use 
shading to derive shape, given the complexity ol 
reflectance functions and imaging situations in the world, 
Two competing theories are that somehow the reflectance 

functions are derived fairly accurately by an adaptive 
procedure, or instead that we only 'support' a small 
number of reflectance functions that are selected by other 
cues (such as gloss). 

5.   General Theory uf Vision 

Work in our laboratory, among others, has 
demonstrated strong links between powerful IU 
techniques and computations used by animal visual 
systems. We have established strong ties with a wide range 
of visual scientists at Rochester and a variety of 
collaborative efforts are underway. One early project is to 
survey the computational similarities in natural and 
computer vision [Hallard & Coleman,  1983]. 

We have begun to exploit Rochester neurobiology 
expertise in order to hone and improve our connectionist 
modelling efforts. One difficult avenue is to specify the 
interface between our computational models and the state- 
of-the-art neurobiological picture. Our efforts in this 
direction are summarized in [Hallard & Coleman. 1983] 
and the collaboration is continuing. Another effort is our 
attempt to develop a general framework tor theories of 
vision that would provide a common structure for 
integrating studies from various disciplines [I'eldman, 
1982]. 
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I'iyure 1: Surface Reconstruction of Large Irregular Shapes 
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I. INTRODUCTION 

This paper summarizes our major 
research activities for the period of 
October 1982 to April 1983. More details 
can be found in other technical papers in 
the proceedings of this workshop [1-2] and 
the proceedings of the computer vision and 
pattern recognition conference being held 
concurrently with this workshop [3-5]. Our 
main focus has continued to be on 
developing a high-level symbolic matching 
system that would be useful for the tasks 
of map-updating, autonomous navigation and 
object recognition. We have largely used 
aerial images for testing, but the 
techniques should also apply to other 
domains. We have also been working on 
generating better descriptions, including 
improved segmentation, shadow analysis and 
stereo. We have also continued work with 
Hughes Research Laboratories on hardware 
implementation of IU algorithms. 

III. STEREO MATCHING 

Conventional stereo matching uses 
correlation of intensities in some form, in 
selected windows of two images. Some of 
the more modern approaches, e.g. [8,9], 
match edges, which are likely to be more 
invariant. We have recently started 
experimenting with matching of line 
segments. Initially, we attempted to apply 
our above cited line matching method; 
however, the distortions inherent in stereo 
images led us to a different matching 
criterion. Essentially, our system finds 
the set of matches that gives minimum 
"differential dispanity", i.e. the flattest 
consistent interpretation. This system 
needs further development, but the initial 
results are very promising; this work is 
described in detail in [1]. 

IV. SHADOW ANALYSIS 

''.■_■ 

'•:•'■■ 

II. SYMBOLIC MATCHING 

Our recent work in this area has been 
primarily in extensive testing and 
evaluation of our previously reported 
matching methods [6-7] . We have compared 
our relaxation matching scheme to a variety 
of others, using different convergence and 
confidence updating criteria. These tests 
indicate that criterion optimization method 
is superior in terms of the number of 
iterations needed and in the accuracy of 
the results. 

We have been working on using shadows 
to extract heights of structures; our work 
on extracting heights of buildings by using 
a priori knowledge of their shapes has been 
reported previously [10]. We have 
generiA.^ed this work for other objects, 
e.g. oil tanks, by using the known 
direct ion of illumination strongly to wake 
corr .spondence between object boundaries 
and ^heir shadows. Some of our new work is 
described in [4]. 

V. SEGMENTATION 

We have applied our line matching 
technique to the inspection of printed 
circuit boards for missing or improperly 
inserted parts. The system developed for 
aerial images required only small 
modifications to incorporate a more complex 
model representation; these efforts are 
described in [3]. 

We have developed a new texture 
segmentation system that uses relatively 
simple measures of texture uniformity. The 
segmentation is hierarchical, a low 
resolution segmentation is used to compute 
a more accurate segmentation at a higher 
resolution level. The method is described 
in [2]. 
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V 
Abstract 

*•• This paper demonstrates how image features of 
linear extent (lengths and spacings) generate nearly 
image-independent Constraints on underlying surface 
orientations. General constraints are derived from the 
shape-from-texture paradigm; then, certain special cases 
are shown to be especially useful. Under orthography, the 
assumption that two extents are equal is shown to be 
identical to the assumption that an Image angle is a right 
angle (i.e. orthographic extent is a form of slope or 
skewed symmetry). Under perspective, if image extents 
are assumed equal and parallel, extent again degenerates 
into slope, In the general perspective case, the shape 
constraints are usually complex fourth-order equations, 
but they often simplify—even to graphic constructions in 
the image space itself. If image extents are colinear and 
assumed equal, the constraint equations reduce to second 
order, with several graphic analogs. If extents are 
adjacent as well, the equations are first order and the 
derived construction (the '■ "jack-knife method") is 
particularly straightforward and general. This method 
works not only on measures of extent per texel, but also 
on reciprocal measures: texels per extent. Several 
examples and discussion indicate that the methods are 
robust, deriving surface information cheaply, without 
search, where other methods must fail.* 

1 Introduction \ 
In this paper, we show how certain simple aggregate 

linage properties involving spatial extent along one 
dimension can be used as cues for determining underlying 
three-dimensional surface orientation. Image-measurable 
properties such as lengths and spacings are shown to 
generate constraints on local surface slope in a nearly 
image-independent way. The derivation of these 
relationships is identical in analytic method ("shape from 
texture") and representational structure (the gradient 
space) to those derived for other imaging phenomena sue); 
as skewed symmetry or image slope. Thus, they provide 
additional surface information in a form (either equation 
or graph] that is easily integrable with that of other 
existing algorithms. 

Linear extents are measurements along a straight 
image line of either objects (in which case they are 
lengths) or virtual objects (in which case they are 
spacings). The exact form of the input to these analyses 
can vary. A prior edge-detection and linking step, or a 
segmentation-like step is assumed. Lengths are t'ien 
linear measures of image tokens such as elongated blobs, 
and spacings are linear measures of the virtual lines 
between image tokens. Spacing behaves the same way as 
length does; often it is more conveniently available. 

In     general,     this     pa 
understanding   conventions   p 
places, [Kender  80a].     Thai 
system considers the z axis to 
o'f view; the image itself to be 
rotated in front of the lens at 
length in the system to equal 
Surfaces in the scene are loc 
patches,    and    the    surface 
z=px+qy+c    is    represented 
gradient, in the gradient space 

per follows the image 
resented   in,   among   other 

is, the image coordinate 
be positive in the direction 
plane z=l, which has been 
the origin; and the unit of 

the focal length of the lens, 
ally represented by planar 
gradient    of    the    patch 
by   the   point   (p,q),    its 

*This research was sponsored in part by the Defense 
Advanced Research Projects Agency under contract 
N00039-82-C-0427. 

The problem of deriving surface information from 
textura and regularity assumptions occurs in two steps. 
First, the textural element-in this case an image extent- 
is backprojected onto all surface patches possible. A map 
of the scenic measure of the component is recorded. The 
recovered scene extents are usually a function of the 
image extent's position and the surface's parameters. In 
•he second step, two or more nearby textural elements are 
assumed to be equal in measure in the scene 
Mathematically this means that the maps can be 
intersected to find those surface patch parameters that 
generate for each texel the same measure (that is, the 
same texture). Because the gradient space is coupled to 
the image space-a rotation in one induces an equal 
rotation in the other-the problem of backprojecting 
textural elements often is can be simplified by factoring 
out rotation. That is, the camera roll component does not 
affect the depth and surface information of the image in 
any significant way. 

2 Extents under Orthography 
For the case of spatial extent under orthography, 

the rotational coupling reduces it to the problem of 
backprojecting a single horizontal extent between the 
points (a,y) and (b,y), where L=(b-a) is the image extent 
(see Figure 1). Further, the Jacobian of the deprojection 
mapping of image., space onto the surface space is 
constant. (It is eoual to ||NI|, the norm of the surface 
normal N=(i),q,-1).) Thus all induced surface extents are 
preserved under translations of their sources in the image, 
and any candidate image extent can be translated to the 
origin. The problem then reduces to that of 
backprojecting the line from (0,0) to (L,'0J: a problem with 
one Tree parameter. Such simplifications characterize 
orthographic projection in general, but the resulting 
texture maps are often weak in analytic power, as the 
following discussion shows. 

Backprojecting the image point (x,y,l) onto the 
plane with equation z=px+qy-fc is achieved by the 
transformation: (x,y,l) becomes (x,y,px-|-qy+c). Without 
bothering to set up a detailed scene coordinate system, it 
is easy to see that the two points baekproject to (0,0,c) 
and |L,0,pL+c). rejjpectivelv. The scene extent is 
therefore Lsqrt( l+p-), which is a function of p and q: 
this is the normalized texture property map. 

^ 
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surface 

Figure 1:    Baekprojecting an oxtont under orthography. 

Note that tho q component docs not affect the scene 
extent. This is because q measures departure from 
"verticajity", and a horizontal line is only affected in 
backproiection by that component which alters 'left- 
right ' slant the p component). When graphed in the 
gradient space, this map has the property that the 
normalized texture property of extent is a hyperboloid of 
one sheet, with a minimum value of L on the q axis. 
Therefore, backproiection under orthography never 
decreases measures of extent. 

To use this normalized texture property map 
(NTPM), consider an image with two extents in it. 
Suppose they arise from parallel extents in the scene; this 
parallelism is carried over into the image. But under 
orthography, either extent can be translated into 
supenmposition on the other. Thus, if they are of equal 
extent, they (and their NTI'Ms) exactly coincide and no 
further information about the scene is obtained. If they 
are unequal in extent, they will superimpose with unequal 
overlap; since the coupling of the gradient space maps 
also causes the NTPMs to superimpose, there, is no 
solution. That is, .jf L. and L., differ, L.sqrtfl+p-) never 
equals LoSqrt(l+fr), and thefe is no surface patch that 
can support two equal, parallel scene extents if there are 
unequal image extents. Thus parallelism of equal extents 
under orthography provides no information about 
surfaces, except in this weak, negative fashion. 

Now suppose the extents arise from non-parallel, 
but equal extents in the scene. This situation is more 
interesting: the image extents can be translated so that a 
pair of their ends will meet and form an angle. Dccauso 
the image extents are non-parallel in the image as well, 
their NTPMs have will have also been rotated different 
amounts. Further, their image measures are, in general, 
unequal, so the NTPM intersection is non-trivial. The 
resulting constraint equation is a messy one in terms of 
L|, L.,, their joint angle, and second powers of p and 
q, However, it is not difficult to prove that the constraint 
on surface orientation that it induces can be graphed as a 
hyperbola in the gradient space. The following 
construction shows that the hyperbola is the Kanade 
hyperbola [Kender 80bj, which usually arises under the 
assumption that a given image angle is caused by a scene 
right angle. 

Consider Figure 2, in which the two image extents 
forming (heir angle have been closed off with the addition 
of a line. It is well known that orthography preserves 
midpoints of lines; thus the image figure, with yet another 
line connecting the vertex to this midpoint, can be seen as 
a scene isosceles triangle in perspective, Given this, the 
angle formed by the altitude to the base in the scene must 
be a right angle: this is the Kanade assumption. The 
surface constraint then is identically derived. 

Figure 2:    Equal extent is skewed symmetry. 

A special case occurs when image extents arc 
themselves equal, as with the corner of a square or 
rhombus. The altitude-to-base angle constructed in the 
innige is found to be a true right angle as well. The 
second order constraint equation now degenerates to a 
linear one. Its graph in the gradient space is represented 
by two perpendicular lines through the origin; one of 
them is parallel to the triangle's base. These constrained 
surface orientations have a easy interpretation: the 
underlying surface could have pivoted about the altitude, 
foreshortening both halves of the triangle equally, or, the 
surface could have pivoted about the base foresnorlening 
the entire triangle, but without skew. Note that if the 
image is assumed to be that of a square corner, it can be 
analyzed solely in terms of slope phenomena. The scene 
then contains two right angles: the corner one and the 
induced one. (The two Kanade hyperbolae intersect in 
the gradient space, giving a Neckcr pair of orientations.) 

Kqual extents in the image under orthography 
therefore either give trivial results, or reduce to already 
known cases of image slope and angle. (This is even true 
for some other textural configurations for extents which 
are not covered here.) 

3 Extents under Perspective 
The analysis of extents under central perspective is 

more complex, but it yields more powerful algorithms for 
image understanding. Under perspective, the gradient 
space remains coupled to the image space, still saving one 
(fegree of freedom in analysis (the camera roll 
component). However, the backprojection function is 
more elaborate. In particular, tho image point 
taken onto the surface z=px+qy-|-c 
<Dr))(x,y,l). This mapping baa a non-li 
therefore, the mapping of image extents into the scene 
extents is critically affected by translations in the image. 
This implies that the general backprojection of an image 
extent of measure L must be from (a,v,l) to (b,v,I), where 
L=(b-a),  since  no simplifying translations  are  possible. 

9 point (x,y,l) is 
i by (-c/(l-px- 
linear   Jacobian; 
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Thus, there are three free parameters, 
are    taken     into    (-c/(l-pa-qy))(a,y,l) 
qyMh.y,!). respectively. 

The two points 
and    (-c/jl-pb- 

The induced surface extent is calculated in the scene 
by the usual Euclidean metric, yielding a complex NTPM: 

L(l/(l-pa.qy))(l/(l-pb.qy))sqrt((l-py)2+p2(y2+l)). 

(The calculation here, as in the orthographic case, is 
somewhat like a finite difference approximation to a 
derivative. However, under perspective, it is exactly the 
finite difference that is needed, since what is important is 
the departures from linearity.) For ease of reference, this 
NTPM will be abbreviated to 

L(l/(l-pa-<|y))(l/(l-pb-qy))S(p,y) 

Notice that the function S(p,y) is independent of 
both a and b, 

Theoretically (or even practically), this function is 
usable in its raw form. Thai is, given two extents in an 
image under central perspective, it is possible to generate 
the appropriate NTPMs for both (subject to their position 
and orientation), and to intersect their graphs—as if they 
were Hough accumulator arrays. The result would be a 
small set of surface orientations which would 
simultaneously normalize the two induced surface extents 
U> equal measure. However, in nearly all cases, this 
involves the solutions to constraint equations that are of 
fourth order in p and q. Only a few imr^e configurations 
generate simple surface constraints. (Some configurations 
that one might expect would reduce the complexity do 
not: for example, image extents that are radial with 
respect to the image origin). The ones that do simplify 
have the added benefit that they appear to be relatively 
common. 

3.1 Equal and Parallel 

First assume that image extents arose from scene 
components that were not only equal in measure, but 
were parallel on the scene surface. A simple construction 
(see Figure 3) shows that once again the image 
configuration can be handled solelv by considerations of 
image slope. Two equal and parallel scene lines form a 
parallelogram; in the image, their pairs of sides can be 
extended to derive two vanishing points. Each vanishing 
point implies a linear constraint in the gradient space: if 
an image point (x,y) is a vanishing point of a surface, then 
the surface must nave a gradient (p,qj which satisfies 
px+qy=l ( [Shafer 831). Two such linear constraints 
uniquely define a vanishing line, which in turn uniquely 
defines the surface orientation. 

3.2 Equal and Colinear 

Assume now that the image extents did not arise 
from parallel scene extents. There seems to be only one 
other simplifying set of cases: those wh'n the scene 
components are colinear. Although these cases also 
generate vanishing points, interestingly, they do not 
reduce the problem again to one of image slopes. Nothing 
can: colinear extents have only one slope in common. 

The Images of colinear scene components are also 
colinear. The reverse is not true, though the heuristic 
positing of that truth often is most useful. It would be 
yet another preference heuristic, similar to those used in 
other contexts in image understanding: for example, 
nearby image pixels arise from actual scene patch 
neighbors (shape from shading), nearly right, angles arise 
from scene right angles (skewed symmetry), near-parallels 
arise from oarallets lone form of shape from texture), etc. 

vanishing line 

Figure 3:    Equal parallels are equivalent to slope. 

The image configuration in the most general case 
reduces to the Tollowing. Four points lie on the horizontal 
image line at height y: they are A=(a,y). with B, C, and 
D defined similarly). These four points define two image 
extents, L=(b-a)" and H=(d-c), respectively. The 
assumption of coltnearily allows the NTPMs of the extents 
to be put into correspondence easily: they are already in 
the proper orientation, due to the one shared image slope. 
Since tney also share identical terms in S(p.y), equating 
the NTPM yields a surface constraint that reduces to 
second order "in p and q: 

(l-pa-qy)(l-pb-qy)/L = (l-pc-qy)(l-pd-qy)/R 

Although this equation can be exactly solved, it has 
a simplifying graphic construction that can be drawn in 
the image space itself, directly yielding the vanishing 
point(s).   Rewrite it in the following form: 

(X-a)(X-b)/L = (X-c)(X-d)/R, where X = (l-qy)/p 

If X satisfies the constraint equation, then scene 
extents are equal, as desired. Further, this is a very 
desirable X: il also satisfies the formal definition that 
pX+qy=l, that is, the point, (X,y) is a vanishing point. 
Note that (X.y) lies on the line of colinearity; all that 
must be calculated is the value of X itself. Formally, the 
equation is of the form of the intersection of two 
parabolae. The left parabola has value 0 at both a and b, 
and a minimum value of L/l midway between them. The 
right parabola is exactly of the sainc shape, except for 
scaling (its midpoint minimum is H/M- Thus, the value of 
X can be graphically determined by drawing the 
mrabolae on the image, and finding their intersection. 
Notice that the mathematics, as well as the construction, 
inds a vanishing point between b and c, where the image 

lengths are on opposite sides of any vanishing line.) 

The parabola method can be refined in the following 
way. Note first that it is not necessary to draw the 
parabolae on the x axis' they can be translated upwards 
to the horizontal line of colinearity itself. Secondly, the 
parabola are only constrained to pass through the point 
pairs;  their exact shape  is  not critical,  as long as the 
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parabolae arc similar (i.e. they can be mutually scaled). 
Third, since the value of X is a purely formal one, the 
parabolae can be imagined to be drawn oitt of the image 
plane: that is, cither parabola can be though of as 
extending into the -z axis direction. 

More appropriately, the value of X on either 
parabola can be considered as an image feature in its own 
right. The calculation is really a type of local feature 
assignment, with with each position on the line of 
colinearity being assigned two simultaneous features. 
That position where the features are identical is the 
vanishing point. 

Parabolae grow very quickly, however, away from 
their roots. This can be compensated for formallv by 
taking the square root of this image feature. 'The 
assignment of values is now via hvperbolae of similar 
shape, which grow (siib)linearly. They also have the 
(aesthetic) advantage of being undefined within the image 
extents themselves, the interior of which being one place 
where a vanishing point ought not be. In a pinch, the 
hyperbolae can also be approximated by their asymptotes, 
which, being strictly linear, are easier to compute. For 
example, the left hyperbola is sqrt((X-a)(X-b)/L); its 
asymptotes originate at the left texel's midpoint, and have 
slopes of 8qrt(L) and -sqrt(L) (see Figure 4). Still other 
modifications and approximations of tliis formal equation 
are possible; they would need to be analyzed for accuracy 
and computational efficiency. 

vanishing point 

Figure 4:    The hyperbola and asymptote methods. 

3.3 Equal, Colinear, and Adjacent 

The last special case is the simplest, but perhaps the 
niost powerful. Suppose that two colinear and adjacent 
image extents are derived from two colinear, adjacent, 
and equal scene components. That is as in Figure 5, the 
points B and C have merged. Then the constraint given 
for the general four-point colinear case simplics even 
further since B=C, to that of a linear constraint in p and 

(l-pa-qy)/L = (l-pd-qy)/R 

Hy the same formal method as above, it can be 
rewritten as; 

(X-a)/L = (X-d)/R, where X = (l-qy)/p 

Either side is the equation of a line. With exactly 
the same flexibilities of the parabola scheme above, these 

,W   ,>'-' 

vanishing point 

Figure 5:    "Jack-knife" method for vanishing points. 

lines can be plotted in the image space (see Figure 5). 
That is, they can extend out of the image in the -z 
direction; they can be mutually scaled; X can again be 
considered an image feature, labeling each position on the 
line of colinearity with a two-tuple of features. As before, 
the vanishing point occurs when the features are equal; 
this occurs at X=(Ld-Ra)/(L-H). 

Yet another graphic construction is possible. It too 
has a feature space interpretation, this time very useful. 
Construct at A a feature of value L; conceptually, this is 
constructed by a line of length L perpendicular to the line 
of colinearity. (Alternatively, the line can point in the -z 
direction.) Similarly construct at D a feature of value 
R. The resulting figure may resemble a jack-knife, with 
its two blades opened in parallel, outwards. (As with a 
jack-knife, the blades do not need to be perpendicular to 
their base; however, for the method to work, the blades 
must be parallel. The proof is by similar triangles.) Then 
under this interpretation, the feature values of all other 
points on the line of colinearity are determined by linear 
extrapolation from the two given ones. That is, values 
are generated from this new X by (R(X-a)-L(X-d))/(L+R). 
In particular, the vanishing point is wliere this image 
feature value is 0, as can be verified by direct 
substitution. It is not hard to show that this construction 
really does implement an image feature: it is scaled 
inverse depth. 

These methods are formal; as with the parabola 
method, other modifications of the constraint equation are 
possible as well. It should be noted that the jack-knife 
equation can also be derived from the application of 
methods of projective geometry: either through the cross- 
ratio, or through the appropriate nine-point geometric 
co: struction. The parabola method apparently cannot, 
however, as it deals with five points at a lime. 
3.4 A Reciprocal Method 

The jack-knife method has an interesting extension 
The primary heuristic assumption required for its use only 
requires that image extents arise from equal surface 
extents; however, \vhat is meant by extent can be defined 
in many ways. In particular, a series of N extents laid 
colinearly end to end on a s irfacc can be considered 
either as a one extent of length N, or N of length one (or 
many other combinations). Often, runs o? multiple 
extents can be obtained by looking for repeated 
distinguishing events along an arbitrary line through the 
image. (Strong edges of the same polarity say, are 
events: see Figure 6), The prior jack-knife method would 
try to normalize the extent of the entire run. But under 
the assumption that the events form a texture, the 
method can be extended to normalize each event as well. 
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Computing Visual Correspondence 

c^ Michael Kass 
MIT Artificial Inielligence Laboratory 

545 Technology Square 
Cambridge. MA 02139 

Abstract 
^^       A computaüonal framework for solving the visual cor- 

rcspondcnce problem is prcscnlcd and cviilualcd by using 
f-^njj a stochastic image model The framework differs from pre- 

vious work in that it emphasizes the combination of a large 
CI^ collection of independent measurements. Partial derivatives 
"i-C of images smoothed with a few different-sized Gaussian 

filters are suggested as suitable measurements.   A specific 
computation is shown based on a stochastic image model 
to reliably establish whether or not two points correspond, 
provided that the signal to correspondence noise ratio in 
the images to be matched exceeds two.   The computation 
has been applied to artificial and natural images with en- 
couraging results. 

1. Introduction 

The problem of matching up two similar views of 
the same scere is one of the critical problems which any 
powerful vision system must solve. Known as the cor- 
respondence problem, it occurs most notably in stereopsis 
where the two views come from separate vantage points, 
and in motion analysis where the two views come from 
the same vantage point but are separated in time. In 
stereopsis, a solution to the correspondence problem yields 
relative depth information, while in motion analysis, it 
yields information which can be used to segment an image 
into regions belonging to different objects and can be 
used to approximate their velocities. The human visual 
system is known to solve both correspondence problems 
with impressive range, resolution, and noise immunity 
though the manner in which it does so is ill understood. 
Computer solutions to the correspondence problem have 
fallen far short of similar performance, particularly on 
natural images. A new approach to the problem will be 
presented here which, it is hoped, will provide insight into 

ITiis report describes research done at the Artificial Intelligence 
Laboratory of the Massachusetts Institute of Technology. Support 
for the laboratory's Artificial Intelligence research is provided in part 
by the Advanced Research Projects Agency of the Department of 
Defense under Office of Naval Research contract N0Ü014-75-C-0643, 
the Office of Naval Research under contract number N0014-80-C- 
0505, and the System Development Foundation. 

the structure of the correspondence problem, as well as a 
robust technique for solving it. 

The correspondence problem can be stated quite 
simply as follows. Given two similar images of the same 

scene, a point In the first image is said to correspond 
with a point in the second image if both are projections 
along lines of sight of the same physical point. The 
correspondence problem consists of trying to match up as 
many pairs of corresponding points as possible given the 
intensity profiles of the two similar images. 

All algorithmic solutions to the problem are based 
on the idea that the light intensity profiles surrounding 
corresponding points are qtiite similar. For each point 
in the first image, only points in the second image with 
quite similar local intensity profiles need be considered 
as potential matches. If the similarity measure is chosen 
appropriately, then a large fraction of the points in the 
first image will have only one potential match in the 
second. If it can be confidently determined that the 
similarity between these points and their potential matches 
is not due to chance, then the unique potential matches 
can be trusted as correct matches. Global consistency 
constraints can be used in some cases to choose among 
several potential matches, but this may not be necessary 
if the local information is extracted properly. 

Choosing a good measure of similarity for the cor- 
respondence problem is qtiite difficult. Corresponding 
points often have substantially different light intensity 
values because of the different viewing angles. More 
importantly, at depth discontinuities in stereopsis or ob- 
ject boundaries in motion analysis, the light intensity 
values surrounding two corresponding points can be quite 
different. When specular reflection and assorted sources 
of noise are also considered, it becomes clear that the 
similarity measure should be chosen quite carefully. 

Two classes of similarity measures have been inves- 
tigated in the literature. The first consists of traditional 
statistical measures such as correlation and mean square 
error (e.g. [Gennery 77], [Moravec 77]). While algorithms 
based on these measures have seen some success, their 
performance has been rather disappointing as a whole. 
Except under controlled conditions, the intensity profiles 
of corresponding points are usually not correlated enough 
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It does this by simply dividing normalized run extent by 
event count. Tims, given a ru i of events, the extended 
method divides it into two sections, each with an image 
extent and an event count, and solves the modified 
equation: 

l(l-pa-qy)/L=r(l-pd-qy)/R, where 1 and r arc event 
counts 

Note that the run can be split in many places, and 
that the modified equation can be solved by any of the 
techniqu 'S given in tlie jack-knife method (with L and R 
appropriately modified to L/I and H/r, respectively.) The 
optimal ways to split the run would nave to be analyzed. 

R/2 

Figure 6;     Jack-knife methods on a wave-like texture. 

The jack-knife method is based on a measure of 
extent-per-texel; this reciprocal method uses texels-per- 
extent. The reciprocal method has many advantages. 
The two sections that count events can be of fixed image 
size and location. Within each section, event counts can 
be recovered by simple pattern recognition techniques. 
The final computation is simple. In effect, the shape 
constraints under this method come from simple feature 
detectors. 
3.5 Examples and Comment 

The true beauty of the jack-knife methods comes 
from the fact that they are one-step and robust. 

At least two other methods for determining surface 
orientation rely on an implicit searching for image 
"regularity"; having found it they postulate the vanishing 
line to be parallel to it. The remaining surface constraint 
is determined by different means [Bajcsy 76; Stevens 79]. 
Here, the two steps are integrated; "tilt" need not be 
found before "slant", since any two vanishing points will 
do. 

Acknowledgements 

1 thank Kerny Calaway for her graphic skills. 

References 

[Bajcsy 76]   Bajcsy, R., and Lieberman, L,  "Texture 
Gradient as a Depth Cue."   Computer Graphics and 
Image Processing 5, ü (March I97()), 52-67. 

[Render 80a]   Kender, J.R,   Shape from Texture. 
Ph.D. Thesis, Carnegie-Mellon University Computer 
Science Department, Nov. 1980. 

[Kender 80b]   Kender, J.R., and Kanade, T.  Mapping 
Image Properties into Shape Constraints:   Skewed 
Symmetry, Affine-Transformable Patterns, and the 
Shape-from-Texture Paradigm.   Proceedings of the First 
Annual National Conference on Artificial Intelligence, 
American Association for Artificial Intelligence, 
Aug., 1980, pp. 1-6. 

[Shafer 83]   Shafer, S.A., Kanade, T., and Kender, J.R. 
"Gradient Space under Orthography and Perspective." 
Computer Graphics and Image Processing (To appear 
1983). 

[Stevens 70]   Stevens, K.A.   Surface Perception from 
Local Analysis of Texture and Contour.  Ph.D. Thesis, 
MIT Artificial Intelligence Lab., Feb. 1979.  Available as 
AI-TR-512 

^v 

The jack-knife methods succeed even with difficult 
textures or orientations. As in the wave texture of Figure 
6, sometimes the vanishing line direction has no 
measurable regularity; regularity-based tilt-searches must 
fail. The jack-knife methods will return a proper 
vanishing point, however, as long as they are not aligned 
with the vanishing line. The jack-knife methods even 
work without search on frontal ((p,q)=(0,0)) textures, in 
which every direction exhibits image textural regularity. 
In this case, the jack-knife methods properly return 
infinite vanishing points. 
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for these algorithms to work reliably on very many points 
in an image. Difficulties with this class of similarity 
measures have led a number of researchers to examine 
a second class of similarity measure, those based on edge 
finding (e.g. [Marr and Poggio 79], [Grimson 81] [Baker 
and Binford 81]). These measures assert that two points 
are similar if and only if they both lie oil edges of 
approximately the same orientation. More encouraging 
results have been obtained with these methods, but im- 
portanl problems remain. Perhaps chief among these is 
the problem of occlusion. Physical points visible in only 
one of the images tend to get matched spuriously by edge 
based algorithms. Chance matches for these points can 
frequently be found and are difficult to prune. Since such 
points occur principally at object boundaries, they are ar- 
guably the most important points to deal with effectively. 

Tliis paper will describe a third kind of similarity 
measure for the correspondence problem. Based on 
the idea of combining independent measurements, the 
measure has remarkable noise immunity and works reli- 
ably at occluding contours. No single image measurement 
in this approach Is trusted to indicate very much about the 
correspondence of a pair of images. Unanimity among the 
independent measurements, however, is taken as a power- 
ful indication of correspondence. Because information 
from a large number of measurements is combined, the 
approach is far more robust in a number of important 
ways, than approaches which rely heavily on a very small 
number of measurements. As a consequence, the solution 
to be presented here can be expected to work quite well 
in a wide variety of viewing conditions. 

2. Similarity Measurement 

Let Ii(x, y) and I%{x, y] be the light intensity functions 
for two images whose correspondence is to be computed 
and let D(x,y) be the true offset or disparity between 
the images measured relative to the coordinate system of 
h[x,y) and defined on some set of points P C SR2 for 
which corresponding physical points are visible in both 
images. Then for all p e P, h[p) and h{p + D[p)) are 
projections of the same physical point. The problem is to 
recover D from h and h. 

Measuring similarity can be thought of as a two step 
process. The first step is to create a representation of 
the local intensity variation at every point in each of the 
two images. The second step is to compare the local 
representations and determine how close they are to each 
other, in the general case, the representation consists of a 
collection /,(p,/), 1 < i < n of different image functionals 
(filters). For edge-based approaches, the functionals would 
measure the presence or absence of different classes of 

edges, and for correlation approaches they would measure 
weighted local image intensities. 

In order to make use of the full power of statistical 

combination, we need the functionals to be both numerous 
and nearly independent. Typical sets of edge based 
functionals are Insufficient in number, and correlation 
based functionals are not independent, so neither set is 
appropriate fbr reliable statistics! inference. The typical 
edge-based functionals could be supplemented by others, 
but that will not be investigated here. Instead, the simplest 
interesting class of functionals — linear ones — will be 
considered. One reasonable set of nearly independent 
linear functionals will be presented in section 5. For the 
moment, assume such a set exists. 

Each functional in the local intensity representation 
implicitly defines a similarity measure for correspondence 
since we expect that /,(p,/i) « /,(p + D(p),/2) provided 
the /j are chosen carefully. If we combine the functionals 
into a vector at each point: F[p,I) = (/i(p(/),/2(p,/), 
■ ••i /n(p,-0) then we can expect the vector F(pi,/i) — 
F{p2,l2) to be very small in each component if pi and 
P2 correspond. On the other hand, if pi and pj do not 
correspond, it is likely that F(pi,Ji)—F(p2)i2) has at least 
one large component. 

The above intuition can be translated into an algo- 
rithm as follows. Define matchpl{pi,p2) be a predicate 
which is true if and only if 

|/.(P1,/1)-/.(P2,/2)|< M/.Mi)) 

where a{x) denotes the square root of the expected value 
of x2 and let matchp{p\,p2) be a predicate which is true 
if and only if for all t £ {\,2,.. .,n},viatchpl{pi,p2). 
Then matchp is true of a pair of points pi and p2 if 
each component of F(pi, h) — F{p3,13] is smaller than 
its globally determined threshold. It will be argued that 
matchp does a good job of solving the correspondence 
problem if the /, and the /c, are chosen appropriately—it 
is almost always true of corresponding points and almost 
never true of non-corresponding points. 

3. Expected Error Rates 

In order to evaluate matchp, suppose the fc are 
orthogonal linear shift invariant functionals and consider 
the following stationary image model. Let /1 be statior:<ry 

Gaussian while noise and let I2 be derived from Ii 
by shifting it according to D{p] and adding Gaussian 
white correspondence noise, Ar(p). The efficacy with 
which D{x,y) can be determined from the /, under these 
conditions depends upon how well the /, are preserved 
between views. Let 

5/v/el = (T(/.(p,71))M/1(p,/v)) 

be the signal-to-correspondence-noise ratio of the ith func- 
tional. If SNRi is greater than two for a dozen function- 
als, then matchp will very reliably detenriine whether or 
not two points correspond. 
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Three performance criteria will be considered for 
matchp. The first is the rate of false positives—the prob- 
ability that matchp will be true of two non-corresponding 
points. Tie second criterion is the rate of false negatives- 
the probability that matchp will be false of two cor- 
responding points. The third criterion is one of resolution 
and concerns the extent to which corresponding points 
can be spatially localized. 

The calculation of the false negative rate is relatively 
straightforward. Let pi be a randomly selected point in 
D. The difference between the ith functional evaluated at 
Pi and the same functional evaluated at the corresponding 
point C{pi) is equal to the value of the functional applied 
to the correspondence noise. A false negative occurs when 
that difference exceeds the threshold. 'Hie distribution of 
/i(p, N] is normal since it is a convolution with a Gaussian 
process. The probability that it exceeds the threshold is 
the false negative rate for matchp, and is given by 

Pr[~ matchp1{puC{pi))] = 1 erff^-fcjS'JVrt, 
■) 

A false negative occurs for matchp when a false 
negative occurs for any of the matchp, predicates. Since 
the functionals are independent, the false negative rate for 
matchp is 

Pr[~ mate/ip(pi, C(pi))] = 1 fierff^5^} 

The false positive rate is also easy to calculate.  Let 
Pi and P2 be two randomly selected non-corresponding 

points. The dilference between /i{pi,/i) and /j(pa,/a) 
is a normally distributed random variable with standard 
deviation 

v{fi{pi,h)-fi{pi,h)] MfiipM + oVM)) 

where the approximation is based on the assumption 
that ff(/j(p,/i)) » ff{fi{p,h)). Thus the probability of 
a false positive based on the tth functional is just the 
probability that a normal random variable with the above 
standard deviation has magnitude below the threshold. 
That probability is given by 

Pr[matchpl(puP2) nf('^ (l> 

Pr[mo(c/ip(pi,p2)] ,fi<i) 
due to the independence of the functionals. 

Suppose SNRi = 2 for all i and n = 12. Then the 
choice of fc, represents a tradeoff between a very low false 
positive rate and a very low false negative rate. False 
positives often result in the generation of wrong disparity 
values so they tend to be quite serious. False negatives, 
on the other hand, usually result simply in not being able 
to determine the disparity at a particular point. Thus a 
reasonable choice of k, is one which produces a negligable 
false positive rate while still keeping the false negative rate 
to a low level. One such choice is /c, = 1.2. The resulting 
false positive rate is .2 per cent and the resulting false 
negative rate is 18 per cent. Both rates are a good deal 
lower than what is needed to reliably detjrmine image 
correspondence. If the signal to" correspondence noise 
ratio is improved to three, the false positive rate can be 
improved an order of magnitude without worsening the 
false negative rate. 
4. Expected Resolution 

The third criterion of performance for matchp is that 
of resolution. If pj is picked at random and p2 = C(pi)-f 
r then if ?■ is small enough, I'r\matchp{pl,p2)] will be 
quite large. The separation r at which Prfmafc^p^pj)] 
becomes small will determine the resolution with which 
disparity can be recovered using matchp. Let A, be the 
autocorrelation function for f,{p, I2) on I2 defined as 

A{x,y) = 
*2(/.(p,/2)) 

where the asterisk denotes convolution. Then /i(C(pi),/2) 
and /»(C(pi)H-r, h) have a joint normal distribution with 
correlation A,(r). The density of the distribution is 

27r 
(detE)" -l/3Ä-JfTI3~,Ar/S 

where X is the vector (/l(C(p1),/2),/l(C(p1) + r,/2)), X
T 

is X transpose and E is the covariance matrix: 

AIM C;,    f) 
Consider first the case where the correspondence noise 

is zero. Then we are interested in the probability 

. 

A: 

A false positive for matchp occurs only when a false 
positive occurs for each of the matchpi predicates. Hence 
the probability of a false positive is just 

"<(»•) - /5r[|/!(C(pi),72)-/t(C(pi)+rI/2)| < k,a(Mp,h))] 

that one of the functionals evaluated at two points separated 
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by r does not change enough to produce difTering values 
of matchpt at those points. Integrating the joint normal 
density over the area where l/ilC^pi),.^) —/,(C(pi) + 

vt{r) = erf 
ki 

2^1-.41(r)/ 

For a functional whose impulse response has finite energy, 
Ai{r) must asymptotically approach zero as r becomes 
large. As a consequence, 

lirn erf 

Hiis should come as no surprise since the left side is the 
probability that two points separated by r differ in the zth 
funciional by more than the threshold which should be 
equal to the false positive rate for rnatchp, in the limit as 
|r| -► oo. 

Now consider the impact of correspondence noise on 
the resolution. The probability of moicÄpi(pi, C(pi) + r) 
being true is equal to the probability that f,{C{pi)-{-r,l2) 
falls in the interval B = [fi{ptlh) — rrH,fi{puh]-+mi] 
where m, = k^if^pi, Ii)) is the threshold for matchpi. 
Suppose mettckpi{pi,C{pi)) is true. Then /i(C(pj,/s)) 
Is by definition contained in the interval B. Since O 
has length 2m,:, it must be contained in the interval 
C = [/,(C(pi),/2) - 2m„/1(C(p1),/2) + 2mt]. 'fhus the 
probability.that ma<c/ip,(pi,C(pi) + r is true is less than 
the probability that /,(C(pi) + r./j) falls in the interval 
C, a probability that can be calculated as before to be 

^[/i(C(Pi) + r,/2)€C?]»erf K 

Z1 - ^W; 
Hence, in the presence of correspondence noise, the 
resolution of matchp-, with k% = k for points which it 
correctly matches can be no worse than the resolution of 
matchp, in the absence of noise with fc, = 2k. Let r*(r) 
be the probability that matchp{pi,C[pi)-\-r) is true given 
that matc/ip(pi,C(pi)) is true. Then 

,;(r)>erf     Al 

If any of the matchpt can resolve the disparity to 
within r, then malchp will also be able to do so. A 
conservative estimate of its resolution is expressed by the 
relation 

I'r[matchp{pi,C(pi} -f- r)|i?iaic7ip(pi, C(pi))] = 

v'{r)>  fierf  
i-1      [2s/r~A{r)) 

Ptinctionals whose autocorrelation function fall olf slowly 
with distance from the origin will not affect the resolution 
very much since their contribution to the above probability 
will be multiplication by a factor near one in the area of 
interest. On the other hand, a functional with a sharply 
peaked autocorrelation function will strongly affect the 
resolution. 

One useful measure of resolution is the distance r5 

at which the probability of discrimination drops to fifty 
per cent. A very conservative estimate of r, can be 
produced by looking only at the functional with the most 
strongly peaked autocorrelation function and using the 
conservative estimate developed above for die resolution 
of a single functional in the presence of correspondence 
noise. Suppose 

/ 
.5 = erf 

ki 

ft-Mr)j 

Then 
ki 

\/l-Mr) 

Using a second order Taylor expansion for Ai{r), we 
obtain 

r, < r <m -1/2 

Thus the separation at which fifty per cent discrimination 
occurs using matchp, is approximately proportional to the 
threshold /c, and inversely proportional to the square root 
of the curvature of the autocorrelation of the tth functional 
at zero. The resolution of matchp can be expected to be a 
good deal better than the best resolution of the matchpi. 

5. Choice of Measurements 

In deriving the properties of matchp which allow it to 
be used to solve the correspondence problem, the existence 
of a set of a set of independent, linear shift invariant 
functionals tvhose values are loosely preserved between 
views was assumed. One such set will be presented here. 
If Pi is a point in D and p2 is its corresponding point then 
the functions h{pi + r) and /a(C(pi) + r) can be expected 
to be quite similar for small values of r. One complete 

characterization of the local behavior of a function of 
two dimensions is its two dimensional Taylor series, so 
it is natural to examine derivatives of I\{pi + r) and 
■fa(C'(pi)+'"). As one might expect, first and second partial 

57 

. 



derivatives appear empirically to be faiih well preserved 
between views. Differentiation tends to accentuate noise, 
however, so it is usually a good idea to do some low pass 
filtering before taking any sort of derivative. Marr and 
Hildreth [1980] argue that the bes* low pass filter to use 
for applications such as this is a fiUer with a Gaussian 
impulse response because it minimizes the product of 
localization in space and frequency. I knee a reasonable 
set of functionals to look at is the set of derivatives of 
Gaussian smoothed images. 

Not all derivatives of Gaussian smoothed images are 
independent. In fact, the nth and n -f 2nd derivatives of 
Gaussian smoothed white noise are very strongly corre- 
lated. These correlations can be calculated fairly directly. 

The Gaussian mask normalized to have unit integral 
is 

/a(«, y) 
1    . -(i2+sr)/2ff

2 

For notational convenience, define 

dn  dm 

fn,rr,aix,y)=^~ngy~fa{x,y) 

The high correlations in the above table suggest that most 
of the usable information in the local behavior of an image 
at a point p is contained in a maximal set of independent 
terms of the Taylor series around p. There is a high 
correlation between /„,,„„,„, and /„.,,„,,„, when m = nt 
(mod 2) and mi = mj (mod 2). Hence no independent 
set of Taylor series terms for images can have more than 
four elements, one for each possible combination of n 
(mod 2) and m (mod 2) where n and m are the number of 
derivatives taken in the x and y directions. One maximal 
set of independent functionals is given by the following 
set of derivatives of Guassian smoothed white noise. 

dx' dy' dx2'dy2j 

A larger set of approximately independent functionals 
can be constructed by considering different amounts of 
Gaussian smoothing. If the ratio between the standard 
deviations of the two Gaussians is a = o-i/ffj then effect 
ol the size of the Gaussians on their correlation can be 
expi essed by the relation 

The desired correlation is 

   J J Jnt,mi,a,]n2,m2,a2(^x^y 

\rUTfli)muaxdxdy]{!!f2
n2imii02dxdy) 

where the integration goes from negative infinity to posi- 
tive infinity. 

Straightforward calculations [Kass 82] show that the 
magnitude of the correlation is just 

^-'orr{jni,ml,a[, fn^m^ai] 
m-f n + 2 

ilml nilmilnjlrnal 
(2ri1)!(2ml)!(2n2)!(2m8) (n/2)!(m/2)^ 

Hie following table gives the correlations for the case 
where m\ ■= mj => 0 and a\ =* o%. Note the high 
correlation between /ni0|O and /„ f 2|0]ff. 

f df/dx d2I/dx2 d^ldr? 
.29 

0. 
/ l. 0. -.58 0. 

dfjdx 0. 1. 0. -.77 
d2f/dx2 -.58 0. 1. 0. -.85 
a3//3x3 0. -.77 0. 1. 0. 
d<f/dx4 .29 0. -.85 0. 1. 

üorr^/n, m,^,,/n2,m2,CT2j 

(2s 

U2TI 
m-j-n-fj 

^or'r(Jnl,m,lai i fn^m^at) 

The maximum correlation between two functionals in 
?a, U fg, is therefore {2a/(ai + 1)Y which occurs between 
first order terms. If « « 2, the correlation is .41 but if« = 
2.5, it drops to .23 and if« = 3, it falls to .13. The impact 
of these small, non-/ero con dations on the pel Ibrmance of 
matchp can safely be ignored If the number of different 
Gaussians is increased to three, the largest correlation does 
not increase. Tims 7* *=fa\j 7as 'J /,.,. defines a a set of 
twelve functionals in which the largest pairwise correlation 
is still (2s/(.s2 + 1))*. [f « is at least 2.5, then die twelve 
functionals in 7' will have sufficiently 'ow correlations to 
be regarded as approximately independent. Since they 
are all linear and shift-invariant, they wili satisfy all the 
conditions on the /, used in deriving the performance of 
matchp. 

A conservative estimate of the probability that a par- 
ticular functional will be unable to resolve the disparity of 
a point to better than an uncertainty of r was previously 
calculated in terms of the most sharply peaked autocor- 
relation. The autocorrelation function of /npmia is just 

fn,m,a * /n,m,<7 = f^n^m^o 

so the probability that the functional with impulse response 

-/:-: 
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/n,m,o will be unable lo localize llie disparity of a pair of 
images lo within a range smaller than r is no larger than 

vi{r) "■ er'' 
ki 

^V'1        ^2n,2m,s/2air\ 

The best resolution along the it-axis for ftmctionals in 7 
occurs with the functional that has an impulse response 
equal to /j^. Its autocorrelation function is 

f%,0,e * hfi.o = /4|0i%^a 

'xA — 48z2cr4 +48(T2 

^ 647r(T 10 
-(x2-|-»2)/4a2 

The probability that none of the functionals will be able 
to resolve the disparity to within r is the product of the 
vx and measures the resolution of matchp. 

6. Empirical Performance 

As an initial test, matchp was applied to a pair of 
gray level images generated by computer with all the 
important characteristics of the image model used here. 

Figure 1. Matchp applied to a Jiilesz random dot stereogram. 

Dark points «ere unmatched 

•■■■-•■■   "    ' '■ .>   '   'M '■ *• 

. •. 'A-:- ■ v ■'•»•• ■ ■-'■•■ v. 
L-NOISE-n-Nhist-3-6-TAvCon rcs:i min 

T' was used as the set of functionals. The image pair has a 
signal-to-correspondence-noise ratio of two and a disparity 
field which is zero everywhere except in a central square 
covering one ninth of the image area where it is (6,0) in 
pixels. For each point (x,y) in the left image, matchp{x-\- 
n,y),n 6 {—8,—7,-6,... ,6,7,8} was calculated. If 
there was only one n such that matchp(x -f n, y) was 
true, n was recorded as the disparity value. If there was 
more than one n such that matchp{x + n,y) was true, 
the disparity was recorded as ambiguous. If there was no 
n such that matchp(x + n, y) was true, the disparity was 
recorded as unknown. 

Figure one shows the results of applying matchp to 
the above pair of images. The dark points indicate areas 
where the algorithm was unable to find matches. Slightly 
over 93 percent of the pixels in each image were uniquely 
matched. The mean square error in the disparity values 
generated was a small fraction of a pixel despite the large 
amount of correspondence noise. 

It is worth noting that matchp failed to match most of 
the points along the border of the shifted central square. 
Some of the points were occluded in the second image, so 
it was correct not to match them, but most of the points 
went unmatched because the steep disparity gradient on 
the border substantially decreased the signal-to-noise ratio. 
Correlation and edge-based algorithms tend to generate 
significant numbers of incorrect disparity values at oc- 
cluded regions and at places where the disparity gradient 
is large, but the algorithm based on matchp avoids doing 
so because ofmatchp's unusually low false positive rate. 

Matchp has been applied to a small number of 

natural images as well. Figure 3 shows the results of 
interpolating a surface through disparity values generated 
by matchp for the stereo pair in figure 2. Intensity is 
proportional to depth. The photos are of the campus 
of the University of British Columbia and were obtained 
from the B.C. Ministry of Forests. 

The combination of independent results has long been 
a favorite method of statisticians. Matchp represents 
an attempt to bring the power of this method to bear 
on the visual correspondence problem. Despite using 
the simplest method of combination imaginable, matchp 

attains a rather high level of performance and so argues 
strongly for the applicability of this statistical tool to the 
correspondence problem. 
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igure 2. University ol Uriiish t'olumhia from the ;iir I il4iiro .1 A/r/.'f hp outpul. Inlcnsit) is proportionui to depth. 

References 

[1] Btiker, H.H. and Binford, T.O. Depth from edge and 
intensity based stereo Proceedings of the Seventh Intcrna- 
tional .Joint Conference on Artificial Intelligence, 1981 
631-636. 

[2] Baker, H.H. Depth from edge and intensity based stereo 
Stanford Artificial intelligence Laboratory Memo AIM 
347, 1982. 

[3] Gennery, D.B. A stereo vision system for an autonomous 
vehicle Proceedings of the Fifth International Joint Con- 
fcrence on Artificial Intelligence, 1977, 576-582. 

[4] Crimson, W.E.L From imaui-'s !o surfaces M.I.T. Press, 
Cambridge, Mass., 1981. 

[5] Hiidrelh, E. C. Itnplemenlaiion of a theory of edge 
detection S.M. Thesis, Department of Computer Science 
and Electrical Hngineering, M.I.T.. 1980. 

[6] Kass, VI. An intensity based approach to die visual 
correspondence problem B.A. Thesis, Departmenl oflnde- 
pendent Concentration, Princeton, 1982. 

[7] Marr, D. and Hiidrelh, EC. Theory of edg" detection 
Proceedings of the Royal Society of London B 207, 1980, 
187-217. 

[8] Marr, D. and Poggio. T. A theory of human stereo 
vision. Proceeding of the Royal Society of London B 204, 
1979, 301-328. 

[9] Moravec, H.P. Towards automatic visual obstacle avoid- 
ance. Proceedings of the fifth International Joint Conference 
on Artlflcial Intelligence 

60 



SMOOTHING OPTICAL FLOW FIELDS 

Kwangyoen Wohn 
Huchen Xle 

Larry S. Davis 
Azriel Rosenfeld 

Center for Automation Research 
University of Maryland 
College Park, MD 20742 

ABSTRACT 

This paper describes two motion estimation 
algorithms.  The first makes use of the scatter- 
gram of motion vectors to guide local smoothing, 
while the second is based on a multiresolution 
("pyramid") image representation. 

1. INTRODUCTION 

In this paper we describe two algorithms for 
motion estimation.  The first is an adaptation 
of the grey level enhancement algorithm called 
"superspike" to the problem of motion estimation, 
while the second is a multiresolution (i.e., 
pyramid) motion estimation algorithm.  Section 2 
describes the motion superspike algorithm (more 
details can be found in Xie et al. [1]), and 
Section 3 presents the multiresolution algorithm 
(more details can be found in Wohn et al. [2]). 

2. MOTION SUPERSPIKE 

This section describes an adaptation of an 
image enhancement algorithm called the "superspike" 
algorithm to motion field enhancement.  In contrast 
to most motion estimation and enhancement algori- 
thms which rely solely on local information in the 
image, the superspike algorithm utilizes global 
information about the motion field, derived from 
a histogram of the x and y components of the esti- 
mated motion.  The incorporation of global infor- 
mation leads to both more accurate and precise 
estimates of motion. 

Superspike was introduced in [3] as an en- 
hancement algorithm for grey scale images; a gen- 
eralization to color was presented in [4-6]. 
Superspike is an iterative algorithm which at each 
iteration replaces the grey level (or, more gen- 
erally, spectral vector) of a pixel, P, by the 
average grey level of a subset of the pixels in 
some fixed size neighborhood of P.  A neighbor Q 
is included in this averaging subset if: 

1) the grey level gQ at Q is in the same his- 
togram cluster as the grey level gP at P 
(this is ordinarily determined by check- 
ing that the histogram vplues between 

gP and gQ are monotonic; some smoothing 
of the histogram is necessary to avoid 
being misled by local peaks and valleys) ; 
and 

2) the value of the histogram at gQ is higher 
than that at gP - i.e., gQ is a more 
probable grey level in the image than gP. 

Of course, each iteration of the algorithm 
changes the global grey level distribution, al- 
though after only a few iterations there are ordi- 
narily not many changes in the neighborhood sub- 
sets of pixels that are used to determine the new 
grey levels.  Empirically, the result of applying 
the superspike algorithm is that the grey level 
histogram is reduced to a small number of spikes; 
this, of course, makes it trivial to segment the 
image into homogeneous regions.  For a more de- 
tailed description of the algorithm, see [3-6]. 

It is possible to modify the superspike al- 
gorithm so that it can be applied to motion field 
enhancement.  We wil] describe the modifications 
necessary for applying it to enhancing motion 
fields where the motion is constrained to be trans- 
lation in the image plane.  It is also possible, in 
principle, to deal with image plane rotations and 
zooms; however, we were not successful in obtaining 
useful segmentations for more general motions even 
when analyzing carefully controlled motion se- 
quences . 

We assume that we are given a motion field, M, 
which specifies the x and y components (u and v) 
at each pixel.  Since the superspike algorithm 
requires a relatively dense motion field, the 
original motion vectors are computed using a dif- 
ferential technique such as described in [7-9]. 

The u and v components of motion are used to 
construct a two-dimensional histogram (or scatter- 
plot) of M, and this histogram is smoothed over 
10x10 neighborhoods using simple unweighted aver- 
aging to eliminate spurious peaks and valleys. 
Given a point, P, in M, we choose a subset of the 
points in a 3x3 neighborhood of P to compute the 
new u and v motion components at P.  This subset 
18 chosen using the same algorithm employed by the 
multispectral version of superspike.  Finally, the 
u and v components of P are averaged with those of 
the pixels in the selected subset.  Once these new 

■'•■■'l 
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components are computed, the two-dimensional his- 

togram is recomputed and smoothed, and the process 
can be iterated. 

Figures 1-2 contain an example.  Figure J 

shows frames 1 and 5 of a natural motion sequence. 

Figure 2 shows the histograms of the x- and y- 

coraponents of motion both originally and after 5 

iterations of motion superspike.  The two (tri- 

vially segmentable) peaks in the latter histograms 

correspond closely to the actual (hand-calculated) 

motion of the cars.  Further examples can be found 
in [1J. 

3.  MULTIRESOLUTION MOTION ESTIMATION 

In this section we present a very brief de- 

scription of a pyramid-based motion estimation al- 

gorithm, and present one example of its applica- 

tion to a motion sequence.  More details on the 
algorithm can be found in [2]. 

Given a time varying image sequence, we con- 

struct a grey level pyramid for each frame in the 

sequence using median sampling.  The grey level 

pyramids are overlapped pyramids, so that each 

pixel at level i has four fathers at level 1+1. 

For the middle frame and for each level of the 

pyramid, we compute an initial estimate of the 

motion using a gradient-based algorithm.  The 

motion estimate at level i is computed by con- 

sidering the set of images at level i of the 

pyramid as a (reduced resolution) motion sequence, 

assuming that the image motion is locally a two- 

dimensional translation, and then computing a 

least squares estimate of the motion at each 

pixel based on the normal component of motion 

in a neighborhood of the pixel. 

These reduced resolution motion fields are 

then organized into an overlapped pyramid by link- 

ing each node at level i to that father at level 

i+1 whose motion estimate is closest to its motion 

estimate.  The next step, which is the most cru- 

cial, segments the pyramid into subpyramids that 

cover the original image.  The apex of each sub- 

pyramid is, in a sense described below, the most 

"reliable" estimate for the motion of the pixels 

at the base of that subpyramid (ignoring edge 

effects), and its motion properties (i.e., the 

pattern of motion estimates in a small neighbor- 

hood of the apex) are used to adjust the flows of 

the other nodes in that subpyramid.  The apices 

of the subpyramids are determined as follows. 

A node, f, in the pyramid dominates one of its 

sons, s, if 

1) The magnitude of the flow at s is less 

than the magnitude of the flow at f; 

2) The second derivative, with respect to 

resolution, of the flow at f is less 

than the corresponding second derivative 
of the flow at s; and 

3) The predictive coding error for the area 

of the picture around s and f is less 

using the motion estimate at f than it is 

using the motion estimate at s. 

Very briefly, the motivations supporting these 
criteria are:  For (1), if the extent of the 

smoothing used to compute the spatial gradient of 

the time-varying image is less than the extent 

of the motion, then gradient-based techniques tend 
to underestimate the image motion.  For (2), if 

the motion at a pixel is large, then the gradient- 

based motion estimates as a function of spatial 

smoothing increase (relatively) linearly to the 

correct estimate, remain stable for a while, and 

then change unpredictably.  The second derivative 

of flow with respect to the resolution will be 

large Initially, smallest during the period of sta- 

bility, and then large again.  For (3), since the 

gradient-based motion estimation algorithms assume 

that the grey level is an invariant to the motion, 

the motion field should, in principle, be a per- 

fect estimator of intensity in subsequent frames. 

This notion of dominant nodes naturally leads 

to a segmentation of the pyramid into subpyramids 

whose apices are the ends of the longest chains of 

dominant nodes (starting from the level above the 

base).  Once the apices have been determined, a 

top-down process in each subpyramid adjusts the 

motion estimates at all nodes in the subpyramid. 

At each level (and starting at the apex) and for 

each node at that level we compute the divergence 

and curl of the motion field in a neighborhood of 

the node, and then adjust the motion estimates of 

the sons so that the neighborhoods of the sons 

have the same divergence and curl as that of the 
father.  For details see [2]. 

Figure 3 contains an example of the multi- 

resolution algorithm applied to the motion sequence 

in Figure 1.  Since this sequence contains two ob- 

jects moving at very different speeds, the motion 

estimates that are obtained using a fixed reso- 

lution are not equally reliable for both objects 

(the speed of the faster object is consistently 

underestimated, and the directions are very unre- 

liable).  Figure 3a shows the original motion esti- 

mates and Figure 3b shows the results using the 
algorithm. 
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o 
Abstract 

The aim of this paper is to show that a wide variety of 
perceptual phenomena have succinct explanations given 
the concept of frame primitives. A frame primitive is a 
local coordinate frame attached lo certain more primitive 
perceptual data. The idea jf assigning coordinate frames to 
objects and the role of such frames in gestalt phenomena is 
appreciated but has not been extensively modeled. We 
show that an implementation of frame primitives in a 
parallel, connectionist model has special virtues in 
understanding many  aspects of perceptual dynamics, < 

I. Intruduction 

This paper has two objectives: to provide a general 
model for the problem of form perception and to describe 
the model in terms of a connectionist formalism. 

H'hy Conneciionism? 

Computational models of vision have stressed the 
description of shapes, rather than the perception of shapes. 
The first problem tends to focus on the invertibiluy of the 
representation, i.e., the reconstruction of the shape's 
surface from the underlying description. The second 
problem centers around the compulability of the 
representation, particularly in the presence of noise and 
occlusion. 

If computability is stressed, then the choice of machine 
architecture becomes paramount. Much of form 
perception has been cast in terms of information 
processing models, almost exclusively based on the notion 
of compiilalion as that carried out by a sequential Von 
Neumann machine [Mallard and Brown, 1982], However, 
this model has many drawbacks as a model of human 
perception. Animal brains do not compute like a 
conventional computer. Comparatively slow (millisecond) 
neural computing elements with complex, parallel 
connections form a structure which is dramatically 
different from a highspeed, predominantly serial machine. 
Much of current research in the neurosciences is 
concerned with tracing out these connections and with 
discovering neural unit responses to complex stimuli. 
However, a crucial next step is to characterize neural 
function at a higher level than single units. Earlier 
connectionist models [Hebb, 1949; McCnlloch and Pitts, 
1943; Rosenblatt, 1958] were a step in this direction, but at 
the time those ideas were formed, the knowledge of the 
brain  was much less than it is now. 

Conneciionism is the only current model that can 
stand the crucial test of liming. That is, given that entire 
behavioral responses can be realized in 100 milliseconds, 
conneciionism seems to be the only way to construct 
plausible models in terms of neural units that can achieve 
these response times. Previous papers have suggested how 
connectionist theories of the brain can be used to produce 
testable, detailed models of interesting behaviors 
[Feldman, 1981a; Mallard, 1983; I'eldman and Mallard, 
1982]. These, and work by Hinton [1981a; 1981b] and 
1'ahlman [1979] have served to shed light on connectionist 
architectures, but knowledge of the potential ol such 
constructs is still in an embryonic stage. My tackling hard 
problems such as form perception we hope to shed light 
on  both  form perception and connectionist models. 

Distributed Computation 

Shape description has favored centralized 
representations. Examples of such work are generalized 
cylinders [Agin and Minford, 1976; Kanade, 1981; Shani, 
1981], spherical harmonics [Schudy, 1982], 3-d 
generalizations of the medial axis transformation (Madler 
and O'Rourke, 1977], and polyhedral models [Brown, 
1981]. Usually these representations are described with 
respect to a single, orthogonal frame. The exception is the 
curvilinear frame used in generalized cylinders. In 
constrast, we are interested in itcognizmg complex objects, 
whose representations are decomposable and distributed 
among many related coordinate frames. In fact, we adopt a 
radical view: most of our representation of shape consists 
only of coordinate frames. The approach of a distributed 
Structural description has been defended in the 
psychological literature [Hinton, 1979; Palmer, 1977] and 
widely used (see, for example, Marr and Nishihara [1978] 
Shapiro et al. [1982], and Brady and Wielmga [1978]). 
More specifically, the representation is a set of shape 
constraints which, when combined, specify a particular 
form. 

The representation of a shape as a set of distributed 
constraints has several advantages: (1) a large number of 
difierenl shapes can be represented compactly, o.ving to 
the combinatorics of the distributed consirairiLs; (2) the 
shape can be quickly computed by the parallel propagation 
of partial constraints; and (3) partial constraints can be 
computed independently. In addiuon, our connectionist 
model meshes well with such a representation since the 
architectural structure prefers distributed constraints and 
the computational method is naturally insensitive to 
occlusion and  noise. 
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Another advaiiiage of viewframes is thai they can be 
(at least in principle) computed directly from surface 
markings of lines and points and do not depend on 
assumptions of continuity and smoothness. Thus the 
representation avoids the objections raised about intrinsic 
images by [Witkin and Tenenbaum,  1983]. 

The language tor expressing the shape model is that of 
parameter nets [Hallard, 1983; feldman and Uallard, 1982]. 
The distributed, connectionist model consists of networks 
of the following entities: 

(a) Viewframes. These units represent possible viewer- 
centered coordinate frames for perceiving a shape. 

(b) Model-frames. A pattern of activity in these units 
represents a possible object-centered frame that is 
used to describe a form. 

(c) View paranwters. These units represent values of 
scale, rotation, and translation that are appropriate 
for specifying the relationship between the viewer- 
centered and object-centered frames ((a) and (b)). 

(d) Model-identifier nodes. These units represent object 
tokens such as "horse," "horse's back." "bicycle," 
etc., in a non geometric relational description of 
object structure. 

(e) View-stable features. These units represent shape 
parameters that are relatively independent of small 
changes in the viewing frame (a). Examples would 
be the blocks-world joint types used by Kanade 
[1981], 

(0 t'ocus-of-attention parameters. These units 
represent discrete changes of attention between 
model-identifier nodes, lor example, a focus of 
attention (I'OA) node might switch attention from 
the horse's back (= back node high confidence) to 
the horse's neck. 

(g) Change-of-viewparameters. These units provide the 
basis for changing the view transformation (c). 

(h) Shape parameters. These units specify local shape 
information relative to frame parameter units. 
Many choices of these parameters are possible 
since these are the parameters encountered in 
holistic shape representations. 

These parameter sets form a basis for describing a model 
of human shape perception. The next step is to describe 
the constraints between them. The fundamental premise is 
that these constraints must be restricted to subsets of 
entities. The practical reason for this is one of 
combinatorics; if constraints involving many different 
kinds ol units are allowed, it becomes impossible both to 
represent them as connections and slay withm the 
biologically plausible limitation of 104 connections per 
unit. However, a key point is that a set of restricted 
constraints, when taken together, can imply a larger 
constraint. The constraint relations we will need are the 
following; 

(A) View-fransformation (viewframes, model-frames 
view parameters). This relationship is the 
geometric transformation that relates the two 
different frames of reference. 

(B) Relational Constraints (model-identifiers, model 
trames),  These  kinds of constraints  are  those 
explored  by  Shapiro [Shapiro et al.,   1982]  that 
relate model identifiers to ranges of model frame 
units. 

(C) Characteristic Views (view stable features, model 
identifiers,   view  parameters).  This  relationship 
relates shape primitives directly to model 
identifiers without involving detailed geometry. 
for example, if we know we are looking at the side 
of a horse, we can expect certain shape features 
ffeldman,  1982). 

(D) Focus-Switching (model frames, I'OA parameters, 
change-of-view parameters). This relationship 
specifies possible changes of focus. I or example, 
any frame unit in (b) may become the viewframe 
by activating the appropriate change-of-view 
parameter. 

(!•) View I'ransformalion Switching (view parameters, 
change-of-view parameters). This relation handles 
the view transform part of (!)). 

The ensuing sections develop the motivation for these 
choices of entities and relations. While this set of 
constraints is constantly undergoing revision, we think it 
provides a workable taxonomy with which to explore 
interesting issues in shape perception. 

Outline 

The discussion of these constraints starls from [he most 
pr .ulive  elements;  subsequent ideas are  presented in 
o.der   ol   increasing   complexity.   For   simplicity,   the 
examples are limited to two dimensions, but this is not too 
serious a limitation. 'I he 3 d versions for some of the 
relations   have   already   been   developed   [Mallard   and 
Sabbah,   1981;  Marr and Nishihara,  1978] and the 2d 
results are applicable to boundary contours, an important 
subcase ot the general 3-d problem. We first discuss the 
concept of frame primitives which we term viewframes 
Viewframes can be extracted from image data by simple 
rules combined with relaxation [Zucker, 1980J and Hough 
techniques [Hallard, 1983], An important adjunct to the 
viewlrame concept is that of space-time processing. Rather 
than   having   separate   computations   for   spatial   and 
temporal   patterns,   they   are   combined   in   a   single 
processing network with resultant space savings. Next we 
describe   the  concept  of a   view transfonn.  The  view 
transform has been described in computational terms as a 
generalized   Hough   technique  and  has  been   put  into 
connectionist terms by Himon [1981c], The view transform 
is   an   important   kernel   of  any   computational   shape 
perception model as it economically relates abstractions of 
image   data   (viewframes)   to   model   frames.   Further 
economics   arise   because   the   view   transform   has   an 
important    decoupling    property.    Two    of   its    four 
parameters,    scale    and    rotation,   can    be   computed 
independently   of the  other  two,  x-translalion   and  y- 
translation [Hallard and Sabbah, 1981). This leads to the 
concept    of   representing   the   view   transform    in    a 
connectionist model as split parameter spaces (parameter 
subspaces). 
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The geometric constraints captured by the view 
transform are insufficienl to relate any subset of image 
data to one of a large competing set of stored models. The 
rest of this paper explores solutions to this problem. I he 
simplest is the concept of using the view transform in 
special modes which are more constrained than the general 
case. We describe lop-down mode (looking for a given 
object), bottom-up mode (identifying a segmented object), 
and tracking mode (looking at a segmented object over 
lime). 

Since the view transformation is iinderconstniined. a 
natural solution is to find additional constraints thai are 
not geometry based (e.g., color), and that can be derived 
from the image independently. Many possibilities are 
discussed m IHallard. 1983; Feldman, 1982]; we will not 
pursue these possibilities here. I he mosi ambitions 
solution to the nnderconstrained nature of the view 
transform is to find some hierarchical indexing scheme for 
the model shapes so that they do not all have to be 
considered at once. Such a scheme requires a sequential 
scanning mechanism 10 move back and forth between 
levels of abstraction. We describe such a mechanism in 
terms of the formalism and relate it to larbus's scanning 
results with  human subjects [larbus,  1967]. 

2. Vtewfratnes 

Representations for geometrical objects are usually 
greatly simplified if an appropriate coordinate frame is 
chosen. 1 he case is even stronger for articulated objects 
[Man and Nishihara, 1978]. The fact that geometric 
representations simplify if appropriate coordinate frames 
are chosen agrees well with the many human perceptual 
resulls that suggest frame-dependencies (e.g., [Hinton, 
19713), 

Computing good coordinate frames for complex 
objects is in general difficult, although some progress is 
being made. Brady [19831 «hows that the boundary 
features of objects suggest logical possibilities. Also, he 
argues that rather than a single frame, one should think of 
a hierarchy of possibilities, where different levels in the 
hierarchy depend on different levels of surface detail and 
locality, (Similar points were made in [Marr and Nishihara, 

1978],  but the emphasis was less on computability,) 

While the notions of coordinate frame are intuitive for 
segmented objects, it may be less obvious that they are an 
essential component of the descriptions behind a variety of 
gestalt grouping phenomena (Figure 1). Our model for all 
these phenomena depends on frame primitives, which we 
have termed viewframes. Viewframes may be strongly 
suggested by shape contours (e.g., [Brady. 1983[) or they 
may be only weakly suggested by primal tokens. In these 
latter cases, viewframes are characterized as being the 
essence of the description, rather than an indexing 
mechanism  for surrounding complex geometry. 

The crucial issues in describing viewframes are how 
they are represented and how they are computed. Besides 
issues of abstract computability, it is important that 
viewframes be computable in terms of connections. 
Consider the 2-d case: a complete set of parameters is 

specified by the location of an origin x,y. a rotation 0, and 
a scale s, and these parameters describe the relation of a 
local viewframe to a global image frame   fhis 4 d space of 

Figure 1. 

parameters covers all possible local frames. I'o represent 
this space, discreti/e it using some Ax, Ay, AO, and As, and 
assign each resultant discrete cell a value unit, (Ways of 
economizing on the number of units will be described in 
Section 3.) 

Frame space can represent all the frames that could be 
present (at the resolution level chosen), but only a fraction 
of those will usually be present in a given image. 
Furthermore, of these, many can be ruled out as being 
inconsistent on the basis of local and global frame 
grouping rules. Thus 

representable frames > possible image frames 
> consistem image frames 

In the ensuing paragraphs we will describe the process of 
computing consistent image frames in more detail. In the 
process we attempt to synthesize a unifying explanation 
or', of our own previous work [Ballard, 1981; Ballard and 
Sabbah, 1981| as well as that of others [Stevens, 1981; 
/.ticker, 1980). The reason for attempting a synthesis is thai 
the frame description is necessary as a primitive for ail our 
subsequent work, and that important precursors have 
appeared that do not explicitly acknowledge frames 
[Zucker, 198Ü] or that (from our point of view) miscast the 
frame assignment problem as a correspondence problem. 

Rules for Frame Suggestion 

We assume that the visual environment has been 
tokem/ed in some way, e.g., collections of points and edges 
that may or may not be moving. Out of this primitive 
structure, the next useful level of abstraction concerns the 
suggestion of frames. The initial suggestion of frames 
corresponds to initial levels of activation of units in frame 
space. These levels may be raised or lowered depending on 
the surrounding context of nearby frames. The rules for 
frame suggestion are summarized in Figure 2 These rules 
are based on a 2-d model. 
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A curve has a naiural local frame which is iis langem. 
The tangent specifies a frame origin locus and 
orientation locus, leaving scale undetermined. With 
this case and the others lo follow, two orientations ol 
the frame are possible, one at 8 and the other at O+w. 

Line Segments are similar lo curves except that there is 
a natural choice for scale which is the lengih of the 
line. 

Points suggest a frame origin but leave scale and 
rotation undetermined, 

Moving points have a natural frame parallel lo the 
direction of moiion. The velocity suggests a value for 
scale. 

Two points have a natural frame whose orientation and 
scale are determined by the line joining the points and 
whose origin is located at the leftmost (with respect lo 
the frame) point. 

Where the tokens are not the aforementioned 
primitives, but rather complex shapes, these rules may still 
apply between the local frames of the more complicated 
shape tokens. Complex shapes seem to have their own 
rules  for their local  frames [Brady,  1981) 

Kules for Frame Assignments 

a) Contours 

b)  Line Segments 

c) Points 

d) Long Line Segments 

e) Moving Points 

W 

x,y,ü      defined      by 
curve; s undetermined 

two   possible  choices 
of x,y,(.); s determined 

x,y   determined;   s,0 
free 

long line segments can 
be viewed as having 
points al their ends; 
rule for point frames 
applies 

moving points have 
natural frame parallel 
to direction of motion; 
curvilinear case is 
analogous to moving 
along boundary con- 
tour; x,y,o deter- 
mined; s free 

0 Correspondence 

two points have 
natural constraint of 
frame that aligns with 
line joining points 

lijiiire 2. 

Frame Relaxation 

frame units have an associated activation level which 
ranees between zero and one. An activation level signifies 
whether or not the frame unit is part of the current geslalt. 
Thus a frame unit which is initially activated by lower 
level input may have its activation reduced if it is 
inconsistent with neighboring frame units in its surround. 
Methods for increasing or decreasing activation have been 
previously developed. Zucker [1982] has exactly the right 
kind of algorithm for refining frames based on purely local 
evidence. In that multilevel relaxation scheme, pairs ol 
points suggest line segments (rule 0 and nearly colinear 
line segments can increase each other's activation level. 
(To translate from relaxation labeling to connecttonist 
relaxation, make a unit for every lubel and lei the 
probability of a label Le its activation level [liallard, 1983].) 
Similar methods based on coirespondencc have been used 
[Ullman, 1979; Barnard and Thompson, 1979], hut 
correspondence leads lo problems if taken too literally, 
since non-correspondences owing lo noise and occlusion 
have damaging effects. 

The best way for dealing with local frame coherence is 
lo look al the mode of the distribution of local frame 
parameters [Stevens, 1981]. This allows frame coherence to 
emerge from high levels of ambiguity. Cognoscenti will 
recogni/e this method as a version of the Hough transform 
[Mallard,  1983]. 

Besides local frame coherence, there is also ihe global 
frame coherence found, for example, in glass patterns. If 
identical spotted overlays are related a small amount with 
respect to each other, a global concentric pattern is seen. 
this global  pattern can  be explained by postulating a 
parameter   space   that   explicitly   represents'   parametric 
variations   in   the  pallern,   flach   local  frame raises  Ihe 
activation   of  units   in   the   parameter  space  that   are 
compatible   with   itself.   In   this   case  the  global   units 
represent rotation center coordinates and Ihe local frame 
raises the activation level of (metaphorically: voles for) 
parameter units on a linear locus perpendicular to the x- 
axis of the frame (see Figure 3), Note that the Hough 
transform   model   for   computing   the   rotation   center 
provides   a   mechanism   for  selecting  the mode of Ihe 
activated units. The many spurious activations that arise 
from suggested frames that are not part of the global 
pattern are spread among very disparate units, and thus 
can be discounted via local inhibition. Other methods that 
describe this construction (e.g., [Hildreih, 1983]) do not 
acknowledge the above problem in applying it. 
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Figure 3. 

3. Space-Time Processing 

A viewframe is an abstraction that can arise from more 
primitive stimuli which may be either spatial (e.g., rule 0 
or temporal {rule e). Thus the problem of recognizing 
patterns in collections of frames can be cast as one of 
abstract geometry independently of whether the patterns 
arise from spatial or temporal data. An example should 
make this clear: consider radial lines emanating from a 
common point (figure 4). these may arise from the 
common point of projected parallel lines, a vanishing 
point, or from the common focus of expansion of optic 
flow due to a a translating observer. These spatial and 
temporal phenomena are closely related; the loci of points 
translating with respect lo a reclilinearly moving observer 
are also  parallel lines. 

(f- 
/ 

/ f ij;ure 4. 

The global transformation to detect radial lines can be 
carried out in two steps, 'llie first detects the colinearity of 
oriented frames and the second detects the pattern, in line 
parameter spate, which is due to the radial field. In the 
notation for parameter transforms (liallard, 1983], we can 
describe the line transform as 

<(x,y,Äx,ay), (r,o), 
(0=tan ' (Ay/Ax); r=xcosO  +  ysinO)>. 

The parameters Ax and Ay describe the direction of the 
frame vectors at a location x,y. The notation <(  ),(  ),(  )> 

means ihat the units described by the parameters in the 
first set of parentheses will raise the activation levels of a 
subset of those in the second set of parentheses. The 
relationships in the third set of parentheses describes the 
subset. 

Radial lines map into circles in (,),()) parameter space 
and these can  be delected by 

<(r,ü), (a,b), (r/2 = acos() + bsinü)> 

Note that at this point, whether (x,y,Ax,Ay) arises from 
intensity gradients or flow vectors has been left 
indelerminaut. Of course in order lo use the answer 
effectively, one must know whether the compulations are 
relevant to space or time. 

Some of the results that can be computed from a 
frame processor are valid for both space and tune, and 
others are only valid for either one or the other dimension. 
For example, the distance of closest approach, Q (given by 
Eq, 7.1.3 in [Hallard and Brown, 1982]), 

Q2   =  (x x) - (xO)2/(00) 

where 

() (a,b,l) and x   =   ((f-/)x/f, (fv)y/f, /) 

is valid for both space and time, but "timeto adjacency," 
giver, by  the HT 

where 

and 

<(a,b,x,y,Ax,Ay), (l), (t = d/|M|)> 

y(Ax2+Ay2) 

d   =   y((x-a)2  +  (y-b)2) 

is only valid for the temporal interpretation. 

As another example, consider the delection of spiral 
patterns. Since these can be perceived on the order of 100 
ms, like glass patterns, our hypothesis is that ihe 
perceptual mechanism must be manifested as connections 
(see also [Feldmatl and Mallard, 1982]). However, spiral 
patterns that arise as strictly spatial patterns in nature, 
while possible, are rather infrequent. In contrast, spiral 
patterns derived from temporal loci are frequent 
experiences. For example, as discussed earlier, the optic 
flow due to an observer translating is radial. This flow, 
summed with the concentric flow produced by a rotation 
about the direction of travel, leads to spiral temporal 
patterns. Note that the flow is present over the full visual 
field, even for a short temporal duration. Thus the frame 
processor architecture implies that the ability to recognize 
infrequent spatial spirals is a direct consequence of the 
ubiquitous nature of temporal spirals that have the same 
underlying geometry. 
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Weak corroborative evidence for such iransfer comes 
from ihe Fräser illusion (Figure 5). In Ihis iiiusion, spirals 
are seen even ihough ihe global patterns are concentric 
circles. Presumably this is because the combined, local 
evidence predicts spirals. This is precisely the effect one 
would expect from temporal spirals as the predominant 
experience would occur in spalio-temporaiiy local 
segments, 

Vigure 5. 
The principal virtue of having a frame processor is that 

its circuitry, together with that necessary to distinguish 
between space and time, is much less than that required to 
implement two independent processors, one for space and 
one for time. 

One of the problems that might occur with a single 
frame processor is that separate spatial and temporal 
events could be confused. This may indeed happen. For 
example, in the hilfrich pendulum illusion, a point of light 
oscillating in the frontal plane is viewed with two lenses, 
one of which has been darkened. In this illusion, the 
darker input is interpreted as a temporal delay, and the 
point is seen to move in depth. For most cases, however, 
the modes of use of the frame processors can be separated 
into different spatio-temporal regimes which do not 
overlap. 

4. Coiiiputiii^ the Viewing I ranslorniiition 

An object's view frames may be related to its internal 
frame representation by a viewing iransfonnalion. Knowing 
any two of: {the internal representation, the viewing 
transformation, and the viewframes} allows the third to be 
computed. Usually the viewer-centered data are known 
but both the corresponding internal shape and viewing 
transformation must be computed. This problem is 
generally underdetermined [Palmer, 1981], i'urthermore, 
the image data is usually cluttered with many features that 
belong to different objects, and these tend to confound the 
perception of a particular shape. Previous work [Hallard, 
1981; Mallard and Sabbah, 1981; Sloan and hallard, 1980| 
made the simplifying assumption that the internal 
representation contains only a single object. In this case 
the viewing transformation could be computed and pans 
of the object in the image identified despite other image 
clutter. The task of determining if a known object is in an 
image is posed as; is there a transformation of a subset of 
image features such that the transformed subset can be 
explained as the object? If the answer to this question is 

no, then the object is not present. If yes, then the 
transformation provides all the necessary information 
about ihe object. In a connectionisi network the 
affirmative answer is represented by the convergence of a 
view transform network  to a simple active unit, 

The viewing transformation is completely specified ill 
the 2-d case by four parameters: two for translation: one 
for orientation; and one for scale. Hallard and Sabbah 
[1981) have shown that it is possible to decouple the 
interdependence of two subgroups of the parameters for 
scale and orientation from translation. In other words, the 
orientation and scale of the object can be delected without 
knowing its translation. In fact, there is a natural 
precedence of parameters: 

scale > orientation > Iranslalion 

This precedence steins from diffeient factors. The reason 
scale is simple to detect is that it is available from mtrinsic 
image data [Marrow and lenenbanm, 1978). All intrinsic 
image is an image of some important parameter that is 
relinotopic; that is, in registration with the intensity data 
on the viewer's retina. For scale computations the most 
important image is the depih map [Marr and Nishihara, 
1978]. A depth map represents distances with respect to 
the viewer. Thus if the internal representations have an 
associated absolute metric the Male between an ohieci 
centered feature and a viewer-centered leaiure can ne 
immediately determined. Orientation is easier to detect 
than translation as it is functionally independent from it, 
whereas the reverse is not irue. In other words, viewer- 
object orientation correspondences can be computed 
without considering translation, hut to do the same for 
translation correspondences, one must know the 
appropriate values of orientation  and scale. 

Representing the View Transform with ('onnecUotu 

The connections for the view parameters may he 
viewed as a form of Hough transform using conslminl 
faWej [Mallard, 1981]. Matches between image frames and 
object frames constrain the values for the viewing 
transform parameters. Bach image frame maps into only a 
set of allowable parameter values. When all the frame 
matches are taken into account, the mapping is manyto 
one onto plausible parameter values. (Since the cost of this 
method is exponential in the number of parameters 
considered together, the decoupling of parameters into 
groups of scale, orientation, and translation menUoned 
above is very significant [Mallard, 1983], and we will pursue 
this in a moment.) 

In this paper we will lesliict om examples to two 
dimensions, although the constraints lor the 3d case are 
only slightly harder [Mallard and Sabbah, 1981]. Consider a 
2-d primitive specified by a single x-axis vector x defined 
in the viewer frame. Suppose it corresponds to a vector y 
in the object frame. The transformation between x and y is 
specified by view parameter p where p = (o, ax, s). These 
parameters  correspond   to  orientation,   translation,  and 
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scale, respectively. In the parameter network a particular 
unit p will receive conjunctive connections from 
appropriate pairs of units x and y where 

Ax   =   x      y 

S  =   lixll  /  ||y 

ü   =   aiigle(x) angle(y) 

where "angle" is the angle between the vector and the x- 
axis in  the appropriate frame 

The foregoing description   ../ecifies approximately one 
third of the connections implied by the view transform 
relation  (A):   view  parameter units  receive connections 
from model units and frame units. However, as Hinlon 
[1981c] IKLS pointed out, the role of Hie entities in relation 

(A) is symmetric, and each may receive connections irom 
the   other   two.   For   example,   a   unit   x   will   receive 
conjunctive connections from units y and |i where 

x   =   y   +   Ax 

INI   =  s ||y|| 
angle(x)   =   0   +   aiigle(y) 

The conjunctive connections are used to specify that 
several parameters logically need to be present 
simultaneously in order to effect the behavior of a unit. 
Where the connections between networks are symmetric, 
we will use ilinton's notation of a small triangle at the 
junction of connecting lines (see Hgure ()). 

Figure 6. 

Confidence Updating Strategy 

Given the input connections to a unit, which may be 
conjunctive, one still has to specify how to update the 
confidence of the unit. There are many reasons for not 
using a strict summation [Feldman and Ballard, 1982], We 
use a "normali/ed maximum of sums over threshold" 
formula. Let the inputs to a unit be organized into sets of 
conjunctive connections jSJ and let each such set have a 
threshold (),. Let C, be the sum of the confidences of the 
units in S,. Then the confidence of a unit j is updated by: 

Cj   =   max (8,0,)/(max (Cjl). 

The behavior of the numerator is easy to accommodate in 
the behavior of a unit, but the denominator requires a 
separate network, such as those described in (Leldman and 
Hallard,  1982], 

Split Parameter Spaces 

The connectionist implementation of the view 
transform computations up to this point has utilized the 
constraints developed in [IJallard and Sabbah, 1981] and is 
a variant of Ilinton's letter recogilion model [llinton, 
1981c]. However, this approach requires too many uiiiis. 
Consider the 2-d case. If we allow 100 values for each of 
scale, orientation, and horizontal and vertical translation, 
each network in the view transform requires \Q(r units. 
More problematic is the approximately 10(r conjunctive 
connections per unit, which is totally unrealistic, llinton 

has suggested reducing tne unas oy using units wim 
overlapping parameter values [Hinlon, 1981b]. This 
concept reduces the number of units by a factor of 1/1)'''' 
where D is the diameter of the unit and k the dimension 
of the parameter vector. While this is a dramatic reduction 
and biologically plausible, it may still not reduce the 
number of units enough, and it places an added burden on 
the number of conjunctive connections reqii'red. A 
complementary way of reducing the number of units 
required is to use apht spaces. Split spaces is the concept of 
representing a high dimensional set ryf units with subsets 
of units of lower dimensionality. Lor example, the 4 d 
model frame net can be represented as two networks, one 
with location units (x,y) and one with length and 
orientation units (1,0). Split spaces introduce the possibility 
of erroneously associating parameter subsets' but the 
probability of a false association can be made extremely 
small with the assumption that the space is in some sense 
"sparse" (i.e., the number of units active at any one time Is 
not too large). 

Figure 7 shows the split space representation of the 2-d 
viewer transformation computation. Ihe key point is that 
the computation be made sequential to the degree 
required by dependencies. Thus, translation parameters are 
not computed until the scale and rotation parameters have 
been found. The process is dynamic in thai these latter 
parameters can m turn indirectly effect the previous ones. 
The network contains the following three groups of 
constraints: 

(1) The connections for scale and orientation. As 
before, one can use conjunctive connections to 
determine the relationship between model-frame 
length and orientation, image-frame length and 
orientation, and the corresponding view 
parameters. The difference is that these units 
represent only length and orientation parameters 
and do not involve translation. 

(2) 'I'he connections for rotated model parameters. The 
key to this implementation of split spaces is the use 
of rotated model-frame units x'  related to x hy 

x'   =  s ROT(o)(x) 

where Rot(o) is the appropriate rotation matrix. 

(3) The connections for translation parameters. Since 
rotated modd units can differ from image units by 
at most a translation, the third set of connections 
between units is determined bv  the emialinn 

x'   =   x   +   Ax. 
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model prutoiype does not havi: to he known .1 priori; 
instead, at some acquisition nine, the image frames can be 
used as model frames. If 111 is prototype is lo he 
remembered, then some mechanism must handle tins one 
good possibility is that of recruitment [Feldman, lyaibj. 

Tracking mode may also he used to recogni/e spatial 
regularities. Suppose we are given the pattern of Figure 8, 
i'urther suppose that by some fixation technique one 
element of this pattern can he "loaded" into the model 
frame space, '['he connection patterns will naturally 
compute all the view transforms between the model frame 
units and the other instances of the image frame units. In 
the case of the example, Figure 8, a linear pattern of active 
units will he seen 111 view transform space. This linear 
pattern explicitly captures the main pait of the notion of 
regularity seen in  the original pattern. 

figure 7. 

Modes 

In general the network of Figure 7 is not adequate lo 
match any subset of image frames with a subset of model 
frames,   since    this    problem   is   underdetermiiied.   In 
connectionist terms, this means that if sets of model frames 
for many different  prototypes are active, together with 
many different image frames, the view transform network 
will  not converge. There are, however, many restricted 
cases where convergence is possible. These restricted cases 
would   arise   from   connecting   the  view   iransforinalion 
kernel   lo   auxiliary   networks  such   as   those  described 
earlier. We can partition these eases into three important 
categories: top down mode, bottom-up mode, and tracking 
mode. In top-down mode, a single object is being sought, 
and thus the model frame space contains only active units 
for that prototype. In this case the view transform network 
will converge under high noise levels (= many active non 
object units) in the image frame space. In experiments 
[Hallard and Sabbah, 1981], up to four to five times the 
number of frame units could be activated before the view 
transform network would converge to a false mapping. In 
bottom-up mode, a set of frames corresponding to a single 
unit has been segmented, and the problem is to map that 
set  onto  one  of a  collection  of simultaneously  active 
prototypes. Experiments in this mode have not been done, 
but  the symmetry  of this mode with  lop-down  mode 
suggests that similar results would apply. This does not 
mean  that five prototypes could be tested for at once; 
rather, the union of the number of frames in all of the 
prototypes  should   not  exceed  four  to  five  limes the 
number of frames in any one prototype. Obviously a huge 
number of prototypes could be tested for simultaneously. 
Where   N   is   the   number  of frames,  the  number of 
prototypes is (4^ ). The third mode of the view transform 
network is that of tracking. In this mode segmented image 
frames are "transfered" to the model frame space at an 
acquisition    time.    This    is    done    by    priming    the 
transformation    network    with   the   idenlily   transform. 
Thereafter the view transform records the transformation 
that the image frame data undergo. Tracking mode is 
somewhat different than the other two modes in that the 

figure 8. 

5. locus of Attentiüii 

In this section we argue two points; (1) that shape 
representations are hierarchical [Marr, 1982]; and (2) that 
levels of a hierarchy are necessarily examined sequentially. 

The Need for Hierarchical Descriptions 

Hierarchical shape descriptions were eloquently 
defended by Marr and Nishihara [1978], and our notion of 
such is essentially captured in their work. We do not insist 
on generalized cone primitives as they did, but require that 
whatever representations are used have a geometrical basis 
and defining coordinate frame. Thus, the crucial part of 
the representation is the hierarchical orgvnzalwn 0/ 
different coordinate frames. The part descriptions with 
respect to those frames could lake many forms, e.g., 
polyhedra or splines. 

There are several reasons why frame hierarchies are 
important. First, complex objects are more simply 
represented by pieces described with respect to different 
coordinate frames than with a complicated description that 
uses a single frame. Second, the hierarchical organization 
of these frames allows for ease of indexing and the explicit 
representation    of    intermediate    hypotheses.     In    a 
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compuiaiional scheme for accessing ihe details of ihe puns 
through their more general features, hierarchical 
organization allows for strategies thai take steps 
proporiional to the logarithm of the number of parts, A 
final reason for hierarchies is that their varying "grains" 
form a logical description ol ihe different viewing 
conditions encountered by the perceiver. When an object 
is distant, only gross features will be apparent owing to 
limitations of the imaging optics (as well as others in post 
processing). A proximal object may reveal details but may 
be so close that it cannot be imaged in a single view. In 
these cases the identification problem is simplified if the 
shape representation itself is also segmented ill terms of 
the resolution of its parts. 

Shape hierarchies can be defined relative to different 
complexity measures. These are closely lied to the lype of 
parameterization allowed, including the aforementioned 
"grains" (shape distortion), connectivity relations, and the 
articulation freedom allowed in the parts of an object. 
However, there are strong dependencies between these 
factors when one considers how recognition proceeds, lor 
example, in perceiving a horse, it is necessary to determine 
exactly where its neck is relative to its body before 
considering its detailed shape. In the following discussion 
we will be concerned mainly with the representation of 
articulation  in objects. 

The Frame Hierarchy in Conneclionisl Nets 

The above points speak of the necessity of hierarchies 
but are neutral with respect to their implementation in 
hardware. To describe the implementation of shape 
hierarchies in nets, we turn first to the structure of the 
model  identifier net. 

The model identifier net receives connections from the 
model-frame net and also connects1 to it. The purpose of 
such connections is to implement the relation (H) 
described earlier. The uniUi in the model frame are in a 
canonical form; that is, they are independent of the view 
(that variation is captured by view parameter units and the 
view transform). The canonical foim greatly simplifies the 
implementation of relation (A) since, for example, a 
horse's back frame will always correspond to the same 
model  unit. 

In general, the connections between units in these two 
representations will not be one-to-one. The reason is that 
the model-identifier net has a relational character; a 
horse's neck unit in that frame corresponds to several 
possible units in the model frame net, owing to the fact 
that the neck can move relative to some fixed part in the 
body frame (which we choose to be the back), lignre 9 
illustrates this. A second point is that units in the model 
frame net also receive connections from the image and 
view parameter networks. Ihe intersection of units 
receiving excitation will help specify the appropriate 
corresponding model-identifier units. 

We use conjunctive connections from the frame nodes 
in the model-identifier nets to appropriate model frame 
units. Thus, a model frame unit may become active only if 
it is receiving image input, and is in the correct "context." 

(MODEL-IDENTIFIER NET) 

"units connected to 
horse's neck unit 

(above) 

e.g. of a particular unit 
receiving inputs from 

~- -image frame and view 
transform 

(NECK PORTION OF MODEL FRAME NET) 

Figure 9; A partial example of the model identifier net lor 
a horse, and the model for one of its subparts. 

Frame Switching 

The most important point of the previous constraint in 
terms of computational complexity is that although all 
identifier units are connected to model /mine units, only a 
small portion are active ill any one time. To see the 
importance of this decision, consider an alternative: a 
separate model frame net for each identifier unit. This 
would allow all possible shapes to be processed in parallel 
but would require an unrealistic amount of units. Our 
principal hypothesis is that there is limited hardware to 
compute the view transform (here we allow only one piece 
of hardware) and the meaning of the active units therein is 
determined by the active model identifier units connected 
to  it. 

Given that only a small set of model identifier units 
can be active at any one time, one needs a mechanism for 
switching between sets of units at different hierarchical 
levels. An example of such a mechanism is diagrammed in 
Figure 10. The first problem is to select a different frame 
to examine. This is accomplished by putting the model 
frame net into "Winner Take-AH"-mode. (bor a discussion 
of WTA nets the reader is referred to leldman and 
Mallard's work [leldman and Uallard, 1982].) Selecting a 
single unit from the model frame net has three effects: 

(1) it enables a frame switch unit; 

(2) it deactivates all but a subset of the currently active 
model identifier units; 

(3) it allows the appropriate view transform change to 
take place. 

Referring to figure 10, the frame switcli unit connects to 
all particular frame switch units but since this is a 
conjunctive connection with model-identifier units only an 
appropriate subset of particular frame switch units will be 
excited. An activated frame switch unit in turn activates its 
corresponding frame unit, and deactivates the ancestor 
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frame. The newly activated frame unit will then excite the 
model identifier unit members of its frame. We have also 
designed a transform switch mechanism which proceeds in 
tock-step with this, and allows image data coupled with 
current hypotheses 10 compute the next transform. 
However, due 10 lack of space, we omit its presentation 
here. 

A particular advantage of this design is that evidence 
tor a more abstract unit can accumulate even though a less 
abstract frame is active, liven when hone's body is not in 
the current Frame, its activation can be increased indirectly 
through ancestor connections from an active horse's ear 
frame. 

Hgure 10: An example of the frame swiching mechanism 
m which attention switches from horse's body to neck' 
Connections to model units are not shown The link wiih a 
circle at its up represents an inhibitory coniiection. 

Some Motivaiion for Frame Switching 

The foregoing discussion developed the tnotivulion for 
frame switching from representational grouiids In a 
connecliomst network, the representations are necessarily 
distributed into pieces because of bonnds on the tnimber 
of connections per unit [feldman and Ballard 19;

J2J 
I here are at least two additional arguments, however tor 
frame switching, une is that the mechanism can resolve 
ambiguities which arise from split-space representations 
(Section 4). The other argument is derived from 
psychological tests. 

A problem with any split-space representation is that 
one cannot keep track of the correspondences between 
units in each subspace. This problem is shown by Figure 
11, where the model frames are different from the image 
frames, but this difference does not show up in any of the 
subspace computations. One solution is to have a 
hierarchical representation of the shape. In the example, 
the primitives would be represented once as separate units 
and again as units which are part of a global frame. If the 
object is rigid, one can switch the focus to a single unit 
while changing the viewing transform m a predictable way. 
Ihe fact that this cannot be done with the example in 
figure 8 is the mechanism for delecting the mismatch. 

A second indication of the importance of frame 
switching is due to a clever construction by Pavel (Figure 
11). in this figure, three tokens are moved along linear 

loci. If the tokens are rotationally symmetrical (series a). 
the overall perception is that of a moving triangle, but if 
some pronounced asymmetry is given the tokens (series b), 
the perception immediately switches to that of three 
independent translations. The explanation for this 
petception in terms of our connectionist model uses a 
collection of the mechanisms already suggested. I list, the 
tokens are analyzed by putting the view trauslbrm in 
tracking mode. The rotationally symmetric tokens can 
suggest frames (rule I) thai excite a single set of view units, 
f.ven if frame switching is used, the view transform is still 
supported, owing to the rotational degree of freedom in a 
single token. In the second series, however, the situation is 
very different, it the tokens have a pronounced 
asymmetry, the corresponding frame units will 
predominate, and their lou are incompatible with a single 
set of view  transform units. 

Figure II. 

One feature of our frame switching model is that it is 
necessarily discrete, locus of attention switches between 
individual frame units that have discrete separations. Some 
support for this model can be derived from the classic 
experiments in eye movement tracking [larbus, 1967). 
Subjects examining pictures typically used saccadic eye 
movement^' that varied as a function of task required but 
more importantly: 

subjects appear to have -A fixed hierarchy of interest 
protocols, e.g., humans > animate > inanimate, etc. 

subjects- appear to have fixed scanning protocols, 
;.e,, subjects examining the same picture on' 
Afferent days would exhibit essentially similar eye 
movement patterns. 

6. Summary and Conclusions 

figure 12 summarizes the various constraints 
employed by our connectionist model. In this figure we 
have abandoned the triangle notation and only indicate the 
relations between nets without describing the detailed 
nature of the connections. This is remedied by earlier 
descriptions and figures. 
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The validity of Lhe new ixansform approach has been 
tested in noii-coimectionist algorithms [Ballard, 1981; 
Uallard and Sabbah, 1981; Sloan and liallard, 1980]. 
Currently the connectiomst version of relation (A) and a 

frame switching mechanism similar to the one described 
have been successfully implemented; other networks are 
being programmed. 

MODEL 
^ 

/ IDENTIFIER "^--^ VIEW- 
STABLE 

FEATURES / T^ 
FRAME 

PARAMETERS 

/ 
/ / 

MODEL 
FRAME 

^^/_ GEOMETRIC 
FRAME 
SWITCH / / 

VIEW 
PARAMETERS r 

FF 
AGE 
AME 

Figure 12 

A difficult problem tor any form perception model is 
to explain the perception of "fruilface" [Palmer. 1975], as 
shown by Figure 13. (Many similar examples can be 
tonstrncted.) Detailed experimentation with our model 
will be necessary to determine whether it can exhibit 
appropriate oscillatory behavior between, e.g., seeing a 
cherry as a cherry and seeing a cherry as an eye. However, 
the representation ai'-nvs for such behavior, I ignre 13 
shows the two states of tee nets corresponding to the two 
different perceptions. On use ot frames is similar to 
Hayes" [1978], and satisfies Hinton's notion of a system 
that uses the same image features but assigns them 
different "roles" [Hillton, 1981c). In seeing the cherry as an 
eye, the face frame is active and the geometric frame 
features for the cherry are part of active connecltons to the 
eye unit via the view transform, in seeing the cherry as a 
cherry, both the cherry frame and the cherry unit in the 
model  identifier net are active. 

face frame 
Identifiers 

(include eye) 

1 
face frame 
geometric 
features k view pa rams, 

for face H 
fruit face 

image 
feaures 

s 

CHERRY as "EYE" 

cherry 
identifiers 

cherry 

frame 

fruit face 
image 
features 

> 
view params, 

for cherry 

CHERRY as "CHERRY" 

Figure 13: Plausible alternatives lor "fruit face," 

Many refinements of the basic approach are currently 
being studied, Feldman [1982] is developing a 
computational basis for representing objects in space in 
terms of four coordinate systems. This work meshes with 
our own in that more immediate (foveal) and more 
abstract {environment) frames arc described as well as 
frames similar to our image and model frames. An 
incorporation of a foveal/cye movement mechanism would 
be of immediate advantage to the current system, Hy 
adjusting viewing parameters (e.g.. centering the view on 
the current frame) one could minimize the units that have 
to be represented in the view transform. 

One issue that we have sidestepped is that of the most 
abstract control. What triggers a frame switch',' Many 
possibilities exist, e.g., breadth first scanning in inodel- 
idenlifier space, the same in model-frame space, a "pre- 
wired" pattern of checking, as well as' others, but the 
problem is still open. However, as Posner [1978] suggests, 
our job may be to give the homunculus less and less to do; 
hence our confidence in the present system 
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Abstract 

This paper develops a simple and robust procedure for 
recovering sensor motion parameters from image 
sequences induced by unconstrained sensor motion 
relative   to   a   stationary   environment. Difference 
vectors of optic flows approximate the orientations of 
the translational field lines in image areas in which 
there is depth variance between the corresponding 
environmental points and sufficient angular separation 
from the translational axis. This is developed into a 
procedure consisting of four steps: 1) locally computing 
difference vectors from an optic flow field; 2) 
thresholding the difference vectors; 3) minimizing the 
angles between the difference vector field and a set of 
radial field lines which correspond to a particular 
translational axis; and 4) extracting the translational and 
rotational component fields given the translational axis. 
This procedure does not require a priori knowledge 
about sensor motion or structure of the scene. It 
depends critically on sufficient variation in depth along 
some viiual directions to endow the flow field with 
discontinuities. We present results of applying the 
procedure to sparse and low resolution displacement 
fields. 

■ / ' 

Introduction 

The motion of an observer/sensor is in general 
composed of a translation and a rotation. It generates 
an optic flow field in the imege plane of the sensor 
due to changes of visual directions of details in the 
environment over time (Gibson et. al. 1955). The 
translation of the sensor induces a radial flow in the 
image with the intersection of the translational axis and 
image plane as its center. Sensor rotatation induces a 
rotational field in the image that is purely direction 
dependent (that is, a function of image position only). 

The translational component (and its spatial and 
temporal derivative fields) contains, e.g., information 
about the shape of objects (Koenderink and van Doom 
1977), about the relative depth properties of the 
environment (Lee 19S0, Prazdny 19S0), or about motion 
parameters for navigating along curved trajectories 
(Rieger 1983). Processing optic flows induced by 
observer/sensor motion can be done by decomposing a 
flow field into its rotational and translational 
components and then recovering the environmental 
information from the translational component. 
Techniques for doing this generally require high 
resolution image displacements as input and are 
sensitive to the noise and error that current techniques 
for determining image motions typically produce. They 
can also involve solving complex equations and require 
significant computation. 

The recovery of sensor motion parameters can be 
simplified considerably by making use of the 
geometrical structure of optic flows in regions 
corresponding to environmental depth changes. In such 
regions the difference vectors that have been computed 
over some neighborhood are oriented approximately 
along translational field lines. This can be seen easily 
for the case of details that are located exactly in 
the same direction from an observer/sensor but are at 
different depths (such as points along occluding 
boundaries) as observed by Longuet-Higgins and 
Prazdny (1980), such points will differ in their image 
velocity vectors by the difference of their translational 
components only. This is because the rotational 
components of optic flows are purely direction 
dependent and thus equal for flow vectors positioned at 
the same image point. The axis of sensor translation 
can then be obtained from the intersection of radial 
fieldlines which are determined by such difference 
vectors. Given the axis of trmslation, the rotational and 
translational component fields are strongly 
overdetermined. 
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There  are  significant   difficulties  in   applying  this 
observation   to   actual   image   sequences.     Flow   fields 
computed    from    actual    image    sequences    are    not 
arbitrarily   dense  and   are   in   fact   generally   sparse  so 
there will not be two distinct flow vectors positioned at 
the same irmge point.    Thus it L necessary to perform 
the   computation     using  difference  vectors   determined 
from   image  displacement  vectors     which   are  spatially 
jeparated.    From images formed at discrete, successive 
instants   we   obtain    image        displacements    and   not 
instantaneous   optic   velocities.   Thus   the   computation 
must be expressed in terms of discrete sensor motions. 
Also, real flow fields are noisy and errorful, especially 
near  occlusion  boundaries  because  of  the  changes  in 
image structure that occur there.      Thus the procedure 
must   be  robust  to such  distortions  in   the   determined 
difference   vectors,     We   have   found   that   subtracting 
spatially   separated     image  displacement  vectors     with 
different  corresponding environmental  depths,  will  give 
reliable      approximations   to   the   correct   translational 
field   lines.    Further,   the   resulting  field  of  difference 
vectors     will     approximate      a     noisy      translational 
displacement field which can be processed using general 
Hough techniques (Rieger and Lawton 1983). 

xis  of   translat ion 
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Figure 1 

Difference Vectors from Spatially Separated 
Flow Vectors 

Here we present results on the effects of using 
spatially separated image velocity vectors to determine 
difference vectors. A difference vector formed from 
spatially separated image velocity vectors can be 
decomposed into a signal omponent oriented along 
the correct translational field line and a noise 
cor:ponent. We find that the signal component 
increases for difference vectors formed at image 
locations where large depth changes occur in the 
corresponding environmental positions. It also increases 
with increasing distance between the difference vector 
and the intersection cf the translational axis with the 
image plane. To the extent that these conditions are 
satisfied for an optic flow field, its difference vector 
field will approach the corresponding set of correct 
translational field lines. The computation of difference 
vectors over the image does not require initially 
determining the location of occlusion boundaries or of 
image areas corrsponding to large visual slant. 

Consider a sensor O moving relative to a static 

environment. As in figure 1 the point P at the image 
position f = (x,y) = (x/z,y/z) corresponds to the 
environmental point  P at  the location r = (x,y,z).  We 

obtain the image velocity u at P by differentiating wrt 
time 

u = ((x -xi) ej+Cy - yz) ty] Iz . 

Letting v = (vx,vy,vz) and    u = (<ox,üiy>tüz) denote the 
translational and rotational velocities of O the relative 
motion of P becomes 

r = -v -to x r . 

Eliminating x, y, and z between the above    equations 
we     can     write     the     translational     and     rotational 
components of image velocity u separately 

uT = ((xvz - vx) ^ + (fv, - vy) ey] Iz , 

"R = (-«"y + ywz - x2^ + Syuj) ex 

+ (-*ü)Z  + ux  - Xjuy  + y2ü)x) Cy . 

Two   image   points  Pj   and  ?2  that  are   separated   by 

'2~'l = (dx'dy) diflfer  ta  'heir rotational  flow vectors 
by 

AuR = "RZ ~ UR1 

7S 

= (dywz - dx (2*!  + djj) wy 

+        (J^        +      t^        +       djjdy)      «,1     CJJ 

+       [-d^        +      dy       (2^        +      dy)      (0, 

-       (j^d,        +      Sjdy        +      djjdy)      Uy]     t^ 
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If Tj = (v]C/vz,vv/vz) denotes the intersection of the 
translational axis with the image pla.-.e we can rewrite 
fie translational flow vector as Uj = vz(f-fjVz- Tlicn 
the difference vector of two translational flow vectors 
at separated image positions Pj and P-, becomes 

Ally   =   Ujn   _   UJJ 

where Az = zi - zj is the depth separation of the 

environmental details Pj and P2 that correspond to Pj 

and P2 in the image. 

Now we can rewrite Au as consisting of a 
component along a translational fieldline and a noise 
component 

Au = Auj + Auj^ = 

r ^ 
(fl  - f D lsignal+ I z^2 " V + ^R ^ zlz2 '* '' Signal    I Q "        * " 'Noise 

For difference vectors with sufficient angular separation 
from   the    translatory   axis   and   separation   in   depth 
Al,Signa)>>AlINoise- 

Recovery of Motion Parameters and Depth 

In order to compute difference vectors from 
image displacement fields formed over discrete time 
intervals (as opposed to continuous intantaneous image 
velocity fields), wc have to be careful to describe all 
quantities with respect to the same reference system. 
Suppose two environmental points lie along the same 
ray of projection in an image at time t. Translating 
and rotating the sensor will displace the projections of 
these points to new positions in the image at time 
t + 1. In the image at time t ^ 1, the image points 
will be sepaiated due to the translational component of 
the sensor motion (unless they are located on the 
translational axis). The separated image points and the 
intersection of the translational axis with the image 
plane will be collinear at time t + 1. This is the 
discrete analog of the fact that difference vectors at 
discontinuities of an instantaneous optic velocity field 
are oriented along translational field lines. Thus, given 
image displacements DI ana D2 at positions PI and 
P2, the difference vector between points 1 and 2 is 
obtained by subtracting D2 from Dl and positioning the 
resulting vector at PI + Dl. 

Two thresholds arc used in evaluating difference 
vectors. The   separation   threshold   determines   the 
maximal allowable distance between displacement 
vectors    in    determining    difference     vectors. The 
neighhorkcod of a given dirplncement vector contains all 
other displacement vectors which Ha within a distance 
determined by the separation threshold. The length 
threshold deteimines the minimal allowable length for a 
difference vector. For a given diff^ence vector and a 
set of radial field lines, the error angle is the angle 
between the difference vector and the fieldline at that 
position. 

We have found that reducing the number of 
difference vectors by increasing the length threshold 
and decreasing the separation threuhold improves the fit 
of the difference vector field to the set of correct field 
lines up to a certain degree. This is because short 
difference vectors (compared to the local average 
magnitude) arc more likely to deviate from the 
correct field lines and computing difference vectors 
over larger neighborhoods increases the noise 
components. If, however, thresholding eliminates too 
many difference vectors the fit detonates, since the 
sigral of the difference vector field becomes less 
distinguished for a decreasing number of vectors. 

For each image displacement vector a set of 
difference vectors of sufficient length is determined 
over its neighborhood. For the resulting field of 
difference vectors, processing involves finding a 
translational axis and the corresponding set of radial 
field lines which minimizes the sum of the magnitude 
of the error angles. The procedure used is basically 
that used in Lawton (1982, 1983) to determine the 
translational axis from noisy displacement fields induced 
by rectilinear sensor motion. The error measure is 
defined on a half sphere, where points on the half 
sphere are possible candidates for the translational 
axis. The advantage of using a sphere as a domain is 
that it allows for a uniform, global sampling of the 
error function. The search process itself consists of a 
global sampling of the error measure to determine its 
rough shape using a generalized Hough transform 
(Ballard 19S0, O Rourke 1981) followed by a local 
search to find a minimum. 

The computation of the sensor rotation (scaled by 
focal length) from the original flow field and the radial 
(translational) fieldlines is straightforward. Note that the 
components of the flow perpendicular to the radial 
fieldlines are induced by sensor rotation. Introducing, 
for convenience, a polar coordinate system (r,0) in the 

image   plane   centered   at   Pj   we   have   a   system   of 
overconstrained linear     equations     of     the     type 

"R ' e9 = " ' ee    'n ,',e ,',ree unkncwns D^, U    and 
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Knowing the lotational pararrcter; yields the 
translational am4 rotational conponcnt fields of the 
orginal flow field. The translational component is 
directly related to the relative depth of a scene (i.e. 
the depth scaled by the sensor displacement in depth 
6z) by the relation z/8z = I r - fj I /I uj I , where 
uy is a trajislational flow vector la the image. If the 
frame rate is known the rebrive depth of an 
environmental point corresponds to its temporal 
separation from the .nsor (under constant approach 
velocity). Biological systems seem to exploit this 
optical relation for a variety of navigational tasks (Lee 
1980. Wagner W82). 

Experiments 

The flow field in figure 2a shows image 
displacements at pixel positions having coordinates 
which are multiples of 8 from a 128 x 128 pixel field 
The components of the displacement vectors were 
stored as 8 bit integers. The environment consisted of 
a spherical surface patch at depth of 10 units along the 
z axis and a background spherical surface patch at a 

depth of 30 units along the z axis. The obvious 
discontinuities in the flow field in figure 2a indicate 
the boundary of the nearer surface. The «nsor motion 
consisted of an intial rotation of 0.1 radians about the 
(1,1,1) axis followed by a translation of 2 units along 
(0,0,1). The separation threshold was set to 1 pixel and 
the length threshold was set to 3 pixels. Figure 2b 
shows the average difference vectors which exceeded 
the length threshold. Note their occurrance along the 
occlusion boundary and their strong radial character. 
The resulting error function is shown in figure 2c 
(Darker in the figure corresponds to less error; also 
recall that this is a plot of a hemisphere in polar 
coordinates and not the image plane). As can be seen, 
it is strongly unimodal. The minimum in the global 
histogram corresponded to the image position (60, 60). 
The local search determined the minimum to be at (63, 
63). The correct, subpixel, position was (635, 63.5). 
The rotational component was found by optimizing a 
simple expression describing the extent to which a 
rotational field had vector components perpendicular 
to the radial field lines (determined by the translational 
axis) which were identical to those of the orginal flow 
field in figure 2a. The resulting rotational and 
translational components are shown in figures 2d and 2e 
respectively. The relative depth map determined from 
the translational component field is shown in figure 2f 
encoded by intensity (darker means closer to the 
observer). 
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The flow field in figure 3a was produced by a 
rotation of 0.1 radians about the x axis followed by a 
translation of 2 units a!ong the z axis. The 
environment consisted of a planar surface oriented 
perpendicular to the z axis and 20 units away. This is 
a situation in which environmental depth variance is 
minimized. The     difference     field,     computed    by 
averaging the difference vectors in a neighborhood 
determined by a separation threshold of 1.0 ami a 
length threshold of 0.0, is shown in figure 3b. The 
difference field in figure 3b is at a resolution 100 times 
greater than the field in figure 3b because the 
difference vectors are very small. This reflects that 
any inference of the translational axis in this case 
would be spurious. 
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ITie flow field in figure 4a was produceJ by the 
same molion as above except the environmental depths 
of the points were randomly distributed between 20 and 
100 units along the z axis. The corresponding 
difference field is shown in figure 4b (the resolution of 
this figure is 3 times greater than that in figure 4a). 
The strong radial character of the difference field, 
with a Focus of F.xpansion at the center, is apparent. 
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Figure 4a 
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Figure 4b 

Figures 5a and 5b are 128x128 pixel images with 
1% intensity levels taken from a GE TN2200 solid 
state camera. The camera was displaced roughly in 
the general direction of its zaxis between two textured 
objects towards a textured background and then rotated 
about its y axis a few degrees. Figure -'* shows the 
displacements d?termined for a set of interesting points 
extracted from the image in figure Sa using the interest 
operator described in Lawton (1983). The displacements 
were found by correlating 5x5 pixel windows centered 
at these positions in the first image with 5x5 pixel 
windows positioned at locations within /- 15 pixels in 
the x and v directions in fhe succeeding image 
Displacements for points within 10 pixels of the image 
boundary were ignored. 
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The facet approach requires low level image 

processing techniques to be based on fitting each 

local image neighborhood with a function and 

interpreting all processing in terms of what the 
processing does to this locally fit function. 

I'sing the facet approach we develop a different 
meaning of the usual optic flow equation. We show 

that it represents the intersection line of the 

isocontour plane with a successive image 

The intersection line on the successive 

contains the possible match points. A 

match point can be selected by requiring it to 

have the same brightness as the given pixel. We 

show that this procedure amounts to assuming that 

all derivatives of third or higher order are 

negligible and that gray tone intensity and first 

partial derivatives in row, column, and time must 
match. 

frame. 

frame 

un ique 

Science and Electrical Engineering 

Institute and State University 

rg, Virginia  24061 

we briefly mention some of the existirg approaches 
for matching.  In section V we present icsults. 

II  Optic Flow Geometry 

Consider an image created by a camera in 

constant motion, the velocity of the camera being 

(a , a , a ) in the x,y. and z directions 

respectively. The motion of the camera causes the 
position of pixels in the image to move. An image 

in which each pixel contains the velocity vector 

describing the motion of that pixel is called the 

optic flow image. We give a brief derivation of 

the optic flow. 

Our perspective geometry model places the lens 

at the origin looking down the y-axis. The image 

plane is a distance of f in front of the lens. 

Thus a point (x,y,x) in the 3D world will have an 

x-position x  on the image given oy 

(x-a t) 
f »._ 

(jry) 
(i) 

• 

■ 
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I  Inti >duct ion 

In this paper we consider the case of a camera 

in uniform translational motion in a static scene. 

In section II we derive the optic flow geometry 
equations for uniform translational motion and 

show how from the optic flow field it is possible 

to compute the camera velocity parameters and the 

depth, both to within an arbitrary scale factor. 

Determination of the optic flow field is 

usually done by matching corresponding points on 

successive image frames. This kind of technique 

suffers from a potentially expensive combinatorial 
complexity problem. In section III we apply a 

facet model technique to the problem of estimating 

the optic flow field. We show how the first order 

derivative optic flow equation represents the 

intersection line of the isocontour plane with a 

successive image frame. To select a unique match 

point on this line we require that the gray tone 

intensities match. We show that this procedure 

amounts to requiring that gray tone intensities 

match, and first order partials in row, column, 

and time match. The complexity ol the technique 

is linear in the number of pixels on the image. 

There is no combinatorial matching.  In section IV 

At  t=0,    a point  (x',z')   on   the  image 

corresponds to the 

ray 

(!.') 
where 

\,        the unknown parareter,   is most  directly 

related to  the depth  y of  the 3D point by  the 

relation X ■ y/f.   After substituting Xx' for 

x and X z'   for y in equation (1) there results 

x = f 
P 

Ux' - a t) 

Uf - y) 
(2) 

The  velocity  u(x',z')   of  point   (x'.z')     at   t=0  can 

be   obtained   as 

ax (Xf-a  t)(-t   MXx'a  t)(-«   ) -i y x x y 

 (3) — -  f 
3t 

' .•-■ 

(Xf-a  t) 
y 

■ -; 
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Figure 5d shows the average difference vectors 
which resulted from setting the separation threshold to 
10 pixels and the length threshold to 3 pixels. A plot 
of the error function produced using these threshold 
values is shown in figure 5e. The local search found a 
minimum at (52, 75). The correct position of the 
intersection of the translational axis with the image 
plane for the second image was determined to be at 
(57.97, 74.58). Since the focal length was rather long, 
the determined translational axis was well within 5 
degrees of the actual one. 

;  it. v*.-:^-"    ^ • 
^ 

•■ 

Figure 5c 
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eviluited  at   t«0.     Then,   we   h»ve 

■(S'.t'i   -    ~E 

dt 
t   (I 

-• ■ 
(4) 

The  MM   for   the  z-velocity   vlx'.i')   it   limilir 

3 7. 

vU'.i')   -    —* 
dt 't-0 

-a « 

X Xf 
(5) 

For   ■   earner»      in notion  where   a,     ^0,      there 
will     be   one     point   (i-.i.)        on     the   iiiage     whoae 
notion will   be   rero.     To  deternine   this  point   »et 

dx dz 
—£  .  —8 
at      at 

to  obtain 

a  f 
i 

at   t-0 

a   f 
i 

(M 

(7) 

This point i» called the focus of eipansion or 
contraction depending on whether the camera ia 
moving  toward  or   away   from   the   »cene. 

To     tolve     for     a   ,a   ,a   ,        aet     the     parameter 
X(i',(')       to    an   initial     appropriate     constant 
depending  on     scale  and     »olve   in     a   lent     squ»rr 
»ense   the   system  of  equationa: 

Xd'.r'Ud',!') -a     + -*  »' 
x f 

(8) 

f 

Thi»  yield» 

^ 1  ^ Xd'.iMMx'.i'U'+vd'.i'U'] 

-^ u(x'.i'>X(i','.')   ^ i' 

-^ vd'.z^Xd'.z')^ i« 

(9) 

S s' - 5 «(a . i')Xd',i') 

a    5 •'  - 3 vd'.z^Xd'.i') 

"---■-1-.-"  
where   all   »ummation»  are  over     «11   dM   )      >"   <■*' 
image     domain. II     the       acale     constant        for 
Xd'   •')   -  k.   «n  unknown  constant,    the   velocity 
component,  a   .a   ,     and     I    will   all   have     the   same 

t,uItiPlicati?e  JWtant     I.        In     ^i»  c»"'        ** 
velocity     aiagnitude   is    not     determined,     but      >t» 

direction  la. 

A better   »olutiou  than  the »ssu.iicd  constant   X 
may  be   obtained  by     itertting for   reduced  residual 
error  by     redefining  X  to    be a   function     of   the 
estimated  velocities. 

X(x' .z' ) 

/-a     +  a  x'\        /-a     t   a   z'\ 

("   t)   (       t) 
ud'.z'r vd'.z')' 

1/2 

(10) 

and then solving for a ,a , and a in terms of the 
new X(x'.z'). This new y>. can be substituted 

into equation (9) for a better estimate of the 

velocities. Smoothness in 3D surface can be 

insisted upon by taking any solution X, 

considering it as an image and performing a slope 

facet iteration on it (Haralick and Watson, 1981). 

Ill Calculation of Optic Flow From Image Sequence 

In this section we discuss the calculation of 

optic flow in a time sequence of image frames and 

illustrate the facet approach to the optic flow 
computation. 

Consider the case of a one dimensional sequence 

of frames aa shown In figure 1. These frames are 

obviously translates of one anothei with a uniform 

motion. Instead of considering a correlation 

search to match each point on one frame with Its 

corrresponding place on the next frame, consider 

the sequence of frames as an image each of whose 

rows correspond to one frame. Corresponding 

points on different frames have the same 

intensity. Thus where the one-dimensional frames 

are organized as an image, the corresponding 

points will be on equal intensity contour lines as 

shown on figure 2. The equal Intensity contour 

line any point Is on is easily computed as the 

line orthogonal to the gradient direction at that 

point. Thu» by fitting a function to the image 

intenaitles in a local neighborhood about a point, 

as the facet model prescribes, and determining the 

gradient direction from the fit, the equal 

Intensity contour line through the point can be 

determined. The match point on the next frame can 

be obtained without any search just as the 

intersection of the equal intensity contour line 

passing through the point with the next frame or 
row. 
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Figure 2. Show, the equil intemity contour 

lines which oatch correspondirn 
points. fc 

In a tine-varying iaiage sequence, the situation 
ti similar, only the geometry is in a One 
dimensional higher space, a 4-dimensionaI space. 
To understand this geometry fix attention on one 
pixel on one frame. Use the 3D neighborhood (by 
row, by column, by image frame number) around the 
pixel and fit a function to the gray tone 
intensities in the 3D neighborhood. From the 
function fit determine the gradient vector at the 
given pixel position. The plane which is normal 
to the gradient vector is the equal intensity 
contour plane passing through the given pixel. To 
determine possible -natch points on the next frame 
intersect the equal intensity contour plane with 
the next image frame. As shown in figure 3, the 
intersection is a line. The match point can be 
•ny place on this line. To determine it uniquely, 
find that position on the line whose gray tone 
intensity is equal to the graytone Intensity of 
the given pixel. 

Figure 3. Shows a sequence of fine frames, the 
gradient vector on frame teO, ami 
the plane orthogonal to the gradient 
vector and passing through the 
origin. The shaded area represents 
portions of frames to the left of 
the cutting plane. The lines on 
frames t"=-l, t=0, and t=l represent 
the intersection of the cutting 
plane with these frames. 

Till Example 

Consider a local 2D neighborhood whose gray tone 
intensity function appears like a parsbolid of the 
form (r+1) + (c+2) Suppose that image frames 
are taken each second and that due to the camera 
s.-tion the parabolid translates each successive 
frame »ly three rows and one column, 
fitting the gray tone intensities in 
neighborhood whose center pixel has 
(0,0,0) in a relative coordinate 
determine the function 

Then upon 
a local 3D 
coordinates 

frame  we 

f(r.c,t) - (r-3t+l)2 + (c+t+2)2 

Thus the  paraboloid is translating by  (3 rowa,-l 
column) on successive frames. 
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The p»rti«I derivitivet of f ire 

df 

it 

if 

»e 

II 

- 2(r-3t+l) 

2(c+t+2) 

at 
2(r-2i+l)(-3) + 2(c+t+2) 

Fvtluiting these partiils at (0.0,0) yieldi the 

grtdient vector «t the given pixel which it 
locited it the origin 

grtd f •tl) 
The   fin»       pitting  through   (0,0,0)   and 

orthogonil to thi» grtdient vector it given by 

2r + 4c - 2t - 0 

Intersecting this plane with  the next frame (fl) 
produces the line 

The equation  of the  itodensity contour  plane 
pastin« through (0,0) it given by 

where  g -  — (0,0) 

•t 

(r-at) gr ♦ (c-pt) |"0 

.'* 

(12) 

•| 
(0,0) 

He 

M  t '  t.  this  plane cuts  th 
producing the Ii 

•  t  • t.  frame 

(r-at0) gf ♦ (c-ßt0) ,c - 0 

At the desired  point (r,c)  on this  line we must 
satisfy the ritch condition 

|(r-at0, c-ßt0) - g(0,0) 

Assuming g is a function  for which all partial 

derivatives  exist *e       nay  represent  g(r-at, 
c-ßt) by its Taylor series around (0,0) 

• 

2r + 4c - 2 - 0 

The gray tone intensity at (0,0,0) it given by 

f(0,0,0) - 5. To find the match point, find that 

(r,c) timultaneoutly tatitfying the two equation! 

g(r-at,c-ßt) « g(0,0) • (r-at„) g + (c-ßt )i 
0 'r       0 'c 

(r-at0) 

«rr + (r-atO)(c-'"o)«rc + 

(.- ßt0)' 

+ . . . + 

■ 

79'. 

r + 2c -1 = 0 

f(r,c,l) - (r-2)2 + (c+3)2 - f(0.0.0) « S 

Subttituting r -  1 - 2c into (r-2)2 ♦ (c+3)2 - 5 

yields  the quadratic  equation  (c+1) - 0  fro« 

which c =  -1 and r = 3,  the  correct translation 
parameters. 

Til.2 Translational Motion 

Substituting g(r-ot,   c-ßt)  for  g(0,0)  and 

snbstltutlni  - (c-ßt0)gc/gr for r-at0 yields 

(c r.t//^  !xi_  isiic   +ipy (c-(u/i.. 

As the example suggests, the difficulty of the 

computation might be in determining a real root of 

a polynomial. It is natural to wonder, therefore, 

whether it is possible to have polynomials with no 

real roots. We demonttrate here that for the cate 

of trantlational motion, there it no pottibility 

of the polynomial root» being only complex. To 

tee thit exprett the local fitted functiont 
f(r,c,;) at 

(13) 

f(r,c,t) • g (r-at, c-ßt) (11) 

explicitly indicating that  the dependence between 

r, c, and t it constrained to translation. 

Factoring ont  a (c-ßt )2 from the  left hand 

tide and noting  that the right hand  tide it xero 
Tirrmil i mm        »nH.i*A/-n.  «2    A - permits  ut     to write   (c-ßt 0 from which ve 
can tove for the double real root c-ßt 

0 

III.3 Compariton 

There it a relationahip between this procedur< 
and the  usual optic flow equation.    Letting f 

f ,  und | designate the partial derivatives ofrf 
with respect  to r,c,   and t,   evaluated at  the 

origin,  the  equation of the isocontour  plane is 
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livtn  by 

r   f    +  c   f tl (14) 

Intenecting thli plane with the next image plane 
which it taken at t. »econds latter produrea the 
1 ine 

-f. 
I 

f     + 
r 

c 
-     f 
t„     C 

(15) 

Equation (IS) it the usual optic flow equation 
(Horn and Schunk, 1980), Tae quantity r/t, 

movement of r  row« over  t. repretenta a 
and it therefore the row velocity. 
represents thu column velocity. 

'0 
tecondt 

Likewite c/t. 

The difference in what we have done is that we 
have given equation (IS) an enlarged meaning. It 
is the equation of a line containing the possible 
match points on the t image frame. But since the 
match point must have the same brightness, we use 
the additional constraint that the match point 
(r,c) mutt tatitfy 

f(r.c.t0) « f(0,0,0) (16) 

the equal brightnett constraint. This brightness 
constraint is used in the usual derivation of the 
optic flow equation so it would seem to be 
superfluous to use again. From our perspective we 
see that the isodensicy contour plane is really 
only isodensity at th' origin and as it moves away 
from the origin, it mutt be regarded at an 
approximation. Thus the intersection line on the 
successive frame is not guaranteed to have all its 
points be of the same brightness as the given 
p*xel. The match condition jutt tells us to 
select that point on the line having the same 
brightness as the given pixel. 

A pixel (r,c) having relative neighborhood 
coordinatea on relative time image t matches pixel 
(0,0) on time image 0 if 

(1) f(r,c,t) - f(0,0,0) 

(2) «f df 
— (r,c,t) -  —(0,0,0) • f 
»T ar r 

(3) dt df 
— (r.c.t) - —(0.0,0) •■  t 
9c de c 

(4) 3f df 
— (r.ct) -  —(0,0,0) . f 
at       at       ' 

Condition (1) ttat«« that the gray tone 
intensities must match. Condition (2) and (3) 
states that the gray tone spatial patt«rn around 
the original and the match pixel must match. 
Condition (4) states that tince the motion it 
uniform with no acceleration the gray tone time 
derivativet mutt match. 
Applying thete conttraintt to the Taylor series we 
have, respectively. 

(18) 

rf  + cf  ♦ tf, + —I  + ref  + —f  + rtf . 
r    c    t     rr     re   , cc     rt 

• =tfct * -ftt - 0 

-•• 

■ 

III.4 Why It Works 

In this section we give a detailed explanation 
of why the procedure works. We assume that all 
derivatives of third or higher order are 
negligible and that the match conditions consist 
of matching gray tone intensity and gray tone 
first partials in row, columns, and time. 

Let f with a subscript designate the 
corresponding partial derivative of f evaluated at 
r • • ■ t • •« A Taylor aeries of f about (0,0,0) 
neglecting third or higher order terms it given by 

K r.c.t) - f(0,0,0) + rf + cf tf. (17) 

+ r '. + rcf 
2 

f-f  ■ 
2  cc 

rtf 
rt 

ctf  + 
ct i\. 

rf   + cf  + tf  - 0 
rr    re    rt (19) 

"re + cfcc + tfct " 0 (20) 

"rt + "ct + tftt " 0 (21) 

Multiplying equation (19) by r.  equation (20)  by 
■> equation (21) by t and adding yields 

r2f  +2rcf  +c f  +2rtf  +2ctf ,    .,-, 
rr     re    cc     rt     et    (22) 

+ t
2f 

i t 

Substituting this back into equation (18) yields 

(21) rfr 4 cfc + tft " 0 

the uanal optic flow equation! Thua. the 
technique of uting equation (23) and the gray tone 
intentity match condition (18) in ettence works 
because it assumes that all firat partial* are 
matching. However, now we see that there need not 
be any problem of root  finding.   We just need to 
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• olve   the  ov«rconitnlned  lystem or  equation! 

f   f 
r   c 

;■■ :■■() 1 ;■ 
(24) 

■frt  fc. 

for the ro» colunn potitioc (r,c) on the specified 
imigr t . 

IV Brief Hitching Literature Review 

Matching frames ia an old iaiagc procesting 

problen. Claisically, it wat lolved by 

tranalating one image againat the other until the 

correlation between the two inagei was highest. 

An equivalent calculation can be done through the 

uae of Fourier Traniforn. Barnea and Silveman 

(1972) fhowed how to speed up the search by 

essentially not doing calculations on positions 

■«here errors must exceed the best error so far. 

Th-te techniques work only for translation of one 
imate relative to the other. 

In aioving images. the motion is not the same 

all over the image. Correlation techniques are 

not appropriate. Martin and Aggarwal (1979) use 

boundary information as the basis for matching. 

Bernard and Thompson (1980) use a disparity 

analysis technique for matching. Ayala, Orton, 

Larson, and Elliott (1982) use a symbolic 
technique for matching. Jacobus, Chien, and 

Seiander (1980) use a graph matching technique. 

Aggarwal, Davis, and Martin (1981) review 

techniques for establishing corresponding points 
oa images. The problem with most of these 

techniques is that they must employ some 

combinatorial computation to establish the match. 

This kind of computation is very expensive. 

Techniques which do not Involve combinatorial 
matching include Limb and Murphy (1975) who relate 

image intensity changes over time to spatial 

gradient and Fennema and Thompson (1979) who use a 
gradient intensity transform method. Both these 

techniques are similar to the one presented rn 

this paper in that they establish the match using 
only local neighborhood analysis. 

V Results 

To confirm that our theory works, we testeJ our 

algorithm  on 3  kinds of  image sequences, 

image  sequences  describe  the  movement  of 

ellipsoid  in  translation,   magnification, 

rotation.    The   time  interval   between 

consecutive images  in a  sequence corresponds 
one pixel difference in an imaee. 

To compute an optic flow vector of a pixel on 

the image at t-0, we determined the underlying 

function over its 3-D neighborhood using a 3-D 

cubic discrete orthogonal polynomial basis, and, 

next, derived the 4 constraining equations (Eq24) 

on the row and column components of the optic flow 

The 

«n 

and 

two 

ti 

vector at the center of the pixel. To solve the 

over-constrained equationa, w». first, obtained 

two singular values using the Singular Value 

Decomposition routine of the Linpack. and, next, 

determined the least square solution from the 
singular values. 

To the time sequence of an ellipsoid moving 
with the velocity of r/t"l and e/t"-.8 shown in 

Fig 4, we applied the above method with the 3-D 

neighborhood (5x5x5) and obtained the optic flow 

image shown in Fig 5. At the pixels on or near 

thd boundary of the ellipsoid, the optic flow 

ve<tor obtained does not show the correct movement 

of the ellipsoid because neighborhoods contain a 
mixture of stationary background, moving 

ellipsoid, thereby providing inconsistent 
information for f tting. The reason for the 

inconsistency is that the center pixel may be in 

the stationary background but it has neighbors 

which are not. These neighbors generate an 

estimated surface which are not. These neighbors 

(enerate an estimated surface which has some 
mrvature for the center pixel. 

To reject an optic flow vector obtained fro« 
such a neighborhood, we compute the ratio of two 

principal curvaturea froa the underlying gray tone 

intensity surface determined at f0. From the 

histogram of this curvature ratio over all the 

neighborhoods in the image sequence shown in Fig 

6. »e can determine a threshold value for the 

ratio at about 0.05. Fig 7 illustrates the 

result. The pixels which still have incorrect 

directiona correspond to neighborhoods with large 
fitting errors over the center pixel. Fig 8 

illustrates a histogram of the center pixel 

fitting error. Thresholding the original optic 
flow image with the enrvature ratio of .05 and 

rejecting the optic flow vectors obtained from the 

underlying function having fitting error of more 

than 1, we have the optic flow image shown 1- Fig 
9. Rejecting the vectors having fitting error of 

more than .01, we have the optic flow image shown 
in Fig 10. 

For the time sequence of the ellipsoid moving 

backwards with the magnification factor .95 shown 

in Fig 11. ... obtain the optic flow image shown in 

Fig 12 where we thresholded the original optic 

flow image with the ratio .05 and rejected the 

vectors obtained from underlying function having 
fitting error of more than 1. !„ the same way, 

for the time sequence of the ellipsoid rotating 

clockwise with the angular velocity .1 radian 

shown in Fig 13. »e obtain the optic flow image 
shown in Fig 14. 
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Fig 4 Time sequence of an ellipsoid in translation 

Fig 5 Original optic flow image 
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Fig 6 Histogram of curvature ratio 

Fig 7 Thresholded optic flow image 
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Fig 8 Histogram of fitting error 

Fig 10 Optic flow image 

Mg li Time sequence of an ellipsoid moving 
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Fig 12 Optic flow image obtained from Fig 11 
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Fig U Time sequence of an ellipsoid In rotation 

- • 
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Abstract 

A method for the automatic construction of fast 
special purpose vision proRramn is described. The start- 
ing point for the automatic construction process is a 
description of a particular HI) object. The result is a 
fa.st special purpose program for rceogoitiBg and locat- 
ing that object in imaßes, without restriction on the 
orientation of the object in space. The method has 
been implemented and tested on a variety of images 
with good results. Some of the tests involved images 
in which the target objects appear in a jumbled pile. 
The current implementation is not fully optimized for 
speed. However, evidence is given that image analysis 
times on the order of a second or less can be obtained 
for typical industrial recognition task». (This time es- 
timate excludes edge linding). 

1.     Introduction 

In rnany practical applications of automated vision, 
the vision task takes the form of recognizing and locat- 
ing a particular three dimensional object in a digitized 
image. The exact shape of the object to be perceived is 
known in advance; the purpose of the act of perception 
is oidy to determine its position and orientation relative 
to the viewer. This is model based vision in its strict 
form. 

Most industrial applications of vision have this 
property, and also the property that the same object 
(or, more precisely, objects of the same shape), must 
be located in many images. In this kind of situation, 
it is desirable to split the computation into two stages: 
an analysis or precomputation stage, in which useful 
information about the (unchanging) object is compiled, 
and an execution or runtime stige, in which thi.^ in- 
formation is exploited for the rapid recognition of the 
object in an image. The rexson for breaking up the 
computation in this way is of course that the analysis 
only needs to be done once, whereas its results can be 
exploited repeatedly. nolles(l!olles Ifl82] among others, 
has taken this general appioach to the model based vi- 
sion problem. 

The advance analysis stage may take a variety 
of forms. In our work, this stage involves a kind of 
automatic programming. A description of the object 
to be recognized is  "compiled"  into a spe ial purpose 

program whose only function is to recognize that one 
object in digitized images. In the second, runtime stage, 
individual images are processed by the special purpose 
program produced at the lirst stage. 

This formulation of the work accomplished by the 
advance analysis is very unrestrictive. It makes no com- 
mitment as to the algorithm which is used to process 
images; rather the algorithm may be chosen according 
to the object which is to be recogni :ed. The prol-lcm of 
linding the best algorithm among all algorithms for a 
given object is intractable. However, we may attempt to 
construct special purpose algorithms for object recog- 
nition within a restricted class of algorithms, and hope 
for good, though not optimal, residts. 

In this paper, we describe a method lor automati- 
cally constructing special purpose programs for .l\) ob- 
ject recognition. To be precise, we mean by 3D ob- 
ject recognition the recognition of three dimensional ob- 
jects in ordinary light intensity images (not, eg, range 
images), where no restriction is made on the orientation 
of the object with respect to the camera. Although we 
speak of recogniiion, the process of recognition delivers 
information not only about, the presence or absence of 
the object in the image, but also the position and orien- 
tation of the object if it is present. The, method 'dies 
on mauching object features to image edges. We will 
not concern ourselves here with how image edges are 
extracted iVom pixel data. The method does not rely on 
perfect results from the edge linder (if it did, it would be 
of no practical interest). The special purpose programs 
generated are quite fast. To give a very rough idea 
of how fast, our method should allow the recognition 
of ordinary industrial objects in moderately complex 
background in a second or less on a I MIT comouter; 
this is the time reipiired for the matching process, and 
excludes the time required for edge linding. The data 
on which this 'iml of general speed estimate is baned 
will be given later in the paper. 

2.     A    general    strategy    for    special    purpose 
rutomatic programming 

The general featims of the model based vu-i»n 
problem which make it a candidalc for special purpose 
automatic programming are shared by a wide vari-ty of 
computational problems. The features in qucsUon are 
tli.i< the inputs lo the computation are delivered in two 
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.slii^ca, and that for each lirsl itagc input, (hero, tl>o ob- 
jrcl to IM- reeogniscd), many leeond stuge inputs (here, 
images) must be treated. The spe< ial purpose automatic 
programming problem in its general form can be stated 
U follows. 

Let us suppose that a function / of two inputs x 
and y must be computed repeatedly under conditions 
where many values of y must be treated for each value of 
x. Then we attempt to devise, for each x, a special pur- 
pose program /', with l\(y) = f(x,y). More precisely, 
what is wanted is an automatic process for construct- 
ing the programs /'x - that is, synthesis method M vvith 
M(*) -= I'x- 

The informal strategy which we use for the model 
based vision problem can also be described at this level 
of generality. The strategy is just that of starting with 
a general purpose program for doing the computation 
in one stage, and using specialized variants of this pro- 
gram as the templates from which special purpose pro- 
grams are developed. Suppose, again, that f(x,y) must 
be computed repeatedly with slowly changing x and 
rapidly changing y. Suppose also that we have in hand 
a program (•'{x,y) which computes f(x,y) in one stage. 
We begin by "unwinding" C as it applies to the value 
x for which a special purpose program /', is wanted; 
this unwound program (!'z(y) is then optimized to get 
the desired result. The unwinding is done by a kind of 
symbolic execution, in which loops are unwound when 
possible, and recursions are unfolded. If the procedures 
for unwinding and optimization are mechanical in na- 
ture, then together they constitute what we have called 
asynthesis method for /. The unwinding and optimiza- 
tion procedures need not be applicable to arbitrary pro- 
grams; they can be custom designed for the particular 
program C at hand. 

In general, the program 0 does not have to be 
completely speeiBed - C may itself be a template for 
an algorithm, with many details left out. The details 
may be Idled in after - rather than before - G has been 
unwound. 

In our work on vision, we begin with a one stage al- 
gorithm template G(x, y) which takes an object descrip- 
tion i, and an image y, and identifies instance» of x in y. 
0 is a template for an algorithm in the sense of the last 
paragraph; many of the details of its operation will be 
specified only after it has been unwound for particular 
objects. 

Model-based vision is the second problem to which 
we have applied this slyle of special purpose automatic 
programming. [Goad 82j describes the earlier ap- 
plication to hidden surface climinaiion in 31) com- 
puter graphics, and also contains a general discussion 
of special purpose automatic programming H it re- 
lates to other work on the automatic construction and 
manipulation of programs. 

3.     A one Hinge, algorithm  for  model  based vi- 
sion 

The one stage algorithm (!ix,y) which we start 
with is a simple sequential matching procedure. The 
kind of object description expected by (1 is a list 
of object features, together with conditions on their 
visibility. Kor the current purposes, an object feature 
is taken to be a curve along the object surface at which 
either a surface normal or a reflectivity discontinuity 
occurs. We will restrict ourselves to straight line seg- 
ments rather than considering arbitrary curves. So, in- 
formally, an object feature is just a straight edge on 
the object. For each object feature, G also needs to 
know the range positions in space from which that fea- 
ture is visible (means for representing this information 
will be described later). There is no need for the list of 
features making up an object description to bo exhaus- 
tive; it is sufficient that enough features be included 
to make reliable recognition possible. As a result, the 
kind of description of an object which is needed for its 
recognition is much les.' extensive than that needed for 
displaying it. 

The image description expected by (1 is of the same 
general kind as the object description: it is a list of 
features. In particular, the image features employed 
by G arc of exactly the kind which the object features 
give rise to in the imaging process: they are straight 
segments in the image along which an intensity dis- 
continuity occurs. The process by which this kind of 
image description is generated from raw pixel data will 
not be discussed in this paper. In our experiments, 
wc used an edge detection program written by David 
Mariniont[Mürimont 1!)8'2| The program convolves the 
image with a lateral inhibition operator, detects zero- 
crossings in the laterally inhibited image, and the-i per- 
forms linking. Straight edges are arrived at by applying 
a simple segmentation scheme (w added this last step 
to Marimont's algorithm). 

Although wc will restrict ourselves in this paper to 
treating edge features, the same methods would apply 
to any kind of object feature which gives rise in a 
predictable way to an image feature. 

Tb« operation of (7 may be described in general 
terms as follows. C performs a simple depth-first search 
for a match between object and image edges. At any 
given time in the search, (V's state includes a currently 
hypothesized match M, and a current hypothesis about 
the position and orientation of the object relative to the 
camera. The hypothesis concerning the location of the 
object gives bounds on the location parameters, and 
not exact values. In the main loop of the algorithm, 
G attempts to extend and refine its current hypothesis 
by means of the following three steps (which lie at the 
heart of many algorithms for perception): 

(1) Predict: An object edge is selected which has 
not yet been matched by any image feature. Bated on 
the current hypothesis, the position and orientation of 
its projection in the image is predicted. 
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(2) Observe: The list of ImaM adflM is checked to 
see whether any baa the predicted qualities. 

(3) Mack-project: If an edge with predicted qualities 
was found in step (2), then extend the match to include 
this edge, and use the measured position and orientation 
of the edge to refine the current hypothesis as to the 
location of the camera. 

The algorithm repeats this loop until either a satis- 
factory match is found, or until the algorithm fails to 
observe a predicted edge. In the latter case, the al- 
gorithm backtracks to the last choice point. Choice 
points arise when more than one image edge appears in 
a predicted position and orientation. 

This is a sketch of th" algorithm. Before supplying 
further details, some delinitions are needed. 

It will be convenient to work in object centered 
coordinates: The object will b- thought of as lixvd, 
and the position and orientati !;i of the viewer aa the 
unknown to be determined. An object edge is always 
regarded as an oriented segment (^iven by til-- ordcfd] 
rather than unordered p lir «■r a.« end pobite), whil.- an 
image edge may or may not be oriented. The imaging 
process is given by the ordinary perspective traiisfor- 
mation. Tin; parameters of this transformation which 
derive from the camera model are the distance from 
the point of projection to the image plane, and the 
field of view, given by a rectangle on the image plane. 
Assume that these parameters are fixed. Let p be a 
3D position, </ a 31) orientation, and x an object edge. 
Then | ([p, f/), x) denotes the oriented image . dge which 
results from viewing x from camera position and orien- 
tation lp,q\. The edge x may not be visible from [p,q\, 
either because x is occluded, lies on the "wrong side 
of the object, or because the projection of x onto the 
image plane lies outside of the field of view. In these 
cases, I ((p, (/],z) is undefined. We will write | (i) to 
denote the projection of x when the parameters [p,q] of 
the projection are clear from context. At this point we 
make several assumptions about the imaging geometry. 

First we assume that, in the images which are to 
be analyzed, the object sought is either not visible at 
all, or lies entirely within the field of view. Second, 
we assume that the field of view is sufficiently narrow 
that changes of the orientation parameter q at a fixed 
position ■ have only negligible effects on the lengths of 
projected edges, and the angles between them. Thus, 
while a change in q will in general cause some of the 
image to move out of the field of view, that part of 
the image which remains visible will have undergone 
only a 21) rotation and translation - to within a small 
tolerance. This criterion is met in typical industrial im- 
aging situations. Kinally, we make the more restrictive 
assumption that the distance from the camera to the 
object - or more precisely from the perspective projec- 
tion point to the origin of the object centered coor- 
dinate system - is known in advance. (This restriction 
is made to simplify the exposition, and does Hot apply 

to the implementation described later). Thus the posi- 
tion parameter p is restricted to lie on a sphere about 
the origin. Without loss of generality, we may iissume 
that this is the unit sphere. 

We will refer to a set of positions on the unit sphere 
a» a locus. A locus is to be thought of as a set of possible 
camern positions. Let X be an object description and 
Y an image description. Recall that X is a list of 
edges together with visibility conditions. The visibility 
condition for each edge e in A' is given by the locus of 
points from which that edge is wholly visible. This is 
called the vinibiiity locus of e. (Methods for representing 
such loci will be given later). Now, a match M between 
object edges A" and image edges Y is an assignment 
of image edges to object edges. A match also assigns 
orientations to the otherwise unoriented image edges. 
Vor any object edge, M(i:) denotes the oriented image 
edge (if any) assigned to it by M. The assignment may 
be partial; that is, for some c, M(c) may be undefined. 

A match M is consistent with a camera posi- 
tion and orientation |p, q\ if for each object edge e, 
the projection |l {[p,q\,(:) äS M(C) to within errors in 
measurement. A match M is consistent with a camera 
position p if there is some orientation q such that M ia 
consistent with [p, </]. A match is consistent with a locus 
L if it is consistent with every position in the locua. 

As indicated earlier, the algorithm G conducts its 
search for a match by attempting at each point to ex- 
tend and refine its current hypothesis nhoul the imaging 
situation. This hypothesis has two parts: the match M 
found so far, and the locus /. of possible positions of 
the camera. In the course of the matching process, the 
consistency of L with M is maintained (modulo errors 
in measurement). 

Now we can be more explicit about how the basic 
predict-observe-back-project loop is carried out. We 
may restrict ourselves to considering the case where at 
least one edge has already been matched, since predic- 
tion and back-projection do not apply to the; matching 
of the first edge; all acceptable candidates for matches 
to the first edge must be considered, wherever they ap- 
pear in the image. Let M he the current match, and L 
the current locus. G selects an object edge e which has 
not as yet been matched. For the sake of brevity, when 
we refer to the "position" of an edge, we will hence- 
forth mean its position anrf orientation. Bounds on the 
position of the image | (c) of the new edge e can be 
predicted simply by selecting an already matched edge 
Co, and computing the bounds on the possible position 
«" 11 UP, l]> <) relative to | ([p, f], Co) as p ranges over the 
current locus /. (recall that the value of q does not affect 
relative measurements). This prediction, together with 
(be known position of M^Q), give predicted bounds on 
the position of the image £ (c) of e. 

A similar method can be used for back projection. 
Suppose that an image edge M{e) lias been matched 
to the object edge edge e. Back-projection consists oi" 
restricting the current locus L to the smaller locus L' 
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whicli is consistent with the rnriisumi position of M(e) 
Let c0 bo some already inatched edge, and M(e0) its 
match in the bBage, // is then just the set of camera 
positions v in /. from which the predicted position of 
Ji ([P,<l\,<-) relative to llUp.q], e„) is the same ius the 
measured position of M(c) relative fo JV/^Q), to within 
measurement error. 

This scheme preserves consistency of matches if 
measurement errors are negiigibie. 

The algorithm (7 aa described so far does not take 
into account the fact that any given object edge may 
or may not be visible depending on the position of the 
camera. The following extension to G deals with this 
aspect of the matching problem. 

In the prediction step, rather than selecting an 
arbitrary unmatched edge as was done before, C selects 
an edge e whose visibility is consistent with the current 
hypothesis (formally, and edge whose locus of visibility 
intersects the currently hypothesized locus). Then, a 
case analysis according to whether the edge is actually 
visible is performed. 

On one side of the case analysis, G assumes that e 
is visible, and restricts the currently hypothesized locus 
accordingly: the new restricted locus is the intersection 
of the current locus with the locus of visibility of the 
edge. Then G proceeds as before: it predicts tiie posi- 
tion of e, looks for It in the predicted position, and 
back-projects if found. 

On the other side of the case analysis, (7 assumes 
that the edge is invisible, and again restricts the cur- 
rently hypotheEized locus accordingly: this time the 
restricted locus is the intersection of the current locus 
with the complement of the locus of visibility of e. If the 
restricted locus is empty, then the current attempt at 
a match has failed, and G backtracks to the last choice 
point. If kh« restricted locus is non-empty, G proceeds 
by selecting another object edge to match. 

This case analysis step constitutes a choice point 
for back-tracking. Thus, for each edge selected for 
matching, G assumes first that the edge is visible and 
looks for it. If this course of action leads to a good 
match then all is well. Otherwise G backtracks and 
looks for a match under the aanumption that the edge 
is invisible. 

In the above, an edge should be considered visible 
only if - in addition to meeting the usual criteria - its 
projection is long enough to allow detection by the edge 
finding program. An edge which presents itself end-on 
to a given camera position should not be considered 
visible from that camera position. 

Among other details about G which have been sup- 
pressed so far is the method by which loci of camera 
positions arc represented. A very simple representation 
is adequate for our purposes. Suppose that we have 
a scheme for partitioning the unit sphere into an ar- 
bitrary number patches such that the diameters of the 

patches go to zero as their number increases.   Then a 
locus can be represented to any desired resolution by a 
set of patches from a partition of adequate size.  More 
precisely, a locus /. is to be represented by the set of 
patches from the partition which contain some point 
of //.  The resolution of this representation is bounded 
by the maximum diameter of a patch.   Thus loci are 
represented by subsets of a finite set.    These in turn 
may be represented by bit maps: one bit is allocated to 
each patch on the sphere.   Hit maps are a particularly 
Rood representation for the current application, since 
the operation most frequently performed on loci is in- 
tersection, and intersection of bit maps is very fast on 
any computer.   The particular scheme which we have 
chosen for partitioning the sphere is not the best but 
the simplest. The partition is generated by first impos- 
ing a regular grid on the faces of a cube.   The cube is 
then projected radially onto the sphere. The patches on 
the sphere which we end up with are simply the projec- 
tions of grid elements from the faces of the cube.   In 
recent experiments, we have used 6 by 6 grids on the 
faces of the cube, yi.-lding a total of 218 patches. This 
representation is depicted in figure I. One 36 bit PDP- 
10 machine word r, allocated to each face.  So, a locus 
is represented by '• machine words. 

figure 1 

\Ve are still not done with the development of 0. 
A major shortcoming of G as described so far is that it 
rehes on perfect performance by the edge finder - each 
edge on the object which is in view must be detected 
by edge finder if the method to function properly. This 
kind of perfect performance is not obtained by existing 
edge detection programs, nor can it be obtained by 
any edge detector which relies on local image intensity 
discontinuities to detect edges, since object edges do not 
always give rise to such intensity discontinuities. 
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Thr matcliing algoritlun rii:iy be niodifled in order 
to inki" into account the Impcrfcctiom «>r tho^dge linder 
by accepting n^cha in which only ii I'raciion of the 
expected edges are present. If such a modilication is 
made, the criteria of match succesn and match failure 
become more complicated. It is necessary to deter 
mine conditions under which a partial match should 
be dropped because of Inadequate success in Rnding 
predicted edges, and also conditions under which a 
match should be accepted as re'iable evidence that the 
object being looked for has actually been found. 

In order to do this, we would like to be able to 
assess the probability that a given partial match arose 
from the object in the manner claimed. If this probabil- 
ity is very low, then the match should be dropped, and 
if very high, it should be accepted. For intermediate 
values, more edges should be matched, if possible, in 
order to i.^cumulate further evidence. 

Direct estimates of this probability are diCicult to 
make in the usual cases. Nonetheless, we can proceed 
by estimating conditional probabilities, and use qualita- 
tive considerations to get from these conditional prob- 
abilities to the needed conclusions concerning a given 
match. 

On the one hand, it is possible to estimate the 
probability that the configuration of edges making up 
a match arose by chance given any particular assumed 
"background" distribution of edges giving rise to chance 
matches, since tin-specilieity of each prediction involved 
in the match is known, as is the number of such predic- 
tions which have been met. We will refer to the inverse 
of this probability as the "reliability" of the match. 
The background distribution of edges usually cannot 
be derived from lirst principles, but is best determined 
by gathering statistics on sample images of the kind on 
which the algorithm is to be used. 

On the other hand, suppose that we have a partial 
match in which some fraction of the predicted edges are 
missing. Then we can estimate; the probability that the 
given set of edges would be missed by the edge detec- 
tor under the assumption that the partial match did 
arise as claimed. We will refer to this probability ;us 
the "plausibility" of the match. Kstimating plausibility 
require! information about the performance of the edge 
detector. As in the case of edge distributions, deriving 
this kind of information from lirst principles is difficult; 
again, compiling statistics from sample images is a botr 
ter idea. Note that underestimating the performance 
of the edge detector will lead to robust performance by 
the matching algorithm. 

So the reliability of a match measures how un- 
likely it is to have arisen itssuming it is in fact incor- 
rect, and its plausibility measures how likely it is to 
have arisen assuming it is in fact correct. Assuming 
that the presence of the object in the lield of view is 
moderately likely and there are unlikely to be impostors 
of the object in view, it follows from Rayes' llule that 
high reliability provides strong evidence that the match 

is correct, while very low plausibility provides strong 
evidence that the match is incorrect. (Notes: (a) Low 
reliability does not provide evidence that the match is 
incorrect, nor does high plausibility provide evidence 
that the match is correct (b) By an "impostor" in the 
above, we mean an object which is regarded as distinct 
from the target object, but looks nearly the same.) 

The following modilications to the algorithm 0 are 
needed to deal with Imperfect edge finding. I''irst of all, 
G must maintain estimates of the reliability l{ and the 
plausibility /' of the current match in the course of its 
search. When l{ exceeds a predetermined threshold, 
the match should be accepted, and when /' falls below 
another predetermined threshold, backtracking should 
occur. Second, G needs to perform a case analysis 
according to whether each expected edge is detected by 
the edge linder, in addition to the case analysis which 
it already performs concerning whether the edge is in 
view. This case analysis will also constitute a choice 
point for the purpose of back tracking. Thus, 0 will 
proceed as follows. For each new edge e which it selects 
for matching, it will (I) assume that c is in view, (2) 
assume that r is detected, (.'{) look for c, (-I) continue 
the match. If the match failed, then it will backtrack 
to (2) and assume that r, though in view, was not 
detected, and will proceed to the matching of other 
edges. Finally, if this last match fails, it will backtrack 
to (I) in the manner described earlier. 

The algor'thm as it now stands is no more than 
an elaboration on the simplest of matching algorithms: 
sequential matching with backtracking. Nonetheless, 
if we judge the efficiency of a matching method by 
the number of matching steps which it goes through 
in searching for a correct match, the algorithm does 
not come out badly. The principal reason for this is 
that only a few edges on an object of known shape 
need to be identilied in order to determine the position 
and orientation of the object, in fact, identification 
of the image projections of three non-colinear points 
on the object is sufficient to narrow the set of possible 
positions and orientations of the object to at most two 
distinct possibilities. (This last statement holds exactly 
for orthographic, projection, and applies to perspective 
projection as well unless the camera is very close to 
the object, or the precision of ineasurement is very 
high, in which case one of the t *o possibilities may 
be eliminated). A fourth non-coplanar point sulfices 
to remove the remaining ambiguity. The identilication 
of three pairwise non-parallel lines (without specified 
end points) will accomplish the same task. Thus, a 
match does not need to proceed very far before the 
locus of possible positions of the camera will have been 
narrowed to only a few grid points by back-projection. 
Thereafter, the matching of additional edges serves to 
check the correctness of the match, but not to further 
refine the estimate of camera position. The positions of 
these additional edges will be predicted accurately, and 
as a consequence the probability that many such edges 
will be found in the case of an incorrect match will be 
exceedingly  low.   Thus, bad matches are likely to fail 
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W* oiiriy. (.onversoly, the rrlul.ility „f a good inalch 
will me (|ui(kly :us more expected .>(!«(■« an« round, IQ 

that UM cost of achicviiijr a very reliable inalrh i.s low. 
So, the (-ncctivonrss of the current algorithm relies on 
the fart that it requires exact quantitative inatchinR of 
Dbjeel edges to image edges at all stages during a match. 

4.     Specialization  and instantiation of the one 
»tage algorithm 

The result of unwinding the main loop of the 
schematic algorithm G descrihed in the last section may 
be diagramed informally in the following way. 

e'i   ♦- selcct-odgeQ 

;issumevis(c1) 

no ycaN 

62  ♦- sclect-edge() Assumefnd((;i) 

/no       ycsX 

63  ♦-8clcct-edge()      (ind(ci) 

i'ignre 8 

Here,    "find(e)"    represents   the   predict-obscrve- 
back-project    operation    by    which    new    edges   arc 
matched, "c ^select-edge()" represents the selection of 
an unmatched edge to look for,  "assumevis(e)" repre- 
sents the case analysis according to visibility of edges 
and   "aaameflldfejr   represents  the  case  analysis  ac- 
cording to whether the edge has been detected.   Our 
job   now   is   to   Mil   i„   the   details   in   this   unwour d 
schematic   algorithm,   making   use  as  appropriate  of 
the fact that the object description is available in ad- 
vance.     In   the  following  discussion,   we  will  employ 
the 'compile-time/run-time" terminology familiar from 
compiler design.   Operations which arc carried out in 
the coerse of constructing specialized   variants of G 
will be refered to as  "coinpile-timc"  operations, while 
operations carried out by those specialized variants in 
the analysis of images will be refered to an "run-time" 
operations. 

The compilc-time process by which the above 
schematic search tree is Idled in may be thought of as 
moving from the root of the tree down, fully instantiat- 
ing nodes as it goes. Imagine for the moment that the 
hrst k levels of the tree have been filled in, and that the 
task at hand is to fill in a particular node at next level 
As will be seen in a moment, selection of the object 
edge to be matched at each point in the tree is done 
at compde-time. That is, the select-edge() operation is 
executed" at cor:,pile-time, so that each node in the 

instantiated scar,     tree will refer to a particular object 

edge to be matched.  The tree developed to level ib wi 
look something like this; 

assiimevis(ei) 

DO        yesi 

tssumcvis(c2) assu'mefnd(,',) 

/       \ /no       yes\ 

*      MMtmorfafct)      finü(c1) 

!     :   / \ : 

assumevis(eJ) 

no        ycs\. 

assi 

assumcfnd(e;) 

/ no       yes 
\ 

f.nd(ej) 

figure 3 

The box indicates nodes to be filled in at the cur- 
rent stage. We will deal with all the nodes involved in 
matchin.', a particular object edge at once, rather than 
lollowmg a strict level by level order. In what follows 
we will specify how each of the operations in the boxed 
nodes arc instantiated. 

(1) The find operation. This involves prediction of 
the position of e,, a check to see if any image edges lie in 
the predicted position, and back projection. Recall that 
prediction is carried out by computing bounds on the 
location of c, relative to an already matched edge CQ 

and then using the known position of CQ to get bounds' 
on  the position of cy   in  the image.    The position of 
one edge tv, relative to another (?„ may be specified in 
various ways.   The only requircnent here is that the 
relative position be given in a way that is invariant un- 
der translations and rotations.   In any case, a vector 
of four numbers [a,, o;., a;,, a,,] sulfices.    For example, 
't|,"j   might give the coordinates of the center of e- 
relative to the image coordinate system with origin at 
the center of q, and x-axis directed along t'0, a,  the 
length of tj, and a,, the orientation of c, relative to eQ. 
Let r«|^M(eylee,r) denote the position of cy relative to 
eg from camera position p in whatever representation 
is chosen.   More generally, let rdpo*(cj,eü, K) denote 
bounds on the components of rrifMlfa, rn, p) as p ranges 
over locus K . Let /. be the currently hypothesized locus 
at the time that the find operation is executed.    We 
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want to cornp lie rrlpon^-j, i(), I,). The Following vory 
nimple Bchemc la adequate.   Namely, at compile time, 
n/;)().H((J1 <(), y) is coinputrd lor each Rrid element </, 
and stored in a table. Then, relpos[ej,eQ,L) is com- 
puted al run lime simply by taking tne union of the 
hounds rclpo»{(j,c{),g) for (/(//. Tlicsc unions urc taken 
component-wise, so tnnt the end result of the process 
is :i set of numerical upper and lower hounds on each 
of the coniponenls of the relative position. Note that 
this manner of computing hounds loses some informa- 
tion since constraints relating different component! of 
the relative position are not expressed hy simple hounds 
on the components. As a residt, edgea with positions 
predicted in this way may not he consistent with any 
camera position in the locus. But this is comparatively 
unlikely, and, in any case, had edges of this kind will 
he thrown out in the back-projection stage. 

The above method is a very crude, but It can be 
made quite fast. I'or example, less than 50 machine in- 
structions per grid element are required to carry out the 
prediction operation in an aggressively coded implemen- 
tation on the PDP-10, VAX, or Motorola ()8()0(). The 
number of grid elements which need to be considered in 
a given prediction step of course depends on the details 
of the match in progress, in most matches, the size of 
position loci to be considered decreases rapidly as the 
match proceeds. For the experiment! described later, 
the average prediction step involved less than 10 grid 
elements. 

I'MTiciert implementation of the observation stage 
is a standard exercise in computational geometry. The 
problem is to design a data structure for storing image 
edges such that the set of edges satisfying a given 
prediction can be retrieved rapidly. Any of a variety 
of methods involving binary search on the parameters 
of the prediction will do. 

The tables of relative positions constructed at com- 
pile time for the prediction step can be used for back- 
projection as well. In order to determine which grid 
elements of the current locus are consistent with a given 
set of measurements, it is oidy necessary to compart; the 
measured values to the bounds rclp<).i{ej,eo,g) which 
have been pre-computed for each grid clement g. 

(2) Selection of the next edge to look for. 

In the course of a match, the currently 
hypothesized locus of camera positions is relmed in two 
ways: by back-projection, and by making assumptions 
about the visibility or invisibility of particular edges. 
The data necessary for the latter kind of relinemcnt is 
available at compile time. As a result, each point in the 
instantiated search tree has an associated compile-time 
locus of possible camera positions - namely, the set of 
camera positions which are consistent with the visibility 
assumptions made on the path leading from the root to 
the current node. 

Our task is to select at compile-time an appropriate 
object edge to look ror next at the current stage of 
the match.   There a.c three considerations which are 

relevant to this selection. First, the likelihood that the 
selected edge is visible should be ;is high as possible. We 
don't wish to select an edge which will be visible from 
ordy a small fi act ion of the current, locus or which, even 
if visible, the edge linder is unlikely to detect, since the 
computation time spent, looking for it, will then be un- 
likely to pay off. Second, the prediction of the position 
of the edge should be as specilic as possible, since this 
will  lead to a lower likelihood of false matches for the 
edge. Third, it is desirable that measurements on the 
image position of the observed edge should provide a-s 
much information as possible about the camera posi- 
tion. Fach of these factors can be evaluated in a quan- 
titative manner at compile time. Assuming a uniform 
probability distribution on the position of the camera 
(or more generally, assuming any particular prior dis- 
tribution on camera positions) and statistics about, the 
performance of the edge detector, the probability of the 
visibility of any edge over any locus can be computed. 
Similarly, the specificity of a prediction is naturally 
measured by the inverse of the probability that a ran- 
domly chosen edge will meet the prediction. This in 
turn can be computed in a straight-forward way from 
the bounds involved in the prediction. The numerical 
values of the bounds for the prediction can be computed 
for each possible camera position in the compile-time 
locus at compile time. Hy averaging these bounds (using 
the weighting of the prior distribution on camera posi- 
tions), an expected specificity for a prediction of a given 
edge can be determined at compile time. Finally, in a 
similar manner, the information obtained from measur- 
ing the position of any given edge can be evaluated for 
each camera position at compile time. 

Hy this method, the best edge to match next can 
be determined at compile time, assum'iig that a way 
of combining the factors listed above has been chosen. 
The question of exactly what weight should be given to 
each factor is a complex one. In qualitative terms, the 
order in which the considerations have been stated here 
reflects their order of importance for the elliciency of 
the matching process. Any weighting function which 
respects this order of importance is likely to be accept- 
able. We regard the detailed analysis of this question 
.■us an open research topic. 

Note that the determination of the best edge to 
match next at any stage is computationally expensive, 
since it involves calculations concerning each edge at 
each camera position. But, as remarked above, large 
amounts of computation time at compile time are often 
justified for smaller gains at runtime. 

(3) The visibility case analysis. The method by 
which visibility case analyses are performed hits already 
been fully Specified, so no compile time instantiation 
of the node is needed. However, certain visibility case 
analyses can be dispensed with entirely based on infor- 
mation available at compile time. It will often happen 
that the particular edge Cj whose visibility is in question 
is in fact visible throughout the compile-time locus, so 
that no case analysis according to its visibility need be 
performed. That is, it will often happen that along the 
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p;vlli taken from the root of the search tree to the cur- 
rent node, visihility assumptions have been made which 
together guaruitee the visibility of the current edflB, In 
this case, the case analysis node is simply left out. 

Note that this optimization is a very important one 
in that it greatly reduces the size of the search tree 
(though usually has ordy a minor ell'ect on its depth). If 
n edges are involved in a match, then in principle, there 
are 2" distinct combinations of visibility ^,,,1 invisibility 
for the edges to be considered. Of course, ordy a small 
fraction of these cases can actually occur, since since 
the visibility of edges are not determined independently. 
FW example, there are 2() dislinct visibility/invisibility 
combinations for the edges of a cube (one for each face, 
edge, and vertex which the viewer might be "facing")! 
rather than 2,2 ^ 4096. 

(4) The detection case analysis. We treat detec- 
tion case analyses in a similar manner to visibility case 
analyses: we drop a detection case aialysis if the as- 
sumption that the current edge is not detected causes 
the plausibility of the current match to drop below 
threshold. The information aboul tin current natch 
which is needed to compute its plausibility munely, the 
information as to which edges have been detected and 
matched and which have not - is available at compile- 
tirnc. It can be read off by following the path from the 
root of the search tree to the current node. 

We can sum up the speed gains achieved by 
specialization in a very rough way by noting that the 
time required for an average matching step in the 
specialized program will be on the order of a few 
miliseconds on a 1 Mil' machine. As a conse(|uence, 
several hundred matching steps can be executed per 
second in the search for a match. This speed is much 
greater than that obtained by existing methods, and is 
adequate for a variety of practical applications. 

5.     Experiments 

The scheme for generating special purpose vi- 
sion programs described above has been implemented 
in Mac.Lisp running on the I'DIMO at the Stanford 
Artificial Intelligence Laboratory. A few refinements 
not described earlier are included in the implementa- 
tion. For example, in this account, we have not con- 
sidered the effect of measurement error, nor have we 
described any method for matching partially visible (or 
partially detected] segments. The implementation in- 
cludes machinery for dealing with both of these matters. 
Also, until now we have required that the distance to 
the object be known exactly in advance. This require- 
ment is weakened in the implementation; it is generally 
sufficient if the distance is known to within a factor of 
2. 

On the other hand, the implementation does not 
yet fully automate the selection of the order in which 

edges are treated; in the experiments we chose the or- 
der by hand. Nor does it come close to realizing the 
potential for speed of the underlying algorithm. For ex- 
ample, ellicient data structures and accessing methods 
for the set of image edges have not been implemented. 
The speed figures given earlier are estimates of what 
could be obtained in an aggressive implementation, not 
measurements of current performance. 

So far, tests involving three different objects have 
been run. The objects treated wen- a connecting rod 
casting, a universal joint casting, and a key-cap (key- 
caps are the plastic keys which make up typewriter and 
terminal keyboards). In each test, a special purpose pro- 
gram was generated automatically from a description of 
the object; this program was then applied to images of 
the object digitized from a television camera. In the 
case of the connecting rod and universal joint, the pic- 
tures contained only one instance of the object against a 
relatively uncluttered background. These images were 
successfully analyzed with relatively little effort by the 
vision programs; correct matches were obtained in each 
case after fewer than 50 matching -steps. 

The special purpose program for recognizing key- 
caps was subjected to a more arduous test. We digitized 
an image of a jumbled pile of key-caps (see figure 4). 
The edges found in this image by David Marimont's 
edge finder [Marimont 1982] are displayed in figure ,r). 
The task of the key-cap recognition program was to 
find instances of key-caps which were - roughly speak- 
ing - within 4,r> degrees of right-side-up. More precisely, 
the locus of allowable orientations of the camera rela- 
tive to the key-cap was the locus making ip the top 
face of the cube in the scheme for representing loci 
descrioed earlier. Key-caps of a variety of shapes ap- 
pear in the image; only key-caps with square upper faces 
were sought by the program. This is a severe test for 
the matching method for several reasons: (1) Objects of 
the desired kind must be recognized in a complex back- 
ground - a background in which many objects similar 
to the target object appear. ^2) The target object has 
only a limited number of features on which the match 
can be based. (.'{) Resolution is quite low. Although the 
entire image has a resolution of 240 by 240 pixels, each 
object to be recognized occupies only a 40 by 40 region. 
Also, lighting and contract were not particularly good. 

The program was run in a mode in which not just 
one, but every match meeting the reliability criteria was 
returned. Further, the reliability threshold was set at a 
very low level, so that every plausible match wa.s found. 
The matches found were then ranked by reliability. The 
top three matches in this ranking were in fact correct. 
They are displayed in figure 6. Most of the remaining 
matches - which had been assigned lower reliability - 
were incorrect. The total number of matching steps re- 
quired in this experiment was 900; so, in the hypotheti- 
cal "aggressive implementation" mentioned earlier, the 
whole process would take a couple of seconds. 

This experiment indicates that the matching algo- 
rithm can find matches under difficult circumstances. 
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in tins case, due to the stiiiill nmiihcr of iirUcliinf, foii- 
turo», it i» Bot poHsible l.o ■ehievtl very liij;li roliiil)ility 
of iiiiitches. Typic.-il indiislriiil ohjerU, such iis the 
casting» iiieiilioued :il>ov<>

l have many more features on 
which a match can be based, and hence allow very i'.ood 
reliability of detected matches. 

- 

figure 4 
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figure 5 

figure 6 

6.     Extensions 

We have described in some detail the construc- 
tion of specialized variants of a comparatively simple 
matching algorithm. It should be evident that the same 
general scheme can be applied to more complex match- 
ing algorithms which handle a wider cla-ss of problems, 
or which exploit additional structure iti the matching 
situation in order to enhance performance. 

An elaboration of the current algorithm which 
is particularly useful and to which our scheme for 
specialization extends easily is as follows. If the tar- 
get object has symmetries, or if more generally there 
are recurring patterns of edges on the object, then the 
matching p.-'icesa may proceed by first seeking an in- 
stance of the recurring pattern, and then performing a 
case analysis according to which of several instances of 
the pattern has been encountered. This modification 
will speed up the matching process in the cases to 
which it is relevant, since a good match is likely to 
be found sooner, and since extensive bad matches to 
the "wrong" instance of the pattern will be avoided. 
The same technique can be used for matching of mul- 
tiple objects which share common patterns of features. 
Again, the common pattern is matched lirst, and then 
a case ana'ysis as to which object the pattern arose 
from is performed. The tecliiii(|iie may be applied recur- 
sively to very large sets of target objects which have 
been chwsilied in a hiearchical manner according to a 
taxonomy of common feature». The taxonomy is ex- 
ploited by a matching method which performs a kind 
of binary search down the hierarchy until a complete 
match is found. 
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Moragenerally, UM maiehiiig iüforiUiin which WP 
hiivo eonaioBrad is u Instance of ui extremely common 
kitid pereepUfM k^orithm. Such dgoriUmui urc built 
up from interienved obeervatioii steps, in which lome 
Mtoetnble quality of tin- world is predicted, obierved, 
and used to refine the eurroot world-modd, and CUSP 
analysis steps, ifi which assumptions are made ftbout 
the world - assiimplions which are not juslilied hy any 
data or KTCUment, but which are necessary to decide 
on what observation to make next, and which can be 
withdrawn later if necessary. This kind of algorithm 
appears - usually in elaborated fortn -  in many areas 
of computing.  Any such algorithm can be ipeeialind 
according to the general plan which we used here. To 
perform the specialization, we proceed by lirst unwind- 
ing the case analysis steps into a full tree of possibilities. 
Then, we use the context of assumptions available at 
any point in this tree to optimize the work performed 
at that point. 

7.     Related Work 

The particular vision problem which we have 
chosen to attack is HI) model-based vision in its strict. 
form: the exact shape of the object to be recognized is 
assumed to be known in advance, and no restriction is 
placed on the ;{|) orientation of the object relative to the 
camera. Comparatively little work has been devoted 
to this form of the vision problem. There appear to 
be two traditions of work in model-based vision, one 
of which might be referred to as 21) vision from exact 
models, and the other aa 3D vision from inexact models. 
The (irst tradition includes work focused directly on in- 
dustrial problems such as that of Perkins (Perkins 1!)82|, 
where the exact shape of the object is specified in 
advance, and where the orientation of the object ta 
restricted in such a way as to reduce the problem to a 
"nearly" 21) form. The second tradition treats problems 
in which orientation is (comparatively) unrestricted, 
but where the previously available information about 
the model is less complete. Kxamples of this kind 
of work include [Carvey 1076] and [Shirai l!)78|; here 
the matching processes used tend to employ qualita- 
tive rather than quantitative restrictions on matches. 
AcronymjUrooks 1981] ia an exception to the above, 
in that it does exploit quantitative restrictions on the 
parameters involved in a match. Acronym uses a con- 
siderably more ornate matching scheme than ours. Also 
it uses a method for generating numerical constraints 
which is much more general and consequently much 
slower than ours - by a factor of at least 100 (Acronym 
does not "compile" the object model into a fast program 
as we do). Still, there are strong similarities in approach 
between our work and the work on Acronym. 

Thus our work Is less ambitious than some pre- 
vious work in 30 model based vision, in that we 
restrict ourselves to exactly specified models, and in 
that we are investigating comparatively simple algo- 
rithms.   Nonetheless, it seems to us that the problems 

and processes involved in simple sequential matching of 
exactly specified models are not yet well understood, 
and that, as a research strategy, it makes some sense 
to concentrate on this limited domain before attacking 
matching problems of a more general kind. 

The general strategy by which we have obtained an 
efficient implementation of matching ■ namely special 
purpose automatic programming - has been followed 
in technically different form by jHolles 1982]. Molles 
has attacked the problems of matching 21) models to 
images, and more recently, M) models to range images, 
by what be calls the loca' feature focus melhod. The 
method involves selecting a class of "focus" features 
of similar shape on the object from which the match 
is to begin. Then maximal sets of mutually consis- 
tent interpretations for features near a given candidate 
match to a focus feature are sought. Such a "maximal 
clique" of consistent interpretations forms the seed for a 
more complete match, which is done sequentially. (See 
[Holies 1982] lor a description of the method). This 
method is compiled into a very fast matching program 
by the same kinds of methods we have used. Local fea- 
tures to be matched are selected in advance, and tables 
of relative positions are compiled. Kxperinu tits have 
shown that the maximal clique method is robust and 
fast for 21) matching. 

The maximal clique method does not extend e;isily 
to the problem of 3D matching from intensity (rather 
than range) images. There are two reasons for this. 
Pint, the maximal clique method depends on the tran- 
sitivity of the consistent-interpretation relation: if in- 
terpretation A for point a is consistent with interpreta- 
tion li for point h, and if interpretation li for point b 
is consistent with interpretation C for point c, then in- 
terpretation A for point a is consistent with interpreta- 
tion C for point c. This transitivity holds for 21), and 
for .'{I) points from range data, but not for 21) projec- 
tions from a.ID model with arbitrary orientation. (Still, 
the clique method might be used for more complicated 
structures for which this transitivity does hold). The 
second and more decisive reason for the dilliculty of ex- 
tending the maximal clique method to 3D is this. The 
method depends on the possibility of selecting a reason- 
ably small set of image features which are candidates for 
matching features near the already matched focus fea- 
ture, and which together uniquely identify the match. 
In 21) or 3D from range data, the identification of such 
a small set of features is aided by the fact that the 
positions and orientations of the local features relative 
to the focus feature are known in advance. In .'JD in- 
tensity images this kind of advance information is not 
available, or is much weaker, so that the set of nearby 
features in the image which require consideration may 
be quite large. Kqually importantly, the number of pos- 
sible interpretations for each such feature will be large 
as well (the size of the graph of possible interpretations 
in which cliques must be found i.t of order it X n, where 
k is the number of local features considered, and n is 
the average number of interpretations of each feature). 
In the keycap example, the interpretation graph would 
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bo so IAMB tint <li<nio (iiuliiiK would he impractiral. 
S((imiili;il ■itching is U-ss vulncriiblc to this kwul of 
problem bcruiisc lit c.uli SI.IKC in (ho match all of the 
informiition derived from the mutch 8w f:ir is used to 
restrict the number of ciindidates for match at the next 
sta^c. 

Hollos' work is very closely related to ours in 
general aim and statogy; his results support the idea 
that the feature matching approach to vision is feasible 
and robust. 
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Abstract 

I In- pap« prcscms the system description .md org.im/diion of MA», 

Ihe Map Assisted I'liolo nnerpiel.uion System, MACS is a large 

micgratcd database system eonlaming high .esolmi.wi aerial 

photographs, digui/ed maps and other cartographic products, 

comhined «ith detaded M) desenptmns of man-made and natural 

features in ihe Washington DC. area. A classHlcalion of image 

database systems into three models is als., presenled. I hese models arc 

ihe Image Database (ID) model, the Map Picture Database (Mm) 

model and the Image/Map Database (IMO) model.' 

1. Introduction 
This paper presents the syvlem description and organization of MAI'S, 

the Map Assisted Photo incrprelation Svstem. MAI'S is a large 

iniegraled database system containlnf high resolution aerial 

photographs, dipiti/ed maps and other cartographic products, 

combined with detailed 3D descriptions of man-made and natural 

features in the Washington D. C. area. 

Ibis paper discusses three major topics, l-'irsl. a classiMeation of 

different models of database systems for cartographic applications is 

presenled togelher «nh a discussion of ibeir mhereiu strengths and 

limiialions. These models are Ihe Image 1 )al ibase (ID) model, the Map 

Miclure Dilaba-e (Mm) inodel and the Image/Map Datibase (IMD) 

model. Second we argue for ihe ntilny of ihe Image/Map Database 

mode!, diseuss^iasks and preseiUAa general description of the model. 

I bis model describes componenls. facilities and lechniques that * .uld 

be present in nidi a system, and a range of tasks that tan be supported 

by the model, linally, we describcihe MAI'S system In terms of our 

HMD) model, and discuss three applications whkh mili/e and inccgralc 

image, terrain, and map data in a powerful manner.   Wc also discuss 
I f A 

what wc luve learned during the implementalion of the MAI'S system, 

some ideas on the proper interfaces between components, where 

iTiodiilarily should be achkned, and point to future wort, 

• 
(«Sf^lLZnS? bV ^ DcrCn5C Advanccd R^a'rt Mm» Agency 
^- -, i twf; ^'s, 59

1,mon,'orcd bv lhcA" ******* wS vZ om.a i RJMMMC.U»   riM uow, and cntlusions MMM M M t'ocumcnl are 
^c of lhc ,,   hor a„d 5h„uld m ^ ^^^^^ ^ i    ^^^ ^^ '-    a™ 

2,Background 

Our early mcHivation for bivettigaUng image d.itabases was as a 

component of a complete image understanding s>sieiii. We had tinly a 

vague idea of what capabilities it should have. Hut >ve thought tint It 

should represent "idealized segmentations" of an image, where llic 

labeling of the segmenh was in fact the "scene imerpretation". It 

should relate, or compare machine generated segmentations to this 

model, and provide the user with a qualitative and quanliiative 

performance measure of die machine segmentation. We attempted Ulis 

with the MIDAS system1 r using the segmentation results for a Nt of 

I'itisburgh city scenes generated by the ARGOS'- * system. Hie results of 

the performance analysis of ibe scene segmentation were less than 

encouraging. While we could give quantitative analysis of the 

scgmcnlation and libeling by the AKGOS system, ihe qualitative results 

were couched in Ibe original (subjective) hand segmentations. It was 

dillitult to qualiiativcly distinguish between alternative machine 

scgmentallons, since the relative importance (or cost funciion) of 

missing or mlslabeled regions or broken boundaries for different 

regions was not rcptesonted in Ihe segmentation. How to pcrfoi."-. such 

an evaltutu n is still an open research problem. Also, although we bad 

a database of 18 high resolution color images of Pittsburgh, we had no 

general mechanism to relate one to another, except through analysis of 

the hand segmentaiions and the names given to buildings, roads, rivers, 

and other features in the scene. However, in the process of 

implementing and using MMMS we did learn a great deal about image 

database organizalion and symbolic represerlalion of scene 

tlesciiplions, 

Wc decided to look al map-guided image inlerpretalion and began to 

assemble an aerial photograph database of the Washington, D, C. area, 

LMflg this imagery, we fell, «e could quicMy generate a map database 

th« ^ould allow us to explore image analysis of complex aerial 

photographs using a simple map database dial constrained where to 

look, ami what to look for. This idea ol map-guided segmentation was 

not new, Ihe IIAWKI vi system^ and succeeding "road cxperl"'''7 were 

based on Mitular ideas, and use of world knowledge had been a well 

accepted paradigm in image interpretation. However, we wanted to 

focus on more general capabiliiics. to represent large scale spatial 

organizations normally encountered in complex urban scenes, llic 

generation of the map database turned out to be a much harder 
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prublcm than wc initiull) csdmaicd, und li qiiickl> became the focus of 

mir rcKtirch. In rcinnpcct, I believe, ii *as cxuctl) the right prubtem to 

work on, iind .ikhough tlicrc is siill much to do in (he urea of 

Image/map databasci, we now have the liglu tuoh and undentanding 

10 begin to tackle the original probten. This work has direct 

application in three areas; 

• photointeipretal'oiv   reprcseiuation of world knowledge 

for Image undersian ling. 

• situation assessment: a spatial expert for decision support 

systems. 

• cartography: toward digital map generation and use. 

3. Clasbification of Databases 
There has been, o^er the last ten years, a perceived need for 

organising and structuring image and map data for cartographic 

applications. It has been difficult to compare \arious capabilities and 

limitations of systems because there were few common denominators 

by which systems could be compared. Systems reported in the 

literature could loosely be catcgori/ed cither as research vehicles, or 

production-oriented systems for particular well defined subtasks of the 

general cartographic problem 
8 9.10 Research vehicles generally had a 

high degree of organi/ational complexity tested on very small scale 

databases. Systems used in production environments tended toward 

simple models running very large scale databases, larther, while the 

tasks being pcrloimed involved the analysis of aerial or satellite data, it 

is often uncleai whether the image data was an integral part of the 

resulting database, or simply used for data acquisition. One example is 

the development of digital filing systems that store fads about a large 

number of images wi'hout storing the actual image data. The best 

example of such a system is the I'KOS Data Center database 

maintained by the U.S. Dept. of the Interior. This database has 

appioximaiely 2xl0h frames of I andsat imagery and SxlO6 frames of 

aircraft (aerial mapping) photography. Users may specify an area of 

interest by geodetic point or rectangular area and sub-select those 

frames based on time of year, cloud cover, type of sensor and a a 

scene quality rating. However, the actual frames of data are stored on 

high density magnetic tape. Similar situations exist in map producing 

organizations such as the United States Geological Survey (I S(;Si and 

the Defense Mapping Aceney DMA. 

One notable exception is described in Kondo et.al. where an image 

database using I.andsat imagery was integrated with map descriptions 

for geographic, natural, and cultural features, f-'eaturcs can be 

displayed superimposed on the image data, and imagery could be 

indexed by geodetic location or by feature name. There are limitations 

such as: the image-to-map correspondence was based on a fixed 

decomposition of landsat data into a latitude/longitude grid at a map 

scale of 1:50000: the spatial rclafonships between features were entered 

manually; and the overall complexity of the image and map database 

was small.  Nevertheless, this represents an ambitious new direction for 

the development of land-use systems using I andsat imagery. 

In this discussion of database systems for cartographic and situation 

assessment applications, we are assuming that the following minimal 

capabilities hold: (1) on-line display of digital imagery and map data, 

and (2) ahilit) to query interactive!) about attributes of the Imagery and 

map. I he following is our classification of the capabilities of three 

models which we can use to compare various existing systems or 

approaches. These models are the Image l)atabase(ll)) model, the Map 

Picture Database (Ntrn) model and the Image/Map Database (MO) 

model. 
3,1. linage Databases 

The Image Database model (ID) is the simphest and most common 

database model. It is orgam/ed to relate attributes about the sensed 

image such as sensor-type, acquisition, cloud cover, or geodetic 

coverage . These databases generally do not represent the content of 

the scene, but rather attributes of the scene. When the semantics of the 

scene are present, the location of cartographic featuies .ire represented 

In the Image (pixel) coordinate system. This poses obvious limitations 

to the application of relevant knowledge from other images or from 

external sources, since there is no general ineehamsin to relate map 

•calure position between Images that overlap In coverage or to an 

external map. Although the features represented may appear to be 

map-oriented. Is is difficult to compute general geometric properties 

using the image raster as the coordinate system. 

Although relational database techniques have been .ippllcd to the ID 

model, we feel these techniques are not appropriate to spatial database 

organi/alions for several reasons, l-'irst. using the basic <iillribule, 

yah '> tuple to represent vector lists of map coordinate data requires 

that all of the primary key attributes be duplicated In each relation, 

since there is no mechanism for allowing multiple valued (sets, lists, 

order pairs) as a primitive attribute in a relation, t'urlher, the relational 

database operations such as union, intersection, join, project, arc not 

good primitives for iinplememation of inheiently geometric operations 

such as containment, adjacency. Intersection and closest point. 

Operations such as feature intersection arc reduced to searching for line 

segments which share the same pixel position. Ilnally, In any large 

system, a logical partitioning of the database must be performed in 

ordei to avoid extensive and often unnecessary search when performing 

spatial operations. Partitioning Is difficult to achieve In relational 

systems since the relational model restricts Itself to homogeneous (only 

one record type) sequential sets. Previous work advocating such 

orgam/ations did not address the issues of system scale, and focused 

more on issues of query languages using relational models for 

geographic databases than the actual construction of complex 

systciiisIJ" '4. When measured by die number of images, image- 

based features, and by the complexity of the relationships represented, 

these svsteins were quite simplistic 
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3.2. Mjp Picture üalnbases 

I Iw Map I'icuirc I knahme nwdcl IMI'I» dcKribcs dutubatct thai are 

generated In diglti/lng cant^raphic product», such as pre-existing m.ips 

and i ii.nis. I he« dakibmct arc auracilvc in envimnmenw where paper 

map« have played .1 large role In planning and analysis.   IIKMC are, 

however, some mnjor limliatkms hi sp.m.il systems based im dlgitiwd 

.■.uiopr.iphie proclucis.    Iirsi. in the miglnal map production, spatial 

ambiguit) has been rcctifled by the carti«rapher In ,1 manner that is noi 

often  reuTvihie.     I he i.iriogr.iplue process Involves simplicatton 

(een.i-.ili/.nion). ctassiflcation (abstraction), and symboli/xition of real- 

wortd ambiguity.  Constraims imposed h> the scale of the map often 

determine which woild features can he depicted despite the desirability 

of portraying a complete spatial representation.    Ihereforc, map icon 

and sunhologs placement ina\ not he as accurate as the original source 

material. Since the deduction of the actual spatial arrangement of 

objects  from  an   iconic   representation   is an  open  problem,   Mi'D's 

rcprcsem chaos masquerading as rationalised order.   I he kcj issue is 

that Mfh's are pictures of a map (however detailed) rather than the 

underlying map structure and spatial organl/alion.     Although  die 

graphics display of wm appears to convey a great deal of semantic 

information, that impassion is a result of the human observer, not a 

reflection of an underlying map representation. 

When a map is digitized into a map picture, another subtle 

simplilication occurs. I he digiti/ation process results in a map image 

on a rectangular grid whose si/e is generally limited either by custom or 

as an artifact of die digiti/ation process. Common limitations are 

scanner resolution, maximum size of image raster, and the physical si/c 

of source map. One popular representation is to subdivide regions of 

the -nap picture into a regular decomposition such as quad-lrcc'5 ">. or 

k-d tree . I he implementation of this representation is greatly 

simplified in MK) models since one no longer has to contend with 

positional ambiguity of map features because of the cartographic 

process outlined above, and die discrete nature of die digitization 

process. 

One common use for die MID model is in geographic information 

systems for land use and urban planning. In these systems, aggiegrate 

values such as population of an aiea and crop yield of an area arc 

computed, I be scale of the original map becomes the liniillng factor for 

accuracy in information computation. However, the grain of 

computation is usually large enough that these inaccuracies arc not I 

practical problem. Incremental update of the database due to new 

residential and industrial areas and the concomitant los- of rural areas is 

a difficult problem since database update requires careful map editing 

tools not usually associated with these vii'Dsystems. 

A recent trend has been to take existing MPl) databases and add a 

map feature database component, usually relational to describe 

attributes of various features. We believe that augmenting traditional 

Ml'l) databases with semantic information has merit in those 

enviroments where analysis is being performed by  humans, since 

Information synthesis is not a requlrcmeni of the database system. 

However, once such .1 system is in place, there is a tendency to attempt 

to automate analysis functions requiring spatial interpretation, md the 

generation method of the MI'li model has several drawbacks for use in 

photo-interpretation, situation assessment, and cartography. The chief 

problems are the method of generation as outlined above, the lack of 

semantic information about map features, and the requtremcnl that a 

map exist at the appropriate level of detail for the area under 

consideration. 1 he IMD model discussed in die following section 

addiesses these issues. 

3.3, Image/Map Databases 

I he Image/Map Database model (IMD) relates map features to 

image database dirougli camera models. It therefore has the capability 

to describe relationships between features acquired from different 

images through die map database. This capability is in contrast to the 

image database model where the feature descriptions can only be 

related if die descriptions come from the same image. 

Since the map database is built directly from aerial imagery in die 

MO model, the resolution / accuracy issue is a function of the ground 

resolution of the imagery, the Intrinsic position measurement error due 

to camera model, ground control, etc. rather than an artifact of the map 

depiction scale as In the MPO model. A greater variety of feature 

descriptions Is possible since they are not lestncted to those that can be 

portrayed in a cartographic product. Iintliei. the complexity of a 

particulai feature description is independent of any particular task 

requirement and can represcni a rich set of atliibutes, semantic 

Inteipretations, and knowledge from diverse sources. This flexibility is 

a key clement for map data representation as we look toward spatial 

database systems with applications In cartographic production, expert 

pliotoTiitcipretalion, and situation assessment. 

However, just as the cartographer must resolve ambiguity, so die 

spatial database must be able to represent iiiconsistency in a consistent 

manner, Kor example, errors in correspondence between images and 

the geodetic model cause the same point on die earth to he given a 

different geodetic position, le when viewed from different images the 

same geodetic point produces a different world position. If this point Is 

on a common boundary between two features, say a political boundary, 

there should be amhiguily as to which region the point Is In, liy the 

same token. If two large residcntal areas are found to intersect because 

of positional uncertainty, and the result of the intersection Is several 

small polygonal areas, die IMD model should be able to rectify dlis 

ambiguity. Ibis rectification might take the form of a symbolic 

relationship that indicates that the residential area share a common 

boundary, while maintaining the ability to represent die original 

errorful signal data. Since the original data is maintained in the 

database, the symbolic relationships do not have 10 be static. Kor 

example, these relationships can be dependant on attributes similiar to 

those used by cartographers when ihey perform simplification and 

generalization,   I he link from the symbolic interpretation back to the 
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original bouitc daui i-> not possible in Mi'l) systems. 

3.3.1. Spatial Knowledge 

I he IMI) model gives us ilw tools to eonsimct our map database from 

"Ursi principle^" JIUI nc lojictlici p.mi.il s|i.iii.il knowledge .ii dlfTcrcnt 

levels of detail, Ihis is possible because individual map features may be 

specified direct!) from source Imagery, I lus capability is precluded by 

the derivative nature of the MP» model. Ili.ii is. it is dilTieult to 

assimilate new ,mU possibly ermrl'nl knowledge because of the 

mismatch between the new errorfUl data and the cariogr.ipliic 

rectification ofambigious data. 

I he representation of a multiple levels of detail paradigm is often 

invoked .is .1 part of a coarsc-finc or hierarchical matching strateg) in 

image processing .md interpretation, Civen the suile and digitized 

ground resolution of an image, the IMD model can generate .1 map 

description that will suppress anj features that would be 100 small 10 be 

rccogni/ed, with remaining descriptions .11 the appropriate level of 

detail. Uns technique is more than camcru selling and transformation, 

since the criterion lor "too small" can be .111 attribute of the map feature 

ilseir. Consider the map feature description of a university campus. At 

some level of detail corresponding to pixel ground resolution distance 

(CKDi,   features  such   as   playing   fields,   dormitories,   instructional 

buildings   md  offices,  BGCCSS  roads,  and  campus greenery  arc all 
•••• 

individually distinguished. L'smg spectral properties of the features 

and spatial relationships between these features, we can determine 

those feature boundaries that are likely to be muddled, and those with 

sufficient detail to be recognized. 

The multiple level of detail paradigm need not be applied In a 

homogeneous manner, lor example, tasks such as decision aids for 

photoinielligence may require high resolution detail to support 

analysis, but low resolution detail to establish overall context. A large 

stale spatial orgam/alion containing urban, residential, and rural areas 

will require llexlbllily to represenl the high feature densil) and 

complexity in the urban area as well as significamly lower density In 

rural areas. 

Flexible knowledge acquisition Is necessary because In photo- 

nuerprctation. situation issessment. and cartography, world knowledge 

is Inherently fragmented. Knowledge fragmentation in these domains 

arises from: 

• nuilioils of knflwtalgc Requisition 

There are diverse sources of knowlcge that arc used to 

acquire map feature information. Some of the most 

common are direct measurement from Imagery, old maps 

and charts, sketches, and collateral data, 

• task rcquirenients 

If the task requirement Is to support radar scene simulation. 

then elevated roads aie significant, and road networks In 

general arc mil signilkani II the task is to support map 

gcncraiion at u particulai scale (saj 1:50000), the feature 

sl/cdcnsit) maj determine whether h is directly portrayed, 

gencrali/ed. or omitted entirely, liiere are, of course, well 

delined rules that govern these decisions, but they are 

generally not consistent across a wide range of map scales. 

• S|iiciali/aliiiii in fealnre extraction 

I here is a certain amount of speciuli/ation In cartographic 

and situation assessment activities. Analysts may specialise 

in .1 particulai area of the world, be knowledgable In 

hydrology, geology, local construction customs, or political 

matters. In the production of large scale maps it is rare to 

find map generahsis, although this ma) not be true for low 

level feature extraction activities. I his speciali/atnn lends 

to fragment knowledge, and is often given as a justification 

for building database systems that provide access to a wide 

range of map knowledge and ma) have general capabilities 

for know ledge synthesis, 

Ihc l\m model methodologv provides a mechanism for feature 

unilication in a cohesive framework, ll provides a framework to lelate 

symbolic descriptions to their original data sources. Ii is not tied to a 

particular cartographic representation nor to limitations of cartographic 

production, 

4. The Database Problem in imago Interprelation 
1 he database pioblem has been addressed In a variety of ways In 

systems that perform Image analysis and Interpretation, However, it 

has rarely been pursued as a separate research problem. One 

explanation for this Is that portions of general database represention arc 

often embedded In die experimental image processing systems and 

become highly tuned to the application. Ibis is sometimes a result of 

system performance issues, or ease of task-specific implemeiilations, 

but often it Is a result of not recognizing die database problem as a 

separate issue. 

It is difficult to give 1 precise analysis of the use of map databases In 

image Interpretation, since the detailed organizations of experimental 

systems arc rarely avail.ible. However, there arc several recent 

examples.  Work at SKI used a map database of road intersections to 

construct a camera n idel In the IIVVVKMI  and subsequent "road 

expert" systems ■''■7, 

The AlUjDS ' system used a digitized city plan map and elevations 

for buildings to build a .11) graphics model of downtown i'itlsburgh. 

Ibis model was directly compiled Into a knowledge network 

representation which described size, shape and relative positions of 

buildings, roads, rivers, and bridges for an arbitrary view point. 

Although It was not tied to a geodetic grid, it was a general map model. 

■  1 
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Recent work .u tlughn b.iscd on ihc SCRONYM system developed 

!n Dmoksund lliniiud uses (mage registrutlon to a gcographi model, 

Ihc system uses prc-sclcctcd regions of Interest and uttempts to kxate 

and Identify pre-defined object instances within these ana. 

ACROhh M is currently the host example of a model-bracd system 

ii\.it Incorporates viewpoinHnsensitivc mechanisms in terms of us 

model description. Its recognition process is to map edge-based image 

properties to instances of object models. In the domain of aerial photo 

interpretation, results have been reported tor the rccognltiwi of a sm.ill 

number of models (.1) ibr wide-bodied jets In aerial photographs, it is 

not clear how map knowledge would be dlrcctl) Inicgratcd into the 

ACKONVM fr.imework. but one could speculate that it could be .idded 

by ii method .imii.irto the work .it Ilughes described ,ibo\o. 

Matsuyama30 :i h.is demonstrated a s\stem for segmentation and 

intcipietation of color-Infrared aerial photographs containing roads, 

rivers, forests, and residential and agricultural areas. It uses rules to 

make assignments based on region adjacency and multi-spectral 

properties. These rules make use of informal map knowledge but do 

not directly use a particular map to guide intcrpie anon. It generates 

good descriptions of a variety of fairly complex aerial scenes getting a 

great deal of constraint from the multi-spectral data. 

In his recent tbesis. Selfridgc proposed using adaptive threshold 

selection for region extraction b> histogramming and region growing 

using an image-based "appearance model". Although the work 

desciibcs feature positions and shapes in terms of pixel descriptions, it 

is not difficult to imagine a more general map-based approach that 

would result in the automatic generation of constaints to his adaptive 

operators. 

At CMU. Herman has demonstrated the feasibility of incremental 

acquisition of .11) scene descriptions from stereo-pair aerial 

photographs in the MAPS database In the .11) Moslac project. I his 

system requires a known stereo camera model but uses no n-priori 

knowledge about the scene other than weak geometric assumptions 

about urban emironmenls. 

5. The Image/Map Database Model 
In Uns section we discuss four classes of tasks that arc common to 

photo interpretation, situation assessment, and cartography. We then 

list some criteria by which one can evaluate the strengihs and 

limitations of database systems. Ihesc criteria are not exhaustive, 

rather they point to four areas that should be present In IMD 

implementations and system capabilities in each of the areas. 

5.1. Tasks for Image/Map Da* a base 

In this section we give a classincation of tasks that are c minion to 

applications in phofi-imerpretation, situation assessment, and digital 

cartography systems.  The four tasks are SCICCHDII of image, terrain, or 

map data based on attributes of the data, spatial compulation of map 

feature relationships,  temaiitic computation of map  features, and 

M/iMrvmif imagery, terrain and map data. 

1. Selection 

The selection task requires that the i\iii system be able to 

select from a potentially large set of database entities based 

on attributes of image, terrain, and map database features. 

Hie seleiimn task does not require image-to-map 

correspondence, and is the task normally performed by II) 

model systems. I'or example: 

• select imagery with particular intrinsic characteristics: 

sensor, scale, date, cloud cover, processing history 

• select map features based on symbolic description, 

partially specified description, similarities in image 

acquisition 

2. Spatial (ompulalion 

Spatial computation is ubiquitous in cartographic, situation 

assessment and photo-interpretation tas!.i An ixm system 

must provide tools to compute common spatial 

relationships such as containment, closest poim, adjacency, 

and interseclion. One issue is how to structure the 

environment in order to constrain search and thereby avoid 

unnecessary computation. Consider four \iews of the same 

problem: 

• given a geodetic area, which images cover, or partially 

cover this area 

• which roads can be found within the image 

• which images contain this building 

• g'\en an image, find all images which overlap it 

.'. Si'inanlie (ompulalion 

I here are a number of tasks that require more than basic 

spatial computation, or where the appropriate spatial 

operation depends on the meaning of the map objects. Arc 

there intrinsic high-level properties of map feature, that wc 

can extract from basic spatial geometry that give a moaning 

to the feature? Semantic computation needs to be 

investigated as we develop more complex spatial databases, 

l-or example, what is the semantics of intersection" for the 

following pairs of map objects.' 

• intersection of two roads 

• intcrseelion of bridge and river description 

• intersection of a building and .. road 

4. Synthesis 

One goal of any database system should be to bring 

together diverse sources of knowledge into a common 

framework. Synthesis is the generation of new Infonnation 

using | new method of presentation, computation, or 

analysis, l-'or example: 
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• t.irlugr.iphic superposition of map data on IICNVIV 

acquired image 

• .'I) display of terrain and cultural features from map 

database including man made structures, political 

'loundarics, ncighhorhoods, arbitrary collections of 

physically realized features 

• to predict spaljal (location) and structural 

(appearance) constraints; where to look and what to 

look    for    based    of    task    knowledge,    previous 

experience, or expectations 

• a spatial framewoik within which to einbedd task- 

specillc knowledge 

5,2, Criteria for Image/Map Database 

In this section we list some criteria that can be uses to evaluate 

database s.\ stems in four general areas. These areas arc imageto-inap 

correspondence, map feature representation spatial compulation, and 

database sunhesis. 

1. Iniaue-to-Map ( orrospoiidcnec 

• can the it relate image-based features to a map 

coordinate system 

• ran these features be projected onto new imagery 

using the correspondence mechanism 

• chat capabilities exist for incrementally updating 

feature descriptions b.ised on updates to the camera 

model, or to intrinsic changes to the feature itself. 

2. Kipresentatlun 

• what are the capabilities for feature representation; 

what complex spatial relationships can represent; how 

is inconsistency recogni/ed and handled 

• can the user describe features and associated 

attributes in a flexible manner; what is üK variety at 

attributes. 

• can the representation accommodate map-based 

information coming from a variety non-imagcrv 

sources 

• what is the relationship between the representation of 

signal and symbolic data 

• what synthesis tasks does the representation support 

i. Spatial Compulation 

• docs the system support dynamic spatial queries 

• what spatial relationships does the system compute 

directly from the underlying data, which relationships 

arc spceitled by the user, how do they interact, how 

does one maintain consistency 

• what mechanisms are available to partition the search 

space when computing spatial relationships 

■I  Dalali.ise Suithesis 

• imager\, terrain and map data are components, each 

»Mlh an appropriate representation, operation 

semantics, and utility; in what wa>s does the database 

support s\nihesis of these components 

• what concrete lasks requiring synthesis are performed 

6. MAPS Overview 

In the preMous sections we have attempted to raise issues of 

Image/Map Database organi/ation, tasks and capabilities. In this 

section we will discuss the MAPS system components capabilities. Wc 

will only briefly describe those aspects that have been reported on in 

other papeis Our latest work in the area of hierarchical organi/ation. 

decomposition, and seaich is reported beginning in Section ().6. New 

work in map feature scnantics is discussed in Section 6,7, l-or a more 

detailed description of the image segmentation program (Section 6.1,2) 

and the image-to-map correspondence program (Section 6.3) sec 

McKeowir K« a detailed description of the (ONtiTIMAl1 d.i'abasc 

see McKcown' . Appendix I contains a nearly complete list of the 

programs associated with cadi system component. 

6.1. BROWSE: Interactive Image/Map Display 

WiOWSI ' is an interactive window-based image display system. It 

provides a common interface to all of the MAI'S system components to 

display results of queries, graphical prompts for interactive image-to- 

map correspondence, superimpostion of map data on imagery, and 

other similar functions. While often viewed as an application issue, a 

llexib'e, functional user interlace is critical for building more complex 

tools, IIKOWSI provides the user with a window-oriented interface, 

which greatly increases the effective spatial resolution of the frame- 

buffer, and provides multiple piocessing contexts which allow users to 

manipulate dynamically the si/.c, level of detail, and visibility of 

imagery. 

6.1.1. Window-based Display 

We have applied and extended die bit-map window7 paradigm to 

handle high resolution, multi-bit per pixel digitized images. However, 

due to nearly an order of magnitude difference in the amount of data 

needed to p-rform screen updates and due to processing limitations 

found in most frame buffer architectures, many of the solutions used 

for single bit per pixel displays2" are not suitable for direct 

implementation, A detailed discussion of the design and organi/ation 

oftbe window manager appeals in McKeown & Denlinger'*'. 

Itesides the display of imagery, wc have found the window 

representation to be useful as a communication mechanism between 

MAI'S components, to invoke image processing programs, and to 

retrieve and display the results of such processing. All MAPS 

components (see Appendix 1) that display imagery, map data or 

graphics use the imnwsi window mechanism for display and 

communication,   l-or example, the interactive image correspondence 

■. 

-:. 

-I 

, - 
•'■.-",- 

■ - 

no 

■ • 



program, ( OUKI s. UJCS ihc window mechanism lo nuiomaticatly display 

kindmurk Imajc (higments and io create .1 high resolution window 

ainuiining the approximate pusltton of the landmark ground control 

point 10 cue the user, i'ii PAC contains a collection oi'nn.ipe pracctslni 

routines that can be Invoked on iwowsr. windows simply hy speeiiying 

the window name, IIROWSI routines use the window name to 

determine the image name, resolution, and rectangular image bounds. 

Ihh information, along with parameters specific to tile particular 

processing operation, are passed lo the image processing routine. I he 

results of the operation can he displayed in I new window. 

6.1.2. Interactive Imago Segmentation 

siLAirsi is an interactive Image scjuicntailon prograin which uses 

the RROWSI window facility to piovklc an Imerfacc to our frame buffer. 

Users can extract imagchascd descriptions of map features, edit 

cxlsilng features, and assign symbolic names to the features, si (All VI 

produces a standard format |SI 0] flic that is used throughout the MAI'S 

database to represent image-based descriptions of point, line, and 

polygon gcomciric data. Database routines discussed In Section 6.5 are 

available to convert the |si G) description to a map-based description 

m 
6.2. image Database 

Ihc MAPS system cumentiy contains appnixlmately 100 dlgitl/ed 

linages, most of which are low altitude aerial mapping photographs. 

Typical ground resoluiion distances (OHD) ..re 120cm2, .'fiOcnr. and 

M)0cm per pixel. Ihc imagery is mainly comprised of three data sets 

taken   in   1974.   im  and   1911      In   addition   to  aerial   mapping 

photographs, we have several digitized maps including 1 USGS 

topographic map, and tour guide maps, iigurc 1 gives the current 

status of the M M'S Washington DC. Image database. Although wc 

have several I ands.it. Skylab and high altitude aerial photographs taken 

over the Washington D.C. area, we have focused out wort on those 

images thai provide the greatest ground detail. 

IMAGE RAIARASE 
CLASS NUMBER SCALE RASIER (OMMINIS 

»SC'M ?6 1:3CO0O 2046«204e»8 Aertal   napping   BW 
WGf Id 37 1:12000 2200«2200«a Aerial   mappiny   BW 
AER'79 2        1 124000 228e«2288i8 Color    infrared 
ASC'B? ?9 1:G0000 2J00x2300«8 Aerial  napping  BW 
MAP'71 1 1:24n0O 409G«40'jn«8 USGS  topo nap 
MAP' 74 1         1 .1C   UOO« 4096«3880«B D.C.   region  nap 
MAP'79 

■ 1:16000« 4096«400G«8 tourist  gu'ile  nap 

•  not  cartographically  accurale. 

limire I:   MAPS: Image Database Component 

6.2.1. Generic Image to File Mapping 

I he MAI'S system uses ,1 generic naming convention to refer to 

Images 111 the database. The generic name Is a unique Identifier 

assigned 10 the image when it is Integrated Into the database, l-'or 

example,    l)C38M7, ixri430   arc   represenlallvc   generic   names   that 

correspond to llight line .innoi.iiion on the photographic film. All types 

of image access that require the lilesvsiem name of the image, or 

require associated image database files, use the generic name 

mechanism to construct the appropriate physical file name. It is 

possible to change the logical and/ ir phj leal location of imagery by 

updating the generic name flic or lo add another image to the database. 

As wc move to larger image/map systems this naming Isolation allows 

us to construct a database that can be distributed over multiple 

I he decoupling of name with physical or logical locution ("its well with 

name scivei oigani/alions usually employed with such v strihuted 

systems. 

Hie following table lists the database tiles associated will     u        1 

Image In the \1 \|'S database,  lach is accessible using the g( 

name. 

• Hit M l<l( I     imayi-to-file system iii:i|iping 

• contains the file system location of the database image 

• identifies which reduced resolution Images arc computed 

and available for hier.ircllic.il display 

• |SI)l 1    scene description file 

- contains image specific Information: source, date, lime of 

day. raster si/e. digiti/ation, image scale, geodetic corner 

points, camera information 

• |( 01 j    iiiiaije-lo-ina|) coeffiiicnls Ma 

- contains camera model ox Ticients. error model, 

polynomial orders solved, best c .-respondeiicc (default 

polynomial order) 

■ independent coefficients for <lalitiide>, <longltude>, 

<image iow> <imagecoIuinn> 

• |( OR]    Cürrespoiiclincc pairs llle 

- mapping ol ground control points to image point 

specification 

- lists of landmark names and their geodetic positioi 

combined with image pixel position of landmark specified 

hy user 

• (IIM'j    liypollusi/ed landmark file 

• lists of landmark names which arc within the image 

geodetic coverage, but were not used to perform image-map 

correspondence 

6.2.2. Image-Based Segmonlalions 

MAPS maintains several types of image segmentations and map 

overlay descriptions associated with each Image in the database. Diese 

scgmentaions either are feature descriptions generated using the image 

as the base coordinate system, or the projection of map features onto 

the image using map-toimagc correspondence, or segmentations from 

other images registered to die image. In the latter case, image-to-map 

correspondence is used to register the two images. Users can point to 

segmentation overlay features using die display interface in MROWSi; 

and cost 1 PIM ,i'. identify the segment.ition feature name and retrieve 

its image and geodetic Coordinates, lor the |l)l\lssi(;| and 

ji OM 1 fiM i,| segmentation descriptions, the name of the segmentation 

feature Is used to retrieve the associated 1)1 AD (see Section M) or 
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fOSCWMAP dcscriplKiii. The lulUiwing t.ihlo is .1 lisi of im.igc 

Acgnicnuitions uvxKiutcd wllli each im.ige in the databaK. 

Segmentation! that require nap correipondcncc Ibr their gcna.ition 

can ho automaticall) recreoccd when Inuigc camera model is update^ 

• |II\S!)M (p|     I1.1111I (lMiiii;iri)siniiuiil;Uioil 

■ collection oC .ill hand scgmcm.itions pcilbnm'd on this 

linage 

• pil'OMl'Sl ii|    romposili- hand scuminlalion 

- collcclhtn of all fiMliucs in the PIAMMI-O] dalahasc thai 

are sp.1ii.1lK contained 111 this image 

• [MACIISI 0|    rniKliinc segnicnlation 

• collection of all machine segmentations pei formed using 

the image 

• |\l( OMI'SI Cj    ci)iii|iosile macliine seynuiilation 

- collection of all features in the [MACIISI-a] database that 

are spatially contained in the image 

• [Dl vissiG]    DI \is map ou'rlay 

• all features from the 1)1 MS digital feature analysis datahase 

that are spatially contained in the image 

• icovci IMSI (j]    CONCKPTMAP map oterlay 

■ all  features from die COM I IM M «I1 datahase that are 

tpatiall) contained in the image 

• |co\ 1 KSI G]    image nncta§( (»erlay 

■ all images »hose area of coverage is overlapped or wholly 

contained within the image 

6.3. Imagoto Map Correspondence 

The MAI'S system uses an interactive image-to-map correspondence 

procedure to place new imagery into coircspondencc with the map 

database. It has three major components: a landmark database, a 

landmark creation and editing program, and an inteiactive 

correspondence program. The process of landmark selection, 

description, and interactive correspondence has been Jescribed in detail 

in McKcown24 

• |i DM]    landmark name iliniiory 

■ assouaies the list ollandinaik names with their geodetic 
position 

■ sorted for spatial proximity 

• partial name matching also provided 

• lirrVl    iamlmark text ileseriplion 

• contains a detailed text description of die location of the 

landmark and general factual properties of the landmark 

• stores the location and name of the associated image 

fragment lile |l IMGJ. and replicates die geodetic position 
from Idm file 

• N IMi i]    landmark Image fagnwU 

■ contains a high-resolution image fiagment which clearly 

shows the ground control point and scene context around 
the point 

6.3.3. CORRES 

1 OKHl s is an interactive image-to-map correspondence program. It 

uses the MOWS window interface, the I AVDMAKK database, and 

image database routines to interactively Inuld an image-iO-map 

correspondence. Once an initial guess of the corner poims is performed 

and the |COR| and (COIj llles have been created in the image database, 

COMBS automatically suggests new possible landmark points using the 

image database IIIVP] tiles.   Hie IASDMAKK database |t IMG] flics arc 

tiscd to display the ground control point when the user selects it from 

the list ol hvpothesi/ed points. 

6.4. DLMS: An External Database 

I he ability to rende/vous with externally generated map databases is 

.1 key capability in order to integrate information from a variety of 

sources. One example of the llexihility of the MAN database is 

illustrated by our experiences with the Defense Mapping Agency's 

(.)V \) Digital I andmass Simulation System (Dl MS)79. 

• 
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6.3.1. Landmark Database 

MAPS inaintains a database of ap'iroximately 200 geodetic ground 

control points in the Washington D.C. area. I andmarks are acquired 

using USCiS topographic maps, but in principle can be integrated from 

any source dial provides accurate geodetic position 

(lalilUik/loiisilule/clryalitmX Users can query the database to find 

landmarks by name, within a geodetic area, or the closest landmark to a 

geodetic point. I andmark features are also integrated into the 

COVTTIMM' datahase and can be found using the <nil(-tlcn\\ttwn> 

attribute (see Section 6.5.2) of a concept role v liema. 

6.3.2. LANDMARK 

IWDMAKK is an Interactive tool used to generate new landmarks, 

their text descriptions, and associated image fragments. Ihc following 

mfoiniation is maintained by I ANDMARK to support landmark database 

access. 

DIMS is composed of a digital feature analysis database (Dl AD) 

which describes man-made cultural features and a digital terrain 

elevation database (DM D) which is oigani/ed as a raster elevation grid. 

I he specified resolution of the Dl AD data is comparable to map scales 

of l:25(J.Oü() to 1:100.000, The ipedfted resolution of DU D data is 

within a meter vertical resolution over a lOO7 meter (3 arc sec) grid. 

6.4.1. DFAD: Digital Feature Analysis Database 

In order to integrate the Dl MI database into MAI'S, wc reorganized 

the internal DIAD data structures to allow for random access using a 

feature header list. We converted die representation of geodetic 

coordinates from an oflset foimat that was relative to an internal base 

coordinate, to an absolute coordinate system. Our Dl AD database 

overs a two degree square area, from latitude N 38° to N '10° and 

longitude W 76° to W 78°. It is composed of M "map sheets", each 

containing a \*'\\i' map area, Wc assigned unique feature identifiers 

(names) to map features because feature numbers were not unique 

across map sheets. There are no feature names or semantics associated 
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«HM in \i) enuks primaiil) bocauic the database «.is nut intended to 

he uscil ,is ,i general purpose geographic inCorinmlon lystem, ITic 

fc.niiiv header mechanism allows us to perform random access to 

kMUiK-s in ,1 map sheet Wecai also search using reaturc attributes such 

.is feature an.ihsis aide, lo.mirc tvpc, siirf.itc matori.il aulc. .md foaturc 

id coüc. This type of rcorgani/atlun is necessary to support ;in 

interactive querybascd interface for human .md application programi. 

Kigurc 2 shows a plot of polygon fciiuics in the area corresponding 

to our entire Washington D.C. database. Kigure 1 is a detailed portion 

of the Di AD database centered on loggy Bottom. For comparison, 

l;igure 4 is the corrcspwding area fmm the (OMINMAC database 
plotted on the same scale. 

Some of the HI Vl) database entries are easily recognizable as natural 

or man-made ('enures, although as discussed, this information is not in 

the original database itsell. Kigure 5 is the description lor the lidal 

liasin. I'igure d is the Kochamhe.iu Uridgc. figure 7 is a description for 

a large Irregular area in central Washington D.C. that contains the 

major government olTice buidings. The feature name assigned by MAPS 

is the first entry in cadi of the figures. 

feature ' (1?5r4;U909' 
lealuru header  471   (seek:72416) 

feature tnalyüis code: 1QS2 
feature type: areal feature 
surface naterial cude: (G) water 

feature id code: (900) not assigned 
subcategory: fresh water (shallow) 
average height (meters): 0 
aerial feature: 471   polygon with 76 vertices 
tree cover; 0  roof cover: 0  density: 0 
mn point (south west) 6295.7979 

na« puint (north east) ■jbbl.SZSb 

I icurcS: Di \l): Description for lidal Uasin 

feature ■d?!)f47412b0 • 

featuie header: 474   ( s..ek : 73 132 ) 
feature analysis code: lü85 
feature type  linear feature 
surface natenal code: (3) s'one / brick 
teatuie id code: (2S0) not assigned 
subcategory: not assigned (general) 
average height (meters): 2 
linear feature: 474  line with 3 vertices 
width  24  reflectivity: 2 
first point: S024.8064 
last  point: 6192.8227 

FjgMfC 6:  Di AD: Pcscj mtion for Rochambcau Bridge 

feature   ■(I2if40?a^l0■ 
leature   header     402        ( seek:03688) 
feature  analysis  code:   1010 
feature   type:   areal   feature 
surface material   code:   (3)   stone  /  brick 
feature   id ende:   (010)   not  assigned 
sulicategory:   institutional   (general) 
average  height  (meters):   28 
aerial   feature.   402       polygon  with  27  vertices 
tree  cover:   10      roof  cover.   70       density:   3 
mm  point   ('outh  west)   6706.7971 
ma>   point  (north  east)   0260.8799 

li|;ur  7.'   DI AD: Description for Government Buildings 

6.4.2. DTFD: Terrain Clevalion Database 

Hie oig.ini/.nion of die digital terrain database is more 

straightforward, I he Dlin database covers the same geodetic area as 

our DI MI data. Ii is i»rganl/ed into 64 raster images using the same 

image formal as our digital aerial imagery, lach image containing a 15' 

x 15' arrav ol'terrain samples, where each "pixel" is a discrete elevation 

point. I he terrain package, imvnov provides a transparent 

interlace to the ITiriJ database. Users can retrieve elevation 

information based on rectangular geodetic area, closesi sample point to 

a geodetic point, or by weighted interpolation. 111 \ \IIOS uses the 

(.ML: image package to efficiently buffer blocks of contiguous terrain 
data. 

6.5. Conrfptual Map Database 

ihe map database component of « AIS, COXCt-PIMAP, has been 

described in McKcown s. We will give a brief overview of the 

orgam/ation and concentrate on our new work in hierarchical 

orgam/ation and feature seinamics. 

6.5.1. Concopl Schema 

llic basic entity in the CONC11'lAlAf database is the concept schema. 

1 he schema is given a unique ID by the database, and the user specifies 

a symbolic' print name for the concept, fach concept may have one or 

more role schema associated with it. Kole schema specify one or more 

database views of the same geographic concept, for example, 

'northwest Washington' can be viewed as a residential area as well as 

political entitv. Another aspect is the ability to associate the same name 

lo two dilTerent but related spatial objects. Cons der the 'kennedy 

center' as a Inuldiiij' and as the spatial area (le. lawn, parking area, etc.) 

encompassing the building. Mie principle role of a concept schema 

indicates a preferred or default view. The covimivi' databare is 

composed ofllsts ofconccpt schema. 

6.;V2. Role Schema 

The role schema is a fuither specification of the attributes of the map 

feature. Il contains the rule iiiiinc attiibutc (building, bridge, 

coinniercial area. etc.). a subnile tuiiitt attribute (house, museum, 

dormitory, etc), a mir ehm attribute de., buildings may be Qmcmmmu 

rcsiilcnhnl. amiinrnitil. etc.), a rule lypt attribute (ie. physical, 

conceptual or aggregate), and a »i»/c ikrnaliim attribute (ie. derivation 

method). 

1 he role name, subrole. and role class attributes categori/e the map 

feature according to us function, lor example: this fcatun a 

building, used as an office building, used for government purposes, 

I lie role type attribute describes whether the map le mire is physically 

realized in the scene, or if il is a conceptual feature such as a 

neighborhood, political, or geographic boundary. The role type 

attribute also provides a mechanism lo define the role schema as a 

collection of physical or conceptual map features, for example, the 

concept schema in MAPS for 'district of Columbia' has a role type 
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HnregnHe-runccptuRl, with ogtregntc ml« nonhwcji wuhinghm', 

■nouiKMM »iKhington', »mthwcst woahlngum', and 'souchcatl 

washd^wn". I Ins mechanism RIIOWS the mer la explicid) icprcscnt 

tomoptv IIKH ore MIMK compoiwd of other role «chema. Ihc role 

dcrl\atkin aitrtbuie dcscuhcs the method b) which the mlc and its 

aaMidaud   teodetk   potWon   deicr^Klon   wefc   ackted   to   the 
I OM I nMM'il.ll.lh.ISC, 

I'.ich rote Khenu ciHii.ims a HM» identiflef that is used to accea .1 set 

at (üNdNMM' dubtbafc nics windi contain {cudetk InAHmaliafl 

.iin.m iho nup kmrs. IIK-SC ktentiRen can be tbarcd when multiple 

roles have the tame icndetic dercriptian, .is m the previaui example of 

'mwrtiwen wadilmton' viewed as both 1 teihtential and puUttcal area. 

I he tov II'IMM- .)!) desenpiion allocs for polnl, line, and polygon 

fc.uiircs as prmmucs. and permits the apgreiiraiion of primitives into 

more complex topologies, such as regions vsith holes, discontinous lines, 

and point lisis. Associated with each fealuie dial »as .iei|uiied from a 

image m the il.nali.ise is the genenc name of ihe image. If the 

correspondence of the generic image changes due to the addmon of 

moie grouiul umirol points, or Letter a camera model, the position of 

the ground feature can heautomaiicall) recalculated. 

Ihc following is the set of liles associated with each NNO, 

• ID']    .^»gemlitic location 

- a  set   of <laliliide/l(Migiiude/ele\.iiion>   triples  which 

define the geodetic position of the role 

• ID'I I     'I) fialure shape ikscriplion 

- metric   values   for   lenght.   width,   area,   compactness, 

cemroid. fom ier shape approximation etc. 

• |l (1    feature image eoierage 

- a list of generic images which contain this feature 

• image mhr and feature coordinates for each image 

• ll'KOl'l    fealiiri propertv list 

- list of properties of the map feature 

■ some general propeities such as 'age', 'capacity',   il) 
display type' 

- feature type specific properties such as number of floors', 

basement', height', and 'roof type' for buildings 

6.5.3. Database Query 

CONCrriMAP supports four methods of database query, I'hc 

methods arc sim'l access, symbolic access, innphic nuihhinR and 

licoincnii ,11 rss. The following table gives a brief description of each 

query method 

• signal access 

Given   1   geodetic   specifkation   (point,   line,   area) , 

perform the following operations: 

■ dtapfaq all imagery at which contains point, line or area, 

• retrieve all map features within geodetic specification 

• retrieve terrain elevation 

• sjniholic access 

Given a symbolic name, such as 'treasury building' peiform 

the following operations: 

■ Convert name into geodelk speeiliealn.n lo peilomi signal 

access opciations listed abtue 

■ retrieve database desenpnon. facts and properlies „f ihe 
map feature 

■ reiiieveimagen based on sunhohc (generic) name 
• liiiiplaleiiialcliiiiB 

Given a partial speciflcation of sunhohc attributes perform 

the following operations: 

'   fmd  all   map   features  which   satisf)   the  speeilicalion 

icmpklte and return then symbolic name 

- find all images and return symbolic (tenenc) name 

• geoimlric access 

Olveil   a  gcomelic   operation   such   as   'contains-   and   a 

gcodctk specification perform the following operations: 

■   find   all   map   features   which   satisfy   the   operation 

performed over the geodetic specification and relurn their 

symbolic  name.     ■   find all  image  featmes and   relurn 
symbolic name 

IMese primitive access functions can be combined^ to answer 

queries tuch as: displ,,) images ofj-oggy lioitom before 1977'. *hat is 

the closest commercial building lo tins geographic pomf. and 'how 

man> bridges cross between Virginia and the District of Columbia'. 

Klgure 8 is a simple schematic giving the processes by which MAI-S 

pnnidcs tfend and pmfclto access into the ( ovt 1 n MAP database and 

display ofthe query result. 

6.5,4. Spatial Computeilon 

( osci I'lMAP computes geometric properties based on the geodetic 

descriptions associated with each role schema in the database. A static 

description of all spatial relationships between map features for 

contains, subsumed by. intersection, adjacency, closest point, 

partitioned In is mamlaincd in the database, 

• 'contains' 

■ an unordered list of features which the map feature 

contains 

• 'sulisumed by 

• an unordered list of features which contain the map 

feature 

Ulis spccificaiion may be in jcüdclic coordinalcs or require imaiiclo-map 
co-rcspniidcncc 
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• 'iillriMilitiir 

• ,111 iinoiiU-ial lisl df liMliiK-s winch IIUOIM.X"I the map 

Icilinc 

• 'lUlMSl lloilU' 

■ tingle feature which is ckimi tu the mop rcature 
• 'wljacuicv" 

■ ,111 umwdcred list uf foaturei ili.u are wilhta .1 ipecifle 
ilw.iiKoni the map feature 

• 'pjrlilliMUil liv' 

■ iln.'  InctRi    f pninls where twii .ncil tc.ituros share a 

cumrtHHi boundary. 

Il'inje nr nmrc of the map features in .1 spaiial computation is a result of 

,1 dynamic quer) (and Iherelore not in the statie ilatahase), these 

relationships are computed as needed. A simple memo' funttion is 

implemented to .iMiid rccumputation of dynamic properties. I he use 

(«I the M.int description can also he 'turned off to evaluate hieraiehieal 

search as described in the lolloping section. 

Ihei ()\( 1 ciMAi'database stores both Tactual and exact Information 

descrihini the spatial relationship. Im example, if two lealures 

Intersect, the list ofgcodetk intersection points is stored, as well as the 

fact that they intersect at least once I his is necetiao for query «huh 

require the display of Imagcr) containing a geometric fact, and may 

possibly he useful for dctcribing the semantics of the intersection. In 

the following section we «ill discuss the use of .1 hierarchical 

olgani/aiion based on the 'contains' relation primitive, and show how it 

can be used to structure the spatial database. 

6.6. Hierarchical Organi/ation 

In this section we discuss the use of hieiaichical oigani/aiion of 

spatial data in the WAR System, I he ( ov I ;MM \l'database is used to 

inuld a hlenrch) rnrdata structure which represents the whole-part 

relationships and spatial conlammem of map feature descriptions. I his 

tree is used to improve the spe.-d of spatial computations by 

constraining seaah to a poition o(' the database. In the following 

sections we briefls discuss win we believe this is a good allernalKc to 

regular spatial decompositions such as quadlieelv "', or k-d tree" 

usually proposed for Mi'l) model databases. 
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6.6.1. Roijular Decomposition 

Kcguliii iKvoiniioMiions Mu h .is ihi' iiiLiUtrct; iityini/iiiioiM dii nm 

cxplklll) cxploil the Inhcrcm Mniciurc in s|iiiiiiil Drgani/iilkm*. 

l'r.Kiic.il iniplcmcntaiions nrihcw Kiu.ini/.iiuins often use iniiisc-hdwd 

(inicgcr) ciMirdinatc swans and ihcrcftire have .1 b«HinUcd pwitktn 

ivscliiiiiin. In general cani)graphic S>SK"IIIS n is impitruinl m be able 10 

represent .mil manipulate m ip Feature üescripiiom .11 radicall) dincrcnt 

ivsdliiiKins iisnn: .1 real talucd ctiunllnute system. Koi example, 

consider .1 dynamic querj that results in the crcaikm »fa vco small 

polygtmal area \\ hen computing nmtainnient ur intcrsecthtn .ip.iinst a 

st.itii.' map database with Features represented .is .1 quadtrees, the 

quadtrees for the static map Feature must be genoratcd tu .11m11.l1 t'mcr 

level nf detail in order tucumpare the twodata structures. Recent wort 

is beginning to represent quadtrees tm real valued coordinate «y«t«m , 

but little is known of us practical implementation, complexity, and 

Storage ctlicicna. Kd trees show stor.iee el'lKiene) improvetnenu 

o\cr quadtrees . since ilie> allow tor ,1 more dcxiblc decomposition 

tailored to sp.iti.il Feature density. However, they have the same 

[Undainem il limitations when used to represent map Features in a real 

valued coordinate system. 

In MM"* wc perform geometric tomppt.itions on the fe.iture data m 

the geudetk coordinate system using point, line, .md polyfon as map 

primitives. Wc constrain search In using .1 hierarchical representation 

computed diiettl) Irom the undeil>ing map data Ihese spatial 

contraints can be Mewed as natural, that is, intrinsic to the data, and 

may have some analog) to how humans organbx a "map m the head" 

to avoid se.m h l-oi example, »hen .1 tourist who is looking Ibi the 

W.iterg.ite Hotel is told that the building is 111 Northwest Washington, 

she will not spend much time looking at a map of Virginia. IK-pending 

on her f.imih.mn with the aiea. she m.is .noid looking at much of die 

map outside of the Northwest District. \s we begin to represent 

large numliers of map feaiines with more uimplex interrelationships, 

we believe that the use of natural hierarchies in urban areas, such as 

political boundaries. neiglit>orhoods. commercial and industrial areas, 

serve to constrain search. Ihe> may also allow us to build systems that 

organize data using spatial relationships that are dose to human spaual 

models. 

6.6.2 Hierarchical Decomposition 

I he hier.iichic.il containment tree is a tree structure where nodes 

represent map features. I ach node has as its descendants those features 

that it completeK contains in <UuiniJt/hHsJHuik/rlnaiHm>iQaee. I"hc 

liiei.iKliic.il tree is "iiii.ilK generated h> obtaining an unordered list of 

Features(umtainment list) for each map database fe.iture. Starting with 

.1 designated root node ('greater Washington d.c.) which contains all 

features in the database, descendant nodes arc recursively removed 

From the parent node list if the) are alread) contained In anothet 

descend,ml node I he result is that the parent node is left with a list of 

descendant features that are nut contained bv an) othei noile. Ihese 

descendant nodes form me next level of an Varv tiee ordered b> the 

contains relationship. I his procedure is perfoimed rectirsively for 

everv map feature. I ermin.il nodes are point and line ic.itures, or arcal 

Features that contain no other map fisature. v\e will discuss the point 

containment and closest point compulation using die hierarchy tree in 

the following section, 

1 Igurc 9 shows ,1 small section of the hier.iiciiii.il coiii.iinment tree. 

I he use of conceptual features-- features with no physical icili/ation in 

the world but represent well understood spatial areas - can be used to 

partition the database.    In this case the map featuie Toggv bottom' 
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treasury   buililing   (role:   0)' 
ileiMitnent   of   iiir«i..|ie   (role:   0)' 
n., .I'UI'I  of   history   anil   technology   (rote:   0)* 
fc t'y   In utije   ( role :   0) ' 

' thnn.is   r ire le  (rolt:   0)' 
"iiitlHtnl  circle  (role:   0)* 
■tüi|i|y   botton  (role:   0)' 
»hitehuist   freeoay  (role:   0)' 

'nclean  gardens   (rule;   0)' 
n.icinli   pliyground   (role:   0)' 

' theoilnre  i.iosevelt   island   (role:   0)' 
interior   departnent   (role:   0)' 
district   hinldlnq   (role;   0)' 
lalayetle  park   (role:   0)' 
constitution  hull   (rolo:   0)' 
national   press  building  (rde;   0)' 

'?3rd  street  (role;   0)' 
'constitution  avenue   (role;   0)' 
Virginia  avenue   (role:   0)' 
nat ion.il   /oo  (role;   0) ' 

' ijpurgetown   (rol«'   0)' 
glover  park   (role    0)' 
national   cathedral   (role:   0)' 
'tilt   street  (role:   0)' 
•north  ?0lh  street   (role     0)' 
'19th  street  (role:   0)' 
east  Pennsylvania  avenue   (role;   0)' 

'e  street   (role:   0)' 
'treasury  place   (role:   0)' 
' state  place  (role:   0)' 
'?0th  street   (role:   0)' 
'»est  pennsyvanla  avenue  (role:   0)' 
irih   street  (role;   0)" 
1   street  (role:   0)' 
vernont  avenue  (role;   0)' 

'IJth  street  (rolt:   0)' 

•   lor     contains'   fur   'foggy   bottom' 
kennedy  center   (role;   I)' 
Washington  circle  (role;   0)' 

'state  ilfpai tnent   (role:   0)" 
HUM ir.an  pharmaceutical   assot lat tun  (role:   0)' 
n.itic.nal   academy  of  icloitcai   (role:   0)' 
feiiHii)   riM.rve  hoard  (role;   0)' 
national   science   lound.Uion   (role:   0)' 

'civil   service comission  (role;   0)' 
°c  itreet (role;   0)' 
7rna  street  (rol«:   0)' 
'south new hanpshire avenue (role: 0)' 

, - , 

- 
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If she is told lhal llic Walcrfalc iv also near Die Potomac nvcr, that should 

funhcr consirain her scatrh, bin lhal is another story ri(jiiri"J:   MATI: Hierarchical Spatial Containment 
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■HOWI us to partition some of the buUdingi md ruodi thai .ire coMaincd 

within 'nofthweM »•Hhinttnn'. As more nc^htMtfh md areai and eh) 

disuicis arc added to mir ii.ii.ib.isc, »o expect in tee tonpiuvcd 

performanee npeciall) m arc.is with teme feature dittributiom nib 

«ill .iKn improve ilio richncnofthe sp.m.ii dncription available to ihc 
user. 

6.6.3. Hierarchical Search 

In this scclion »c discuss the use oCtuir hiei.irehjcal organization to 

partition the map dMabaie to impure pcrfonnance b> deere.ising 

seireh «hen eompmui); the sp.ui.il lel.iiionships of map features. Ilic 

hicrarehic.il searching algorithm is basically an N-.iry tree searching 

algorithm. Consider a user at the lONCII'IMAl' image display who 

invokes the geometic dal.ibase 10 compute a symbolic description of 

what map feature he is pointing at. Rut using imagc-to-mnp 

correspondence, the system calculates the following map coordinates: 

latitude N 38 53 40 (276) 
lomjitude W 77 03 53 (337) 

Ibis point is coinened into a temporal) map dal.ibase feature .md is 

tested against the KHtt node ol the hieiaielu tiee. {fit is not ont.nned 

m in s node (not geneialK the case), then the point cannot correspond 

to a d„taKise featine. and the search Un imates. I be UH-I is mfornied 

that the point is outside the map data' nr.  If the ■contains" lest 

succeeds, it recurses down the tree an.l pufoims the test against the 

siblings of the node just tested I he search lows several paths to exist 

for nn point, thus more than one sibling m i; contain a path to the 

point. I his sort of anomaly occurs »ben a i'eaturc happens to exist in 

the iiu.isectmg region of two larger regions. However, if the feature is 

not contained b> the node, it is not contained b> any of the node's 

d-Hcndants. and that portion ol the tree is not further searched, ligure 

10 shows the answer to our hypothetical query. Ihc query point is 

contained within theodore rooscvelt island', and two search paths in 

the containment tree are given. Ihc same iiiechanisni is used for line 

and polygon features, alihougb the primitive dcicimination of 

containment depends on the geometric type of the feature. 

6.7. Toward Feature Semantics 

We have begun to Invcuigalc the generation of map feature 

semantics dlrcctl) Ihmi the hierarchical representation of the map 

feature data. \ simple example is the semantic description of a bridge: 

the lealiiie names and map location«, that it connects as well as the 

ii.iniesof the map features dial it crosses over, ligures II and 12 show 

lh< resuli ol applying a pnKcdiirul description of the semantki of a 

bridge coiuepi io calculate the cunnccu' und cnmsincr' relationship 

using the map re.itme descnpiions of'.uhngion memorial budge' and 

'theodore ro.-eieli memory budge, ihese results are generated 

directly using ihc MM>S hierarehical organi/atkNi for spatial data We 

do mil pose this as a ibeorv of map feature semantics, but envision a set 

offealme specilU procedures that can build these tvpesol descriptions. 

2 «ntnts for   'Lonlaixs'   ror     gnerypoint   r 
«"try  0                          ,,, glafC 

"""■y   '                       'greoUr   i>,i»h Inijton d.c.' 
    A   N   U     

!  i-nlnes for     conuins'   for   ' qmrypo im   r 
""^y  0: 'arlinglon  nnno, iai   brnlge' 
•ntry  ti greater   washini|ton  d c.' 

4  entries   for rontiiins'   for   'querypoint   2' 
«"try  0- naiI   irea1 

•"^y   l: 'southwest   »ashlnglun 
»"try  2 district   of  culunbia' 
•ntry  3: 'greater   »ash mgton  d.c' 
 *   AND   ••••••••••••• 

2 entries   foi contains     for     querypoint  2' 
•ntry  0: arlmyton  ncnorial   hridg« 
entry  ll greater  »aslnngton  d,c," 

b entries for     intersection     for     cro.sover' 
•ntry  0: Virginia' 
•"try  1 'district  of  roiunbla' 
•ntry  2 'southmesl  .ashington' 
entry  3: naiI   area' 
entry  4; 

*•••••••• Potomac   river   (Rote:   0)' 

2  entries   fur     -onnects     for   'ar 1 ington nenori«l   bridge- 
entry  0: virninla' 
entry   1: nail   area' 

*■ 

1  entries   for     crossover'   for   'arIington nenorlal   bridge 
•"try  0: polonac   river' 

Ihl»  node belongs   in  the  following  place(s): 
3  entries for     contains'   for     theodore  roosevelt   Island' 
•ntry  0: northwest Washington' 
entry  1: 'district of-colunbia' 
•"try  2: greater  Washington  d,c.' 
    AND     

2  entries for     conlains'   for     theodore  roosevelt   island' 
•ntry  0: potomac  river' 
entry   I: greater  Washington  d.c. 

l-igiirt- II:   \i vi-s: Semamic Compulation from Spatial Data 

Arlington Memorial llndgc 

Ihc procedure for bridge scmaiilics is as follows: A bridge can be 

represented in the ( osti IMMM- database as an polygonal area, a list of 

linear segntcnis. or as a geodetic point. I he polygonal area arises when 

Ihc bridge deck is reprcsemed. die list of linear segmems approximaics 

the center line of the bridge, and the point feature generally represents 

that the budge is a landmaik feature. No semanlies are compulcd in 

Ihc lauer case. If the bridge is reprcsemed as a line, the end points are 
sclcctcd- Otbcrwhe the emlpomts of the mtfor axis of the bounding 

This can actually occur since users arc allowed io cmcr arhnrary cooidinales      ellipse arc iclrieved  from  the  fealu,.   ,1)11)  file.    At some level of 
Ihrouph ihc lermmal    Ihercforc the daiabase has some crude idea of il» cment of map      .Ipcrn.iiion  il.,...,. „...i.,  ......   i r      .u   . 
kno»lcdge 

1,cscn ni,'n' ,hcM- endpomts define the connects relationship, but this 

I inure 10:   MAI-s. Containment Tree 'ailry for 

Iheodore Koosevelt Island 

L9. 
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?   entries 
entry   0: 
entry   1 

for ' cont<tins '   for   * t|iierytio ml   I' 
' w i r- y i n i a ' 
iirtMter   Kflshirujlon   d. c . * 

br tdge" 

b  entries 
entry  0: 
entry   1: 
ent ry   2 
entry   3: 
entry   4 

for intersection'   for   'crossover   Mil' 
'Virginia' 
'district  of  Columbia' 
northwest   wabh nig ton ' 

"theorlore   roosevt'U   island' 
potomac   river' 

2  entrtes 
entry  0: 
entry   1. 

for cont.iins"   for     nuerypomt   1' 
' themlore   roo^evelt  nemorial 
■greater   w.ishmgton  d . c . ' 

2   entries 
entry   0: 
entry   1: 

2  entries 
entry   0. 
entry   1: 

for 

for 

J   entrles 
entry   0; 
entry   1 
entry   2 i 

for contains'   for   ' (luerypo int   2' 
'nor thwest   wash inqton' 
district   of   cnlnnbifl" 
greater  Washington  d.c   ' 

br idge ' 

'connects'   fur   'theodore   roosevelt  memoria 
'Virginia' 
' nor times t   Washington' 

crossover"   for   "theodore   roosevelt  memnri 
theoüore  roosevelt   island" 
potomac   river' 

2   entries 
entry   0, 
entry   1 

lur contains'   for      gujrypoint   2' 
'theodore  r0OI9V«1i memorial 
'grejter   Washington  d.c.' 

I iui'fc 12:   MAPS: Sciiiiimic Cumpiii.itiDii from Spatial Data 

llicuilnic K(xiK>cll Memorial liiidge 

3D MAP DISPLAY 
MADS CAH be oseo TO &««epvaTft a 3D  scene OP a desicnafed a«ca b/ combrntn«- 
te«fl.ain.; cOncepCMapnacftbase and tViCMöicxc Map Data 

C/set? specifies aRea of mteRest by syMbolit OR si&naL access, also specifies 
3D   'viewino- position and   illumination position 

ZU TVieMaCic/fW»          S*   fcCENEX 3a*CE/VEl 

Dispuay^ 
tnetnaac colo^ oata 

HetaL 
stone/bRicK 

cotnposicion 
ea^rnen wo«,v<s 
TRees 
louiLCxriSrS 

searches 
"e^pair-i database 

+o eLev/atiöKi 
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\niuiv 13:   WASH ID: .11) Map Display 
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is inn iiscCul ifwc arc oinisioninggcncKitKin of a reasonably complex 

symbolic rcpmcnutlon. 

'Ilic 'conuiins' relationship is wppMed to each endpoini using the 

hicrarchicdl tree to order the search. As before, this search returns a list 

of featines ordered by spatial containment, and thcie may be several 

independent contair nent paths. Redundant paths aic eliminated by 

examining whether the bridge is in the Containment path. The first 

entrj (())in each of the rcmainln; paths is one ofihe areas connecied i<y 

iho bridge, tsmg the coniams relationship, the other entries in the 

path are also N.ihd connecting areas. 

7. Synthesis Tasks 

In ibis section we w ill discuss ihree applications of the \l \l's database 

to cartographic and image interpretation tasks. I hese tasks are .il) scene 

generation of views of Washington I). C, the use of the map database 

tu guide image segmentation, and some prcliminar) results on a rule- 

based system for airport scene interpretation. I ach task requires the 

capabilities of various aspects of the IMIl model as implemented in the 

MAPS system. 1 hese applications pull together external ami image/map 

databases, and are onl> possible using an inlcgraied system that relates 

imagery, terrain, and map data tluough a unified cartographic 
representation. 

- 

lo compute the 'crossover' relationship, the 'intersection' 

relationship is computed for the bridge using the complete list of line 

segments or the polygonal description, A list of all the features that the 

bridge micisecls is assembled. Inlnes in the intersection list arc 

removed if the) are also presenl in either of the connects' lists. The 

assumption is that those features that didn't contain a bridge endpoim. 

but miersected with the bridge description, are those features that the 

biidgc crosses over. If there is sufliciently detailed elevation data for 

man-made features il should lie possible lo compute semantics for 

passes over" and 'passes under' by calculating the feature elevation at 

the actual geodetic point of intersection. 

7.0.1. WASH3D: 3D Scene Generation 

Hie first applicalion of the MAPS database is m the area of .11) 

computer graphics for scene simulation and database validation. 

Computer graphics play an impoilant role in the areas of image 

processing, photo-interpretation, and cartography. In cartography 

various phases of the map generation process use graphics techniques 

or source material analjs..,. transcription and update, and some aspects 

of map layout and production. However, many major steps in the 

generation of a cartographic product remain largely manual. One 

important step for which inadequate tools exist is the integration of 

terrain and cultural feature databases.    I his integration step is often 
j'T '»'St' 
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lißurc 14:   WASIUD: Vertical View 85° Northwest Washhgt. n •  . 
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uscÜ m vciifj the gctxictlc .laur.iL-y dl'n.iiiir.il .nuj nunm.idc IbutUKl 

in ihc dlgitul duuibiisc pritir to nctual map layout and pniduclion. 

AtioilH'r.ip|)lic.iiiiin h senM)r simulation30 ". Kodar, visual, and mulii- 

Knuvi KCRCS .nc digitally generated tu verify the qiuliiy of digii.il 

culture and terrain J.iuh.iscs or to determine the quality of the sensor 

model. ImpioNcmonis to the level ofdcüiil etmtained in the underlying 

d.n.iii.ise can be subjectively measured In terms of the qn.iliiv of die 

generated scene. 

WASIIM) - is on Inicraciivc graphics system thai uses the MAPS system 

10 Integrate .1 digital terrain database, .1 cultural feature database, and 

the COXC'I PIMAP database to allow a user 10 generate eariogiaphically 

accurate 31) scenes for human visual analysis. w\smi) uses the coarse 

resolution DIMS database described in Section 6.4 to generate a 

baseline thematic map. I he thematic map is a :i) image which is 

produced In scan conversion of the m \is digital feature analysis 

database (l>i \n) polygon database. We assign a color to each region 

polygon using the PI \l) Mul.ne m.iteiial code-- forest and park (green). 

water (blue), residential (yellow), and high density urban (brown). 

Dl MS terrain elevation data (1)111)) is interpolated to determine ground 

elevations at each point in the 'I) image. Since the resolution of the 

1)1 Ah data is coarse, comparable to map scales of 1:230,000 to 

1:100,000, we use the (üNCIIMMM'database to provide high resolution 

31) feature descriptions of buildings, roads, bridges, residential and 

commercial areas. The CONO!PTMAP database is derived from imagery 

with resolutions between I;t2000 and 1:36000, and the addition of 

these features effectively intersifies the perceived level of detail in die 

simulated scene, even though the base map is at a coarse resolution. 

Lukes'1 describes the utility of selective database intensirication for 

tailoring standard database products to custom applications and for 

liineciilical applications which cannot be handled by normal 

production schedules. I'igure 13 shows the interactive process by which 

users can specify an area of interest for }\) scene generation, figures 

M and 15 show two 31) scenes of the Washington D.C. area generated 

bv WAS1I31). 
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igurc 15:   WASIUI): Noithwest Washingtün From Above National Airpo;l 
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7.0 2. MACHiNfsrr.: Map-Guide i M.ichlno Segnioiilalion 

I hi' second appliciitiiwi »f the \i \i's dnlabusc h in tlK .IHM of map- 

guided mnchinc segmentation, I sera m ■ specif) .1 map fbaturc iVom 

the ( ON( 1 riM \i' dalahase 01 lnici'iicii\cl> gcncr.ae ii feature 

description using the si (i\ii \i program. In the c.isi.' of a map database 

feature, MMIIIMSK; uses an existing im,ige coverage |ii| file (see 

Section d.S.?) that specifies in which Images the feature is found, anil 

the leuturc location in the image, lor interactive specification, an lie] 

tile is created dynamkall) b> Image-to-map correspondence using ihc 

Image database. 

lor each image, a high resolution windo« containing the database 

feature is extracted und displayed. We expand the sue of the image 

window to contain an area of uncenaintj around the feature ideation. 

'Ilie expansion iscurrentlj bused m ihe si/eol the fe.iiurc. but we plan 

to incorporate corrcspomkncc error measures based on the quality of 

the camera model associated with each image. Ihe image window is 

smoothed, and .1 segmentation is performed using a region-growing 

technique   which combines an edge strength metric and region merge 

occeptabllit) based on spectral similarit] to control region growl uv. 

iiuiire 16;   MAOIIM SKI: Segmcntalion using MAI'S System 
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I luurc u. slums ihe ^mentation ofievenl bwclevation hmidings 

dung the pertmetsf uf liie w.isiiiiigmn lliipsc. HK- uppermost 

huililuu: is .KlJal 10 iho COW I'lM \? dn.ilw in the Uandanl manner 

described In Section (..5.   IT« user ^icclfl« the imjgo, ix JMI?. to 

perform the sepmcni.iiu.n .»ul the MM IIIMSK, system MbHIMtical!) 

<.lispl,i>s ,i reduced mulution «imlow or the im.ige («A-JM/^, and .1 

high icsoliitioii «meld«  (,-%.v<  ova) eoiilaming the databne aiea. 

MAI IIIMSK, creatCi I eopy of the high rCStHuthin «indem as | work 

HCa(M atkhi for the image processing roulines. An image smoothing 

operation  is  followed   In   the  gener.aion of seed  regions using a 

eomervativc similaiitv measure to insure that potentially matehablc 

regions are not premaiureh  merged,     Ihe initial seed regions arc 

overlaid on the image using graphics overlays.   Any seed regions that 

satisfy the shape criteria for the database feature are extracted and 

marked.  In this example, the database feature itself was marked In the 

iinii.il seed region matching.   As regions are merged based on weak 

edge boundaries and high spectral compatibility, the resulting region is 

evaluated with respect 10 a list of shape and spectral criteria.   If the 

region satisfies the criteria, it is marked, and further merging is allowed 

only if the proposed merge improves the overall legion score. Criteria 

include  fractional  fill, area,  linearity, perimeter, compactness, and 

speetr.il measures. 

The final results are shown in the second window labeled sei aside. 

I i\e buildings similar to the map database feature were correctly 

identified while one building was omitted. Six segments were 

incorrectl) Identified. Had «e made use of spectral information in Ulis 

particular segmentation" that the building roofs were bright 

teatures- we probahl) could have excluded 5 ofthe 6 errors. However, 

we are more concerned with using weak knowledge, and one cannot 

expect better performance without more sophisticated analysis. 

MUIIIMSKJ allows the user to delete erroneous segments and 

generates map descriptions of each extracted feature. These 

descriptions can then be used to search for these features in other 

database imagery. 

Ihe significance of MA( llisrsi u is that it can search systematically 

for features in a database of images, an operation that is fundamental 

for change detection applirations. It directly uses the map database 

description as an evaluation tool for image segmentation and 

interpretation. It also uses very general image processing tools to 

perform both segmentation and evaluation and is amenable to 

supporting other approaches to image segmentation and feature 

recover). A further application ofthe \1ACIIIM Si (, system is discussed 

In the follow nig section. 

7.0.3. SPAM: Rule-based System for Airport Interpretation 

Ihe üiiid application ofthe MAI'S system is In the investigation of 

rule based systems for the control of image processing and 

interpretation with respect to a world model. 

In photo-interpretation, knowledge can range from stereotypical 

information about man-made and natural features found in various 

situations (airports, manufactuimg, industrial installations, power plants 

etc) to particular instantiations of these situations in frequently 

monitored sites. It is crucial foi photo-inteiprelation applications that 

the metrics used be defined In a cartographic coordinate system, such as 

<lnliliitl(/l(iiif;iiiiilc/(lruiiiaii>. lather than an image-based coordinate 

system. IVscnpiioiis such as "the nuiw.n has area 12000 pixels" or 

■'houses are between 212 and MS pixels" are useless except for 

(perhaps) the analysis .f one image. It is the case, however, that to 

operationali/e metric knowledge one must relate the world model to the 

image under analysis, I his should be done ihrough image-to-map 

correspondence using camera models which is the method used in our 

system. 

We have begun to build SI-AM'5 to test our ideas in the use ofthe 

combination of a map database, task independent low-level image 

processing tools, and a rule-based system. 

SI'Wl use the MAI'S database to store facts about man-made or 

natural feature existence and location, and to perform geometric 

computation in -//,//, vwr r.ither than tmagn&Ct. differences in scale, 

orientation, and viewpoint can be handled in a consistent manner using 

a simple caniera model. Ihe MAI'S database facility also maintains a 

partial model of interpretation, separate from, but in ihe same 

representation as, the map feature database. 

The image processing component is based on the MA(iii\rsi-;G 

program described in the previous section. It performs low level and 

Intermediate level feature extraction. Processing primitives are based 

on linear feaiure extraclio'. and region extraciion using edge-based and 

region-growing techniques It identifies islands of interest and extends 

those islands constrained b) the geometric model provided by MAI'S 

and model-based goals established by the rule-based component. 

Ihe rule based component provides the image processing system 

with the best next task based on die strength/promise of expectations 

and with constraints from the image/map database system. It also 

guides die scene imerpretation hv generating successively more specific 

expectations based on image processing results. 

We are in the preliminary stages of development foi the SPAM system 

and have begun to build a Jetailed map model of National Airport, 

l-'igurc 17 gives an example of the ability of the MAI'S daubasc to use 

image-lo-map correspondence to generate unified spatial models from 

partial information. The line drawing labeled 17401 i\i(i contains the 

northern section of National Airport; UM.lMd is a partially 

overlapping southern section of National Airport. 1 ine segments 

represent point, line, and areal features corresponding to runways, 

terminal buildings, access roads, and hangars, interactively specified 
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liturc 17:  si'.wi: National Mrpon Spatial Model 
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using the C0NC11'lM w icprcscm.ilion. Hir iluisc I'c.uuros thai .ippcar 

in both images, the concept n,lr mcchaniMii (sec Section 6.5.,"!) is used 

lo specify multiple <l(iliiii<lc/l(}ngiiiiilc/rlrviiii(m> dcscripiions. A 

unified map description is created In matching conesptiuding line 

segmems using ihe (nerlapping image areas (in map spate) lo constrain 

search.    The   resull   of   unilkation   is   the   line   drawing   labeled 

AIKI'OKI IMÜ. 

8. Future Work 
Our future work will be directed loward two research topics. Kirst, 

we have only begun lo explore the use of MAPS as a componcnl of an 

image mtcrpretalion system. W; will tonlimie our work in the airport 

scene inlerprctalion task, using the SI'AM system as a leslbed for 

Integration of a rule-based system with ihe MAI'S system. Second, there 

is much to do in expanding the f'ONCI I'lMAI" database to include more 

complex 31) descriptions, and in allendant issues of staling and sizing 

to larger databases. Other tasks we will pursue are the evaluation of our 

Southern s-ction of Washington National Airport 

hierarthical spatial lepicscntation to constrain March in large databases, 

general solutions to complex spatial queries for situation assessment 

applitations. and the apphtation of spatial knowledge to navigate 

through a map database. 

In discussing future work it Is important to understand the strengths 

and limitations of the current research. I he strengths of this work lie in 

several unique features of the MAI-S system. First, we have constructed 

a system of moderate complexity which has significant capabilitcs in 

each area of our Image/Map Database model. The system integrates 

map knowledge from diverse noirces and performs several tasks that 

require synthesis of this knowledge. Wc have the ability to represent 

complex map features in a uniform cartographic coordinate system and 

can compute new spatial relationships directly from the map data. 
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The iiujoi liiiiii.iium in iiic MAI'S system Is Ihc current MKMIKHI lor 

penonning Imiigc-Ufmup corrcsrHindcncc. hnmi ilio standpoint 

of ihc M.IIC of the art In phoutgrammctry, *c mukc simplistic 

ptancmctrlc assumpthms m our correspondence alftorithm, Inn ihoj do 

give roasiin.iblo results lor scvcr;il reasons, lirsi. all ot'uiir plKiioyraphs 

are vertical aerial mapping Imagery, and efTorts arc taken to miniml/e 

camera lilt, Second, we have \er> lugli rcsoluth n photographs, each of 

which coven a relatively small area, and due ui the relatively local level 

terrain In Washington I). C. our polynomial correspondence ftmctioni 

are reasonably accurate. 

The issue Is not ho» to recover camera information from the 

imagery, since In cartography .md manual photo-interpretation the 

sensor models and ephemeral data are well known and modeled, but to 

use existinj; photogrammctric tools for basic data acquisition. 

Ihereforc. in this limitation we see an oppoitunit) to investigate how 

MAI'S could he interfaced to a photogrammctric frontend which would 

directly provide (lailiutle/hnitliudi/elevalkm) data from a stereo 

model. Ihc frontend should have a l.indnwk database and 

interactive dis|)la> tools to t^iue the stereo model setup in a manner 

similar to our current Implementation, Nothing m the current MAPS 

Implcmcniation precludes such an interface since we maintain a 31) 

m.ip feature roprescntation throughout the d.iub,isc using the USGS 

terrain d,it.ibasc. The building of such tools should be the common 

objeclive both to cirtogaiphcrs and to computer scientists. 
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iv/i's System Major Components 

lins VppcnJix (.inn.uns .1 lisi ttfthc m.ijor inoyr.nn miHluIci which 

uMiipusc the MAPS system. 

NAME 5I7E (Uyles) I I1MMINIS 

Browse 

hrowsti 306;iO0 

p icpac 530;|J2 

Corres 
nl   (  HS ?IU.04? 

che^kcorres «gti i 

. nrri.t I ti 62803 

corpairs ;6Wti 

ci-(*.Ttsdt ioeoi 
dunpeoef lijr4.J 

rlimpcor ?3I)4; 

tlurtpsdf liitt 
hypcorpairs fl? ,mi 
upddte&dl iWll 

i indMi k 

i tniHiAri [»Ui 
■ i. i' i In ?i'j'il 

utytoda 50717 

tny tol dn 19<J48 

1d«s;ribe 43090 

tdmr.prt ia?lb 

1 dint« st 78r.J6 

Stijnenl 

segment 170730 
ink ijf 10037 

segrunane JtjOlb 

Machineseg 

nach wier.ey 790722 

(.unceptmap 

conceptnap GCS/IO 
bu i1dsegmap 98301 

roetrack 12b?41 

ronqeoal1 213778 
d3dunp 24()29 
dienlcor 93)36 
rt3f dump 31339 
d3lodjr 15876 
d3toimg 44710 
dlmsseg 128324 

ttriae« tract 31544 
dunpql 207962 
dunpsdf 2'.-398 
ecdump 9426 
ecshow 1377DO 
ersoit 26624 

ectoseg 18173 
hierarchy 486262 
hiertrack 371809 
idhler 264739 
magetoec 34283 
imagetonap 64092 
photo 719M0 
segtod3 67034 
segto img 12786 
•-tcreoshow 163125 
unifyseg 107603 

W,ish3d 

wash3d 764517 
dfeaprt 46013 
dispfe» 137336 
dims 53134 

dlmsbin 34604 
dlnsfind 45419 
feadumper 45267 

Terrain 

elevatton 24097 

inlerAClive in.u|u display facility 
tn ter jr. 11 VH iruge process my faciMty 

interactive tnage-map correspondence 
check correspondence errors 
correspondence alyorithm 
edit correspontence pairs file 
create a scene description file 
dump a coelficinnts file 
dump a correspondence file 
dump a scene description file 
generate hy pot ties i/ed landnarlis 
update a scene description file 

interac t i we I andnark extract ion 
create hinary landmark file 

make a (13 file from an .ely file 
create Nmdnark file from ,ety files 
give landmark descriptions 
dump ,11 1 info about a landmark 
find 1andnaiks within neodetic area 

hand seqmentat ion program 
create ascii file from binary seg fill 
edit segmentation region names 

machine segmentation program 

associate conceptoal and map datj 

build composite segmentations 
track points using map lorrespondenco 
(jenerate yeometrc: database 
dump a d3 file 

creal« Lorres entry from .d3 fil» 
dump a d3 feature file 

convert a .d3 file to a feature file 
generate binary image from .dJ files 
create IHMS overlay for geodetic area 
extract features from DLMS .fea files 
dump a query! ist file 

dump a scene description file 
dump the contents of a coverage file 
display manager for coverage files 
sort coverage files by keys 

create  seg file from coverage file 
build and access hierarchical database 
track and display pis using hierarchy 
identify points using hierarchy 
associate image with civerage file 
«(jeneric>».row><col> •> * 1 at/lon/elev> 
interactive image photogrammelry 

convert .seg file m .d3 data structure 
convert  seg regions to binary image 
show stereo image pairs 
unify segmentation regions 

3d scene generation from MAPS database 
print DIMS feature given dims code 
display a DLMS map feature file 
create dims index file 

convert ascil feature files to binary 
find a DIMS feature based on attributes 
dump a DIMS feature file 

access terrain data images 
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Abstract 

Images are two dirnensional projections of 
three dimensional scenes, therefore depth recovery 
is a crucial problem in Image Understanding, with 
applications in passive navigation, cartography, 
surveillance, and industrial robotics. Stereo 
analysis provides a more direct quantitative depth 
evaluation than techniques such as shape from shad- 
ing, and its being passive makes it more applicable 
than active range finding imagery by laser or 
radar. This paper addresses the subproblera of 
identifying corresponding points in the two images. 
The primitives we are using are groups of collinear 
connected edge points called segments, and we base 
the correspondence on the minimum "differential 
disparity" criterion. The result of this process- 
ing is a sparse array disparity map of the analyzed 
seen-;. 

\ 
I. Introduction 

The human visual system perceives depth with 
no appare.it effort and very few mistakes, but how 
it does so is not understood. Binjcular stereopsis 
plays a key role in this process, and the 
straightforward extraction of depth it provides, 
once corresponding points are identified, makes it 
very attractive. Depth recovery is necessary in 
domains such as passive navigationlGennerySO, 
MoravecSO), cartography[Kelly 77, Panton781, 
surveillance[Henderson791 and industrial robotics. 
Proposed so'utions for the stereo problem follow a 
paradigm involving the following stepslBarnard82): 

-image acquisition, 
-camera modeling, 
-feature acquisition, 
-image matching, 
-depth determination, 
-interpolat ion. 

The hardest step is image matching, that is iden- 
tifying corresponding points in ti'o images, and 

* 
This  research was  supported  by  the  Defense 

Advanced  Research Projects Agency and was monitored 
by  the Air  Force Wright   Aeronautical   Laboratories 
under  Contract  No.   F33615-82-K-1786,   DARPA Order 
No.   3119. 

t  Systems Group 
Southern  California 
llfornia    90089-0272 

this paper is solely devoted to it. The next sec- 
tion reviews the existing systerrb rhat have been 
proposed so far, divided in two broad classes, 
area-based and edge-based, then we summarize our 
assumptions and give a formal description of the 
method. The fourth section presents result1», and we 
then  discuss  extensions. 

II.   Review of existing methods 

Two   classes   of   techniques   have   been   used   for 
stereo matching,   area-based  and   feature-based. 

2.1. Area-based stereo 

Ideally, one would like to find a correspond- 
ing pixel for each pixel in each image of a stereo 
pair, but the semantic information conveyed by a 
single pixel is too low to resolve ambiguous 
matches, therefore we have to consider an area or 
neighboihood around each pixel, and use 
correlation-based matching algorithms to deteimine 
the corresponding match, it is therefore using 
local context to resolve ambiguities. The jus- 
tification for such an approach is that of 
"continuity", that is disparity values change 
smoothly, except at a few depth discontinuities. 
AH systems based on area-correlation suffer from 
the same limitations: 

- They require the presence of a detectable 
texture within each correlation window, 
therefore they tend to fail in feature- 
less or repetitive texture environments. 

- They tend to be confused by the presence 
of a surface discontinuity in a correla- 
tion window. 

- They are sensitive to absolute intensity, 
contrast and illumination. 

- They get confused in rapidly changing 
depth fields (vegetation.) 

For these reasons, the existing systems, specially 
the ones used in "autwnatic" cartography, require 
the intervention of human operators to guide them 
and correct them. Such systems are described in 
[Lucas8l, Panton78, HannahSO, Barnard80, 
Moravec79l . 
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2.2.   Feature-based  systems 

The depth Information in stereo analysis is 
conveyed by the difference» in the two images of a 
stereo pair due to the different viewpoints, the 
differences being most prominent at the discon- 
tinuities, or edges. Obviously, matching of fea- 
tures will not provide a full depth man, and must 
be followed by an interpolating scheme. The common 
characteristic« of feature-based matching tech- 
niques  are: 

- They are faster than area-based methods, 
because there are many fewer points to 
considar. 

- The obtained match is more accurate, 
edges can even be located with sub-pixel 
precision(Binford8l 1. 

- They are less sensitive to photometric 
variations, since they represent 
geometric   properties  of  a   scene. 

Henderson!Henderson79l considered scenes represent- 
ing cultural sites (man-made structures) and 
ma-:hed edge points on epipolar lines in the two 
views. He reduced ambiguity by assuming continuity 
between consecutive epipolar lines. Marr and Pog- 
gio have relied on two apparently simple 
constraint s(Marr79): 

1. Unique less . 
Each 'joint in an image may be assigned 
at racst one disparity value. One may 
note that this assumption is not correct 
for transparent objects. 

2. Cont inuity. 
Matter is cohesive, therefore values 
change smoothly, except at a few depth 
di scont inuit ies . 

They first proposed a coopera:ive algorithm(Marr76| 
that works very well on random-dot stereograras, but 
they rejected it to propose one of more heuristic 
nature, implemented by Grimson[Grimson79, 
GrirasonSl) that generates good results, given the 
very few assumptions. Arnold[Arnold78) matches 
edges using local context, and his system seems to 
perform well on cultural scenes. Finally, Baker 
and Binford(Baker82l match edges on epipolar lines 
by using the no-reversal constraint that the order 
of the match has to be preserved, in addition to 
uniqueness and continuity. They also consider con- 
tinuity by examining adjacent epipolar lines. This 
system appears to perform reasonably on a wide 
variety of  images. 

In most of the systems presented above, a con- 
siderable saving in search time is obtained by a 
coarse to fine matching, that is the matching is 
originally done on a low-resolution version of the 
image and the results are propagated to the higher 
resolution version. However, it should be noted 
that in current implementations, good matches as 
well as errors tend to propagate from one level to 
the  next. 

III.   The  Minimal   Differential 
Disparity Algorithm 

From the survey conducted above, it appears 
that feature-based techniques are more appropriate 
to solve the correspondence problem, but edges as a 
primitive seem to be too low-level, and a connec- 
tivity check is needed to remove spurious matches. 
High level primitives such as physical object boun- 
daries or surface descriptions would be preferred, 
however, stereo processing may need to precede the 
computation    of     such     descriptions. As     a     step 
towards higher level primitives, we are using 
segments. In order to generate them, we fit 
straight lines through adjacent edge points with a 
given tolerance of one pixel. These segments can 
be desc ribed  by ; 

- coordinates  of  the  end   points 
- orientation 
- strength (average contrast) 

By using these primitives, we implicitly assume the 
connectivity constraint. When matching segments, 
we need to allow one segment to possibly match with 
more than one segment in the other image (i.e. to 
allow for fragmented segments), even if we wish to 
preserve unique matches for the individual edge 
points. Also, instead of considering one epipolar 
line at a time, we have to consider all epipolar 
lines in which a given segment appears. 

3.1. Assumptions and Definitions 

We consider a simple camera geometry in which 
the epipolar plane, defined as the plane passing 
through an object point and the two camera foci, 
intersects the two image planes, so defining 
epipolar lines parallel to the y axis. Therefore, 
corresponding points must lie on corresponding 
epipolar lines, that is have the same row value, 
this is illustrated in Figure 3-1. 

projection of 
scene point 

In Image 
planes 

camera 
baseline 

corresponding 
epipolar lines 

.^: 

• ■ ■ ■ 

■ 

Figure   3-1:       Col linear   Epipolar  Geometry 
from   [Baker82) 
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We also give a bound OP the disparity rangt- allow- 
nble for any given segment, let us call it maxd . 
Let A"{a'} be the set of segments in the left I 
Let B-{b.] be the set of segments in the right 

image . 
Then, for each segment a^Crisp. b-) in the left 
(resp. right) image, we can deline a window 
w(i)(resp. w( j)) in which corresponding segments 
from the right (resp. left) image must lie. The 
shape of this window is a parallelogram, one median 
being i(re8p. b:), the other a horizontal vector 
of length 2*maxd. One can see that ai in w(j) im- 

plies b■ in w(i). 
We define the boolean function p(i, i) relating two 

segments as: 

- p(i , j) is true if 
- b; overlaps w( i) 
-a- , b-   have "similar" contrast 
- aj > b: have "similar" orientation 

The required similarity in orientation is loose and 
is a function jf the segment length. We have set 
it to be 25 degrees for long segments and up to 90 
degrees for very short segments. 
Two segments are defined to have similar contrast 
if the absolute value of the difference of the in- 
divid'ial contrasts is less than 202 of the larger 
one. 
To each pair (i,j) such that p(i,i) is .rue we as- 
sociate  an  average disparity d—  which  is the 
average of the disparity between the two segments 
a; and b- along the length of their o>erlap. 
We define the two functions SI and S? as: 

At   iteratton   1 

v'd.J) •(     E      v^v1^1)/"^' 
wv^v   Vj 

Vl'T'-V-i' 

At   the  end   jf   each  iteration,   we define  the  sets 
g^)  and Q(b )  aa 

J   In QUj) and  i  In Q(b )   If 

Vk   In SlUj),   »t<t,J)«»t(l,U 

AND 

Vh  In  SKb  ),  v'dJ^vSh.J) 

For  any   iteration after  the  first  one,   the compulation 

of v   (l.j)   becomes 

■'"•»■(   E 
a.cS.CbJUS^b.) 

h     1     J       1     i 

■( s 
b^S^a^US^a^ 

""      |dhk"<li|l)/C',rd<b1) 

bkcQ(ah)    r"t    lJ /' 

'^     '"h^ijlj/-^'»!' 

•t/'i 

■ 
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if   lite  acts Q are not   eapty,   otherwise the computation 
of   the  function v   is done using  the  formula  for   iteration   1. 

SHa^-i j|bj in w(i) 
and p(i,j) is true, 

S2(ai)-{j|bj in w(i) 
and p( i , i) is false} 

Similarly, we define SKb ) and S2(b-). We will 
also need the value cardCa-), which is the number 
of elements in the set SUa^) S2(ai). 
It is to be noted that all the functions described 
above are static, meaning that they are computed 
only once. 

3.2. Description 

Each possible match is evaluated by computing 
a measur- of the distortion this match provokes for 
its neighbors,'' .e. given that (i.j) is a correct 
match with its associated disparity dji, how well 
do the neighbors agree with this proposed dis- 
parity?   We compute an evaluation of the mitch 
(i,j) and conpare to the matches (i,k) and (h,j) 
for k in SKaj) and h in SKb-).  If the evaluation 
is minimum for (i,j), then j is the preferred in- 
terpretation for i and i is the preferred inter- 
pretation for j. For any iteration after the first 
one, in order to evaluate a match (i,j), we only 
look at the preferred matches for the neighbors of 
1 and j, if they have any.  Formally, the compu- 
tation of v (i,j) is: 

At the last iteration, only those elements 
that have ■ preferred match are considered valid, 
and a disparity map array is filled using these 
values. It is interesting to note that this process 
is absolutely symmetric in the two views and there- 
fore will yield identical results (except for the 
sign of the disparity) if the two views are inter- 
changed. It is helpful to look at i simple exanple 
to understand this process. 

3.3. Example 

Let our 2 views be the ones shown in Figure 
3-2 below: 

1 1 

1 2 3 

I 1 

1 2 3 

I 
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Figure   3-2;       A  simple  example .:•- 
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In absence of any extra information, the correct 
interpretation is that the 3 point» have the same 
■lisparitv, und the result of the matching is 
(a^bj) for i in { 1,2,3} . 

In this example, SI(aj)-S1(b;)-{1,2,3} and 
S2(ai)-S2(bj)- t.     The array d^ is 

0 1 2 
-1 0 1 
-2 -1  0 

Therefore  we   find 

v   (1.1).   (|l22-dlll+|d33-d11|)/3 

*(|d22-d11l + |d33-du|)/3 

-  0 

compared   to 

vl(l,2).  (|d23-d12l + |d33-d12|)/3 

1   (|d2rd12Hd23-d12l)/3 

■   1 

and  to 

v'd.i)-   (|d22-dl:|+|d32-d13|)/3 

+ (ldi2-di3l + ldn-d
13l)^ 

-  2.67 

The calculations are similar for the other pairs, 
so, at the end of the first iteration, the 
preferred interpretations are only the correct 
ones, and further iterations will not alter the 
results. 

3.4.   Discussion 

The criterion used here, namely the minimal 
differential disparity, has similarities with the 
edge interval constraints given in [Arnold80| and 
subsequently used by Baker(Baker 82], but looser in 
the sense that it does not require ordering of the 
edges. Since our criterion does not take ordering 
into account, a dynamic programming implementation 
is not possible. Our evaluation function is more 
informed than Baker's in the sense that it con- 
siders all edges in a neighborhood instead of just 
the predecessor and successor of a given edge. The 
performance of this algorithm on a few examples is 
presented  next. 

IV.   Results 

It is difficult to display results of stereo 
matching meaningfully, especially in a two dimen- 
sional picture, since we only generate a sparse 
disparity map. We will simply show the line seg- 
ments in the two view» that are found to match. We 
have not been able to master the art of cross-eyed 
stereo fusion, but since a number of people in the 
field are good at it, we will present all pairs of 
images    according    to    its    convention,    that    i»    the 

left view is shown on the right and the right view 
on the left. All results will also be shown this 
way, without explicitly marking each point and its 
correspondence. We first started our experiments 
with very simple line drawings, slightly more com- 
plex than the one shown in Figure 3-2 and the 
result»    matched    the    expectations. In    order    to 
remove the effect» of the segmentation procedure on 
the performance of our matching technique, we hand- 
sogmented the image» shown in Figure 4-1 by tracing 
the boundaries of the objects on a digitizing 
table. This image, from Control Data Corporation, 
i« synthetic and ha» been u»ed by Baker[ Baker821 
for hi» experiments. The resulting segment» are 
shown on Figure 4-2 and Figure 4-3 displays the 
results after matching. All the lines that have 
been matched have the correct correspondence, but 
some matches are missed. This i» due to the fact 
that when the matcher get» confused by clo»ely com- 
peting assignments, it choose» not to asaign a 
label. Al»o, some edge» are not matches because of 
mistakes in the tracing procedure: we traced the 
boundaries of some objects in opposite directions 
in  the   two  views . 
For all other example», edge detection was per- 
fotraed automatically using a technique developed by 
Ncvatia and BabulNevati880l that find» edge mag- 
nitude and direction by convolving the image with 
edge masks in different orientation» (we used 5x5 
masks in 6 directions here). These edge» are then 
linked to form bjunrfary curves which an ap- 
proximated  by  piecewise  linear  segments. 

Next, consider the industrial part shown in 
figure 4-4, the original resolution is 256 by 256 
and the gray levels are coded on 8 bits. We ap- 
plied the matching algorithm to two different 
resolutions of the image, running it through three 
iterations. It was found that no assigrment was 
changed after three iterations in our experiment». 
Figure 4-5 shows the original edges and Figure 
4-6 displays the results in the above mentioned 
form. Similarly, Figure 4-7 show» the »egments at 
half resolution and Figure 4-8 the result». Look- 
ing at the »egments one by one, we did not notice 
any spurious assignment at either resolution, mean- 
ing that we captured the shape of the object, even 
though the density of edges ig rauch larger than in 
the  previous  example. 

Another, more complex image is shown on Figure 
4-9. In this image, we have a wide range of dis- 
parities, a change of sign in the disparities 
acro:s the picture, various occlusion», the 
presence of a repetitive structure (a Rubik'» cube) 
and contrast reveraal . We do not expect to get 
good re»ults with this contrast reversal since one 
of our preliminary conditions is similarity in con- 
tra»t, but the other peculiaritie» are very inter- 
esting. We worked at low resolution on the seg- 
ment» shown in Figure 4-10 to obtain the results 
shown in Figure 4-11. The interesting point» are 
the   fol lowing : 

The elongated vertical block» in the rear 
of the imajje are correctly put into cor- 
respondence . 
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- All tlio squares of th<» cube that should 
be identified are correctly matched. The 
correct labeling appeared at iteration 2 
(at iteration 1, most of them are only 
ambiguously matched.) 

The segments at high resolution are shown in Figure 
4-12 and the matching usults in Figure 4-13. We 
did not use the results at low resolution to guide 
the matching at high resolution, therefore the 
elongated block in the rear right is not matched 
«ny longer. It is interesting to note that the 
edges coming from the texture of the wood blocks do 
not create confusion, but help the rajtching, on the 
front cylinder for example. Once apain, most as- 
signed matches are correct. 

V. Conclusions 

This research is far from being in a final 
state. The initial encouraging results presented 
here must t'.erefore only be viewed -s an indication 
that the hypothesis of minimal differential dis- 
parity may be usecul. The critical points that 
must  be  examined  are: 

- Relax the contrast constraint. This may 
be done by considering not the contrast 
of an edge, but the intensity values on 
each side. Edges could then be matched 
if either their left side or their right 
side correspond. One may eventually con- 
sider an edge as a doublet | 3aker82) and 
match  each   side  separately. 

- To retine the formulation of the evalua- 
tion formula. Statistical analysis may 
yield better functions, maybe by intro- 
ducing a static probability measure to 
evaluate each match based on similarity 
of intrinsic properties (length, coW, 
orientation.) Also of concern is a more 
accurate definition of a no-match label, 
which is obtained if a match pair is not 
clearly better  than  the  competing  ones. 

- Further extensive testing is also re- 
quired on aerial and near range imagery, 

with terrain models for accuracy check- 
ing. 

- Finally, we must use an interpolation 
scheme, very likely Intensity-based, to 
generate a full disparity map of the 
scene depth. 
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Figure 4-1:   Synthetic image [256x256x6] -•', 
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Figure 4-2:   Hand generated segments 
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Figure 4-3:   Results of the matching 

Figure 4-4:   Industrial part (2'j6x256x8l 
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Figure 4-5:   Segments from the full resolution imapt- 

Figure 4-6:   Results at full resolutic 
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Figure  4-7:        Segments   from  the  half  resolution   image 
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Figure 4-8:   Results at half resolution 
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Figure 4-9:        Image  of   some  blocks!'S 12x512x7] 
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Figure 4-10:   Segments at low resolution 

135 

■ ' 

.   ■■ 



- - ■'■■■-.--." •. 

r 
r i.p1 nan 

--r"ill/--:l 

I r 
, Ja 

Our 
• 

Figure 4-11:   Results at low resolution 
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Figure 4-12:   Segments at high resolution 
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ABSTRACT 

The state of the art of parallel 
processing is characterized by an 
extraordinary proliferation of 
architectures. To date, little work has 
been done to quantify the relative 
performance capabilities of this range of 
architectures, especially from the 
viewpoint of general Image Understanding 
(ID) processing requirements. This paper 
discusses performance evaluation of 
parallel hardware. A set of software 
metrics is proposed, based on the 
processing requirements of common IU 
systems. The intent of the paper is to 
serve as a point of departure for further 
work   and  discussion. 

OVERVIEW 

these  mc._  
problems.    The work  that has been done in 
this  area  7'° has  so  far been  limited  in ;nis area •'" nas so tar oeen limited in 
scope to just a few architectures, and to 
)iomedical image processing application 
irpas. No concerted effort has been made 

study the full range of parallel 
itectures,    within   the   broader   context 

* This work is supported in part by the 
Defense Advanced Research Projects Agency 
of the Department of Defense, and was 
monitored by the Wright Patterson Air 
Force Base, under Contract F-33615-76-C- 
1203, DAPPA Order No. 3119.  / 

A partial reason for the lack of such 
comparative analysis is the absence of a 
set of widely accepted metrics for 
parallel hardware performance evaluation. 
Our purpose here is to propose a set of 
common algorithms for use as performance 
evaluation standards within the field of 
IU. Hopefully, the current paper will 
stimulate work leading to a set of 
software metrics that will be pertinent to 
IU,   widely accepted,   and  simple   to  apply. 

PERFORMANCE EVALUATION METHODS 

In conventional numeric processing, 
there are two commonly used methods of 
performance evaluation. These are the 
instruction mix and benchmark program 
approaches. In the instruction mix 
approach, a set of programs is examined to 
determine the number of times each type of 
machine instruction occurs. The execution 
time of a particular processor performing 
the programs in question can then be 
estimated by multiplying its execution 
time for each machine instruction by the 
number of times that instruction occurred 
in the benchmark. The sum of all such 
products, one for each machine 
instruction, is then taken as the 
estimated execution time for the program 
set   represented by the   instruction   mix. 

The instruction mix approach is 
useful for rapidly evaluating the 
performance of conventional serial 
processors, but has little utility for the 
study of parallel architectures. This is 
because of the importance of data movement 
in IU applications. That is, two 
algorithms might show identical 
statistics, in terms of the numbers of 
multiplications, additions, etc. that each 
require, but show radically different 
execution times, due to widely differing 
data movement requirements. For example, 
one algorithm might involve only data 
taken from a relatively small kernel, 
while the other inight require global 
access  to data  scattered  across   the  entire 
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image data plane. Furthermore, the 
pattern of data movement is often at least 
as importanc as the amount of movement 
itself, since different architectures are 
able to take varying advantage of 
regularities in data movement. In 
addition to the importance of data 
movement, Lhe instruction mix approach is 
unusable in IU applications 
varying efficiencies in 
architectures. Many parallel 
particularly SIMD arrays are 
able to use all of their 
hardware to best advantage: 
frequently arise in which a significant 
portion of the available hardware is idle, 
due to the lack of pertinent image data in 
the pixels associated with it. In such 
cases, a simplistic analysis based on 
aggregate instruction rates leads to 
performance figures significantly higher 
than   can   actually  be   attained. 

because of 
parallel 

processors, 
not always 
available 
Si tuat ions 

requirements, as seen by the hardware. In 
other words, while covering the entire 
range of IU algorithms, we must (since our 
objective is bardwaie evaluation) focus 
more on the processing load in making our 
selections, rather than on the overall 
structure of any particular algorithm. 
Accordingly, we need to develop a 
conceptual basis, or taxonomy, by which we 
might determine the unique processing 
requirements of  each  algorithm  studied. 

SOFTWAHE TAXONOMIES 

Little work has been done to date on 
the classification of software algorithms. 
Swain, Siegal, and El-Achkar 9 proposed a 
six-point classification scheme which 
consisted  of  the  following  catagoties: 

-- 

• 

The benchmark program method of 
performance evaluation, on the other hand, 
avoids many of the problems just 
mentioned. In     this     approach,      a 
representative algorithm is programmed to 
run on a particular machine, and the 
actual execution time is measured. If the 
representative program is properly chosen, 
the results are virtually guaranteed to be 
accurate, since such matters as data 
movement, machine efficiency, and the 
operating environment are naturally 
included   in  the   final   measurement. 

The problem with the benchmark 
program approach, of course, lies in the 
choice of the "representative program." 
Particularly in a field as broad as IU 
currently is, it would be a hopeless task 
to map eyei^ interesting algorithm onto 
every proposed architecture. The problem 
of selecting representative algorithms is 
itself complicated by the breadth of the 
field, the wide range of approaches to any 
given IU sub-task, and by the fact that 
there are many areas in which there is no 
clear consensus as to the best algorithm 
for performing a given task. These are 
the parameters within which we must work. 
They are further modified by a strong 
desire to reduce to an absolute minimum 
the amount of coding required to implement 
an evaluative test. Ideally, what we 
would like to do is to find the lowest 
level of program modules with the greatest 
degree of applicability across the entire 
range of   IU  algorithms. 

In selecting representative 
algorithms or modules though, we must be 
particularly careful to not only represent 
the full range of application requirements 
(such as feature extraction, 
classification, etc.), but to include as 
well    the   entire    range   of   processing 

• Type: 

• Context 
Dependency: 

• Iteration: 

• Multjvariacy: 

• Time: 

• Computational 
Complexity: 

- Enhancement 
- Extraction 

- Context Free 
- Context Dependent 

- Single-Pass 
- Multi-Pass 

- Univariate  Data 
- Multivariate Data 

- Real-Time 
- Batch 

- n,   n   log(n),   etc. 

Swain's "type", "iteration", and 
"time" classifications are self- 
explanatory. An example of a "context- 
free" algorithm might be histogramming, 
where the set of final values is solely a 
function of the values oi the individual 
pixels, independent of any relative 
associations that might exist between 
pixels. An example of a "context- 
dependent" algorithm would be one 
performing adaptive filtering in which the 
output value (and, indeed, the structure 
of the algorithm itself) for a given pixel 
would depend strongly on the values of the 
pixels surrounding it. A simple grey- 
scale image would fall under the catagory 
of "univariate data", while a Landsat 
multi-spectral image would be considered 
"multivariate     data". Finally, 
"computational complexity" refers to the 
relative dependence of the execution time 
of an algorithm on the size (n) of the 
data   being   manipulated. 

These classification criteria focus 
more on the use to which various 
algorithms    are    put    than    on    their 
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structure. As a result, little explicit 
information is conveyed regarding the 
processing requirements of the algorithms 
so classified. We propose as a more 
useful  set  of  criteria   the  following: 

• Functional  Statistics 

• Local   vs.   Global 

• Memory Intensive  vs. 
Computation  Intensive 

• Context Dependent   vs.  Context Free 

• Iconic   vs.   Symbolic 

• Object Oriented  vs. 
Coordinate Oriented 

Here, the term "functional 
statistics" simply refers to statistics of 
the sort normally used in compiling 
representative instruction mixes. In 

refer to the relative 
various arithmetic 
such as addition, 
division,    etc. Such 

statistics are important in evaluating the 
performance characteristics of specific 
machines, but are less valuable in the 
study of general architectures. Apart 
from gains attributable to the level of 
parallelism employed, arithmetic 
performance is more a function of 
implementation  than  architecture. 

particular,    we 
frtquency    of 
operat ions, 
multiplication, 

The local/global distinction in our 
classification scheme is really a measure 
of the a priori knowledge concerning data 
location contained in an algorithm, rather 
than an indication of the size of the 
domain upon which an algorithm operates. 
That is, we consider the scope of an 
algorithm to be "global" if its domain 
cannot be, a priori, restricted to any 
subset of the ima^e data. Thus, a 
"global" algorithm is one which aia^ draw 
its data from anywhere in the image plane, 
whether or not it does so in all cases. 
This distinction arises from the scope of 
the data access required by the individual 
processing elements in a parallel 
architecture. If an algorithm may require 
a processor to have access to any area of 
the image, the architecture must provide 
for such arbitrary access. From the 
viewpoint of the computer architect, the 
fact that only a small number of pixels 
will be involved in a given operation 
matters less than the fact that those 
pixels may lie anywhere in the image 
plane. 

The   memory/computation   intensive 
classification   is  a   measure  of   the   amount 

of local memory that will te needed to 
successfully execute an algorithm. "Local 
memory" is taken to mean that memory 
associated with each sub-processor in a 
parallel machine. This memory is used to 
store such things at --aw image data, 
convolution coefficients, or intermediate 
results. An example of such usage would 
be the need to store edge magnitudes for 
each of several edge directions, in most 
edge-detection algorithms. Operations 
based on sorting within a kernel (eg: 
median filtering) in particular require 
large  amounts of   local   memory. 

As with Swain's classification, we 
take context dependency to mean the extent 
to which the values output by an algorithm 
depend on relationships existing between 
input data elements. Note that this 
definition of context dependency does not 
refer to situations in which the output of 
an algorithm depends non-linearly on the 
input values (as with thresholding). Such 
behavior is described by our linear/non- 
linear classification. The more commonly 
employed term of "data dependency" refers 
to both context dependency and linecrity. 
We have chosen to distinguish these two 
cases as separate classification 
parameters because of their different 
implications   for   hardware. 

Our "iconic vs. symbolic" 
catagorization is included because the two 
representations involve greatly different 
types of processing. In iconic 
processing, there is a direct relationship 
between physical storage locations and 
image pixels. Symbolic processing, on the 
other hand, involves the manipulation of 
lists and other data structures which 
contain image coordinates only as explicit 
entries in the data structure. Machines 
well suited to iconic processing are 
largely unsuited to symbolic processing, 
and vice versa. Most of the concurrent 
architectures proposed to date have been 
of   the   iconic  type. 

The problem of iconic vs. symbolic 
processing goes beyond the simple 
dichotomy of the classification, however. 
Modern image understanding frequently 
involves the translation of image data 
from the initial, iconic, form to a 
subsequent, symbolic one. A great deal of 
the processing load of advanced, 
autonomous systems actually occurs on the 
symbolic level, in the application of 
knowledge-based rule systems to the raw 
data gathered by the lower levels of the 
vision system. Both sorts of processing 
are therefore important to practical 
applications. Significantly, though, 
while we know fairly well how to build 
machines that are capable of processing 
either   iconic or symbolic data,  no current 
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architectures adequately address the 
problem of translation between the two 
domains. The difficulty of this 
translation lies in the fact that it is 
basically an object-oriented process. The 
data corresponding to a particular object 
might lie anywhere within the image plane, 
making it difficult to make any a priori 
assignments of individual processors to 
individual objects in a multiprocessor 
architecture. Similarly, SIMD machines 
can only translate between iconic and 
symbolic representations one object at a 
time, due to their single instruction 
stream. There are other considerations 
involved here that extend beyond the scope 
of this paper, but suffice it to say that 
the iconic/symbolic translation problem 
remains difficult and as yet unsolved. It 
^ for this reason that we have included 
"object orientated vs. coordinate 
oriented" in our list of classification 
parameters. Coordinate     oriented 
processing refers to situations in which 
the location of the data to be processed 
within the image is known in advance, 
independent of any characteristics of that 
data. On the other hand, in object- 
oriented processing, the location of the 
data to be processed is an implicit 
function of the data itself, and of 
relationships existing within the data. 
The consequence for hardware, as mentioned 
earlier, is that object-oriented 
processing requires access to the entire 
image plane. Few architectures provide 
such access while allowing independent 
processing  of   various  parts  of   the   image. 

This list of classification 
catagories provides a basis for a study of 
algorithm characteristics, as 
distinguished by the demands placed on the 
processing hardware. We will use them 
subsequently in our discussion of IU 
processing requirements, and again in our 
overview  of   current   architectures. 

IU ALGORITHM  OVERVIEW   &   METRIC SET 

In this section, we briefly review 
the most common types of processing 
encountered in image understanding. 
Before launching directly into this 
discussion, though, it would be 
appropriate to consider the level of 
algorithms that would be most profitable 
to study. We would like to find 
algorithms or operations which enjoy wide 
application across the entire IU field. 
We must balance this desire against the 
requirement that the algorithms selected 
be uniquely representative of the 
requirements of IU, as identified by our 
taxonomy. Obviously, the operations of 
addition and multiplication are widely 
used   within   IU.     By   themselves,   though. 

they do little to represent the unique 
requiryments of the discipline. On the 
other hand, the "Smith, Smith, Smith, and 
Jones" matched filter for '57 Chevys, 
while highly developed, has only a limited 
range   of   application. 

Accordingly, we have selected a set 
of "unit operations" which function at a 
low enough level that t-hey may be employed 
by a wide range of higher level 
algorithms, but that are themselves of a 
sufficiently high level to be classified 
according to our previously developed 
taxonomy. Table I lists the unit 
operations that we have selected for 
consideration, and shows how they fit into 
our classification scheme. A discussion 
of the unit operations and their 
classification   follows. 

It is important to note in the 
following discussion that many of the 
operations described can be used in ways 
contradictory to their primary 
classification. This does not invalidate 
in any way their selection as part of the 
metric set, based on our classification of 
them. Our intent here is not to 
rigorously classify the algorithms, 
including all variations of their usage, 
but merely to insure that we have 
adequately accounted for the various types 
of  processing   represented by our  taxonomy. 

Thresholding, the first entry in 
Table I, finds broad application 
throughout IU. It was chosen for 
inclusion in the metric set as the 
simplest example of a parallel, non-linear 
operation. As for its other parameters in 
the classification scheme, it is local, 
because thresholding by definition takes 
as input only the values of individual 
pixels. Thresholding may be either 
context-free or context-dependent, 
depending on whether it is being done 
adaptively or not. If the threshold value 
is the same for all pixels of the image, 
the operation is context-free. On the 
other hand, if the threshold is set 
locally, as some function of local data 
values, the operation is context- 
dependent. Examples of both types of 
thresholding would be good candidates for 
inclusion in the metric set. Since 
thresholding does not typically involve 
the storage of intermediate results, 
little local memory is required, and the 
operation is therefore considered to be 
computation-intensive. Thresholding is a 
coordinate-oriented operation, even in the 
adaptive case, because the data required 
to generate a given result always lies 
within a small area surrounding the pixel 
being processed. Likewise, the operation 
is   strictly   iconic. 
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Convolution, the second table entry, 
is widely employed in filtering functions 
such as edge detection, and as part of 
such procedures as com.ectivity linking, 
and region growing. It is basically a 
linear, arithmetic process, in which the 
data values within a local neighborhood 
are multiplied by a set of weight values, 
and the resulting products are summed to 
produce the final result. Such a sum-of- 
products is computed for each pixel of the 
input image. As we have just stated, 
convolution is an example of a linear, 
local operation. In some situations, the 
output is made non-linear, but this occurs 
through thresholding, which has already 
been included in the metric set. In its 
purest form, convolution is context-free, 
with the weighting function being 
invariant across the image. In some forms 
of adaptive filtering, a multi-pass 
iteration is applied, with the local 
weighting functions being modified by the 
rtsults of the earlier pass. An example 
of such usage would be an algorithm to 
extract the lines forming the loops and 
whorls    of    fingerprints. In    this 
application, the weighting values of a 
line-detecting filter are modified 
according to the dominant local line 
direction found on a previous pass. As 
with thresholding, both adaptive and non- 
adaptive forms of convolution processing 
should be included in the metric set. 
Convolution by itself is computation- 
rather than memory-intensive. Some of its 
applications do involve the storage of 
intermediate products, however. Edge- 
detection, for example, usually involves a 
series of convolutions, one in each edge 
direction being tested for, with the 
intermediate results of each individual 
convolution being stored for subsequent 
comparison and selection of the largest 
directional value at each point. We 
consider this to be an example of sorting, 
though, which we treat separately as the 
third entry of the table. Adaptive 
filtering can also involve substantial 
amounts of local memory, depending on the 
architecture of the machine being used. 
In some machines, particularly cellular 
arrays, the various weighting coefficients 
for each of a range of possible 
convolutions are all stored in the 
machine's local memory. This is the 
primary incentive for including adaptive 
convolution in the metric set. As to its 
other classification parameters, 
convolution io strictly coordinate 
oriented and operates within an iconic 
representation. 

Sorting, the third entry in Table I, 
is included as an example of a local, non- 
linear, memory-intensive process. As just 
mentioned, it finds application in 
operations  such as  line-finding,   where the 

largest of a set of several values must be 
selected. Median filtering likewise 
involves the selection of the median value 
from among a number of data values 
occurring in a local neighborhood. 
^Median filtering is most often used for 
size discrimination and connectivity 
processing.) Sorting is best thought of 
as context-dependent, since the shuffling 
of pieces of data or the setting of 
pointers is strictly a function of the 
data values themselves. It is also 
coordinate-oriented, but can occur in 
either an iconic or symbolic 
representation. 

Histogramming is our fourth candidate 
for inclusion in a set of software 
metrics. Histogramming      is     a 
representative of what might be called 
"statistical processing," and constitutes 
a large portion of the computational load 
of the popular region-splitting 
segmentation algorithms. Its processing 
requirements differ from those of the 
operations detailed so far, in that it 
operates globally in a context-free 
fashion. It is most properly thought of 
as computation-intensive, since memory is 
only required for the storage of the final 
tallies. On the other hand, on MIMD a.id 
pipelined machines, its actual execution 
is memory access-intensive, in that a 
small set of memory locations are accessed 
repeatedly as the individual tallies are 
updated. Histogram computation is also 
linear with respect to the input values, 
and is most often employed in an iconic 
context. While we have classified 
histogram processing as being coordinate- 
oriented, it could be argued that many 
applications use it in a object-oriented 
manner. An example of such usage would be 
situations in which histograms are 
generated for a class of objects within 
the image, as is common in target- 
identification routines. This object 
dependency s not an intrinsic 
characteristic of the histogramming 
process, though, but rather an extra, 
externally-applied condition. Hence our 
"coordinate-oriented" classification. 

Correlation operations were selected 
as the fifth metric set candidate because 
they involve local processing with a 
higher level of context-dependency than we 
have previously encountered in this 
discussion. As typically applied (in 
stereo processing), portions of one 
picture are compared against various 
regions of another picture. The 
comparison process is basically a 
convolution, but the weighting functions 
are the data values of the reference 
image. Correlation thus tests an 
architecture's ability to rapidly access 
different   sets   of   weighting   values   for 
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convolution processing. This sort of 
operation is common in both feature- and 
intensity-based stereo processing. In 
most implementations, it is also somewhat 
object-oriented, in that the correlations 
are performed only in areas containing 
features of interest. These areas of 
interest may lie anywhere in the image 
plane, and so could be thought of as 
fitting the description of "object- 
oriented." On the other hand, this 
"object orientation" is usually an attempt 
to reduce the computational load on 
conventional serial computers. The 
intrinsic structure of the processing 
implies no object orientation, and so we 
classify it as coordinate-oriented. 
Correlation is also a linear process, and 
usually  is performed  in  the  iconic domain. 

Interior point selection, our sixth 
candidate for the metric set, is the 
process of identifying those points of the 
image that lie within closed boundaries 
defined by previously located edge 
segments. A point is determined to be on 
the interior of a closed boundary if it 
there are edge segments within a certain 
radius of it, in a majority of the 
directions checked. Since a point is 
either inside an object or not, the 
processing is non-linear, and since the 
data may lay anywhere within the image 
plane, the processing is global. It is 
furthermore both context-dependent and 
object-oriented, according to the 
definitions given earlier. Finally, it 
most naturally operates on iconically 
represented data, and is computation 
intensive, in that little intermediate 
data   is stored  for  each point  evaluated. 

Line finding is the seventh metric 
candidate we have considered. By "line 
finding," we mean those routines which are 
concerned with linking edge segments 
together into lines, and "tracing" tne 
resulting lines to determine their lengths 
and orientations. Thit- is the most 
clearly object-oriented process that we 
have considered so far, in that the 
"tracing" operation necesserily involves 
following the line wherever on the imago 
plane that it might go. The process is 
particularly interesting, because it 
operates on iconically represented data to 
produce symbolic data. As mentioned 
earlier, and as we shall see subsequently, 
in the discussion of machine architecture 
characteristics, such translation 
processes pose particularly difficult 
problems to computer architects. On array 
machines, the process is computation- 
intensive according to our earlier 
definition, because the generated line 
data remains distributed across the 
memories of a number of the cellular 
procesrors.     On  the  other   hand,   on   MIMD 

machines (which are generally better 
suited to this sort of processing), the 
process is memory intensive, requiring 
large amounts of local memory for its 
efficient execution. As to other 
clas&i!ication catagories, the operation 
is non-linear, global, and context- 
di pendent. 

Shape descriptions are the eighth 
member of our metric set. Shape 
description, like line-finding, involves 
translating information from an iconic to 
a symbolic representation. As such, it is 
a strongly object-oriented process, 
involving step-by-step tracing of 
boundaries, or repeated computation of 
individual line-segment midpoints. 
Representative algorithms in this catagory 
include invariant moment calculations, 
medial axis transforms, and generalized 
cones. Shape description algorithms are 
usually global, context-dependent, and 
computation-intensive, according to ou.- 
classification scheme. They are also 
linear, in that their output depends 
linearly on the shape characteristics of 
the   input   structure. 

Our two final entries in the proposed 
metric set are examples of more purely 
symbolic processing. Graph matching, the 
first of our symbolic metrics, involves 
searching a graph for a sub-graph having a 
particular, specified structure. 
Prediction, the final metric candidate, 
involves the application of rules to a set 
of existing data to predict the 
probablility of occurrence of some 
particular   condition. 

• Deduction of facts from semantic 
inheritance   networks. 

• Matching of patterns against sets of 
assertions, demons, or productions. 
Best matches must be selected in the 
absence  of  a  perfect  match. 

• Sorting of sets according to chosen 
parameters. 

• Searching graphs for sub-graphs with 
a   specified   structure. 
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Our proposed graph matching metric 
directly addresses the fourth of Hillis' 
catagories, while our prediction metric is 
more generally directed at the full range 
of   processes. 

HARDWARE ANALYSIS 

tnese arcnitectures to perlorm each of the 
classes of processing discussed earlier. 
In the matrix, processors are evaluated on 
a five-point scale, ranging rom "++", for 
a    machine   that-    IR   h I ah 1 U    nuit-or!    t-^    »-K« 

n.   ;.i.a:f,    tallying    ptoni      -r-r   ,    ior 
a machine that is highly suited to the 
type of processing represented by that 
column of the matrix, to "--" for an 
architecture that is highly unsuited to 
that   type of  processing. 

The table lists eight processor 
catagories: cellular numeric, pipelined, 
MIMD, number theoretic, systolic, 
"broadcast", data-driven, and associative. 
There can be some overlap between these 
catagories, but the principle 
characteristics of each class are 
sufficiently distinct to permit 
discussion. In the following, we shall 
describe each architecture briefly, and 
examine how well it meets the processing 
requirements represented by our 
previously-developed software taxonomy. 

Cellular numeric machines are those 
composed of tin array of identical 
processors, or cills, directed by | common 
instruction stream, but operating on 
separate data. The processor array is 
usually the same size as the input image 
data array, with one processing cell 
assigned to each pixel of the input image. 
Cellular machines are perhaps the most 
popular of all the classes listed, with 
many already built or planned.11-15 Their 
hardware advantages are great parallelism, 
high regularity, and simple circuitry in 
each of the cells. These attributes 
combine to make for relatively simple 
design and VLSI layout. Cellular machines 
typically employ nearest-neighbor 
communication between array members, 
although some provision is usually made 
for rapidly propagating or "broadcasting" 
data values across the array as a whole. 
Local memory for each processing cell is 
usually   fairly   limited. 

From a software standpoint, because 
of their great parallelism, cellular 
machines are excellent for local, linear 
processing, such as convolution. They are 
somewhat less efficient at non-linear or 
context-dependent processing due to their 
single instruction stream. Cellular 
arrays usually execute context-dependent 
algorithms through an exhaustion process, 
generating all possible results, and then 
selecting the most appropriate for each 
pixel through a thresholding operation. 
Due to their limited local memory 
capacity, they are also less welJ suited 
to niemory-intensive algorithms such as 
sorting, which requires the storage of a 
number of pieces of data at each array 
location. Their      next-neighbor 
commur.ication scheme can also be limiting 
in algotithms requiring a great deal of 
data sharing across a large area. A 
global-broadcast capability does permit 
excellent performance at such tasks as 
histogramming, where a large number of 
values must be compared with all data in 
the array. Most cellular machines to date 
are structured for iconic data processing, 
and are rather unsuited for symbolic 
processing. Cellular nv.chines also have 
difficulty performing ubject-orlented 
tasks. Due to their single instruction 
stream limitation, they waste most of 
tneir parallelism in such cases, having to 
deal  with only  a  single object  at  a  time. 

Pipelined machims are ones in which 
data is operated on by a chain, or "pipe" 
of hardware units, each performing a 
separate function. As each element of the 
chain finishes its operation, it passes 
its results to the next in line, and 
accepts a new piece of data from the 
previous unit. Processing occurs 
simultaneously in all elements of the 
chain, with data flowing down the chain as 
liquid down a pipe. Concurrency is 
obtained through having a number of 
operations take place simultaneously along 
the pipe, and sometimes by having a number 
of pipes operating simultaneously. 
Pipelining is fairly common in commercial 
"array processors." Several research 
machines have been using this architecture 
for use in IU. »i»** 

Since they rely upon fixed sequences 
of operations within algorithms, 
pipelines exhibit high performance in 
situations in which the type and sequence 
of operations to be performed is rigidly 
determined. This is the case in many 
lower-level algorithms, such as 
thresholding    and    convolution. The 
penalty paid for the speed thus obtained 
is that there is a fixed delay from the 
time data is first presented at the 
beginning of the "pipe," and the time when 
results   are   first   available  at   the  end. 
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This delay corresponds to the amount of 
time it takes for the data to pass through 
all the functional units along the pipe. 
As a consequence, a heavy time penalty is 
usually paid for any data-dependent 
program branching. This is because, each 
time a branch is taken, the pipe must b« 
"filled" with new data before the new 
results become available. For this 
reason, pipelines perform less well on 
nonlinear, context dependent, and object- 
oriented algorithms. Machines with 
multiple pipes can also be limited by 
memory contention problems, if the pipes 
share a common memory. (Hence the 
"average" rating for pipelines under the 
"global" and "coordinate-oriented' 
headings in Table II.) Pipelines are also 
unsuited for symbolic processing, due to 
the high degree of context-dependency 
involved. 

MIMD stands for "Multiple 
Instruction, Multiple Data," and refers to 
machines in which a number of largely 
independent processors are harnessed to 
process data in parallel. Each of the 
processors in an MIMD architecture execute 
their own instruction stream. A 
significant factor motivating the 
development of such machines is the wide 
availability of cheap, general-purpose 
microcomputer chips. (Computer architects 
are irresistably led to ponder the power 
of a thousand, or better yet, a million Z- 
80 chips working in parallel.) Several 
such machines have been built for use in 
IU,   and  are  presently  being  studied.l°'l9 

Since the individual processors in 
MIMD machines are usually general-purpose 
ones, with large memory spaces and local 
program storage, the architectures as a 
class handle context-dependent and memory- 
intensive processing with greater ease 
than do cellular and pipelined systems. 
They also perform object-oriented 
processing better than either of these 
architectures, due to their large numbers 
of relatively autonomous processors. The 
principle drawbacks of MIMD machines are 
the difficulties of coordinatino the 
operation of so many asynchronous 
processors (interprocessor 
communications), and the problem of 
partitioning the image data across the 
available processor memories. 
Communication problems arise when 
processors must access data from other 
processors' memories, and this accounts 
for the "average" ratings for MIMD 
machines in the "global," "object- 
oriented," and "coordinate-oriented" 
catagories   in Table   II. 

Number theoretic and systolic 
processors are two special catagories of 
machines   particularly  suited  to   linear. 

context-f c■ • i    computation-intensive 
processing.    They are thus highly suited 
to   the    lowest   and   most   computation- 
intensive levels of  image understanding, 
but   have   little   application   for   higher 
levels     involving     context-dependent, 
object-oriented, or symbolic processing. 
Number   theoretic   processors   employ   the 
residue number  system,   studied extensively 
by Szabo and Tanaka,20   in which  integers 
are  represented by their  "residues" with 
respect   to   each  of   a   set   of   relatively 
prime   numbers   called   'moduli."     A  residue 
of x mod m,  is the least positive   integer 
remainder of the division of x by m, where 
x is the number to oe converted,  and m is 
one of  the  moduli.     If  M   is  the product  of 
the moduli used in such a system,   integers 
in   the   range   of   1   l   x   1   (M-l)   can   be 
uniquely   represented   by   their   sets   of 
residues.      The   utility   of   the   residue 
system    lies    in    the    manner    in   which 
arithmetic   operations   are   performed. 
Essentially,   all  operations  are  done   in 
parallel,  mod m^,  for each of the moduli. 
After  all   required   operations  have  been 
performed,  the residue representation of 
th?  result   is converted back   into a binary 
form.      The   fact   that   the   processing   in 
residue  form  is all  done  modulo  114,   where 
the    m^    are    the    moduli    means    that 
multiplications can be  reduced to table- 
lookups,   without   requiring  prohibitively 
large  ROMs.     Consequently,   computation- 
intensive  tasks  can be  performed extremely 
rapidly.     A processor   for  operating   on   5   x 
5  kernels   has   been   successfully  built   and 
tested    using    this     approach.21       The 
drawbacks   to   the    technique   are   that 
operations   such    as    thresholding    are 
difficult   to   perform   in   the   residue 
domain, and the overhead from converting 
from binary to  residue  formats and  back 
again     makes     the     technique     less 
advantageous   for   situations   in   which 
relatively  little processing   is to be done 
in  residue   form. 

Systolic processors are a class of 
array machines exhibiting extreme 
regularity of hardware. Their name 
derives from the fact that processing 
vithin the array occurs in the form of 
"waves," moving from one edge to the 
other. Each processing element in the 
array takes data in from some of its 
neighbors on one cycle, processes it, and 
passes the results on to its other 
neighbors a cycle or two later. The high 
regularity of the hardware and data 
movement within such arrays makes them 
ideal candidates for VLSI implementation, 
and the high degree of parallelism 
attainable results in very high processing 
throughputs. Unfortunately, they are 
rather weak in the areas of context- 
dependent, object-oriented, memory- 
intensive,   and symbolic processing,  and so 
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are largely unsuited for the higher levels 
of IU processing. Several machines have 
been built, however, and have demonstrated 
excellent performance in the domains of 
their   greatest   utility.22'23 

We call "broadcast" machines those in 
which individual processors communicate 
with each other through some sort of 
"message net," in which data paths are 
established through the inclusion of 
routing tags appended to the data being 
transmitted. Architectures of this sort 
have been primarily developed for symbolic 
processing. The overhead associated with 
their communication method makes them 
largely unsuited for computation-intensive 
iconic processing, in which the 
flexibility of the broadcast communication 
scheme is not required. Some variation of 
the communication technique may prove 
useful for the difficult task of object- 
oriented iconic to symbolic translatioii. 
A machine using a "broadcast" architecture 
is currently being constructed at MIT,^" 
for  processing  semantic netc. 

Data-driven processors are machines 
composed of a number of execution units, 
each of which performs some simple, low- 
level function. These units are 
interconnected according to requirements 
of the program being implemented. That 
is, if for instance, a multiplication 
involves the results of two earlier 
addition, the outputs of two addition 
execution units would be connected to twc 
inputs of a multiplication unit. The 
execution units function independently and 
asynchronously. Whenever a unit has all 
of the operands it needs to generate a 
result, it "fires," and passes its results 
to any other units to which it might be 
connected. Dennis and Misunas2^ have done 
much to popularize data-flow architectures 
<the more popular term describing this 
class). 

Data-driven machines promise to 
achieve very high throughputs for 
computation -intensive numerical 
processing, because they eliminate the 
instruction bottleneck common to so many 
other architectures. Their limitations 
for use in IU, though, include limited 
amounts of intermediate memory, and 
reduced performance for highly context- 
dependent memory. This last arises from 
the overhead associated with changing the 
configuration of the processing clements 
in response to rapidly changing program 
requirements. A means of avoiding this 
restriction has been implemented25 by 
expressing the execution units in the 
software of an MIMD machine. In this 
variation, the "execution units" are 
instructed cycle by cycle what operations 
they    are    to   perform.       This    greatly 

capacity, 
"average" 
for   most 
strongest 
machines 

increases the flexibility of the resulting 
machine, but creates a new bottleneck in 
the hardware responsible for task 
assignment. 

Associative processors, our last 
architecture catagory, are really more of 
an attribute than a separate class of 
architectures. Many of the architectural 
classes discussed earlier, such as 
cellular numeric or MIMD may be given an 
associative capability simply through the 
addition of the appropriate hardware. 
Architectures incorporating associative 
capability usually gain their associative 
power at the expense of numeric processing 

This accounts for the low or 
ratings of associative machines 
catagories in Table II. The 
point in favor of associative 
(in the present context, at 

least) is the exceptional symbolic 
processing performance of which they are 
capable. They derive this performance 
ftom the fact that they may search sets o; 
graphs for paiticular elements or nodes in 
parallel, for all members of the structure 
being scanned. STARAN26 is probably the 
best-known associative machine constructed 
to date. 

CONCLUSIONS 

In the foregoing, we have identified 
six sets of software characteristics which 
have particular relevance to the type of 
processing demanded by the algorithms so 
described. We have measured the 
capabilities of a range of machine 
architectures against the processing 
requirements implied by each of these 
software characteristics, and have 
tabulated the results. Perhaps the most 
valid conclusion to be drawn from this 
analysis is that no single architecture is 
capable of performing all classes of 
protesF^ng equally well. More significant 
tbougbi is the fact that, while machines 
exist that are well suited for either 
iconic or symbolic processing, no present 
architecture is efficient at the task of 
translating iconically represented data 
into a symbolic representation. This is 
of key importance for future real-time 
knowledge-based IU systems, in that they 
must be able to rapidly and effectively 
process iconic data, and subsequently 
input that data to the knowledge-based 
portions of their structure. The problem 
to be solved is one of concurrently 
processing object-oriented data, without 
running afoul of communication or memory- 
access bottlenecks. The form of the 
ultimate solution to this problem is the 
subject of active investigation by many 
researchers. With the present development 
in  the  low-level  numeric  architectures. 
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and the current activity in symbolic 
processors, this topic is an area of 
fruitful   research.27 

112) Reeves, A.P., "A Systematically 
Designed Binary Array Processor;" 
Trans. IEEE on Comp., Q.=2i, pp. 278- 
287,   1980. ■'. 
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OPERATION LOCAL/ 
GLOBAL 

LINEAR/ 
NON-LINEAR 

MEMORY 
INTENSIVE/ 

COMPUTATION 
INTENSIVE 

OBJECT 
ORIENTED 

COORDINATE 
ORIENTED 

CONTEXT FREE/ 
CONTEXT 

DEPENDENT 

ICONIC/ 
SYMBOLIC 

THRESHOLDING NL Cl CO EITHER 

CONVOLUTION L Cl CO EITHER 

SORTING NL Ml CO CD 

HISTOGRAMMING L Cl CO CF 

CORRELATION L Cl CO CD 

INTERIOR POINT SELECTION G NL Cl 00 CO 

LINE-FINDING G NL EITHER 00 CD TRANSLATION 

SHAPE DESCRIPTIONS G L 01 00 CD TRANSLATION 

GRAPH MATCHING - NL Ml 00 CD S 

PREDICTIONS - NL Ml 00 CO S 

Table I. Software Metric Characteristics 
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ABCHITECIURt 
OPERATION CLASS 

LOCAL G108AL LINEAR 
NON- 

LINEAR 
CONTEXT- 

fREE 
CONTEXT- 

DEPENDENT 
MEMORY 

INTENSIVE 
COMP 

INTENSIVE 
OBJECT 

ORIENTED 
COORDINATE 

ORIEN.EO 
ICONIC SYMBOLIC TRANSLATION 

CELLULAR NUMERIC M • M 0 • 0 • I . 
PIPELINED H 0 ♦ 0 ♦ 0 ♦ 0 . 
MIMO M 0 0 0 • • • • 0 0 • 0 0 

NUMBER THEORETIC >* +4 M ■• 0 M . • 
SYSTOLIC H M ♦-♦ 4* 0 M . . 
BROADCAST • 0 0 0 0 • 0 0 0 0 " 0 

DATA-DRIVEN 0 0 0 U II M 0 . 
ASSOCIATIVE 0 0 0 0 0 0 0 0 M 1 

LEGEND      M      HIGHLY SUITED TO APPLICATION 

•     WELLSU'TED 

0     AVERAGE 

UNSUITEO 

HIGHLY UNSUITED 
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1.   Introduction 

This paper describes software evaluation methods devel- 
oped ai SHI International to evaluate contributions to the 
AHI'A/DMA Image Understanding (IU) Testbed. Examples 
of evaluation results are also presented. 

The primary purpose of the RJ Testbed is to provide 
a means for transferring technology from the ÜARPA- 
sponsored II' research program to DMA and to other 
organizations in the defense community. The approach 
taken lo ac hi<ve this purpose has two components: 

• The establishment of a uniform environment as com- 
patible a.« practical with the environments of research 
centers at universities participating in the III research 
program. Thus, organizations obtaining copies of the 
Testbed can receive a continuing flow of new results 
derived from on-going research. 

^i 

^_*.TIie acjuisition, integration, testing, and evaluation 
of selected scene analysis techniques that represent 
mature examples of generic area.s of research activity. 
These contributions from participants in the IU re- 
search program will allow organizations with Testbed 
copies to begin the immediate exploration of appli- 
cations of IU technology to problems in automated 
cartography and other areas of scene analysis.   ,<' 

Evaluation of contributed scene analysts techniques has 
thus been I major thrust of the Testbed effort. Develop- 
ment of the evaluation methodology has been a related goal. 
Software evaluation is difficult, and few independent eval- 
uations of IU software have been published. Analysis of 
an algorithm alone, even if feasible, would neither guar- 
antee correct implementation nor quantify performance on 
realistic problems. Simple tabulations of pixel classification 
errors (a,s in Vasnoff, ti ai [l|) would not be meaningful for 
complex seen, analysis ta.sks. Comparative evaluation us- 
ing several algorithms or software packages on 01 e set of 
test scenes (as in Ranade -nd f'rewitt (2)) WILS no. practical 
for testing single algorithms, We have chosen a more sub- 
jective approach based on: (1) careful analysis, (2) tests 
on simple and complex natural scenes, and (3) our own 
experience in image analysis. This is similar to the method 
advocated by Nagin, tl al. (3]. 

In this paper I describe my experiences with the initial 
software evaluation efforts on the IU Testbed. I was specif- 
ically involved with the evaluation of the GIIOUGII object 
detection ■.yslem [4] from the University of Rochester, the 
PHOENIX segmentation system M from Carnegie-Mellon 
University (CMU), and the RELAX relaxation package [6] 
from the University of Maryland Many other software 
packages have been contributed to the Testbed, but have 
not been as extensively evaluated. 

2.   Evaluation Purpose 

There are many reasons for evaluating software packages. 
Managers, systems personnel, and users all have different 
perspectives and different requirements. These imply many 
different questions that must be answered by a thorough 
evaluation effort. Some of the major questions are; 

• Acquisition Should the software package be ac- 
quired and further evaluated for local implications? 
What arc its capabilities' Can it be extended? 

• Impletneiitation — What operating system support 
is required? How much memory does the package 
need? How much time does it take to run? Does 
the implementation corre^.ond to the documented 
algorithm' Does performance match theoretical pre- 
dictions' How well is the code structured and com- 
mented' Is the documentation adequate? 

• Appliration - Is the package suit&ble for a particular 
application' Is the user interface adequate? How does 
the package perform' Can it be integrated with other 
packages? 

We have attempted to answer these questions in our eval- 
uation reports. The first section of each rtport introduces 
the package at a management level, answering questions 
about the tasks for which the algorithm is suited. Subse- 
quent sections are written for system implementers and for 
user». The final sections document performance on evalua- 
tion tasks and make suggestions for future improvements. 

An evaluation effort may have subsidiary effects on the 
software, the Testbed, and the personnel involved: 

• Adaptation — The evaluation effort has spurred sev- 
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«•ral Mtkon to polisli or docuiiu-nt Ihoir software be- 
fcrc releasing it to the IU Testbed. Several contri- 
butions had to be translated into the C language be- 
fore submi.ssion; the software thus became available 
on new classes of systems. Such "packaging" can be 
a significant step in the life of a software system. 

• Validation The processes of translating, installing, 
and e\aluating contributed software have often led to 
the discovery of programming bugs and occasionally 
bugs in the algorithms. Where bugs are not found, 
then' is greater assurance that such bugs do not exist. 

• Train nig — We, the evaluating personnel, had to 
learn I" use the software and to understand the theory 
behind It, thus extending the knowledgeable user 
Cdniiiiunit). We have documented this understandng 
and are otherwise communicating it to others. 

• Documental ion - Submission of software for evalu- 
ation has often spurred initial documentation of the 
pack.ige. Any weakness in this documentation were 
brotiglit to light as we b'arned to use the package We 
have then filled in the gaps and have added any nec- 
MMI7 overview, literature surey, operating instruc- 
tiui,^ performance examples, and suggestions for im- 
prowment. 

We have also placed notes to future implementers 
and users in the source code and in the on-line 
man page documenting the T-stbed version of the 
contribution. (These man pages are included in 
the Testbed programmer's manual ["].) We believe 
that such channels of communication between users 
scattered in space and time are essential for the 
continued growth of the software. 

• AngnieritalioM We generally had to modify the sub- 
milted code to use local graphics and user interface 
routines, to instrument the code with additional dis- 
play- or printouts of internal variables, and to rewrite 
portions of the code to eliminate trivial restrictions 
or to make the package more etlicient for particu- 
lar la.^k^ The dividing line between evaluation and 
new di velopmenl is not clear, but it is clear that the 
evaluation effort often leads to improvements in the 
softu.ire The Testbed environment also had to grow 
to support the contributions, and many ideas from 
the contributions have been adapted for use in other 
software. 

3.   Evaluation Structure 

The tasks involved in evaluating a contribution are 
reflected in the structure of the evaluation report. We have 
developed this strui'dire for recording and communicating 
the results of our investigations. 

The introduction to a report summarizes the nature of 
the reviewed software package, the computer languages or 
system facilities needed to support it, and the contributions 
of various people in designing, creating, and maintaining it. 

The succeeding background section describes the package 
from a management viewpoint. Generally this is one of the 
last sections written because it requires knowledge gained 
from the entire evaluation effort. First there is a general 
description of the package, including its purpose, inputs, 
processing steps, and outputs. Then typical applications 
and usage scenarios are described, including preconditions 
Uld the domain of applicability, relation to preprocessor 
and postprocessor programs, applications that have been 
documented in the literature, and poleotial applications 
that we or uther researchers have suggested. 

The background section also describes potential exten- 
sions and related applications. Potential extensions are ap- 
plications that might be feasible if the package were modi- 
fied or extended, used in a nonstandard fashion, or incorpo- 
rated as an element of a larger system. Related applications 
are generalizations or variants of the standard applications 
for which other techniques seem to be more appropriate. 

A descriptive section then documents the algorithm in 
detail. We begin with its historical development to intro- 
duce vocabulary and to put the major technical issues into 
perspective. Literature references are cited to give credit 
where credit is due, to aid researchers in finding the full 
range of concepts that have been explored, and to provide 
managers and implementors with contacts for further in- 
quiries. The section closes with a detailed statement of the 
algoritlnn, including further discussion of design options 
and references to the literature as appropriate. 

The next section is a brief implementer's guide describing 
the structure of the contributed software and the Testbed 
locations of its source files, executable files, on-line doc- 
umental ion, and demonstration files. This is information 
needed to install and run the package or to modify and 
maintain it. We have included here a description of the 
SKI modifications to the contribution. 

A program documentation section then serves as a users' 
guide to running the package and invoking all of the al- 
gorithm features. We have given instructions for both in- 
teraeiive and batch (or background) execution, including 
documentation of all command-line invocation options, in- 
teractive commands, controlling variables and flags, and 
status variables. Sometimes we have also found it neces- 
sary to give a detailed description of the program's exe- 
cution phases, complementing the theoretical description 
of the algorithm in previous sections. This section of the 
evaluation report could be omitted in cases where existing 
documents provide adequate and unified documentation of 
the program 

Our report can now document the evaluation proper. 
We have divided the evaluation section into two parts: 
• ffects of p.irameter settings and performance statistics for 
representative tasks. A subjective summary may also be 
included. 

The purpi'-e, intended effect, and legal values for each 
parameter and control variable were specified in the last 
section. In this section we probe more deeply, determiriing 
the true effect of each parameter on system performance 
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and (ICK iimcnling interactions (cither constraints or syner- 
gislic efTccts) with other parameters. The end result is a 
set of rules for setting the paramctei.s in various process- 
ing situations. We also ?ommenl on the usefulness of the 
control features and give suggestions for improving them. 

Next we document the performance of the system on se- 
lected scene analysis tasks. (Selection of the tasks is dis- 
cussed later in this paper ) We descrihe the lest protocols, 
including the input images and the parameter settings that 
we found optimal for the tasks. Wo present subjective and 
objective performance measures and summarize the appar- 
ent strengths and weaknesses of the algorithm and the soft- 
ware implementation. 

Subjective trials are difficult to document. We ran 
hundreds of trials on dozens of images. Often a trial 
designed to investigate one effect would turn up something 
ebe as well. It is impractical to illustrate each of these 
findings in the final report. (Many are of the form "Note 
how the edge detector found this weak edge but missed 
that miK h stronger one.") We have therefore attempted 
to summarize our findings and present only the relevant 
information. 

In the next report section, we suggest substantial mod- 
ifications to the algorithm or the implementation. Some 
of these are of potential, but uncertain, immediate benefit 
and some are extensions into task areas far beyond those 
considered by the original author. We also mention known 
improvements to the contributing institution's continuing 
software development that have not been incorporated into 
the more stable Testbed version. Many suggestions are de- 
rived from the work of other researchers, in which case we 
supply the appropriate references. Other suggestions arise 
from our own evaluation effort. 

Our evaluation report concludes with a summary of 
the major technical concepts and of the strengths and 
weaknesses of the contributed algorithm and software. 
Appendices may give further information about the task 
domain, the algorithm, or the software package that Is too 
detailed for the main body of the report but is not readily 
available elsewhere. 

4.   Evaluation Methodology 

We have focused our evaluation efforts on the topics of 
greatest utility. Issues of applicability and of parameter 
effects and interactions have been given highest priority; is- 
sues of resource utilization have been given lower priority, 
be.-ause they are dependent on the algorithm implementa- 
tion and supporting hardware. 

Some of the most difficult evaluation issues have to do 
with the theory behind the algorithm. We have attempted 
to summarize the theoretical basis of each contribution, 
but evaluation of ti.c theory is generally impractical. The 
best we could do is to document other approaches to similar 
tasks and to note strengths and weaknesses of the algorithm 
as reported in the literature or found in our own work. For 
this reason we have included an extensive literature survey 

in each "T our evaluat ■tr.irK 

fkif evaluation of a contribution required that we choose 
particular ta.sks for it to perform. Some delicacy was 
needed in making these choices. It would be unfair 
to evaluate the software on ta.sks for whrh the author 
considered it unsuited. It would also be pointless to use 
only txsks that had been well documented in the literature; 
the essence of evaluation is the learning of something new. 
We have tried to choose tasks that are well within the 
contribution's domain and yet of fundamental interest to 
automated cartography and scene analysis. 

The GHOUGH object detection system came with in- 
structions for finding a distinctive lake in an aerial scene. 
We chose the finding of circular objects in aerial scenes and 
right-angled corners in oblique scenes as additional tasks. 
The PHOENIX segmentation system came with a test case 
of segmenting an orange chair from a white background. 
We chose skyline analysis as a realistic task. The RELAX 
probabilistic relaxation system was set up for noise clean- 
ing of an infrared image of a tank. We chose gradient edge 
detection and segmentation of vehicles from roads as ad- 
ditional tasks In each case, the imagery was rich enough 
that performance on auxiliary problems (e.j., nonpurposive 
segmentation) could be subjectively evaluated. 

For each task, we selected suitable imagery, ran dozens 
of trials to establish optimal parameter settings, and doc- 
umented the results. If little documentation and operat- 
ing information came with the package, we spent much of 
our time learning and recording this information. If doc- 
umentation was adequate and few parameters had to be 
explored, we were able to spend more time recording oper- 
ating characteristics and performance statistics. Economic 
constraints limited the lepth to whi h any task could be 
evaluated, but we were able to provide an adequate foun- 
dation for future researchers with specific problems. 

The first step in evaluating any package was to get 
it working on a simple test image — usually an image 
provided by the author. This process occasionally took 
considerable effort; we chose to rewrite the entire I/O 
structure and user interface for one program, for instance. 
This integration effort was essential to the development of 
the Testbed, but did raise a thorny issue: to what extent 
should we fix perceived deficiencies and to what extent 
shoii' I we simply document them' One rule of thumb was 
thai v.e would fix or extend the code in any manner required 
to carry out an evaluation on realistic tasks. 

The next step was to test the software rigorousl) on one 
or more simple images. The idea was to become familiar 
with the workings of the program and with the options 
available to the user. This step also helped identify software 
bugs or misunderstandings about the intended functions of 
the program We strongly recommend the use of generated 
or well understood problems as one pha^e of the evaluation 
effort. 

Investigation of parameter interactions was one of the 
most difficult evaluation tasks. Analysis of simple imagery 
permitted us to concentrate on internal variables instead 
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of inU'rai tions with a complex environment. Even so, the 
"scairh spjirc" of possiMe internrtions wax immense. The 
PIIOKNIX program, for eximple, has 14 major threshold 
values to eontrol image segmentation, in additioL to various 
control strategies and interaction options. 

OM could navigate this complexity hy using an intelligent 
driver system to monitor thousands of runs, modifying 
parameter settings each time to optimize some performance 
criterion. While such an approach is feasible (8), it would 
have provided only a superGcial understanding of uhy the 
identified parameter sets were optimal combinations. We 
eboM instead to analyze the program structure, experiment 
with carefully chosen parameter values, and study the 
execution (as opposed to a single result) of each computer 
run. Often we had to disable features of the program in 
order to study one feature in isolation 

The final experimental step was to evaluate the software 
for realistic tasks on "natural" imagery. This proved to 
be exceedingly dillicult because the space of input imagery 
was impossibly large If a program could detect circular 
tanks in one image, for instance, would it be abK to detect 
them at difWenl image resolution!-. With different levels of 
conlra.si and lilur' With strong shadows and highlighting 
present? With occlusions, unusual edge alignments, or 
tcxtijr • effects present? Would it be able to distinguish real 
targets (possibly camouflaged) from decoys and destroyed 
targets? 

Such 'piestions go beyond the scope of this initial evalu- 
ation effort. We tried our best, however, to get a "feel" for 
each program's capabilities. We varied pertinent imagery 
variablts and carefully noted the effects. Anomalies were 
checked out by instrumenting the code or by experimen- 
tation on simple images. We believe that this intelligent 
experimi'iitation is at least as useful as extensive statistical 
validation would be. 

Unfortunately we were not able to devise rigorous per- 
formance metrics for tasks such as "target detection." We 
carefully tuned the analysis system for each problem and 
reported the best performance that could be obtained. (We 
tried to avoid tuning the system for each image, however. 
A single parameter set or operating procedure was devel- 
oped for each task ) The results are necessarily subjective 
and would vary slightly for other tasks, other imagery, or 
other experimenters. 

5.   Evaluation Examples 

It is difficult to convey the scope and variety of our 
evaluation results in a short paper. The PHOENIX 
report alone is more than 80 pages long, with 25 pages 
devoted to performance evaluation and suggestions for 
future development. I will illustrate the evaluation results 
by presenting short excerpts from the reports. Different 
reports will be used to illustrate different points about the 
nature of the evaluation effort. 

5.1.   Theorv 

We have documented the theoretical basis and the imple- 
mentation of each contribution from several perspectives. 
We have provided theoretical justifications and mpthemat- 
ical notations where appropriate, and have then related this 
information to the parameters and commands of the soft- 
ware packages. Sometimes it was quite difficult to extract 
this information from the technical literature. 

The RELAX system, for instance, could be regarded as 
a general method for local modification of constraint and 
compatibility information stored in the nodes of a rectilin- 
ear graph. The initial label probabilities at the nodes may 
lie d rived from image pixel intensities and the Cnal label 
a.ssignments may be mapped back to pixel intensities, but 
the iterative relaxation technique is independent of image- 
domain considerations. Much of the theoretical work on 
relaxation has abandoned the rectilinear image plane and 
has dealt with constraint relations on arbitrary graphs with 
varying numbers of neighbors for each node. 

For the evaluation, we extracted the updating equations 
actually used in the software package and expressed them 
in terms common in the theoretical literature. The RELAX 
package includes both the Hummel-Zucker-Rosenfeld addi- 
tive updating scheme and the Peleg multiplicative updating 
scheme   Here is part of our description of the former. 

The goal of the relaxation algorithm is to update the 
values of the probabilities associated with a node to 
reflect the compatibility of neighboring labels. The 
(/+ I) update of the kth label value is calculated from 
the previous lime {I) update by 

..(•1 
m (x*)=   E  L ^».x VMJ 

(i+n (X») 

where ; indexes the m neighbors of node i. f\;(X», X') 
is the compatibility coefficient for node i with lal ' 
A* and neighboring node; having label X'. q^Xki CM 
be though of as the assessment by the neighboring 
nodes that node i should be labeled X4, while p^X») 
is the assessment by node 1 a^ 'o its own label. These 
two assessments are combined to produce an updated 
probability. p,(Xt). 

The compatibility coefficients may be negative if the 
labels are incompatible, positive if the labels are 
compatible, and zero if they are independent. While 
it is possible to define the compatibility coellicients 
in terms of conditional probabilities, it is overly 
restrictive to do so The compatibility coefficients 
for the llummel-Zucker-Rosenfeld rule are based on 
information theory; mutual information defines the 
compatibility coefficients and provides a mechanism 
for calculating them: 
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WIHTC A- and / range over the R labels, i ranges over all 
10 nodes of the graph, and j specifies the particular 
neighbor (t.|., upper-left) of the i-th node. For each 
node i, r.jIX^Xi) is equal to ry(Xn,X,) clipped to be in 
the etoMd interval [-1,1] 

In the report we have discussed the meaning of these 
terms and methods of estimating or setting the numeric 
value-., as well as the effects of relaxation in various image 
analysis ta.sks. 

S.2.   Analyses 

The following are a few results from the performance 
analyses on the PHOENIX and GHOUGH systems. Space 
limitatiipiis prevent a full description of all of the terms 
usvd, but the examples should give some feeling for the level 
of understanding that a thorough evaluation may require 

Tin PHOENIX segmenter is a moderately complex sys- 
tem with 14 user-settable variables that control the seg- 
mentation process itself. The original contribution came 
with vor} little guidance about setting these parameters to 
achieve reasonable segmentations. One of our evaluation 
tasks was the creation of such information. 

We l)eg:in by finding a set of parameter values that would 
segmenl simple scenes of large objects down to the level of 
m:ij ir siibregions. We called this a "moderate" segmen- 
tation Then wt developed a set of parameter values for 
very coarse segmentation using "strict" heuristics to disal- 
low most potential region splits Finally we developed a set 
of values for complete or overly permissive segmentation 
using "inild" threshold screening heuristics. 

Fach column in Table 1 lists one of these parameter sets. 
The U' er need only select the extent of segmentation desired 
and load the corresponding parameters. We thus reduced 
the II parameters to a manageable single decision that is 
relatively independent of the image content Additional 
flexibility is possible by switching parameter sets during a 
segmentaliun run to control the fineness of segmentation 
within particular image regions. 

It will occiMimally be necessary for the user to deviate 
from the recommended parameter settings.  To make this 
possible, we have evaluate! each parameter individually 
Here is part of the maxmin parameter description: 

Maxmln is the minimum acceptable ratio of apex 
height to higher shoulder for an interval in the 
hi.-tograrn Any interval failing this test is merged 
with the rnighlxir on the side of the higher shoulder. 
The test is (hen repeated on the combined interval 
The overall effect on a set of culpoinls is to eliminate 
those that are on the sides or tops of major peaks. 

Maxmin is a powerful heuristic. With strict smooth- 
ing and all other heuristics disabled, maxmin alone is 
able to produce reasonable segmentations. It is even 

ParaniPter Slrict Mod. Mild 

drplh 4 10 n 
Bphtmln no 40 20 
hsmootb 25 9 ü 
maxmin 300 IflO 130 
at»arc a UK) ,10 5 
rfbrra 10 3 1 
bright M 20 1 ) 
abtmin 2 10 31 
iotsmax 1 1 ( 
isrtsmax 2 3 5 
ahssrnrr 92o no 000 
rflsccrc N 80 n 
noluc M 10 i 
rftain 4 20 40 

Table 1   PHOENIX Segmentation Parameter Sets 

more powerful when combined with the area heuris- 
tics With mild or moderate smoothing, maxmin 
passes clusters of cufpoints in the noise regions be- 
tween major peaks. This is fine if the clusters can be 
thinned by the •bsar-a and relarea heuristics, but 
a poor selection may be made if they are left for the 
intsmax heuristic. 

The problem here is that PHOENLX has no "quality" 
score for histogram valleys. It assumes that outpoint 
bin height is an adequate measure, whereas width 
and depth relative to the neighboring peaks are 
also important. PHOENIX can only incorporate 
such knowledge by smoothing the histogram, and 
the amount of smcothin^ required depends on how 
separated the peaks are. 

The next step in the PHOENIX evaluation was investiga- 
tion of a skyline delineation task. One of the test images, 
Portland, shows a city skyline against a cloudy sky After 
describing segmeiitation performance on reduced versions 
of this and other images, we reported the following: 

A test sequence was run on the full-resolution 
(iOOx'.OO) porUand image. Strict and even moder- 
ate heuristics were unable to segment the image when 
only the red. green, and blue feature planes were used; 
it mm necessary to use the mild heuristics. The best 
approach would be to start the segmentation with 
mild thresholds and then return to strict or moder- 
ate ones for segmenting the subregions. Instead, we 
avoided such special interference and ran the segmen- 
tation to completion using mild heuristics The full 
run (which, with the V flag set, generated 19,000 
lines of printout) required 33 minutes of CPU time: 

CPU f'HASK REAL 

llistogratn 
Interval 
Tbre»holil 
Patch 
Collert 

Segmentation 

The final segmentation into 1182 regions (including 

0 04:13 00232 
01812 007:27 
0 10 00 00347 
OOS.II 003 30 
0 3«. 12 0:14:01 
1:18 15 03234 
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nearly cvory window of every building) was much bet- 
ter than the orginal attempt, but still had difficulties 
distinguishing a glass-surfaced building from the sky 
that it reflected 

Later test runs showed even better performance when 
color transforms were used in addition to the three original 
color planes. Based on our experience with these tests, we 
were able to suggest operating procedures for the use of 
PHOENIX in similar tasks. 

The evaliiatinr, of the GHOUOH object detection system 
was similar BCCMM GIIOUGH had fewer parameters, we 
were able to spend more time analyzing system performance 
on realistic tasks. One thrust of this effort was to develop 
an understanding of specific operational characteristics, as 
in the paragrnpl^ below. 

The requirement of sharp edges does not imply that 
smooth, continuous object boundaries are required. 
The program is quite tolprant of noise in the outline 
and is able to find irregular, incomplete, or discontin- 
uous shapes. The circle template, for instance, often 
responds to forest clearings, tree tops, road intersec- 
tions, and curved embankments, as well as to square 
buildings and to image "hot spots." The irregulari- 
ties in these image structures spread the vote cluster 
in the accumulator, but the local maximum may still 
be above the general noise level. 

Shadow edges usually fit the requirement for strong, 
sharp edges. It is often easier to find a shadow 
than to find the object that cast it. This may be 
a useful cueing technique, but must be used carefully 
to a\oid reporting objects at incorrect locations. A 
similar problem exists with high-resolution imagery: 
the po>iiiun reported for a part of an object {e.g., the 
circular top of a storage tank) may not correspond to 
the poMlion of the whole object. 

These characteristics mean that tiie program Is best 
suited for three tasks: locating industrial parts in 
high-contrast imagery; counting numerous, obvious, 
similar objects such as storage tanks, barracks, or 
microscopic particles; and precisely positioning a 
template when an approximate location is cued by 
the user or by another system. Even for these 
applications, the program must be supervised and its 
output edited. Other applications will require further 
development of the technique. 

Sometimes our results were quite unexpected, as when we 
found that increasing the number of points in the search 
template definition had no effect on execution time and 
could actually decrease target location accuracy. Execution 
time was unaffected because each edge in the image votes 
for only the best matching template edge (or set of edges), 
regardless of the number of similar or nearby edges in 
the template. Performance could be degraded because 
the template points were entered at discrete points on a 
Cartesian grid, and close spacing of the points caused severe 
quantization of the relationships between them. 

We were able to quantify system performance on repre- 
sentative tasks. Some of the domain-independent equations 
are given below. (The terms are fully explained in the eval- 
uation report.) We have attempted to base the formulas 
on important characteristics of the GHOUGH algorithm, 
although the coedicients had to be estimated empirically. 

fc'rfyi dmr —  0(X13f.(u inrfou' puintf) + .O0^(rdgrt found) 
+ 0(X)19(arnimtiia(of rntrir,«) + {additional paging timr) 

Annlyiif tiwu ■" lO'^farrA lolumt) 
X ( 08 + 2.Clog(l + acaimulator drnnty)) 
+ {adiiti/nal paging timt) + 0025(ma7ima found) 

Manma =  023{stnrch volume)ot(\ + accumulator drntityf - I 

/Vonf = 2(M(.i(arfA to/timf)0"'(I + accumulator deniity)"* - 1 

Such formulas would be very helpful in designing an 
improved version of GHOUGH Kven more exciting is the 
possibility of building an expert image analysis system that 
would include GHOIGII as a component. The knowledge 
base of such a system would record predictive formulas and 
other operating characteristics in a form that could be used 
by both humans and machines. 

Some of the GHOUGH parameters are dependent on 
image content. These were very difficult to quantify, but 
we attempted to document the dependencies well enough 
that users could adapt our findings to their own imagery. 
The following is our discussion of GHOUGH performance 
as a function of the edge-detection threshold. 

The number and density of edges detected in an 
ima^,1' M* signioid (s-shaped) functions of edge 
IhreOiold similar to cumulative frequency histograms. 
GHOUGH operates best when KT,' to 20^0 of the pix- 
els are classified as edge points, although it will usu- 
ally work well at any edge density above &%. Some 
typical threshold values to achieve specified edge den- 
sities are: 

Scene Type (y% \2% 25^ 50^ 

Cloud) »ky M V, 28 ■JO 
AMW terrain M 120 80 40 
Aerial target area 20(1 180 120 00 
Low-angle urban 2C0 200 M0 N 
Korest rover jcg 220 160 100 
Aerial urban 720 600 480 340 

In general it is better to use too low a threshold, this 
will increase chance^ of finding target edges while 
only slightly increasing noise level, and the edges 
found are likely to be the most reliable ones. The 
main drawback is that low thresholds increase the 
time required to fill the accumulaior with votes. A 
reasonable starting guess is a threshold of 120. 
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As wo i'Xpprinuntrd with the software packages, we 
noted a great many chararleristirs that could be improwd 
The preceding QHOUQH edge-threshold sensitivity, for 
instance, led us to suggest that an adaptive edge detector 
be used Our suggestions have covered everything from 
the alguriltim to the characteristics of larger systems that 
might incorporate these routines. 

5.3.   Summaries 

We have also tried to summarize our findings, drawing on 
our experience with other image analysis sytems. Each of 
the reports ends with such a summary. For the PHOENIX 
system, our observations included thi following: 

PHOENIX may also fail to detect even long and 
highly-visible boundaries between two similar regions 
if the region textures cause their histograms to over- 
lap Kdge-ba.scd methods are better able to detect 
local \ ami ions at the boundary. 

Since perfect segmentation is undefined, PHOENIX 
must oversegmrnt an image in order to find all region 
boundaries that may be of use to any hig!i"r-levcl 
process It is left for a segmentation editing ste| 
to merge segments that have no usefulness for some 
particular purpose Without having such a step, or 
indeed even a purpose, it is very diflicult to evaluate 
the segmenter output 

; 

"'i 

The PHOENIX segmentation system is one of several 
existing qnttOH for recursively segmenting digital 
images. Its major contributions are the optional use 
of multiple thresholds, spatial analysis for choosing 
between good features, and a sophisticated control 
interface. Some of the strengths and weaknesses of 
the PHOENIX algorithm are listed below. 

PHOENIX, like other region-based methods, always 
yields closed region boundaries. This is not true 
of edgi'-based feature extraction methods, with the 
possible exception of boundary following and zero- 
crossing detection. Closed boundaries are the essence 
of segmentation and greatly simplify certain classifi- 
cation and mensuration tasks. 

PHOENIX is a hierarchical or recursive segmenter, 
which means that even a partial segmentation may 
be useful This can save a great deal of computation 
if efTnrt-- an concentrated on those regions where 
further segmentation is critical. If PHOENIX is to be 
driven to its limits, other methods of segmenting to 
small, homogeneous regions may be more economical. 

PHOENIX is relatively insensitive to noise Thresh- 
olds are determined by the feature histograms, where 
noise tends to average out. This contrasts with edge- 
based methods, where the local image characteris- 
tics c i be hig'ily perturbed by noise. 

PHOENIX has no notion of boundary straightners or 
smoolhmss This may be good or bad depending on 
the seem characteristics and the analysis task. It 
easily extracts large homogeneous regions that ma> 
be adjacent to detailed, irregular regions {e.g.. lakes 
adjacent to dock areas or sky above a city), such tasks 
can be dillicult for edge-based segmenters. 

PHOENIX tends to miss small regions within large 
ones because they contribute so little to the composite 
histogr.im It is thus poorly suited for detecting 
vehicles and small buildings in aerial scenes, although 
there m:iy be ways to adapt it to this use If al o tends 
to misplace the boundary between a large region and a 
small one, thus obscuring roads, rivers, and other thin 
regions Boundaries found by edge-based methods are 
less alfccled by distant scene properties. 

6.   Conclusions 

Our evaluation elTorN have documented a great many 
suggestions for improving the evaluated software. We 
have tried to be as quantitative and rigorous as possible, 
but the results are necessarily subjective. Often we have 
functioned a.s re>taurant or theater critics do. reporting 
our improsions of the contributions These informed 
opinions, (■<mbined with our more rigorous documentation, 
should provide a good basis for more specific evaluation 
efforts dire.ted al particular taj-k scenarios and production 
environments Our evaluation reports and the SRI Testbed 
environment make the contributed programs available as 
benchmark qrtttni and as research tools. 
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ABSTRACT 

'This paper reviews the current status of an 
ongoing program to demonstrate the application of 
ÜARP'\  Image Understanding research  to a  photo 
interpretation system using  real   imagery.    The 
vision system developed  thus  far  is based on the 
Acronym vision system, developed by Rod Brooks and 
Tom Binford at Stanford University on the DARPA 
Image Understanding Project.    This  system has 
provided the basis for a  sophisticated vision 
capability,  implemented on a general   purpose 
computer.    In particular,  thesystem includes 
symbolic  prediction of shapes from both oblicue 
and vertical  camera views,   prediction of shadow 
shapes, a model-driven  shape extraction  system, 
area of  interest operate-,  and a  situation 
assessment module to perform temporal   analysis. 
Having  recently completed   3nd exercised the  first 
system  implementation,  this discussion will 
include both details of system design and issues 
related  to performance and  future extension. 

1   - OVERVIEW 
\ 

Hughes, with support  from DAPPA and ONR,   is 
conducting a  program to apply research results 
from  the DARPA  Image Understanding Project [7]. 
This program has combined several  existing image 
understanding components, along with new 
approaches,  to address problems associated with 
automated photo  interpretation. 

The system which has been developed attempts 
to identify interesting objects by matching shapes 
extracted from digitized images to shapes 
generated by geometric  analysis of 
three-dimensional  object models and information 
describing the camera ?nd illumination conditions. 
Low-level   processing provides  identification of 
likely areas of interest in each scene, and 
edge-based lines extracted from these regions are 
provided as input for shape extraction. 
Descriptions of predicted shapes,  representing 
both visible portions of object sub-parts and 
shadows cast from these sub-parts, are also 
provided to direct the shape extraction process. 
Extracted and predicted shapes are finally 
compared, and matching shape dimensions and 
spatial  relationships are used to determine 
Instances of both generic objects and specific 
modeled sub-classes.    In addition, object 
identifications through a sequence of Images may 

be  interpreted by a script-based  situation 
assessment module which  is capable of  improving 
object identificitions and making  Inferences about 
the actions of objects. 

This pa 
system and s 
and sumrnariz 
necessary, 
will be dese 
ultimate per 
appl icatio'i 
system in an 
will   be disc 

per will  describe the current vision 
ituation assessment  implementations 
e areas where additional   extension  is 
In Section 2,  specific system modules 
ribed, both  in  terms of approach and 
formance when applied  to t/pical 
imagery.    Plans  for extension of this 
anticipated second contract phase 

ussed  in Section 3. 

2  - SYSTEM COMPONENTS 

The vision system structure for the  image 
understanding system has been provided by the 
Acronym system [3-6],  developed by Rod Brooks and 
Tom Binford at Stanford University on  the DARPA 
Image Understanding Project.    This  system provided 
a  powerful   set of building blocks,   including a 
rule syster.i. slot / filler style record package 
and a constraint manipulation system supported by 
an  algebraic  slmplifier.    Higher level   Acronym 
modules  provided vision system components which, 
although requiring  substantial   extension by both 
Hughes  staff members and by Dr.  Brooks  to  support 
a more general   image understanding capability, 
formed a  powerful  working vision system structure. 

In addition to the capabilities provided by 
the Acronym system,  additional  components were 
added to provide contrast enhancement, area of 
interest Identification,  Image scaling, line 
extraction, and temporal   situation assessment. 

The remainder of this section will describe 
each portion of the  image understanding vision 
system In more detail,  including conments about 
the actual  performance of each module wtien applied 
to typical application imagery.    The entire system 
has been implemented on a VAX 11/780 general 
purpose computer, utilizing the VMS operating 
system, Eunice (a Unix emulation package), and the 
Franziisp lisp Implementation.    Selected low level 
processing steps were implemented in the Fortran 
or C progranming languages.    Mean filter 
operations were performed utilizing a DeAnza  IP 
8500 Video Dispay Processing unit. 
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?.l   - PRE-PROCESSING 

Image digitization technlquts may result in 
distorted object dimensions caused by oversampling 
or undersampl ing of the original   photograph during 
the digitization process.    Since dimensional 
information is of key importance in the operation 
of the vision system, utilities have been provided 
to rescale the digital  data usino bi-linear 
interpolation techniaues.    Interpolation may 
result in significant edge degradation, manifested 
as broken representations of otherwise dominant 
and continuous edges.    This effect, is minimized by 
the application of a mean filter, typically using 
three by three or five by five masks, depending on 
the range of interpolation. 

2.2  - AREA OF  INTEREST OPERATOR 

Determination of Interest areas in a scene Is 
approached by determining whether local   sixteen by 
sixteen pixel   regions in an Image represent a 
portion of an object or background.    Masks,  sized 
appropriately for the objects of Interest in a 
given application and for a limited range of image 
resolution, are applied across the image at 
fifteen degree  incremental   rotations.    Each area 
thus measured is "scored"  according to the number 
of object points contained within the area.    Areas 
with a sufficiently high score are then deemed 
"interesting" and later serve to restrict the 
search area for the remainder of the vision 
system. 

In order to <dent1fy object points, the  image 
data  is first contrast enhanced using a three part 
piecewise linear lookup table, where the points of 
discontinuity are determined manually by 
heuristics driven by the image histogram. 
Successive median filters and an optional  Nagao 
smoothing operator are applied to significantly 
smooth Intensity edges.    This enhanced image is 
then processed to determine local  mean and 
standard deviation values within sixteen by 
sixteen non-overlapping blocks.    The determination 
of object vs.    background for each block  is based 
an the derivative of these measures, using a 
constant decision surface determined by training 
over a range of test imagery related to the 
application. 

Several  comments can be made regarding the 
performance of this area of Interest operator. 
First, the technique seems well  suited to the 
current application, where background intensities 
tend to be fairly homogeneous and uncluttered. 
The algorithm was able to consistently Identify 
object areas in Imagery and reject clutter. 
However,  It Is believed that applications where 
the background is likely to be highly cluttered 
may require a more complex set of discriminant 
values and a more carefully trained decision 
surface. 

2.3 - LINE EXTRACTION 

The extraction of lines from imagery is of 
key importance, since these lines provide the sole 
information  fron which observed shape descriptions 

are determined in this system.    In the current 
implementation,  the Nevatia / Babu lineflnding 
algorithm has been implemented  in the C language, 
with  some modifications  to the bridging and 
linking algorithms.    This lineflnding system has 
proven a valuable means of extracting most 
necessary edges separating object subparts from 
background.    However, two specific problem areas 
have been  identified which will  ultimately require 
a more specialized approach to edge 
identification. 

The first range of segmentation problems 
involve edges which are easily discerned by human 
observers, but which fall   to be extracted by the 
Nevatia / Babu algorithm.    Typically,  these edges 
are not characterized by a significant intensity 
gradient, but rather the border of a significant 
change  in texture regions.    A second set of 
problems (often overlapping with the texture 
border problem) are related to the extraction of 
very soft shadow boundaries.    In these cases, the 
intensity gradient across the boundary, although 
consistent across the entire shadow edge, is of 
such a small magnitude as to be Inseparable from 
background clutter.    Reduction of edge thresholds 
to Identify these boundaries would result 1n an 
unmanageable number of Insignificant edges beinq 
identified. 

2.4 - OBJECT MODELING 

Interesting objects are modeled by the 
Acronym modeling  system by three dimensional 
models built from generalized cylinder volumetric 
elements [1].    These volume primitives are 
represented in general by a cross sectional   face 
which describes the volume as it is swept along an 
axial  spine, with the dimensions of the face being 
v.wied along the axial  sweep.    In practice, limits 
Imposed by the complexity of performing geometric 
reasoning later in the vision system limits the 
modeling package to the use of circular and 
rectangular faces swept along straight spines. 

Dimensions of objects and affixments between 
subparts may be described as constrained ranges of 
values.    Further, loosely constrained descriptions 
may be used to specify generic object classes, 
while more tightly constrained descriptions may be 
specified In parallel   to describe subclass 
specializations. 

This modeling capability, along with an 
interactive graphics Interface, was provided 
intact within the Acronym system.    Issues of 
performance,  in terms of the ability to represent 
objects with sufficient accuracy, will  be 
discussed below. 

2.5 - SHAPE PREDICTION 

In the prediction module, each 
three-dimensional  volume element in the object 
model   is used to generate a set of two-dimensional 
shapes which represent the visible end faces and 
swept surfaces of the volume as seen from the 
modeled Ccmera position.    The predicted 2-D shapes 
are represented by ribbons (rectangular shapes). 
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Spatial   relationships are described by arcs 
linking these shapes in specific manners,  for 
example angle arcs and distance arcs. 

The original Acronym system provided the 
necessary geometric reasoning knowledge to provide 
two dimensional  descriptions of shapes which 
represent the three dimensional  object subpart 
models as seen  from a modeled vertical  camera. 
However, two major extensions were required to 
provide the necessary shape prediction 
capabilities for a more general  vision system 
capabil ity. 

To begin. It was necessary to enhance support 
for the prediction of shapes from an oblique 
camera view.    The prediction process functions by 
building symbolic expressions describing the 
transfonnations between object, camera, and world 
coordinate systems for the model   facer determined 
to be visible from the camera view.    Thest 
expressions grow considerably more complex  In the 
case of an oblique camera view, and support for 
the simplification of these expressions required 
major extensions to the geometric simplification 
module originally contained within the Acronym 
system. 

As now Implemented,  the prediction module Is 
capable of predicting both object subpart shapes 
and their relative spatial  relationships for both 
vertical  and oblique camera views.    This effort 
was supported greatly both by consultation with 
Dr.    Brooks, and by the example of the originally 
coded vertical  camera case.    The resulting system 
is limited only in that modeled object positions 
and orientations relative to the camera line of 
sight must be specified exactly for the oblique 
camera case.    This limitation is overcome In 
operation by operating the vision system in two 
passes,  the first of which applies an overhead 
camera approximation to loosely constrained 
models.    This results in the identification of 
candidate matches, which provide specific 
positions and orientations for performing more 
detailed predictions using detailed models and a 
fixed, oblique camera model. 

The second major extension was the addition 
of a rudimentary capability to predict shadows 
cast by object subparts from a known illumination 
direction.    Most research in this area has been 
directed toward the bottom-up interpretation of 
shadows to gain Insight about the object casting 
the shadow.    Within the scope of the image 
understanding vision system, an assumption has 
been made that we have accurate representations of 
interesting objects.    Also, there is no a priori 
knowledge of what observed image shapes represent 
cast shadows.    In keeping with these 
considerations, the system design was extended to 
Include the prediction of shadow shapes from 
modeled object subparts In a manner analogous to 
the prediction of object shapes. 

The Acronym prediction system was extended to 
include shadow prediction for a limited set of 
objects.    Shadow prediction was designed and 
implemented for two cases, a right circular 

cylinder with  its spine parallel   to the shadow 
plane and a rectangular parallelepiped with one of 
its axes perpendicular to the shadow plane. 
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d coordinate system,  in which a 
nation  source, a  shadow plane, 
t are defined. Acronym attempts 
mensions of the shadow cast on 
as they will  appear in the image, 
is the xy plane in the world 

The camera and the object, as 
ts subparts (cones), have their 
stems. 

The first part of the shadow algorithm deals 
with determining the rotation expression necessary 
to perform  transfonnations between the cone and 
world coordinate systems and the cone and camera 
coordinate systems.    Most of the computations 
occurring in the shadow module are performed in 
the object (cone) coordinate system.    The shadow 
plane equation,   the  illumination direction vector, 
and the camera line of sight vector are all 
calculated with respect to the object cone.    Then 
some tests are performed to insure that neither 
the camera  line of sight nor the  illumination 
vector is parallel  to the spine of the object cone 
(if the object cone is a cylinder), and that the 
illumination direction is not parallel  to the x, 
y, or z axis (If the object Is a rectangular 
para1 leiepiped).    This is the point where the 
algorithm becomes specialized as to particular 
object type. 

There are two cases presently handled by 
Acronym.    They are a right circular cylinder with 
its spine parallel   to the shadow plane, and a 
rectangular parallelepiped with one of its axes 
perpendicular to the shadow plane. 

Using the illumination direction defined with 
respect to the coordinate system of a solid 
object, it can be determined whether or not a 
particular planar surface or face on that object 
is Illuminated.    This is easily done by examining 
the dot product of the surface normal  and the 
illumination direction vector.    A negative result 
implies that the planjr surface is illuminated, 
while a positive result inplies that the planar 
surface is not illuminateil.    In the case of a 
curved surface the location of the illumination 
boundary can be calculated.    That is, the points 
on the surface where the illumination vector is 
perpendicular to the surface normal can be 
determined.    This set of points forms the dividing 
line between the Illuminated and shadowed 
subcontours of the surface.    In the case of the 
rectangular parallelepiped the shadowed sides are 
found, while the cylinder case requires that the 
illumination boundary be calculated.    These 
shadowed faces and subcontours need to be 
determined in order to properly predict the shadow 
cast by the object. 

Initially It was thought that undistorted 
shadow contours would be able to be predicted 
along with their spatial   relations and that the 
appropriate shape distortions caused by the camera 
angle could be anticipated.    This approach would 
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have paralleled the Acronym algorithm quite 
closely.    However,  It was found that In order that 
the subcontours of the cylinder be correctly 
predicted, a new algorithm needed to be adopted 
which would Include projecting ribbon vertices 
onto the Image plane and finding tht best 
rectangular fit approximating the actual   ribbon 
dimensions.    Therefore,  Instead of defining a 
contour corresponding to a surface and predicting 
how Its dimension', will change given a set of 
camera coordinates, the contour nodes and 
dimensions In the image plane are directly 
calculated.    This is done in the case of the right 
circular cylinder; however, the case of the 
rectangular parallelepiped Is handled differently. 

The dimensions of the ribbons corresponding 
to the rectangular solid are predicted by the 
original  acronym method.    Its cast shadow, 
however. Is handled by a separated .-outliie.    First 
the apparent length (in camera coordinates) of the 
shadow cast by a unit vector parallel   to the 
object spine Is calculated.    Next, bounds for the 
actual   shadow length are calculated  In two ways: 

o     First, by casting this shadow onto the 
shadow plane, using the perpendicular 
length from the shadow plane to the top 
of the rectangular solid and adding this 
perpendicular length to the length of the 
shadow which is cast; and 

o      Second, by casting this shadow onto the 
plane parallel  to the shadow plane 
through the base of the rectangular 
solid, using the solid's vertical   length. 

The width Is calculated by using a normalized, 
rotated, and scaled version of the cast shadow 
vector. 

The right circular cylinder can give rise to a 
maximum of 6  ribbons: 

o SI - the ribbon representing the entire 
curved surface of the cylinder. It can 
contain 2 subribbons, S2 and S3. 

o     S2 - the illuminated part of the 
cylinder's surface. 

o      S3 - the self-shadowed part of the 
cylinder's surface. 

o     S4 - the shadow cast onto the shadow 
plane by the swept contour of the 
cyl1nder. 

o S5 - the entire shadowed area including 
S3 and S4. 

o S6 - the entire area covered by the 
cylinder and its cast shadow. This 
ribbon contains subribbons SI through S5. 

Figure 1.    Predicted Right Circular Cylinder 
Ribbons 

The rectangular parallelepiped can give rise to a 
maximum of 4 ribbons: 

o     SI  - the ribbon representing the one or 
two visible swept planar surfaces of the 
rectangular parallelepiped. 

o     S2 and S3 - The two visible planar 
surfaces of the rectangular 
parallelepiped. 

o     S4 - The shadow cast onto the shadow 
plane by the swept contour of the 
rectangular parallelepiped. 

Figure 2.    Predicted Rectangular Parallelepiped 
Ribbons 

Only the S4 ribbon, the rectangular solid's 
cast shadow.  Is predicted In the shadow prediction 
module, while all  six of the cylinder's ribbons 
are predicted here.    New rules were added to some 
of the core Acronym rule sets such as the spatial 
relation and Interpretation rule sets to 
accommodate the addition of this new set of 
ribbons. 
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2.6  - SHAPE  EXTRACTION 

In order to provide a sufficiently robust 
shape extraction capability, a new module for the 
Identification of rectangular shapes, or ribbons, 
was Implemented to replace the original  Acronym 
ribbon finder [21.    This new design takes a 
top-down approach to shape extraction, using the 
predicted shapr dimensions  to drive the selection 
and operation of rule-bosed heuristics which build 
shape descriptions  from extracted line segments. 

The new ribbon finding module makes use of 
the results of the area of interest operator, 
rejecting line segments which lie outside these 
Interesting regions.    The surviving line segments 
are then used to identify various line-based Image 
features,   Including parallel   lines, colinear 
lines, and line pairs which form vertices.    Since 
the Identification of these features is 
computationally expensive, a library of these 
features is built before applying the various 
ribbon  finding heuristics,  to avoid  recomputing 
similar features as each heuristic rule set 
searches for particular shapes.    In fact, well 
over half the CPU time for a typical  ribbon 
finding application Is spent  Identifying these 
features. 

Having created a library of these features, 
each predicted shape is submitted to a set of 
rules which in turn applies appropriate heuristic 
rule sets which attempt to identify instances of 
that shape from the line segments and line based 
features available.    For example, a long predicted 
shape would trigger the invocation of rule sets 
which search for parallel  lines or a long segment 
corresponding to the dominant long sides of the 
shape.    These heuristics make use of the predicted 
shape dimensions to search, for example, for 
parallel  sides whose separation falls within the 
constrained range of width for the predicted 
shape.    Similarly,  features which Indicate the end 
closings of the shape are tested for satisfaction 
of the predicted range of length. 

Separate heuristic rule sets are Invoked by 
the selection rules depending on the type of 
shapes predicted.    Long shapes are  Identified, as 
exemplified, by prominent side  features,  while 
more square shapes are  identified by either 
prominent sides or ends, or by corners.    Small 
shapes are more typically described by a sets of 
se^nents which completely close the shape, and 
rules are Implemented for this case as well. 
Finally,  shadow shapes are often supported by only 
line features, and heuristics searching for any 
one of the four sides are included.    As each rule 
set builds appropriate ribbon shapes, they are 
appended to a graph structure to provide access by 
the matching and scene  interpretation module. 

In practice on application Imagery,  the 
success of this model  directed shape extraction 
system is dependent on two related modules. 
First, the low level  processing and line finding 
must be capable of providing sufficient quality of 
features to support the heuristic extraction of 
shapes.    Secondly,  there Is the assumption that 

the chain of approximations which model  object 
subparts as generalized cylinders, and predicts 
them as ribbon shapes, adequately represents the 
actual  shapes to be fouid In the image data.    If 
this is not the case, th< model  based predicted 
shapes actually misdirect the ribbon finder.    A 
serious  Instance of  the problem occurs  In the 
prediction and extraction of shadow shapes.    To 
begin, shadows are approximated as rectangular 
ribbons, when the actual  calculated ribbon would 
be more suitably represented as a parallelogram. 
Since shadow boundaries are typically weak, and 
the ribbon finding heuristics thus rely on very 
few features,   it  is not uncomnon for the resulting 
extracted ribbon to be misoriented by the angular 
error resulting from the rectangular 
approximation.    In addition, the predicted width 
of the rectangular shape is taken along the radius 
perpendicular to the spine of the ribbon, while 
the parallelogram shape actually seen in the image 
data will  have end segments which are not 
perpendicular to the sides or spine, and are 
longer than the predicted width. 

Apart  from these problems the ribbon finder 
has performed quite well  on shapes of varying 
resolution and with limited edge features 
describing  ehe  important shapes.    Performance Is 
greatly enhanced, especially In terms of 
eliminating clutter shapes, if the predicted 
shapes are tightly constrained,  implying tight 
model  constraints and an accurate camera model. 

2.7  -  INTERPRETATION 

The interpretation module performs two broad 
functions within the vision system.    First,  it 
performs a matching function, locating sets of 
observed shapes which are consistent with a set of 
predicted shapes, both  In terms of shape 
dimensions and relative spatial  relationships. 
Secondly,  these match sets are Interpreted by 
determining what modeled generic class or subclass 
specializations are satisfied by each match set. 

The first function, the creation of match 
sets, builds sets of nodes which contain the 
predicted end extracted shapes which match 
dimensionally.    Graphs are built which link these 
nodes using arcs which describe the spatial 
relationships between them, driven by the 
predicted spatial  arcs.    Further, as these graphs 
are built, corresponding restriction nodes are 
constructed which describe the shape and arr 
matches In terms of the model  and camera 
parameters,   forming back constraints which 
restrict the 1 u-rpretatlon of each match.    The 
second interpretation function determines the 
satisfiability of these back constraints, thereby 
determining membership of the matched object In 
specific modeled classes.    These Interpreted 
graphs form the final  result of the vision system 
as applied to a single scene. 

As in the prediction module, the 
interpretation system required significant 
extension, especially to support the matching of 
shadow shapes.    These shadow cases required a 
significant recodlng to support new spatial arcs. 
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as well  as to Improve the performance of the 
matching and Interpretation tasks. 

2.8  - SITUATION ASSESSMENT 

In many applications, models of temporal 
activities of various Interesting objects can 
provide the overall  system with capabilities 
beyond those achievable with a single-frame vision 
system alone.    These applications Involve 
situations where the objects have predictable 
behavior patterns.    More specifically,  these 
applications  Involve objects whose observed 
locations over a sequence of Images may Imply 
their behavior, and the seouences of observed 
activities form a predictable history. 

Tracking observed objects may serve to 
confirm or dlsconflrm the  results of the vision 
system object classification.    If the vision 
system mlsclasslfles an object,  then the situation 
assessment module has the opportunity to detect 
the error by either noticing the change  In an 
object Identification of a previously known and 
trdcked object, or by unettlng an object not 
behaving  In a normal  manner.    These situations may 
be  flagged or corrected, depending on the 
confidence or ambiguity  In the  Inferred 
Identification. 

The method Implemented to monitor object 
behavior Is based on the concept of a knowledge 
structure which describes expected behaviors and 
lengths of activities called scripts.    These 
scripts are matched against observed object 
Identification sequences to Infer activities. 
Inclusion of knowledge of activity  durotlons 
allows  further Inference even when  some staeo of 
the script may not have been observed. 

As the script activities are tracked, various 
ambiguities may make  It necessary to carry along 
multiple script Interpretations, which are weeded 
out as more observations are made, until   either a 
consistent Interpretation Is found or all  the 
Interpretations are eliminated, at which time an 
anomalous situation would be flagged.    This script 
processing system has been developed and exercised 
using manual   observation  Inputs. 

3 - FUTURE  EXTENSIONS 

Tne most useful  result of the first 
Implementation of an Image understanding vision 
system Is the Identification of key problems In 
the photo Interpretation task.    These results have 
guided plans  for future extension of the system 
toward a next-generation vision system. 

Beginning at the bottom level  of Image 
analysis. It has become clear that more robust 
means of extracting both Intensity edges,  shadow 
boundaries, and region borders are needed.    This 
will  be a substantial  area of effort In the second 
contract phase.    Region growing  techniques, 
combined with more generalized edge detection, 
wil 1  be explored. 

While the modeling and prediction capability 

of the current  implementation will   form an 
important piece of the new vision system, extended 
capabilities will  need to be added to perform 
prediction of complex shapes generated In 
situations where object occlusions and detailed 
shadows cast on nearby 3-D objects must all  be 
considered to identify individual  objects.    This 
will   Include very detailed models,  with a more 
general  capability to model   Irregular shapes, and 
a projection scheme  to predict exact shapes as 
would be seen  in Image data.    These detailed 
predictions require exact model inq conditions. 
The current symbolic prediction system will 
provide an Important coarse pass capability, to 
establish specific model  positions and 
orientations. 

Several   Issues regarding the vision system 
performance will   be addressed by an  Intelligent 
planner system.    This system will   select models, 
control  coarse pass matching as well  as detailed 
passes, select appropriate low level  processing to 
optimize feature extraction, and select 
appropriate shape extraction heuristics.    Shape 
extraction will  be further enhanced by the 
direction of shape extraction In an ordered 
manner,  searching first  for dominant subpart 
shapes, and then directing local   searches for more 
detailed subparts and shadow shapes based upon 
modeled spatial   relationships. 

At an even higher level of control, an expert 
system will  atfmpt to emulate some of the 
procedural  expertise applied to the Image 
understanding task by a human photo Interpretation 
specialist.    This knowledge will  direct 
application of the vision system to perform 
specific analysis tasks,  such as scene 
mensuration.    It will  al jo determine what results 
are Important, when satisfactory results have been 
obtained from the vision system, and will be 
capable of the sort of temporal  analysis now 
captured in the situation analysis module. 

4  - CONCLUSIONS 

Having concluded Phase One efforts on the 
Image Understanding program,  significant progress 
has been made toward technological  capabilities to 
automate portions of the photo Interpretation 
task.    In Its present form, the system is capable 
of identifying generic classes and subclasses of 
objects by matching basic dimensions and spatial 
relationships.    Performance Is rudimentary In 
comparison to human capabilities; several  areas 
have been identified for Improvement.    Individual 
progress in the areas of shape and shadow 
prediction,  shape extraction, and scene 
interpretation all  have contributed.    However, the 
most significant mark  Is the Inclusion of a 
complete set of modules for performing object 
Identification  in  real   Imagery  In a  single 
Integrated  system,  providing a basis  for future 
extension as well  as evaluation of other 
techniques. 
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ABSTRACT 

Miny groups are now attempiing to build autonomous land 
robot.. However, no vehicle titling this description exists today. 
The dilticult problems that must be solved are obstacle avoid- 
ance and scene matching to map coordinates. 

Autonomous robot vehicles would be used primarily by the 
military lor reconnaissance. Bar:*) targets woHd either be desig- 
nated by la>er spotting or their locations and identities transmit- 
ted to Iricndly forces. 

Wcstinghouse as a subcontractor to the Computer Vision Lab 
Of the University of Maryland, with the suppor. of the Defense 
Advanced Research Projects Agency and the U.S. Army Night 
Vision and t:leciro-()ptics Laboratory, is developing a test-bed 
facility for investigating autonomous vehicle navigation. A Wcst- 
inghouse vision system will be added to an existing electronically 
controllable Army Vehicle, t 

I. IMROmCTION 

Since April 1976, the Computer Vision Laboratory of the Uni- 
versity of Maryland, in collaboration with Wcstinghouse as a 
subcontractor, has been engaged in Image Understanding ic- 
search with the support of the Defense Advanced Research Pro- 
jects Agency and the U.S. Army Night Vision and Electro-Optics 
Laboratory. This research has resulted in a number of significant 
advances in the field of image understanding, with particular 
emphasis on techniques applicable to tactical imagerv. A new re- 
sc.irch project has started which will buiU on thi« . ork to de- 
velop an autonomous vehicle navigation .ys'cm. 

Section 2 discusses the need for autoromous vehicle naviga- 
tion. The main military application is the detection, recognition, 
an') reporting of rear-echelon enemy targets. This mission can be 
accomplished by land or ail. The unmanned ground vehicle of 
fers some advantages over its airborne counterpart, while allow 
ing penetration into territory generally considered too risky for a 
man. Section 3 surveys the state-of-the-art in vehicle develop- 
ment. Land, uir, and undersea vehicles are all covered since many 
of the amipmer, command-and-control, and sensor problems are 
common to them. Section 4 describes a test-bed facility proposed 
for implementation at Westinghi use. The lest vehicle will have a 
real-time Wcstinghouse vision sv tern on board. One goal of this 
project is to test software developed by other research groups, as 
well as that originating at Wcstinghouse and the University'of 
Maryland. 

2.  IHK NBD FOR AUTONOMOUS VKHICI K 
NAVIGATION 

The Army's emerging doctrine of "deep attack" on second and 
later echelons of the -.-nemy offensive requires that artillery and 
aircralt strikes be directed against these more distant targets 
Successful use of this fire power is depe dent upon obtaining 
accurate target positions and the ability m p«** precisc 

weapon delivery. Current developments in fire-and-forget 
weapons olfer the prospect of major advances in weapon deliv- 
ery precision, once the targets are located. However, initial dt'ec- 
tion and locanon of rear-echelon targets remain difliculi reccn- 
naissance tasks. I his project is directed toward the solution of 
this problem. 

The desired reconnaissance can be accomplished by land or air 
The land mission is presently accomplished by "spotters" who 
are positioned behind enemy lines to locate and report by radio 
on enemy target concentrations (figure 2-1). 

Forward air controllers assist in air strikes which employ laser 
guided missiles by designating key targets with laser beams. The 
risks involved in these assignments have spawned various at- 
tempts to automate the spotter process. Sensor packages for ve- 
hicle detection were developed at the time of the Vietnam con- 
flict for air drop in enemy territory. One of the major problems 
faced by this Air Force program was the need to establish the 
exact locations of the sensor packages themselves. Another was 
the fact that these immobile packages often came to rest in posi- 
tions from which no detections could be made, or from which 
tiieir detection by the enemy was easy. In an Army program car- 
ried out about the same time, a mobile system was developed for 
protection of railroad equipment by placing seniors on a small, 
unmanned railroad car moving at a -.ate distance ahead of the 
loco-riotive. The function of the sensors was to delect any anom- 
alies in the track condition, including placement of mines near 
the tracks 

The risk suffered by spotters and the various attempts to auto- 
mate the land reconnaissance activity indicate the value of close- 
up target mlormation. However, collection by air is an alternate 
approach. .Standoff targe- acquisition systems, which use long 
range sensors located above friendly territory, lack the resolution 

H not the range) to provide detailed data on rear-echelon targets 
Low-level reconnaissance aircraft which penetrate enemy terri- 
tory are severely restricted by the time available for target search 
and by the masking of crees or buildings. Helicopters offer in- 
creased search time at the risk of reduced survivability. Remotely 
P.loted vehicles (RPVs) will relieve some of the constraints on 
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search lime and survivabilily, bin are not evpecied to produce 
informaiion which is compcliiivc wilh ground reconnaissance. 
However, the navigation techniques to be developed lor this pro- 
ject will apply to aircraft as well as land vehicles. 

Sl>p I 

• Forward Spottet Checks Map 
To Oattrmm« His Own 
Position 

Slap 2 

• Spotter Locates Enemy 
Targets 

• Spotter Estimates Targa 
Locations m Map 
Coordinates 

in the Army and Air lorce. Scene matching between similar 
views ot the same area is also a well-established capability. How- 
ever, the challenge tor the land vehicle is to determine its position 
in map coordinates based upon a series of narrow-field observa- 
tions taken from a limited series of vantage points. 

Another challenge is obstacle avoidance. Large military vehi- 
cles have little difficulty traversing ruts and small obstacles, but 
must avoid barriers, "traps," and cliffs. Most current research 
on obstacle avoidance centers around the use of laser range data. 

2.1 Autonomous (■round Vehicles 

As stated above, the ground vehicle should have the ability to 
perform limited maneuvers so as to improve its vantage point, 
and avoid immediate detection. It must be capable of cieieciin..: 
and avoiding large obstacles, based upon the interpretation ol 
imagery obtained from its sensors. Infrared, TV, laser-range, and 
radar sensors, as well as combinations of them, will be consid- 
ered for use in this project. 

The land vehicle possesses several advantages over the air 
borne platform. It offers long periods of observation at ranges at 
which detailed target identification can be carried out. Its posi- 
tion can be quite accurately defined, furthermore, it presents a 
stable platform for designation. 

• 

. 

Step 3 

* Spotter Transmits Targe' 
Locations to Friendly Forces 
Bv Field Radio 

• Spotter May Designate 
Tsrgels With a Laser 
Designator 

Hjjure 2-1.  I iinv.itil Spoiler Scenario 

The above discussion suggests the need for an autonomous 
land vehicle which can be delivered deep inside enemy territory 
and which can 

• establish its position in map coordinates, 
• navigate in a limited way through its environment, 
• detect and identify targets and transmit their locations 

and identities to friendly forces, or designate them by la- 
ser spotting. 

This concept is illustrated in figure 2-2. 

The functions ot an autonomous land vehicle, as stated above, 
represent several areas of advanced research, including scene 
matching to map coordinates, aromatic target recognition, ob- 
stacle avoidance, and robotics. All of these areas have Deen un- 
der recent investigation; of the four, however, it is felt thai scene 
matching to map coordinates will require by f.ir the greatest ad- 
vances in order to establish the feasibility of the land vehicle con- 
cept. The robotics area is currently receiving a high level of re- 
search support, both military and industrial, which is expected to 
solve many of the control problems. 

Automatic target recognition devices which discriminate be- 
tween target classes arc now in the advanced development stages 

Step? 

• Robot vehicle Transmits 
Target Identity and 
Location in Map 
Coordinates 

• Robol Vehicle Designates 
target With a Laser 

KiKurr 2-2. Ground Kobol Vehicle Scenario 

2.2 Autonomous Airborne Vehicles 

The Remotely Piloted Vehicle (RPV) offers another solution to 
the reconnaissance problem (figure 2-3). However, an RPV sce- 
nario (figure 2-4) introduces complications of its own. In its cur- 
rent state of development a video link is needed between the RPV 
and the ground. Imagery is transmitted over this data link, and 
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the image processing tasks of target detection and recognition are 
performed at a ground control station. The limitations of this 
approach are its bandwidth requirements and the possibility of 
the enemy jamming or intercepting the transmission. These limi- 
tations can be overcome by reducing the data to be transmitted, 
encoding it, and having the Rf'V operate autonomously, using 
onboard sensor data. 

One solution (figure 2-5) is to have an onboard vision system 
which will: 

• navigate the air vehicle through the environment, 
• locate, identify, and track enemy targets, and 
• transmit target locations and mark them with coded laser 

spots tO direct Helllire antitank misiles and precision 
guided odnance. 

KiRure 2-3. (.launch of Aquila Kmuilely Piloted Vehicle 

2.3 Application lo ( urrrnl Scenarios 

Even though the proposed vision system is intenJed for use in 
an unmanned vehicle, it may also find application in a manned 
vehicle, such as a helicopter. Its lection would be to partially or 
wholly assume certain visual tasks of the pilot, so as to reduce the 
burden on him during battlefield conditions. In particular, the 
ability lo "hand off" acquired targets to a ground pilot or to 
another helicopter in map coordinates is greatly desired as an 
automatic function, but is presently not available. 

3. A SURVKY OFAVAII ABI.K Al TONOMOl S AM) 
RKMOTKI.Y t ONTROU.KI) VKHICI.ES 

Despite the impression given to the general public by science 
fiction movies and the popular press, autonomous outdoor land 
robots are not now in existence. However, some experimental 
test-bed facilities are now being built. The state of the art is con- 
siderably more advanced for remote-controlled vehicles- air un- 
dersea, and land vehicles art now in production. We will re'view 
work in these areas now taking place in the United States The 
considerable research and development effort now underway 
outside the U.S. will also be mentioned. 

3.1 Rrmole-C'ontrolled Vehicles 

A large number of remote-controlled vehicles have been built 
for use in the air. under water, and on land. Much of the technol- 
ogy developed for remotely controlled vehicles can be applied 
directly to autonomous vehicles. 
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Kiuure 2-4. Current RPV Scenario 

\ir Vehicles 

The U.S. Army awarded a contract to Lockheed in August 
1979 for the full-scale development of the Aquila Remotely Pi- 
loted Vehicle (RPV). Delivered hardware will consist of 22 air 
vehicles, four ground control stations, three launcher subsys- 
tems, three recovery subsystems, and 18 mission payload subsys- 
tems. Westinghouse is designing and building the mission pay- 
load subsystem, which consists of a stabilized daylight TV sensor, 
laser rangefinder/designator, stabilized optical path, auto- 
tracker, and associated electronics and controls. Once a target is 
located by slewing the TV camera through .-ontrols in the ground 
station, the camera can be switched to automatic track. The 
boresighf laser can be activated either to provide range to targets 
or to designate targets for precision guided munitions. 

The Aquila operator's console includes a teletype for inserting 
the planned flight profiles; airspeed, altitude, and heading con- 
trols; displays for manual air vehicle control; an X-Y plotter for 
monitoring aircraft position on a map; and an alphanumeric ter- 
minal to display vehicle status The mission payload console pro- 
vides a similar interface between the operator and mission pay- 
load subsystem. The video sensor can be controlled in azimuth 
sweep, elevation, three-position zoom, autotrack, and laser aim/ 
fire functions. Both consoles provide real-time video display with 
instant replay capability. 
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• Robot Vehicle Transmits Target Locations in Map Coordinates  ffe Fiie Control Station 
• Robot Vehicle Designates Target Mith a Later 

RpM 2-5.  Proposed Sceniiri» f(ir Airhorni- Robol Vrhii'lr 

Two RPVs arc rroduccd in Israel: the Israel Aircraft industry 
Scout and the Tadiran Mastif.1'' They were used for reconnais- 
sance in the destruction of Syrian surface-to-air missile batteries 
in Lebanon's Bekaa Valley in June 1982. They located the precise 
positions of SAM sites and relayed the video data to a ground 
station in real-time. The Israeli RPVs are less costly and contain 
a less sophisticated payload than their American counterpart. 
Land Vehicles 

A number of remotely controlled vehicles have been built for 
duty too hazardous for a human. Vehicles have been built for 
travel through contaminated environments, such as the Three 
Mile island nuclear power plant. In fact, the Atomic Energy 
Commissions of most industrialized nations have remote- 
controlled-vehicle programs. The two main U.S. companies 
building remotelv operated vehicles are GCA/PaR Systems and 
Tracor MBA. 

CiCA/PaR has built about 15 remotely operated vehicles. We 
will describe their PaR-l Manipulator Ve* icle (PVIV) shown in 
figure 3-1. The PMV provides a mobile, maneuverable platform 
for robot arms and TV cameras. The vehicle rides on two wide, 
flat, neoprene belted tracks. The two rear wheels are powered by 
separate DC motors. The vehicle is turned by running one of the 
motors faster than the other, or by driving them n opposite di- 
rections. The vehicle contains a double-telescoping, rotating, 
tube assembly upon which manipulator arms and "V cameras 
can be mounted. TWo highly dexterous manipulat' arms are 
available, with load capacities of I(K) and 160 pounds, respec- 
tively. TV camera arms are mounted on the same assembly as the 

manipulator arm so that camera motions are synchronized in 
vertical movement and rotation with the manipi''tor shoulder 
housing. 1 he manipulator can operate a number of tools includ- 
ing saws, shears, fasteners, and torches, it can switch between 
them via remote control. 

Kigurc 3-1. PaR Manipulator Vehicle 

The PMV control console is portable, it connects lo the vehicle 
by a flexible, quick-disconnect cable. The console provides the 
necessary control and power for the vehicle and robot arm. It 
can also include video monitors and camera controls. The fol- 
lowing functions of the TV camera can be controlled from the 
console: lens zoom, iris setting, pan and tilt, and movement of 
the camera's positioning arms. 

Tracor MBA has built about 20 remote-operated vehicles. 
Their "centipede" has six wheels, TV cameras, and front- 
mounted manipulator. It is capable of traveling BMI rough ter- 
rain, it can traverse 33-degree slopes, 3-foot vertical barriers, 
and even climb up an down stairs. The manipulator arms and TV 
cameras move as slaves to human controlled masters in the vehi- 
cle's remote control cjnsole. A human controls the arms by an 
exoskeleton over liis own arms. The manipulator arms have 
force feedback to let the human operator sense the weigh' of 
objects remotely handled. The human operator controls the giip- 
ping force; it is stated that he can get the remote;ontrolled arms 
and hands to perform very delicate tasks such as threading a 
needle. 

The vehicle's two TV cameras can be controlled by a unit 
mounted on the operator's head. The operator's biocular display 
provides him .vith a stereo view. The movement of the slave TV 
cameras is controlled by the operator's head movement. Control 
signals and video are transmitted either by cable or by an Rl 
telemetry link. The cable can be up to 300 feet long, the control 
trailer can be up to 15 miles away if a telemetry link is used. 

Other MBA remote-controlled land units include a tracked ve- 
hicle, built for the Air Force; an antiarmor vehicle and fork lift, 
built for the Army; an underground mining vehicle with manipu- 
lator, built for the Bureau of Mines; and a driverless tractor re- 
mote handling system, built for Lawrence i ivermore Lab. 
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Hundreds of remotely controlled underwater vehicles have 
been built. The reader is referred to the proceedings of the March 
1983 conference on remotely operated undersea vehicles.1 

An example of the state of the art is the Surface Towed Searcn 
System developed for the Navy by Westinghouse's Oceanic Divi- 
sion (\nnannlis. Ml)). It is designed to locate and identify ob- 
jects on the ocean flooi at dcptlu of 4 miles.'. Currently, com- 
puters on board the surface vessel handle signal processing, data 
recording and analysis, control of the sidelooking sonar, and 
towing operations. Work is underway at Westinghouse to give 
more autonomy to submersibles. The emphasis is on the use of 
onboard expert systems and sonar image processing. Phil Sch- 
weizer of Westinghouse, together with Charles Thorpe and Dave 
McKeown of Carnegie-Mellon University, have developed an al- 
gorithm for autonomous vehie'e navigation. It matches sets of 
objects on sonar images with known landmarks. 

3.2 Itohol Vehicles 

Robot vehicles will be described under five headings: (I) 
legged, (2) indoor and flat-surface, (3) military land units, (4) 
underwater, and (5) airborne. Although none of the ground units 
described is fully autonomous, this is the long term goal of their 
builders. 

Legged Vehicles 
Robert McGhee of Ohio State University considers legged ve- 

hicles particularly appropriate for travel over rough or mucky 
terrain. He has built a small six-legged walking machine called a 
hcxapod and is now building a much larger unit. In the near 
future, McGhee believes that some type of human control will be 
required to guide the vehicle over terrain.2 One approach is for a 
human to point to terrain spots with a laser and for the vehicle's 
sensor system to detect and direct the vehicle to follow the spots. 
Although in experiments, the hexapod has already been demon- 
strated in an autonomous mode with onboard computers used 
for supervisory control, McGhee doesn't see real autonomy com- 
ing for sevenl years. He anticipates that autonomous navigation 
wMI be based upon active range data used to form a local eleva- 
tion map, and will not utilize visual scene analysis — at least not 
in the near future. 

McGhee's larger vehicle will have 12 Intel 8086/87 single board 
computers for motion planning and vehicle control. Specialized 
hydraulic -ireuits will be used for drive, lift, and lateral motion. 
Simple nonscanning proximity detectors may be used for local 
control of leg motions. Both optical and acoustic sensors are be- 
ing studied for this purpose. 

Odetics has built a large, spindlv, radio-controlled, six-legged 
walking and lifting machine' (figure 3-2). It has a clear bubble 
"head" with built-in TV camera. It is designed to w. Ik over rug- 
ged terrain and handle dangerous materials. 

Research into walking machines is also taking place at several 
other locations. Researchers at Moscow University have built at 
least two hexapods. Marc Raibert of Carnegie-Mellon University 
has built a one-legged hopping machine designed for studying 
balance control.' Ivan Sutherland of CMU has built a six-legged 
human-controlled vehicle.7 Shigeo Hirose of the Tokyo Institute 
of Engineering has built a four-legged spiderlike machine that 
can climb stairs. 
Indoor and level-Ground Vehicles 

Hans Moravec of Carnegie-Mellon University has been build- 
ing robot vehicles with vision systems for a number of years2 

(figure 3-3a). The vehicle now being built (figure 3-3b) will con- 
t 'n 6 to 12 Motorola 68000 single board computers and a TV 

Figure 3-2. Odetics' Ode«-l 

camera mounted on a pan-and-tilt mechanism. The vehicle runs 
on three small wheels allowing high mobility over a flat surface. 
Moravec's extensive experience in this area leads him to believe 
that the initial step of building and controlling the vehicle is not 
too difficult to achieve, but it is very hard to get it to do anything 
significant. 

Stanford University has acquired an experimental robot cart 
from Westinghousc's Unimation Division. The Unimation rover 
is similar n design and function to the CMU rover. It achieves 
full threc-degrce-of-freedom floor-plane mobility on a flat sur- 
face. 

The World of Robots Corporation is developing a four- 
wheeled Emergency Security Robot (figure 3-4). Some of its 
functions have been demonstrated in a remote control mode. The 
dcice is intended for automatic patroling, sensing, and acting on 
intrusion. The unit has five types of sensors: infrared, audio, 
microwave, ammonia detector, and TV camera. The vehicle has a 
number of modes of communication- synthesized speech, lights 
and sirens, and data link. Onboard computers will be used for 
speech, path following, defense, and reporting. 

A number of other robots designed for travel over flat surfaces 
are listed in table A. 

Military Land Vehicles 
Military robots can be grouped into two broad classes: static 

anJ mobile. A static robot would perform the tasks of point- 
defense, surveillance, and communication resource manage- 
ment A mobile robot could be used for mine detection, surveil- 
lance; and target detection, recognition, and designation. An 
intermediate class would consist of vehicles that s^ek high 
ground with a clear view, and stop once they find it. 

Several groups are trying to robotize existing military vehicles. 
The interest 's in heavy tracked vehicles like tanks and APCs, 
which can go over small obstacles. Work in this area is being 
done by Scott Harmon of the Naval Oceans Systems Center, 
Rosa Chang of FMC Corp., Alexander Meystel of the University 
of Florida, and several other groups. There is much similarity in 
the approaches being taken by the separate groups. All vehicles 
are to be made fully autonomous with onboard expert systems 
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KiKurr .lOu. Sianford ( an 
and specialized hardware for the processing of visual and/or 
range images. All groups are using Intel single board computers 
l:)r genera' purpose pnvessing. ()l the three programs, the one 
b\ Scott Harmon is the most ambitious. He expects to have a 
fully working autonomously navigating vehicle by 1987. 

Hughes Research labs is building a test-bed facility for devel- 
oping robot vehicle software. They are taking a straight Al ap- 
proach. They arc planning to transition lo a real vehicle in 1985- 
1986, possibly in conjunction with PMC. 

Ihe Jet Propulsion I.ab vehicle team has suspended work on 
the Moon and Mars rovers (figure 3-5) and has directed their 
attention to robotizing military vehicles. 

I nilrr«liter Nehlilcs 

For a tethered submersible, the drag imposed by the tetherline 
is a major limning facior. As the cable length is increased, the 
cable must be made thicker; the power required to pull it in- 
creases accordingly. With four- to seven-mile-long cables, the 
shipboard cable handling operations become massive and cosily. 
Unmanned, tetherltss submersibles arc, therefore, particularly 
desirable for work at jjreat depths. About a do/en vehicles of this 
lyp'. are d.-scribed in the open literature. The basic characteristics 
of ten of tlvm are listed in table C. 

An autonomous underwater vehicle must be able to determine 
its own location, locate objects, and perform tasks. It must have 
command and control software to make decisions and direct op- 
erations, since a data link is not possible at these depths. Due to 
the murkiness of the water, vision is ordinarily possible only at 
extremely close-in ranges. Increased range can be obtained by 
imaging sonar systems, howtver, image resolution and quality 
are limited. 

An example of the state of the art in autonomous submersibles 
is the University of New Hampshire's EAVF-F.ast vehicle.'' 
I \\ I I asi deines all its mlormatlon from onboard sensors and 
is commanded bv an onboard expert system. A Motorola SBC is 
used for command and control, fhis master computer also di- 
rects data acquisition and recording; controls still, movie, and 
slow-scan FV cameras, and a multibeam sonat system. Three 
dedicated processors are also on board to perform specific task.. 
One controls the thrusler speed and vehicle depth, based upon 
data from pressure sensors. Arolhet is lor tiavigation. It ana- 
lyzes range and heating data from remote acou.tic ir.msponders. 
Ihe third dedicated processor handles commu.iication. 
Air Vehicles 

Existing robot aii vehicles are of the "smart missile" type. 
I hey are preprogrammed with navigation and targeting informa- 
tion. Various types of active and'or passive sensor data are used 
during flight. They differ futulamentally from the vehicles de 
scribed previously since they have a short mission and explode at 
the end of it. 

A cruise missile is basically any unmanned jet aircralt that ad- 
justs its course while travelina to the target.:1 This is accom- 
plished by the use of its inertial guidance system and by the 
matching of s 'used scenes to reference maps. ()ne approach is to 
compare the sensed terrain contour with digital elevation maps 
of the flight path. 
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Kiuure 3-4. World of Ko'iois Kmergcnc) Securih Kobol 
(Nol Kull.\ Operaliopal) 

An autononous tactical missile performs target detection and 
recognition. Terminal homing is then achieved b> the processing 
of radar. IR, or visible signals. 

Or.e example of the state of the art is the French Exocct air-to- 
sea mi.sile.:" The aircraft carrying the Exocet flies low over the 
water beneath the enemy's radar coverage. The pilot then pops 
the aircraft up to get a bearing on the target, and then drops 
down again below the enemy's radar coverage. Once the coordi- 
nates of the target are determined and passed to the missile, the 
missile is released in a fire-and-forget mode. The missile heads 
toward the target primarily under the control of its own inertial 
guidance system. It uses its radio altimeter 10 travel just above 
the water surface. As the missile nears the target it rises slightly, 
scans the hori/on, and locks its terminal homing radar onto the 
target. 

Another type of intelligent weapon system i> being developed 
in the U.S. under the Assault Breaker Program." It works as 
follows. A missile dispenses "Skeet" delivery vehicles high above 
an enemy tank concentration. Each delivery vehicle has a para- 
chute that opens at 70() feet to slow its descent. After the chutes 
are released at 100 feet, the delivery vehicles dispense Skeet sub- 
munitions. Each Skeet attempts to locate a tank and fire its self- 
forging projectile at it. 

4. A PROPOSED I ESIHEI) KACIMTV 

The Army's Night Vision and Electro-Optical laboratory is 
providing an Att.-x all-terrain vehicle (figure 4-1) to the Autono- 
mous Vehicle Navigation Program. This vehicle has been modi- 
fied by the Systems Integration Division of NV&EOl. so that 
controls can be operated electronically. Westinghouse will ac'd 
onboa. J computers, vision system, and controls to convert the 
vehicle to autonomous operation. 

The computer equipment for this project will be configured as 
two half racks. The two halves will be joined together during 
laboratory development. The lower half will be disconnected for 
use on board the vehicle when needed. The upper rack will con- 
tain the following '.-quinment: 

• monitor 
• interactive terminal and keyboard 
• Winchester disk drive 
• three floppy disk drives. 

The lower rack will contain the following equipment: 
• Westinghou-e real-time gray-level vision system 
• Intel chassis, with Intel single board computers (SBC s), 

core and bubble memories, and interface boards. 

In) JPI. Mars HUM, Hardware Prololype, 

(b) JPE Mars Rover Software Prololype, 

(. i li'i   lunar Rover 

Hgurc .1-5. .lei Propulsion lab Rovers 
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The vehicle iia> a telescoping mast upon which will be placed a 
Fairchild solid-state TV camera and pan-and-tilt mechanism. 
Other sensors, such as laser range imager, IT IR, acoustic ranger, 
and radar will be investigated for inclusion. The vehicle will also 
contain more mundane equipment to make the system work, 
such as power source and a remote control unit for emergencies 
and test. 

Figure 3-6. Quadraclor 

HKure4-l. Mttx All-Terrain Vehicle 

The lower rack will be described in more detail. The Intel 
chassis will initially include two Intel 8086/87 SBCs. Faster, plug 
compatible SBCs are being developed by Intel each year. They 
could be substituted or added if required. One-half megabyte of 
core memory will be present. Five 2-mcgabytc bubble memory 
boards will be used for storing the data base. Bubble memory is 

nonvolatile. Two megabyte boards should be available in 1^84. 
A Westinghouse AUTO-O vision system will be used. It per- 

forms one billion operations per second to process four million 
pixels per second. Il outputs data of three forms: edge vectors of 
various lengths, blob data, and area histograms. 

Westinghouse is continuing to design new, more powerful vi- 
sion systems. One unit now in development will produce optical- 
flow vectors at real-time rates. It may be used later on in this 
program. 

5. CONd.l SIONS 

Increased interest is being expre- ed in the development of 
truly autonomous mobile robots. The advent of faster single- 
board computers and denser memories has all but eliminated 
constraints on processing speed and storage capacity. Dedicated 
gray-level vision systems are now available to do low-level image 
processing in real-time. VHSIC hardware will soon be av jilable. 
I \pcrl svsinus have been developed which could be .iJ.ipial in 
vehicle command and control. 

If all this is true, then why aren't robot vehicles ready for full- 
scale development and deployment? One answer is that the 
middle-level vision problem has not yet been solved. No software 
package exists for transforming low-ltvel features into identified 
objects with known geometric relationships. No one has come 
even close to so'ving this problem. It remains to be seen what 
process will be made toward the solution in this decade. 

Our plan is to construct a state-of-the-art test bed facility for 
algorithm evaluation. Since the Intel SBC appears io be emerging 
as a standard for robot vehicles, it will be possible to evaluate 
5s)ftware developed elsewhere as well as software specifically 
written for this project at the University of Maryland and West- 
inghouse. Initial research will involve setting simple goa's for ve- 
hicle navigation within a confined outdoor environment and then 
trying to achieve 'hese goals. The best hope for progiess lies in 
the cooperation and exchange of results among the various re- 
search groups working in this area. 
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NAME ORGANIZATION 
NUMBER 

BUILT COST 

SIZE 
WEIGHT 
PAYL0A0 STATUS 

ONBOARD 
COMPUTERS POWER 

SENSORS 
VISION 

SYSTEM COMMENTS 
Westing- 
house 
Power Plant 
Vehicle 

WlHarlord VM 
Bill Jenkins 

1 built 
1 bought 
Irom PaR 
md 
modilied 

PaR Vehicle 
cost $30 000 
to modify 

1 small 
1 large 
with 600 lb 
payioad 

Working 
systems 

None Tv.o V;HP 
DC motors 

AC via 
trailing 
cord 

Tracked Umbilical 
cord Solid State 
control system 
ac/dc convener 

Rescue 
Vehicle? lor 
Nuclear 
Power Plants 

GCA/PaR Systems 
Redwing MINN 
Will Bochlke 
612 484 7261 

15 $100 000 
minimum 

5001b 
payioad 

1000 b 

Built to 
order 

None Power via 
trailing 
cable 

TV cameras Umbilical cord 
For nuclear 
industry Tracked 
vehicles Mounted 
TV cameras 

Mining & 
Oisarming 
Units 

MBA Associates 
San Remt,ne CA 
Marketing Dept 
415-8377?0t 

20 $150 000 
arfup 

Various Built to 
order 

None Battery 
powered & 
gas powered 
engines 

TV cameras Steered via radio 
link TV camera & 
video ii.ik hacked 
vehicles some In- 
AF ordnance rp;rieval 

Odex 1 Odetics ;nc 
1380S Anaheim 
Blvd   Anaheim 
CA 92805 
Joe Lutzky 
M4-774-S000 

1 $200 000 36   tall 3701b 
payioad when 
stationary 1000 
lb payioad when 
walking 

Prototype 
built 

/micros Intel 
8086 Motorola 
68000 

t'4V aircraft 
battery 
360 WH 

TV cameras 6 legs 1 micro 
for each leg Re 
mote control, r.f 
link, joystick Out- 
door vehic.e 

RPI Mars 
Rover 

Rensselae- Poly 
inst ECSEDept 
Troy NY 12181 
David Gisser 
518-270-6485 

1 Size of subcom- 
pact cai 600 
lbs 

Not completely 
operational 

Limited on 
board proces- 
sing plus high 
frequency data 
ink to mam 

frame compuler 

4-6 12V 
batteries 

Triangulating 
system using 
solid state 
pulsed laser, 
rotating mirror, 
rotating mast 

Current effort 
emphasizes 
vision 

Emergency 
Security 
Robot 

World of Robots 
Co   2335 E High 
St . Jackson 
Mich 49203 
800 2480696 

1 Undetermined 6 ft tall 
1000 lbs 

n research 
and develop- 
ment 

Yes Operates 
or 12hrs 
Oefore 
batteries 
need re 
echargmg 

5 sensors. 
IR TV. micro- 
wave audio & 
ammonia 
Visual change 
detection 

4 lg wheels 
Data link 
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Sl/E SENSORS 
Nl MBER WEIGHT ONBOARD VISION 

NAME ORGANIZATION BUILT COST PAYLOAD STATUS COMPUTERS POWER SYSTEM COMMENTS 

Robot Army 
M 114 APC 

Nuval Oceans 1 Large 5 1/211 Beginning 20 SBCs Acoustic Maior ellort Point 
Sys Ctr , Code Inllijr' tall 6 It 3-4yr Intel 8088 sensors laser to point autonomous 
8322 San Oieqo wide  1511 program etc   array range data travel planned 
CA 92152 long   15000 processor Vision system 
Scott Harmon : Loosely planned 
619-225-2083 thousand 

pound 
payload 

coupled 
network 
PL/M. Pascal 

Quadractor Traction Inc 300 $3500 lor 64" tall lor sale None 4 cycle 8 None 4 tractor wheels. 
POBo«90 North human C3" wide hp Briggs 4 *heei steenno 
Troy Vt 05859 controlled 86" long & Stratlon ■) wheel dnve I'exibie 
802 988-4111 vehicle 

$25 000 
tor elec- 

900 lbs gas engine frame powered sus 
pension Wheels are 
on leg assemblies 
isee figure 3-61 tronic 

steering 
& braking 

Hexapod Ohio State Umv t lab mod- considerable Current New unit New unit Current unit Current unit is an 
Dept ol Elect el built hexapod is will be 12 3086 has 2 GE CIO indoor vehicle New 
Eng .2015 Neil 1 being small New completed SBCs cameras Range unit will be an out- 
Ave   Columbus built by one will in 1984   1986 Pascal sensors H door vehicle Both 
OH 43210 R R 1914 weigh 9000 advanced have 6 legs 
McfitiM lbs vision system 
614-422-2820 is added it 

will be in 1986 
also ^   _       
Batteiie Labs 
505 King Ave 
rnliimhiis OH 

Sensors being Guidance and iaviga- 
mvesii.iaied tion algorithms 

43201 B Brown- 
Stem. J Reidy 

by Brian 
Ke'ly ol 
Pa'teiie 

under study at 
Batteiie 

Healhkit TRW One Space Low Based upon Alter Ves see 
1  

6 Polaroid Emphasis is on solt- 
Hero 1 & Park  MS 021769 Heathkit hours Hero-t acoustic ware to build a 
System Redondo Beach Hero-1 protect entry range-lmders world model 
Sottware CA 90278 Mark 

Thomsen M 
Sherbnngs 
213-535-1706 

at TRW 

HERO I Heathkit Many $2 500 39 lbs For sale Motorola 4 Rechar- Sound and 3 wheels Gnpper 
616 982-3411 6808 

mirropro 
cessor 

geable 
batteries 

light sensor Voice synthesizer 
A teaching tool 

Sumitomo Sumitomo Elec- 1 36" high Prototype ves ? lifter Gnpper The obiec 
Android tue ind Osaka 

Japan 
20" wide 
39" deep 

built cptic array: live is electronic 
parts assembly 

CMU Rover Carnegie Mellon 1 $50 000 60 cm dia- Mecnamc- 6 Motorola Batteries TV (.amera 3 degree-nl freedom 
Umv   Pittsburgh PA lor parts meter  100 ally com 68000 SBCs & DC to-DC wnh pan and ground plane mobil- 
15213 RaiPeridy $250 000 cm tall piete 10 MC 6805 converter til mechan- ity 3 sm wheel ass- 
Hans Mora' : lor 100 kg procewrs lor servo 600 WH ism Will be emblies each able 
412-5783829 personnel running control 1200 WH or vision con- to steer and drive 

$300 000 ;ow-level language 2400 WH trolled Data link to VAX 
lor systems software ■c • 11/780 
support oari.aii» 
More$ tested vision & 
later nigh level confo1 

eitots proceeO'ng 
m prallet witii 
harcware 
ccnijletion 

Wheel Sherry Products Many $2000 28" wide For sale None 220 Amp/hr None Front wheel steering 
Chair Inc    1501 faci- $3000 39" long recharge controlled by magne- 
Vehicle tic Coast Hwy 

Hermosa Beach 
5001b 
payload 

able 6V 
battery 
Twin DC 

tic pots Sturdy out- 
door vehicle can 

CA 90254 climb hills, has 11" 
Steve Sherry noiors 8 tires Joystick con- 

trolled Can be 213-379-8457 ; •■• :  ; / 

shilt easily robotized 
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\ 
Sl/E SENSORS "I 

NUMBEF WEIGHT ONBOAHO VISION 
NAME ORGANIZATION BUILT COST PAYLOAD STATUS 1 COMPUTERSl    POWER SYSTEM COMMENTS V       J 

RBbX R B Robot Corp 
Suite 201   14618 
W 6lhAve 
Goid«n CO 80401 

$149b 13" dia 
24" tall 
10 lbs 

For sale Micro- 
processor 
with 16 K 
bytes ol 
core 

/ rechar- 
BMMfiV 
gelled 
electro- 
lyte 
batteries 

Voice recog- 
nition  Sonar 
sensor  bum 
per switch 

RS-232Cport Atq • 

| 

• 

• 

Alien All 
Terrain 
Vehicle 
called 

Tomahawk 

Vehicle built by 
Altex Inl Inc 
6168 Woodbine 
Ave Rd/enna OH 
44?66 
?16-297007? 
Electronic 
controls added 

Mciny 
Itunun 
controlled 
vehicles 
t robot 
veiiicie 

82" long 
56" wide 
42" high 
700 lbs 
7001b 
payload 

Electron- 
ically 
controll- 
able vehi 
cle exists 
at NV&EOL 
Three year 
autonomous 

Intel 8086 
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by West 
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16 HP four 
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Batteries 

Sensors and 
vision system 
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wheels telescoping 
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ility U Maryland 
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program 
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• 
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BOB Androbots Inc 
1287 Lawrence 
Station Ra 
Sunnyvale. CA 
94086 

$2500 311 tall For sale 3 micro- 
processors 
up to 3 
megabytes 
of onboard 

Toy 

Fiank Jones memory 

- Hughes 
Teslbed 

Hughes Research 
Labs Malibu CA 
90265 David 
Tseng 
Bruce Bul'ock 

Several 
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1 (1A 3 It long 
1 W2lt 
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Currently 
testbed 
lor soll- 
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link to 
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vision 
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*■ 
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ning DMA terrain & 
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culture digital data 
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Jet Propulsion 
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••- 
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334-6101   4864 Mars Rover autonomois not advance Mars Rover le. vision letheriinetolab 
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i It long Army) board elec done m lab control via radio 
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300 lbs 
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HP No vision 

noop wheels i - 
Hardware System ■ •■•.•; 
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4 tt wide "-' --"J 
J It high 
300 lbs 

RoDoi 
M113 
ARC 

f MC Corp   110!) 
Coleman Ave 
San Jose CA 
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controlled 

Expensive Large 
military 
vehicle 

Ongoing 
research 

Intel 8086 Vision system 
o be added 
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«ith Hughes 

Rosa Chang vehicles 
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•   1 

Big Track 
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lubli- H. Kimoleh Piloli-d \ihuU> 

s\n 
NUMBER WEIGHT ONBOARD 

NAME ORGANI/AriON BUILT COST PAYLOAD STATUS COMPUTERS PROPULSION SENSORS COMMENTS 
Aquila Lockheed air- 22 now Expensive 6' 10" In production Navigation Rear moun- Stabilised Tv Anti-|am spread 

Irame Westing- proposed 12' r computer & ted 26 hp camera spectrum data link 
house mission wmgspan menial engine 3 lields-ot- very small radar 
payioad 220 lbs 

60 lb pay- 
load * 25 

s/stem with push 
prooeller 

view auto- 
tracker  laser 

profile 

rangelmder 
lbs in laser designa- 
parachute tor ELiRto 
bay be added 

MMMI Tadiran Israel Many Low cost 10' 9" in use Na\   MM Mid moun- Stabilized 
Elec  Industries 14' 2" ground con- ted 22 hp gimballed TV 
11 Ben Gurion wmgspan trol auto engine camera panor- 
St   Fival-Shmuel 253 lbs . pilot with push amic camera 
POBo«648 Tel- 66 lb propeller lor still 
Aviv 6100« payioad photography 
Israel 03-713111 

Seoul Israel Aircraft Many Low Cost 12' r In use Autotrack Mid moun- Gyrosiabiii«o 
Ind . Ben Gurion ir 9" GCS manual ted 18 hp gimballed TV 
Intl Airport. wmgspan autopilot engine camera with 
Israel 260 lbs preprogram- with push I 15 zoom and 
212-620-4400 401b 

payioad 
med propeller a 2 fields oi- 

view panoram- 
ic camera tor 
still phoiog- 
ranhy 

1 
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lahlr ( .    Irthrrlrss I nmunnrd Vrhiclrs 

NAME ORGANIZATION 

LENGTH 
WEIGHT 

PAYLOAD 
MAXIMUM 

DEPTH SENSORS 
MAXIMUM 

DEPTH SENSORS COMMENTS 

Deep Mobile 
Target 

EMi Ltd 
United Kingdom 

33m 
236 Kg 

366 m Sonar 366 m Sonar For ASW and Training 

EAVE East Univ of New Hampshire 
Marine Program 
Manne Program Bidg 
Durham NH 03824 
Dick Blidberg 
603 862 t?34 

1 5m 
363 Kg 
45 Kg paylcad 

50 m Sonar 50 .'i Sonar Pipeline instrumentation platform 
Will contain an expert system 
Two Motorola M68000 SBCs 
6100 processor and bubble 
memory 

EAVE West Naval Oceans 
Systems Center 
San Diego CA 92152 
Boi. Wernh 

182 Kg 
20 Kg payioad 

600 m Still camera 
lights 

600 m Still camera, 
.-»his 

Epaulard C N E X 0 France 4m 
2900 Kg 
40 Kg payioad 

6000 m Still came a 
lights 
Sonar 

6000 m Still camera 
lights 
Sonar 

Preprogrammed Surveys mining 
sites Brings stereo pairs to 
surface 

Ocean Space 
Robot 

Mitsui Shipbuilding 
and Enqmeerma Cn 
Tukyo Japan 

4 8m 
2976 Kg 
No payioad 

250 m Still camera 
Sonar 

250 m Still camera 
Sonar 

PAP '04 Societe 104 
Meudan  France 

27m 
800 Kg 
136 Kg payioad 

150 m TV camera 
lights 

150 m TV camera 
lights 

Wire guided submersible for 
sea-bed exploration and the 
identification of underwater 
obiects 

Robot II MIT Oepi of Ocean 
Engineering 
Cambndqe 
MA 

23m 
110 Kg 
11 Kg payioad 

61 m Sonar 61 m Sonar 

Sell 
Propelled 
Underwater 
Research 
Vehicle 

Applied Df.y5ics Lab 
Seattle WA 

3m 
454 Kg 
45 Kg payioad 

1829 m 1829 m 

Unmanned 
Artie 
Research 
Submersible 

Applied Physics Lab 
Seattle WA 

3m 
408 Kg 
23 Kg payioad 

457 m Sonar 457 m Sonar 

UFSS Naval Research Lab    6 m 
Washmnton DC 

457 m Very low fre- 
quency radio 
navigation 

457 m Very low Ire 
quency radio 
navigation 

Long range aulonomous 
vehicle 

• 
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KINEMATICS  OF  IMAGE   FLOWS 

Allen  M.  Waxraan 

Center  for Automation  Research 
University of Maryland 
College Park,  MD    207A2 
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^**». ABSTRACT 

This study concerns a new formulation and 
method for solution of the' "image flow problem. 
It is relevant to the maneuvering of a robotic 
system through an environment containing other 
moving objects and/or terrain.  The two-dimensional 
image flow is generated by the relative rigid body 
motion of a smooth, textured object along the line 
of sight to a monocular camera.  By analyzing this 
evolving image sequence, one hopes to extract the 
instantaneous motion (described by six degrees of 
freedom) and local structure (slopes and curva- 
tures) of the object along the line of sight.  The 
formulation relates a new local representation of 
an image flow to object motion and structure by 
twelve nonlinear, algebraic equations.  The rep- 
resentation parameters, termed "observables", are 
given by the two components of image velocity, 
three components of rate-of-strain, spin, and six 
independent image gradients of rate-of-strain and 
spin, evaluated at the point on the line of sight. 
This representation is motivated by the deforma- 
tion of a finite element of flowing continuum.  A 
method for solving these equations was devised and 
successfully implemented on a VAX-750 computer.  A 
number of examples were explored revealing two 
classes of ambiguous scenes (i.e., nonunique solu- 
tions are obtained).  A sensitivity analysis was 
also begun in order to estimate noise levels in 
the representation parameters which still yield 
acceptable solutions.  Estimates of computing time 
required for this approach to image flow analysis 
indicate that real-time implementation is not out 
of the question. r- 

1. INTRODUCTION 

This study pertains to the field of real-time 
dynamic image processing with regard to the maneu- 
vering of a robotic system through an environment 
containing other moving objects and/or terrain. 
For a robot to accomplish this task, it may need 
to determine the three-dimensional structure and 
relative rigid body motions-- of these objects, and 
it must extract this information from a two- 
dimensional, evolving, monocular image field in 
real time.  That is, the motion in space of a rigid, 
textured object creates an image flow at the camera. 
The information in an image flow is contained not 

in the images themselves, but rather in the rate- 
of-change of the image.  It is our aim to invert 
the image flow along a line of sight and thereby 
determine the motion and local structure of an 
object under view. 

Of course, the image flow problem has its 
counterpart in the realm of visual perception by 
man and animals; that is the optical flow of 
Gibson (1966)  (also see Marr 1982).  However, 
here we shall concentrate not on the biological 
issues of perception, but rather on an appropriate 
representation, mathematical formulation, and 
solution of the image flow problem.  By "appropri- 
ate representation" we mean the set of observables 
which describe a local image flow and which lead 
to a useful formulation of the problem, admitting 
a rapid and stable solution.  But in addition, one 
must be able to extract these observables from the 
evolving image in an efficient manner.  This last 
point is often ignored, taking the instantaneous 
velocity field over the entire image as given. 
Thus, Prazdny (1980) tried to compute the relative 
motion and depth map of a set of five points (mov- 
ing as a rigid body) directly from the two compo- 
nents of image velocity associated with each point 
(assumed to be given).  As expected, this method 
failed when the points were close to each other 
for then the image velocities of the different 
points were all very similar, and computational 
difficulties associated with round-off errors 
arose.  Therefore, this method could not be used 
to discern local object structure.  Moreover, the 
availability of accurate velocity measurements for 
many points in an image is not something one can 
take for granted.  Prazdny's study does, however, 
point to the importance of image velocity gradi- 
ents . 

Our choice of the "appropriate observables'1 

is motivated by the analogy of a local image flow 
with the deformation of a finite element of flow- 
ing fluid.  As is well known in continuum mechanics, 
the deformation of an infinitesimal element of 
flowing continuum may be specified by the velocity- 
gradient tensor, the symmetric and antisymmetric 
parts of which have clea. 'eometric interpretations 
and are termed the "rate-o.-strain" and "spin" ten- 
sors, respectively.  This description is manifest 
in the Cauchy-Scokes Decomposition Theorem (Aris 
1962), and may be applied to an infinitesimal area 
in an image flow as long as the local object 
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structure is sufficiently smooth.  Such considera- 
tions were first applied to image flows by 
Koenderink and van Doom (1975,1976) who, however, 
made no attempt to implement them in a computa- 
tional scheme.  Moreover, the image velocity- 
gradient tensor does not reflect the curvature of 
an object along the line of sight, nor does it 
provide a sufficient number of relationships to 
determine all the unknowns (eight in this case). 
In order to obtain local object curvature as well 
as slope, and Che relative rigid body motion (which 
constitutes a total of eleven unknowns), one must 
consider the six independent gradients of the 
rate-of-strain and spin as well.  That is, the 
second derivatives of the image velocity field are 
also necessary.  This would provide us with a 
total of twelve nonlinear, algebraic relations 
between the six parameters of motion, five struc- 
ture parameters and the twelve observables, which 
in principle can be solved.  Similar ideas have 
appeared in a paper by Longuet-Higgins and 
Prazdny (1980), but they too made no attempt to 
implement them in order to test the feasibility 
of their approach.  They did, however, outline a 
method of solution which hinges on the existence 
of the focus of expansion.  Unfortunately, their 
method does not work for planar surfaces, but in 
addition it is inapplicable to any object not pos- 
sessing a relative velocity of approach to (or 
recession from) the observer,for then a unique 
vanishing point does not exist.  The fact that cer- 
tain aspects of object curvature are manifest in 
the second derivatives of image velocity had al- 
ready been noted by Koenderink and van Doom (1975), 
relating the sign of the Gaussian curvature to the 
gradients in the Invariants associated with the 
rate-of-strain and spin tensors. 

The fact that our formulation incorporates the 
gradients of the rate--of-strain and spin tensors 
implies that we are indeed analyzing the image 
flow in a finite neighborhood of the line of sight. 
Just as the Cauchy-Stokes decomposition describes 
the deformation of an infinitesimal area in the 
image, the gradients of this decomposition extend 
the kinematic analysis to a small but finite area 
of image.  Moreover, the potential for a geometric 
interpretation of these higher derivatives remains, 
and this is crucial for extracting the twelve ob- 
servables from an evolving image element.  It is 
our expectation that the observables we utilize 
here manifest themselves in the rate-of-deformation 
of the so-called "zero-crossing curves" of the image 
Intensity distribution (Marr 1982).  Preliminary 
work on idealized curves shown this to be the case. 

The approach we have developed, like those 
described above, is applicable only to smooth 
structures, i.e., finite slopes and curvatures, and 
so cannot be used directly near a boundary or cusp 
on an object.  (A multi-resolution implementation 
on smoothed images should obviate most of these 
limitations.)  Moreover, the whole philosophy of 
image flows is applicable only to objects with 
texture or features, for otherwise no image defor- 
mation would be observed except near an object's 
boundaries. 

In Section 2, we present a systematic deriva- 
tion of the twelve kinematic equations relating 
object structure and motion to our representation 
of the image flow.  The method of solution is de- 
veloped in (Waxman, 1983) where it is found that 
the solutions divide into two families, one of 
which is shown to be non-unique,possessing a two- 
fold ambiguity.  Our method of solving the twelve 
nonlinear algebraic equations exploits a trans- 
formation of the image screen coordinates which 
aligns one image axis with the direction of zero 
slope on the object at the point of observation. 
The required transformation angle is itself a part 
of the complete solution to the image flow equa- 
tions.  (Waxman, 1983) also presents an alternative 
(and more rapid) method for obtaining this trans- 
formation angle from an additional piece of data 
in the form of a "radial collision time." This 
"collision time" represents the distance to the 
object along the line of sight divided by the 
relative speed of approach; one could imagine ob- 
taining it from a laser Doppler shift and ranging 
apparatus.  A number of example calculations de- 
monstrating the feasibility and stability of the 
method are considered in (Waxnen, 1983) where it 
is noted that planar surfaces in motion also re- 
veal a two-fold ambiguity. 

2.  DERIVATION OF THE "KINEMATIC RELATIONS" 

The motion of a rigid body in space may be 
uniquely specified (in some inertial reference 
frame)  by assigning three independent components 
of translational velocity and three components of 
rotational velocity  to any point within or on the 
bounding surface of the object.  We shall adopt the 
point on the surface of the object under view 
which intersects the line of sight from the obser- 
ver.  As is usually done in image flow studies, the 
object will be treated as stationary with the 
relative motion through space ascribed to the 
observer.  The kinematic equations to be derived 
here relate this rigid body motion and the struc- 
ture of the object's bounding surface in the neigh- 
borhood of the line of sight  to our representation 
of the local image flow. 

Following Longuet-Higgins and Prazdny (1980) , 
we adopt the coordinate systems shown in Figure 1. 
The vertex of perspective projection is located at 
the origin of a spatial coordinate system (X,Y,Z) 
whose Z-axis is oriented along the instantaneous 
line of sight directed at the object.  This moving 
coordinate system has three degrees of translational 
freedom (VX,VY,VZ) and three degrees of rotational 
freedom (n„,fiY,nz).  The two-dimensional image to 
be analyzed is created by the perspective projection 
of the object and environment onto a planar screen, 
oriented normal to the Z-axis and Intersecting it 
at Z=l.  The origin of the image coordinate system 
(x,y) on the screen is located in space at (X,Y,Z)= 
(0,0,1).  Thus, a point P In space, located by 
position vector R, projects onto the screen as point 
p as shown in Figure 1. 

Due to the motion of the observer, the rela- 
tive motion of point P in space is  -(V+ßxR) .  in 

:- 
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component form we express P's motion through space 

nvz + n7Y (la) xy + (4b) 

(lb) 

(lc) 

The  projected  coordinates of  P  on  the screen   (loca- 
ted at  Z=l)   are  given by 

x/z Y/Z (2a.b) 

The corresponding velocities of the image point P 

are simply (vx,vy)=(x,y), obtained by differenti- 
ating expressions (2) with respect to time and 

utilizing relations (1).  Hence, the image flow 
field is given by 

V_ 
£ 

T [x^X (1 + x1) nv + yn.. 

H ^1 (i + y!) "v H] 

Oo) 

(3b) 

We can already see from equations (3) that the 

image flow reflects neither the absolute distance 

to points on an object, nor the absolute trans- 

lational velocities through space; both will be 

scaled by the distance to the object, say, along 
the line of sight. 

In order to discern the local structure of the 

object in the neighborhood of the line of sight, 

we shall perform a kinematic analysis of the image 

flow in the vicinity of the image origin (x,y)=(0,0). 

But in doing so, we shall need to take various deri- 

vatives of the flow (3) with respect to image coor- 

dinates, and this will introduce the slopes and 

curvatures of the object surface on the line of 

sight.  Thus, to the desired degree of resolution, 

we must be able to describe the neighborhood of the 

surface around the line of sight as "smooth," i.e., 

twice differenciable.  Given the locally unique sur- 

face Z=^(X,Y), we can describe this neighborhood 

by a Taylor series about the Z-axis: 

Y! 

(4«) 

We can express this in terms of image coordinates 

by recalling (2) that X=xZ and Y=yZ, hence  the 

implicit equation Z=^(xZ,yZ).  This can be con- 

verted locally to an explicit surface relation Z= 

Z(x,y) possessing its own Taylor series, 

as follows.  By replacing X and Y in series (4) 

according to equations (2) and substituting the 

whole of (4a) back into the right-hand-side of 

(«a) wherever Z appears, we find, after collecting 
terms and comparing with (4b), that 

m=(i)0 ■ 

Z^   Way/ °   \äX3Y/0 UX/o   \3Y/0 

(5a) 

(5b) 

(5c) 

(5d) 

(5e) 

Equations (5) relate the dimensionless slopes and 

curvatures (in units of Z0) of the surface descrip- 

tion in space  to those in the image coordinate 

system.  All quantities in (5) are evaluated along 
the line of sight to the object, hence the sub- 
script zero. 

Guided by the Cauchy-Stokes Decomposition 
Theorem (Aris 1962), we proceed to study the defor- 

mation of the image flow (3) by forming the image 

velocity-gradient tensor, and then decomposing it 

into a sum of symmetric f.nd antisymmetric parts: 

(6) 

'U 

Here, the subscripts i and j can each take the 

values 1 and 2, with (vi, v2) = (v^,vy) and (Cj,^)" 
(x,y).   The individual elements of the rate-of- 

strain tensor ejj , and the spin tensor (DJJ , ha\e 

geometrical significance in describing the defor- 

mation of a differential neighborhood of any image 
point (x,y), though here we focus on the image 

origin.  The symmetric rate-of-strain tensor e,. 

has three independent elements:  e =rate-of-stletch 
of a differential image line oriented along the x- 

axis, eyy=rate-of-stretch along the y-axis, e =e = 

one-half the rate-of-decrease of the angle between 

two differential segments along the image axes. 

The antisymmetric spin tensor u-jj has only one in- 

dependent element, t^rate-of-rotation of the differ- 

ential neighborhood of image about the origin.  An 

alternative insight may be gained by considering 

the eigenvalues and eigenvectors of the rate-of-strain 

. * 
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tensor (Aris 196J; Koenderink and van Düürn 1975, 
1976); whence, one find.s that a circular neighbor- 
hood of the point (x,v) dilates according to the 
sum of the eigenvalues (equivalent to ehe trace of 
ei-),   undergoes a stretch and compression at con- 
stant area according to the difference of the 
eigenvalues (along mutually perpendicular axes 
aligned with the eigenvectors of e^) thereby de- 
forming into an ellipse, and then rotates as'a 
locally rigid area element according to the spin co. 
riiis deformation is superposed on a uniform trans- 
lation of the infinitesimal neighborhood along 
with the point (x,y) moving with velocity (vx,v ). 
From equations (3) we obtain the expressions 

yy 

v_ 
.; 

1   3Z 

[yax - 2X.!Y] 

[2ynx - x^] 

C7a) 

C7b) 

e       -    I    3Z    (VY Vz 1    32       VX 
22   3y       T 4) 

+ ^ [xax - yr.Y] 

.    32    )VY VZ 
Tz Sx 

I    32     (VX Vz) 
arsy |-z- - x xj 

?K +  :'"Y+2nz] 

(7c) 

(7d) 

Relations (3) and (7), evaluated at (x,y)= 
(0,0), describe the rate of translation, rotation, 
and deformation of an infinitesimal neighborhood 
of the image element along the line of sight. 
Taken together, they constitute six independent re- 
lations among eight unknowns (three translation 
rates scaled by Z0, three rotation rates, and the 
-TWO surface slopes).  Clearly, we do not have as 
yet  a sufficient number of relations to solve 
for the number of unknowns encountered so far. 
This motivates our forming the six independent 
gradients of the rates-of-strain and spin (or 
equivalently, the independent second derivatives of 
vx and vy).  These gradients represent comparisons 
of the stretch and rotation rates at neighboring 
points.  But rather than analyzing the infinitesi- 
mal neighborhoods of two individual points, these 
^r^'ients extend our kinematic analysis to a 
finite neighborhood of a single image~(7int7 Uti- 
lizing equations (7), we derive the following six 
independent relations: 

l*m  .  [3- InZ   _   l'ir.z\' 
Sx [   3x: V  3x   / 

x  -«S (8a) 

3e 

3v 3/' V   3y    /   J   |  Z 2   ) 3y        Z 

V  3x   / J   (Z •     Z )        2     Oy Z 

(8d) 

3'CM 2 

3'UZ   _   :, uiZ   i(aZ 

3x3y 3x       3y Z 2 

1    „ 
7   nX (8e) 

3y 
1^1 -(W | 
3y \ 3y   ^  J( 

»Unt _ rft.iZ  itnZ'   iW_ 
3x3y 3x       Dy        (2 

VJ. 
3x Z 

1   3 6l2     v2 
7 

- y — 
2 2 7   "Y (8C) 

Now if we evaluate equations (3), (7) and (8) 
at (x,y)=(0,0), there result  twelve independent 
relations between the image flow representation 
and the eleven parameters describing the rigid body 
motion in space and object structure in a finite 
neighborhood of the line of sight.  In order to 
simplify the notation throughout the remainder of 
the paper, we define the twelve observables 0i 
(I1!,!?) as the following kinematic quantities 
evaluated on the line of sight (x,y)=(0,0): 

Oi  = v„ 

XX'       yy'  * 

3e        3e 

3x        3y 

3e 3e 
o, . __xy , o,, - —xx , 

3x 3y 

0i I 0,, - 

3y 

(9a, b) 

(9c-r) 

(5R-J) 

(9k,i) 

Just as the Cauchy-Stokes Decomposition Theorem 
describes the rate-of-deformation of an infinite- 
simal area in the image, our observables describe 
the deformation of a finite area in the image. 
We refer to them as observables for they constitute 
our representation of the local image flow, and 
must be extracted from the evolving image.  In 
future work we expect to relate these observables 

to the rate-of-deformation of the "zero-crossing 
curves" of an image which reflect the texture of 
the object's surface (Marr 1982). 

Next, define the six parameters of motion Mi 
(J=l,6) describing the observer's rigid body motion 
through space: 

- ■ ■ 

3e xx 

3y 

3'fiiZ   _   3g»Z  itnZ 

3Ä3y 3x        Jy 'i\ a/,, 7   "7 
(8b) 

K. -    ^ .    «. (lOa-c) 

3x I 3x3y 
UAZ it»} 

3x        3y 
!zl  . ä&ii. 
Z ) 3x      Z 

(8c) 

M, (lOd-E) 
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The parameters Mi and M2 give the angular veloci- 
ties of the object perceived by the obse.ver due to 
his translation through space.  Parameter M3 is the 
inverse of a radial collision time between obiect 
and observer due to the relative velocity of ap- 
proach, when taken alone.  Parameters M4, M5, and 
Mf. give the components of object spin perceived by 
the observer due to his own spinning motion.  &ipii- 
larlv, we define five parameters of structure (or 
topography) Tk (k"l,5), utilizing relations (3), 
as follows: 

'• ■ m, ■'•■■'■ (si 

T, T, 0 ^3X3 

(Ua) 

Ulb) 

(He) 

(lie!) 

(Ho) 

Parameters T^ and T2 describe the slope of the 
object surface at the point on the line of sight, 
and also yield the local elements of the surface 
metric tensor.  Parameters I-, T^, and T3 yield 
(along with T, and T^) the three independent ele- 
ments of the (dimensionless) symmetric curvature 
tensor describing the variation of surface slope in 
the neighboriiood of theMneof sight (McConnell 
1957).  The slopes themselves are dimensionless; 
the curvatures are scaled by the distance Z0 to 
the object along the line of sight. 

Thus, evaluating equations (3), (7) and (8) at 
(x,y)=(0,0) and incorporating the definitions (9), 
(10) and (11), we obtain the following twelve kine- 
matic relations describing the image flow in a 
finite neighborhood of the line of sight: 

0| -Mi - Ki 

0, - -Mj + M.  , 

0, ■ 11, + M.T,  , 

0. - M, + M^;  , 

0. « * (MiT, + N.Tj) 

0t • -K, + 4 (MjT, - 11,1,) 

0, • -2 (K| + K,T,) + M|T,  , 

.0,-11, - M,T, + M,!, 

0, ■ -M, - M,T, » KjT! 

(12a) 

(12b) 

(12c) 

(12d) 

(12e) 

(12f) 

(12g) 

(i2;i) 

(121) 

0,, - 2 (M, - H,T,) t M,T, 

0,, • * (-«. + M,T2 + M.Ti - K,T,) 

Ow - i (-Mi - M,Ti - M|T, + KiT,) 

(I2j) 

(12k) 

(12') 

These image flow equations form a set of 
twelve coupled, nonlinear, algebraic equations 
among eleven unknowns.  The fact tiiat thev are non- 
linear implies the possibility of multiple solu- 
tions, corresponding to ambiguous scenes.  In the 
next section we shall solve these equations, 
selecting eleven of them in order to recover possi- 
ble sets of M. and T^ corresponding to given Oj, 
and reserving the twelfth equation as a constraint 
relation which any acceptable solution must satis- 
fy.  As we shall see, two classes of ambiguous 
scenes emerge, but one must keep in mind that these 
ambiguities are local; a patching  together of local 
solutions to form global structure and motion 
models may well break these ambiguities in most 
cases. 

Finally, note that the nonlinearities inherent 
in the image flow equations (12) are all quadratic, 
being formed by the product of a structure para- 
meter TK with one of the translational motion 
parameters M^ (i=l,3).  In fact, the slopes T^ and 
T, are always multiplied by M-p Mo, or M3; the 
curvatures T   ,   fi,   and T5 always appear in products 
with M. or M2 alone.  That la to say, surface slope 
is revealed by translation through space, while 
surface curvature is revealed by translation paral- 
lel to the image plane.  (Recall, however, that the 
rigid body motion of interest was defined with re- 
spect to the point on the object's surface inter- 
sected by the line of sight, which is not the dyna- 
mical center of mass of the object under view.) 

3.  SOLUTION BY TRANSFORMATION 

By "solving the image flow equations" we mean, 
given the twelve observables 0-^, obtain all possible 
sets {Mi,1^} of motion and structure parimeters 
that are consistent with relations (12). i'aat   is, 
we wish to invert the local image flow.  The diffi- 
culty in solving equations (2) stems from the mul- 
titude of quadratic nonlinearities formed by pro- 
ducts of motion and structure parameters.  Moreover, 
all these parameters may range between plus and 
minus infinity, in principle.  The method of solution 
developed in (Waxman, 1983) hinges on a rotation of 
the image coordinate system which aligns one image 
axis with the direction of zero slope on the object 
at the point of observation.  The transformation 
angle is itself an unknown which is to be solved 
for, replacing one of the structure parameters. 
However, this angle a is bounded, -90° < O 5 +90°, 
and this fact makes all the difference! 

Consider the differential of radial distance 
between observer and object, in the neighboriiood of 
the line of sight.  To first order in differential 
quantities, this is equivalent to the differential 
dZ evaluated at (x,y)=(0,0).  We have 

'--•--.■ 

• -'. 

'■■ti):-'® dy • Z  (T, dx + T, dy) : (13a) 
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hence 

0 along äX a . li. (13b) 

Relations (13b) Indicate a direction in the image 
plane, passing through its origin, along which the 
distance to the object is locally constant, i.e., 
it is the direction of vanishing slope.  (This 
direction  corresponds to an equi-c'epth contour as 
is found in Moire photography (Meadows, el al. 
1970; Takasaki 197U) of objects.)  This suggests 
constructing a new set of image coordinates (x,v) 
rotated by an angle a from the original image coor- 
dinates (x,y), as shown in Figure 1.  By aligning 
the x-axis with the direction of zero slov>e we 
have, by definition, Tj^O.  According tr (13b), the 
transformation angle is uniquely sped.led by 

a  - tar  (•!,/?,)  with -90° < a < +90° (13c) 

except at "specular joints" where T =T;, = 0.  Spe- 
cular points correspond to local maxima, minima, 
and saddle points in the distance between observer 
and object surface.  At these points, the differ- 
ential in distance vanishes to first order in all 
directionsin the image plane; thus, any convenient 
value may be chosen for a when the line of sight 
Intersects such a point.  Of course the rotation 
angle a, as given by (13c), is not known ahead of 
time since T, and !„ are themselves unknowns to be 
solved for.  That is, the angle r, replaces the 
first structure parameter (in the transformed 
system) as an unknown. 

Just as we can specify a rotation of the image 
coordinates for any angle a, we can construct cor- 
responding transformation relations for the ob- 
servables, the parameters of motion, jmd_the struc- 
ture parameters, 1 .e .  {OjjMj.Tjf} S {Oi.Mj.ffc}. We 
are,   however, interested only in those a for which 
11=0.     The required transformations are derived in 
(Waxman, 1983). _T'ae transformed image flow equa- 
tions, relating Mj and Tk to Oj, are simply equa- 
tions (12) without the terms involving T,.  The 
problem i_s then: given the 0^,   find all solution 
sets {CJ.MJ,^} of the transformed image flow equa- 
tions and then transform the motion and structure 
parameters back to the original coordinates {MJ. 
TiJ^MMj,^}. J' 

Solving equations (12) in the transformed sys- 
tem is quite straightforward; and finding the angle 
0 is not difficult either.  Solutions generally 
divide themseJves into two classes, one with unique 
solutions when the surface possesses local curva- 
ture, the other being inherently nonunique with a 
two-fold ambiguity.  These ambiguous solutions arise 
when a particular coincidence between object motion 
and local structure occurs.  "Specular points" are 
an important exception, giving rise to unique in- 
terpretations despite their membership w   the second 
class of solutions.  Planar surfaces in motion also 
possess a two-fold ambiguity, except when there is 
no relative approach velocity to the observer, in 
which case the interpretation is unique.  However, 
it should be kept in mind that these multiple in- 
terpretations are "local ambiguities," and that many 

of them may be resolved in tne process of building 
glooal structure models by p'.ecing together solu- 
tions from neighboring regions.  A sensitivity 
analysis was also begun in order to ascertain the 
effects of noise (or uncertainty) in the obser- 
vables.  Preliminary results suggested that the 
method is quite stable, though further studies re- 
main to be done in this area (see (Waxman, 1983) 
for details). 

4.  CONCLUDING REMARKS 

We have introduced a new representation of 
a local image flow ir, terms of the image veloci- 
ties, strain rates, ^pin, and image gradients 
of strain rate and spin, evaluated along the line 
of sight to a moving surface.  A set, of twelve 
kinematic relation-; (nonlinear algebraic equa- 
tions) were derived which relate these representa- 
tions parameters ("observables") to the local 
surface slopes, curvatures, and parameters of rigid 
body motion.  A method to solve these equations 
for the structure and motion parameters, given the 
observables, nf.s been developed and implemented on 
a VAX-750 computer. 

The next phase of this work will be directed 
at extracting the "observables" from an evolving 
image sequence.  In this regard we hope to exploit 
the neighborhood interpretation of the local image 
flow representation adopted here.  That is, our 
"observables" actually describe the rate-of- 
deformation of a small but finite neighborhood in 
the image, arounj the line of sight.  As the de- 
formation of a nt 'ghborhood can be ascertained by 
studying the deformation of its boundir g curve we 
expect to be able to obtain all of the observables 
by following the deformation of closed "zero- 
crossing curves" of the imap e intensity variation 
map.  We anticipate that this neighborhood ap- 
proach should also lead to a rather robust method 
of obtaining the required observables, more so than 
tracking a set of points through an evolving image 
sequence. 
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DEDUCINC FACTS ABOUT SCENES FROM IMAGES 

Jussi Kctonen 
Stanford University 

1.     Abstract 

This note describes ways of formally expressing 
facts about images. It is shown that some of the known 
heuristics for deducing facts about scenes from images 
can actually be proved correct. 

2.     Introduction 

Our intent is to provide a "mathematical" com- 
mentary for some of the recent work on interpretations 
of image data. In particular, we can show that a few 
of the coincidence assumptions stated by Minford in [1] 
can actually be proved in a suitable formal framework. 

One should not expect ibrmalisations of theories 
to have tangible connections with succesfull implemen- 
tations of algorithms; Artiliciai Intelligence programs 
need not be based on the paradigm of theorem prov- 
ing. However, the clarification of the formnl concepts 
underlying these systems can be of great importance 
in terms of program architecture and further develop- 
ment. Axiomatization of knowledge domains can there- 
fore be viewed aa a pedagogical (or philosophical) exer- 
cise, the basic intent being the elucidation of the fun- 
damental concepts involved and their relationships. 

We will provide a formal framework for discussing 
the representation of polyhedra by line drawings. It fol- 
lows from our analysis that many of the "impossible" 
pictures at Huffman in [3j can be detected by simpler 
means than the ones used by Huffman [3], Clowes [2], 
Waltz [7] or Wesley and Markowsky [4]. Given that our 
methods are simpler (even if not complete), they may 
be CIOSCT to the process actually used by the human 
visual system. They have the additional advantage of 
being generali/able with suitable modifications to semi- 
algebraic sets (i.e. objects defined through sets ol al- 
gebraic ine(|ualitics), tlmugh this will not be taken up 
in this note. For the sake of simplicity, only objects 
defined by linear varieties are discussed. 

3.     Formal Background 

Wc follow the standard conventions of geometry 
and topology in our notation and terminology. For 
background, one may consult llourkc and Sanderson [5] 
or Mumford [6] - the teclumiues presented in this paper 

(though mathematically rather trivial) have the flavor 
of algebraic geometry. 

The terminology of Wesley and Markowsky [d] is 
used to describe the fundamental objects of study. 

DEFINITION 1: A face f is the closure of a non- 
empty, bounded, connected, coplanar, open subset of 
S?3 whose boundary is the union of a finite number of 
line segments. 

ÖEFINITION 2: An object 0 is the closure of a 
iionernpty, bounded, open subset of S?'1 whose boundary 
is the union of a finite number of faces. 

From now on, by a face of an object 0 we mean a 
maximal face contained in DO. It is easy to sec that any 
object is a compact polyhedron; in particular a finite " 
union of simplices 

DEFINITION 3: The vertices of / is the set of 
all points for which two noncollinear line segments con- 
tained in the boundary of / can be found whose inter- 
section is the given point. 

DEFINITION 4: The edges of / is the set of all line 
segments e contained in the boundary of / such that all 
the endpoints of e arc vertices and no interior point of 
e is a vertex. 

The vision task may be modeled by a (non-trivial 
linear) projection H : SR3 --> K2. We hypothesize an 
object 0 contained in the positive part of K3 in general 
position with respect to H; i.e., any linear variety 
generated by the vertices of 0 is in general positiou 
with respect to H. There is a natural ordering ^< on 
the fibers n_l({x}).   Since 0 is compact, the set 0 D 
''"'(W). if "on-empty, has a -<- least element, which 
we wc denote by Sz. 

DEFINITION 5: The set S = {Sx\x £ 11(0)} is 
the visible part of 0 under 11. 

It follows that 7 is a compact polyhedron and that 
the map M ; 5 -> 11(0) is bijective. In fact, one can 
show that for any x 

|n-,({x})nl|<oo. 
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-> KRACTAL-BASED DESCRIPTION OF NATURAL SCENES 

Alex Pentland 
Artificial Intelligence Center 

SRI International 
333 Havenswood Ave., Menlo Park, CA. 94025 

ABSTRACT 
This paper addresses the problems of (1) representing 

natural shapes such as mountains, trees and clouds, and (^t T 

computing such a description from image data. In order to 
solve these problems we must be able to relate natural surfaces 

to their images: this requires a good model of natural surface 
shapes. Fractal functions are good a choice for modeling natural 

surfaces because (1) many physical processes produce a fractal 
surface shape, (2) fractals are widely used as a graphics tool for 

generating natural-looking shapes, and (3) a survey of natural 
imagery has shown that the 3-D fractal surface model, trans- 

formed by the image formation process, furnishes an accurate 
description of both textured and shaded image regions. This 

characterization of image regions has been shown to be stable 
over transformations of scale and linear transforms of intensity. 

Much work has been accomplished that is relevant to com- 
puting 3-D information from the image data, and the computa- 

tion of a 3-1) fractal-based representation from actual image data 
has been demonstrated using an image of a mountain. This ex- 

ample shows the potential of a fractal-based representation for 
efficiently computing good 3-D representations of natural shapes, 
including such seemingly-difficult cases as mountains, clumps of 
leaves and clouds. 

\ 
1.    INTRODUCTION 

This paper addresses two related problems: (1) representing 

natural shapes such as mountains, trees and clouds, and (2) 

computing such a description from image data. The first step 
towards solving these problems, it appears, is to obtain a model 

of natural surface shapes. The task of finding such a model is 

extremely important to computer vision because we face prob- 
lems that seem impossible to address with standard descriptive 

techiii<|ii(s. Mow, for instance, should we describe the shape 
of leaves on a tree? Or grass? Or clouds? When we attempt 

to describe such common, natural shapes using standard shape- 
primitive representations, the result is an unrcalistically compli- 

cated model ol something that, viewed introspectively, seems 
very simple. 

The research reported herein was supported by the Defense 
Advanced Research Projects Agency under Contract No. MDA 

903-83-C-0027; this contract is monitored by the U. S. Army 
Engineer Topographic Laboratory. Approved for public release, 

distribution unlimited. 

Figure I,    Fractal-based models of natural shapes, by Mandelbrot 
and Voss |)|. 

Furthermore, how can we extract 3-D information from 
the image of a textured surface when we have no models that 

describe natural surfaces and how they evidence themselves in 

the image? The lack of such a 3-D model has generally restricted 

image texture descriptions to being ad hoe statistical measures 
of the image intensity surface. A good model of natural surfaces 

together with the physics of image formation would provide the 
analytical tools necessary for relating natural surfaces to their 

images. The ability to relate image to surface can provide (he 
necessary leverage for dealing appropriately with the problems of 

finding a good representation for natural surfaces and computing 
such a description from the image data. 

Even shape-from-shading [22,23] and surface-interpolation 
methods [2ij are limited by the lack of a 3-D model of natural 

surfaces. Currently all such methods employ the heuristic of 
"smoothness'1 to relate neighboring points on the surface. Such 

heuristics are applicable to many man-made surfaces, of course, 
but are demonstrably untrue of most natural surfaces. In order 
to apply such techniques to natural surfaces, therefore, we must 
find a heuristic that is true of natural surfaces. Finding such a 

heuristic requires recourse to n 3-D model of natural surfaces. 
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The image 11(0) is again a union of faces. In fact, 
for any x £ d\l(0) tlicre is an edge e of 0 sucli that 
ii-1{{i})nenI^o. 

DEFINITION 6: The picture PfC*(0,II) associated 
to II, 0 is the collection 

{ri(enI)|ee#(0),en3Vo}, 

where E{0) denotes the set of all edges of the object 0. 

It  is  easy   to  see   that   the   image   11(0)   can   be 
generated from Z'tc^O,!!). 

4.     Facts from Images 

We shall enumerate several facts about interpreta- 
tions of pictures which are now provable in the for- 
mal setup given above. They can all be found, in one 
form or another, in Hinford [1].   In the following, e = 

Il(fi n ^) and / = II(/ n T) denote arbitrary elements 
oU'ict{0,11). 

FACT 1: Any element e G Piet{0,Tl) is an image 
of an edge of 0, lying on two non-coplanar faces. 

FACT 2: If 4 C 11(0) is an open, connected set 
which does not intersect any set from f'ic^O,\l), then 
II_1(yl) D T is a part of a face (in particular, contained 
in a plane) and II : II_1(y4) fl ? —► /I is bijective, 

FACT 3: If e,/ G Pict{C,U) are parallel, then so 
are e and /. 

FACT 7: Assume e, / 6 rict{0,\\) form a X-vertex 
at a point /'; i.e. /' is an interior point for e, /. Then t 

and / intersect at a point above /-'. 

Those facts are quite oufflcicnt to determine the im- 
riossibiiity of say, the i'enrose triangle (see f.ex. Binford 
I], ligure 6). In that case the image can be proved 

to depict three planar regions bordered by three; lines 
which do not have a common point of intersection. 
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FACT 4: If /', Q,ß are distinct collinear points 
that can be expressed as intersections of elements of 
Ptct(0,II), then there are collinear points p, 7, r above 
them in S\ 

Research supported by NSF grants MCS-82-06565, 
MCS-79-05998 and ARPA contract NÜ()039-82-C-0250. 

The following three facts give a complete analysis 
of points of intersection in I'ic^O.n), They depend 
strongly on the linearity and general position assump- 
tions. 

FACT 5: Assume e, / G Pict(0,n) form a L-vertex 
at a point P; i.e. P is an endpoint for both of them, 
and they are not collinear. Then e and / intersect at a 
point above P. 

FACT 6: Assume e,/ G Fic^ö,II) form a T- 
junction at a point P; i.e.  P is an endpoint for e and 

an interior point for /. Then e and / do not intersect; 

in fact e contains a point above / and P. 
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[racial functions seem to provide such a model of natural 

surface shapes. Fractals are a iiovol class of naturally- 
arising functions, discovered primarily by Benoit Mandelbrot. 

Mandelbrot and others [1,2,4] have shown that fractals are 
found widely in nature and that a number of basic physical 

processes, such as erosion and aggregation, produce fractal sur- 
faces. Because fractals look natural to human beings, much 

recent computer graphics research has focused OT using fractal 
processes to simulate natural shapes and textures (see Figure 1), 

including mountains, clouds, water, plants, trees, and primitive 
animals [3,4,5,6,7]. Additionally, we have recently conducted a 

survey of natural imagery and found that a fractal model of 
imaged 3-D surfaces furnishes an accurate description of both 

textured and shaded image regions, thus providing validation of 
(his phvsics-derived model for both image texture and shading 

[19]. 

2. FRACTALS AND THE FRACTAL MODEL 

During the last twenty years, Benoit B. Mandelbrot has de- 

veloped and popularized a relatively novel class of mathematical 
functions known as fractah [1,1]. Fractals are found widely 

in nature [1,2,4]. Mandelbrot shows that a number of basic 
physical processes, ranging from the aggregation of galaxies to 
the curdling of cheese, produce fractal surfaces. One general 

characterization is that any process that acts locally to produce 
B permanent change in shape will, after innumerable repetitions, 
result in a fractal surface. Examples are erosion, turbulent flow 
(e.g.. of rivers or lava) and aggregation (e.g.. galaxy formation, 

meteorite accretion, and snowflake growth). Fractals have also 
been widely and successfully used to generate realistic scenes (see 

figure I), including mountains, clouds, water, plants, trees, and 
primitive animals [3,1,5,6,7]. 

Perhaps the most familiar examples of naturally occurring 

fractal curves are coastlines. When we examine a coastline (as 
in Figure 1). we see a familiar scalloped curve formed by in- 

numerable bays and peninsulas. If we then examine a finer-scale 
map of the same region, we shall again see the same type of 

curve. It turns out that this characteristic scalloping is present 
at all scales of examination [2], i.e., the statistics of the curve 

are invariant with respect to transformations of scale. This fact 
causes problems when we attempt to measure the length of the 

coastline, because it turns out that the length we are measur- 
ing depends not only on the coastline but also on the length of 
the measurement tool itself [2]! This is because, whatever the 

size measuring tool selected, all of the curve length attributable 
to features smaller than the size of the measuring tool will be 

missed. Mandelbrot pointed out that, if we generalize the notion 
of dimension to include /rncd'ona/dimensions (from which we 

get the word "fractal"), we can obtain a consistent measurement 
of the coastline's length. 

The definition. A fractal is defined as a set for which 

the llausdorir-Besicovich dimension is strictly larger than the 
topological dimension. Topological dimension corresponds to 
the standard, intuitive definition of "dimension." Hausdorfl- 
Besicovich dimension D, also referred to as the fractal dimen- 

sion, may be illustrated (and roughly defined) by the examples 

(1) of measuring the length of an island's coastline, and (2) 

measuring the area of the island. 
To measure the length of the coastline we might select a 

measuring stick of length X and determine that n such measuring 

sticks could be placed end to end along the coastline. The length 
of the coastline is then intuitively n\. If we were measuring the 

area of the island, we could use a square of area X" to derive 
an area of mX". where in is the number of squares it takes to 

cover the island. If we actually did this, we would find that both 

of these measurements vary with X, the length of the measuring 

instrument       an undesirable result. 

In these two examples the length X is raised to a particular 

power: the power of one to measure length, the power of two 
to measure area. These are two examples of the general rule of 

raising X to a power that is the dimension of the object being 

measured. In the case of the island, raising X to the topological 
dimension does not yield consistent results. If, however, we 
were to use the power 1.2 instead of 1.0 to measure the length, 

and 2 1 instead of 2.0 to measure the area, we would find that 
the measured length and area remained constant regardless of 

the size of the measuring instrument chosen. The positive real 
number D that yields such a consistent measurement is the 

fractal dimen.iion. D is always greater than or equal to the 
topological dimension. 

The most important lesson the work of Mandelbrot and 
others teaches us is the following: 

Standard notions of length and area do not produce 
consistent measurements for many natural shapes: the 
basic metric properties of these shapes vary as a func- 
tion of the fractal dimension. Fractal dimension, there- 
fore, is a ne.ccs.sary part of any consistent description of 
such shapes. 

This result, which could almost be stated as a theorem, 
demonstrates the fundamental importance of knowing the frac- 

tal dimesion of a surface. It implies that any description of a 

natural shape that does not include the fractal dimension cannot 

be relied upon to be correct at more than one scale of examina- 
tion. 

Fractal Brownian functions. Virtually all the fractals 
encountered in physical models have two additional properties: 
(l)earh segment is statistically similar to all others; (2) they are 

statistically invariant over wide transformations of scale. Motion 
of a particle undergoing Brownian motion is the canonical ex- 

ample of this type of fractal. The discussion that follows will be 
devoted exclusively to fractal Brownian functions, a generaliza- 
tion of Brownian motion. 

A random function D(x) is a fractal Brownian function if 
for all J and A.r 

/' „ ( ll{x+ \i]-li(i) \ 

where /'(y) is a cumulative distribution function [ij. The fractal 

This example is discussed at greater length in Mandelbrot's 
book. "Fractals: Form, Chance and Dimension." The empirical 
data are from Richardson 1901. 
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liniciiMon D of ihr p*apb described In IHi) is 

l> = II (21 

If // •■ 1/:' .ind I'iy) is n /ero-iiioan Ci;iussi;in with unit variance 

thou //(/) is the classical firownian function. This definition 
has obvious extensions to two or more topological dimensions 

The fractal dimension of a fractal Hrownian function can also 

be measured from its Fourier power spectrum, as the spectral 

density ofa fractal Hrownian function is proportional to/-2''-1. 

Durmvioa of the rather technical proof of this fact mav be found 
in |ll 

The fractal dimension of a surface corresponds roughly to 

our intuitive notion of jaggedness. Thus, if we were to generati 
a series of scenes with the same 3-D relief but increasing fractal 

dimension I>. we would obtain the following sequence: first, a 
flat plane {I) =r 2), then rolling rountrysidc {D *i 2.1), a worn, 
old mount iin range {D = '2.3). a .veiling, rugged mountain range 

(I) % S.5), and finally a stalagmite-covered plane [D ^= 2.8). 
The fractal dimension of a surface is invariant with respect 

to transformations of scale, as AJ is independent of II and 
F{y). The fractal dimension is also invariant with respect to 

linear tramformatiooi of the data and thus it remains stable 
over smooth, nionotonic transformations. 

2.1     Fractal? And The Imaging Process 

Before we can use a fractal model of natural surfaces to 
help us understand images, however, we must determine how 

the ioiaging process maps a fractal surface shape into an image 
intensiiv siiiT.ice. The mathematics of this problem is difficult 

and no complete solution has as yet been achieved. Nonetheless. 

simulation of (he imaging process with a variety of fractal surface 
models can provide us with an empirical answer i.e., that 
images of fractal surfaces are themselves fractal as long as the 

fraclal-generaling function is spatially Isotropie [19]. It is worth 

noting lli.it practical fractal-generation techniques, such as those 

used in (ompiiter graphics, have had to constrain the fractal 
generating function to he Isotropie so that realistic imagery could 

be obtained [3j, 
Real images do not, of course, appear fractal over all pos- 

sible scales of evaminaiion. The overall size of the imaged surface 

places an upper limit on the range of scales for whieh the surface 
shape appears to be fractal, and a lower limit is sei by the size 

of the surface's constituent particles. In between these limits, 

however, we may use liquation (1) to obtain a useful description 

of the surface. 

Simulation shows that the fractal dimension of the physical 

surface dictates the fractal dimension of the image intensity 
surface; it appears that the fractal dimension of the image is 

a logarithmic function of the fractal dimension of the surface. 
If wo assume that the surface is homogeneous, therefore, we 

can estimate the fractal dimension of the surface by measuring 
the fractal dimension of the image data. F,ven if the surface is 

not honiogeneous, we can still infer the fractal dimension of the 
surface from imaged surface contours and bounding contours, 

by use of Mandelbrot's results. 
What we have devolofed, then, is a method for inferring 

a basic property of the 3-D surface (its fractal dimension) from 

the image data. The fact that the fractal dimension corresponds 
closely to our intuitive notion of roughness shows the impor- 
tance of the measurement: wo can now discover from the image 
data whether the 3-D surface is rough or smooth, Isotropie or 
anisotropie. We can know, in effect, what kind of cloth the 

surface was cut from. The fact that the fractal dimension also 
describes the basic metric properties of the imaged surface is 

further indication that it is a critical element in any consistent 
representation of natural surfaces. 

2.2     Applicability Of The Fractal Model 

An implication of the fractal surface model is that the image 

intensity surface is itself fractal and t'lVe versa. This is be- 

cause image mlensiiy is primarily a fuiict'oü of the angle between 
the surface normal and the incident illumination; thus, if the 

image intensities satisfy Equation (I), then (for a homogeneous 

surface) the angle between surface normal and illiiminant must 

also and, integrating, wo find that the 3-0 surface is a spatially 
Isotropie fractal. 

\ method of evaluating the usefulness of the fractal sur- 

face model, therefore, is to determine whether or not images of 
natural surfaces are well described by a fractal function. To 

evaluate the applicability of the fractal model, we first rewrite 

Equation (I) to obtain the following description of the manner 
in tthich the second-order statistics of the imago change with 
scale: 

E{\diA,\)\\^rH - Eddhi) (3) 
where k is a constant and /:.'((//.},) is the expected value of 

the change in intensity over distance AJT. Equation (3) is a 
hypol hesi/ed relation among the image intensities; a hypothesis 
that we may lest statistically. If wo find that Kquation (3) is 
true of the image intensity surface and the viewed surface is 
homogeneous and continuous then wo may conclude that the 3- 
1) surface is itself fractal. It is an important characteristic of 

the fractal model that we can determine its appropriateness for 
particular image data because it means that wo can know when, 

and when nnl. to use the model. 

To evaluate the suitability of a fractal model for natural 

textures, the homogeneous regions from each of six images of 
natural scenes «ere densely sampled. In addition, twelve tex- 

tures taken from lirodatz [8] wore digitized and examined (sec 
Figure 3), The intensity values within each of these regions were 

then approximated by a fractal Hrownian function and the ap- 
proximation error observed. 

I or the majority of the textures examined (77re), the model 
described the imago data accurately (see [19] for more detail). 

In I'I'V of the ca,ses the region was constant except for random, 
zero-mean perturbations; consequently, the fractal function cor- 

rectly approximates the image data, although the fractal dimen- 
sion was equal to the topological dimension and thus the data's 

dimension is technically not "fractional." The fit was poor in 
only 8r( of the regions examined and, in many cr these cases, it 
appeared that the image digitization had become saturated. 

The fact that the vast majority of the regions examined were 

quite well approximated by a fractal lirowman function indicates 
that the fractal surface model will provide a useful description of 
natural surfaces and their images.   Fractal Hrownian functions 
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do not, of course, arcounl for such largo-scale sjKitial struclurc 
as those seen in the image of a brick wall or a tiled floor. Such 

structures mu1-! be accounted for b_v other meaus. 

3.    INFERRING SURFACE PROPERTIES 

Fractal functions appear to provide a good description of 
natural surface textures and their images; thus, it is natural 

to use the fractal model for texture segmentation, classification 
and shapc-from-texture. The first four headings of this section 
describe the research that has been perfcimed in this area, and 

indicate likely directions for further rcsearvh. 

Fractal functions with // =r 0 can be used to model smooth 
surfaces and their ceflectance properties. For the first time, 

therefore, we ran offer a single model encompassing both image 

shading and texture, with shading as a limiting case in the 
spectrum of texture granularity. The fractal model thus allows 
us to make a reasonable and rigorous definition of the categories 

'texture" and "shading," thus enabling as to discover similarities 

and dilWences between them. The final heading of this section 
briefly discusses this result. 

3.1     An Example Of Texture Segmentation 

Figure 2(a) shows an aerial view of San FVancisco Bay. This 
image was digitized and the fractal dimension computed for 

each 8 X ^ block of pixels. Figure 2(b) shows a histogram of 
the fractal dimensions computed over the whole image. This 

histogram of fractal dimension was then broken at the "valleys" 
between the modes of the histogram, and the image segmented 

into pixel neighborhoods belonging to one mode or another. 
Figure 2(r) shows the segmentation obtained by thresholding 

at the breakpoint indicated by the arrow under (b); each pixel 

in (c) corresponds to an 8 X 8 block of pixels in the original 

image. As can be seen, a good segmentation into water and land 
was achieved one that cannot be obtained by thresholding on 
image intensity. 

This image was then averaged down, from St9 X ■r)12 pixels 

into 256 X 266 and 128 X 128 pixel images, and the fractal 
dimension recomputed! for each of the reduced images. Figures 

1 |d) and je) illustrate the segmentations produced by using 
the tame breakpoint as iiad been employed in the original full- 
resolution segmentation. These results demonstrate the stability 

of the fractal dimension measure across wide (1:1) variations 
in scale. 

Several other images have been segmented in this manner 
JI9J. In each case a good segmentation was achieved. The 

computed fractal dimension, and thus the segmentation, was 

found to be stable over at least 4 : 1 variations in scale; most were 
stable over a range of 8 : 1. Stability of the fractal description 

is to be expected, because the fractal dimension of the image is 

directly related to the fractal dimension of the viewed surface. 

Figure San Francisco Hay, and its texture segmentations. 

No attempt was made to incorporate oriental ion.d information 

into measurement of the local fractal dimension, i.e., differences 
in dimension among various image directions at a point were 
collapsed into one average measurement. 

which is a property of natural surfaces that has been shown to 

be invariant with respect to transformations of scale [2]. 

'Fhe fact ili.it the fractal description of texture is stable 

with respect to scale is a critically important property. A'ier all, 

consider: how can we hope to compute a stable, viewer- 
independent representation of the world if our informa- 
tion about the world is not «table with respect to scale? 
This example of texture property measurement reiterates what 

we observed earlier, i.e., the fact that the fractal diiiiension of 

the surface is ncrCMdrytO any consistent description of a natural 
Mir face. 

3.2     A Comparison With Other Segmentation Techniques 

To obtain an jbjeclive comparison with previously estab- 

lished texture segmentation techniques, a mosaic of eight natural 
textures taken from Brodat?. |8] was redigilized. The digitized 

texture mosaic, shown in Figure 3, was constructed by Laws 
[9,10] for the purpose of comparing various texture segmentation 
procedures. The textures that comprise this data set were chosen 

to be as visually similar as possible; gross statistical differenres 

were removed by mean-value- and histogram-equalization. 

Segmentation performance for these data exists for several 
techniques and. al( hough differences in digitization complicate 

any comparisons we might wish to make, Faws's performance 
figures nevertheless serve as a useful yardstick for assessing per- 
formance on this data. 

For this comparison simple orientational information was 

incorporated into the fractal description; the fractal dimension 

was calculated separately for the i and y coordinates. The two- 

parameter fractal segmenter yielded a theoretical classification 
accuracy of 84.4%. This compares quite favorably with correla- 
tion techniques [11,12] reported by Laws as attaining 65^? ac- 
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I igurc ."!.    The liroilati textures used for comparison. 

curacy, as »rll as with co-occurrence techniques [13.11) reported 
to be 72 r accurate. This superior performance was achieved 

despite the large number of texture features employed by the 
other mot hods 

The simple two-parameter fractal segmenter even compares 
well wiih l.aws's own texture energy statistics; even though his 

segmentation procedure included more than a dozen texture- 
statistics that were optimized for (he test data, its theoretical 

segmentalion accuracy was only 3?e better. Thus, the results of 

this comparisoh indicate that fractal-based texture segmentation 
w ill likely prove to he a general and powerful techni<|ue (for more 
details, see (lOj). 

3.3    Relationship To Texture Models 

The fact that the fractal dimension of the image data can be 

measured by using either co-occurrence statistics in conjunction 
with EqttatloB (I), or by means of the Fourier power spectrum, 
suggests one interesting aspect of the fractal model: it highlights 

a formal link between co-occurrence texture measures [13,14] 

and Fourier techniques [l.'),16,!7j. The mathematical results 
Mandelbrot derives for fractal Brownian functions show that the 
way inlerpixel dilferences change with distance determines the 

rate al «liich the Fourier power spectrum falls off as frequency 
is increased, and vice versa. 

Thus, it appears that the fractal model offers potential for 

unifying and simplifying the co-occurrence and Fourier texture 
descriplions If we believe that natural surface textures and 

their images are fractal (as seems to be indicated by the pre- 
vious results), then the fractal dimension is the most relevant 

parameter in dillerentiating among textures. In this case we 

would expect both the Fourier and co-occurrence techniques to 
provide reasonable text ure segmentations, as both yield «ufficient 
informaiion to determine the fractal dimension. The advantage 
of the fractal model would be that it captures a simple physical 
relationship underlying the texture structure a relationship 

lost with either of the other two characterizations of texture. 

Knowledge of the fundamental physical principle can result in 
both increased computational efficiency and further insight. 

3.4     Shape From Texture 

There are two ways surface shape is reflected in image tex- 
lure: (1) projection foreshortening, a function of the angle be- 

tween the viewer and the surface normal, and (2) the perspec- 

tive texture gradient that is due to increasing distance between 

the viewer and the surface. These two phenomena are indepen- 

dent in that they have separate causes. Thus, they can serve to 

confirm each other i.e., if projection foreshortening is used to 
estimate surface till, that estimate is independently roufirmed 

if there is a texture gradient of the proper magnitude and same 
direction [l7.1i<|. We may be confident our estimate is correct 
when such iiulependeut confirmation is found. 

The fractal dimension found in the image appears to be 
nearly itidependent of the orientation of the surface (by virtue 

of independence with respect to scale); therefore fractal dimen- 
sion cannot be used to measure surface orientation. Projection 

foreshortening does, however, affect, the variance of the distribu- 

tion F{y) associated with the fractal dimension (see Equation 

(1)). Foreshortening affects \ar{l'{y)) in exactly the manner it 
affects the distribution of tangent direction. 

Thus, to estimate surface orientation, we might assume that 

the surface texture is Isotropie and estimate surface orienta- 
tion on the ba-is of previously derived results [18], While this 

often works [19]. the necessity of assuming isotropy is a serious 
shortcoming of this technique. An important new result, there- 
fore, is that we may in part cure this problem by observing the 

fractal dimensions In the x and y directions. If they are unequal 

we have pn'tmi furie evidence of anisotropy in the surface tex- 
ture, because fractal dimension is unaffected by projection. 

However a foreshortening-derived estimate of surface orien- 
tation is produced, wc may still seek confirmation of it by 

measuring the perspective texture gradient; if conGrmation is 
found, we may be confident of our estimate. Such a gradient 
appears in Figure 2: the houses dwindle in size with increasing 

distance from the viewer. Initial results, detailed in [19], indi- 
cate that perspecti\e texture gradients ran be inferred from the 
locally computed fractal dimension. 

This two new results, i.e., the ability to obtain evidence of 
surface texture anisotropy and the measurement of the perspec- 

tive texture gradient, are extremely important because they 

offer a way to make sh.-.pe-from-unfamiliar-texture techniques 
sufliciently reliable so as to be useful. Development of these 

techniques, therefore, constitute an important task for future 
research, 

3.5    Shading And Texture 

ITa< (al functions with // =» 0 can be used to model smooth 

surfaces and their reflectance properties accurately. When // =» 

0. the surface is locally planar, except for small, random varia- 

tions described by the function F{y) in Fquation (1). If wc as- 
sume that incident light is reflected at the angle of incidence and 

we make the variance of F{f) small relative to the pixel size, the 
surface will be mirrorlike. If, on the other hand, the variance of 

/ i!/) is large relative to the pixel size, the surface will become 
more Lambertian. 

The fractal model, therefore, is a single model that can ac- 

count for bolh image shading and textur,-. with shading cor- 
responding to the limiting value of //, The fractal model thus 

allows us to make a reasonable and rigorous definition of the cat- 
egories "texture" and "shading." in terms that can be measured 

by using the image data. One important goal of future research 

l,s,s 
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will 1).' to discovor similarities or cüffcrcnres between these two 
categories; initial results indicate that local shape-from-shading 

results [26] can be generalized to include shape-from-texture. 

4.    COMPUTING A DESCRIPTION 

( urr< ut mil hods for representing the three-dimensional 
world sillier from a certain awkwardness anJ inflexibility that 

makes them diflicult to envisage as the basis for human- 

performance-level capabilities. They have encountered prob- 

lems in dealing with partial knowledge or uncertain information, 

and (bey become implausibly complex when confronted with the 

problem of representing a crumpled newspaper, a clump of leaves 
or a piilT\ cloud. 1 urthermore, they seem ill-suited to solving the 

problem of representing a class of objects, or determining that 
a particular object is a member of that class. 

What is wrong with conventional sh.tpe representations' 

One inajor problem is that they make too much information 
explicit. Kxperiments in human perception [Jl] lead one to 

believe that our representation of a crumpled newspaper (for 
instance) is not accurate enough to recover every c value; rather, 

it seems that we remember the general "crumpledness" and a few 
of the major features, such as the general outline. The rest of 

the newspaper's detailed structure is ignored; it is unimportant, 
random. 

From the point of view of constructing a representation, the 
only important constraints on shape arc the crumpledness and 

general outline. What we would like to do is somehow capture 
the notion of constrained chance, that is, the intuition that "a 
crumpled newspaper has j, y and ; structural regularities and 

the rest is just variable detail," thus allowing us to avoid dealing 

with inconsequential (random) variations and to reason instead 
only about the structural regularities. 

4.1     The Process Of Computing A Description 

How shall we go about computing such a "constrained 
chance" description? I,el us consider the problem formally and 
see where that leads us. The process of computing a shape 

description (given some sensory data) seems best characterized 
as attempting to confirm or deny such hypotheses as "shape x 

is consistent with these sense data." Computation of a shape 
description, therefore, seems to be a problem in induction [20]. 

If, naively, we try to use an inductive method, we start 
with the set of all possible shape hypotheses; we then attempt 
to winnow the si i down to a small number of hypotheses 

that are confirnird by the sensory data. The "set of all 
shape hypotheses." however, is much too large to work with. 

Consequently, we must take a slightly different tack. 

Using the notion of constrained chance, leather than 

attempting tocnumerate "all shape hypotheses" explicitly, let us 

The term "representation" will be used to refer to the scheme 
for representing shapes, while the term "description" will be 

reserved for specific instances. Thus one can compute ■ desenp- 
•ion of some object; it will be a member of the class of shapes 
that can be accounted for within the representation. 

instead construct a shape generator that uses a random number 

generator to produce a surface shape description (I shall shortly 

describe how to do this). If we were to run this shape generator 
for an infinite period, it would eventually produce ins'ances of 

every shape within a large class of shapes. If the generator were 
so constructed that the class of shapes produced was exactly the 

set of "all hypotheses" about shape, then the program for the 

shape generator, together with a the program for the random 
number generator, would comprise a description of the set of all 
shape hypotheses. 

The shape generator illustrates how the notion of con- 

strained chance may be used to obtain a compact description 
of an infinite set of shapes. By changing the constraints that 
determine how the output of the random number geoerator 
is translated into shape, we can change the set of shapes 

described; speciiically. we can introduce constraints that rule 
out some classes of shape and thus restrict the set of shapes that 

are described. The ability to progressively restrict the set of 
shapes described allows us to use the constrained-chance shape 

generator as the basis for induction, rather than being forced to 
use the explicitly enumerated set of all shape hypotheses. 

The process of computing a "constrained chance descrip- 
tion" is straightforward. We use image data to infer (using 

knowledge of the physics of image formation) constraints on 

the shape, and then introduce those constraints into the shape 

generator. The end result will be a programlike description that 
is capable of producing all the shapes that are consistent wi'h 

the image data; i.e., we shall have a description of the shapes 

confirmed by the image data. This, then is the type of descrip- 

tion we wanted: a description of shape that contains the impor- 
liinl structural regularities that can be inferred from the image 
(e.g., crumpledness, outline), but one that leaves everything else 
as variable, random. 

Some people are already doing this. Something very 

much like this constrained-chance representation is already being 
widely utilized in the computer graphics community. Natural- 
looking shapes are produced by a simple fractal program that 

recursively subdivides the region to be filled, introducing ran- 
dom jaggedness of appropriate magnitude at each step [3,5]. 

The jaggedness is determined by specifying the fractal dimen- 
sion. The shapes that can be produced in this manner range 

from planar surfaces to mountainlike shapes, depending on the 
fractal dimension. Current graphics technology often employs 

frartal shape generators in a more constrained mode; often the 
overall, general shape or the boundary conditions are specified 

beforehand. Thus, a scene is often constructed by first specify- 
ing initial constraints on the general shape, and then using a 

fractal shape generator to fill in the surface with appropriately 
jagged (or smooth) details. The description employed in such 

graphics systems, therefore, is exactly a constrained-chance 

description: important details are specified, and everything else 

is left unspecified except in a qualitative manner. 
This type of description bears a close relationship to surface 

interpolation methods (e.g., [24]). Typically, such schemes fit a 

smooth surface that satisfies whatever boundary conditions are 

available. The initial boundary conditions, together with the 
interpolation function, constitute a precise description of 
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(lie surf ice skape. Such schemes are limited lo smooth sur- 
faces, liouever, and therefore are incapable of dealing with most 

natural shapes. In contrast, a fractal-based representation allows 
either rough or smooth surfaces to be fit to the initial boundary 

conditions, depending upon the fractal dimension. This method 

of dc-criplion. therefore, is quite capable of describing most 

natural surfaces and that is why the graphics community is 

turning to the use of fractal-based descriptions for natural sur- 
faces. 

In order to make use of this type of description it is neces- 
sary to be able to specify the surface shape iu a qualitative 

manner, i.e., how rugged is the topography? This specification 
of qualitative shape can be accomplished by fixing the fractal 
dimoiiMon. The fact that we have recently developed a method 

of inferring the fractal dimension of the 3-D surface directly from 

the image data means that we are now able, for the first time, 
lo actually compute a fractal or constrained-chance description 
of a real scene from Ms image. 

Not only terrestrial topography has been modeled by use 
of a constrained-chance representation, but also clouds, ponds, 
riverbeds, snow Hakes, ocean surf and stars, just to name a few 

examples [1,3,4,6,8,7), Researchers have also used constrained- 

chance generators lo produce plant shapes [1,1.6]. A very 

natural-looking tree can be produced by recursively applying 

a random number generator and simple constraints on branch- 
ing geometry. In each case a random number generator plus a 

surpriMtigly small number of constraints can be used to produce 

very good models of apparently complex natural phenomena. 

Thus, there is hope for extending this approach well beyond the 
domain of land topography. 

4.1     An Example Of Computing A Description 

I igure t illusirates an actual example of computing such 

a description, figure 1(a) is an image of a real mountain. Let 
us suppose that we wished to use the image data lo construct 

a three-dimensional model of the rightmost peak (arrow), per- 

haps for the purpose of predicting whether or not we could climb 
it, I will lake the standard fractal technology used in the com- 

puter graphics community as the unconstrained "ptimal" shape 
generator, as it provides an apparently accurate model of a wide 
range of mil ural surfaces. 

All that is necessary to construct a description of this moun- 
tain peak is lo extract shape constraints from the image and 

insert them into the primal shape generator. The fractal dimen- 
sion of the 3-D surface is the principal parameter (constraint) 

required by our fractal shape generator; roughly speaking, it 
determines the ruggedness of the surface. The fractal dimen- 

sion of the 3-D surface in the region near the rightmost peak 
was inferred from the fractal dimension of the image intensity 

surface in that area [19]. Constraint on the general outline 

of this peak was derived from distinguished points (those with 

high curvature) along the boundary between sky and mountain. 
These two constraints, together with the shape generator, are 
a 3-D representation of this peak; the question is: how good 
a representation? A view of a 3-D model derived from this 

ripresentation is shown in Figure 4(b).   It appears that these 

I iftiirc I.    An example of computing a constrained-chance descri|>- 
lliin. 

simple roustrainta are siilficient for computing a good* ,3-D rep- 
resciilalion of the peak. 

4.3     What Do We Accomplish With This Approach.' 

Let's consider the problems cited above: 

(I) The problem of representing a complex shape, such as 
a cnimpled newspaper. The problem with a shape-primitive 

represenlation such as surface normals, voxcels or generalized 
cylinders is that the resulting description seems hopelessly com- 

plex, liecnise the constrained-chance representation allows us 

to deal only with the structural regularities and to ignore in- 

consequent ial details, the problem ran become much simpler. 
Thus, for instance, the graphics community has found that 

constrained-chance fractal descriptions of complex objects (e.g., 
a mountain) are quite compact and easy to manipulate. It abo 

turns out that many previously simple things, such as describing 
asmoolli plane, remain simple. 

How does this representation function when we want to com- 
pute a description of a upteifie mountain, bush or other entity 

from its image? Current "shape-from-jr" research furnishes con- 
straints on shape in a variety of forms: surface orientation (from 

texture [15 18,25], shading [22,23,26]), relative depth (from 
motion [27,28], contour [29 — 31]), and absolute depth (from 

slereo [32 31], egomotion [35,36]). It appears to be fairly 
straightforward to mix each of the various flavors of constraint 

into the \anilla-fla\or shape generator ^,t], although significant 
research remains to be done. As more shape constraints are ob- 

tained from the image, the description becomes more and more 

precise;   i.e.,   there is less and less chance in the description. 

Rather primitive ray tracing, etc., was used to generate this 
image; better code is being implemented. 
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Kvcutijilly. onlv one shape satisGes all of the constraints. 

How complex coukl such a description become? The 

consirainod-chance representation would at worst be as complex 
M a two-dimensional array of c values representing the same 

surface, because we could always use it to actually generate such 
an array of c values. As mentioned previously, experiments in 

human perception indicate that our representations are usually 

not accurate enough to recover every c value. The representation 

of a particular object, therefore, is likely to be quite a bit simpler 
than a full depth map. 

(2) The problem of representing classes of shapes, such 
as are referred to by the terms "a mountain," or "a bush.' 

Again, the ability to specify important structural details and 

leave the rest only qualitatively constrained allows simplification 
of the problem. The definition of "a mountain," for instance, 

might reason.ibK consist entirely of a specification of the fractal 
dimension (if the surface and a caveat concerning size. If we 

are to judge by the results reported in the computer graphics 
literature, the notion of representation by constrained chance 
thus allows us. using only a few lines of code, to produce an 

accurate description of the c/iMs of shapes we label "mountains," 
or "bush." 

(3) The problem of determining the set of appropriate 
descriptions when the shape is underconstrained by the sense 

data. The problem with standard shape-primitive repre- 
sentations is ihit either we must generate all combinations of 
shape primitives consistent with the sense data (a -.cry hard 

problem), or pick a prototype and specify error bounds. The 
problem with using prototypes plus error bounds is that we are 

forced to overcommit ourselves by choosing the prototype; e.g., 
there is something seriously wrong about describing a cube as 

"a sphere iO.lr". even though the cube certainly fits within the 
specified volume 

Hecause the constrained-chance representation allows 
details to be left constrained but unspecified, it allows us to deal 
with insudicient sense data by simply adding in those constraints 

that can be deduced from the image data and committing our- 

selves no further. The result is a programlike description that 
can be analyzed and manipulated, does not overcommit itself as 
to object shape, and allows examples of shapes consistent with 
the image data to be generated and examined. 

(1) The problem of determining that a specific descrip- 
tion is a member of a more general class. Mere the problem 
with .shape-primitive representations is that there is so much 
variability among the descriptions of the members of a class such 

as "mountain" I ha! a description of the class as a whole seems 
extremely difficult, and determination of class membership even 
more so. 

The problem of establishing class membership by us- 

ing vonstrained-chanee representations reduces to determining 
whether the constraints used to specify a particular description 

are a subset of those of the more general class. A determination 
regarding class membership is, therefore, exactly equivalent to 

determining whether one program's output is a subset of another 
program's output, While such automatic proof is a difficult 

problem, it is at least tractable and well-defined unlike the 
equivalent problem can be when using a shape-primitive rep- 

resentation.   Thus, a constrained-chance representation allows 

a clear and  potentially   useful definition of what it  means to 
"rerogni/e that j is MI y~ 

Further, because we need only deal with the structural 
regularities, this problem can become much simpler than it might 

at first appear Taking the class "a mountain" to be defined by 
fractal dimension and overall size (a definition that is actually 
siiflinent to produce realistic mountain shapes) we can, for in- 
stance, easily determine that the description computed by us for 

the mountain peak is in fact a description of part of a mountain 
a task that previously seemed to be nearly impossible. 

5.    SUMMARY 

Fractal functions seem to provide a good model of natural 
surface shapes. Many basic physical processes produce fractal 
surfaces. Tractal surfaces also look like natural surfaces, and 

so have come into widespread uses in the computer graphics 

community. Turt hermore, we have conducted asurvey of natural 
imagery and found that a fractal model of imaged 3-D surfaces 
furnishes an accurate description of both textured and shaded 
image regions. 

Fractal functions, therefore, are useful for addressing the 
related problems of representing complex natural shapes such as 
mountains, and compu.ing a description of such shapes from 

image data. 'The following describes the progress achieved 
toward the solulion of these problems. 

Computing a description. Characterization of image 
texture by means of a fractal surface model has shed considerable 
light on the physical basis for several of the texture techniques 

currently in use, and made it possible to describe image texture 
in a inaiiiier that is stable over transformations of scale and 

linear transforms of intensity. These properties of the fractal 
surface model allow it to serve as the basis for an accurate image 

segmenlalion procedure that is stable over a wide range of scales. 

Because fractal dimension is not affected by projection dis- 
tortion, its measurement can significantly enhance our ability 

to esliniale shape from (unfamiliar) texture. Specifically, it 
seems that measurement of fractal dimension can provide (I) 

evidence of surface texture anisotrop.v, and (2) an estimate of 
the perspective texture gradient. Moth capabilities are extremely 

important because they provide a way to obtain independent 

confirmation of the assumptions on which previously-reported 
(18) shape-froni-unfamiliar-texture techniques are based. 

Representing natural shapes. A constrained-char.ee 
represenialion modeled after the fractal techniques used by 

the graphics community seems useful for representing complex 
natural shapes, such as a crumpled newspaper or a moun- 

tain. The problem encountered when using conventional shape- 
primitive representations to describe natural surfaces is that the 
resulting description is often hopelessly complex. Because the 

constrained-chance representation allows us to deal only with 

the structural regularities and to ignore inconsequential details, 
the problem can become much simpler. Thus, for instance, the 

graphics community has found that constrained-chance fractal 
descriptions of complex objects (e.g., a mountain) are quite com- 

pact and ?asy to manipulate.   Similarly, the problem of repre- 
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•poling cta-i.tf.i of *hapn, such as arc referred to by llie terms 
"a imimilain." or "a bush,'' cau also be signiGcantly simplified. 

The eBCOoragiog progress that has already been achieved on 

both of these problems augers well for this approach. It appears 

that aconstrained-rhance representation incorporating a fractal 

model of surface shape will pro\i le an elegant solution for some 
of the most (lillicuit problems encountered when attempting to 

progress from the image of a natural scene to its description. 
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Rule Based Strategies for Image Interpretation 
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ABSTRACT 

A rule based image interpretation system is presented 
which is shown to be effective in interpreting complex 
outdoor scenes. The system utilizes world knowledge to 
reduce the ambiguities in image measurements obtained 
from simple interpretation rules. These rules involve 
sets of partially redundant features each of which 
defines an area of feature space which represents a 
"vote" for an object. The features include color, 
texture, shape, size, image location, and relative 
location to other objects. Convergent evidence from 
multiple interpretation strategies is organized by 
top-down control mechanisms in the context of a partial 
interpretation. One such strategy extends a kernel 
interpretation derived through the selection of object 
exemplars and regions which represent the most reliable 
image specific hypotheses of a general object class. 
The use of exemplar strategies and other top-down 
strategies results in the extension of partial 
interpretations from islands of reliability. 

1. Introduction 

The use of world knowledge, together with fop 
down control, is beneficial and probably essential in 
domains where uncertain data and intermediate results 
containing errors cannot be avoided. The task of 
"understanding" images of unconstrained natural scenes 
is such a domain. Ambiguity and uncertainty in image 
interpretation tasks arise from many sources, including 
the inherent Variation of objects in the natural world 
(e.g., the size, shape, color and texture of trees), the 
ambiguities arising from the perspective projection of 
the 3D world onto a 2D image plane, occlusion, 
changes in lighting, changes in season, image artifacts 
introduced    by    the    digitization    process,    etc.   These 

1. This research was supported in part by the Defense Advanced 
Research Projects Agency under contract number 
N0Ü014-82-K-O46, the National Science Foundation under grant 
number MCS-79182Ü9, and by the Air Force Office of 
Scientific Research. 

difficulties are compounded by the lack of precise 
mechanisms or theories of visual processes that would 
allow the accurate and reliable extraction of important 
image events. Nevertheless, many real scenes contain 
numerous examples of instances in which human 
observers can infer the presence and location of objects 
from   marginal bottom-up information. 

Attempts in computer vision research to contend 
with these issues involve the integration of the results 
of analysis of different aspects of the visual data (such 
as color, texture, shape, perspective, stcreopsis, motion, 
etc.), and from overlapping local contextual and 
environmental constraints. We will present a system 
here that uses a large amount of stored knowledge to 
carry out the image interpretation task. One can only 
expect these results to be improved by more effective 
low-ievel processes than those presented in this system. 

Early systems demonstrated that task-specific 
knowledge could be used to advantage in image 
interpretation (for example [9, 10, and 11J). Recent 
research has been directed towards developing 
increasingly general representations of the world 
knowledge   needed   for   image   understanding. For 
example, generalized cylinders, a fairly robust 
representation of form, are used in the system 
developed by Brooks [2]. In this representation, the 
metric relations among objects and within object 
descriptions      are      parameterized. The      image 
interpretation process builds a graph reprcsentaiton of 
the particular image, and also fixes bounds on those 
free parameters needed for interpretation. However, 
the object representation and the matching process do 
not make use of any image features other than ribbons, 
a linked set of edges that are candidates for projections 
of generalized cylinders. 

The systems developed by Ohla [7] for 
understanding images of buildings in outdoor settings 
and by Nagao [6] for understanding aerial photographs 
make much wider use of the image data. In both 
these systems the objects are described in terms of 
their possible image appearance; these descriptions 
include both spectral and spatial features. Both systems 
have a very rich description of appearance but little 
description of form.    The system developed by Nagao 

I(>3 

■ --■- 

■■,'-.--..- 



is of special interest here, because of his use of 
"characteristic regions." By identifying those regions that 
can be given a tentative identity (as, say, "a large 
textured region") with a high degree of certainty and 
by subsequently associating a label with those regions 
("forest"), the identification process can build up 
"islands of certainty" that yield information about the 
appearance of specific objects in the image. This is 
similar to the concept of object exemplars described in 
Section 4. A review of these and other related work 
appears in [1]. 

In this paper the interpretation task examined is 
that of labelling an initial region segmentation of an 
image with object (and object part) labels, when the 
image is known to be a member cf a restricted class 
of scenes (e.g., suburban house scenes). An important 
aspect of this task is the effective use of scene/image 
knowledge in the interpretation process, particularly on 
methods and techniques for aggregating and mapping 
preliminary region, boundary, and'or surface data into 
more abstract descriptions. The results discussed in 
Section 5 were obtained from a version of the 
VISIONS system configured with a region segmentation 
system, a knowledge network, such as the one shown in 
Figure 1, a collection of interpretation "rules", and a 
set of interpretation "strategies". 

2. A    Knowledge    Network   and    Representation    Using 
Schemata 

Description of scenes, at various levels of detail, 
are captured in a set of schema hierarchies [4]. A 
schema graph is a data structure defining an expected 
collection of objects, such as a house scene, the 
expected visual attributes associated with the objects in 
the schema (each of which can have an associated 
schema), and the expected relations among them. For 
example, a hnusc (in a house scene hierarchy) has roof 
and house wall as sub-parts, and the house wall has 
windows, shutters, and doors as sub-parts. The 
knowledge network of Figure 1 is a simplified 
version of a schema hierarchy as developed in [8]. Each 
schema node (e.g. house, house wall, and roof) has 
both a structural description appropriate to the level of 
detail and methods of access to a set of recognition 
and verification strategies called interpretation strategies. 
For example, the sky-object schema (associated with the 
outdoor-scene schema) has access to the exemplar 
selection and extension strategy discussed below. 

In general, the information available about any 
scene component falls into one of three classes: 
knowledge of form, of spectral characteristics, and of 
plausible relations with other objects. Interpretation 
rules relate image events to knowledge events by 
providing evidence for or against part/sub-part 
hypotheses.    An interpretation strategy, associated with 

a schema node, specifies how specific interpretation 
rules may be applied, and how combined results from 
multiple rules may be used to decide whether or not to 
"accept" (i.e., instantiate) an object hypothesis. The 
interpretation strategy thus represents both control local 
to the node and top-down control over the instantiation 
process. 

Note that the goal is not to have these 
interpretation rules and strategies extract exactly the 
correct set of regions. Our philosophy is to allow 
incorrect, but reasonable, hypotheses to be made and to 
bring to bear other knowledge (such as various 
similarity measures and spatial constraints) to filter the 
incorrect hypotheses. An example of such error 
detection and correction in the interpretation process 
will be given in Section 5. 

3. Rule Form for Object Hypotheses Under Uncertainty 

Important schema attributes of objects include 
features such as color, texture, shape, relative size 
measurements, and expected spatial relationships with 
other objects, object parts, and the image frame. 
Unfortunately, the large variations observed in image 
features and the significant overlap of feature 
distributions across images preclude the use of standard 
pattern classification approaches to the problem of 
characterizing a set of measured features by an object 
label. This approach produces a large number of 
false-positive responses as indicated in Figure 2 for an 
"excess green" feature (2G-R-B). 

We propose an approach to object hypothesis 
formation which is both simple and effective. It relies 
on convergent evidence from a variety of measurements 
and expectations. For example, in an outdoor scene 
taken with a camera in standard position, one would 
expect grass to be of medium brightness, to have a 
significant green component, to be located somewhere 
in the lower portion of the image, etc. • These 
expectations can be translated into a strategy which 
combines the results of many measurements into a 
confidence level that the region (or meta-region) 
represents grass. 

We will illustrate the form of a simple 
interpretation rule based on using the expectation that 
grass is green. The feature used is average excess 
green for the region, obtained by computing the mean 
of 2G-R-B for all pixels in this region.    Histograms of 
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2. Note that a camera model and access to a 
3D representation of the environment could dynamically 
modify the value of these location limits in the image; 
thus, the system would modify expectations as it orients 
the camera up or down relative to the ground plane. 
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rhis feature are shown in Figure 2, comparing all 
regions to all known grass regions across 8 samples of 
color outdoor scenes. An abstract version is shown in 
Figure 3. The basic idea is to form a mapping from a 
measured value of the feature obtainea from an image 
region, say fj, into a "vote" for the object on the basis 
of this single feature. One approach to defining this 
mapping is based on the notion of prototype vector» 
and the distance from a given measurement to the 
prototype, a well-known technique which extends to 
N-<limcnsional feature space [4]. In our case rather 
than using this distance to "classify", we translate it 
into a "vote". 

Let d(fp,f|) be the distance between the 
prototype feature point fp and the measured feature 
value f|.    The response R of the rule is then 

P(fl) = 

difpi,) s O! 

0 if 62 < dCfp/j) s 63 

The thresholds «j,^. and e3 represent a gross 
interpretation of the distance measurements. 63 allows 
strong negative votes if the measured feature value 
implies that the hypothesized object cannot be correct. 
For example, fairly negative values of the excess green 
feature imply a color which should veto the grass label. 
Thus, certain measurements can exclude object labels; 
this proves to be a very effective mechanism for 
filtering many spurious weak responses. Of course there 
is the danger of excluding the proper label due to a 
single feature value, even in the face of strong support 
from many other features. In the actual implementation 
of this rule form, 0j, 62, and 63 are replaced with six 
values so that non-symmetric rules may be defined as 
shown in Figure 4. There are many ways to combine 
the individual feature responses into a score; here we 
have used a simple weighted average. 

4. Exemplars and Islands of Reliability 

The extreme variations that occur across images 
can be compensated for somewhat by utilizing an 
adaptive strategy. This approach is based on the 
observation that the variation in the appearance of 
objects (region feature measures across images) is much 
greater than object variations within an image (see 
Figure 2). 

In tue initial stages, there are few if any image 
hypotheses, and development of a partial interpretation 
must rely  primarily on gsncral knowledge of expected 

object characteristics in the image and not on the 
relationship to other hypotheses. The most relhble 
object hypotheses can be formed using interpretation 
rules based on prototype matching and this can be the 
basis of adaptation. A largely incomplete kernel 
interpretation is formed based on the most reliable of 
these hypotheses; this forms the initial context for 
further interpretation strategies. One such strategy 
extends the kernel interpretation by using the features 
of labelled regions (color, texture, shape, location, anü 
size) as "exemplars" (new prototypes) which can be 
used to select and label other regions of the same 
identity. This is similar to the method in [6J, where 
"characteristic regions" were used to guide hypothesis 
formation in the early stages of interpretation. Finally a 
verification phase can be applied where relations 
between object hypotheses are examined for consistency. 
Thus, the interpretation is extended through matching 
and processing of region characteristics as well as 
semantic inference. 

Exemplar hypothesis regions are selected by a 
rule of the general form described in section 3. The 
goal is to find a representative region that matches as 
closely as possible the predefined template. Once 
found this region (or set of regions) can be used to 
define an image specific template (perhaps in a 
different sub-space of the feature space than was used 
10 select it). Exemplar hypotheses differ from general 
hypothesis rules in that they are more conservative; 
they should minimize the number of false hypotheses at 
the risk missing true target regions by narrowing their 
range of acceptable responses. If all regions are 
vetoed, secondary strategies are invoked; for example, 
the veto ranges can be relaxed, admitting less reliable 
exemplars. Figure 5 compares the results of the grass 
exemplar rule with the general grass hypothesis rule. 
The strategy can also be used to generate lists of 
hypotheses ordered by reliability. 

Tne advantages of using object exemplars include: 

1) an effective means for extending reliable 
hypotheses to regions which are more ambiguous; 
this is similar to the notion of "islands of 
reliability" [3]; 

2) a knowledge-directed technique for partially 
dealing with the unavoidable region fragmentation 
that occurs with any segmentation algorithm or 
low-level image transformation/grouping; regions 
that are "similar" to the exemplar can be both 
labelled and merged; similarity criteria can be 
context-sensitive so that regions will be compared 
to the exemplar in terms of the range of each 
feature of that object; 

:») exemplars play a natural role in the 
implementation     of      an      hypothesize-and-verify 
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control strategy; hypotheses are formed based 
upon initial feature information and subsequently 
can be used in a verification process where the 
relationship between labelled regions provides 
consistency checks on the hypotheses and the 
evolving interpretation. 

Let us briefly consider a few of the many ways 
that exemplars can be used to extend object hypotheses. 
The similarity of region color and texture can be used 
to extend an object label to other regions, possibly 
under spatial constraints. Thus, a sky exemplar region 
would be restricted to comparisons with regions above 
the horizon which look similar to the largest, bluest 
region located near the top of the picture. A house 
wall showing through foliage can be matched to the 
unoccludcd visible portion based upon color similarity 
and spatial constraints derived from inferences from 
house wall geometry. 

The shape and/or size of a region can be used to 
delect other instances of multiple objects, as in the 
case of finding one shutter or window of a house, or 
one tire of a car, or one car on a road. In many 
situations, multiple instances of an object can be 
expected to have a similar size and shape. T.iis, 
together with constraints on the image location, permits 
reliable hypotheses to be formed even with high 
degrees of partial occlusion. If one is viewing a house 
from a viewpoint approximately perpendicular to the 
front wall, other shutters can be found via the presence 
of a single shutter since there are also strong spatial 
constraints on their location. If two shutters are found 
then perspective distortion can be taken into account 
when looking for the other shutters, even without a 
camera model, under an assumption that the tops and 
bottoms of the set of shutters lie on a straight line [5]. 

5. Results of Rule Based Image Interpretation 

Experiments are being conducted on a set of 
fifteen 'Ttouse scene" images. Thus far, we have been 
able to extract sky, grass, and foliage (trees and 
bushes) from nine house images with reasonable 
effectiveness, and have been successful in identifying 
houses and their parts, including shutters (or windows), 
house wall and roof in three of these images. The 
interpretation strategies use many redundant features, 
each of which can very often be expected to be 
present. The premise is that many redundant features 
allow any single feature to be unreliable. The features 
utilized vary across color and texture attributes, shape, 
size, location in the image, relative location to 
identified objects, and similarity in color and texture to 
identified objects. Object hypothesis rules were 
employed as described in previous sections, and 
additional   object   verification   rules   requiring   consistent 

relationships with other object labels are being 
developed. The final results shown in Figure 6 are an 
interpretation based on coarse segmentations. Further 
work on segmentation (Figure 7) is being carried out, 
as is the refinement of the exemplar selection and 
matching rules (that were shown in section 3). 

An extremely important capability for an 
interpretation system is feedback to lower level 
processes for a variety of purposes. The interpretation 
processes should have focus-of-attention mechanisms for 
correction of segmentation errors, extraction of finer 
image detail, and verification of semantic hypotheses. 
An example of the effectiveness of semantically 
directed feedback to segmentation processes is shown in 
Figure 8. Two different segmentations are shown; the 
second, with less image detail, was used here. There is 
a key missing boundary between the house wall and 
sky which leads to incorrect object hypotheses based 
upon local interpretation strategies. The region is 
hypothesized to be sky by the sky strategy, while 
application of the house wall strategy (using the roof 
and shutters as spatial constraints on the location of 
house wall) leads to a   wall hypothesis. 

There is evidence available that some form of 
error has occurred in this example: 1) conflicting 
labels are produced for the same region by local 
interpretation strategies; 2) the house wall label is 
associated with regions above the roof (while there are 
houses with a wall above a lower roof, the geometric 
consistency of the object shape is not satisfied in this 
example); and 3) the sky extends down close to the 
approximate horizon line in only a portion of the 
image (which is possible but worthy of closer 
inspection). 

In this case resegmentation of the sky-housewall 
region with segmentation parameters set to extract finer 
detail produces the results shown in Figure 8a. 
Subsequent remerging of similar regions produces a 
usable segmentation of this region as shown in 8b. It 
should be pointed out that in this image there is a 
discernable boundary between the sky and house wall. 
Initially, the segmentation parameters may be set so 
that the initial segmentation misses this boundary. This 
may occur because of computational requirements (fast, 
coarse segmentations) or as an explicit control 
However, once it is resegmented with an intent of 
overfragmentation, this boundary can be detected. 
Rernerging based on region means and variances of a 
set of features allows much of the overfragmentation to 
be removed. Now, the same interpretation strategy 
used cariler produces quite acceptable results shown in 
Figure 9. 

The current development of interpretation 
strategies involves the utilization of stored knowledge 
and   a   partial   model   (labelled   regions)  for  hypothesis 
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extension. In these strategies the knowledge network is 
examined for object? that can be inferred from 
identified objects, and for relations that would 
differentiate them. For example, the bush regions can 
be differentiated from other foliage based on their 
spatial relations to the house, and front and side house 
walls can be differentiated using geometric knowledge 
of house structure (e.g., relations between roof and 
walls), as shown in Figure 10. In the full system, these 
rules would not work in isolation as shown here, and 
the errors made by this type of rule would be filtered 
by other constraints. 

Future work is directed towards refinement ol the 
segmentation algorithms, object hypothesis rules, object 
verification rules, and interpretation strategies. System 
development is aimed towards more robust methods of 
control: automatic schema and strategy selection, 
interpretation of images under more than one general 
class of schema, and automatic focus of attention 
mechanisms and error-correcting strategies for resolving 
interpretation errors. 
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Figure 1. Abstract representation of a portion of the 
knowledge network used to produce the interpretation 
results. Knowledge about a class of scenes is 
represented by a hierarchy of schemata embeded in a 
network. Structural descriptions of each schema are 
organized by the component descriptions of subclass 
and subpart, and by spatial relations. Each schema 
node has acess to a set of interpretation rules which 
form hypotheses on the bases of image measurements, 
and interpretation strategies which describe how these 
hypotheses are combined with information in the 
network to form a consistent interpretation. Although 
every node in the network is considered to be a 
schema, only selected nodes in the figure show the full 
structure. 
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(a) 

Figure 2. Image histograms of an "excess green" feature 
(2G-R-B) computed across eight sample images. The 
unshaded histogram represents the global distribution of 
the feature. The darkest cross hatched histogram is the 
distribution of this feature across regions known to be 
grass (from a hand labeling of the images) in one of 
three specific images. The intermediate cross hatching 
represents all known grass regions across the entire 
sample. Note the shifting (with respect to the full 
histogram) of the histograms for the individual images. 
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Figure 3. Structure of a simple rule for mapping an 
image feature measurement fj into support for a label 
hypothesis on the basis of a prototype feature value 
obtained from the combined histograms of labeled 
regions across image samples. The object specific 
mapping is parameterized by four values, fp, ej, 62, 
63, and stored in the knowledge network. The use of 
six values will allow an asymmetric response function. 

Figure 5. The exemplar hypothesis rule is more 
selective than the corresponding general interpretation 
rule (based on a less selective rule form). Figure 5a 
shows the general grass interpretation rule, while Figure 
5b shows tne exemplar rule. Note that the general 
form of the rule results in more incorrect region 
hypothesis (which could be filtered by constraints from 
the knowledge network). Although the examplar rule 
misses some grass regions, those found have high 
confidence. 
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Figure 4. An example grass rule, showing an 
asymmetrical structure, superimposed on the histogram 
of Figure 2c. 
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Rgure   6.      Example   interpretations   for   three   of   the 
house scene images.   The labeling is: 

SKY 

GRASS 

FOLIAGE 

HOUSE WALL 

HOUSE ROOF 

HI 
Ki 

^td 

m^ 

SHUTTER/WINDOW 

UNLABELED 
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Figure 7. The Segmentation process can be varied to produce finer distinctions in image structure 
at the expense of a larger number of regions and subsequent fragmentation of many large regions. 
Figure 7a (course detail segmentation) exhibits missing roof/sky boundary; the finer detail 
segmentation (Figure 7b) has this boundary, although it was formed at the expense of 
significantly more regions. 

Figure 8. Re>«gmentation of houfe/sky region from Figure 7a. Figure 8a is the original 
segmentation showing the region to be resegmentated; 8b shows the regions resulting from the 
selective application to the segmentation proce^  to the cross-hatched area in 8a. 
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Figure 9. Final interpretation of the house scene in 
Figure 6c, after inserting resegmented houes/aky regions 
and reinterpreting the image 

(a) 

Figure 10. An example of the use of spatial relations to filter and extend region labeling. The 
geometric relations between house and shrub (in 10a) and between between roof and house front 
wall (in 10b) are used to refine region hypotheses from the interpretation shown in Figure 6c. 
Note that there are still ambiguities (the shrub label in the grass area, and the pants labeled as 
house wall) that require the use of other filters. 

(b) 
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THE PERCEPTUAL ORGANIZATION OF VISUAL IMAGES: 

SEGMENTATION AS A BASIS FOR RECOGNITION 
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Abstract 

Evidence is presented showing that bottom-np grouping of 

image features is usinüly prerequisite to the recognition and 

interpretation of images. We describe three functions of 

these groupings: 1) segmentation, 2) three-dimensional in- 

terpretation, and 3) stable descriptions for accessing object 

models. Several unifying principles are hypothesized for 

determining which image relations should be formed: rela- 

tions are signiticant to the extent that they are unlikely 

to have arisen by accident from the surrounding distribu- 

tion of features, relations can only be formed where there 

are few alternatives within the same proximity, and rela- 

tions must be based on properties which are invariant over 

a range of imaging conditions. Using these principles we 

develop an alp;orithrn for curve segmentation which detects 
significant structure at multiple resolutions, including the 

linking of segments on the basis of curvilinearity. The algo- 

rithm is able to detect structures which no single-resolution 

algorithm could detect. Its performance is demonstrated on 

synthetic and natural image data.   f=^^ 

Introduction 

A major goal of computer vision research is to relate visual 
images to prior knowledge of their constituents and thereby 
label and interpret them. However, current model-based 
vision systems have been demonstrated only in tightly- 

constrained environments with a few well-specified models 
to compare to the image [2, 9, 12], The difticulty in ex- 
panding performance to more general domains is not one of 

ambiguity - it is very unlikely that two different models will 

fully lit the same image data. Rather, the problem is one 
of searching for potential correspondences between models 

and the image, since increasing the number and generality 

of the models results in an excessively large space of pos- 
sible matches. Continued research into recovering three- 

dimensional shape from images- using stereo, motion, shad- 
ing, and texture- promises to reduce the size of this search 

space considerably. However, the problem of matching is 

far from solved even when given full three-dimensional in- 

formation, and these methods fail to explain the excellent 

level of human performance in such simpb domains as line 

drawings. 

In order to interpret images about wliirli we have little 

prior knowledge, it is necessary to use effective bottom-up 

techniques to structure and describe the image in a form 

that can be used to selectively index into a large body of 

world knowledge. In this paper we will describe methods 
for detecting and evaluating the significance of relations be- 
tween image elements in a way that can be applied uniformly 

to all images before we have any knowledge of their con- 

tents. Previous research on this and related topics has gone 
under such names as image segmentation, figure/ground 

phenomena, texture description, perceptual organization, 
and Ccstalt perception. There have been many efforts to 

develop algorithms for specific segmentation problems, such 
as the detection of collinearity or connectivity, but these 

have not been integrated and have often lacked general ap- 
plicability. Man's initial primal sketch formulation [8] was 
intended to make some of these relations explicit. Recently, 

VVitkin and Tenenbaum [13] have argued for the impor- 
tance of detecting regularities and imposing structure on 
the image for many of the same reasons given here. They 
describe a unified treatment of inference based on the as- 

sumption that regularities detected in the image are non- 
accidental. In this paper we will describe the role that this 
form of inference plays in model-based recognition, develop 

some underlying principles for this level of interpretation, 
and present new segmentation methods based upon these 

principles. 
There are three valuable sources of information which 

the bottom-up organization of image features can provide, 

all of which simplify the problem of matching against world 
knowledge: 

1) A major reduction in the search space is achieved by 

segmentation the division of the image into sets of 
related features. This has long been recognized as a 
crucial problem in image interpretation. We do not 
want to match models against all possible combinations 

of features in an image, so good segmentation is crucial 
for reducing the combinatorics of this search. 

2) Two-dimensioiial relations lead to specific three-dimen- 
sional interpretations, as we have described in previous 

papers [1, Si. For example, collinear lines in the image 

are likely to be collinear in 3-space. A corollary of 

this is that these image relations tend to be invariant 
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with respect to viewpoint, which greatly simplifies the 
problem of matching to three-dimensional objects of 
unknown orientation. 

3) To the extent that these relations are stable under 
different imaging conditions and viewpoints, they can 
be used as index terms to access a body of world 
knowledge Not only can the names of the relations 
be used, but in addition each relation will have several 
parameters of variation whose relative values in the 
image can be used. For example, collineai tine segments 
can be characterized by the relative sizes of the seg- 
ments and gaps, which provides a viewpoint-invariant 
description that can be used to select a model for at- 
tempted matching. 

Note that ail three of these points assume that the relations 
found in the image are a result of regularities in the ob- 
jects being viewed, which means that any relations which 
happen to arise accidentally from independent features will 
only confuse the interpretations. This distinction between 
significant and accidental relations is a point to which we 
will return. 

The importance of segmentation 
for recognition: An experiment 

The importance of these grouping operations as a stage in 
the processing of images by the human visual system can 
be demonstrated by a straightforward psychophysical ex- 
periment. In Figure 1(a) we have constructed a partial line 
drawing of a bicycle in such a way that most opportunities 
for bottom-up segmentation are eliminated (e.g., we have 
eliminated most cases of significant collinearity, endpoint 
proximity, parallelism, and symmetry). In informal experi- 
ments with 10 subjects who were told nothing about the 
identity of the object, this drawing proved to be remark- 
ably diilieult to recognize. Nine out of 10 subjects were un- 
able to recognize the object within a 60 second time limit, 
and the tenth subject took '15 seconds. Note t'at this is in 
spite of the fact that the object level segmentation has al- 
ready been performed - the task would be even hard ^r if the 
bicycle were embedded in a normal scene containing many 
surrounding features. 

Figure 1(b) is the same drawing as in 1(a) with only 
a single segmeni added. The added fcgrnenv was placed in 
a strategic location which would allow it to be combined 
with other segments in a curvilinear grouping. The c-mter 
of this circular grouping would then be coincident with the 
termination of another segment, leading to further group- 
ings. As might be expected if we assume that bottom-up 
groupings play an important role in recognition, the recog- 
nition times for this second figure were dramatically lower 
than for the first, with 3 out of 10 subjects recognizing it 
within 5 seconds and with 7 out of 10 subjects recognizing it 
within the 60 second time limit. Presumably, if the added 
segment had been placed at sorm location which did not 
lend itself to perceptual groupings the change in recognition 
times would have been negligible. 

These   figures  can  also  be   used   to  demonst.ate   the 
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Figure 1: When opportunities for bottom-up grouping of imsge 
features have been removed, as was done lor the line drawing of 
a bicycle in (a), the drawing is remarkably difHcult to recognize. 
The average recognition time for (a) waa over one minute when 
the subjects had no prior knowledge of the objecl'3 identity. 
When a single line segment was added in (b), whirh provided 
local evidence for a curvilinear grouping, the recognition times 
were greatly reduced. 

human capability to make use of top-down contextual in- 
formatmn to limit the search space for forming a match. 
As was demonstrated in experiments performed as early as 
1935  [3],  verbal clues naming  the object in  an  image or 
even naming vague non-visual object classes can drastically 
reduce the recognition time. Subjects can usually interpret 
hgure 1(a) immediately upon being told that it is a bicycle 
Thus this figure is on an interesting borderline whore either 
bottom-up or top-down  information can suddenly reduce 
the search space and lead to recognition.  One can imagine 
a series of experiments that would systematically explore 
this search space and the reduction in its size created by 
different bottom-up or top-down clues.   These figures can 
also be used to demon Irate the human equivalent of a back- 
projection algorithm [4] followed by image-level matching 
where certam hypothesized partial matches can be used to 
solve for the position, orientation, and internal parameters 
of the model, which in turn lead to predictions for further 
matches at specific locations in the image. 
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Principles of segmentation 

There are virtually an infinite number of relations that could 
be formed between the elements of any image. What general 
principles can we derive for selecting those relations which 
arc worth forming and for measuring their significance? As 
was mentioned earlier, segmentations are useful only to the 
extent that they represent actual structure of the scene 
rather than accidental alignments. Therefore, a central 
function of the segmentation process must be to distinguish, 
as accurately as possible, significant structures from those 
which have arisen at random. All of the relations we have 
considered can arise from accident.: of viewpoint or random 
positioning as well as from structure in the image. However, 
by examining the accuracy of each relation and the sur- 
rounding distribution of features in the image, it is possible 
to give probabilistic measures of the likelihood that any 
given relation is accidental. These nonrandomness measures 
can then be used as the basic test for significance during the 
segmentation process. 

If there were a significant level of prior knowledge 
regarding the expected distributions of features and rela- 
tions, this could be used for judging the significance of seg- 
mentations. However, the range of common images seems 
to be so wide that any prior knowledge at this level must be 
very weak. We have chosen to carry out our computation 
of significance with respect to the null hypothesis that fea- 
tures are independent with respect to orientation, location, 
and scale. Significance is then inversely proportional to the 
probability that the relation would have arisen from such 
a set of independent features. It is a matter for psychologi- 
cal experimentation to see whether the human visual sys- 
tem is biased in any direction from this independence as- 
sumption. Hut since a scene typically contains many inde- 
pendently positioned objects (leading to independence with 
respect to orientation, location, and scale in the image), the 
discrimination of relations with respect to this background 
seems like a reasonable criterion for judging significance. 

A second major principle of segmentation is that each 
operation must have limited computational complexity. It is 
obviously impossible to test all combinations of features in 
an image, so the relations can only be formed over distances 
that do not include too many falss candidates of tht par- 
ticular type being examined [6]. Figure 2 shows an example 
in which a highly significant grouping of five equally-spaced 
collinear dots is not appare.U to huni?n vision when there 
are enough surrounding false targets. It would presumably 
be useful for the purposes of interpretation and recogni- 

tion to detect such a statistically significant grouping, so 
this failure must be attributable to a lack of computational 
resources. This does not mean that groupings are diameter- 
limited in any absolute sense, since groupings can be at- 
tempted at many different scales; however, if there are more 
than a few false candidates at some scale, then no groupings 
can be formed at that scale of description. 

The principles above describe which groupings will be 
formed and how they will be evaluated for a given class 
of relations, but they do not specify which classes of rela- 
tions will be attempted.   There are several factors which 
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Figure 2: The pattern of five equally-spaced collinear dots in (a) 
is not detected spontaneously by humu vision if it is surrounded 
by enough competing candidates lor grouping, as in (b). This 
occurs even though the relation remains highly significant in 
the statistical sense and would therefore likely be of US': for 
recognition. 

influence this choice. One important factor is the same 
irnaging-invariance condition that was mentioned earlier— 
it is only worth looking for image relations which do not 
depend on a specific viewpoint, light-source position, or 
other image-formation parameter. For example, collinearity 
is useful because it is present in the image over all view- 
points of collinearity in the scene. But it would be point- 
less to detect lines at right-angles in the image, since even 
if right-angles are common in the scene the angle in the 
image would change with almost any change in viewpoint. 
More generally, Witkin and Tencnbaum [13] argue that 
prior probabilities play a role in selecting which relations 
are the easiest to distinguish from accidentals, and should 
therefore be attempted. If some relation arises only very 
rarely from the structure at typical scenes, then it is more 
likly that some instance of the relation in an image is ac- 
cidental (although it would still be possible to distinguish 
the relation from accidentals given accurate-enough image 
measurements). Of course, it is also less productive to spend 
time searching for properties which seldom arise than for 
those which are common. 

An algorithm for curve segmentation 

A significant bottleneck in creating a computer program 
which can perform these bottom-up perceptual processes on 
natural images is the problem of creating appropriate!) seg- 
mented edge desriptions. The best current edge operators 
detect "edge points" which are then linked using ncarefet- 
neighbor algorithms into lists of points. Although there 
has been considerable research into the problem of fitting 
smooth curves to these lists of points [10, 11, 12], almost 
without exception these efforts have concentrated on a single 
prc-sclccted resolution of segmentation and have attempted 
merely to smooth out noise induced by the imaging process. 
Although tiies-e smoothed results may appear reasonable to 
the naive human eye, that is because the human visval sys- 
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tern can still perform the lower resolution groupings even 

though they have not been detected and described by the 
program. Figure 3 illustrates the problem, where the seg- 

mentation in Figure 3(b) is adequate to recognize one in- 
stance of collinearity, but other groupings are only apparent 

when lower resolution structures are recognized as in Figure 
3(c). It is not adequate to merely apply previous single- 

resolution methods at multiple resolutions, since only some 
structures at some resolutions will be significant and the 

measurement of this significance is important for further 

inference. Therefore, we have developed a new algorithm, 

based on tlv principles of segmentation outlined earlier, 
which measures the degree of nonrandom structure in edge- 
point lists over a wide range of resolutions. In our implemen- 

tation, we examine all groupings which are either linear or 
of constant curvature. These can be splincd to represent 
arbitrary smooth curves, although it is possible that human 

vision includes the detection of more general primitive curve 
groupings, such as spirals. 

Measuring the significance of a curve segmentation 

The first task in developing a segmentation algorithm 
is  to determine  how we will  measure  the significance  of 
each grouping. In this case, since the points wrc originally 

linked on the basis of proximity, we must be careful not to 
confute nonrandomness in proximity with the measurement 
of nonrandomness in linearity.  For example, if we start by 
look:ng at a set of only three points, we might measure the 

significance of their linearity by measuring the distance of 
one point from the line joining the other   .wo.    However, 
this would confuse the eflWs of proximity with those of 
linearity, since by being close to one of the other points the 

third point would automatically be close to the line on which 
they lie, as is shown in Figures 4(a) and 4(b). Therefore, we 

have chosen to define nonrandomness in linearity to be how 
unlikely a point is to be as close as it is to a curve given 

its distance  from  the closest defining point of the curve. 
This is equal to 20/n, where 0 is the angle between the lino 

and the vector from the closest endpoint, which for points 
close to the line is approximately equal to the distance from 

the line divided by the distance from the closest endpoint. 

This can be extended to 4 or more points by recursively 

looking for the point which is farthest away from any of 

the points considered thus far and calculating the likelihood 

for that point in terms of its minimum proximity to these 

previously considered points.   Since these likelihood values 

are independent, they can be multiplied together to produce 

an overall value for the curve. 

Thr algorithm could be made symmetric with respect 
to the set of points by using some sort of best-fit curve 

rather than selecting a subset of points to define the curve. 

However, for the results displayed in this paper we have 

adopted the computationally expedient but less accurate 
method of defining the line by the two points with greatest 

separation and adding the most central point to define f, 
circular arc. Note that this test will only be used to measure 

significance and not the final positions of curve segments, 

Figure 3: The data in (a) can be segmented at at least two 
difTerent resolutions of description, as shown in (b) and (c). One 
instance of collinearity can only be detected in segmentation (b) 
while the other instance of collinearity and the parallelisn, can 
only be detected in (c). 

Figure 4: The middle dots in (a) and (b) are both the same 
distance- from the lines joining the other two dots. Yet the three 
dots in (b) arc much more significant in terms of their collinearity 
than those in (a), since the middle ''ot in (a) could be close to 
the line merely as a result of its proximity to the first endpoint. 
Therefore, we measure the probability of a point being within a 
given distance from a line in terms of its proximity to the closest 
endpoint defining the line, as shown in (c). 
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and that small relative errors in ranking segmentations will 
not be very important—our nonrandomness values (inverse 
of probability) range from a minimum of 1.0 for apparently 
random points up to at least 10'' for many points placed 
accurately along smooth curves. 

Testing all possible groupings 

Given this significance test for sets of points, we want to 
divide the initial linked list of points into segments which 
lead to the highest significance values. Previous methods 
of curve segmentation have usually attempted to search for 
corners (tangent discontinuities) on a curve, where the curve 
can be divided into different segments. Our approach is 
the dual—we look for segments of the curve which exhibit 
significant nonrandomness, and tangent and curvature dis- 
continuiiies are assigned to the junctions between neighbor- 
ing segments. In contrast to the earlier approaches, our 
method will (ail to assign any segmentation where the curve 
appears to wander randomly at all resolutions, and will as- 
sign multiple segmentations v/here it exhibits different struc- 
ture at different resolutions. 

It would clearly be too costly to test c >ry possible seg- 
ment of the curve for nonrandomness. How er, if we allow 
a reasonable margin of error, it is possible to cover all scales 
and locations with a relatively small number of groupings. 
We have chosen to examine groupings at all scales differing 
by factors of two, from groupings of only three adjacent 
points up to groupings the size of the full length of the curve 
(amounting to B scales for a curve of 100 points). At each 
scale, we examine groupings at all locations along the curve, 
with adjacent groupings overlapping by 50%. This means 
that any given segment of the curve will have at least one 
grouping aUempted which covers 50% of its length but does 
not extend outside its borders. In addition, while calculat- 
ing tht nonrandomness measure, each segment is extended 
to include points on bo'.h sides which are close enough to 
the curve that their inclusion increases the nonrandomness 
value. 

Many of the segments produced by this exhaustive test- 
ing will not exhibit significant nonrandomness and others 
will be qualitatively the same as larger segments of which 
they arc- merely a subset. Therefore, a thinning procedure 
is executed which steps through the different resolutions at 
each location along the curve and selects only those seg- 
mentations which are locally maxi.num in their significance 
values. It is possible that there will be more than one lo- 
cal maximum if the curve exhibits different structures at 
different resolutions of grouping. There is also a threshold 
at the 0.05 significance level, below which groupings are not 
considered significant. Once agairr these choices are some- 
what expedient, and we are seeking a more fundamental 
method of combining multiple resolutions. 

The algorithm in action 

This algorithm have been implemented in MACLISP on a KL- 
10 computer and tested on synthetic data as well as edges- 
derived from natural images. Figure 5(a) shows some hand- 
drawn curves which exhibit different structures at different 

resolutions, much as was shown in Figure 3. Figure 5(b) 
gives the output of the curve segmentation algorithm when 
given this data,, and demonstrates the algorithm's ability to 
detect significant structure at multiple resolutions— results 
which no single-resolution algorithm could have produced. 

Figure 6 shows the results of running the algorithm on 
a small 30 by 15 pixel region of an aerial photograph of an 
oil tank facility. The original digitized image is shown in 
6(a). Figure 6(b) shows some linked edge data generated 
from this image by an edge detection program written by 
David Marimont [7], which detects edge points to subpixel 
accuracy and links them into lists. Figure 6(c) shows all the 
groupings at all resolutions, although the widely differing 
significance values are not apparent. Figure 6(d) shows the 
results after the thinning process which selects local maxima 
with respect to resolution. Given these segments, it is rela- 
tively easy to form collinearity and curvilinearity relations 
between them as shown by the dotted lines in Figure 6(c). 
It would also be fairly straightforward to detect endpoint 
proximity, parallelism, constant intervals, and other percep- 
tual groupings. 

Figure 5: The hand-input curves in (a) have been created to ex- 
hibit significant structure at multiple resolutions. When these are 
given as data to the curve segmentation algorithm, it produces 
the results shown in (b), which makes these multiple levels of 
structure explicit. -I 
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Figure 6: The small 30 by 45 pixel region of an aerial photograph 
shown in (a) was run through the Marimont edge detector to 
produre the linked edge points shown in (b). Figure (c) shows all 
the segments at difTerent scales and locations which were tested 
for significance. After selecting only those segments which were 
locally maximum with respect to size of grouping, and threshold- 
ing out those which are not statistically significant, we are left 
with the segments shown in (d). It is then fairly simple to form 
collinearity and cun ■iincarity relations between these segments 
as shown by dotted 'mes in (e). 

Summary 

We started this paper by deinonstrating the importance of 

bottom-up perceptual organization for hurnati vision. These 

image relations play a major role in limiting the size of the 

search space that must be considered when matching against 
world knowledge. The unifying principles of detecting non- 

random structure, avoiding coml     itorial complexity, and 

looking for viewpoint-invariant relations were suggested. An 

algorithm for curve segmentation, based upon  these prin- 
ciples, was developed and demonstrated.   These curve seg- 

mentations enabled the use of a relatively simple algorithm 
for grouping on the basis of curvilinearity, and extensions 

for detecting other classes of groupings seem to be within 

reach.  There are many other problems besides recognition 
in which these groupings would be useful.   An example is 
the stereo correspondence problem, since to the extent that 

these image relations represent structure in the scene and 
are invariant with respect to viewpoint, they can be expected 

to remain visible in images taken from difTerent viewpoints. 
They would then provide far less ambiguous structure for 
matching than simple edge points. 

The speciGe algorithms developed arc preliminary im- 
plementations of the general methodology of segmenting 
perceptual data by looking at groupings over a wide range of 
scales and locations and retail,ing those which are the most 

unlikely to have arisen by accident from the background 
distribution. This same methodology could be applied to 
a wide range of other perceptual segmentation problems or 
signal analysis. 
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The Theory of Straight Homogeneous Generalized Cylinders 
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Abstract 

In recent years, Dinloid's generalised cylinders l,ave bncomo nn 

imiorlant tool lor imago undoislanding. However, research has 

been liampercd by a lack ol analytical results lor those shapes. In 

this paper, a definition is presented lor Straight Homogeneous 

Generalised Cylinders, those generalized cyllnchrs, with a straight 

axis and with cross-sections which have constant shape but vary in 

si/e. Thli class ol shapes, whilo still quite large, has properties 

which make considerable analysis possible. 

The results begin with deriving lormulac lor points and surlace 

normals tor these shapes. Theorems are prcsenled concerning Ihe 

conditions under which multifile descriptions cm exist lor a single 

solid shape, then projections and contour generators are analyzed 

lor some subclasses ot shapes. The strongest results are obtained 

lor solids ol revolution (which wc name Right Circular SHGCs), tor 

which a closcd-lorm method tor analyzing imago contours is 

presented. It is seen that a picture ot the contours ol a solid ol 

revolution is ambiguous, wilh one degree ol Ireedom related to the 

angle oetv.ccn the line ol sight and the solid's axis. 

1. Introduction 
In recent years, the generalized cylinders proposed by Binford 

[2] have become a popular shape representation .scheme for Image 
underätandino- Unfortunately, research has been hampered by a 
lack of analytical results for these Ehapos. This paper presents 
StMiyht Homogeneous Generalized C/lir.clors and performs 
analysis of several of their basic properties. 

Straight Homooenooiis Gonerahxed Cylinders (SHGCs) are 
defined by a cross-section shape which sweeps along a straight 
line axis, changing si/e uniformly as it is swept. This class of 
shapes, while still guile largo in itselt, has properties which allow 
considerable annlyjis to bo peilnrmed. Formulae are developed for 
points on the suiface of an SHGC and for surface normals ol an 
SHGC. 

Many researchers in the past have approached generalized 
cylinders by trying to specify the "canonical" description for a 
given shape. We take a different approach, allowing a shape to 
have many diffeiont descriptions as a generalized cylinder. This 
solves the very difficult problem of trying to specify a single 
desctipaon as the "best"; however, it introduces the problem of 
deciding when two descriptions are in fact describing the same 
shape. This "F^uivalence Pro! lern" is given some attention and 
some limited (but still very u.-fful) rosults aie presented. 

We then describe contours ol tangency with the line of sight, 
which will include "outlines" and visible "folds" in an image of an 
SHGC. We examine in soma detail the special case of Right 
Circular SHGCs (üolids of revolution), which have sufliciently strong 
properties to allow very detailed contour analysis. Using these 
iliapes, we develop a contour analysis technique and make several 
interesting obseivations about occlusion and singularities in 
tangency contours. Wo show that an image of the contours of a 
solid of revolution is ambiguous with one degree of freedom in the 
interpret ition. 

2. GUaight Hoirogenecuc, Generalized Cylinders 

Figu re I:   Straight Homogeneous Generalized Cylinder 

Figure 1 shows a Slraighl Homogeneous Generalized Cylinder 
(3IIGC), as described in the taxonomy of [3] An SHGC is a 
function which maps two parametecs onto a set of points in x-y-z 
space (i.e. the world). The two prrameters are s, which measuies 
distance along the axis, and /, which indirectly measures distance 
along the cross-section; both s and / have as domain the unit 
interval [0,1]. This development is similar to that of Ballard and 
Grown [1]. 

A Straignt Homogeneous ieneralized Cylinder is specified by a 
four-tuple {A. C, r, «). A is the axis, which is a curve in space 
defined in parametric form by ^(s) ■ (xA, yA, zA) (s). The remainder 
of this discussion will desribc features of the shape relative to the 
axis itself rather than in absolute x-y-z coordinates. 

At each pcint A{s) on the axis. Jet the cross-section be described 
on a u-v plane, with A(s) at the origin, and defined by the (constant) 
angle a. The ;/-axiR will be the direction of steepest descent of the 
U-v plane from the tangent to the axis (i.e. the projection of the 
ttingent to the axis onto the U-v plane). «, the angle ol inclination, is 
the angle from the »axis to the tangent to the axis at iA(.s); a - 0 
moans that the u-axis is pointing towards /\(1), and a ■ '.r means 
that the u-axis is pointing towards Aifl). 

- 
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In a Straight Homogeneous Generalized Cylinder, the "Straight" 
attribute implies that A{s) is a linear function. The axir, is thus a line 
segment, and all u-v planes are parallel. This property is important 
because all tangents to A(a) are parallel, as are all waxes and all 
v-e.xes. We can therefore define vectors S, U, and V pointing In 
these directionii and assign a local (obicctcentsred) coordinate 
system using u-v-s coordinates. Such coordinates can of course be 
defined for all Generalized Cylinders; however, there will he no 
curvature in the coordinate axes for SGCs. The local coordinates 
of im SGC are a linear transformation of world {*-yz} coordinates. 

On the u-v cross-section plane for each value of s, the cross- 
section is the set of points r(s)C(0 'or values of ( from 0 to 1, 
inclusive. The cross-secf/on function C{i) = (uc,vc) (I) describes 
tho shape of the cross section; the radius function i{s) describes its 
size. So. the cross-sections have the same shape but may vary in 
size; this property is implied by the "Homogeneous" attribute. The 
union of the cross-sections is the surface of the Straight 
Homogeneous Generalized Cylinder. 

According !o this strict definition, some very peculiar shapes are 
allowed as SHGCs. including those with singular points or arcs and 
those v/ith cross-sections that are open arcs, points, or even space- 
filling curves. Since our ultimate goal is the analysis of the shapes 
of common objects, we will generally exclude such bizarre cases 
from further consideration. However, since shapes with degenerate 
cross-seciions (open arcs or points) do have several important 
properties, we will note them when appropriate. 

We impose the restriction that the functions A and r be 
continuous and differentialile everywhere and that the cross- 
section C be continuous and differentiable almost everywhere. It is 
usual, but not required, that the u-v origin be in the interior of the 
cios3s;-ction. In addition, we will presume "uniform scaling" of s 
and /, i e. ||d4/ds|| and ||dC/d(|! are constants. 

2.1 Subclasses of SHGC 

We will also bo referring to several subclasses of SHGC with 
particular interesting properties; 

Figure 2:   Linear SHGC 

Linear SHGC (LSHGC) - SHGC with r linear (figure 2) 

The size of the cross-section varies linearly with drslanco 

along the axis. LSHGCs are ruled surfaces as well as 

being Generalized Cylinders (4). 

Rieht SHGC (RSHGC) -- SHGC with n = 7r/2 

The u-v planes are normal to the axis. There is no 

"direction of steepest descent" relative to the axis, so the 

u axis may be chosen in any direction on the cross- 

section planes. 

Circular SHGC (CSIIGC) - SHGC with C a circle centered at the 

origin 

Without loss of generality, lot C be a unit circle, C(() = 

(uc, vc) (r) = (cos 27r(, sin 2irt). All surfaces of solids of 

revolution are Right Circular SHGCs (but with open ends 

unless r(0) = 0orr(1) = 0). 

Polygonal SHGC (PSHGC) - SHGC with C polygonal (piecewise 

linear) 

If C(t0) is a vertex for some /0, then the set of points P(s,f0) 

is a crease (ridge if C convex there, v..','loy if concave). 

Otherwise, P(s,f) is on a face; note that faces are not 

necessarily planar in this definition. 

In various situations, the consequences of these properties will 
be shown to be of special interest, 

3. Coordinates for SHGCs 

For   any   SIIOC,   there   is   a   natural   u-v-s   object-centered 
coordinate system imposed by the preceding definition. 

Figure 3>:   Coordinate Axes for CHGCs 

We will adopt the convention that the v-a\i.; is chosen to provide a 
right-hinde'l u-v-s coordinate system The unit vectors in the axis 
direclions will be denoted L', V. and S, as shown in figure 3. It -will 
be convgnicnt to define an oilhogonal wv-s coordinate system 
using IVperpendicular to Vand S. For any point (u, v, $) (where 
uvs denotes coordinates in the u-v-s system), tho corrcjpunding 
coordinates in vz-v-s are (t; sin a v, s + u CO« a) 
SHGC, since U - W, u-v-s and w-v-s cooniinatos are identical 

mf   ■n a Ri9ht 

We will use the notation wvs (etc.) whenever the coordinates are 
given in a system other than the world (x y-t) or image (x-y) 
systems. 

3.1 Points on the Surface and Surface Moimals 

For any values s and (, tho point P(s, t) on the surface of the 
SHGC has w-v-s coordinates; 

P(s,/) = (u J() r(s) Sin a. vc{l) r(s), 8 + Uc{t) r(s) COS a)mi 

(31) 

Surface normals for an SHGC can be defined wherever the 
cross-section function C(0 is differentiable, The outward-pointing 
surface normal vector Wfs,/) at P(s,.') is the cross product of the 
tangent vectors to the surface in the directions of increasing s and 

dP      dP 
A/(s,/) X  

dt       ds 
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We will use N{s,t) paralM to tfis.t), defined by 

N{sl) 
Nr(s,t) 

, or     dvc 
i (/i(') cos a — + ——, 

ds      di 

duc dr . 
la_i._,(f),/na„)ww 

where/i(f), defined by 

hit) = uc{i) 
dVjk 

di 

djn 

duc/dl    dvc/dl 

is tlie Wrontklan of the cross secliun functions uc and vc [7J; /)(/) = 
0 irn,jlk>s tliai the SHGC has a lino segment for a crusssect'cn, i.e. 
is dagonerats, 

The surface normals of an  SHGC  obey two very important 
properties, stated in the Corresponding Normal Theorem: 

A non-degenerate SHGC is Linear iff, for all a, dN/ds 

m (0,0,0); a non-degenerate SHGC is Polygonal '" for 

almost all (, dtl/dt - (0,0,0). 

Fiijure 4:   Surface Normals cf the Shadov/Volume 

This says that the surface normals for an LSHGC depend only on ( 
(i.e. are parallel along contours of constant f), and for a face of a 
PSHGC depend only on s (i.e. are parallel along contours of 
Constant s within a fc.ce). A proof of the Cj/responding Normal 
Theorem is pwaanted in [8j, The Conespondlng Normal Theorem 
is especially useful in shadow geometry, since the "stiadow 
volume" (the volume cf space shaded by an object) is an LSHGG 
(figure 4). 

4. The Equivalence Problem for Shape 
Descriptions 

A subtle prcblom arises from our definition of SHGCs: as we 
have defined SWGCs, an SHGC is actually a description cf a shape 
rather than tjeing a sporific solid shape itself. Of course, each such 
description describes a unique shape; however, we must attempt to 
decide when a single shape may have several different 
descriptions. Since a solid shape corresponds to an equivalence 
class of descriptions (i.e. SHGCs), we will call two descriptions 
equivalent when they describe the same solid shape, as did Marr 
nnj Nisliihara in [ö], honre, we refer to tills problem as the 
Equivalence Prol:lem. We will actually use the term "equivalent" in 
this paper when the ends are slanted differently, as long as the 
chapes are otherwise the same. 

There are four trivial changes possible in the s and I coordinates 
thoinsr.lves while preserving equivalence: 

o the axis can be flipped end over-end to yield a new 

SHGC (reversing the sense of the a coordinate) 

J the sense of / can be likewise reversed and, if the 

cross-section C(() is closed, the point at which f = 0 

can be shiited to anywhere on the curve 

• the radius function r{s) can be mul'iplied by any 

constant scale factor, while the cross-section C(() is 

divided by the same (actor 

• an nsi-IGC can havo the u-v axes rotated about the 

origin arbitrarily (shifting the I coordinate). 
These  transformations  are sufficiently  tiimple  that  no  deeper 
discussion is needed. 

There are, however, more ciynificant variations in tho possible 
descriptions of a specific shape as an SHGO, We will investigate 
two of the principal types of variation: altering the orientation of the 
cross-section planes and altering the direction of the axis. 

4.1 The Equivalent Right SHGC Problem 

What properties of a shape make it possible to describe it as two 
different SHGCs, with cross-section planes at different 
orientations? Since this question is so general, Y/O will limit our 
altention to a more restricted (but sill! difficult) question: For what 
SHGCs are there equivalent Right SHGCs? This is interesting since 
the RSHGC seems to be a natural "canonical" form of 
representation for a shape. We will ignore the effect of "beveled" 
ends resulting from values of a not equal to TT/2. 

To make this problem somewhat more tractable, we will presume 
that the same axis A and radius function r are to be used for the 
SHGC ami RSHGC. (We conjecture, but have not proven, lhat this 
presumption implies no loss of generality.) The problem can then 
be stated this way: Given an SHGC G1 ■-■ (A, C1, r, a), with C, = 
{uvVj), can some function C2 = (u2 v2) be found such that the 
RSHGC G2 ■ {A, C2, r, w/2) contains the same points as G,? This 
is addressed in the ^'am Theorem: 

A   non-dogoneraK   Oblique   GHGC   G,    has   an 

equivalent Right SHGC G2 

(figures). 

and only if G, is Linear 

A proof of the Slant Theorem is presented In [8]. 

FigureS: The Slant Theorem 
So. for each LSHGC, there exists another description of the same 

shape which is both an LSHGC and RSHGC, containing all tho 
same points (hut without beveJeti ends). In this sense, the set of 
LSHGCs is a subset of the sei of RSHGCs. Also, it doesn't matter 
what direction tho cross-section planes are taken relative to the 
axis of an LSHGC: for any direction, some cross-section function C 
can be found to describe tho shape as an SHGC (ignoring the 
possible leveling of the ends). 
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On the other liand, if an SHGC is not High* or Linear, then there 
is no Right SHGC which contains the same points. 

4.2 The Alternate Axis Problem 

Having adciresr.od the issue of changing the cross section 
planes, we can ask about moving the axis: For what SHGCs are 
there equivalent representations with different axes, using the same 
cross-soction planes? (This is known to involve a loss of generality 
with respect to the question: For what SHGCs are there equivalent 
representations with dllferent axes? For example, a sphere satisfies 
the latter condition, but not the condition we are addressing here. 
We conjecture that only shapes resemblins certain regular 
poiyhedra, of which the sphere is the limiting case, are excluded 
from our analysis herein by the resfriclion to use the same cross- 
section planes.) We will begin by restiicting the problem so that the 
two axes intersect somewhere and so that both axes intersect the 
cross-section planes (i.e. the axes of the SHGCs are not parallel to 
ihe cross-section planes). 

image 

no axi:i possible 
~in this apace 

Figure 6:   The Pivot Theorem 

fhia situation is addressed by the Pivot Thovrem: 

A non-degenerate SHGC can bo described as another 

SHGC with a different, intersecting axis, anil the same 

cress section planes, if and enly if it is linear. If it is 

Linear, then it can be so described using any axis which 

passes through the apex of the shape and dees not lie in 

the imago of the shape projected through the apex 
(figure 6). 

Ao in the Slant Theorem, the different representations of the shape 
may have different beveling of the ends. The important 
consequences of the Pivot Theorem are that a Linear SHGC can 
have (almost) any axis passing through its apex and that any non- 
Linear SHGC can have only one possible axis under the conditions 
stated above. A proof of the Pivct Theorem is presented in [8]. 

5. Contours of Tangency for Right SHGCs 
Suppose we have an SHGC and we project it along the direction 

of a vector t'E ■ f4wE, 4v8, «g)^, (a line of sight), as shown in 
figure 7. The arcs along which the surface is tangent to the line of 
sight as seen from direction VE (i.e. occlusion, or parallelism to VE) 
will be projected by the ends of the SHGC, or wheio N1. VE, i.e. «V 
VE ■ 0. The points on the SHGC projected onto such contours are 
called contour gonorators [5]. (Of course, if the SHGC is opaque, 
some of the contours may be hidden from view ) Contours are 
important because they are the usual loci of discontinuities of 
brightness texture gradients, etc. in an imrgo of a curved surface. 

■■/« 
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Ve 

Flgu re 7:   Contours and Contour Generators 

^T 

Figure 0:   Viewing Direction and Angle 

The discussion of imaging in this paper will bo primarily limited to 
orthographic projection, in which all lines of sight are parallel. 
Also, unless otherwise stated, wo will presume in the following 
discussion of projection and imaging that wo are dealing only with 
Right SHGCs, i.e. SHGCs with cross-sections perpendicular to the 
axis. As shown in figure 8, this allows the simplification of rotating 
the w-v axes as desired; in particular, we will presume tfiat VE is in 
the IV-S plane, i.e. AvF = 0. Without loss of generality, we can then 
presume that VE is between - (fand S; if the angle from If. to S 
(the Viewing angle) is a, then 1^ = (- sin a, 0, cos a). Additional 
simplification arises for an RSHGC since tin » ■ 1 and cos a - 0. 
For on RSHGC, using N VE = o, the contour generator points must 
satisfy 

dv- dr 
(5-1) 0 = sm a + h{t) cos a 

dt ds 
In an end view or side view (o = 0 or .J = 90°), the contour 

gmerators are always planar, but in an oblique view, the contour 
generators are generally not planar unless the shape is a Linear 
Riohl SHGC (see the discussion in [8]). 

5.1 Images of Right SHGCs 

The assignment of world (scone) coordinates is shown in figure 
0. It involves aligning If vertically (V = Y), and placing the line of 
sight 1/E on Z(lfF . z= (o,o,l)). (Recall here that un-subsciipted 
coordinates are given in the x-y-z system.) Then S a*'' t'/aro In the 
horizontal (XZ) plane. Note here that ihe origin is at (0,0,0), 
rather than at the *)«; under orthograph,, this changes no 
important geometric relationships. 

...j 
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Figure 9:   Object and V/oi Id Coordinate Systems 

The image of a point P(3,0 on an RSHGC under orthography is 
thus 

l(s,() - (x,y)(i,0 = (t;c(/) .-(s) cos a + aalna, vc{;)r{s)) 

We are presuming here that there is no scaling difference 
hotwuen vvv-s and xy-z coordinates. 

5.2 Contour Generators Under Perspective Projection 

We can also analyze images of nSHCCs under perspective 
projection. "(lie contour generator analysis itself can be 
accomplished by considering tne eye (center of the lens) to be 
located a; a point PE = {wIT. i/E, sE) in the object-centered 
coordinate syslor., as in figure 10. Then, at each point PfcJ] on the 
surface of the object, the line of sight is the vector V^fs.f) from thj 
eye to P(s,(), defined by: 

VE(s,f) - P(*,0 - PE 

=-■ {uc{t) r(s) - wE. vc(t) r{s) - vE, t - sE) 

Along a contour generator, we still have N 1 t/E, so 0 ■ N' V[: = M 

(PM-PE.)- 

-;ye = Pe 

Figuie 10:   Imaging Under Perspective Projection 

6. Contour Pormatfon by Right Circular SHGCs 
For solids of revolution, which arc Right Circular SHGCs, there is 

considerable simplification in the orthographic projection and 
imanng relationships. Recall that, for a Circular SHGC, t/c(f) = cos 
27r; and vc{() ■ sin iwt Using equation (5-1), the contour 
generators for an RCSHGC must satisfy 

^ 
eye 

Figure 11:   Contour Generator on a Right Circular SHGC 

and therefore, as shown in figure 11, 

1 
; = cos 

2Tr 

1 ( - co( a — ) 
ds 

(8-1) 

This eguation is of fundamental importance, since it expresses f as 
a function of s along the contour generator. Thus, given a radius 
function r(s) of a solid of revolution and a viewing angle a. the 
above equation tells exactly how the contour generator moves 
towards and away from the viewer. 

Now, since / is a function of s along the contour generator, the 
points P(s,0 along the contour generator can bo specified as 
Pca(5:), a function of s only: 

Pcc{s) = (col a r(s) —, M») VI - co/2 a (dr/ds)2 , s) 
ds 

The contour generator includes points such that the v-coordinate 
of PCCl(s) is defined, i.e. 1 dr/ds | < i(an <j\. The contour generator 
is not generally planar in an oblique .lew. 

On an RCSHGC, the image of a point PGG(s) on the contour 
generator is 

/CG(s) = (*CG. VCQ)(s) 

(-r(s)- 
cos  cr dr 

sin a   ds 
i a, r(s)Vl^eof2 a (dr/ds)2 ) (6-2) 

Further, the slope  of the image contour, dyCG/dxCG,  can  be 
determined as a function of dr/ds using the above equation: 

dy, CG 

ck 
(i/V< sin2 a - cos2 a (dr/ds)2 ) 

CO 

dr 

ds 
(6-3) 

6. i Occlusions and Singularities in Image Contours 

Whore |dr/ds| > |fdn <J|, there will be no points on the contour 
generator. This causes occlusion of the contour generator from 
view, with resulting discontinuity in the visible contours. 

Figure 12 shov.-s an object seen from a side view (a = w/2) In 
this view, tan a is infinite and |dr/ds! < (an CT for all s. There will be 
a single continuous contour generator on the object, which v/ill in 
fact be planar (running along the top and bottom of the object). 

- 

0 = sin a cos Znt + cos a • 
dr 

ds 
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top view 

showing contour Qonorator 

dr/Hs 

Figure 12:   Contour Generator in Side Vijw 

image 

top view 

showing contour generator 

dr/ds 

■ Ian    CT 

Figure 13:  Contotir Generator in Near-Side View 

Figure 13 showa what happens as as we rotate the object slightly, 
d'^croasing a and hence fan a. As long as |df/ds| < Ian o 
everywhere, the contour generator will still be continuous. 
However, It will no longer be planar (unless the cbject is also a 
Linear SHGC, which we will not consider further here). From 
equation (61). we see that wheie dr/ds is 0, f ■ 1/4, i.e. the 
contour generator is on "top" cf tha objoct. (Of course, there is 
also an identical contour generator on Iho bottom.) Where dr/ds < 
0, f > 1/4 and the contoui generator is pushed away from us; where 
dr/ds > 0, the contour generator is pulled to.vards us. Note also 
that |dr/ds| > \lan a\ at the onds cf the oi.joct, hence the contour 
generator no longer includes the ends as the object is slightly 
i otated away from a side view. 

Let us presume for the moment that the object is thinner at the 
near end, i.e. dr/ds < 0 towards that end. Eventually, as shown in 
figure 14, we rotate the object so much that dr/da - -«n a at 
some value of s, say sm, where dr/ds is at a minimum At this value, 
since dr/dj |s = -tan a and A/ds2 L - 0 (because sn is a 
relative minimiSVn for dr/ds), we have äx^/üs |s = o and dy^/cU 
|t    - 0. Thus, the contour geneiator is tangenf'to the line of eight 

m image 

lop view 

showing contour generator 

dr/ds 

Figure 14:   Contour Generator Tangent to line of Sight 

Fitjure 15 shows what happens when wo rotate- the objoct yet 
farther. There is an interval (sa, sb) around sm in which dr/ds < 
- fan a, i.e. for which no contour generator points exist. What has 
happened is that the former, single contour goneratct has been 
split into two separate contour generators, "orresponding to values 
of s such that s > sb and s < sa. Along the contour for s > sb, all 
points will be visible in the image (i.e. none are occluded by the 
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image 

lop view 

Showing contour ijonnrator 

-tan    CT 

Fiyuro 15: Contour Generator Split at Near End View 
object itself in this vicinity). Meanwhile, along the contour for s < 
s , the object itcelf will occlude part of the contour goneratoi, for 
values of s above some value sc (where sc < sa) (seijinent X in 
figure 16). In any event, r(s) can be determined for segments A, S, 
and Y. 

image 

What we have seen is a single imago contour splitting into two 
parts connected by a sort of "T" junction; the split occurred at the 
point at which the contour generator was tangent to the line of 
sight. This illustrates an important kind of "special viewpoint" for 
curved surfaces: li a visible curve in the scene is tangent to the line 
of sight, then a small variation in the viewpoint can cause a 
topological change in the image of the curve. 

7. Contour and Silhouette Analysis for Right 
Circular SHGCs 

In image understanding, we have the task of analyzing imago 
contours rather than predicting them. We can use the properties of 
contour generators, as described above, to derive analysis 
techniques. 

Suppose wo have a line drawing consisting of visible (i.e. 
unoccluoed) contours, eacli of which is the image of some contour 
generator on a Right Circular SHGC. By analyzing the contours, we 
can construct a rloscription of the solid shape portrayed. 

First, we need to determine the viewing angle a and to align the 
image as in figure 17, so the images of the endpointa of the axis 
A(0] and /\(l) are at (0,0) and [Bin a, 0), respectively; this conforms 
to the imaging model presented previously. Then, we can analyze 
the contours to recover the shape; for a Right Circular SHGC, we 
need only determine r(s), the radius function, to have a complete 
description of the shape. 

We will begin by addressing the latter problem ■■ analysis of 
contours when the image is aligned and a known. Then, we will 
examine how to determine a and perform the alignment. 

Figure 17:   Aligned Image of an SHGC 

7.1 Contour Analysis 

Along a contour generator of a Right Circular SHGC, recall that 
equations (6-2) and (6-3) give xCG(s), ycn(s), and dyCG/dxCG as 
functions of s, r(s), and dr/ds. Those allow us to solve for s, r{s), 
and dr/ds, the shape description, as functions of xCG(s), KCQ(*)I 

and clyCG/d.fCG, which can be measured in the image. 

XCG(S) ♦ ^CG*5) cos2 f (dycG/dyCG) 

■  - 

. • - ■ 

rW 

Sc       Sa °    Sb 

Figure 16:   Contour Pieces Correspond to Disjoint Intervals of s 

V" + '(s) = yCG(s) V < ♦ cos-" a (dyCG/dxC(,)
2 

— = ( sin a I V1 + cos2 o (dyCG/dxa,)? ) -ZSSL 
ds ' dxCG 

So, given any contour point (xCG(s), yCG(s)), and the slope 
dyCG

/dxCG of the contour at that point, we can determine s, r(s), 
and dr/ds. By doing this for all points on all contours, we can 
determine as much as possible about r(s) (figure 18). 
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As stated earlier, the above analysis presumes that a is known 
and that the image is appropriately aligned. Figure 10 shows that, if 
n is .ict known in advance, the imago of the contoura of a solid of 
revolution is ambigi^-us, with one degree of freedOiii (er). Part (a) of 
figure 19 shows a sofld of revolution from a side view: (ta) shows the 
irnuge contours produced when the shape is viewed ftom a viewing 

("it soltj ol revolution, side view 

angle of ■ Part (c) shows the set of dific-rent so'ids of revolution 
which might have produced the figure if vi-nved from vaiious 
angles. (Thick lines in (c) correspond to visible contours; thin lines 
are portions of r(s) estimated by the method k>»U>*. For each 
possible value of a within some interval of possibilities, a plausible 
function r{s) can be determined whose image contours match those 
acluully ooon. 

image x.y 

Jy/dx 

V 
descriplion r(s) 

(b) image of colid sern at 45 degrees 

(c) Possihle interpretations of image at various viewing angles. 

Thick lines are visible portions; thin lines are estimated. 

Interpretations are scaled to same horizontal size. 

Figure 18:   Contour Analysis Resulis in Shape Description 

7.2 Occluded Contours and Silhouettoo 

Ws have seen how to analyze contours to detormino values of 
,'(s); now, wo will discuss how mi'^h of r(s) can bo roconstrucled in 
this manner (i.e. over what range of value, f s). As we already 
know, there is a contour generator only wh,. |clr/ds| < |far/ a|; 
values of s for which |dr/ds| > \ian a\ therefore do not correspond 
to any points on a contour generator, and r(s) cannot be 
determined for these values by examination of imago contours. In 
addition, as described in section 8.1, the object itself may occlude 
portions of the contotir generaior from view. 

For analyzing a silhouette, exactly the same methods and 
conditions apply, except that, using the notation of section 8.1, the 
contour for ■ < sc will render invisible the contour for s > sb which 
lies to the loft of /CG(sc); thus, in figure IG, only segments A and fl 
will be visible. Silhouettes are simply images of contours in which 
certain portions of some contours are not visible. 

If dr/ds > 0, the situation is just the above viewed from the 
opposite direction (i.e. segments A, B, and X in figure 16 will be 
vitible and segment Y will be occluded). In ihis case, when the 
contour generator splits, the arc for s < sa is still occluded, but the 
arc for s > sb is a closed curve in the imago rather than flaring out 
as above. Silhouette analysis will bfi identical; indeed, the 
silhouette of an object is identical (to within a reflection) viewed 
from opposite directions. 

Figure 19:  Contoursof a Solid of Revolution are Ambiguous 

In any of these cases, there will be an interval of s over which r(s) 
cannot be computed, say {»(, «J. However, we can compute /(s), 

r(s|). dr/ds|s, and dr/ds^. For practical image analysis, it is 
possible to Estimate r(s) ol/er (s,. s^ by fitting a function which 
conforms to these constraints. For example, a cubic polynomial 
can he fit to the data. If we let r(s) = as3 + bsg + cs + d, we the.i 
havedr/ds = 3as2 + 2bs + c. Then the following system of linear 
equations can easily be solved to determine the values of a, 6, c, 
and d: 

r{st] 
■ 

" s3     Sj
2 

*i3     *|2 

si 
si 

1 

1 

■ 
b 

dr/ds s 35*      2S; 1 0 c 

dr/ds 
si J 

3S|
2  2Sj 1 i) d 
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7.3 Aligning ihe Image 

Tho above analysis has presuiied that we know the viewing 
angle a and have aligned the Imagos cf the axis endpcints A(0) and 
A^) onto (0,0) and {sin a, 0), respectwety. We will now address the 
pi'Oblems of aligning tho image and determining a. 

Suppose we are given an image of the contours of a Right 
Circular 5HGC, arbitrarily scaled, rotated, and translated, and 
viewed trom an unknown angle. We can immediately determine the 
imago of the axis, since this will be an axis of symmetry in the 
image, and rotate the imago so this is horizontal. By translating (he 
Image, this axis can be made to line up with the x-axis. Brrjks [3] 
and Marr and NiGhihara[6] discuss tho issue of the finding the 
image of the axis of a generalized cylinder. 

We must next determine which end of the object is nearer, so this 
can bo placed on the right as In our imaging model. If the loft end is 
closer, we v/ill need to reflect the image about the y-axis, or 
equivalently rotate it 160° about the origin. 

We must also determine a and find the images of tho axis 
eriJpoints. Oetermining a is more important, since it affects both 
the image aiignment and the shape of the reconstructed function 
/(s). The axis endpoints, on the other hand, affect only the scalt 
and shifting (along s) of r(s). 

Figure 20 shows an object whose closer end is Flat, i.e. f(1) > 0. 
The edge of the Cioss-secticn at that end will produce a contour in 
the image, which v/ill be a vertically elongated ellipse. This is a very 
useful configuration, since we can easily determine which end of 
the object is closer. Then, we know that the center of the ellipse 
must be the image of the axis endpoint /t(1); further, we can 
compute the viewing angle a from the eccentricity of the ellipse, 
using cos a = b/a, where a and b are the semimajor and semiminor 
axis lengths, respectively. 

Figu re 20:   RCSHGC With Near End Flat 

If tho farther end of the object is Flat and not occluded, i.e. r(0) > 
0 and dr/ds |0 < fan a, then we will seo exactly half of an ellipse, 
which can be analyzed as above to determine v/hich end of the 
object is farther, the image of A{0). and a. It neither end can be 
analyzed Bd above, we may be able to dotormine whether any "T"- 
shaped occlusions occur along the contour; if so, the occluding 
contour gonorator is on the nearer portion of the object. Failing 
this, wo cannot from contours alone decide which end or the object 
is nearer. Fortunately, there are many other potential sources for 
alignment information, such as tho object's length or width, or 
surface normals as determined by photometry or range data. 

8. ConcltiGions 
in this paper, we have explored some of the prop -rties of Straight 

Homogeneous Generalized Cylinders. We began by defining 
Straight Homogeneous Generalized Cylinders (SI-IGCs) as 
Generalized Cylinders with straight axes and cross sections of 
constant shape but varying size.   With this definition as a starting 

point, we saw that a natural set of object-centered coordinates can 
be used to specify the positions of points on the surface of an 
SI IGC and the directiot. of the surface normal at each point. 

We looked at the Equivalence Problem, and saw that only Linear 
SHGCs (i.e. those with radius proportional to distance from some 
apex point nn the axis) can be described in more than one way with 
difloren! cross-sections or (under some restrictions) will different 
axes. This means that an an hourglass-shape, for example, can 
only bo described as an SHGC in one way. 

Next, we looked at the analysis of tangoncy contours of SHGCs. 
We began by presenting the condition which must be satisfied by 
the pomts on the contour generator of any SHGC. Right SHGCs 
allow an Important simplification of this condition. The contour 
generator is planar in an end view or side view of any Right SHGC, 
and in any oblique view of a Right L inear SHGC. In an oblique view 
of a non-Linear Right SHGC, it is difficult to determine whether the 
contour generator is planar. 

Solids of revolution (Right Circular SHGCs) are amenable to 
much more detailed analysis. It is possible to desciibe the visible 
ccntours in an imago of a solid of revolution as they depend on the 
radius function and the viewing angle; these relationships can be 
invertoo to determine the radius function from the image contours, 
when the viewing angle is known in advance. If the viewing angle is 
not known, the image of a solid of revolution is ambiguous with cne 
degree of freedom. The viewing angle can he determined if the 
object has a visible flat end. Silhouettes can bi analyzed by the 
same methods used for tangeney contours. 

It was also observed that a "special viewpoint" exists when the 
contour generator is tangent to the line of sight. For a solid of 
revolution, this occurs when the viewing angle is equal to a local 
maximum in the angle between the radius function and the s-axis. 

9. Bibliography 
1. Ballard, D. H. and Brown, C. M.. Computer Vision. Prentice-Hull, 
Englcwood Cliffs, NJ, 1982. 

2. Binford, T. O. Visuaf perception by computer. Proc. IEEE Conf. 

on Systems and Control, Miami, December, 1971. 

3. Brooks, R. A. "Symbolic reasoning among 3-D models and 2-D 

images." Artificial Inlelligsnce /7 (1981), 285-348. Special volume 
on computer vision, 

4. Hilbert, D. and CohnVosson, S.. Geometry and the Imagination. 
Chelsea Publishing Co., New York, 1952. 

5. Marr, D. "Analysis of occluding contour." Proc. Royal Society 
of London B-197 (1977), 441-475. 

6. Marr, D. and Nishihara, H. K. "Representation and recognition 

of the spatial organization of three-dimensional shapes." Proc. 

Royal Society of London B-200 (197C), 2G9-294. 

7. Rubinstein, Z.. A Course in Ordinary and Partial Differential 

Equations. Academic Press, New York, 1969. 

8. Shafer, S. A. and Kanada, T. The Theory of Straight 

Homogeneous Generalized Cylinders, and a Taxonomy of 

Generalized Cylinders. Carnegie Mellon University Computer 
Science Department, January, 1983. 

* 

■   -■ 

218 



- ■ . 

An AlvonlJu,, to Display C iirmli nl CylinJpm 

O 
o 
a. 

K'icli.ud fi.:ol.l, 

Dnpnrltiient i»f Oumpiilür 'Vittuv 
Sinnfard Univt;r8ity,SUuif«>ril (Ja Ü-i^OS 

Al.slrnct 

i liis" pupcr (IcKcrUira MM algorithm, capable »f 
|i:ir;JI'l implcmnntat.ion, to calcul.'tlt: Ihe prrspnctivn 
imn^ro of a (icncrulisoil Cyliadcr, fi-un; !»rl»itrnry vicw- 
poiiil, with hiihioii mrtiici'. rnmoval. I1 npplica Ui u w'ttlc 
chi-s.s .'f cy liiuii'rs. The Lime kaknn will h - |>ropnrltoiml 
to llu Lolal lengUi i«f I,lie rorilotir», iifh^iniKifsil of Uic 
IIIUMIM r 'I' edecs. The algortlltin ;'()lvi". for one rloactl- 
!()0|) r.oülour-gcucralor at a time, tosuog its contour 
(id :!;'■ image; piano) ['or InUM'scctiu« with vi..iljic »fge- 
iiu'i.l,; of |, icv lot is contours. The inp</t arc l.ho rtiitcl-lona 
ill s.Tii)iii;i; the object, Jilong with Uic |K>.<ition of the eye; 
.■UHI the i)iit,[)ii(, are the visible surfrifesi :iii(! edges. 

1.     Introdiirtioti 

Model based vision syutcins predic'< the appcarenco 
of thHr moilela by calculating ilir porapcrtivc projection 
or "Image'', from different viewpoints, In the pml, this 
has only been done for models with analj tk, cloftcd form 
inlutton lo the perspective projection ('(|Uiittoits. Since 
Gptieriiliscd Cylinders are a itat>trral, nnH commonly 
used model, a general method for getting their image 
will be useful. From a J-l) OotnpuJcr (iriiphics view- 
point, the algorithm presents nn alternative to building 
IIIOIICIM out of surface patches and planar surfaces and 
it is equally general. Most prcviuita .inliiods for dis- 
playing jiaramel ric surfaces have Ignonsd Llie structure 
of the scei\(>; lor example scan line algorithtOfl can be 
fooled by certain folds in the surface. 

The overall idea of the algorithm is lo look for 
those lines on the models' surface whose points are tan- 
gent lo the line of sight, called "Contour-fjonerators". 
These form closed loops. If one point, is known it can be 
ellicienUy propagated to form the whole line, by using 
a simple expression for the contour-generator tangent 
vector. .Surfaces become occluded when they pass be- 
hind contour-generators. So by catcnlating where the 
perspective projections of the contuur-genorators, called 
"contours", cross each other, the visihl" onllines of the 
model arc found, The visible surface« nre produced by 
expanding the regions attached to the front side of each 
contour-generator until their image rmuies a contour. 
The method is a generalisation of one used in [3), for 
volumes bounded by planar faces. 

The imago of r> scene consisting of several larger 
objei ts, inail., tip of intersecting models, is obtaiiieil one 
model at. a time. Negative volumes or holes, in objects 
can slso be displayed. The models themselves can have 
smoothly changing surfaccM and edges. 

The rest of the paper will he split into: 

'2. (Ii neralised (Cylinder definition 

,'>. Oiii line of the algorithm. 

!. Implementation of the dennition in 2., and dis- 
c.usion of uhune (](nteralisod (yytimlcrs accepted by the 
algorithm, (almost all of lliom). 

5. I.1', iilts, equations, formuliut, rci'errcd to in the 
algiirithm (iitline ;{,, and (Icn-,■ iJiseil Cylinder dcrivtv- 
tive fiuH'tions. 

(i. Cnmparison to othei Algorithms. 

7. Current state- <,'' the implementation, 

8, l'ihtnnslons and summary. 

'«J.     Gcne^nliuod Cylinder Definition 

(lenenlised ('ylindi'r.s were first in I rod need by 
Mil ford [I]. When a planar shape sweeps through space, 
the volume it passes through m a GcnenJiscd Cylinder 
(CC), Recently Shafer [2|, has made a. precise del'inition, 
which I ',jvc here. 

(i) '"here is a space curve, called the ;ixi.s of the 
shape. 

(ii) At, each point in the axis, at some llxed angle 
to the axis, .'here is a cross section plane delinod. 

(iii) On s ach such cross-section plane, there is a 
planar curve which cons'it ntes the cross-section of the 
object on t hat plane. 

(iv) There is i deformation rule which speciRca the 
transformaliun of Mi,' cross section as the cross-section 
Diane i> swept along the axis. This rule always iinposes 
(at least) the constraint that the cross-section changes 
smoothly. 

(v) I nid the further condition that: Kvcry point in 
the objivt niiru He on cactly one crosi; section plane. 
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Tfita is Uii- class of sliancs tlial Liu; aigorilhin <li-:ils 
willi, »Jong with Lhc rvslrieUon Uiat the crosd-acction 
curve is eloBcd. 

U.    Oatlln« of Algorithm 

The algorithm can be divided into two parts. 
I''irst (A), solution fur the miUlc parts of tlic contonr- 
gunorntorH, and accondiy (II), region growing to get 
visible .smTacrs. The first part is the principal one. 
It has two suhparts, which arc repeated, and together 
lind one contour-generator. IGach contour-generator is 
a dosed loop, intersecting no others, which divides the 
surface into forward (visible if uiioccludcd), and hack 
ward racing (invisible) areas. Tlie »quare root of the size 
of each visible area, is a measure of the length scale over 
which things are happening in that region of the CC. 

The first »ubpart (Al), steps over the CG with step 
length proportional to the square root of the area of 
the region it is contained by, until either the whole 
snri'acc I been covered, in which case the algorithm 
stops; or a step containing a new contour-generator is 
found. In I his case, the step is then bisected down 
to an exact solution. A lest to see whether each step 
jumps a new ccntnur generator can be made. For 
whenever the direction (forward or back), that a sur- 
face point is facing, dilfers from the direction predicted 
by the region« of the existing contour generators, then 
there must be an undiscovered contour-generator pass- 
ing nearby. Tins means that if one stepping point has 
the same predicted, and actual surface direction, and 
the next does not, then a new contour generator passes 
through the intervening step, This interval is reduced, 
using bisect ion, with the condition that one end of the 
interval must have the same predicted, and real surface 
directions, while the other end must not. 

The solution is handed over to the second snbpart 
(A'.?), which propagate» it around the whole contour- 
generator, back to its start, making a list of the solu- 
tions as it goes, and noting the ones where the contour- 
generator becomes visible or occluded. It works by steo 
ping along the contour-generator tangent (2)(see sec- 
tion ;>.), to get a guess for the next solution point, 
which is Newtnu-Raphson iterated to a snllicient ac- 
curacy (ß)(section 5.). If the Newton-liaphson docs 
Dot converge, several points around a small circle arc 
tested to lind an interval to bisect down bo the next 
solution. The step length is taken proportional to cur- 
vature of the contour, to gel, uniform interpolation ac- 
curacy between the known contour points (:$),( I). Mach 
step is projected to the image, and checked for intersec- 
tion with those previously projected steps, which have 
not been shown to be hidden. When an intersection is 
found, the exact positions of the occluding and occluded 
contour generator points are calciilated(S). Finally the 
whole contour is checked against possible surrounding 
contours. 

To convert to a form implerm uiable in parallel; 
step Al is done indepi nd.ntly, at dilferent points on 
the GC and then A2 is used to form conlour- ,";'•<■ rator 
segments, which can !>c simply joined up into the com- 
plete contour lists. 

I'lither way, each list of contour point» is now fol- 
lowed down, keeping count of tie marked occluded 
points, to produce list« of just the visible ones. 

i.     [mplemontatlon of Definitions 

The definition, from section 2, can be implemented 
as a bivarinte surface, with a parametrising the axis and 
t parametrising the cross-section curve, both roughly 
proportional to arc length, 0 < 3,t < 1 . If N denolca 
the outward normal, (t , a , N) form a right handed set. 
The quantities that have to be defined are; 

E the position verlor of the eye. 

fsl>(H) the axis (or /pine) (can use Intrinsic 
coordinates) 0 < ,s <  I. 

o the angle between I he y-axis of the cross- 
section plane and the spine. 

C(M) the closed cross section curve. Civen 
B, t parametrises the curve so that (7(0,«) = 0(1,11), 
with L roughly proportional to arc length. 

Functions for the deformation rule: 

lx(-s) » twisting angle, giving rotation of 
the cross-section in its own plane. 

Derivable from these are: 

P(M) a point on the ÖC surface. 

/''(<, ») = /' - E the line of sight vector, 

N(t,s) the normal to the surface. 

N-l1' -■■-- 0 is the equation to be solved. (See tli(> 
results and formnals section) where . means scalar 
product. 

rI he algorithm will work for arbitrary cross-section 
C(t,s). But any C(t,s) can bo decomposed, (to desired 
accuracy by taking enough tortus), into separable form, 
by 

CM ^rtWC^t) I-r,(.s)V;,(/.) i r,{»)*f;!,(«) + ... 

where the r, are called "radius" functions. 

To see this take, for example, t,',(it) rs C^t, * ) for 
0 < t < n and take ?-,(*) to interpolate smoothly be- 
tween the cross-section (7,- functions. Then as a > oo, 
the csprcflafon on rh* -> (!(>,.•<). This decomposition 
also has useful properties when a small number of terms 
are taken,   eg,   with two terms, a cross section shape 
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cnii bcstfctr.hcd iti twcj indciHuidritt ilin:<;Üori»j or ruled 
surfaccH ran IHJ rorniod; or ;i Bqimr« ran !>■• amooliiiy 
(leforiiicd into a circle (th!a is Llir «liujw cvf ni...ny coffoc 
jara). 

For oxamplu Ihc rotiowinf; functiuiui rticrgc a square 
into a circle, along n piirabolk ax'w. 

- [c.o.t'hTt, ein'lnl) 
'It, it]     ü < * < 4 C,,   -:(i 

Gt - (-3 
U,2      U) 

41,2 -4i) 
^<i 

2   ^:   C  -i   -1 
C» «(-3 l  U, -4 + 40      T < < < • 

r| = a 

r2 ~ 1 - ,s 

•S'/'  -('JO., I»..2,0) 

Gcneralisct] Cylitidcra can be nuill- up in^o more 
complicntnd modnit*. They can describe the shape of 
addition« and also of holes. "Negative v,oiumeM, that is, 
a hole in a ..did objcH, can be displayed in the same way 
as everything else. This is done by dmUnguishiag two 
types of contour-generator [joints, depending on how 
lli:' line of aight inakf» n tangent there, The possibilitlcfl 
arc, that the tangent lies outside the surface pf the 
model, "('liter" contour-generator point», or that it lies 
mside, 'inner" contour generator point, At these outer 
point«, the adjacent forward facing surface is closer to 
the eye than the hack Face; the opposite is true for 
inner point», A contour-generator can often change 
from consiating of outer to inner points, especially in a 
complex scene. To give a generalised cylinder negative 
volume, and display it as a hoh-, the outer and inner 
contour,; need to he swapped, and the outward pointing 
vectors at the cutoll'ends are reversed. 

5.     Roaultti Formulas 

This section contains some of the theory that 
makes the algorithm work and also the results and 
derivation of equations referred to in the algorithm out- 
line. 

1.  Formula for l'(t,s), a point in the GC surface. 

/-> = SP + \H\*\rolX,!)() - ,*]*[roi% tx\*G{t, »)    (I) 

Where 8P(«) tracks out the spine as ■ changes, 
0 < .s < I; (l?(s)] represent« the rotation part of the 
transformation matrix into the untwisted coordinate 
frame on the spine; and tx is the twisting. 

wnere   / 
Th 

Let A = ^ , and (a b c) 

n (a h c) is a unit vector tangent to the spine. 

4| * 0. 

[ft] is untwisted means that it represents Q rotation 
ahmt an axis perpendicular to the »-axis. It rotates the 
/-axis into (a b c). It works out to be. 

[It] = 
H • 

ah I 

2. Formula for the outward surface normal, N(t,s) 

^('i'"*) ■-  In X i/s   where X means vector product 

3. Formula for the tangent to a contour-generator, 
in parameter space. 

For   contour-generator   sft),    N{t,/>).F{t,a)   --   0, 
where the dot . represents the scalar product and 
/'' = /' — /.; ID the line of sight. Differentiating this 
wilh respect to t, gives a vector tangent to the contour- 
generator. 

a(Ar.F) -djN.F) 
[     da     '       Dt      ' (2) 

V^{VtlVa)^ 
\u\ 

Given one point, P(t,8|, on a contour-generator, V 
the unit tangent vector is used to get a. good estimate 
for another nearby. 

pft+xn^ + x'v,) (3) 

Where X is the step lengt 

■1(1) The vector V always points the same way. 
Imagine looking down at the contour-generator from 
outside the cylinder, then the vector has the forward 
face on its right, and the back face on its left, when (t, 
s, N) form a right handed set. 

Proof; either by drawing four diagrams (see 
diagrams); or, since U changes continuously, parallel to 
the contour- generator, change of direction means that 
U =■ 0, and that there is another contour-generator 
at that-point. So a contour- generator branc.li can be 
chosen to keep U pointing the same way. 

-1(11) Adjacent contour-generators point in opposite 
directions. This is because, if the intervening surface 
faces forward, say, then it must be on the left hand 
side of both contour-generators, making them point op- 
positely. 

4(151) Contour-generators cannot cross. Since cross- 
ing means that Ü = 0, (see diag), take the continuation 
of the contour-generator to be either I, or I?., whichever 
makes the smallest angle between steps. 

5. Step length, X, along V is taken proportional to 
the curvature in the image plane. This means that in- 
terpolation in the image plane, joining up the calculated 
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points (by cubic   plinc, or ■.vhai.v.r), will lu: uniforinly 
:ici;iir:ito. 

Stcp-lonjjth proportion;il to riinmtiirc, amounts to 
choosiri!-: «top-lcHgth so that thoro is a i-ofiütnnt migj.! 
between Htepn. A simple W;iy to achieve ibis is, 

step length := (previoiis-Htep-lcngth) "'S. (i) 
where A  --- desired iingle betwenn steps 

li      nctual ■inije between steps 
C    - angle between previous »top ;iml If. 

C is used as an appioxiniation for H. 

6. 2-D Newton Ruphson is use I to solve /V.f1 =. 0, 
starting with the guess pro.I,iced by equations (3) and 
(I) above. 

u.u (■■') 

• ;.      ('.'(.li,; .i,i ,,)ti of A!;-;,).-ll I,I,IH 

'The TL.iy of ötrai^'U CeiüMalised Cylinders' (ll, 
«■oni-.ins ;,..,:,-i. to Kc| U,., j,„.,,,,, concurs in closed 
lomi lor geiu-mliaed cylinders, with straight spines 
and simple radius lum-tiona. The proMoni is also 
solved in dosed Ibrtn lor simple generalised cylinders, 
in Urooks1 .\v,UOMVM. So lh.se two obtain contours 
for a n   I ricd-d . hi.ss of rylinders. 

IIur..iir!g [;?] uaca JKI ihsralivc method to solve 
for (•.ontoin-Kei.erators, with hidden line R-moval, for 
volumes boin.li .1 by idanar fa. es. Ue preseni.-, ellicioncy 
iirgiunents which carry over l.. the co.itinuous case. 

Motil Oraph'us work on parametric iniraccH US.JS 

scan line methods, which can failon certain overhanging 
folds in the Biicfare, !;; contrast this algorithm,'by 
explicitly wor!;ing out the .ont.ans of the hUU, should 
not be fooled. 

where UpcrP~{^fl,ZX%p) I'lia.-1:'! ^Nl^\ 

7. The necessary derivatives for U in (li), are 7.    Slut. cT thn [mplcncnfcatlon 

ftN.F _      ON or 
at    =    ~dr + N-'dt 

dN.F i)N 81* —-— = ii,.__ + /V.--. 
0» da da 

where 
o/v    oli'i)p   or   o'r 
 —— v^ J. _ _   V'  
Ot dta '   da       Ot ' OtiOt 

qjv     o-r   oi'    dl'd9r 
da        dadt     da       Ot      da9 

This reduces the problem to Unding I he llrst and 
second derivatives of l'(t,s). limmtion (I) can be rewrit- 
ten as P{t,a) -.-. Sn*] + [!{{*)]*C(t.,a] where (3{t,8) is 
the column vector [rot-Y, 00 - <x]*\rof./, tx^^C'lt,*) 

The remainiiiR derivative are not given lure, but 
can quickly be worked out in this form. ' 

8. When two contour-generator segmmta on the 
GC Intersect in the imago plane, the parameters of 
the occluded and occluding points are interpolated for. 
Interpolation is repeated until the images'of the two 
points on the OC are sullidently dose. 

!). Contour-generators form into .1 number of cloned 
and non-intersecting (posaibley touching) loops. 

This happens because, 

in the coordinate system oft -► X, 1 ► K, /V f -+ 
z, consider the surface Z - /V./-•(<,.,). It is continuous 
and   periodic,   and   intersects  the  plane   A'./''   =   0  in 
dosed loops. 

At prr.ient,  I fiave implemented in  miiclisp,  the 
scheme to Und coutour-gcneratofB, without, delecting 
l<.r intersödion in the image [»lane. A bucketing sys- 
tem, In the furm of quad-trees in l,lie image plane, and 
also the (t.,s) plane, will provide an elhcient method 
for detection of inteMcctions. When each contonr- 
generator h;.-, be.Mi coinptoted, region growing in the 
(t,sj plan- .an lill i,he forward facing surface. In the 
.rnnge plane the inside of endi contour is also lilted, and 
this is used 'or delecting occlusions (see section 5, part 
8.), b:tw.en the uontour pre.ienMy bein;; solved and pre- 
V oils one:;. Occlusions of a contotir-grnrrator by win'd- 
ing back on it,.ell', are di; . ,,vered wiiee its interior in 
the image plane h lilled and found to have more than 
one region. 

8.     Future Plans, Summary 

An algorithm for displaying generalised cylinders 
lias been presented. When completely implemented, it 
should be robust and fast, making it useful for model 
based vision systems and 3-D graphics. 

To extend the use of this algorithm to complex 
scenes, a new algorithm, tu calculate the intersection 
hue ul overlapping gonoralised cylinders will be devel- 
oped. A I'm the,- extension, is to investigate symbolic 
and topological simplifications, which might predict the 
shape of the image with less numerical accuracy, but 
greater understanding of its structure. 
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ABSTRACT 

/ /;, 
In this paper we offer a critical evaluation 

jof  the  partitioning  (perceptual organization) 
problem,  noting  the  extent  to which  it  has 

^distinct formulations and parameterizatlons.   We 
«show that most partitioning  techniques  can be 
•characterized as  variations  of  four distinct 
paradigms, and argue that any effective technique 
must  satisfy  two general  principles.  We  give 
concrete substance  to our general discussion  by 
introducing new partitioning techniques for planar 
geometric curves, and present experimental results 
demonstrating their effectiveness. 

I   INTRODUCTION 

A basic attribute of the human visual system 
is its ability to group elements of a perceived 
scene or visual field into meaningful or coherent 
clusters; in addition to clustering or 
partitioning, the visual system generally imparts 
structure and often a semantic interpretation to 
the data. In spite of the apparent existence 
proof provided by human vision, the general 
problem of scene partitioning remains unsolved for 
computer vision. Furthermore, there is even some 
question as to whether this problem is meaningful 
(or a solution verifiable) in its most general 
form. 

Part of the difficulty resides in the fact 
that it is not clear to what extent semantic 
knowledge (e.g., recognizing the appearance of a 
straight line or some letter of the English 
alphabet), as opposed to generic criteria (e.g., 
grouping scene elements on the basis of geometric 
proximity), is employed in examples of human 
performance. It would not be unreasonable to 
assume that a typical human has on the order of 
tens of thousands of iconic primitives in his 
visual vocabulary; a normal adult's linguistic- 
vocabulary might consist of from 10,000 to 40,000 
root words, and iconic memory is believed to be at 
least as effective as its linguistic counterpart. 
Since, at present, we cannot hope to duplicate 
human competence in semantic interpretation, it 
would be desirable to find a task domain in which 
the influence of semantic knowledge is limited. 

In such a domain it might be possible to discover 
the generic criteria employed by the human visual 
system and to duplicate human performance. Ona of 
the main goals of the research effort described in 
this paper is to find a set of generic rules and 
models that will permit a machine to duplicate 
human performance in partitioning planar curves. 

It THE PARTITIONING PROBLEM: ISSUES 
AHO CONSIDERATIONS 

Even if we are given a problem domain in which 
explicit semantic cues are missing, to what extent 
is partitioning dependent on the purpose, 
vocabulary, data representation, and past 
experience of the "partitioning Instrument," as 
opposed to being a search for context independent 
"Intrinsic structure" in the data? We argue that 
rather than having a unique formulation, the 
partitioning problem must be paramaterlzed along a 
number of basic dimensions. In the remainder of 
this section we enumerate some of these dimensions 
and discuss their relevance. 

A.   Intent (Purpose) o^f the Partitioning Task 

In the experiment described in Figure 1, human 
subjects were presented with the task of 
partitioning a set of two-dimensional curves with 
respect to three different objectives: (1) choose a 
set of contour points that best mark those 
locations at which curve segments produced by 
different processes were "glued" together; 
(2) choose a set of contour points that best allow 
one to reconstruct the complete curve; (3) choose a 
set of contour points that would best allow one to 
distinguish the given curve from others. Each 
person was given only one of the three task 
statements. Even though the point selections 
within a task varied from subject to subject, there 
was significant overlap and the variations were 
easily explained in terms of recognized strategies 
invoked to satisfy the given constraints; however, 
the points selected in the three tasks were 
significantly different. Thus, even in the case of 
data with almost no semantic content, th« 
partitioning problem is NOT a generic task 
independent of purpose. 

- - - ' 
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B.  Partitioning Viewed as an Explanation of Curve 
Construction 

With respect to "process partitioning" 
(partitioning the curve Into segments produced by 
different processes), a partition can be viewed as 
an explanation of how the curve was constructed. 
Explanations have the following attributes which, 
when assigned different "values," lead to different 
explanations and thus different partitions: 

* Vocabulary (primitives and relations) — 
what properties of our data should be 
represented, and how should these 
properties be computed? That is, we must 
select those aspects of the problem domain 
we consider relevant to our partition 
decisions (e.g., geometric shape, gray 
scale, line width, semantic content), and 
enable their computation by providing 
models for the corresponding structures 
(e.g., straight-line segment, circular arc, 
wlggly segment). We must also allow for 
the appropriate "viewing" conditions; e.g., 
symmetry, repeated structure, parallel 
lines, are global concepts that imply that 
the curve has finite extent ani can be 
viewed as a "whole," as opposed to only 
permitting computations that are based on 
some limited Interval or neighborhood of 
(or along) the curve. 

in a generic sense, 
not have a "simple 
is  noise.  Thus, 

both  the selected 

Definition of Noise — 
any data set that does 
(concise)" description 
noise  is  relative to 
descriptive language and an arbitrary level 
of complexity.  The particular choices for 
vocabulary and the  acceptable complexity 
level determine whether a point is selected 
as a partition point or considered to be a 
noise element. 

Believabillty — depending on the 
competence (completeness) of our vocabulary 
to describe any curve that may be 
encountered, the selected metric for 
judging similarity, and the arbitrary 
threshold we have chosen for believing that 
a vocabulary term corresponds to some 
segment of a given curve, partition points 
will appear, disappear, or shift. 

C.  Representation 

The form In which the data Is presented (i.e., 
the input representation), as well as the type of 
d,.ta, are critical aspects of the problem 
definition, and will have a major Impact on the 
decisions made by dl/ferent approaches to the 
partitioning task.  Some of the key variables are: 

* Analog (pictorial) vs digital (quantised) 
vs analytic description of the curves 

* Single vs multiple "views" (e.g., single 
vs. multiple quantizations of a given 
segment) 

Input resolution  vs. 
segment of Interest 

length of  smallest 

* Simply-connected (continuous) curves vs 
self-intersecting curves or curves with 
"gaps" 

* For complex situations, is connectivity 
provided, or must it be established 

* If a curve possesses attributes (e.g., gray 
scale, width) other than "shape" that are 
to serve as partitioning criteria, how are 
they obtained — by measurement on an 
actual "image," or as symbolic tags 
provided as part of the given data set? 

D.  Evaluation 

How do we determine if a given technique or 
approach to the partitioning problem is successful? 
How can we compare different techniques? We have 
already observed that, to the extent that 
partitioning Is a "well-defined" problem at all, It 
has a large number of alternative formulations and 
parameterlzatlons. Thus, a technique that is 
dominant under one set of conditions may be 
inferior under a different parameterization. Never 
the less, any evaluation procedure must be based on 
the following considerations: 

* Is there a known "correct" answer (e.g., 
because of the way the curves were 
constructed)? 

* Is the problem formulated in such a way 
that there is a "provably" correct answer? 

* How good is the agreement of the 
partitioned data with the descriptive 
vocabulary (models) in which the 
"explanation" is posed? 

" How good Is the agreement with (generic or 
"expert") subjective human judgment? 

* What is the trade-off between "false- 
alarms" and "misses" in the placement of 
partition points. To the extent that it Is 
not possible to ensure a perfect answer (in 
the placement of the partition points), 
there is no way to avoid such a trade-off. 
Even If the the relative weighting between 
these two types of errors Is not made 
explicit, it is inherent in any decision 
procedure — including the use of 
subjective human judgment. 

In spite of all of the previous discussion In 
this section, it might still be argued that if we 
take the union of all partition points obtained for 
all reasonable definitions and parameterlzatlons of 
the partition problem, we would still end up with a 
"small" set of partition points for any given 
curve, and further, there may be a generic 
procedure for obtaining this covering set. While a 
full discussion of this possibility is is not 
feasible here, we can construct a counterexample to 
the unqualified conjecture based on selecting a 
very high ratio of the cos. of a miss to a false- 
alarm In selecting the partition points. A (weak) 
refutation can also be based on tht observation 
that if a generic covering set of paitition points 
exists, then there should be a relatively 
consistent way of ordering all the points on a 
given curve as  to their being acceptable partition 
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points; the experiment presented In Figure 1 
indicates that, in general, sue".: a consistent 
ordering does not exist. 

Ill   PARADIGMS FOR CURVE PARTITIONING 

Almost all algorithms employed for curve 
partitioning appear to be special cases 
(instantiations) of one or more of the following 
paradigms: 

* Local Detection of Distinguished Points: a 
partition point is inserted at locations 
along the curve at which one or more of the 
descriptive attributes (e.g., curvature, 
distance from a coordinate axis or 
centrold) is determined to have a 
discontinuity, an extreme value (maxima or 
minima), or a zero value separating 
intervals of positive and negative values. 

* Best Global Description; a set of partition 
points is inserted at those locations along 
a curve that allow the "best" description 
of the associated segments in ter;s of some 
a priori set of models (e.g., the set of 
models might consist of all first and 
second degree polynomials, with only one 
model permitted to explain the data between 
two adjacent partition points; the quality 
of the description might be measured by the 
mean square deviation of the data points 
from the fitting polynomials). 

* Confirming Evidence: given a number of 
"independent" procedures (or possibly 
different parameterlzations of a given 
procedure) for locating potential partition 
points, we retain only those partition 
points that are common to some subset of 
ehe different procedures or their 
parameterlzations. 

* Recursive Simplification: the input data is 
subjected to repeated applications of some 
transformation that monotonically reduces 
some measurable aspect of the data to one 
of a finite number of terminal states 
(e.g., differentiation, smoothing, 
projection, thresholding). The hierarchy 
of data sets thus produced is then 
processed with an algorithm derived from 
the previous three paradigms. 

A.   Stability 

The "principle of stability," is the assertion 
that any valid perceptual derision should be stable 
under at least small perturbations of both the 
Imaging conditions and the decision algorithm 
parameters. This generalization of the assumption 
of "general position" also subsumes the assertion 
(often presented as an assumption) that most of a 
scene must be describable in terms of continuous 
variables if meaningful Interpretation is to be 
possible. 

It is interesting to observe that many of the 
constructs In mathematics (e.g. , the derivative) 
are based on the concepts of convergence and limit, 
also subsumed under the stability principle. 
Attempts to measure the digital counterparts of the 
mathematical concepts have traditionally employed 
window type "operators" that are not based on a 
limiting process; it should come as no surprise 
that such attempts have not been very effective. 

In practice, if we perturb the various imaging 
and decision parameters, we observe relatively 
stable decision regions separated by obviously 
unstable intervals (e.g., the two distinct peicepts 
produced by a Necker cube). The stable regions 
represent alternative hypotheses that generally 
cannot be resolved without recourse to either 
additional and more restrictive assumptions, or 
semantic (domain-specific) knowledge. 

Complete,  Concise, 
Explanation 

and  Complexity Limited 

The decision-making process in image 
interpretation, i.e. matching Image derived data 
to a priori models, not only must be stable, but 
must also explain all the structure observable In 
the data. Equally important, the explanation must 
satisfy specific criteria for bellevablllty and 
complexity. Bellevablllty is largely a matter of 
offering the simplest possible description of the 
data and, in addition, explaining any deviation of 
the data from the models (vocabulary) used in the 
description. Even the simplest description, 
however, must also be of limited complexity; 
otherwise or it will not be understandable and thus 
not believable. 

By making the foregoing principles explicit, 
we can directly Invoke them (as demonstrated in the 
following section) to formulate effective 
algorithms for perceptual organization. 

IV   PRINCIPLES OF EFFECTIVE (ROBUST) 
MODEL-BASED INTERPRETATION 

INSTANTIATION OF THE THEORY:  SPECIFIC 
TECHNIQUES FOR CURVE PARTITIONING 

of partitioning 
any  competent 

What  underlies our choice 
criteria?    We  assert   that 
partitioning technique, regardless of which of the 
above paradigms Is employed, will Incorporate the 
following principles. 

In this section we offer two effprtlve new 
algorithms for curve partitioning (program listings 
available from the authors). In each case, we 
first describe the the algorithm, and later 
Indicate how it was motivated and consUuxned by 
the principles just presented. In both algorithms, 
the key ideas are: (1) to view each point, or 
segment of a curve, froa as man> ;'ers,:«: stives as 
possible,  retaining only those  partitiim points 
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receiving the highest level of multiple 
confirmation; and (2) Inhibiting the further 
selection of partition points when the density of 
points already selected exceeds a preselected or 
computed limit. 

Curve Partitioning 
Dlsconttnult y 

Based on Detecting Local 

In this sub-section we present a new approach 
to the problem of finding points of discontinuity 
("critical points") on a curve. Our criterion for 
success is whether we can match the performance of 
human subjects given the same task (e.g., see 
Figure 1). The importa'ce of this problem from the 
standpoint of the psychology of human vision dates 
back to the work of Attneave [1954]. However, it 
has long been recognized as a very difficult 
problem, and no satisfactory computer algorithm 
currently exists for this purpose. An excellent 
discussion of the problem may be found in in Davis 
[1977); other pertinent references Include 
Rosenfeld [1975], Freeman [1977], Kruse [1978], and 
Pavlldls [1980]. Results and observations akin and 
complementary to those presented here can be found 
In Hoffman [1982] and in Witkin [1983]. 

Most approaches equate the search for critical 
points with looking for points of high curvature. 
Although this Intulflon seems to be correct, it is 
Incomplete as stated (i.e., It does not explicitly 
take into account "explanation" complexity); 
further, the methods proposed for measuring 
curvature are often Inadequate In their selection 
of stability criteria. In Figure 2 we show some 
results of measuring curvature using discrete 
approximations to the mathematical definition. 

We have developed an algorithm for locating 
critical points that Invokes a model related to, 
but distinct from, the mathematical concept of 
curvature. The algorithm labels each point on a 
curve as belonging to one of three categories: 
(a) a point in a smooth interval, (b) a critical 
point, or (c) a point In a noisy Interval. To make 
this choice, the algorithm analyzes the deviations 
of the curve from a chord or "stick" that is 
iteratlvely advanced along the curve (this will be 
done for a variety of lengths, which Is analogous 
to analyzing the curve at different resolutions). 
If the curve stays close to the chord, points in 
the interval spanned by the chord will be labeled 
as belonging to a smooth section. If the curve 
makes a single excursion away from the chord, the 
point in the interval that Is farthest from the 
chord will be labeled a critical point (actually, 
for each placement of the chord, an accumulator 
associated with the farthest point will be 
incremented by the distance between the point and 
the chord). If the curve makes two or more 
excursions, points in the interval will be labeled 
as noise points. 

We should note here that "noisy" intervals at 
low resolution (large chord length) will have many 
critical points at higher resolution (small chord 
length). Figure 3 shows examples of curve segments 
and their classifications. The distance from a 
chord that defines a significant excursion (i.e., 
the width of the boxes In Figure 3) Is a function 

of  the expected  noise  along  the curve and  the 
length of the chord. 

At each resolution (i.e., stick size), the 
algorif-um orders the critical points according to 
the values in their accumulators and selects the 
best ones first. To^ avoid setting an arbitrary 
"goodness" threshold for distinguishing critical 
from ordinary • points, we use a complexity 
criterion. To halt the selection process, we stop 
when the points being suggested are too close to 
those selected previously at the given resolution. 
In our experiments we define "too close" as being 
within a quarter of the stick length used to 
suggest the point. 

After the critical points have been selected 
at the coarsest resolution, the algorithm is 
applied at higher resolutions "-o locate additional 
critical points thcC are i Ude the regions 
dominated by previously selected points. Figure 4a 
shows the critical points determined at the coarest 
level (stick length of 100 pixels; approximately 
1/10 of the length of the curve). Figure 4b shows 
all the critical points labeled with the stick 
lengths used to determine them. (We note that this 
critical point detection procedure does not locate 
inflection points or smooth transitions between 
segments, such as the transition from an arc of a 
circle to a line tangent to the circle.) 

The above algorithm appears to be very 
effective, especially for finding obvious partition 
points and in not making "ugly" mistakes (i.e., 
choosing partition points at locations that none of 
our human subjects would pick). Its ability to 
find good partition points is based on evaluating 
each point on the curve from multiple viewpoints 
(placements of the stick) — a direct application 
of the principle of stability. Requiring that the 
partition points remain stable under changes in 
resolution (i.e., small changes In stick length) 
did not appear to be effective and was not 
employed; in fact, stick length was altered by a 
significant amount in each iteration, and partition 
points found at these different scales of 
resolution were not expected to support each other, 
but were assumed to be due to distinct phenomena. 

The avoidance of ugly mistakes was due to our 
method of limiting the number of partition points 
that could be selected at any level of resolution, 
or in any neighborhood of a selected point (i.e., 
limiting the explanation complexity). One concept 
we invoked here, related to that of complete 
explanation, was that the detection procedure could 
not be trusted to provide an adequate explanation 
when more than a single critical point was In its 
field of view, and in such a situation, any 
decision was deferred to later iterations at higher 
levels of resolution (i.e., shorter stick lengths). 

Finally, in accord with our previous 
discussion, the algorithm has two free parameters 
that provide control over its definition of noise 
(i.e., variations too small or too close together 
to be of interest), and its willingness to miss a 
good partition point so as to be sure It does not 
select a bad one. 
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B.  Curve Partitioning Based and DetectIng Process 
Homogenlty 

To match human performance In partitioning a 
curve, by recognizing those locations at which one 
generating process terminates and another begins, 
Is orders of magnitude more difficult than 
partitioning based on local discontinuity analysis. 
As noted earlier, a critical aspect of such 
performance is the size and effectiveness of the 
vocabulary (of a priori models) employed. 
Explicitly providing a general purpose vocabulary 
to the machine would entail an unreasonably large 
amount of work -- we hypothesize that the only 
effective way of allowing a machine to acquire such 
knowledge is to provide it with a learning 
capability. 

For our purposes in this investigation, we 
chose a problem in which the relevant vocabulary 
was extremely limited: the curves to be partitioned 
are composed exclusively of straight lines and arcs 
of circles. (Two specific applications we were 
interested in here were the decomposition of 
silhouettes of industrial parts, and the 
decomposition of the line scans returned by a 
"structured light" ranging device viewing scenes 
containing various diameter cylinders and planar 
faced objects lying on a flat surface.) Our goal 
here was to develop a procedure for locating 
critical points along a curve in such a way that 
the segments between the critical points would be 
satisfactorily modeled by either a straight-line 
segment or a circular arc. Relevant work 
addressing this problem has been done by Montanari 
[1970], Ramer [1972], Pavlidls [1974], Liao [1981], 
and Lowe [1982]. 

Our approach is to analyze several "views" of 
a curve, construct a list of possible critical 
points, and then select the optimum points between 
which models from our vocabulary can be fitted. 
For our experiments we quantized an analytic curve 
at several positions and orientations (wit respect 
to a pixel grid), then attempted to recover the 
original model. 

For each view (quantization) of the curve we 
locate occurrences of lines and arcs, marking their 
ends as prospective partition points. This is 
accomplished by randomly selecting small seed 
segments from the curve, fitting to them a line or 
arc, examining the fit, and then extending as far 
as possible those models that exhibit a good fit. 
After a large number of seeds have been explored in 
the different views of the curve, the histogram 
(frequency count as a function of path length) of 
beginnings and endings is usea to suggest critical 
points (in order of their frequency of occurrence). 
Each new critical point, considered for inclusion 
in the explanation of how the curve is constructed. 
Introduces two new segments which are compared to 
both our line and circle models. If one or both of 
the segments have acceptable fits, the 
corresponding curve segments are marked as 
explained. Otherwise, the segments are left to be 
explained by additional critical points and the 
partitions they imply. The addition of critical 
points continues until the complete curve is 
explained. Figure 5 shows an example of the 
operation of this algorithm. 

While admittedly operating in a relatively 
simple environment, the above algorithm exhibits 
excellent performance. This is true even in the 
difficult case of finding partition points along 
the smooth interface between a straight line and a 
circle to which the line is tangent. 

Both basic principles, stability and complete 
explanation, are deeply embedded in this algorithm. 
Retaining only those partition points which persist 
under different "viewpoints" was motivated by the 
principle of stability. Our technique for 
evaluating the fit of the segment of a curve 
between two partition points, to both the line and 
circle models, requires that the deviations from an 
acceptable model have the characteristics of 
"white" (random) noise; this is an instantiation of 
the principle of complete explanation, and Is based 
on our previous work presented in Bolles [1982]. 

VI DISCUSSION 

We can summarize our key points as follows: 

* The partition problem does not have a 
unique definition, but is parameterized 
with respect to such items as purpose, data 
representation, trade-off between different 
error types (false-alarms vs misses), etc. 

* Psychologically acceptable partitions are 
associated with an Implied explanation that 
must satisfy criteria for accuracy, 
complexity, and believabillty. These 
criteria can be formulated in terms of a 
set of principles, which, in turn, can 
guide the construction 
partitioning algorithms (i.e. 
necessary conditions). 

of  effective 
they provide 

One implication contained in these 
observations is that a purely mathematical 
definition of "intrinsic structure" (i.e., a 
definition justified solely by appeal to 
mathematical criteria or principles) cannot, by 
Itself, be sufficiently selective to serve as a 
basis for duplicating human performance in the 
partitioning task; generic partitioning (i.e., 
partitioning in the absence of semantic content) is 
based on psvchological "laws" and physiological 
mechanisms, as well as on correlations embedded in 
the data. 

In this paper we have looked at a very limited 
subset of the class of all scene partitioning 
problems; nevertheless, it is interesting to 
speculate on how the human performs so effectively 
in the broader domain of Interpreting single Images 
of natural scenes. The speed of response in the 
humans ability to interpret a sequence of Images of 
dissimilar scenes makes it highly questionable that 
there is some mechanism by which he simultaneously 
matches all his semartic primitives against the 
Imaged data, even if we assume that some 
Independent process has already presented him with 
a "camera model" that resolves some of the 
uncertainties in image scale, orientation, and 
projective distortion. How does  the human  index 
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Into the large  semantic  data  base to  find  the 
appropriate mutJels for the scene at hand? 

Consider the following paradigm: first a set 
of coherent components Is recovered from the Image 
on the basis of very general (but parameterized) 
clustering criteria of the type described earlier; 
next, a relatively small set of semantic models, 
which are components • many of the objects In the 
complete semantic vocabulary, are matched against 
the extracted clusters; successful matches are then 
used to index into the full data base and the 
corresponding entries are matched against both the 
extracted clusters and adjacent scene components; 
these additional successful matches will now 
trigger both iconic and symbolic associations that 
result In further matching possibilities as well as 
perceptual hypotheses that organize large portions 
of the image into coherent structures (gestalt 
phenomena). 

If this paradigm is valid, then, even though 
much of the perceptual process would depend on an 
individual's personal experience and immediate 
goals, we might still expect "hard wired" 
algorithms (genetically programmed, but with 
adjustable parameters) to be employed in the 
initial partitioning steps. 

In this paper, we have attempted to give 
computational definitions to some of the organizing 
criteria needed to approach human level performance 
in the partitioning task. However, we believe that 
our more Important contribution has been the 
explicit formulation of a set of principles that we 
assert must be satisfied by any effective procedure 
for perceptual grouping. 

REFERENCES 

1. Attneave, F,, "Some Aspects of Visual 
Perception," Psychol. Rev., Vol. 61, pp. 183- 
193 (1954). 

2. Bolles, R.C., M.A, Fiscliler, "A RANSAC-based 
Approach to Model Fitting and Its Application 
to Finding Cylinders in Range Data," in Proc. 
of the Seventh International Joint Conference 
on Artificial Intelligence, Vancouver, B.C., 
Canada, pp. 637-643 (August 1982). 

S. Kruse, B., C.V.K. Rao, "A Matched Filtering 
Technique for Corner Detection," in Proc. of 
the Fourth International Joint Conference on 
Pattern Recognition, Kyoto, Japan, pp. 642-644 
(November 1978) . 

7. 

9, 

11. 

Llao, Y., "A Two-Stage Method of Fitting Conic 
Arcs and Straight-Line Segments to Digitized 
Contours," in Proc. of the Pattern Recognition 
and Image Processing Conference, Dallas, 
Texas,   pp.   224-229   (August  1981). 

Lowe, D.C, T.G. Binford, "Segmentation and 
Aggregation; an Approach to Figure-Ground 
phenomena,"       Proceedings of       the Inage 
Understanding Workshop, Stanford University, 
Stanford,   California   (September  1982). 

on    Minimal     Length 
to       a       Digitized 

Montanari,   U.,     "A      Note 
Polygonal       Approxleatlon 
Contour,"  Communications    of  the ACM,  Vol.   13, 
pp.   41-47  (January  1970). 

10.     Pavlidis,  T.,   "Algor'thms     for Shape     Analysis 
of Contours    and  Waveforms,"  IEEE Transactions 
on Pattern    .'.nalysls and Machine  Intelligence, 

pp.   301-312  (July 1980). Vol.   PAMI-2, 

Pavlidis,   T., 
Plane Curves," 
Vol.   C-23,   pp. 

S.L. Horowitz, "Segmentation of 
IEEE Transactions on Computers, 
860-870  (August  1974). 

12. Ramer, U., "An Iterative Procedure for the 
Polygonal Approximation of Plane Curves," 
Computer Graphics and Image Processing, 
Vol.   1,   pp.   244-256  (1972). 

13. Rosenfeld, A., J.S. Weszka, "An Improved 
Method of Angle Detection on Digital Curves," 
IEEE Transactions on Computers, Vol. C-24, 
pp.  940-941  (September  1975). 

14. Wltkin, A., "Scale-Dependent Qualitative 
Signal Description,"   (in preparation,   1983). 

3. Davis, L.S., "Understanding Shape: Angles and 
Sides," IEEE Transactions on Computers, 
Vol.  C-26,   pp.   236-242  (March 1977). 

4. Freeman, H., t..S. Davis, "A Corner-finding 
Algorithm for Chain-Coded Curves," IEEE 
Transactions on Computers, Vol. C-26, pp. 297- 
303  (March 1977). 

5. Hoffman, D.D., W.A. Richards, "Representing 
Smooth Plane Curves for Recognition: 
Implications for Figure-Ground Reversal," in 
Proc. of the Second National Conference on 
Artificial Intelligence, Pittsburgh, 
Pennsylvania,   pp.   5-8   (August  1982). 

■ 

229 

.     .     .   ■ ■■'. -    -■.■-.>■. 



--  .-   - 
■ -■ 

TASK 1; Select AT MOST 5 [loints to describe this line drawing so that 
you will be able (o reconstruct it as well as possible 10 years 
from now, given just the sequence of selected points. 

Since five points were sufficient to tonn an approximate convex hull 
of the figure, virtually everyone did so, selecting the 5 points shown below. 

.« 

TASK 2: Assume that a friend of yours is going to be asked to recognize 
this line drawing on the basis of the information you supply him 
about it. He will be presented with a set of drawings, one of 
which will be a rotated and scaled version of this curve. You are 
only allowed to provided him with A SEQUENCE OF AT MOST 
5 POINTS.  Mark the points you would select. 

Since 5 points were not enough to outline all the key features of the 
figure, the subjects had to decide what to leave out. They seemed to adopt 
one of two general strategies: lal use the limited number of points to describe 
one distinct feature well (illustrated by the selection on the left), or (b| use 
the points to outline the basic shape of the figure    (shown on the rightl. 

TASK 3: This line drawing was constructed by piecing together segments 
produced by different processes. Please indicate where you think 
the junctions between segments occur AND VERY BRIEFLY 
DESCRIBE EACH SEGMENT. Use as few points as possible, 
but   no more than 5, 

The constraint of being limited to 5 points forced the subjects to con- 
sider the whole curve and develop a consistent, global explanation. The 
basic strategy seemed to be a recursive one in which they first partitioned the 
curve into 2 segments by placing a breakpoint at position 1 and another one 
at either position 2 or position 3 to separate the smooth curves from the 
sharp corners. Then they used the remaining points to subdivide these seg- 
ments according to a vocabulary they selected that included such things as 
triangles, rectangles, and sinusoids. For example, almost everyone placed 
breakpo.nts at positions 3 and 4 and described the enclosed segment as part 
of a triangle. Similarly the segment between positions 1 and 5 was generally 
described as a decaying sinusoid. It is interesting to note that in task 1 the 
subjects consistently placed a point close to position 5 but always farther to 
the right, because they were trying to approximate a convex hull. The dif 
ferent purposes led to different placements. 

(a) This figure shows the results of applying the "improved ; ngle detection" 

procedure described in Rosenfeld [19751 to a digitized version of the 

curve in Figure 1. The procedure works quite well, except for the intro- 

duction of a breakpoint in the middle of the right side and the merging 

of two small bumps at the right of the sinusoidal segment. 

(b) However, if we extract a portion of the curve and apply the algorithm, 

it introduces '.everal additional breakpoints because the change in curve 

length causes some of the algorithm parameters to change. 

FIGURE  2       ESTIMATION OF CURVATURE   FROM 
DISCRETE APPROXIMATIONS 

.- •^ 

FIGURE   1       EXPERIMENTS  IN WHICH  HUMAN SUBJECTS 
WERE ASKED TO SEGMENT A CURVE 

FIGURE 3      EXAMPLE CURVE SEGMENTS AND 
THEIR  CLASSIFICATIONS 
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(a)    Results of the analysis at the coarsest resolution   (i.e., with a stick length 

of 100 pixels,  which is approximately a tenth of   he length of the curvel 

(b)   Results from all resolutions  (100,80,40,20,15,10) 

(c)   Additional examples of the 'ocal discontinuity analysis 

FIGURE  4     LOCAL  DISCONTINUITY  PARTITIONING 
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END 

BEGINNING 

BEGINNING END 
I 

(a)   An analytic curve consisting of two straight segments 
and a circular arc 

(b) A multiply explained segment of the curve formed by 
the extension of the arc and one of the line segments 
to include as many compatible points as possible 

(c)   The smoothed  histogram  of the starting joints of the segments 

detected along the curve 

(d)  The smoothed histogram of the ending points of the segments 

detected along the curve 

■   .- 
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(e) The breakpoints suggested by the histograms. The breakpoint 
between the arc and the line was placed at the center of the mul- 

multiply explained region,  which is bounded by asterisks. 

FIGURE  5    PROCESS PARTIONING 
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Abstract 
In this paper we present an implementation of 

hierarchical scene matching in the VISIONS image 
processing cone - a pyramidal processing architecture. The 
problem of scene matching is common to many applications 
in machine vision including registration, motion detection, 
and stereo vision. Scene matching by feature correlation 
can solve this problem but sufers from computational 
expense and failure in highly textured Lnages. Hierarchical 
correlation provides both a cheaper matching algorithm and 
a coarse-to-fine matching strategy that overcomes "textura!" 
problems by matching on gross image structures first. 
These methods fit naturally into the processing cone or 
pyramid architectures that have been proposed for image 
processing. We present a discussion of the architecture of 
the processing cone, the construction of image pyramids, 
and the use of these pyramids in hierarchical correlation. 
A set of experiments illustrates the operation of these ideas. 

0.0    Introduction 

The problem of matching digital images by correlation 
techniques is an important and well known problem in 
computer vision and pattern recognition. It has applications 
in image registration, object detection by template matching, 
and motion and stereo analysis. This paper describes a 
hierarchical approach to this problem, and includes some 
results on noisy real world images. 

While there have been a number of studies of correlation 
techiques for matching images [1,14], the two basic problems 
regarding computational costs and false match have not 
been solved. If the image displacements are limited to be 
less than D pixels in either direction, ttsen there are 
(2D + I)2 possible test locations for matching at each pixel. 
The problem of false matches may arise for several reasons. 

1. This research  was support^ in part by DARPA  under 
Grant N00014-82-K-0464,     / 

High frequency texture in the image may provide enough 
repetitive pattern that a number of different matches may 
be considered equally valid by the correlation technique. 
On the other hand the lowest frequencies may be due to 
illumination differences and may bias the correlation 
measure away from the veridical match. Different kinds of 
normalizations can help overcome this problem, but only at 
greater computational cost [6]. In order to avoid false 
matches it may be necessary to use large sample windows, 
which also increases this cost. 

The hierarchical matching technique described here 
overcomes both of these problems. First, the matching is 
done initially based on the larger structures in the images 
(since they become prominent at low frequencies), providing 
ball-park estimates for matching higher frequency 
information at levels below. This overcomes the problems 
due to high frequency textures. Secondly, the coarse-fine 
strategy restricts the search to 3 x 3 areas at each level 
significantly reducing the computational cost. 

Basically the technique consists of matching band-passed 
versions of the images at different levels of resolution. The 
filters applied approximate convolution with V2G operators 
of different sizes.1 The size of the Gaussian increases as 
the resolution becomes coarser, in such a way as to limit 
the frequency content in the image to avoid aliasing due to 
the sampling rate at each level of resolution. The 
elimination of low-frequencies in the image helps overcome 
any problems due to illumination and scaling differences. 

While this sort of approach to improving matching has 
been discussed by other authors [15,17,12,9,31, to our 
knowledge only Wong and Hall have applied it to real 
images and studied the issues in doing so. Our techniaue, 
which more closely resembles the one outlined by Burt [3], 
differs significantly from the approach of Wong and Hall. 

1. The   V2G   (read   del-two-g)   operator   is   the   Laplacian 
applied to the result of convolving with a Gaussian. 
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1.0    The PrccessHg Cone Structure and Innaje 
Pyramids 

In our hierarchical algorithm L-nages are repr?sented at 
varying levels of spatial resolution. Coarss resolutioo 
images are obtained by low pass filtering and sub-sampüng. 
Normally the filtering is done by convolution smoothing 
with Gaussian-like kernels. This low-pass filtering allows us 
to sub-sample these images and store them in coarse grids 

1.1    The processing cone 

The natural architecture for these imcse pyramids is the 
processing cone [8], a multilayer, multiresolution organization 
of image planes upon which inter- and intra-layer image 
operators are applied (see Figure 1). Operntions which 
produce coarse images from finer ones are called reduction':, 
while those that produce finer resolution images from coarse 
ones are called projections. This hierarchical data structure 
has also appeared as pyramids in [";]. Similar 
multiresolution reprernntations have been used before in 
scene matching [17,13,12]. 

RutOlul.on LU'I'I 

V   l.wUutlnpn (unl 
$   Proicclien (Oown) 

Figure 1: The processing cone. 

This parallel array computer is hierarchically organised 
into layers of decreasing spatial resolution. Information 
within the cone is transformed by means of functions 
operating on local windows of data. Cone algorithms 
are specified as sequences of these parallel functions 
applied in one of three processing modes: reduction (up 
the cone), projection (down the cone), and iteration (at 
the same level). 

The processing cone is composed of levels 0 to L, each 
level being 2L pixels on a side. When we place two 
adjacent levels in registration, each coarse pixel overlays 
four fir.er pixels. We will call these pixels fathers and sons 
respectivdy. These pixels cover the same square area of 
the imag's space. Going from one level to a coarser we 
get  a four to one  reduction in data.    The highest spatial 

frequency that can be represented at a coarse level 
(corresponding to the Ny<;uist rate) is half that which can 
be represented at the next finer level. Thus for each step 
up the cone (coarsening) the spatial frequency bandwidth 
(relative to the finest grid) is cut in half. 

1.2    Low pass pyramids 

When we fill the cone with reduced resolution copies of 
the image by subsampiing, low pass filtering must be don 
to prevent aliasing. Aliasing occurs when the one-of-fcur 
subsampiing that gives the next coarser level produces 
spurious image components for any spatial frequency in the 
upper halves of the frequency spectrum of the image being 
sampled. The simplet low pass filter v.e can use is 
obtained by taking the average of the four sons of a coarse 
pixel (as in [16] and [17]). 

A slightly more complicated family of reductions has 
been proposed by Burt [2]. He has approached the 
inter-level low-pass filter design by considering the net 
convolution obtained when a given reduction is applied at 
progressively higher (coarsei) levels. For example, the 
two-by-two averaging reduction when applied twice is 
equivalent to a four-by-four averaging reduction up two 
levels in the cone. Continued application of two-by-two 
averaging up the cone always results in "flat" equivalent 
convolution masks (i.e. unweighted averaging). Burt shows 
hew by using slightly larger four-by-four kernels the 
equivalent convolution masks can be made to approximate 
Gaussian-like low-pass filters. We have used the following 
such kernel in most of our experiments 
[1 3 3 1 ] x [1 3 3 \f} The result of applying this 4x4 
operator on an image appears in Figure 2. 

Figure 2: Low pass pyramid. 

Levels 4 through 7 of the low pass pyramid obtained 
from the mandrill eye image by applying the 4x4 
reduction operator [1 3 3 1] x [1 3 3 I]1. 

1   [ • ]  is a  column vsctor,  'x'  is  the outer product 
operation, and f is the transpose operaor. 
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13    Band pass pyramids 2.0    Correlation Matching 

In the next section we will see that correlation matching 
is better performed when low spatial frequencies (relative to 
the grid size) have been filtered out. Such high-pass 
filtering performed at ;ach level of a low pass pyramid 
effectively produces a band-passed image at each level. 

A   good  choice   for  this  high-pass  filtering  is  a  discrete 
1 1/4    1/2    1/4 

Laplacian such as      1-4    1      or      172     -3     1/2.    Such a 
1 1/4    1/2    1/4 

mask can be applied to each level of the low-pass pyramid. 

A second method for generating a band-pass is liurt's 
Laplacian pyramid [3,5]. Here the fact that a V2G can be 
approximate d by a difference of Gaussians is used to 
effectively compute band-pass filters by differencing adjacent 
levels of a Gaussian (low pass) pyramid. The difference is 
taken between the finer level and an appropriate projection 
of the coarser level. Figure 3 shows the Laplacian pyramid 
derived from the Gaussian pyramid in Figure 2. 

Finally, a third method for computing a band-pass 
pyramid, is to perform a Laplacian at the finest level and 
then use the high-pass output as the base of a low-pass 
pyramid. This method is used in the optic fundus image 
experiments in section 5.2 . Some of our recent theoretical 
work has suggested that this method has an aliasing 
problem, but we have not yet seen it in our experiments. 
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Figurs 3: Band pass pyramid. 

Levels 4 through 7 of the band pass pyramid obtained 
from the low pass pyramid in Figure 2. 

In correlation matching a sample window about a point in 
one image is compared to trial windows in the second 
image. The point in the second image whose trial window 
gives the optimal correlation value is chosen as the match 
point. This can be considered a special case of the more 
general method of feature matching. An example of 
alternative features are the edges that were used in Marr 
and Poggio's matching algorithm [12]. 

There are more than a few variations of the basic 
correlation measure [e.g., see 6]. The basic correlation from 
which the family of measures derives its name is the sum 
of the pairwise product of corresponding pixels in two 
windows. Common variations include 1) mean normalized 
correlation, in which the mean of the values in each 
window is subtracted from each value; 2) variance 
normalized correlation, in which the correlation sum is 
divided by the varianre of the two windows; 3) sum of 
squared differences, and 4) sum of the magnitude of 
differences. 

Mean normalized correlation is equivalent to basic 
correlation performed after a specific pre-filtering of the 
two images. The filter (or convolution mask) used in this 
case is the difference of a "flat" averaging mask and the 
identity mask (a discrete impulse). As such it can be 
considered as a high-pass filter and is thus related to other 
high pass filters such as the liscrete Laplacian. However, 
the frequency response of the subtract-local-mean filter is 
not as flat at high frequencies as that of discrete 
Laplacians. For this reason, we are led to consider 
Laplacian prc-filtered basic correlation as a substitute for 
mean normalized correlation. 

In our experiments we have used 8x8 sample windows. 
This choice is intended to provide a tradeoff betweem small 
windows which are more immune to occlusion and 
distortion problems and large windows which capture a 
large amount of matchable structure. We have not yet 
experimented with other sample window sizes. 

3.0    Search Strategy 

One way of looking at matching is as a process of 
searching for the point that optimizes some measure of 
similarity. In our case the measure is the local correlation 
measure between the two images. The strategy adopted for 
searching for the point of match (i.e., the point where the 
measure is maximized) should not only attempt to decrease 
the number of false matches, but also reduce the 
computational cost involved in searching. 

3.1    3 by 3    Search 

The search strategy adopted in our process begins at a 
coarse level where the mwimum displacement is within one 
pixel  in  both  directions  (see  Figure 4).     Let  this be level 
L..    The search is conducted in a 3 x 3 area around the 
point of interest at level L, In the band-psss images at that 
level. The resulting displacements at this level (along each 
axis) are cither -1, 0, or 1. The value obtained here is 
within 1/2 pixel of the correct displacement at this level. 
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At each level below (say Lj), the displacement values for 
a given point are projected down from its father pixel in 
the next level above. Due to the doubling of resolution 
(thus halving the pixel width) this value is double the 
value of the father pixel. This establishes the displacements 
within one pixel accuracy in either direction at this level 
(Lj). Searching in a 3 x 3 area at this level refines the 
displacement to within 1/2 pixel accuracy at this level The 
process is repeated up to and including the finest level of 
resolution of the image. 

Figure 4: 3 by 3 Karcb. 

(a) Displacement vector at level N 
(b) Displacement vector projected to its four sons 

at level N+l (only one of the four sons is shown) 
(c) Search in a 3 x 3 area at level N + 1 

(search area shown in double lines) 
(d) Updated displacement vector 

3.2    CompuUtloiul Costs 

The computational advantages of hierarchical versus single 
level search strategies can be measured in two ways. We 
can consider how many points are searched in arriving at a 
final match at the finest level. Each ancestor of the final 
point matched will contribute to this measure. On the 
other hand, we can measure the cost of obtaining matches 
at all points at the finest level. The former measure 
should be used when matching is confined to a relative 
sparse set of interesting points, while the latter is used 
when matching is done almost everywhere. Since each of 
these case are interesting, we will look at both. 

First, let us consider the comparative cost of arriving at 
a single match at the finest level. Let D be the maximum 
displacement (measured at the finest level). Then the 
initial coarse search will be performed !og2D levels above 
the    finest    level.      The    number   of   points   searched   is 

(Iog2D + 1) * 9, because the search at each level is 
restricted to a 3x3 neighborhood and there are 
log2D + 1 levels for search. On the other hand, a 
correlation process searching at one level through all points 
closer than the maximum displacement uses (2D + Vf 
points for comparison. 

Now consider the cost of computing matches at all points 
in the finest level image. Let the finest level image 
contain N: points and, as above, let D be the maximum 
displacement. Single level correlation would then search 
N2(2D + \f  points.     Hierarchical  correlation   would  search 

9 • (N2 f N2/4 + N2/16 + ....) points, where thc 
summation is over all levels at which matching takes place. 
However high those levels go, the sum is always less than 
that of the corresponding geometric sequence, viz. 4N2/3. 
Thus the number of points searched hierarchically is 12N2. 
Table 1 shows a comparison of costs. 

D H S/H S/12 

1 9 9 1.0 
2 25 18 1.4 2.1 
4 81 27 3.0 6.75 
8 289 36 8.0 24.1 

16 1089 45 24.2 90.1 
32 4225 54 78.2 352. 

Table 1: Cost of single level vs. hierarchical search. 

This table compares hierarchical and single level search 
strategies. D is the maximum displacement, 
S = (2D+1)2 is the cost of single level search, 
H = 9(log2D + 1) is the cost of single match 
hierarchical search, S/H is their relative cost factor. 
S/12 is the relative cost factor between single level and 
hierarchical full matching (i.e. at ail points). 

3J    Existence and Uniqueness of Matches 

The discussion in section 3.1 shows how the technique of 
coarse-fine search strategy automatically ensures that the 
correct match must exist within the 3x3 local search 
window at each level. The filtering and subsampling 
orocesses ensure that the highest frequency at a particular 
level corresponds to a wavelength of two pixels at that 
level. Since the search is restricted to 3 x 3 windows at 
that level, we have some confidence that the match 
obtained within this window is unique. Also, the 
elimination of lower frequencies at that level help provide 
sufficient variation in the correlation measure within this 
window. 

Strictly speaking, this argument is valid only for a one 
dimensional version of this process. In the two dimensional 
case there is no high frequency content along straight 
edges. This can lead to nearly constant values of the 
correlation measure along these edges, thus leading to false 
matches. This, in fact, leads us to the use of interest 
operators to eliminate points that can potentially lead to 
false matches. 

• 
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4.0    The Problem of False Matches 

The match for a point obtained by the correlation 
technique may not always correspond to it's environmental 
match. There are three basic reasons for this. Firs», 
correlation only deals with translational disparity (in the 
image plane) and so should break down with increasing 
rotational and scaling components in the disparity. 
However, as the optic fundus image experiments show, 
small rotations can be dealt with. Secondly, in practical 
imaging situations there can be significant amounts of noise 
in the images. Most often this would most adversly affect 
matching at finer resolutions. A third cause of false 
matches is the occurence of occlusions in an image. Two 
problems can arise here 1) points in one image may have 
no counterpart in the other image; 2) points on an 
occlusion boundary have neighboring windows which change 
identity from frame to frame. 

4.1    Interest operators 

Interest operators are designed to pick out points for 
which matches can be found w::h a high reliability. This 
detection of matchability is the key element of an interest 
operator. They can also be used to restrict processing to a 
small subset of all the image points to reduce computation 
costs. On serial machines this is certainly useful. 
However, on image parallel machines such as the processing 
cone, we need only be concerned with matchability. 

In order that a point in one image image be matchable 
in another image, the point must be matchable with itself. 
For this to be true the local autocorrelation function must 
possess a strict local maxima. A sufficient condition for 
this is the occurrence of a strong corner at a point. 
Kitchen and Rosenfeld [11] present an analysis of various 
corner finding algorithms and these algorithms yield very 
good interest operators. Moravec [13] gives an interest 
operator which attempts to compute the sharpness of an 
approximate autocorrelation function directly. 

In our hierarchical correlation experiments we have taken 
two approaches to applying interest operators. In the first 
approach, an interest operator is applied at the finest level 
of the first frame to select the points to be matched, and 
then a logical pyramid is formed by using "OR" in the 
4x4 reduction operation. Matching is only performed at 
those points which have a value of TRUE in this pyramid. 
This method is comparable to Moravec's search strategy 
[13]. 

In the second approach, interest operators are applied at 
all levels. In thi. case there can be interesting pixels with 
un-interesting fathers. For these pixels, we can do one of 
two things: 1) the search can be done in a larger search 
area, or 2) a displacement estimate can be obtained based 
on neighboring pixels 

We are currently studying both approaches but we only 
present the first approach in the experiments below. One 
of the surprising results of our experiments is that even at 
points which appear to be "uninteresting", correct matches 
are obtained. Depending on the domain of application, our 
experiments show that a large amount of computation to 
find interesting points may be unnecessary. 

5.0    Experiments 

5.1    Mandril! image experiments 

In this experiment we took the standard USC image of a 
mandrill and extracted a 1282 subimage of it (Figure 5a). 
We created a second image by adding white gaussian ncise 
to this image and translating it 5 pixels up and 7 pixels to 
the right with respect to the first image (Figure 5b). The 
standard deviation of the noise added was 25.0 which is 
10% of the intensity range of the image. 

We conducted two experiments with these images. Th» 
first was the hierarchical matching process. The Laplacian 
pyramids were constructed using Burt's techniques. The 
matching at each level was done using an 8 x 8 sample 
window at all points in the image. The results at the 
various levels are shown in Figure 6 and Figure 7. 
Figure 6 shows results at levels 4,5,6, and 7. At each level 
the displacement estimates are shown at a sampling of 64 
points. 

Figure 5: Mandrill eye imeges used in the first experiment. 

(a) A 1282 piece of the larger mandrill image. 
(b) A similar piece, translated 5 puteis up and 7 to the 
right, with white gaussian noise added (standard 
deviation = 10% of full range). 

In Figure 7 two-dimensional histograms of the row versus 
the column components of the displacements are shown for 
each of level 4 through 7 (Figure 7, a through d). Note, 
in Figure 7d, the high count found in the bucket 
corresponding to the correct displacement of (-5,7). The 
histogram for level 7 (Figure 7d) indicates that ab >ut 87% 
of the displacement values are exact. This shows that the 
hierarchical process is quite insensitive to noise. 

In the second experiment, we attempted to match these 
two images using a correlation process all at one level. In 
doing this we used 8x8 sample windows and searched in 
a 17 x 17 search area around each pixel (the actual 
displacements of -5,7 will fall within this range). The 
results of this process are shown in Figure 8. Note the 
greatly reduced accuracy of this method (53% correct). 
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Figure 6: Computed dLspUcemeDt vectors. 

The displacement vectors at levels 4 through 7 obtained 
in the Mandrill experiment. Only a 642 san.ple of 
vectors is shown at each level 
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Figure 7: Distribution of displace.-neat vectors. 

The histograms of the row and column components of 
the displacements obtained in the Mandrill experiment. 
Levels 4 through 7 have been shown. Note the peak at 
(-5,7) in figure 7d. 
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Figure 8: Single level corretation. 

Results  of  the  variance  normalized correlation  applied 
to the Mandrill images (Figure 5). 
(a) shows the displacement vectors and  (b) shows the 
displacement histograms. 
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5.2    Optic fundus image experimehb 

The next problem to which we applied the hierarchical 
matching algorithm was that of registering two fluorescein 
angiogram images of the optic fundus (sec Figure 9), 
These images were obtained from Paul Nagin at the Tufts 
New England medical center and are digitized as 1282 

images. The problem is to register two images taken at 
the beginning and at the peak of dye filling. Areas which 
show very little change are recognized as regions where no 
filling of the dye is taking place. This measurement can 
then be used in the prognosis of glaucoma. Due to severe 
contras: changes over this time interval it is necessary to 
register a temporal sequence of 8 to 10 images. 

In this experiment the finest level image was bandpass 
filtered    using a     V2G    convolution.      The    Gaussian 
convolution used ha' a standard deviation of two pixels and 
introduces some smoothing at the finest level. In fact, we 
implement this convolution using the Fast Fourier Transform 
with the filtering done in the frequency domain. A 
pyramid is formed using the 72G filtered image as the 
base. In Figure 10 we show the results of applying the 
matching algorithm at the bottom four levels. Again, we 
have subsampled the vector field for display purposes. 

Figure $: Optic fundus test Images. 

These   are   real   images  taken   at   two   successive  time 
instants.    Note the large change in mean intensity. 

For th- images used in this experiment any three 
dimensional effects due to the movements of the eye can 
be safely ignored, so the misregistration is due to a rijid 
motion in the plane (viz., eye n-vovements and 
mis-alignments in the digitization procev;. The problem 
then is to find the rigid motion which will bring the 
images into register. 
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Figure 10: Computed displacement vectors. 

Fhe displacement vectors at levels 4 through 7 obtained 

in the optic fundus experiment. Note that the 
displacement fields at have a distinct rotational 
component. 
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To  measure the accuracy of the matching algorithm we 
generated    a    vector    field by    computing    the    rigid 
transformation that best fit the computed displacement field. 
This field was subtracted from the displacement computed 
by the matching algorithm. A two dimensional histogram 
of the row versus the column components of the difference 
vectors is shown in Figure 11. Figure 12 shows the same 
type of histogram with the differences being taken only at 
a set of interesting points. In this case 76 interesting points 
were     computed     at     the     finest     level using     the 
Kitchen-Rosenfeld comer finder [11] and then "OR-ing" the 
points up the pyramid. 

The central bucket of the histograms corresponds to an 
error of at most 1/2 pixel in either of the row or column 
directions. About 35 percent of the points in the histogram 
of Fiuure 11 are in the central bucket whereas in 
Figure 12, approximately 55 percent of the points are in tLs 
central bucket. This indicates that better accuracy can be 
obtained using an interest operator. However, the 
concentration of points around the central bucket in 
Figure 11 suggests that global statistics of the displacement 
field can be accurately obtained without the use of an 
inte.est operator. 

6.0    Future Dircclicns 

Our experiments have shown that hierarchical matching 
provides an excellent method for the compulation of 
displacement fields. However, a thorough evaluation of the 
effects of various parameters and algorithmic options, on the 
accuracy of the computed fields has yet to be carried cut. 
These include: 

1. The size of the sample window; Can windows as small 
as 3 x 3 provide adequate matches ? 

2. The shape of the sample window; How do 
center-weighted windows (e.g., Gaussian windows [6]) 
improve accuracy when the disparity fi;ld is not 
smoothly varying ? 

3. The method of computing the bandpass pyramids; This 
issue has two parts: a) effect of the method on »he 
accuracy of the displacement field; and b) efficient 
computational implementations 

4. The use of normalued correlation; Bandpass filtering 
and the small 3x3 search areas seem to eliminate the 
need to do normalized correlation. This may not 
remain true if sample windows smaller than 8 x 8 are 
used. 
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Figure 11: Distribution of difference vectors. 

The error histogram obtained by differencing the 
computed displacement field from the field generated 
by the translational and rotational paramters derived 
from the computed field. 
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Figure 12: Distribution at interesting points. 

Using the same data as in previous figure, this 
histogram was obtained by including only the 
displacement vectors at interesting points. 
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While the absolute accuracy (i.e, percent correct) of the 
displacement field is importrnt, the degree and nature of 
tolerance of errors greatly depend on its intended 
application. For example, in image registration applications, 
the statistical distribution of errors is more «•ignificant than 
errors at specific points. On the other hand, some of the 
structure from motion algorithms require highly accurate 
displacements at a few speicific points. Hence, a study of 
the evaluation criteria of the displacement fields with 
careful consideration of the application domains is an 
important area of future work. 

Another important research puMem is a systematic study 
of interest operators and sharpness measures. It is 
necessary to understand how they relate to the degree of 
confidence in the displacements obtained at image points. 
This issue is also linked to the issue of how to obtain an 
dense accurate displacement field from a sparse field (i.e, 
one computed only at points of high confidence) or from a 
dense, but inaccurate field (with the knowledge of the 
degree of confidence of the displacements). Typically, these 
involve applying smoothing or interpolation processes to the 
displacement fields. It is important to note here that there 
are hierarchical techniques [7] that dramatically improve the 
speed of some of the iterative smoothing processes. In face 
it appears that hierarchical matchi. ^ and interpolation can 
be performed together. 

7.0    Summary 

In this paper we have described the implementation of a 
hierarchical correlation process in the processing cone 
architecture of the VISIONS linage Operating System. Two 
representative experiments were presented to describe its 
performance, The hierarchical process involves matching 
band-pass filtered images at different levels of resolution 
under the control of a coarse-to-fine search strategy. We 
described three different techiques for computing the 
band-pass image pyramid. We also discussed the issues 
involved in the correlation and search processes. 

We have shown how this hierarchical correlation 
technique both reduces the costs of correlation matching 
and avoids the mismatch problem that occurs in areas of 
high feature density. The results of our experiments 
indicate that it is also insensitive to noise and is able to 
detect at least small amounts of rotation between images. 
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THE RELATIONSHIP BETWEEN IMAGE IRRADIANCE 
AND SURFACE ORIENTATION 

Grahame B. Smith 

Artificial Intelligence Confer, SRI Intern:ition;il 
Mcnlo Park, Colifornia G1025 

ABSTRACT 

j^tjmulation of shape from shading is presented In which 
surfjj^tfOrientalion is related to image irradiance without re- 

quiring netailed knowledge of either the scene illnmm ition or 

the albedo of the surface material. The case for uuifonnl.v 
diffuse reflection and perspective projection is discussed in detail. 
Experiments aimed at using the formulation to recover surface 
orientation are presented and the difficulty of nonlorai romputa- 

lion discussed. We presen^an algorithm for reconstructing the 
."-D surface shape once surface orientations are known. 

1    INTRODUCTION 

VVhen (he human visual '■ystem processes a single image, 

e.g., Figure 1, it returns a perceived 3-D model of the world, even 
when that image has limited contour and texture information. 

This 3"D model is nnderdetermined hy the information in the 
2-D image; the visual system has used the image data and its 

model of visual processing to reconstruct the 3-D world. While 
there are many information sources within the image, shading is 

an important source. Facial make-up or a cartooiist's shading, 
M an everyday example of the way shape, as perceived by our 

human visual system, is manipulated by shading information. 

A primary goal of computer vision is to understand this 

process of reconstructing Ihe 3-D world from 2-D image data, 
to discover the model, or models that allow 2-D data to infer 

3-D structure. The focus of (his work is the recovery of the 3-D 
orientation of surfaces from image shading. 

We present a formulation of the shape-from-shading prob- 
lem, i.e., recovering 3-D surface shape from image shading, 
(hat is derived under assumptions of perspective projection, 

uniformly diffuse reflection,' and constant redeetance. This for- 
mulation differs from previous approaches to the problem in (hat 

we neither make assumptions about the surface shape [2j, nor 
use direct knowledge of the illumination conditions and the sur- 

Thp rfsenivh repoftfid hrrrin wns supportcj h_v the Defense Advanced 
[^search rV'jccts ARenry under f'nntracl V'DA!)03-s:!-C'0027 and hv the 
National ArnTiautics and Spare Administration under CoDtraet NASA 
0-16604. THen t-onfrarts arp mnnitored b.v the lr.S. Army Engineer 
Topographic Laboratory and hy the Texas A&M Resrarrh Foundation for 
the Lyndon H. Johnson Spare CentflT. 

'We prefer the expression i$9lT1*pie pratlrring to either urxifiTtnly itif- 
fitte reftrclion. or l,ttmbrrtian rrflection, as it emph.vis that scene 
radiance is isotropic. However, uniformly diffuse reflection, and Lambcrtian 
reflection are the terms commonly used to indicate that the scene radiance 
is isotropic. 

Figure   1 Shape from Shading, 

fare albedo [3]. The cost we incur for dispensing with these 

restrictions is the introduction of higher-order differentials into 
the equations relating surface orientation and image irradiance. 

The benefits we pain allow us to investigate the strength of the 
constraint imposed by shading upon shape Payt attempts to 

solve the shape-from-shading problem, as well as our own efforts, 
have been aimed at recovering surface shape from image patches 
for which the reflectance (albedo) can be considered constant. 

Previously we examined the influence exerted by the as- 

sumption of uniformly diffu-e reflection [I], and indicated that 

(he equations relating surface orientation to image irradiance 
could be expected to yield useful results even in cases in which 

the reflection is not uniformly diffuse. In that examination we as- 
sumed orthographic rather than perspective projection. A com- 

parison of our previous work with this paper, however, shows 
that the structure of the formulation is not dependent upon the 
projection used. 

If we add additional assumptions, e.g., constraints on the 

surface type, we can simplify the relationship between surface 
orientation and image irradiance. While it is not our goal to add 

constraints upon surface type, the assumption that the surface 

is locally spherical allows the approximate surface orientation to 
be recovered by local compulation. 
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Figure S Coordinate Frame. X.V.Z are the scene cuor- 
dinates, V\\ the image ronrdinatrs, and the image plane is located a 
dh*nnce / rpon the scene coordinate's origin - the projection center. 
a is the angle between the Z axis (the viewing direction) and the rav 
of light from the scene point {x.y. ;) to the image point (u. v). ( and 
m are the X and Y components of the surface normal n. 

2 THE COORDINATE FRAME AND 
REPRESENTATION OF SURFACE 
ORIENTATION 

The coordinate system we use is depicted in Figure 2. X,Y,Z 
are the scene coordinates and U.V are the image coordinates. 
The image and scene coordinates are aligned so that X and Ü 

axes are parallel, as are the Y and V axes. The U and V axes are 

inverted with respect to the X and V axes, so that positive X and 

Y coordinates will correspond to positive Ü and V coordinates. 
The image plane is located at a distance /from the (perspective) 

projection center, the origin of the scene coordinates. A ray of 
light from the point (j-, y, :) in the scene to the image point (u, l>) 

makes an angle a with the viewing direction (i.e., the Z axis). 

There are many parameterizations of the surface orienta- 
tion: we choose to use (/, m), which are the X and Y components 

of the unit surface normal. In Figure 2, n is the unit normal 

of the surface patch located at {j.y.z); I and m are the com- 
ponents of this surface normal in the X and Y directions. From 

our viewing position we can see at most half the surfaces in the 
scene (i.e., 'hose that face the viewer). The Z component of the 

surface normal has the magnitude v/l — P — m2, the sign deter- 
mining whether the surface is forward-facing (has a positive Z 

component), or backward-facing (has a negative Z component). 

For large off-axis angle Q, we see backward-facing surfaces near 

the edges of objects. The two components of the surface normal, 
/ and m, do not provide an adequate parameterization of the 
surface in this case. Additionally, we need to know the sign of 

the Z component. Here we restrict ourselves to forward-facing 
surfaces. This minor restriction  .mounts to assuming that a is 

not too large and that «e are not adjacent to an object s edge. 

Consequently, in this discussion we assume that the Z component 
of the surface normal is porilive and that / and m constitute an 
adequate parameterization of scene surfaces. 

3    IMAGE IRRADIANCE 

The image irradiance equation we use is [4] 

/(u,c) = /?((,m)cos4o    , 

where /(u.f) is the image irradiance as a function of the image 
coordinates u and v, and /?(/, m) is the surface radiance as a 

function of/ and m, the components of the surface normal.2 The 
term cos4 a represents the off-axis effect of perspective projec- 

tion. When n is small, cos4« is approximately unity, »c then 
have the more familiar form of tue image irradiance equation. 
From Figure 2 we see that 

Differentialing the image irradiance equation with respect 
to the image coordinates u and r, we obtain 

f'u = Rdm + /?m"i-<    . 
I*,, m Ä,/,, + Rmm„    , 

•vu "" fi«^u   + Rmmffht   + 'ZHimLmu + /i)/«« + Wm"iu«    . 

/;,„ = Rnlv
2 + Rmmmv

2 + 2/?(m/,,m„ + /?,/,,„ + R,nvi„,    , 

I'uv = RlllJv + flmm">t,"'e + /?(m(/um„ + /„T7IU) 

+ Rtlm, + Rmm„,,    , 

where subscripted variables d^note partial differenlation with 
respect to the subscript(s), and 

4- 

i 

cos4 a u- + v- + p 

^U + ZTTTTn cos4 a d- + v~ + p 

8.1/,, 8u2/ 
""       ' cos4 a H'"" + „2 + „2 + p + («8 + „8 + /iji 

■1/ 

ii2 + i'2 + P ' 

I'  =(-')(/   +^^h + ___8,'!l 
cos' a     ""     u2 + v2 + /2 "r (U2 + ,,2 + py. 

iL = ( 
i 

)(/„,.+ , 
4vlu 

+ -a 

u- + ,r- + p 
4t</„ 

«2-l-r2 + /2      ,(
2 + 1.2 + /2 

8uf/ 
("2 + f2 + /•-)•-•' 

sImage irradiance is the light flux per unit area failing on the image, i.e.. 
incident flux density. Scene radiance is the light flux per unit projected area 
per unit solid angle emitted from the scene, i.e., emitted flux density per 
unit solid angl". 
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If wp are to use these expression to relate image measure- 
ments, e.g., I'UIJ. to surface parameters / and m, then we must 
remove the derivatives of R. 

4    UNIFORMLY DIFFUSE REFLECTION 

To provide the additional constraints we need for relating 

surface orientation to image irradiance, we introduce constraints 
that relate properties of R[l,m). — that is, constraints that 
specify the relationship between surface radiance and surface 
orientation. Such constraints are 

{l-l-)Hu={\-„r)R,nm    . 

(ÄH - Rm,n)lm ~{l2- m')ihm    ■ 

where Hu is the second partial derivative of R with rcsp.cl to 
/, /?„„, is the second partial derivative of R with respect to m. 

and /?/,„ is the second partial cross-derivative of R with respect 
to / and »71. 

These two partial differential equations embody the as- 

sumption of uniformly diffuse reflection. For uniformly diffuse 
reflection, /,'(/, m) has the form 

/?(/, m) = a/ + *m + c\/l - /2 - m2 + </    , 

where it.b.c. and </ are constants, their values dcpet-dlng oa 
illumination conditions and surface albedo. Note that l.m, and 

V I — /-' — in* are the components of the unit suruce normal in 
the directions .V,V, and Z. R[l.m) can be viewed as the dot 

product of the surface normal vector {I,in. \/T- ia — m'-') and a 
vector {a. h,c) denoting illumination conditions. As the value of a 

dot product is rotationally independent of the coordinate system, 
the scene radiance is independent of the viewing direction — 

which is the definition of uniformly diffuse reflection. 

It is clearly evident that /?(/, m) = al + brn + 

r\/l - /'-' - tn- + d satisfies the pair of partial differential equa- 

tions given above. In (ij we showed that Rll.ru) = nl + bm + 

c\/\ - t- — m'- + d is the solution of the pair of partial differential 

equations. These partial differential equations are an alternative 
definition of uniformly diffuse reflection. 

It is worthy of note that R{l. m] = al+bin+r\/l - P~- tn^+ 
d includes radiance functions for multiple and extended illumina- 

tion sources, including that for a hemispherical uniform source 
such as the sky. Of course, at a self-shadow edge R is not 

differentiable, so that the surfaces on each side of the self-shadow 
boundary have to be treated separately. The assumption of 

uniformly diffuse reflection restricts the class of material surfaces 
being considered, not the illumination conditions. 

IVom the constraints for uniformly diffuse reflection, we 
derive the relationships 

Ru 

ft, 

l-tn; 

Im 

tm 

R. Im 

Substituting these relationships for Ru  and Rmrn in the 

expressions for I'uu,I'vv,aad /'„„, we obtain 

,     "A — 171" 2/ 1 — ^ v . I'« (—n—)+»»»(-ir-)+ 2f«m,,lftB l,n Im 

Ku ~ Wvu — /l?m"luii 
,         2 l        /*? 

[Iv"{ — —   ) + mv-(    ~m- ) + 2!vm,.]Rlm = 

l-P. 
[/«/»( "-,-"'-) + rTiu»?!,,! -    "   ) +/um„ + ll.mu]Rlm = 

(771 (771 

luv ~ ft'«* _ f'mmuv      . 

By removing Rim and substituting the expressions for Ri 

and /'m, defined by the expressions for I'u and /'„, we produce 

two partial differential equations relating surface orientation to 
image irradiance: 

n8lu,t + l36muu - o^/ul, - /^r7iuv = x«/'uu - \-;/'„,,    , 

nOlvv + dOmvv - Qi/Ul, - ßfimUv = \0I'VV - \SI'UV    , 

« = I'„mv - /'„r7iu    , 

^ = /;,/„-/'„/„   , 
"; = 'u2!! -m2) + mu-{l -l2) + 2lumjm    , 

i =/„2(I -77i2) + »7it,2(l -l2) + 2lvmjm    , 

* = IJAl - T7i2) + r7iur7i„(l - /2) + (/ufn„ + ft,mu)/77i    , 

\ = /u77i„ -lvmu    . 

These equations relate surface orientation to image ir- 
radiance by parameter-free expressions. We make no as- 
sumptions about surface shape, nor do we need to kuow the 

parameters specifying illuminant direction, illuminant .Urength, 
and surface albedo. Our assumptions arc about the properties 

of refieetioB in the world; these alone are sufficient to relate 
surface orientation to image irradiance. The above equations 

have been derived for the case of perspective projection; for or- 
thographic projection, the primed (') quantities are replaced by 

their umprimed counterparts, e.g., /'„ is replaced by /u. The 
form of the equations is not a functiou of the projection used. 

5    RECOVERY OF SURFACE 
ORIENTATION 

It is difficult to solve the equations relating surface orienta- 
tion to image irradiance, and thus to recover surface shape from 
observed image irradiance. We have used numerous integration 
schemes that characterize two distinct, approaches. The two 

dilTcrenlial equations can be directly integrated in a step-by-step 

manner or, given some initial solution, a relaxation procedure 
may be employed. The difficulties that arise are twofold: numeri- 
cal errors and multiple solutions. 

Solutions of the equation x = 0 (the developable surfaces, 
e.g., a cylinder) are also solutions of the equations relating sur- 
face orientation to image irradiance.   If the image intensities 
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wet» known in analytic form, the analytic approach to solving 

the equations could then employ boundary conditions to select 
the appropriate solution. However, since the analytic form for 

the image intensities is unknown, numerical procedures must 
be employed The use of such procedures to directly integrate 
the equations inevitably introduces small errors. Such errors 

'mix i'i' multiple solutions even when those solutions are incom- 

patible with the boundary conditions. Instability of the numeri- 

cal scheme seems responsible for the fact that such errors even- 
tually dominate the recovered solution. A scheme that is repre- 

sentative of our various trials at direct integration is outlined. 

We transform our equations into Onite-difference equations 

by using a three-point formula for the differentials of / and m. If 

l{i,j) and ni(i, j) are the values of / and m at the (i, jjth pixel in 

the image, then at this pixel »e use the finite-difference formulas. 

/u = 
t(l + l,j)-l{i-lj) 

/„„ = 
l{i + l,j+ l) + /(i-l,y-l) 

_ 'i' + i'j- i) + /(t-;,j + i) 
4 

and similar formulas for the other differentials.   If we consider 
the 3 x 3 image patch centered on the (i,y)lh pixel. 

i-1        i        j+l 

i+1 

i-1 

0 0 & 

o o o 

o o o 

we could hope that the two finite difference equations, relating 
the eighteen values of / and m on the patch, could be solved 

explicitly for /(■ + 1,; + 1) and m(i + l.j + 1), (the (£) cell). 

Such a solution would allow / and m at the (&) cell to Lc cal- 

culated from the ft and m's at the (o) cells. Starting at some 
boundary at which we know / and m at the (o) cells, we can 

move along the image's row and then along the successive rows, 

calculating / and m at the {&) cell. However, examination of the 

surface-orient at ion-to-image-irradiancc equations shows that we 
cannot solve these equations explicitly for /„,, and TOU„ and that, 

consequently, we cannot obtain finite-difference equations that 
are explicit in the / and m of the (ir) cell. 

We avoid this difficulty by combining the two surface- 
orientation-to-image-irradiancc equations into one and using sur- 
face continuity to provide the additional equation. Removing luv 

and r»,,,, from the differential equations, we have 

"(*'Uu - llvv) + ßitmuu - imvv) = x(*/'„u - -)-/'„„)    . 

Surface continuity requires that f^y  =  gj.^, from which it 
follows that 

IJl — m") + Tnlllm = mx{l - /2)+ lxlm 

Provided that o and v are small compared with t (e.g., in the 
eye or in a standard-format camera), then 

/„(I - m2) +f7i„/m = mu(l-/
2) + /u/m    . 

These t'fo equations, which do not involve /„„ or mut,, form a 
basis for finite difference equations that calculate t and m at the 
(-) cell from values of / and m at ( + ) cells. 

- 

+ + + 

♦ 

The results obtained with the above integration scheme, 

together with many variations of it, are poor. Accurate values 
for / and m are obtained only within approximately five to ten 

rows of the known boundary. This is the case for noise-free 
image data. These results can be understood by examination 

of the Cnite-difference equations. The explicit, expressions for 

/ and m at the (-) cell are functions of the differences of / 

and m at the ( + ) cells. Such schemes are usually numerically 
unstable, making step-by-step integration impossible. While 

t'.e failure to find a stable numerical scheme does not imply 
that one does not exist, our difficulty highlights thr problem 

of finding numerical schemes, based on differential models, to 

propagate information from known boundaries. (One wonders 

whether nature experienced the same difficulties when designing 
the human vision system.) 

Although the alternative to direct integration, a relaxation 
procedure to solve the equations, seems to offer relief from the 

numerical instability of direct integration, it nevertheless poses 
its own problems. The approach we used parallels the one in 

[3] for solving the image irradiance equation when the surface 
albedo and illumination conditions are known. For each image 

pixel we form three error terms; the residuals associated with 

the two surface-orientation-to-image-irradiance equations, and 

with the one surface continutiy equation. Minimi?,ing the sum 
of the errors over the whole image with respect to / and m at 

each pixel produces an updating rule for / and m at each pixel. 

Given an initial solution, i.e., assignment of values for / and m 

at each pixel, a relaxtion scheme, like the one described, is useful 
only if it converges. While the constraint imposed by the under- 

lying model is most important in ensuring convergence, the im- 
portance of a good initial solution for a relaxation method can- 

not be overemphasized. Simplifying the two paiiial differential 
equations (by using additional assumptions) provides a method 
for obtaining an good initial solution. 

The spherical approximation assumes that we are viewing 
a spherical surface. This implies fy = 0, m^ = 0, and lx — m„, 

— namely, constant curvature that is independent of direction. 
Provided that u and v are small compared with r, then /„ = 

0,rjju = 0 and /„ = mv. For this case, the partial differential 
equations become relationships between image irradiance and its 
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derivatives, on the one hand, nnd the components of the surface 
normal, on the other: 

1 
Im 

l-P 

Im 

The spherical-approximation results for perspective projec- 

tion are similar to those Pentland was able to obtain [1] for 
orthographic projection through local analysis of the surface. 

Besides providing a mechanism for obtaining an initial solution 
for a relaxalion-style algorithm, they allow surface orientation 

to be estimated by purely local computation. Such an estimate 
will be exact when the surface is locally spherical. 

The results of our experiments with relaxation procedures 
are easily summarized: the relaxation procedures were not con- 

vergent. While such nonconvergence is hardly unu.iual, the 
reasons for failure, however, are instructive. The residuals as- 

sociated with both the surface-orientation-tt-image-irradiance 
equations, and the surface continuity equations remain small 

during the relaxation, even when the solution is starting to 
diverge. Of course the residuals are not as small as they are 
when on the verge of solution, but they are small enough to 

make one believe that a solution has been obtained, particularly 
when the image is not noi^-free. Apparently the equations are 

insensitive to particular values of / and m, being more concerned 
with the values of lu,lv,mu, and m„. As with direct integration, 

relaxation models need boundary conditions to select a particular 
solution. We used various boundary conditions in our relaxation 
experiments, but it is difficult to believe that a model, apparently 
insensitive to surface orientations, could be overly influenced by 
the surface orientations at a boundary. 

Our two approaches, direct integration and relaxation, have 
not yielded a computational solution to the problem of recover- 

ing surface orientation from shading. The attractiveness of lo- 

cal computation is clear; it has neither numerical instability nor 

divergent behavior, but the cost it imposes is that assumptious 

must be made about surface shape. A compromise between 
some local computation and some information propagation may 

offer an approach that is not overly restrictive in its assump- 
tions about surface shape. However, the question needs to be 

considered: Is the model underconstrained? Is shape recovery 
dependent on information other than shading? What other in- 

formation (that is obtainable from the image), is necessary to 
enable the construction of effective shape-recovery algorithms? 

6 RECONSTRUCTION OF THE SURFACE 
SHAPE 

Surface orientation is not the same as surface shape. 

However, once we have obtained the surface orientation as a 
function of image coordinates, i.e., /(u, v) and fn(u, t;), we can use 

these to reconstruct the surface shape in the scene coordinates 
X,Y,Z. We derive a suitable formula. 

Suppose we know th? depth z0 at scene coordinates 

{■ro.fo. ^o). corresponding to juo,»^) in the image For the point 
(xo + Ax, jro + Ay) we use the approximation 

i'(3-o +A/,jto +Ay) = ;(io,yo) +Az 
dy 

Similarly, 

r(ii - AaMM -Ay) = i(:r,, y,)-Az \y 
■i.lti 

i)z 

If *[ = Jo + Az and Vi = Vo + Ay, then 

Zi -zo, d: 
»(«I.Ifl) ■■«(*•.»&) + 

+ 

2      ^z 

Vi -Vo. dz 
2     'dy 

ijx 

8U 
) 

Using the perspective transformation u — -/« and v = —f- 
to remove z and y, we obtain 

2("i.fi)= i(uo,t'o)x 

Icl .) + M: + fc      ) 

l<l0,"(I ''»li»l 

As -H™ and fc = - -, we have the means of 

reconstructing the surface in scene coordinates from the values 
of surface orientation in image coordinates. 

7    CONCLUSION 

In th's formulation of the shape-from-shading task, we have 

eliminated the need to know the explicit form of the scene 
radiance function by introducing higher-order derivatives into 

our model. This model is applicable to natural scenery without 

any additional assumptions about illumination conditions or 
the albedo of the surface material. However, without a com- 

putational scheme to reconstruct surface shape from image ir- 
radiance we may wonder if we have surrendered too much. The 
difficulties of finding a computational scheme must induce one 

to ask whether the model is underconstrained. Have we applied 
too few restrictions, thereby making shape recovery impossible? 

Notwithstanding the general concern about underconstraint of 

the model, the numerical difficulties encounted makes local com- 
putation of scene parameters attractive. Information propaga- 

tion methods must always cope with the problem of accumulated 
errors. In our model, however, to achieve local computation we 

must make assumptions with regard to surface shape. What 
other information, besides shading, do we need to know if we are 

to recover surface shape? Can we find moderate restrictions that 

allow mostly local computation of the surface shape parameters? 

We are actively engaged in the pursuit of such procedures. 
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ENVIRONMENTAL RELATIONS IN IMAGE 
UNDERSTANDING:   THE FORCE OF GRAVITY 
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Oopartment of Cotnputer Scieoee, Columbia University 

New York, NY 10027 

Abstract 
:- 

In Ihis paper we .show how assumptions and 
information concerning the external world properties of 
"hori/ontal" and "vertieal" can aid in the analysis of 
images, even at the very lowest levels of processing. First 
we review the pervasiveness of the force of gravity, ana 
its influence on most natural image understanding 
systems. Next,     we     derive , several     fundamental 
mathematical results relating phenomena in both the 
gradient Space and the image space to the external world 
attributes of horizontal and vertical. We then show,how 

interrelate three imaging phenomena; the 
image, the external sensor parameters, and 

e environmental labels. We detail how, in general, 
regarding    any     two    of    these 

these   result 
surfaces in lh< 
I 
specific     information 
phenomena can be used to quantitatively derive the third 
occasionally one can do even better. Algorithms for such 
quantitative derivations are presented, including two 
based on the Hough transform. We further show Jiow 
certain environmental perpendicularities can be exploited 
very efficiently, and even elegantly; ordinarily complex 
mafli simplifies to the extent that environmental distances 
can be directly read off the image. The power of such 
environmental labels is then demonstrated by an analysis 
of the source of ambiguity In a simple illusion-like image 
cpnflffuration. The paper concludes with an analysis of 
the class of heuristics that have been invoked throughout. 

I he\ are seen to be instantiations of the shape-from- 
texture nieta-heuristi.s that "near implies preferred" and 
preferred implies simple".*—^ 

1 Introduction 
Many image environments are immersed in a force 

(hat strong!) orients objects in a preferred way. The 
effects of this force are often so pervasive that 
environments which do not respond to it appear (and are 
often (ailed) artificial. The verv term "natural scene", 
vague though it may be, does at least seem to imply an 
image with just such a definite environmental orientation. 
Kesearchers would no sooner attempt to fully analyze 
such an image upside-down than they would if" its cofo 
had been permuted. 

is 

convinced of the influence 
has on  the design of image 

higher    level 
'eply permeates 

It is not difficult to b 
that the presence of gravity 
understanding algorithms, especially m 
processing. Often it is so strong that" it d 
the entire system as an implicit assumpfion. The 
asMimplioii is made with good reason: higher level 
processing can be more efficient. Mal (hing to models, for 
examide, can start with both the detected object and the 
modeled object mutually aligned in the preferred (that is 
the most probable) orientation. 

■Ill i.s  n SI nrr i wn >   spons ire 1 111 1 art I'.v the Def MM 

Vdvati red 1 v'ese ■in h l'ldje( Is Ag 'IK •) um er eon! Mil 
\i)()().; i-s-j ( -0 127. 

However, we show in 
presence of gravity  can   aid 
»rocessing as well.    Th 

this paper that 
the  lower  levels 

assuming the 
i of image 

ns is a bit surprising, since many 
ow-level routines do work--and ought to work-just as 
.veil with images inverted (or colors scrambled). 
.Nevertheless, certain heuristics regarding the exploitation 
of "horizontal", "vertical" and other gravity-influenced 
concepts can make low-level shape recovery more efficient 
as well. 

These heuristic assumptions, coupled with some 
fundamental mathematical results, can suggest methods 
and algorithms on the same level as other shape from" 
methods, such as shape from shading or skewed symmetry 
lllorn 77; Woodham 78; Kender 80a; Ikeuchi 801. The 

heuristics themselves usually are based on the assumption 
of some preference: here, the preference for horizontal or 
vertical surfaces or lines. Thus, they can be seen as 
further members of the family of preference-based 
algorithms linked together by their derivation and use in 
a common methodological paradigm, called shape from 
texture [Kender 801)). 

2 The Pervasiveness of Gravity 
The presence of gravity introduces and maintains in 

natural environments a decided anisotropv. Its lines of 
force are parallel to each other in one specific, unchanging 
orientation. This orientation induces, usually by means of 
general energy minimization arguments, configurations 
that are themselves parallel: natural (as well as artificial 
growlh is often aligned with the field Thus trees as wel 
as Miildings often have parallel sides, and are parallel to 
each other. Further, the "ground plane" is often actually 
planar,   also  in  a  minimizatiotial  reaction  to the force- 
«iiether it is truly the ground, or artificial 
in a floor.   The combination of these 

ly made so, as 
,   ,       ,     ,        ,    • growth parallelism 

and ground planes further induce perpendicularities attain 
both   natural   and   artificial.     The junction  of trees or 
? H11 lep to forest  floor (or to their shadows), or the 
junctions of walls to ceilings (or object legs to floors)  all 
occur in a Inmted class of orientations. 

Other examples of gravity's explicit and implicit 
involvement with image understanding can easily be 
given. In some domains, of course, it has no influence at 
all: for example, blood cell analysis. However, in most 

natural domams-or, equivafently, most "robotic" 
domains-its pervasiveness appears to be so extensive that 
a "natural scene might very well be defined as one in 
winch considerations of gravitationally induced 
orientations are non-negligible. In other words, a scene is 
a natural scene to the degree that it would be difficult to 
uiiderstand rotated or upside-down. (Thus, images of 
office interiors are about as natural as handwriting; 
samples; both are more natural than most aerial 
photography; high magnification scanning ele 
micrographs are least natural of all 

scanning     electron 

f 
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3 Gradient Space Relations 
IVrhnps the first basic relationship thai deals with 

tho environmental labels "horizontal" and "vertical'" arc 
the terms used to define the degrees of freedom of the 
sensor itself. Tht^st'iisor orientation terms "pan", "tilt", 
and "roll" imply a gravity-dependent coordinate system, 
and, in fact, are defined in environmental terms. I'an is 
sensor rotation in the horizontal plane; tilt is rotation in 
the vertical plane passing throngli the central visual ray. 
Roll is defined as rotation in the image plane, and its 
effect is therefore dependent on lilt and pan; in the 
ahscence of roll, the image of an environmentally vertical 
plane that passes through the central visual ray is a 
retinally vertical line. 

A second basic relationship is that, in terms of its 
use in computer vision, "horizontal" is simply a label for 
a unitpie, preferred surface orientation. In "terms of the 
gradient space [Shafer 83a|, it is a single labeled 
orientation point with coordinates (p.q) = |Pk.%). 
Assuming that there is no roll in the sensor—that is, the v- 
a\is of the image is the projection of an environmentally 
vertical plane-tlien this point simplifies to (p.q) = (0,(|| ). 

This relationship is schematically depicted in I'igurc 
I. The value of m. is easily determinalde: assuming the 
sensor is at a unit s distance from the ground plane and 
has no roll, then the central visual ray intersects the 
ground at en. Note that this value can also be obtained 
ny a simple gravity sensor. The v-axis now lies in an 
environmentally vertical plan" as in T'igure 2; further, due 
to the rotational coupling of the gradient space to the 
image space [Kender 801)]. the horizontal orientation has 
no p component. 

Figure 1:    Basic relations;  sensor configuration. 

It is not hard to show that every vertical surface 
must map into a gradient space point with coordinates 
(n.q) = (p,-l/(|| ). This fact follows from the general rule 
that the gradients of surfaces perpendicular to a given 
gradient (Dk.qk) niust satisfy the relation pPh+.qqj] = '\< 
every vertical surface is perpendicular to the horizontal. 
Thus, the one-dimensional family of vertical surfaces 
maps into the one-dimensional locus a = 'l/% as '." 
Figure 3 [Mackworlh 7:5). As a special case, if There is 
neither sensor roll nor tilt then the gradient space 
representation for the horizontal surface is infinitely far 
along the positive q axis, and the line of verticals becomes 
the p axis. 

More generally, similar basic relationships hold even 

y 

(no roll- y-axis is image 

of vertical plane) 

Figure 2:    Basic relations;   Corresponding image space. 

o  no roll horizontal surface 

line of 

(0"V 

vertical surface« 

q=-1/qL 

Figure 3:    Basic relations;   Corresponding gradients. 

if there is a roll component. It is not hard to show that if 
there is information available about the sensor's tilt and 
roll, then the gradienl space can be environmentally 
labeled by invoking the rotational coupling of the image 
space to the gradienl space. That is, if tilt is given as 
above by the angle whose tangent is qu, and the roll 
component is given as t, with respect lo tho unrolled 
sensor position, then the point in the gradient space 
corresponding to the horizontal is given by (0,<||.) similarly 
rotated through I.   The line of verticals rotates likewise. 

It is important to note that the above relations hold 
independently of any considerations of imaging projection. 
They are true for both orthography and perspective; they 
are true, in fact, even with no image at all. 'I hey describe 
the relations of the gradient space to environmental 
preference labels only. (Alternatively, one can use the 
analogous relations tllat prevail when "surface orientations 
are recorded on a (Jaussian sphere map [Horn 8'2]). 
Further, they can be used in either direction; given sensor 
information, the gradient space can be labeled, and vice 
versa. 
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4 Image Space Relations 

A' this point, we have nut yet used any im: 
information. In fact, in as miich as surfaces exist In thr 
space, they cannot appear directly in an image at 
However, "it is interesting to "note that the sa 
eii\ iron mental labels of horizontal and vertical apply 
lines as well, and to both lines in three-space and fines 
the retina. Somewhat paradoxically, though, the size 
the class of environmentally horizontal lines is i 
dimension greater than that of environmentally verti 
ones; this is the reverse of the case with surfaces." 

ige 
ee- 
all. 
me 
to 
on 
of 

»ne 
cal 

Environmental labels, environmental line segments, 
and the sensor parameters are related in several ways. To 
demonstrate them, consider first the case of perspective 
imaging where the sensor has no roll component. Scale 
the image plane in units of focal length; this will simplify 
the mathematics [Kender 80b]. Now image a scene 
consisting of vertical lines emerging from a horizontal 
plane: rather like avast, stylized forest. The result is 
shown schematically in Figure 1. 

^.i! 
horizon = vanishing line 

/      / 

I,//////// 

vanishing point 
of vertical lines 

Figure 4:    Vertical lines on a horizontal surface. 

Because the class of environmentally horizontal lines 
is so large, they retain no distinguishing' retinal features. 
That is, any line in the image can be the image of an 
environmentally horizontal line. About the only 
exploitable horizontal property is the horizon itself. Thfs 
line, the limit of the projection of the horizontal plane, is 
a retinally horizontal. It has the equation y = 'Alh- 
This follows from the basic relationship concerning 
vanishing lines: the pi" with gradient (p,q) has 
vanishing line px+qy = 1, ■■. e (p,q) = (O.qi,), 

More interesting is the behavior of the 
environmental verticals. They form a more restricted 
class, and their images are more constrained. In 
particular, any environmentally vertical line must image 
into a retinal line that passes through the poinl (x,y) — 
(0.-%). This follows as a special case of the analysis of 
vanishing    points [Kender    (<)).        As    the   sensor's    tilt 

increases so that its central visual ray approaches the 
vertical (i.e. as q. approaches 0), this vanishing point of 
verticals approaches the image origin; simultaneously the ns appioacnes nie image origin; simultaneously 

n moves off in the positive v direction. 

If the forest scene is imaged by an orthographic 
sensor, very little environmental information remains in 
the image. Nothing at all remains of the horizon. All 
environmentally vertical lines are imaged as retinally 
vertical lines; they have no finite vanishing point". 
Therefore, under orthography there are no image cues to 
sensor lilt. 

As with the gradient space relations, these image 
relations hold analogously under sensor roll. If the sensor 
is orthographic, then the parallel family of image vertical 

If the se 
''''■       ii    ii   HI.I the vanishing point of verticals ai •■ i- 
roll proportionately 
the horizon anc' 

r uses perspective, then 
, i"1 

proportionately and their expected locations are easy to 
compute, given tilt. The close relation between tilt "and 
roll and the generated horizon is well known: it is 
exploited in the artificial horizon instruments of airplane 
cockpits. 

)le that unlike the gradient space relations, 
, these relations are not automatically reversible, 

, a given sensor configuration predicts definite 
henomena, but a given image phenomenon does 
•ssarily imply a sensor configuration. However, if 
eiiomenon can be environmentally labeled 
ly (i.e. "horizon", "vertical vanishing point") 
' implications about the sensor are correct. In 
though, this labeling must be done heurislically, 
bed below. 

5 Using the Gradient Space Relations 

The relationships (lescribed above can he exploited 
in many ways. For example, given the sensor 
configuration, one can recover an environmentally labeled 
gradient space map as in Figure .3. If the sensor 
coiifi"uration is uncertain, the gradient space map (more 
simply,   the   gradient   of   a   properly   labeled   horizontal 

alibrate tilt and roll. 

N( 
however 
That    is. 
image p 
not nece 
the        ph 
accurate 
then  the 
general, 
as descri 

iiply,   tlie   gradient   ot   a 
surface) can be used to help ct 

It should be noted that the pan parameter can not 
i     .vered.    in a sense, pan is "gravity invariant".   That 

is no information in an environmentallv labeled 
thai would indicate "an does 

is, there 
gradient space map inai wouta indicate pan 
not even have any common environmental names. 
Perhaps the closest terms would be those used to describe 
compass directions: "north-by-northwest", etc. However, 
the magnetic force on which they are based seem to have 
negligible environmental influence- tew natural systems 
appear capable of detecting it. The natural world does 
not seem to have a strong left-right preference. For 
example, although it is nearly impossible to find a 
newspaper photograph that has been printed upside- 
down, it is not unusual to find one that has been 
"flopped" left-for-right. Nevertheless, there may be 
artificial environments in which it would be useful to 
augment a mobile robot's gravity sensor with a compass.) 

Additiona 
following.    If the 

uses   of   these    relations    include 
sensor parameters are known, then 

the 
the 

determination that a given surface is horizontal uniquely 
specifies it gradient. The determination that it is vertical 
creates a linear constraint in the gradient space on which 
its gradient must lie. This constrain* can be used with 
any other gradient space constraints: for example, those 
obtained by shape from shai'' 
shape from texture, 

iding,  skewed  symmetry, or 

: 
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If ilic sensor parameters are unknown, then a 
determination thai two non-parallel surfaces are vertical 
yields till and roll: their gradients generate the line of 
verticals in the gradient space. The determination of a 
single surface being vertical constrains tilt and roll to one 
degree of freedom; horizontal surfaces must be 
perpendicular to it. 

5.1 A Hough-like Algorithm 

Suppose we pose the more difficult problem in 
which there is neither a labeling nor sensor information. 
Nevertheless, both can still be (heuristically] recovered. 
Consider the additional assumption that all (or most) 
surfaces are either horizontal or vertical—an assumption 
often supportable in man-made environments. Then the 
gradie'it space representation (or the Gaussian map) of 
tlie surfaces in the scene can be analyzed for the presence 
of the characteristic point-of-horizontal/line-of-verticals 
configuration. This need not be an actual search for the 
line of verticals, although there may be some 
environments in which this is an efficient "tiling to do. 
Instead, it can be achieved using a type of Hough 
accumulator approach. 

In broadest outline, this method has all existing 
surfaces vote for candidate horizontal surfaces. Once 
voting is done, the surface with the most votes is then 
presumed to be horizontal. Sensor tilt and roll, and the 
line of verticals are easily determined. 

Voting is prescribed in the following way. Since a 
given surface is likelv to be either horizontal or vertical, it 
votes once for itseff since it may itself be horizontal. 
However, since it may also be vertical, it votes once for all 
surfaces perpendicular to it: in this case, at least one of 
these surfaces must be the horizontal. Graphically, this is 
displayed in Figure 5. A vote for the self is shown by a 
circle about the point; a vote for all perpendiculars is 
indicated by a dashed line. In the example, only one 
surface has received four votes; it is assumed to be 
horizontal. 

'%■ 

/ v 

<S 

6 

/ 
i / 

i 

i 

iV 
d) ® 

Figure 5:    Hough scheme for finding ground planes. 

5.2 A Critique of the Algorithm 

This method is not without its problems, but it does 
have n virtue or two. The problems are manifest. Most 
critically, any such weighting scheme is heavily dependent 
on the given gradient space map, which in turn is affected 

by  tl nvimnment and by the sensor position.   Thus, if 
there i only one surface present, or even if there are two 
mutually perpendicular ones, there are no grounds by 
which to label anything horizontal. If .here are two non- 
peruendicular surfaces present, the method considers them 
both vertical to a common horizontal (which does not 
appear in the gradient space.) If there are multiple 
surfaces, the voting is affected by the way in which the 
multiple surfaces have been recorded in the gradient space 
map: perhaps this map itself has been weighted. Lastly, 
the method is subject to the time and space problems that 
all Hough methods are plagued with: the space must be 
carefully quantized (a problem which is less severe on the 
(ianssian sphere-), the line of votes must be calculated, 
votes must be distributed among accumulators 
proportionately, etc. 

Hut the method does have some justifications. In 
particular, like most Hough transforms it can be made 
lieuristically more efficient, and it is likely to be robust 
with respect to noise—which in this case arc- surfaces 
which are neither horizontal or vertical. Further, it works 
with surfaces that are curved verticals: building support 
columns, say. or drapery. In these cases, the gradient 
space map of the vertical surfaces is diffused along a line. 
Nevertheless the voting proceeds accurately, with each 
small quantum of the diffusion adding its small votes for 
its own perpendiculars. Perhaps most interesting is the 
result that the horizontal can be found even if there is no 
direct evidence for it in the gradient space: the ground 
can be "seen" even though it is "not there", as in Figure 
l>. This occurs when many environmentally vertical 
surfaces all vote for their perpendiculars; the one 
perpendicular they have in common must be horizontal, 
whether it is present in the gradient space map or not. 

Figure 6:     "Seeing" the ground plane 

6 Using the Image Space Relations 
The relations concerning image configurations can 

also be exploited in many ways, the simplest case is 
when all sensor information is known. One immediate 
result is that locations of both the horizon and the 
vanishing point of verticals are then also known, whether 
or not any phenomena suggesting them actually appear in 
the image. (|f either are suggested by an image 
configuration, then that configuralioii can be assumed to 
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bf tin' proper one; ii> position can further calibrate sensor 
till and roll.) 

Again, the more interesting algorithms occur when 
the sensor information is unknown, uncertain, or known 
milv partially. Under perspective, if the focal point of the 
retina and the focal length of the sensor arc known, then 
sensor till and roll can be found immediately from ,1 line 
that lias been correctly labeled as the horizon. The same 
is true if a pair of noli-colinear lines are environmentally 
labeled as vertical: the intersection of their extensions give 
the vanishing point of verticals, and hence tilt and roll. 
(As with the gradient space, no image information 
provides pan.) If there is only one such vertical, then the 
lilt and roll are constrained' to one degree of freedom; 
since the vanishing point of verticals can occur anywhere 
on this line, this constraint corresponds to the "vanishing 
gradient" of the line as defined in |Shafer 83a]. 

Still under perspective, if focal point, focal length, 
and roll are known, then only one environmentally 
vertical line suffices to obtain tilt. In this case, the line 
that would lie the image of a vertical plane through the 
focal point can be hallucinated; its intersection with the 
given vertical gives the vanishing point, which gives tilt. 

Under orthography, neither the focal point nor focal 
length are required; they are "everywhere" and 

■infinity", respectively. But only roll is recoverable since 
the imago of environmentally vertical lines no longer 
converge. However, roll can now be determined from a 
single image line that has been properly labeled as an 
environmental vertical. 

Two questions remain: how are focal point, focal 
length, and roll obtained if they are unknown, and how- 
are lines environmentally labeled? 

Although complete sensor information is often 
available. occasionally--as in the case of an isolated 
pliotograph or a freely positioned sensor-some of it is not. 
Given that sense can usually be made of such 
environmentally detached images, it must be true that 
heuristics can be used to help quantify the missing 
parameters. There are many such means available, since 
the problem can be addressed at all processing levels of 
image understanding. For example, ground truth" can 
help calibrate a sensor [Fischler 81]. If one is dealing with 
man-made environments, one can use Assumptions of 
multiple in-plane parallelisms and mutual inter-plane 
perpendicularities to obtain vanishing points; these 
constrain sensor location, sensor attitude, focal point and 
foeal length [Kender 80b]. 

However, even at the lowest level of algorithms, 
fairlv simple, purely environmental heuristics are possible' 
n the case of an isolated photograph, the focal point can 

be assumed to be the center of the photograph, and the 
focal length can be assumed to be a fixed ratio of the 
actual photograph dimensions. That is, the photograph 
can be assumed not to have been cropped. 

The more pressing problem is with that of the free- 
floating sensor: the heuristic environmental labeling of 
lines for the determination of roll. Of course, given an 
in,enmped image, one can always assume that was HO roll, 
and that the image of the environmentally vertical plane 
through the focal point would appear as the image's 
vertical midline. 

I'>|it line ran perhaps do a bit better bv first 
assiiiimig that all retinally near-vert i, al lines, for suitable 
definitions of ••near", are the images of environmentally 

vertical ones. I nder perspective, a Hough-like scheme 
can then be used to help refine this heuristic labeling 
Extend (and weight) all such lines, and take their most 
common intersection as the vertical vanishing point 
Fines that do not pass through it loose the label. "Vilt and 
roll come free. Under orthography, the method 
degenerates to one-dimensional histogramming: since the 
images of true environmental verticals must be parallel 
one only labels those lines that have the modal (the roll) 
orientation. These methods share all the usual properties 
ol a Hough transform, good and bad. (The analogous 
methods for environmentally horizontal lines appear to be 
mmh weaker, given their unconstrained behavior in the 
image.) 

A special case of heuristic labeling of vertical lines is 
iis'd in the Phoenix system [Herman 82], It works on 
aerial views of buildings in Washington. 1).('., taken with 
a sensor aligned directly downward! The vanishing point 
for verticals is therefore" the image origin. Any line whose 
extension passes through the image origin is heuristieally 
labeled a building s vertical. 

7 Using Linear Perpendicularities 
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Now d 

he force of gravity also induces in the environment 
types  of perpendicularities.     We  have  already 

■d      several      algorithms      that       exploit      the 
icularities    that    are    created    upon    horizontal 

by   vertical   surfaces  or   lines.      Wo   now  show 
ways  in  which  to exploit   the  perpendicularity 
upon horizontal linea by vertical lines.    In the 

>n that  follows, we assume all sensor parameters 
iwn.     To  simply   the   presentation,   we   further 
that  there is no sensor roll, although nothing to 
epends on that fact. 

In general, these algorithms' are based on the 
observation that an environmentally horizontal line meets 
an environmentally vertical line at a right angle, and 
creates a vertical plane. Additionallv, if the sensor 
parameters are known, the images of environmentally 
vertical lines can be hallucinated in abundance: they must 
only pass through the vanishing point of verticals (which 
is an ideal point in the case or orthography). Thus, all 
that is needed to define a vertical surface is the actual 
image of an environmentally horizontal line. 

The gradient of this hallucinated surface can be 
quantified. The knowledge that the plane is vertical 
already restricts its gradient to the line of vertical 
surfaces in the gradient space. But the fact that the 
environmental angle is a right angle itself generates 
another one-dinuuisional constraint in the gradient space 
[Kender 8()bj. These two constraints can be intersected 

usually resulting in a small, discrete number of gradients 
for the local vertical surface. Depending on the imaging 
geometry and the properties of the given horizontal, this 
gradient can be specified uniquely. In short, a line labeled 
as environmentally horizontal generates a well-specified 
vertical surface. 

The    second     constraint,     generated     under    the 
information thai  the image angle it  is environmentally 
right, is complex: it is a fourth degree curve in gradient 
space parameters p and q. However under orthography 
or under perspective if the vertex of the angle lies on the 
focal point (local orthography), it simplifies to the Kanade 
hyperbola in p and q [Kanade 79], A further 
simplification occurs since one side of the angle is 
environmentally vertical: the angle can be drawn in both 
cases as m ligure 7. The vertex is at the image origin 
■Hid  the wivironmentallv  vertical side is aligned with the 

253 

:-vv 

■       -       • 

..    ■   . 



■-   •- -.   -. ■ i. ~ .->-.■.     . ■ . ■   ■- 

imaffi of the vortical plane passing through the focal 
point. (With no roll, this image is the y-axis). One figure 
suffices for both the orthographic and special perspective 
cases because under orthography any image can be 
translated to the origin without affecting the gradient 
space. 

y 
4 

l.v 
nf 
of 

intercepted 

Figure 7:    Simplest Kanade hyperbola:   image. 

The resultant constraint equation is still a 
hyperbola, but it is extremely simple: it is p = 

nv a one-lo-otie function of q. As 
constraint is uniquef 

line of vertical surfaces q = -1/qi,, 
Thus, under orthographic conditions the gradient 
generated vertical surface is uniquely defined. 

(Note that if the venic»! !;;;.' k nr. object edge and the 
horizontal line is the edge's shadow, then this gradient 
constrains the direction of the illuminant: see (Shafer 
831)].) l 

- cota(q+l7q), with p ii< 
shown in Figure 8, this constraint is uniquely 

1 surfaces, q = -1/%. 10T any value 

Figure 8:    Simplest Kanade hyperbola:   gradient space 

This special case hyperbola has several interesting 
properties. The first is that the minimum value of p 
always occurs at q = -1, independent of a. Since in 
orthographic photographs there is no indication of the 
sensor tilt, qj the observer is free to select a tilt at will. 
The choice of CM, == -] guarantees that left-right slant is 

surface   "regresses   to   the   frontal 
f q is equivalent 

cl|i minimized   (i.e. "the 
plane").   This value 

(he horizontal plane at 45°; (his angle is commonly used 
in architectural drawing [Morgan 50J. 

The second properly is (ha( under pure orthography 
all right angles with a vertical side behave identically, in 
one respect. Distances on the horizontal plane on which 
they stand can be read off from the image, independently 
of the angle a that (heir images form. Consider Figure 9. 
Let the vertex be at relative depth z = 0; distance 
increases towards the observer. Draw the retinally 
horizontal line y = cota; the segment intercepted by the 
angle is of lengih I. The total depth at the left intercept 
is z =— cota/qi,, since (he vertical line has no p component 
and i( increases in depth propordonally to the the sensor 
tilt. The total depth at (he right intercept is (lie depth at 
the left ;;/»« the pure p component depth increase due (o 
a movement of 1 image unit to the right. Thus, the depth 
at the right is cota/q. - cotajqi +l/q| ) = -cetaqi using 
(he funcdon relating p to %, 

z=cotiiq 

COta 

"z = -cot oc (q + l/q  ) 
h        n 

Figure 9:    Right angle depths:   image calculations. 

This can all be summarized by stating thai on any 
line v = c the depth on the vertical leg is c/q. and the 
depth on the horizontal leg is cqi independent oi a. In 
particular, any rectangular prism of whatever size, resting 
on a horizontal surface with known tilt, can be easily 
labeled for relative depth in the image itself, starting at 
any vertex and propagating depth changes outwards: see 
Figure 10. 

z=-cqh+d/qh 

z=-cqL 

:* 

to looking dt.wn at Figure 10:   Right angle depths: propagation. 

2'jii 
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(An altcriiatt' derivation is shown in the side view of 
Figure II. Along the plane of constant depth, at c units 
above the vertex, the environmental vertieft] has depth 
change C/QL by similar triangles. Similarly, the 
horizontal s is cqK. This side view also indicates the 
independence of aepth calculations with respect to the 
image of the right angle; all that matters is the relative 
height in the image plane, and the environmental labels of 
vertical line or horizontal plane.) 

plane of 
constant depth 

horizontal 

Figure 11:    Right angle depths:  side view. 

8 Ambiguity in Labeling 
In the previous section, we gave algorithms for 

exploiting the perpendicularity that arises between 
horizontal and vertical lines. We demonstrate here that 
that configuration's power comes not from the 
perpendicularity per se, nor even from the fact that the 
surface that is formed is vertical, but from their 
individual environmental labels. We show this by 
demonstrating that two general perpendicular lines even 
wilhin a environmentally vertical plane, give rise to 
ambiguous surface orientations. In this discussion, we 
make the simplest of assumptions: orthographic imaging 
with known sensor parameters and no roll; basically, this 
is a counter-example. 

an Consider Figure 12; it is the image of 
enyironmentallv vertical plane in which there is embedded 
a right angle. Neither side of the angle is environmentally 
horizontal or vertical, however. TTie constraint in the 
gradient space that the image generates, from the 
assumption that it is environmentally right, is again the 
Kanade hyperbola: see Figure 13. However, because of 
the oriental ion of the image angle, this hyperbola is no 
longer a function. Further, some values of q have no 
corresponding p; certain lines of vertical surfaces would 
not intersect this constraint curve. This is another way of 
saying that some values of sensor tilt qu are incompatible 
with the interpretation of the image angle as a right angle 
in a vertical plan". (This was not so in the case with 
enviroiimentally labeled sides.) Worse, nearly every line 
of vertical surfaces that does intersect it intersects it 
twice. That is, for nearly every sensor tilt for which the 
image has an interpretation as a vertical plane, it has two 
possible gradients. 

It turns out that the two interpretations are 
somewhat difficult to visualize. Perhaps the best way to 
view them is with a physical construction, rather then by 
studying Figure II The case where the line of verticals- is 
tangent to the hyperbola probably corresponds to the 
configuration    where    both . 
environmental horizontal. 

legs   are    at   45°    to    ihe 

environmentally 
vertical 

Figure 12:    Ambiguous vertical planes:   image. 

Figure 13:    Ambiguous vertical planes:   gradient space. 

nearly  /^ 
vertical "I purely 

vertical 

- 

•--■ 

"•* 

Figure 14:    Ambiguous vertical planes:   interpretations. 
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9 Discussion:   Meta-heuristics 
Althougfa some <if the relationshipa discussed in this 

paper have been absolute, manv of them depended on 
heuristic assumptions. Most of tne assumptions were of a 
similar form.  '1 he basic reasoning was as follows. 

Certain preferred environmental objects create 
specific image configurations; for example, the images of 
environmentally vertical lines converge to a vanishing 
point. However, other environmental objects could also 
create the same configuration; for example, 
environmentalh horizontal or oblique lines could also 
converge on the same vanishing point. The heuristics 
throughout assumed that the image configurations could 
be uniquely inverted as to cause: here, convergence 
implies environmentally vertical. More simply the 
presence of an image" feature similar to a preferred 
object s image features was taken as evidence for the 
preferred object. This "near implies preferred" mela- 
heuristic has proven useful in several other contexts, 
specifically shape from texture and skewed symmetry. 

What sorts of environmental objects are preferred? 
One basis for preference is the simplicity with which 
image signatures can be inverted. For example, in the 
gradient s,„.ce, both horizontal and vertical surfaces are 
easy to manipulate because their classes are small and 
well-defined; oblique surfaces are not. Horizontal and 
vertical surfaces are therefore preferred. This mela- 
hcuristic thai "preferred implies simple" has also proven 
useful in other contexts. 

Hut perhaj 
meta-heuristics is 

of the 
serves 
iewing 
ids   to 

math 
simple 

The 
la»   all 
ght be 
ertical 

the most evidence of the utility 
in the suggestion that foveatioii 

purposes other than an increase in resolution. \ 
perpendicularities off-axis under perspective lei 
difficult mathematics; foveating them makes the 
very simple. Thus, foveation helps to create 
signatures and helps define a preferred object, 
implication for image understanding might be tl 
near-perpendicularities should be foveateo; they mi 
the images of an easily determinable local v 
surfaces. 
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> This paper adaiusilorn atiil Schunrk's Kork on optical flow f3J to 
the problem of deiennlning arbiimiy rpotlons of objects from 2- 
dintensioml image sequences. The meihfd allom fur gradual changes 
in the way an abject appears in the ima^e sequence, and allows for Jhw 
dtscontlnultles at object boundaries, n"efii,l veluctty fields that give 
estimates of the vcloeilies if objects in the image plan';. These velocllles 
are computed firm a series of images usins information about the spatial 
and tewpoml brlgluness gratllents. i constraint on the smoothness of 
motion within an object's boundaries is used. The methodcan be applied 
to uueipietalion of both njleclance and x-ray images. Results are 
shown fir models of ellipsoids undergoing expansion, as well as fur an 
x-ray image sequence of a healing heart. 
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Introduction 
InEerprcttng tlie iiu)ti(in of objects from a sequence of images is 

üifflcult because image changes may be due to a number of factors. 
First, Image changes may be [tue to object translations or rotations, or 
to relative motion of one object such that it occludes another. Second, 
changes may occur «hen non-rigid objects change shape or si/.e. 
Third, parts of an image need not change e\en though they 
correspond lo a moving object; for example, regions of an image 
corresponding to flat surfaces of constant reflectance may exhibit no 
change if the object undergoes only translalion. I'ouuh, changes may 
result from motion of the observer. Thus, effective algorithms that 
measure object motion from sequences of images should do two 
lliings: 

« They should distinguish between image changes due to 

motion of objects, due to deformation of objects, and due 
to occlusion. 

• They should determine whether regions of an image that 

exhibit no apparent brightness changes correspond to 
moving surfaces. 

This paper develops methods for assigning velocities to image 
points by examining changes in brightness at each point in a sequence 
of images. While many of die techniques may be applicable to 
environments where die observer is moving, the emphasis will be on 
interpreting image sequences where tlie observer is stationary and only 
objects move. In general, we must notice that motion analysis from 
images cannot be solved without making assumptions about the 
underlying motion of objects represented ir. the image sequence. 

Horn and Schunck [3] addressed a problem of computing optical 
"»w  from an image sequence. They define optical How as "the 
distribution   of apparent   velocities   of movement   of  brightness 
patterns" m a sequence of images.   Usually optical How refers to the 
How of the imaged world across the retina as a biological observer 
moves continuously through the world.    However, if we assume a 
stationary viewer and assume there are no changes in the brightness 
patterns as a result of the motion, then Horn and Schunck's definition 
of optical fiow gives the velocities of objects projected onto the Image 
Plane,    lo say that there are no changes in the brightness patterns 
means that the image brightness corresponding to a single physical 
point on an object is the same from one frame to the next    This 
restriction permits only translation of objects parallel to the image 
Plane   and   does   not   allou   arlmrary   rotations   or   perspective 
transformations, tn order to compute optical fiow, Horn and Schunck 
assumed that the velocities varied smoothly over the entire image 
I his assumption has limited utility in  real images where object 

boundaries are usually places of discontinuous vclociij for both the 
case of a moving object and for an observer moving with respect to a 
static scene. 

Our approach also involves computing velocities at the points in 
an image, but our method differs from Horn and Schunck's in two 
important ways. First, the the velocity smoothness constraints arc 
applied only within regions that are separated from the rest of the 
'mage by recogni/nble boundaries. Velocities are free to change 
abruptly across these boundaries. Second, changes In the brightness 
patterns are allowed so that velocities more closclv represent the 
arbitrary motions of objects projected onto the image plane For 
example, gradual shading changes that occur with rotation relative to 
Ihe light source may be accommodated. 

The methods developed are applied to models of ellipsoids 
■moergoing expansion and to x-ray image sequences of a beating 
heart In the latter case the pattern changes of interest are those that 
occur when the heart changes shape in a direction perpendicular to the 
imago plane. 

Problem Statement 
If there is no a priori knowledge about die struciiire of objects in 

a scene, then measurement of velocity relies on local information 
about temporal and spatial gradients of image brightness. This local 
information provides only one constraint, the change in brightlKSM at a 
given point, while the velocity of a point in an image has two 
components. In simple situations, where moving objects only undergo 
translation parallel to the image plane without changing their pattern 
in the image, this constraint determines the component of velocity 
parallel to the brightness gradient. When the brightness gradient is 
zero in die direction of motion (eg. flat region of an object with 
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constant reflectance or a süipc pattern in the direction of" motion), 
then there is HO local velocity information. In all cases additional 
constraints must be imposed to determine the two components of 
velocity In the image plane as well at to determine the changes in the 
image pattern. 

Let the image brightness projected by a point on a moving 
object at a lime ( be given by l(jc,y.i). At a Liter time / / Jl the same 
object point has moved so that its projected position in the image 
plane lr. given by (x+tbcy+Jy). llie brightness of this point may 
have changed to a value l(x I Jx.y t dy.l+dl). Such a change occurs 
when lighting and shading change as an object rotates or when the 
object itself changes shape. I he total rate of change of brightness 
dl/dl is given by: 

dl      fi I dx      9/ tfy      dl 

ill       dx ill       dy dl       dl 

where dl/dx and dl/dy are the x and ;■ components of the spatial 
brightness gradient and dl/dl is the temporal brightness change 
measured at the point (*,_)). The three variables that are to be 
determined are the v and y components of velocity, i.e. il^ill and 
ily/ctl. respectively, and the brightness change il'/dl. To simplify the 
notation, we introduce the abbreviations /.. / and / for the partial 
dcriviHives of brightness with respect to * >■ and / and the 
abbrcv iations ■ and v for the * and y velocity components, liquation 
(1) can then be rewritten in the following way: 

— =/ 
Jl      * 

I  v *l (2) 

■V md the rate of 
be applied that 

To solve this equation for the velocities ( 
brightness change itHAIi). other constraints must 
restrict the allowable motions.   For example, the assumption can be 
made that the velocity and pattern changes are constant or that they 
change smoothly within a region.   It could also be assumed that tile 
velocities and patterns vary in a constrained manner over time f4], 

In the next section, we review Horn and Schunck's method for 
computing optical How. and identify problems with it. The remaining 
sections propose a set of modifications and extensions to cope with 
those problems. First, we present a technique tin' oennits velocity 
flow discontinuities a', boundaries. Then we suggest a way to 
accommodate some of the changes in brightness patterns that occur as 
a result of motion. The final section presents results obtained by 
applying the modifications to a model of an expanding el'ipsoid and 
an example that incorporates all of these techniques to analyze heart 
motion fiom a sequence o x-ray images. 

Horn and Schunck's Mclhod for Computing 
Optical Flow 

Morn and Sclumck P) assumed no pattern change in the image 
so that the brightness change with time corresponding to a single 
physical point u'l/ili is equal to zero, i.e.: 

/ 1 = 0 H) 

This assumption severely limits the allowable motions. Rotations, 
translations in lepth and deformations often result in changes in the 
image bnghtness pattern and violate this assumption. Morn and 
Sclumck tnade the additional assumption that neighboring points have 
similar velocities.    To implement this smoothness constraint, they 

constrained the local change in velocity by minimi/ing the square of 
the magnitude of die spatial gradk-nt of the velocity components: 

dx dy dx dy 
(4) 

In order to solve for the optical flow v and v , Horn and 
Sclumck combined the two assumptions (the zero brightness change 
and the smoothness constraint) In minimizing the following function: 

/   [('")•'.«'(.■')].'« ly (5) 

where the integral is over the entire image and o2 is a weighting factor 
that depends on the noise in die gradient measurements. The 
following iterative formulae provide the solution for the flow velocities 
that minimizes equation (5): 

ki I   * * 
I (I V' 

y y V 
(6) 

„*+/»* jT     X  X I   ) t' 
y      " y  ' a2*l\l> 

*      >' 

where i'x and S denote local averages of the velocity components 
computed at life Ath itcnu::^ \ region where there is no apparent 
local velocity information (eg. Ilat region of constant reflectance) will 
derive its velocity from the surrounding region, because during die 
iterative process, velocities will tend to propagate and fill in these 
regions. 

There are three primary problems with this technique. The first 
two Involve the boundaries, first, the technique does poorly when 
there are discontinuities in the velocity field or in die brightness 
gradients, because of die smouthness assumption. The discontinuities 
occur at object boundaries. Second, die same property that allows 
velocities to propagate within an object tends to extend erroneous 
velocities outside the area of an object. The problem is most 
conspicuous for the case where an object is moving against a uniform 
background. In this case it is not possible to distinguish the velocity of 
die object from the velocity assigned to the uniform background. 
Third, motion is constrained to be parallel to the image plane because 
of the assumption that an objeci docs not change the way it appears in 
the image from frame to frame. 

Boundary Constraints 
I he previous section suggests that discontinuities in velocity 

which occur at object boundaries must be explicitly accounted for in 
order to accurately determine velocities within die boundaries. We 
propose to allow for these discontinuities by applying the smoothness 
constraint separately to regions on either s^dc of an image boundary. 
Ttvs can be done once the projection of die object boundaries have 
been located in the image. As we see next. Implementation does not 
require that the image be segmented into regions corresponding to 
objects, radier only that the location of/»a/We object boundaries be 
determined. 

Image boundaries occur when one object moves in front of 
another: these arc called occluding boundaries. Image bo aidaries can 
also occur due to die painted patterns or non-occludina edges on the 
object: these arc non-occluding boundaries. (There arc also 
boundaries due to object shadows, but these arc not explicitly dealt 
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with here.) In icrms of motions across tiicm, there is un important 
difference between occluding and non-occluding btHiiMtiries. A non- 
occluding boundary has consistent motion on both sides - there is no 
velocity discontinuity. The regions on both sides of an occluding 
boundary can have dift'erent velocities. We must process velocity llow 
data at a boundary differently according to the type of boundary. The 
smoothness constraint is enforced across non-occluding boundaries, 
but not across occluding boundaries. This procedure permits spatial 
discontinuities in llow velocity to occur when one object moves in 
front of another. 

flic first factor is die error in satisfying equation (2), i.e.: 

t, -- I /  v  -  / v  - / H (9) 
ill 

Since wc allow J]/dt to be noiucro, it is included in t^. ["he second 
error factor is a measure of the departure from a spatially smooth 
velocity field, t^. which is die same as equation (4). The third error 
factor is given by equation(8) and measures the departure from a 
spatially smooth pattern change. 

j 

To apply this method, we need not predetermine whether a 
boundary is occluding or non-occluding. First, the uc.uby velocities 
are computed based on an assumption of mm-occlusiou; the 
smoothness constraint is applied across die bound, ry. Next, die 
velocities are recalculated assuming occlusion; the smoothness 
constraint is not enforced across the boundary. Finally, the result that 
best satisfies the equation for dl/ih (equation (2)) and the smoothness 
constraint is retained. In this way, the boundary types can be locally 
determined without explicit segmentation of the image into object 
regions. This test is repeated with each iteration. 

Pattern Changes 
A pattern change refers to the change in image brightness of the 

same physical point on an object from one frame to the next. A 
pattern ch.aigc will occur when points on the object are obscured or 
revealed in successive image frames. Ibis type of change causes 
discontinuities in the velocity across occluding boundaries. These 
changes have been accommodated by the method in a previous 
section. 

There is also another type of pattern change. For example, 
when an object rotates and the lighting hits the object In a different 
way, it results in different shading. For a l.ainbertiari surface the 
shading change of a given physical point on an object is given by: 

We tnmiir.me the sum rf these error factors romputed over die 

til      ii dn 
— - —(kco^j)) - -k SUI(T) — 
dl      dl dt 

(7) 

where T is the angle between the incident light and the the surface 
normal, and k is a constant. If the surface orientation is known, then 
(///(//gives a measure of the change in orientation. 

Here wc propose to allow for such pattern changes in the image 
by constraining them to vary smoothly within boundaries. V/c can 
think of die pattern change (dl/di) as another velocity component. 
While dl/dl is not strieüy a velocity, we constrain die variations'in 
t'l/dl to vary smoothly within object boundaries, just as was done for 
the velocity components. Thus wc can define a smoothness measure of 
change in brightness variation: 

image: 

minimize JL H   t/dJ * Je/dJ)* fl'e/i ■aß 10) 

An iterative form of die solution is found for the velocities at the 
(k I I) iteration In terms of die spatial and temporal brightness 
gradients and the neighboring velocities at die k-lh iteration: 

v*+/.v* 

y y «■'+ V/?^H. «y/^ + .»y/-^ 

£v *W   ,(//,*     [/» * * tv * ♦ l - (di/dt)k~\ 

di (//     +   a1 ♦ 2«'^ ♦ o W ♦ «W 

where v^and vv* denote averages of die neighbor],-.g velocities 
at the A--/// iteration and (dl/di)k denotes the average pattern change at 
the k-th iteration. This iterative procedure is applied everywhere in 
the image, but points in the neighborhood of a boundary are treated 
differently. Boundaries are located by finding zero crossings in the 
l.aplacian of brightness [I] in each of a sequential pair of images and 
forming a union of such zero crossings. The size of a neighborhood is 
determined by the size of the region over which the smoothness 
constraint ts is computed. Velocities are computed separately using 
points in the neighborhood on one side of die boundary and again 
using points in the neighborhood diat span die boundary. This yields 
two different estimates for die velocity.   The estimate that minimizes 

***** E/ ß2 tß is used. 

. 

..'T-aT-)T+[-3A]' 
ox   dl dy   dl 

(8) 

Now Algorithm 
Now wc can present our new algorithm which incorporates the 

considerations on boundaries and pattern changes. To summarize, 
this algorithm assumes: (a) the brightness changes of a single physical 
point can be described by the first order expansion, equation (2); (b) 
velocity changes in a neighborhood are similar, unless the 
neighborhood contains an occluding boundary; (c) the rate of pattern 
change (dl/dl) is also similar in a neighborhood. To impose diese 
assumptions we define an error factor for each. 

Results 

Modol cf Expanding Hilipsoid 
The algorithm described in dlis paper was tested with a sequence 

of images generated by modelling an ellipsoid that expands uniformly 
in all directions. The ellipsoid is assumed to have l.amhertian siuface 
properties and to be illuminated with a distant source perpendicular to 
the image plane The image is resolved to 64 by 64 pixels and 
quantized to 256 brightness levels (see Figure 1A). ITic maximum 
velocity of any point in the image is approximately 0.5 pixels per 
frame. The background is uniform and therefore provides no 
information about motion. The actual velocity vectors for the 
expanding ellipsoid are shown in Figure IB. These are the reiutis wc 
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would like to obtain using one algorithm. 

Rgurc 2 shows the results of applying Horn and Schunck's 
optical flow technique (equation h) to the expanding ellipsoid. Mere 
the smoothness constraint is applied across object boundaries. While 
the velocities are determined fairly accurately within the object, they 
are propagated erroneously beyond the object boundaries. The total 
error over die entire image is approximately 15%. When velocity 
discontinuities are taken into account as outlined above, a more 
accurate estimate of velocities is obtained as in Figure 3. We see that 
use of boundary information results in a clear demarcation of 
velocities within and without the object. 1 he residual errors do not 
extend substantially beyond the boundaries of the object. The total 
error is 5%. However, the algorithm tends to overestimate the actual 
velocities in the vicinity of the boundary. Such inaccuracies are 
expected, because of the discontinuities In the brightness gradient dial 
occur at die border between one object and another. One way to 
avoid this problem and possibly improve the How velocity estimates 
throughout a region is to determine velocities at the boundaries of the 
region using another technique (sec for example [2|). Such vclociticr 
at the boundary provides intitial conditions md remain fixed In the 
iterative procedure. To sec this effect, die actual velocities at the 
boundary were supplied as initial conditions and remained fixed for 
the iterative procedure. The result is shown in figure 4. The total 
error is less than 3%, For the case of the expanding ellipsoid, the 
velocities inside the boundaf) region were close to die correct values 
whether or not the Initial boundary velocities were specified. 
However, there are probably other cases when a good Initial guess of 
velocity at the boundary will substantially improve the velocity 
estimates inside the bounded region. 

Application to X-ray Images 
Hiough these techniques have been developed for objects 

imaged in visible light, we have begun to explore application of these 
techniques to x-ray images. Our goal Is to use diem to analyze motion 
of the heart from cine angiograms. 

When optical flow techniques are applied to x-ray Images, the 
results have a different meaiiing. \l each point in an x-ray image, the 
brightness depends on the amount and density of the mass between 
the x-ray sour- and the film. Because brightnesses depend on object 
densities instead of reflectance, tlte velocities found by this method no 
longer apply to single physical points on die surfaces of objects. For 
simplicity, we assume that die density docs not change in time and 

that the brightness changes therefore represent depth changes. In 
angiograms where radio-opaque dye Is injected into the bloodstream, 
the primary x-ray attenuators are the dye and calcified bone. For this 
case, the assumpdoo that pattern changes reflect changes in the depth 

of the heart is accurate since the dye filled heart is the primary source 
of motion. 

X-ray images have two advantages over reflectance Images of 
opaque objects. First, depth information is available. Second, objects 
arc not totally occluded. The'disadvantage is that a point in the imago 
docs not generally correspond to a single point on a single object. 
Thus the flow velocities lake on a different meaning for x-ray Images, 
as described above. To understand what this difference means, 
consider a reflectance image and an x-ray density image of the same 
object, an expanding sphere. (See Fig. 5.) In the reflectance image 
the brightness due to a single physical point on the sphere is die fame 
in successive images, because It has the same surface orientation. 
Therefore, to determine velocity at a given point, we need only find a 
point of matching brightness that satisfies the global smoothness 
constraint. If we look at brightness along one dimension of the Image, 
then the velocities are found by matching points of similar brightness 
In successive frames. (See Figure 5A.) 

In an x-ray density image which records the z height as the 
brightness, such a simple matching of similar brightnesses frequently 
docs not yield sensible velocities. In fact, there may be many points in 
one image for which dierc is no matching brightness in successive 
images. As shown in Figure SB, matching points in successive •"rallies 
of die x-ray image of a sphere based on similar brightness values, 
yields very large velocities near die densest part of the imaged sphere 
(i,c. center) where the actual velocities are small. A meaningful 
description of die motion from the density Image would be obtained 
by taking the rate of brightness change (ill/Jl) into account. Ibis can 
be interpreted as a change in depth perpendicular to the Image plane. 
(See Figure 5C.) For x-ray images of a beating heart, die brightness at 
a point in the image is dependent on the depth of die heart cavity 
perpendicular to die Image plane. Thus die pattern changes will 
refleci the expansion or contraction movement of die heart in the 
direction perpendicular to the image plane. :      .   . 
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Figurf I; An image sequence ».is obiained by moilolling an ellipsoid thai expands uniformly 
in ail directions. One frame of the sequence is shown in (A), At each point in the image we 
have compu.cd the magnitude and directioa ot the local image v.locity. fhe velocity vectors 
at each poini in the image arc ploltcd here as short tine segments representing magnitude and 
direction   the correct velocity tlow patlcrn Jetermined from the model is shown in (B). 
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lisuro 2: die vetoeltj vectors for the expanding ellipsoid were calculated using Horn and 
Schunck! optical How algorithm, llie resulting How pattern is shown in (A) No boundan 
constraints were imposed, so that the u-lociij smoothness consiiamt was applied across the 
boundaries. Ihe result is that the velocities propagated outside the boundary A vector plot 
of the velocttj errors is shown in (li). Initial velocities were set to zero, Ihe results arc shown 
.ificr thirty-two iterations. 
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I'inure.l: Ihe velocity flow pattern in (A) was calculated for the expanding ellipsoid 
assuming thai flow discontinuities could occur at the boundaries. Ihe boundaries used are 
indicated bv heavy black dots at the bast of some of the velocity vectors. Velocity errors are 
shown in (B) Ihe velocities computed at the boundaries arc substantially greater than the 
actual velocities, however, the velocincs inside the ellipsoid are very close to the actual 
velocities. Again, the initial velocities were set to 7ero and the results are shown aller 
thinytwo ilcralions. 

-  "  • 

I'lfiure 4: fhe velocity now pattern in (A) was calculated for the expanainc ellipsoid with the 
veloc 's « the boundaries set to the actual values. As in figure 3, discontinuities in velocity 
How e pernntied at the boundan Ihe boundaries used are indicated by heavy black dots 
Ihe p,.: in (M) shows the velocity errors. ITic total error is less than 3% after thirty-two 
iterations J • 
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X-RAY   DENSITY   IMAGES 

RBM 5-    When a sphere expands in a reHeOance image. *e profile of bnßhtnesses ,n a 
o s secuon parallclTo ,hc x-ax.s changes as shown ,n (A), We assume a dislan, l.gh, souc 

^enllano Z mrogc piane The br.gh.ncss ofpomts on*, su.face %*£»**£ 
phcre expands, so surface ,no.,on can be measured b> ma.Cng *^*«®* ^ "^ 

thai sans yihe smoothness consiraml When a sphere expands m an x-ray densit) ,mage Ihc 

Snl^ sur.ee Um -eases a, sbo.n ,n CD and (O 1. .s "" ^^^ 
detenrrine veloemes I, ma.ch.ng bngh.nesses We expeo Che .el«, es ^***™** 
.he relledance case, I lowever. if we simpb maich hnghmesses as ,n (P! *e obta.n v.ry la ge 
"s near .he cemer of Ore ,maged sphere where we expec, ^cr, small ve ocmes. as weH ^ 

laT    How disenminuny a, the  center of the sphere.   If. as in (C . we allow for ^oothl 
vaofng   bnghtness changes Wit) m add.tion to the mouon m the plane   parallel to the 
image. Uicn velocities in the image plane are as expected. 

Ficure 6- The expanding ellipsoid was modelled again, but the brightness at each point in 
the image now corresponds to the depth nf the ellipsoid measured pcpendicular <o *e "nage 
plane L resu.t is similar to an x-ray .mage of an ellipsoid Jhe f^******™ 
Ihe ...Mel are shown in (A) and the rale of pat.ern change {dl/d,) is shown in (U) The pattern 
changes can be thought of as changes in depth. 
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Figure 7: (A) The compuled velocities for density images of the expanding ellipsoid 
assuming no pattern changes, ve, dl/dl^O Note the large discontinuity in \olocity flow at 
the center of the imaged ellipsoid' and the very large velocities near the center. (B) The errors 
in the compuled velocities  Resu.ts arc shown after 32 iterations. 
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Figure 8: The velocities were computed for density images of the expanding ellipsoid 
allowing for velocity discontinuities at boundaries and allowing for pattern changes. The 
velocities were preset to the actual values at the boundaries All other velocities were 
initialized to zero. Ilic boundaries used are indica.'d by heavy black dols. Results are shown 
after SI iterations. (A) Ihc velocity flow pattern computed for the image plane. (B) The 
velocity crro'S in (A). (C) The computed pattern changes or depth changes. (D) .tie errors 
in(C). 
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linurt 9: Experimenial results were obtained for a sequence of way images of a dog s heart 
injected with radio-opaque dvc. (M An example of a single frame in the sequence (li) A line 
drawing Idenlifung die structures. 
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FiBure 10: A sequence of x-ray images of a dog's heart were processed to obtain velocity 
ioformauon Velocity disconununxs were pcrmitled at image boundaries, (A) The velocity 
flow vectors The biundarics used arc indicated by heavy black dots in the figure. (B) The 
boundanes alone. (C) The depth changes or pallcrn changes (D) The error in predicting the 
subsequent frame from Ihc previous frame given the molion description in (A) and (C). The 
loul error is less that (15%. Initial velocities were set to zero. ITie results are shown after 
twenty iterations. 
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PROCESSING  RESTRICTED  SENSOR  MOTION 

Daryl   T.   Lawton 
Computer   and   Information  Science   Department 

University of  Massachusetts 
Amherst,   Massachusetts   01G03 

Q ABSTRACT 

We present a procedure for processing real world 
image sequences produced by relative translational 
motion between -3 sensor and environmental objects. 
In this procedure, the determination of the 
direction of sensor translation is effectively 
combined with the determination      of      the 
displacements of image features and environmental 
depth. It       requires       no     restrictions    on     the 
direction of motion, nor the location and shape of 
environmental       objects. It       has    been     applied 
suc&essfully to real-world image sequences from 
several  different  task domains. 

We~     then       consider       several extensions and 
applications for such things as independently 
moving objects, translational blur streaks, other 
cases of restricted motion, computation in a 
hierarchical structure, and incorporation into 
hybrid   sensor   systems   for   autonomous navigation. 

0.0  INTRODUCTION \ 

This paper presents a procedure for processing 
translational motion in imagt sequences. The 
computation robustly combines the determination of 
the translational       motion       parameters,       image 
displacements, and environmental depth. It can be 
used as a basic component for visually guiddd 
navigation since the other parameters oi sensor 
motion can either be obtained using other 
associated       devices      or       removed        by sensor 
stabilization. In addition, we discuss extensions 
for such things as independently moving objects, 
translational blur streaks, and computation in 
hierarchical   structures. 

The basic procedure consists of two steps: Feature 
Extraction and Search. The feature extraction 
process finds small image arsas which may 
correspond to distinguishing parts of environmental 
objects. The direction of translational motion is 
then found by a search which determines the image 
displacement paths along which a measure of feature 
mismatch is minimized for a set of features. The 
correct direction of translation will minimize this 
error measure and also determine the corresponding 
image displacements for  the   extracted   features. 

The feature extraction process finds distinctive 
points which are positioned at points of high 
curvature along contours determined by simple 
prooesseo such as thresholding, zero-crossing 
extraction and simple local contrast measurements. 
Particular forms of the feature extraction process 
can lead to effective and very rapid implementation 
on  proposed   image processing  architectures. 

The search process minimi Jes an error measure 
defined with respect to a unit sphere with each 
point on the sphere corresponding to a different 
direction of sensor translation. A given direction 
of translation constrains the motion of extracted 
image features to straight J ines which radiate from 
or converge onto a single point in the image plane. 
The error measure thus associates with a point on 
the unit sphere, corresponding to a particular 
translational axis, a number describing the total 
extent of feature mismatch along the displacement 
paths determined by the translational axis. 
Exoeriments have shown this error measure to be 
smooth anW with a distinct minimum in a large 
neighboorhood about the correct translational axis. 
Because of this, the search process can be quite 
simple. 

Experiments with several different image sequences 
indicate that the procedure is very robust and 
applicable to a wide range of real world 
situations. We also review particular extensions 
for implementing the procedure in a hierarchical 
computational framework, dealing with independently 
translating objects, translational blur-streaks, 
and   impllections   for  autonomous navigation. 

This       work      was       supported 
NOOOIH-Sa-K-Men  from   DARPA. 

by      grant       number 
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Model of X-ray Image of Expanding Ellipsoid 
We show an example fur a sequence of images generated by 

modelling an ellipsoid that expands with time. The liiightness is 
proportionai to the depth of the ellipsoid perpendicular to the image 
plane. The ellipsoid is expanding in all directions so that the size and 
brightness change as a function of time. The velocities projected on 
the image plane arc the same as for the case of the reflectance image. 
We expect the brightness changes to be proportional to the actual 
brightness or depth. Figure 6 shows these anticipated velocities,and 
brightness changes. Figure 7 shows tl.e velocity field which is 
computed by the Horn and Schuuck method (i.e.. with the assumption 
that there arc no pattern changes. dl/dl-O). As expected, we obtain a 
large flow discontinuity at the center of the image of the ellipsoid. 
Figure 8 shows die result of our method in which pattern changes arc 
allowed. The velocities and pattern changes arc very close to the 
cxocctcd resulis 

Expoihnent.il Results for Huarl Images 
We have applied the methods described in this paper to x-ray 

images of a dog's heart taken on film at 60 frames a second, Figure 
9 shows an example of a single frame of the cine angiogram, A radio- 
opaque dye was injected into the pulmonary artery just before the 
image sequence was taken. The dye can be seen ftlling the left 
ventricle, the aorta and some of the coronary arteries. The other 
obvious Structures in tine images are a couple of catheters left over 
from some previous injections. Hie lihr, was digitized with 8 bits per 
pixel and resolved to 100 x 100 pixels. 

The velocities were computed using equations (11). Pattern 
changes caused by the expansion and contraction of the heart 
perpendicular to the imago plane were permitted and discontinuities 
in the velocity flow were accommodated at image boundaries as 
described above. The image boundaries were located at die zero 
crossings of the l.aplacian of a smoothed version of a pair of sequential 
images. The computed velocities are shown in Figure 10. To verify 
these results, the computed motion description is used to predict the 
brightness in a subsequent image from die brightness in the previous 
image. A comparison of the predicted and actual images shows an 
error of less than 0.5%. While this does not show that the motion 
description is actually a good one. it does show that the algorithm is 
working as expected. In order to get a subjective opinion of the 
validity of the motion description, we have generated a movie of the 
velocity vectors for an entire heart cycle and shown that it coincides 
well with the apparent motion seen in the actual cine anyogram. 
While the motion description obtained from die analysis of x-ray 
images may be useful, it does not provide explicit information about 
motion of object surfaces. This sort of iufoiination might be obtained 
by using additional views of the object from difTerent angles, or by 
considering a priori information about the object's shape or sj mmetry. 

Summary 
This paper extends die work of Horn and Schunck on optical 

flow. Their velocity smoothness constraint is relaxed at boundaries to 
permit discontinuities in estimated velocity where there are occluding 
boundaries. It is not necessary to segment the image into objects in 
order to use boundary information. Rather it is only necessary to 
locate possible boundaries which can be done by locating zero 
crossings in the I aplacian of the smoothed image brightness. Images 
of an expanding ellipsoid were used to test the resulting iterative 
elgorkhm. The results showed that discontinuities in the velocity flow 
could be accommodated, but that the velocity at the actual boundary 
may be inaccurate. It is possible to estimate die velocities at the 
boundary using another technique and then to use these estimates as 
input to the iterative algorithm. 

Though the techniques were originally developed for reflectance 
images, we have begun to apply diem to x-ray density images. To do 
Ulis it has been necessiry to relax Horn and Schuifck's restriction diat 
the appearance of an object nor. change from one image to die next. 
This was done by assuming that the pattern changes in the image vary 
gradually within object boundaries. Velocity flow patterns for x-ray 
images of the expanding ellipsoid were obtained in this way. The 
results showed that the computed velocities parallel to the image plane 
were very close to those obtained for reflectance images and the 
pattern changes were very nearly proportional to the velocities 
perpendicular to the image plane. The technique was also used to 
analyze x-ray cine angiogram' of a beating heart and produced a 
subjectively good description of d'e motion. 
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0. 1   Coordinate   System 

The camera model   referred   to   through out  thi 
consists      of      a       planar     retina     embedded 
three-dimensional       Cartesian       coordinate 
(X, Y, Z),  with the origin  at  the   focal   point 
optical     axis    aligned     with     the     positive 
(figure     1).       The     X    and   Y axes correspond 
gravitationally intuitive horizontal     and    v 
directions       respectively. The     image     pi 
parallel   to   the   XY plane  and   at  some distanc 
the     Z    axis.        Positions     in     the     image  pi 
described   using   a    2-d    coordinate     system 
with    the     X    and     Y    axes of the camera coo 
system     and     with    the    origin     determined 
intersection of the   image   plane   and  the  Z-ax 

s  paper 
in     a 

system 
and  the 

Z-ax is 
to  the 

ertical 
ane     is 
e along 
ane   ar e 
aligned 
rdinate 
by    the 
is . 

Figure   1 

0.2.     Translatioial   Motion   Properties 

It is useful to have a set of terms for describing 
the motion of features in an image sequence and the 
corresponding motion of enviroranental points. We 
define an Image Displacement Vector to be a 
two-dimensional vector describing the displacement 
of an image feature from one image to the next. An 
Image Displacement Field is the set of image 
displacement vectors for successive images. An 
Image Displacement Sequence indicates the positions 
of an image feature over several successive images. 
Though we are dealing with discrete image 
sequences, it is often possible to descibe the 
continuous curve along which an image feature point 
is      moving. This    curve     is    called     the     Image 
Displacement   Path. 

Corresponding to image motio 
terms for describing envi 
Environmental Dl splacement 
three-dimensional vectors i 
of environmental points at s 
ijivironmental Displacement 
position of an environmenta 
successive instants. An Env 
Path describes the three-d 

points      are environmental 
particular motions. 

ns we use a set of 
ronmental motions. An 
Field is the set of 
ndicating the positions 
uocessive instants. An 

Sequence indicates the 
1 point over several 
ironmental Displacement 
im ens ion al curve that 

moving       along       for 

For general camera motion, there are 5 parameters 
[PRA81 ] that can be recovered from processing imagj 
motion without knowing absolute camera displacement 
or velocity (since absolute depth is lost): two 
parameters for the jnit vector (T1(t), T2(t)) which 
describes the axis of translational motion at time 
t; two parameters for the unit vector (R1(t), 
R2(t)) describing the axis of rotation at time t; 
and one parameter R3(t) which describes the extent 
of rotation about this axis at time t. Both of 
these axes are positioned at the origin of the 
camera      coordinate       system. The       problem       of 
processing image motion resulting from rigid body 
camera motion can be organized into subcases of 
increasing complexity, corresponding to the number 
of camera motion   parameters that are  unjonstrained . 

motion,       the        image 
determined       by      the 

For     purely       translational 
displacement paths      are 
intersection of the     translational     axis     with    the 
image    plane.     If the   translational   axis intersects 
the   image   plane on  the  positive   half of 
the     point    of    intersection     is 
Expansion   (FOE)     and     the     image 

the axis, 
called a Foe us of 
motion is along 

straight lines radiating from it. This corresponds 
to camera motion towards environmental points. If 
the translational axis intersects the image plane 
on the negative half of the axis, the point is 
called a Focus of Contraction (FOC) and the image 
displacement paths .ire along straight lines 
converging towards it. This corresponds to camera 
motion     away    from       environmental       points. The 
intersections of axes parallel to the image plane 
are  points at  infinity and   are  treated   as  FOEs . 

Given the direction of translation and image 
displacements, the relative depths of points can be 
computed by solving the inverse perspective 
transform. Relative depth can also be inferred 
from the position of a feature and the extent of 
its displacemF.it relative to an FOE or an FOC. 
This relation   is  expressed  as 

1) D 
ÄD 

Z 
12 

where Z is the value of the Z component of an 
environmental point at time t + 1, del Z is the 
extent of environmental displacement along the Z 
axis     from  time  t   to   time   t + 1,   D is the distance of 

the corresponding image point from the FOE or FOC 
at time t and del D is the image point's 
displacement from time t to time t+1. Thus, the Z 
value of an environmental point can be recovered 
from image measurements in units of del Z, or what 
has been   termed   Time-Un til-Con tact by  Lee   [LEE80]. 

The set of all possible translational axes 
describes a unit sphere called the translational 
direction sphere. The procedures below are defined 
with respect to this sphere, rather than the image 
plane  itself,   for  reasons described  below. 
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1.0 EXTRACTION  OF   INTERESTING   POINTS 

The feature extraction process is used to determine 
small areas (sometimes called image points or 
features^ in an image that are distinct from 
neighboring areas. This distinctiveness limits the 
potential matches of these image areas, and 
possibly reflects a correspondence to actual and 
significant points in the environment, such as 
points of high curvature on ob.ieot boundaries, 
texture elements, surface markings, etc. (However 
some features, termed false features, will result 
from noise, occlusion, and light source effects and 
have behavior which is currently difficult to 
interpret). Features can be represented either as 
arrays of numbers extracted directly from an image, 
or as parameterized tokens describing local image 
properties. In this paper, we refer to features 
exclusively as small arrays of data values centered 
at  some point in   an   image at  some  time  t. 

Following Horavec [MOR77.MOR80] , the method of 
feature extraction used here is based upon finding 
image areas which are significantly different than 
their neighboring areas. Using a correlation 
measure bounded between 1 (for perfect correlation) 
and 0, the distinctiveness of a feature is 1 minus 
the best correlation value obtained when the 
feature is correlated with its immediately 
neighboring areas. Good features can then be 
selected by finding the local maxima in the values 
of the distinctiveness measure over   an   image. 

We have extended this approach somewhat by 
constraining the neighborhoods over which the 
features are selected to contours determined by 
other global processes, such as zero-crossing 
extraction and thresholding, which are sensitive to 
edges. 

1. 1   Feature   Extraction   Using  Zero-Crossings 

The use of zero-crossings to determine significant 
image contours at different levels of resolution 
has been proposed and extensively studied by Marr 
et. al . [HIL80.MAR80]. In this processing an 
image is convolved with Gaussian-Laplaoian masks 
((del)»»2g) of different positive widths and 
thresholded at zero to determine zero-crossing 
contours. These contours are significant since 
they correspond to the points of greatest change in 
the convolved image. The distinctiveness measure 
can be applied to points along these contours in 
the convolved image, with the local maxima 
determining the position of potential features. 
This generally has the effect of finding points of 
high curvatuie along the zero-crossing contour, 
although points apparently corresponding to local 
occlusion vertices and weak maxima will also be 
ex tr ac ted . 

Many of the weak features which are local maxima of 
distinctiveness can be removed by suppressing those 
which are at points of low curvature along the 
zero-cros^l-g contours. For features which are 
local distinctiveness maxima, we approximate the 
curvature along the contour by the inner product of 
the normalized vectors describing the relative 
positions of adjacent local maxima along the 
contour (figure 2). These values are then 
thresholded between 1.0 (corresponding to high 
curvature) and -1.0 (corresponding to low 
curvature) . 

Figure   2 

Use of zero-crossing based features 
specification of the sizes of the convolut 
that are employed, and decidiag whether to 
extracted feature points with respect 
unprocessed image or the convolved images, 
usually beneficial to use masks of vario 
for sensitivity to features at different 1 
resolution. The processing described bei 
applied independently to the pairs of s 
images formed by convolving the successi 
with two such masks. Alternatively, feat 
be extracted from the original, unfiltered 
the positions where features were determin 
convolved images, though experience wi 
masks has shown that this approach can 
features significant distances from their 
position   in  the original   image. 

requires 
ion masks 
position 
to    the 
It    is 

us  widths 
ev el s    of 
JW can  be 
Jccessive 
ve  images 
ures    can 

image at 
tid   in  the 
th    large 
position 
apparent 

Hie   images in   figure  ja  and   figure    3b    Mr«    taken 
from     a gyroscopically  stabilized movie oamtra   held 
by a  passenger   in   a car   travelling  down     a     country 
road     in     Massachusetts.       They    are     128x123 pixel 
images with 6  bits of resolution  in     intensity    and 
will  be referred   to  as the  road sign   images.     Figure 
3c   shows    the     zero-crossings    extracted     from    the 
initial     roadsign   image using  a  (del)»»2g mask  with 
a   width of   5 pixels.        The    distinctiveness    values 
were    computed     using   features which were 5x5 pixel 
arrays    extracted     from    the    convolved     image     and 
centered     on    pixels    which    were    adjacent    to   the 
zero-crossing contour   and of  positive value.     Tiese 
features were correlated, using  Moravec's norm   (ser 
below),     with    their     8       immediately      neighboring 
features. The       distinctiveness    measure     for    a 
feature  was  set   to   1     minus    the    best    corceJation 
obtained     in     its    neighborhood,    excluding   itself. 
Figure     3d     shows       the      local      maxima       in       the 
distinctiveness    measure fositioned   with respect  to 
the   zero-crossing contour.       Figure     3e     shows    the 
results of suppressing   low-curvature points using  a 
threshold   set   to  -0.8   (corresponding   to   an   angle of 
143. 13 degrees) . 
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ugure  3a 

' 

Figure  3c 

Figure  3e 

Oth'" types of contour <xtraction can be used 
besides zero-crossings and total image thresholds. 
A simple one is to constrain the extraction of 
interesting points to positions where image 
centrist exceeds some minimal value. Another is to 
uae contours dete.-mined by local application oi 
histogram guided thresholding and segmentation. 
This resolves many of the problems associated with 
using a single threshold determined for image 
subparts with  significantly different brightnesses. 
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1.2 Simpli f ications  and   Speed-Ups 

In       i.Tiage-processing       architectures We have 
investigated, locality of processing leads to the 
most efficient processing. In the procedure here, 
the contour walking is significantly non-local . 
Additionally, due to the robustness of the 
transiational processing with respect to weak 
features or a small number of features (see below), 
such optimal   interesting   points are not necessary. 

A simple alternative to the contour walking is to 
use a threshold on the distinctiveness measures, 
with or without the determination of local maximas 
in distinctiveness. Examinatior of the local 
maximas along the telephone pole in figure 3d, 
reveals that these are local mas-imas with very 
small distinctiveness measures. This has been 
observed   in  general . 

An additional speed-up can be obtained when 
features are selected from contours determined by 
segmentation procedures (such as thresholding or 
zero-crossing extraction) which produce binary 
images where pixel values may be represented by 1 
or -1. In this case there is no need to normalize 
the correlation measure used to determine 
distinctiveness (due to constant image energy 
[DUD73] when each image area is stored as a -1 or 
1). When such distinctiveness measures are used 
with a threshold on distinctiveness and local 
maximal extraction, very rapid rates of feature 
extraction      can      be       achieved       in particular 
architectures, on the order of a fraction of a 
millisecond       [LAW8J]. Figure       ^h      shows       the 
interesting points extracted from the binary image 
in Ha using a threshold on distinctiveness set to 
0.1 followed by local maxima extraction. The 
results are quite reasonable although adjacent 
regions can influence the extraction of features on 
distinct contours and points of limited curvature 
can be extracted. This could be remedied by 
restricting the calculation of distinctiveness for 
points only along contours of the same region 
(which would then require the initial determination 
of region  labels). 

Figur-   Ub 

2.0  DETERMINING THE AXIS   OF   TRANSLATION 

Using the extracted features, the search process 
minimizes an error measure which reflects their 
extent of mismatch along the image displacement 
paths determined by a hypothesized transiational 
axis. For example, figure 5 shows an FOE 
determined by a potential transiational axis and 
the corresponding image displacement paths for some 
extracted features. Also shown is the match 
profile for a particular feature along a segment of 
its displacement path with respect to features 
positioned in the succeeding image. The adequacy 
of a transiational axis is measured by finding the 
best match for each feature along the image 
displacement path determined by the transiational 
axis and then summing the extent of error in these 
best matches . 
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Other types of contour extraction can be used 
besides zero-crossings and total image thresholds. 
A simple one is to constrain the extraction of 
interesting points to positions where image 
contrast exceeds some minimal value. Another is to 
use contours determined by local application of 
histogram guided thresholding and segmentation. 
This resolves many of the problems associated with 
using a single threshold determined for image 
subparts with  significantly different brightnesses. 
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Developing the error measu'-e requires a measure for 
the degree of match between features and an 
interpolation process for determining positions 
along an image displacement path. Each of these 
can be implemented in various ways with the choices 
generally involving a trade-off between the speed 
of evaluating the error measure and the precision 
with which the translations! axis can be 
determined . 

2. 1   Match   Metric 

2. 2  Interpolation   Process 

The interpolation process approximates the 
potential displacements of a feature from an 
initial image into a succeeding image. Depending 
on the accuracy required, positions along the image 
displacement path can be approximated roughly by 
setting the coordinates of the feature's position 
to the nearest integer value, or more accurately by 
performing a subpixel interpolation of the feature 
at each of a set of selected positions aiong the 
image displacement path. The basic trade-off is 
between speed and accuracy, with subpixel 
interpolation being  a more  expensive computation. 

There are several metrics for similarity of nxn 
pixel features of the form A(i,j) and BCi ,j) , where 
i ranges from 1 to n and j ranges from 1 to n. We 
have   utilized: 

Normalized   Correlation 

I   I  A(i,J)<B(i,j) 
i   j 

2) 
/l  1  A(f,j)xA(i,j)    x    fj I  B(i,j)*B(i,j) 
■     i   j /    i   j 

Moravec   Correlation     [MOR77] 

2. 3 Error   Measure 

The error measure associates with a point on the 
direction of translation sphere a number describing 
the quality of feature matches along the image 
displacement paths determined by the corresponding 
translational axis. This error value is computed 
by first finding the best match for each feature 
along a segment of the image displacement path 
determined by the translational axis using one of 
the normalized match metrics above. Each of these 
values is then subtracted from one, and all the 
resulting values are added together to form an 
error measure. Thus, for a set of N features in an 
initial image, a hypothesized translational axis, 
and use of one of the match metrics above, the 
error measure  is 

3)- 

I  I  A(i,j)xB(i ,j) 
i   J 

{{(l  I  hU.i)*h{\.i))   +   (T  l  B(i.j)xB(i,j)))/2) 
J I   J 

5) 
n 

I   (1-0 
1-1 

bestmatch(i)) 

Normalized   Absolute   Value   Difference 

4) 1 .0 
l  I abs{A(i,j)-B(i,j)) 
!   J  

11 A(i,j) ♦ y i Bd.j) 
i j i j 

All of these measures have a value of 1 for a 
perfect match. Of these, the first choice is the 
most conventional, the second a good approximation 
to the first, and the third is the quickest to 
evaluate . 

where    bestmatch( i)     is    the       best       match value 
associated       with       feature       i      along     the image 
displacement     path    determined     for       it      by the 
hypothesized  translational   axis. 

The error measure was computed in two forms in the 
experiments below: a fast evaluation form and a 
prec ise evaluation form . 
absolute value 

The fast form uses the 
norm and the nearest integer 

approximation to determine feature position along 
the image displacement paths. The fast form is 
useful for evaluating image sequences with several 
extracted features to determine the rough position 
of the giobal minimum. However, the fast form is 
not adequate for fine determination of the 
translational axis because it does not vary 
smoothly with respect to small changes in the 
position of a translational axis, due to the 
nearest  integer   approximation   for   feature  position. 
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The precise form of evaluation uses the Noravec 
norm and bi-linear intercolation. It has been 
found to vary smoothly with respect to small 
changes in   the   position of a   translational   axis. 

2.1  Search   Organization 

The search process used here consists of two 
phases. A global sampling of the error measure 
determines the rough shape of the error surface, 
then a local search determines the minimum. The 
local search begins at the position where the 
rainimun value was determined by the global 
sampling. The procedure used for the local search 
is steepest descent with a diminishing step-size. 
That is, the steepest descent procedure begins with 
a initial fixed step size and determines a local 
minimum using it. The step-size is then recuced 
and the procedure repeated until the step-size is 
at the desired resolution for the determination of 
the translational axis. In the experiments below 
the initial step-size was set to 0.1 and then 
reduced  successively  to  0.025  and  0.005  radians. 

In general, the error measure has been found to be 
smooth, with a single minimum in a large 
neighborhood around the correct translational axis. 
Thus, the global sampling can be quite sparse or 
the initial step size of the local search quite 
large. 

3.0 EXPERIMENTS 

This procedure has been applied to several 
different image sequences under various conditions. 
These have included adding spurious and weak 
features; whether the features were sparse and 
scattered across the initial image or whether the 
features were in a limited image area; and whether 
the translational axis intersected the image plane 
in a visible portion of the image or whether it 
didn't. These experiments have shown that the 
procedure is robust in several important ways. It 
is resilient with respect to treak and false 
features. It can use a small number of features 
positioned across an image surface or a small 
number of features from a limited area of the 
image. And it is not affected by the orientation 
of the   translational   axis. 

Results of processing the roadsign images are shown 
in figures 6,7, and 8. The global search was used 
with the absolute value norm and nearest integer 
interpolation. The sampling increment corresponded 
to the vectors on the direction of motion sphere 
being separated by .SltlS? radian increments. The 
maximal image displacement was set to 10 pixels. 
Using   features 

centered at the positions shown in figure 3e, the 
global sampling determined a minimum in the error 
function at the unit vector (-.80902, -.47551,, 
.3^8)  on  the direction of translation  sphere. 

The local search then used the Moravec norm and 
bi-linear interpolation. The determined 
translational axis was (-.83738, -.420*43, .31933). 
The displacements of the feature points from figure 
3d for this translational axis are shown in fieure 
6. 

The   procedure  was  repeated,   but   using     features    at 
the positions from figure 3d (those prior to low 
curvature  suppression).     This    has    the    effect    of 
introducing weak and false features into the 
computation.     The   translational   axis extracted     was 
(-.82909, -.12281, .36585) This is a difference of 
0.01863 radians or 1,06765 degrees from that 
determined using the features indicated in figure 
3e.     Since  the camera   focal   length  was longer     than 
1, the angle between the determined translational 
axes is actually considerably less than   this. 

The procedure was also applied using the features 
from the restricted suba-ea shown in figure 7, 
corresponding to some faint tree texture. Using 
these features, the t'-anslational axis extracted 
was     (-.81281,     -.12928,     .32165). This      is       a 
difference of 0.02677 radians or 1. 5311 8 degrees 
with L,he translational axis determined using the 
feature centered at the positions indicated in 
figure  3e . 

Given the direction of translation and image 
displacements, the relative environmental depths of 
image points can be recovered by the simple 
relation in equation 1. When image displacements 
are small, the inferred depth values can be quite 
erratic due to sensitivity to small numbers in the 
denominator in the left hand side of equation 1. 
For this reason, it is necessary to keep track of 
the image displacements over several successive 
images with concurrent updating of the inferred 
depth values. This was done using a sequence of 
four successive images from the roadsign sequence 
beginning with roadsign images 1 and 2 and using 
the features from image 1 at the positions in 
figure 3e. The position of the translational axis 
determined from images I(t) and I(t+1) was used as 
the initial value in the local search for 
determining the translational axis for images 
I(t+1)   and  I(t+2). 

The displacements of all features along the contour 
in figure 3c were evaluated along the image 
displacement paths determined by the translational 
axis found for images .1(1) and 1(1). From these 
displacements the depth values frr image points 
along the contour  were cünputed   using equation   1. 
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The roadsign sequence is particularly nice for 
presenting depth processing results because the 
three environmental objects in the images are at 
three distinct depths. This is shown in figure 6a 
by the three distinct clusters in the histogran of 
the depth values calculated for the points along 
the contour. The units in the hiitogran are 
cummulative time-until-contact values. That is, 
the depth is given in units of the displacement of 
the camera from Id) to 1(4) along the Z-axis. 
From  left   to right, 

the first peak corresponds to the sign, the second 
to the pole, and the third to the trees. As can be 
seen, there is a wide range of depths associated 
with the trees. Happing these clusters back onto 
contour points from figure 3c yields: the boundary 
shown in figure 8b (the sign), the boundary shown 
in figure 8c (the pole), the boundary segment shown 
in figure 8d (the trees), fbints near the image 
boundary of 1(1) were ignored because the 
processing did not take into account occlusion 
effects  along the   image boundaries. 
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5.0  DISCUSSION 

II 

It 

Figure 8c 

\ 

We now discuss  particular   aspects of the     procedure 
and then      consider       several       extensions       and 
appl ications. 

5.1  Feature   Extraction 

Since the procedure's performance does not degrade 
severely due to the occurrance of poor features, 
the type of feature extraction used is not 
critical. Nonetheless,     the     feature     extraction 
process used here could be extended in many ways. 
The low-curvature suppression, if it is jsed , could 
take into account boundary length along a contour 
between distinctiveness max ima to determine whether 
to suppress or generate a feature for further 
processing. It is also possible to determine 
points of high curvature along the boundary with 
out having to walk along the contour by the 
modifications discussed above in section 1.2 or by 
using other operators which can directly measure 
curvature  [KIT80]. 

Another useful extension would be to use 
information determineu from the extraction of the 
translational axis to isolate false features. This 
could involve removing those features Oiich have 
weak matches from the error measure calculation 
once a translational axis has been determined and 
re-evaluating. Alternatively, the depth inferences 
could be used to isolate the positions of potential 
false features by noting discontinuities in depth 
along an extracted contour. Extracted features 
could be removed from the re-evaluation of the 
error measure if they are at or near such 
positions. Another type of feature which e« 
affect the evaluation of the error measure are 
those near an FOE or FOC which is contained in a 
visible portion of the image. Such features tend 
to move very small amounts along their image 
displacement paths and hence require fine 
interpolation   to determine  their best matches. 

5.2 Properties of the   Error   Measure 

- ■ 

•-<• 

Figure 8d In the experiments, the error measure has a 
distinct global minimun at the point on the unit 
sphere corresponding to the correct translational 
axis. It    is    expected     to     have    such    uci:avior 
generally because it is very unlikely that 
translational axes that are far from the correct 
position will define image displacement paths that 
simultaneously allow good matches for many 
features. Thus competing candidates for the global 
minimum  should   not be   widely  separated. 

274 



• 
■ 

The       error      measure       is      affected by        both 
non-distinctive and false features. 
Non-distinctive features will match well for many 
different translational axes. Large numbers of 
these weak features will flatten the response of 
the error measure. False features will also 
distort the error measure since they will often 
have their best matches      with      incorrect 
translational   axes. 

The effects of these poor features should be 
compensated by the agreement of good features. 
Every one of the good features will tend to have a 
bad match for the incorrect translational axis and 
their unanimity is expected to overide U« lack of 
discrimination of weak features and the random 
quality of the matches of false   features. 

5. 3 Utility of the   Direction of   Translation   Sphere 

There are significant advantages in defining the 
error measure with respect to a unit sphere, 
instead of the potential positions of FOEs and FOCs 
in the image plane. The sphere is a bounded 
surface which makes uniform global sampling of the 
error        measure       feasible. Additionally,       the 
resolution in the position of the translational 
axis varies across the surface of the image plane. 
For example, the FOEs determined by translational 
axes seperated by very small angles will be 
seperated by larger and larger distances in the 
plane as the intersections of the translational 
axes and the image plane are placed further trom 
the visible image. The effect of this on the error 
measure, when it is defined over the image plane, 
is large flat areas for FOEs further from the 
visible portions of the image. Finally, special 
criteria must be used to distinguish between rOEs 
and FOCs if the error measure is defined relative 
to the image plane. Roughly parallel image 
displacements could correspond to an FOE off to one 
side of the image plane or to an FOC off to the 
opposite side. Oi the direction of translation 
sphere, the corresponding translational axes would 
be close while on the plane they are completely 
separated . 

5. 'J Optimization   Procedure 

The optimization procedure used here is very 
simple, and, because of the strong unimodality of 
the error measure and its smoothness, other 
techniques with more rapid convergence could be 
used. It i s interesting to note, however, that tne 
global component of the optimization performed here 
is an instance of a generalized Hough TV-ansform 
[BAL81, O'ROSI] in which each feature scales its 
vote for a particular translational axis by the 
best match it can find consistent with the 
translational   axis. 

6.0    EXTENSIONS AND APPLICATIONS 

6. 1 Hierarchical   Computation 

A basic paradigm in computer vision is the use of 
hierarchical representations and processes. This 
allows for different magnitudes and scales of image 
events to be handled uniformly. The consistent 
agreement anong hierarchically organized processas 
is a basic control strategy for interpretation 
processes. Additionally, hierarchical processing 
can produce significant speed-ups wherein results 
from processing done rapidly at lower ..-esolutions 
of image information are used to direct and 
constrain more detailed and extensive processing of 
higher  resolution   image   inforrn;1-ion . 

The translational motion procedure car, be developed 
in a hierarchioal fashion with the primary benefits 
being increased speed and the ability to deal with 
large       image      displacen.ents. This    development 
requires specifying the hierarchical 
representations cf the successive images and the 
extracted features and how processing at different 
levels of  image resolution   are related. 

In the initial work described here, images have 
been represented in the VISIONS image operating 
cone structure [HAN81]. This consists of a 
sequence of images 10,11,12,... In where the 
successive sizes        of ,he images are 
»Xl,2x2,11x1 ?»»n     x    2«»'.        Each     pixel   in  the 
i-th images, except for the l^rst and last images, 
has a connected neighboorhood of immediate 
descendents in the i + 1 image and a unique parent in 
the i-1 image. (One point of confusion: we speak 
of going up and down the cone and of images having 
higher and lewer resolution. Unfortunately, as we 
go higher up the cone, image resolution gets lower; 
and as we go down the cone, image resolution gets 
higher.) The size and shape of the immediate 
descend ent neighboorhood can be arbitrary. The 
immediate desoendent neighboorhood s of adjacent 
parallel   pixels may or may not  overlap. 

There are sev -al ways to reduce the resolution of 
an image and project it up the VISIONS cone [HAN81, 
BUR82]. These techniques involve smoothing the 
image with some operator and then sampling at a 
reduced       interval. This      can      be expressed 
computationally by expressing the value of a parent 
pixel to be seme average of the pixels in its 
immediate descendent neighboorhood. The results of 
reducing image resolution by Gaussian smoothing for 
the  roadsign  images is shown   in   figures 9a-c. 

Extracted features can also be represented in the 
cone structure at different levels of resolution. 
One approach is to apply the feature extraction 
process described above for each image at each 
resulting level of resolution in the cone. Another 
technique   is to  extract  features in   the 
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highest resolution image and project tnese 
extracted feature positions up the cone. Thus a 
feature is positioned at a parent pixel if any of 
its descendents are at positions where a feature 
has been extrpcted. These approaches can interact 
in interesting ways if the strength of a feature is 
expressed as a function of the featureness of its 
ancestors or descendenLS. Figures lOa-c show the 
features resulting for the roadsign images at 
different levels of resolution by projecting 
extracted   feature   positions   up the cone. 

The tranrlational processing can be applied to 
successive images at any level of resolution for 
whic!. features have been extracted from the initial 
image. The basic questions concern how processing 
at one level effects processing at another level. 
In particular, how do processing results at a lower 
level of resolution (higher in the cone!) constrain 
the processing at higher levels of resolution? At 
what level in the cone can processing be 
meaningfully initialized? How do the various 
parameters      involving       feature window        size, 
displacement resolution along a flow path, and 
resolution of the optimization procedure change at 
different  levels of the cone? 

down the cone, the stepsize of the error function 
evaluation       would      decrease. Alternatively,     a 
complete search could be done at each level before 
proceeding further down the cone. Feature size can 
also change as processing goes down the cone since 
at higher levels a given window size corresponds to 
an increased area with respect to the image. At a 
high level of resolution, features described by 
small image areas may not be distinctive enough to 
match well. 

In the experiments in figures 1 la-c processing was 
initialized at level 1 (16 x 16 images) by 
performing the global processing as jbove. The 
resulting flow field is shown in figure 11a. The 
first step of the local processing used a stepsize 
equal to 0.1 radians znd was performed using the 
images at level 5. The resulting flow field is 
shown in figure lib. At level 6, the stepsize was 
reduced to 0. (PS and the local search initialized 
at the minimun decennined by the processing done at 
level 5. At level 7, the stepsize was reduced to 
0.005 and the search was initialized at the minimun 
determined at level 6. 5x5 windows were used at 
each level. The procedure converged to the same 
results as in   the  experiment above. 

■ .• ■ 

For e given pair of images at level i in the cones 
formed from successive images, the error function 
is minimized for the set of features determined at 
level i using projection up the cone from the first 
image. The determined minimun at level i is then 
used to constrain the optimization of the error 
function for the images and feature positions at 
the next lower level in the cone. In addition to 
constraints on the position of the error function 
minimun, processing higher in the cone constrains 
the evaluation of the potential displacements of 
extracted features along their displacement paths. 
For each displacement determined at level i only 
three positions have to be evaluated at along the 
displacement     paths    at      level       i + 1. Thus       in 
processing, not only is the minimun of the error 
function passed on, but also the displacements of 
parent features which are then used to constrain 
the evaluation of the displacements of descendent 
features at  the  next lower  level. 

There are a wide range of possibilities for 
implementing the error function minimization at the 
different cone levels. The different resolutions 
used in the step size of the error function 
evaluation could be correlated with a particular 
image level at which processing is being done. 
That is,  as   processing  proceeds 

An important question concerns the cone level at 
which to begin processing. Cue criteria could be 
the level at which significant changes in image 
values occur ^s determined by an average difference 
value. Another could be the response of the error 
function. This would involved determining the 
level at which the error function has a distinct 
minimum. 

Another important question concerns handling 
features which are on different sides of an 
occlusion boundary but share a similar ancestor in 
the feature tree. In this case, the displacement 
value inherited from the parent may be incorrect 
for one of the features and the feature should have 
its potential displacements re-evaluated along it 
displacement       path. A      possible      criteria     to 
determine the need for re-evaluation of the 
d irplacements for i feature is if its match value 
is ever less than sone threshold or is less than 
the match strength of its parent. It may be 
sufficient simply t; not evaluate such features if 
they are found aid determine ;heir displacements or 
occlusion       after       the        more        certain image 
displacements have been determined for other image 
"xsints. 
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Figure   11c 

6.2 Translational   Blur   Path   Extraction 

Blur streaks are comnonly produced when the shutter 
mechanism of a camera remains open v*ule the camera 
is moving relative to a textured surface. The 
streaks are produced by the successive positions of 
the image projections of the texture elements. 
Recent work [HAR80, SHE83] indicates that blur 
streaks may be a very common motion effect in the 
human  visual   system. 

For translational camera motion, the blur streaks 
will correspond to the image displacement paths: 
straight line segments radiating from a common 
intersection point. The techniques developed here 
can be easily extended for the extraction of 
translation blur paths. First, it is necessary to 
compute the gradient of the blurred image. The 
image gradient will be perpendicular to the 
translational blur paths at image positions which 
lie along a translational blur path. Thus, the 
error measure becomes 

6) )   abs(cose. 
i = l ' 

where i is an index over image positions and 
theta(i) is the angle between the image gradient at 
point i and the translational displacement path 
corresponding to a particular translational axis. 
The same evaluation techniques can be used for this 
error function as above, except that there is no 
need to distinguish between FOEs and FOCs. Note 
that in the analysis of translational blur paths, 
information is lost concerning the direction and 
magnitude of the displacement of image points over 
time. 

It may be useful to use multiple versions of the 
same image sequence each formed with a different 
exposure rate. By substracting the images formed 
with very short exposure rates (which are basically 
static images with no dynamic information contained 
within but edge information corresponding to actual 
environmental structures) from those with longer 
exposure rates, it may be possible i:o suppress 
edges which are non-blur related in the blurred 
images. Regardless, the more blurred the images 
become, the more the static image structure is 
reduced . 

The extraction of translational blur paths is 
identical to the extraction of vanishing points and 
lines from static images. This same procedure can 
be applied, without thi initial extraction of 
edges: indeed, the determination of edges can 
occur concurrently with the extraction of the 
vanishing point. We have successfully applie-l this 
procedure to the extraction of translational blur 
paths and the extraction of vanishing points in 
natural, outdoor   images. 
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6. 3 Multiple   Independently   Moving   Objects 

The procedure developed here allows for a sensor 
moving relative to a stationary environment or a 
single object moving relative to a stationary 
sensor. A      useful     extension    would     allow    for 
multiple, independently moving objects while 
maintaining the ability to determine image 
displacements concurrently with the direction of 
translation. There are at least three techniques 
which would make this possible. One is to utilize 
generalized hough      transform       techniques       for 
decomposing the responses in a histogram into the 
corresponding image structures or segments. The 
others utilize the limited image areas over which 
the   procedure can   successfully function. 

As pointed out in the discussion above, the global 
sampling of the error function is an instance of a 
generalized Hough transform. Each feature is 
scaling its vote against a particular translational 
axis by the extent of feature mismatch it has along 
an image displacement path determined by the 
translational axis. Without changing anything, and 
to be consistent with other developments, instead 
of using an error measure, we could use an 
optimization measure by which each feature scales 
its vote for a particular translational axis by the 
extent of match it has consistent with the axis. 
The problem then becomes a typical one for 
generalized Hough transforms: how to associate 
labels corresponding to the resulting peaks in the 
histogram with image points or features. The 
general form of this processing is to find the 
greatest response in the hough transform, associate 
a label with it, and then associate this label 
with, in this case, image features which match 
above some threshold (corresponding to strength of 
match) along the path determined by the axis. The 
resulting set of features are then removed and a 
new histogram is produced (or rehistogramming) . 
The peak in this new histogram is determined, a new 
label associated with it and mapped onto the 
corresponding image features. This process is 
repeated until there are no more distinct peaks in 
the resulting hough transforms or all image 
features are labeled. 
Unfortunately, this procedure will have 
difficulties with weak or homogeneous feature 
points which have strong matches consistent with 
several distinct translational axes. Thus, when 
rehistogramming occurrs it is necessary to 
establish which image features, which are already 
labeled, are consistent with the newly extracted 
peak. This is costly and could be quite messy. An 
alternative, is to proceed in the conventional 
manner and determine a set of labels corresponding 
to translational axes for which there is evidence. 
Each feature       is      then       labeled       with      each 
translational axis from this set with which it is 
consistent. Note that a given feature could have 
several labels. A unique consistent labelling is 
then obtained by using other information: 
segmentation-grouping using other image attributes, 
depth consistency with neighboors, and common 
magnitude of image displacements. Additionally, 
this disambiguation can occur over several 
successive   images. 

Two basic questions to be addressed in this use of 
Hough techniques are what is the required density 
of translational axes in the transform and what is 
the minimal match threshold. 

An alternative approach is to break the image into 
subparts and then locally apply the procedure to 
associate a translational axis with each subpart. 
In one scheme, this would be done using regular 
image areas (as in a grid). In another scheme, the 
subparts are determined by some segmentation 
procedure and the translational axis is determined 
from image features within or lying along the 
boundary of the extracted segments. Segments for 
which the error function response is indistinct are 
resegnented or their features are associated with 
the translational axes determined for adjacent 
image  subparts. 

6.4 Local   Translational   Decomposition 

The technique for translational motion processing 
can be extended to less restricted forms of sensor 
motion by applying the procedure to small areas 
across an image surface over a sequence of images, 

approximates      more      general       motions      as This 
consisting locally of environmental translations 
and interprets local image motion as resulting from 
environmental translations. The feasibility of 
this is based upon experiments showing that the 
direction of translation can be extracted with 
reasonable precision using small image areas 
containing      a       few       features. The       resulting 
description associates with a set of image points 
(or small image areas) the approximated direction 
of motion of the corresponding environmental points 
(or small environmental su.-faoe area). As a low 
level representation of environmental motion, this 
can considerably simplify the recovery of the 
sensor motion parameters [LAW82]. It can also 
provide qualitative information concerning the 
rough motion characteristics of objects in   a  scene. 

6.5 Other   Cases of   Restricted   Motion 

The procedure developed here is applicable to other 
cases of unknown but restricted camera motions for 
which it is computationally feasible to search 
directly through a subspace of the camera motion 
parameters. Two particular cases are pure sensor 
rotation  and motion constrained   to  a known   plane. 

With pure sensor rotation, the unknown camera 
parameters are constrained to R1(t), R2(t) , and 
R3(t). In this case, the error measure is defined 
with respect to a direction of rotation sphere 
where each point corresponds to an axis of 
rotation. For each rotational axis, the extent of 
displacement for image features is determined by 
different val'^s of R3(t). There is the additional 
constraint in this case that the displacements of 
all features must correspond to the same value of 
R3(t) . Thus the variance of the determined angular 
displacements can be incorporated into the error 
measure. 
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For motion constrained to a known plane, the 
rotational axis is known to be perpendicular to the 
plane and the translational axis is constrained to 
lie in it. Thus, only R3(t) and one translational 
parameter can vary and the error measure can be 
computed with repeot to these two parameters. The 
global sampling in this case amounts to evaluating 
a set of translational axes for each of a set of 
potential   rotations. 

6.6 Hybrid   Sensor   Systems 

Translational       processing       is      sufficient for 
vision-based navigation in a stationary environinent 
if the orientation of the optic sensor can be fixed 
relative to the environment over time. In this 
case, sensor motion amounts to a sequence of 
translations in possibly different directions over 
time. 

A difficulty with such a stabilized retina is that 
much of the environment would not be observable. 
This can be corrected by using a set of such 
stabilized retinas arranged to yield a complete 
view of space. There would then be no need to 
rotate the sensor to view a particular 
environmental point. A possible arrangement of 
retinal surfaces is a cubical one. One of the 
retinal planes will always contain an FOE and 
another will always contain an FOC (unless the 
direction of motion is right on an edge of the cube 
and the focal length has not been properly 
adjusted). Ihere will also be several independent 
estimates of the direction of translation which can 
be  integrated . 

7.0 CONCLUSIONS 

This work demonstrates a simple and robust 
procedure for determining the direction of 
environmental motion and image displacements in 
real-world image sequences produced by translation. 
It is not dependent on an initial matching process 
prior to the inference of camera motion. Instead, 
features are extracted from an initial image and 
their displacements are determined concurrently 
with the inference of direction of sensor motion. 
Thus complications in matching that arise from an 
individual feature being extracted in one image and 
not in the next are reduced. Ihe process is also 
relatively insensitive to weak and false features. 
It can use a small number of features positioned 
across an image surface or a small number of 
features from a limited area of the image. It has 
been successfully applied to image sequences 
produced by a car translating down a road, by a 
camera attached to a robot manipulator in an 
industrial environment, and to artificially 
generated   sequences. 

We further considered and demonstrated several 
extensions and applications for such things as 
independently moving objects, translational blur 
streaks, other cases of restricted motion, 
computation in a hierarchical structure, and 
potential incorporation into hybrid sensor systems 
for  autonomous  navigation. 
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Alternatively, if the sensor can not be stabilized, 
there are devices which can at least determine the 
rotational     parameters    of    sensor      motion. The 
rotational effects can then be removed from 
successive images, reducing them to translational 
sequences which can be processed by the techniques 
here. A particular technology which is very 
attractive for this use is Fiber Optic Rotation 
Sensors [EZE82] which are expected to be the 
low-cost gyroscope of the near future. These 
devices are small, cheap, and precise. There are 
currently slow drift problems, but we would be 
concerned with measurements of rotation over very 
short periods. Additionally, when coupled with an 
image processing system, such long term drifts 
could be recognized and accounted for by noting the 
position of specified  lancinarks. 
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THREE-DIMENSIONAL SHAPE FROM LINE DRAWINGS 

Siephen T. Harnard and AIPX P. Peutland 

SRI Internstioaal, 333 FUvoiiswood Ave.. Mcnlo Park, California 91020 

ABSTRACT 
The problem of interpreting the shape of a three-dimensional 

space curve from its two-dimensional perspective image coiitour 
is considered Observation of human perception indicates that 
a good strategy is to segment the image contour in such a way 
as to ibtain approximately planar segments. The orientation of 
the osculating plane (the plane in which the spare curve lies) can 
then be estimated for these segments, and the three-dimensional 
shape recovered The assumption of spatial isotropy k used 
to derive the theoretical results needed to formulate such an 
estimation strategy. The resulting estimation strategy allows a 
single thrro-dimonsional structure (up to a single Necker reversal) 
to be assigned to any smooth image contour. An implementation 
is described and shown to produce an interpretation that is quite 
similar to the analytically correct one in the case of a helix, even 
though a helix has substantial torsion. The general applicability 
of the algorithm is discussed. 

I    Introduction 

Much recent vision research ha« emphasized the immir- 
tar-e of imago coutour for shape interpretation [1,2,3,4,5,6,?]. 
Tenrnbaiim and Barrow [I] argue that image contour, for ex- 
ample, is dominant over shape from shading. Pentland [8] has 
presented examples in which the addition of a contour substan- 
tially improved the interpretation of a shaded surface. It seems 
that contour is one of the strongest sources of information for 
shape perception. 

One source of evidence of the strength of contour information 
is line drawings. When we examine a line drawing, our perception 
of the three-dimensional shape implied by such a drawing is 
nearly always clear and unambiguous. How can we account for 
this, given that purely geometrical constraints admit of an infinite 
number of valid interpretations? 

A.    An Observation About Human Perception 

When we observe line drawings such as those in Figure 1 
(a), we have a clear perception of a non-planar three-dimensional 
strut lure. Notice that if we were to segment each of these draw- 
ings at the circled points, each of the resulting segments would 
have the same shape as they did when they were still hooked 
together and would be approzimalety planar, as is shown in 
ligure 1 (b). Thus, for these line drawings the problem of recover- 
ing the three-dimensional structure can be reduced to the prob- 
lems of (I) segmenting the curve into perceptually planar »eg- 
miiits, and (t) finding the plane that contains each of the curve 
segments (the oneulating plane) [9]. Once we know the orienta- 
tion of the plane which contains a curve segment we can then 
easily determine its three-dimensional shape. 

The research reported herein was supported by the Defense 
Advanced Research Projects Agency under Contract No. MDA 
903-83-C-0027; this contract is moiitored by the U. S. Army 
Engineer Topographic Laboratory. Approved for public release, 
distribution unlimited. 

FifUH 1     (a) Some line Drawings, (b) Their Planar Subregions. 

If we "by hand" try to segment image contours into planar 
regions, we find that the strategy can be successfully applied 
to a surprisingly large uumber of naturally-occurring image con 
totm. I'or some contours, however, it is not obvious how well 
this strategy will work, primarily because there are no points 
which segment the spare curve into planar regions, An example 
of such a curve is the helix shown in Figure 2 (a). Nonetheless, 
it may still be possible to obtain a good approximation of the 
three-dimensional structure of such a curve using this strategy. 

B. A Strategy For Recovering Three-Dimensional Shape 

This observation about human perception leads to the fol- 
lowing processing strategy: 

(1) Segment the image contour in such a way that each 
segment is likely to comprise a projection of a planar segment 
of the space curve. 

(2) Calculate the planes implied by the segments from (1). 
(3) Assemble the results of (2) into an estimate of the shape 

of the entire space curve. 
The specific criteria for the initial segmentation are not dealt 

with here. It is clear, however, that the image contour should 
be segmented at singular points of curvature (maxima, minima, 
and inlWlion points). Hoffman and Richards [10] have presented 
a theory of curve segmentation that addresses this issue. Our 
approach will be to temporarily ignore the segmentation problem 
and to simply estimate the orientation of parts of the space curve 
from many local parts of the image contour. If valid results are 
fortliroming with this approach the method can only be improved 
with more elaborate segmentation. 

C. Modeling the Space Curve 

We shall model a space curve in the conventional way, as a 
three-dimensional vector function x(») of one parameter « which 
is assumed to be a natural parameter, i.e., )</x(«)/rfa) -= |, The 
shape of such a curve is completely determined by two properties 
that are scalar functions of t: curvature, K(«), and torsion. r(«) [0]. 
Curvature is always nounegative; only straight lines and inflection 
points have zero curvature. Torsion may be intuitively defined as 
the amount of "twist" in the curve at a point «. Another way to 
visualize torsion is as the degree to which the osculating plane 
(the plane which contains the curve) is changing. Only planar 
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curves have zero torMOB everywhere.   I ulike curvature, torsion 
may lie either negative or positive. 

The presence of torsion is not directly evident in the image. 
It simply results in more or less foreshortening as the osculating 
plane of the contour varies. The effects of torsion, therefore, can 
be exactly mimicked by changes in curvature, and vice ver?;i 

II    Theory of Contour Interpretation 

Not all three-dimensional interpretations of an image con- 
tour are e(jually likely. If we assume that spatial isotrcpy holds, 
then wt know that viewer position is independent of the shape of 
the curve which allows us to make a reasonable guess about 
the lattorV three-dimensional shape [8]. The first step towards a 
guess at the space curve's shape is the following proposition: 

Proposition (Zero Torsion).    The maximum-likelibood 
estimate of the torsion of the space curve is lero (i.e., no 
"twlatlng"  of the curve). 

This propoMtio;. follows because the assumption of spatial 
isotropy implies that the viewer's position and the shape of the 
space curve are mutually independent. Thus, not only is it un- 
likely that signiiicanl features of the curve will be hidden from 
vie» by coincidental alignment of the viewer and the curve, but. 
conversely, it is likely that the viewed scene will not change much 
with small changes in viewing position. The appearance of a 
curve with substantial torsion will change considerably with 
small changes in viewer position; if we assume spatial isotropy, 
therefore, we must expect that the torsion of the curve will be 
small. 

lurtliermore, given that spatial isotropy implies that the 
viewer position and the shape of the curve are mutually inde- 
pendent, the torsion of the curve must then also be independent 
of viewer position. Consecuenilv, the torsion of the curve is as 
likely to be positive a" negative, «ad thus the mean vaiue (and 
maximum-likelihood estimate) for the magnitude of the torsion 
is tero' . The probability that the torsion is small implies this 
estimate will generally be a good one. 

A.    Estimation With The Assumption Of Zero Torsion 

Even if we assume that torsion is tero (i.e., the space curve 
is planar), there is still a two-parameter set of space curve» that 
could have generated that imaged contour. The two parameters 
correspond to the two degrees of freedom of the osculating plane. 

Assume that we are given a small portion of an imaged 
cent our, and asked to estimate the three-dimensional shape of 
the space curve which generated that image. If we measure the 
position and curvature at three points on the imaged contour, 
then we can uniquely define an elliptical arc that fits the image- 
data. By the previous proposition, this elliptical arc is most likely 
caused by a space curve that is either an arc of a circle or of an 
ellipse, as those are the two planar (tero torsion) shape» which 
can project to an ellipse^  . 

I'revious research ([2], [12)) has shown that the maximum- 

This is often referred to as the assumption of general position. 
Thus, spatial isotropy implies general viewing position. 

As a function of position on the image contour rather than as 
a function of « 

'Note that at places where the curvnt'ire is tero — straight 
segments and inflection point» — the torsion is not defined and 
may arbitrarily be taken to be tero. That is, the osculating plane 
may be changed freely at these point» without affecting the shape 
of the space curve. 

''This is true of both perspective and orthographic projection, 
however, we will deal exclusively with the more general case of 
perspective foreshortening. 

likelihood estimate of the space curve's shape is given by the 
following proposition (see also [2]): 

Proposition (Planar Interpretation). Given an ellip- 
tical segment of an image contour and that the space 
curve is planar, the maximum likelihood estimate of the 
space curve's th-' ■f-dimensional shape is a segment of a 
circle. 

Barnard [12] has cons'ructed a maximum entropy estimator 
that implements this propoM\ion for perspective images and that 
is tolerant of digitization noise. Operating under the assump- 
tion that the space curve has tero torsion, it chooses the orienta- 
tion that maximizes the entropy of backprojected image contour 
curvature measurements That is, curvature is first measured 
at several points in the image contour, then the curvatures of 
hvpoilitiical planar space curves of essentially all orientations are 
computed by backprojection, and, finally, the orientation that 
leads to the space curve of most uniform curvature (in the sense 
of maximum entropy) is selected. In general, three image con- 
tour curvature measurements are sufficient for an unambiguous 
maximum-entropy interpretation (up to a Neckcr reversal). 

Ill     Tlm-e -Dimensional Estimation 

Now let us return to the general problem of estimating the 
shape of the space curve, given a smooth imaged contour. Let 
us urst take three curvature measurements along the imaged 
contour. These three measurements define an ellipse. As just 
described, this leads to a circular interpretation of the space 
curve. New suppose that we have additional image contour cur- 
vature measurements.  There are, then, two cases to consider: 

First case: the new points fit on the same ellipse.    In 
the first case we have quite strong evidence of the space curve's 
shape. For, if the osculating plane were changing, the curvature 
would have to be changing also — and in just such a manner 
as to exactly cancel (in the image) the effect of the changing 
osculating plane. Similarly, if the curvature of the space curve 
were changing, the osculating plane would have to change just 
exactly enough to cancel the effect of the changing curvature. 
As such a "conspiracy" to cancel the visible effects of change is 
unlikely (a direct violation of general position), we must conclude 
thai there was neither torsion nor change in curvature, and, thus, 
there is a great (in fact, maximum) likelihood that the new image 
curvature measwcmenls result from the same circular space curve 
defined by the first three measurements. 

Second case:  the new points don't fit on the same 
ellipse. What if the additional measurements lie off the ellipse 
defined by the first three measurements? Then we can be certain 
that either the curvature or the osculating plane (or both) of 
the space curve has changed. This nes» point is, therefore, a 
possible place to segment the curve. What we must do when we 
encounter such a point is advance along the image contour until 
we are completely past the point, and obtain a new estimate of 
the space curve's osculating plane. If the new osculating plane 
has the same orientation as the previous osculating plane, then 
we have evidence that the space curve continue» to be planar. 
and we should not segment the curve. If, however, we obtain 
a dilTcrent orientation for the osculating plane, then we should 
segment the space curve and begin a new planar segment of the 
curve. 

As any smooth image contour may be closely approximated 
by portions of ellipses apd straight lines' , this interpreta- 
tion  strategy   will yield   a single  interpretation  for the  three- 

- '  • 

Only the third and higher derivatives of the imaged contour 
that will fail to be exactly matched. People, it should be noted, 
are very poor obsi rvers of changes in the third derivatives of an 
image contour. 
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(lmipnsiou.il shape of (ho spare curve (up to Nerker reversals), 
lurthcr. this interpretation will be the most likely interpma- 
tiou ou a point-by-poinl ba,sis. It should be noted that the erst 
two steps of this estimation strategy are similar to the stratrsy 
proposed in [l). 

IV    An Example 

The iniorprctmion strategy has been implemented and ap- 
plied to a synthetic im;ige of a helical space curve. The helix 
example is a good tc-t because a helix has significant torsion 
everywhere, thus, distineuished segmentation points do a.'A ex- 
ist and it is not clear »hat the estimation strategy will do. If 
we can recover the helical shape of the space curve with some ac- 
curacy, wt shall have demonstrated that the estimation strategy- 
can perform even when no good segmentation is available. 

Figure 2 (a) shows a perspective image of a helix. Figure 
2 (b) shows a plot of the spherical indicatrix of the helix. The 
spherical indicatrix is a plot of the orientation of the osculat- 
ing plane of the space curve. The axes in this plot corresponds 
to the azimuth and elevation of the osculating plane As men- 
tioned previously, knowledge of the orientation (azimuth and 
elevation) of the osculating plane at each point, together with 
the imaged contour, uniquely determines the shape of the spare 
curve. Thus, the spherical indicatrix Is a method of displaying the 
threo-dimenMoual shape of the spare curve. Figure 2 (c) shows 
the spherical iu.licatm estimated for the contour in (a). When 
this is compared with the actual indicatrix shown in (b), it is 
evident that the three-dimensional shape of the space curve has 
been fairly accurately recovered 

S-immary. We have developed a theory for assigning a 
three-'Jinieusional interpretation to any rmocth image contour. 
The theory has been implemented and is undergoing evaluation, 
which may lead to further development. The results reported 
above indicate that the estimation strategy performs reasonably- 
well even for cases such as a helix, where the presence of substan- 
tial torsion might have led one to expect poor performance. 
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Abstract 

A method for extracting the motion parameters of 
several independe-.tly moving objects from displacement field 
information is described. The method is based on a 
generalized Hough transform techüique. Some of the 
problems of this technique are addressed and appropriate 
solutions are proposed. A modified multipass Hough 
transform approach has been implemented, where in each 
pass windows are located around objects and the transform 
is applied only to the displacement vectors contained ii 
these windows. The windows are determined by the degree 
to which the displacement field is locally inconsistent with 
previously found motion transformations. Thus, the 
sensitivity of the Hough transform to local events is 
increased and the motion parameters of small objects can 
be detected even in a noisy disphcemer.t field. We also 
use a multi-resolution scheme in both the image plane and 
the parameter space and thus reduce th ■ computational cost 
of the technique. The method is demonstrated by 
experiments based on artificial images with four parameters 
of 2-D motion: rotation, expansion and translation in both 
axes. 

1.    Introduction 

A time-varying scene may contain several 
independently moving objects with unknown location, shape 
and 3-D structure. The interpretation of such a scene 
includes the computation of the motion parameters of the 
camera and each moving obje-t. This information is useful 
in areas such as robotics and navigation. It could also be 
used as an intermediate stage for achieving the tasks of 
object-surround separation and structure determination. 

Our approach for recovering the motion parameter is 
based on two phases. First, we compute a displacement 
field, composed of vectors describing the displacement of 
image elements from one image to the next (see section 2). 
In this paper we assume a dense displacement field, but the 
second phase is basically independent of this assumption. 
Each displacement vector is assigned a weight representing 
its reliability . 

In the second phase the displacement field is 
interpreted and the motion parameters are recovered. This 
phase, which is the main concern of the paper, is based on 
the   generalized   Hough   transform   technique   [BALSla].   In 

this technique the motion parameters are represented by a 
discrete multi-dimensional parameter space where each 
dimension corresponds to one of the parameters. Eacli point 
in this space uniquely characterizes a motion transformation, 
defined by the corresponding parameter values A 
displacement vector "votes" for a point in the space if the 
corresponding transformation is consistent with this vector. 
The points receiving the most votes are likely to represent 
the motion parameters of different objects. 

There are a few i.ehniques described in the literature 
which use the Hough transform for dealing with scenes 
containing several moving objects. Fennema and Thompson 
[FEN?'.>] compute spatial and temporal gradients of the 
image. A Hough transform technique is used to detect 
velocities which are consistent with a significant portion of 
the gradient field. A multipass approach is used: first the 
most prominent peik in the Hough transform is found and 
thus the velocity of the largest object is reov-red. Then 
the image points which are consistent with this velocity are 
removed and a new peak is locked for. The process is 
repeated until no further objects are found. This system is 
restricted to translation. It also has problems in recognizing 
significant peaks [TH081]. 

Ballard and Kimball [BALSlb] consider the case of 
general 3-D motion of rigid objects, but assume knowledge 
of depth information. A Hough transform technique for 
computing the motion parameters from 3-D optic flow is 
implemented. The simulation, as described in their report, 
assumes only one moving object, but it is argued that a 
multipass approach would handle the case of several moving 
objects. 

Jayaramurthy and Jain (JAY82J describe an 
implementation of the Hough transform technique for 
computing motion parameters directly from the intensity 
information. Several moving objects are allowed, but a 
stationary background and translational motion are assumed 

One of the well known advantages of the Hough 
technique is its relative insensitivity to noise and partially 
incorrect or occluded data. Another advantage is its ability 
to detect consistency in the image. In cur case it can 
group together displacement vectors which satisfy the same 
motion parameters and presumably belong to one object. 

On the other hand, the Hough technique has a few 
disadvantages. It is insensitive to spatial relations in the 
displacement field. Thus, a group of nor-adjacent elements. 
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which incidently vote for the same motion transformation, 
may be considered as representing one object, whereas the 
motion parameters of a small object may be difficult to 
detect. The technique also has high computational cost. 
Fine resolution in the parameter space, which is related to 
the accuracy of the final results, requires large amounts of 
memory and computation time. 

This paper addresses these problems. A few ideas are 
examined in a restricted case of 2-D motion with four 
parameters (rotation, expansion and translation in both 
axes). An analysis of reliability and efficiency considerations 
is presented (section 32) and new solutions are proposed 
(section 4). A modified multipass Hough transform 
approach has been implemented, where in each pass 
windows are located around objects and the transform is 
applied only to the displacement vectors contained in these 
windows. The windows are determined by the degree to 
which the displacement field is locally inconsistent with 
previously found motion transformations. Thus, the 
sensitivity of the Plough transform to local events is 
increased and the notion parameters of small objects can 
be detected even in a noisy displacement field. We also 
use a multi-resolution scheme in both the image plane and 
the parameter space and thus reduce the computational 
cost of the technique. These ideas are demonstrated by 
experiments based on artificial images (section 5). 

2. Cumputing a Displacement Field and a Weight Plane 

In the first phase of the algorithm we compute a 
displacement field from two sampled images. These images 
contain several objects which are moving independently. The 
background is considered as one of the objects. The 
motion of each object is composed of rotation, expansion 
and translation. It can be represented by the following 
affine transformation: 

(2.1) i' = (l+expan)[cos(rot)i-sin(rot)j]+trj 

(2.2) j' ■ (l+expan)[sin(rot)i+cos(rot)j]+tr2 

where (i,j) is a pixel in the first image, (i'j') is the 
corresponding pixel in the second image and rot, expan, trj 
and tr2 are the motion parameter values. 

The displacement field can be described by 
{(DjOj). Ctyij))} where (Dj(i,j), Etyij)) represents the 
displacement vector at the (i,j) pixel in the first image. 
We compute it by using the Horn and Schunck technique 
[HOR80] (however, the second phase of our algorithm is 
almost independent of this specific choice). In order to use 
thii tehnique we assume a small displacement at each pixel 
and absence of illumination effects. It starts by 
calculating, at each pixJ, the spatial gradient (Ej, E2) and 
the temporal derivative E^ The assumption that the 
brightness of a particular point in the scene is constant over 
time provides the following constraint: 

(23) EJD1+E2D2+E, = 0 

An error function can represent, for a given 
displacement field, the degree of departure from these 
constraints. The technique is based on iteratively 
minimking this function. Ideally, the resulting field 
(Dj, D2) should satisfy the following equations, derived 
from equations (2.1)    and (2.2): 

(2.4)     i+Dj(i,j) = (l+expan)[cos(rot)i-sin(rot)j]+trj 

(23)     j+D^OJ) = (l+expan)[sin(rot)i+cos(rot)j]+tr2 

where   rot,  expan,   trj   and   t^   are   the   motion  parameter 
values in the (i,j) pixel. 

Figure 1 shows two pairs of artificial images which 
contain several independently moving objects. The motion 
parameters of each object are specified in tables 5.1 and 
52. Figure 2 shows the result of applying the Horn and 
Schunck technique to these images. 

The smoothness constraint is violated at the 
boundaries of independently moving objects. Therefore, the 
computed displacement values in these areas are incorrect. 
Fortunately, these areas can be detected by using the error 
function which represents the departure from the constraints. 
High values of the error function indicate that the 
constraints are not satisfied and the computed displacement 
values are unreliable. 

For each displacement vector we compute an 
associated weight such that high reliability (low value of the 
error function) is represented by a value close to 1 and low 
reliability by a value close to 0. An appropriate relation 
between the error function, erf(i,j), and the weight, W(i,j), 
can be obtained by the function 

(2.6) W(i,j) ,-erf(i,jyk 

The assumption of the smoothness of the displacement field 
provides another constraint. 

The parameter k was experimentally determined as 0.07. 
However, this value need to be decreased with noisier 
data. Figure 3 shows the weight planes computed for the 
displacement fields in figure 2. When the Hough 
transform is computed later the influence ('voting' power) 
of each displacement vector will be proportional to its 
associated weight. 

3.    The   Generalized    Hough    Transform    Technique 

3.1    General    Description 

The motion parameters can be represented by a 
4-dimensional parameter space where each dimension 
corresponds to one of the motion parameters: rotation (rot), 
expansion or contraction (expan), vertical translation (trj) 
and horizontal translation (t^). Each print in this space 
uniquely characterizes a motion transformation in the image. 

We say that a displacement vector (Dj(i,j), I^OJ)) is 
consistent with a point (rot.cxpan.trj.tr;,) in the parameter 
space if it satisfies equations (2.4) and (23). Let us define 
a subset B(i,j) of the parameter space as the set of all the 
points     in     this     space     which     are     consistent     with 
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(Dj(i,j), CtyM)). Using the definition in [BALSla], the 
Hough transform is the following function, defined on the 
parameter space: 

(3.1)      H(rot,expan,trlitr2) = £ W(i,j) 

(rot.expan.trj,^) € B(i)j) 

i.e., H(rot,expan,trj,tr2) is the sum of the associated weights 
of ?1I the displacement vectors which are consistent with the 
point (rot,expan,trj,tr2). ^'ß*1 va'"65 of the Hough 
transform represent motion transformations which are 
consistent with a significant portion of the vectors. The 
use of the weight function W should prevent unreliable 
values of displacement vectors fiom creating false peaks. 

In practice, we assume a limited velocity of objects, 
i.e. minimal and maximal values for each parameter. The 
corresponding intervals are quantized and thus each 
parameter is represented by a discrete set of values. The 
parameter space is the cartesian product of these sets 

For each displacement vector (Dj{i,j), rtyi.j)) a^d 
eacl pair (rot.expan) of rotation and expansion, there 
exists exactly one pair of translations (trj',^') which 

satisfies equations (2.4) and (2.5). If trj* and t^* are 
within the limits of the respective dimensions of the 
parameter space, then we san find exactly one pair (trj.t^) 
such that trj and t^ are sampled values and 

. - . 

'fflW! TS^ 

Figure l.a Intensity images used in the first experiment 
(the white lines only emphasize the contours of the objects 
and are not part of the images); 
- object A is the background, 
- object B is the large circle in the center of the image, 

- object C is the small circle in the upper left comer. 

Figure l.b: Intensity images used in the second experiment; 
- object A is the background, 
- object B is the circle in the upper right comer, 
- object C is the circle which partially occludes object B, 
- object D is the circle in the left part of the image, 
- object E is the small circle in the lower part. 
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(3.2) trj-res/2 s trj   < trjfres^ 

(3.3) tr2-res/2 s tr2* < tr2+res/2 

where   res  is  the  resolution  of  the  translation  variables in 
the    parameter    space. In    this    case    we    say    that 
(Dj(i,j), D2(i,j))     'votes'     for     (rot.expan.trj.t^),     i.e.,     it 
contributes its weight to H(rot,expan,trj,tr2). 

Finally, among the points whose Hough transform 
exceeds » given threshold in the parameter space, local 
maxima are found. The«; represent the hypothetical 
motions of objects in the image. 

,,, ., CHJD   = 
no  0f votes for the object motion 

*    '    ' average no. of votes for each parameter value 

(for a different definition see [BR082]). If the SNR is low, 
then false peaks, higher than the value corresponding to the 
object, can be created. Thus the detection of the object's 
motion, by a straightforward Hough technique, may be 
difficult or impossible. 

Let us assume that the multiplicative parameters of 
rotation and expansion are quantized into pj elements 
each and that the translation parameters are quantized into 

3.2    Reliability    and    Efficiency    Coosldcrations 

The resolutioi' of the parameter space should be 
determined by a few considerations: the signal to noise ratio 
(SNR), the required accuracy, the computation time and the 
required storage space. 

For each independently moving object in the scene, 
the SNR in the parameter space can be defined as; 
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Figure   2:   Samples   of   the   displacement   fields,   (a)   First 
experiment,    (b) Second experiment. 

(a) 

(b) 

Figure 3: Weight planes. Note the correspondence between 
low values (represented by darker gray levels) in the weight 
planes and incorrect values of displacement vectors in the 
boundaries of the objects, (a) First experiment, (b) Second 
experiment. 
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P2 elements each. Then the parameter space includes Pi2P22 

elements. Let n be the number of displacement vectors 
which are considered in the computation of the Hough 
transform. According to the voting process described in 
section (3.1), for each displacement vector and each pair 
(rot.expan), there exits at most one pair (trj.t^) cf 
translations such that the displacement vector votes for 
(rot.expan.trj.trj). Assuming that Uj and t^ arc likely to 
be within the limits of the respective dimensions (and that 
is the case in our experiments) we can estimate the 
average   number   of   votes   for   each   parameter   value   as 
nPl2/(Pl2P22) = n/pj2. If c represents the fraction of the 
image covered by an object, then it contains en 
displacement vectors, where 0<csl. Thus, we can estimate 
the SNR by: 

(3,5) SNR = 
tiv-f V* 

If for reliable detection of the object, the SNR should 
be larger than some threshold t, then pj should satisfy the 
constraint pj ä Vt/c. For example, if t-10 and c=0.01 
then pj should be at least 32. This observation also 
indicates that for a given pj, the motion transformation of 
a small object may be difficult to detect 

The second consideration is the required accuracy. 
The parameter resolution can be dynamically modified to fit 
the expected cc.istraints of the task domain. If, for 
example, the maximal value of rotation is 1/8 radian, the 
minimal value is -1/8 radian and the required resolution is 
1/128 radian, then pj should be at least 32. 

The third consideration is computation time. 
Computationally, the most expensive process is the voting 
process. We saw in section (3.1) that the basic operation in 
this process is computing trj, t^ for each displacement 
vector and each pair (rot.expan). Therefore, the voting 
process takes approximately snpj2 time units, where each 
basic operation takes s time units. 

The fourth consideration is the required memory for 
the parameter space which includes Pj2P22 elements. If we 
combine the requirements for high SNR and high accuracy 
we may have 

(36) PlW ■ 324 > 10000C0 

In such a large array, finding local maxima also becomes a 
computationally expensive task. 

Finally, assuming that we want to obtain a given 
accuracy and we are given a storage space with a fixed 
size, the optimal values of pj and pj can be determined. 

Let us suppose that the image contains m2 pixels and that 
the origin of the coordinate system is in the center of the 
image. Then, using a resolution of ej in the multiplicative 
parameters of rotation and expansion can cause, at the 
boundary   of   the   image,   a   displacement   error   of   me1A2. 

Therefore, it is reasonable to quantize the parameter space 
in such a way that mcj ■ ^ where ^ is ^e resolution of 
translation. Consequently, if m is multiplied by 4, for 
example, then pj should be multiplied by 2 and P2 should 
be divided by 2. 

4.    Computing Motion ParameU-s from Displacement Field 
Information 

4.1    Key    Ideas 

The proposed method is intended to reduce the 
problems mentioned in the last section and to test 
mechanisms for solving such problems for even more 
d^ficult tasks, e.g. recovering the motion parameters of 3-D 
motion with six degrees of freedom. 

The key ideas which are used for accomplishing this 
goal are the following: 

1) Given a large displacement field (such as the 
128x128 array in the experiments), we can compute the 
motion parameters of large objects by using a coarse 
resolution field. Such a field can be obtained by 
uniformly sampling the initial field. In this way, we can 
considerably reduce the computation time. 

2) We can find the motion parameters of a given 
small object by locating a window around the object and 
applying the Hough transform only to the displacement 
vectors contained in this window. Such a window can be 
located by using a wääkpm approach (see next section). 
By focusing our attention to the window, wc increase the 
proportion of the vectors contained in tlie object, i.e., we 
increase c in equation (3.5). We can now decrea» pj'and 
still find the motion parameters of the object. This 
technique enables us to detect smaU objects and save time 
and storage space. 

3) Even with a limited memory size, we can find 
accurate parameter values by iteratively using the Hough 
technique. In each iteration we quantize the parameter 
space around the values estimated in the previous iteration, 
using a finer resolution. Other methods for reducing the 
required space in Hough techniques can be found in 
[OR081, SLOSl], 

4.2    Description 

4.2.1    General 

Tlie algorithm is based on repeatedly executing a 
basic cycle of operations. The input to each cycle includes: 

1) A list L of motion transfonnations which were 
computed in previous cycles (initially L is an empty list). 

2) A binary mask array A in registration with the 
displacement field. Each element in A is either 1 or 0: 1 
if the corresponding displacement vector is consistent with 
one of the already computed motion transformations; 0 
otherwise. Initially all the entries in this array are set to 0. 
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Each cycle is composed of the following steps: 
1) Locate windows in the image which contain 

relatively dense clusters of O-entries in A, Initially there is 
one window consisting of the whole image. 

2) For each window compute the Hough transform 
and hypothesize (see section 4.2..'') the motion 
transformations. 

3) Test, sequentially, the hypothesized transformations. 
The test is done by considering the O-entries in A that are 
contained in the window, and summing the weights of the 
associated displacement vectors which are consistent with the 
hypothesized transformation. If the sum is higher than a 
given threshold, the transformation is confirmed. In this 
case it is added to the list L and the array A b updated 
correspondingly. 

4.2.2    Locating    Windows 

A      window      can      be      described      as      a      set 

{('J): "O-'*1'!' fa^Wl)'   For       implementation   reasons,   we 
consider only    windows such that 

and 
•O. '!• JO' il  e {0A,S,...,m} 

il-ifl. irJO 6 {8,1632,64} 

For each window, we define a criterion function CR by: 

(4.1)   CR = no. of O-entries of A in the window 
Varea of the window 

We look for windows with high values of CR. Such 
windows contain dense clusters of O-entries in A. The use 
of square root in the denominator of equation (4.1) mean? 
that this density can be lower as the window becomes 
larger. If we would eliminate the square root in this 
equation, then too small windows, which contain only 
O-entries, would be chosen. If we do not find any 
appropriate windows, i.e. windows whose criterion function 
exceeds a given threshold, the process is stopped. The 
reason is that probably there are no more objects whose 
motion transformation has not already been found. 

Figure 4 shows the windows found in the second 
cycle when the method is applied to the images in figure 1. 
Figure S shows the A arrays when the processes are 
stopped. The black areas in figure S, which represent the 
O-entries in the A arrays, correspond to incorrect values of 
displacement vectors in the boundaries of the objects. 

4.2.3    The    Hypothesizing    Phase 

Before we start the voting process of the displacement 
vectors in a given window, we have to decide which 
vectors take part in this process and how the parameter 
space is defined. If the window contains no more than 
1024 elements, then all of them take part in the voting 
process. Otherwise, for efficiency considerations (see section 
4.1), we will utilize a uniformly sampled subset of 1024 
elements. For example, if the window is 32x64 elements, we 
define a sub-array of 32x32 elements by choosing all the 
elements (i,j) such that j is even. 

The parameter space is an adjustable 4-D array 
('adjustable' means that the number of elements in each 
dimension is not fixed) which contains VP (=90000) 
elements. We assume that the rotation is limited to 0.125 
radians in each direction, the expansion (or contraction) is 
limited to 0.125 and the translation is limited to 8 pixels in 
each direction. The axes which correspond to rotation and 
expansion contain pj elements each and the axes which 
correspond to the translations contain po elements each. If 
the length of the window is at least 64 elements then, 
according to the argument described at the end of section 
3.2 for equalizing the effective parameter resolutions, we 
choose p)=P2=T7; otherwise pj is decreased and P2 is 

increased. So, for example, if the window is 16x16, we 
choose pj=9 and P2=31. 

(b) ^7 

Figure 4: Optimal windows found in the A arrays during 
the second cycle of the experiments, (a) First experiment, 
(b) Second experiment. 
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After the voting process is finished, local maxima in 
the Hough transform are determined. From these 
candidates, the ones that exceed a given threshold are 
selected. The threshold is proportional to the number of 
all the voting displacement vectors. If the resolution of the 
translation axes is more than 1/2 pixel, we define a new 
parameter space, around each maxima point, with finer 
resolution. We then recompute the Hough transform. The 
process is repeated until we achieve a resolution of 1/2 
pixel at most At the end of this process we have a set 
of hypothesized transformations. 

(b) % 
-.j* 

Fignre 5: Final A arrays, (a) First experiment, (b) Second 
Experiment. 

42.4    The    Testing    Phase 

In this phase we sequentially test the hypothesized 
transformations in the order of their Hough transform 
values in the parameter space. We test only the 
transformations which are still not included in the list L of 
confirmed transformations. When we test a given 
transformation, we check all the displacement vectors with 
associated 0-entry in the corresponding window. We sum 
the weights of such vectors which are consistent with the 
hypothesized transformation. We also compute a threshold 
proportional to the number of 0-entries in A, contained in 
the window. If the sum is higher than the threshold, we 
accept the transformation, add it to the list L and update 
the array A. In the current implementation, the process is 
stopped if we do not accept any transformation in any of 
the windows. 

5.    Experiments 

We performed two experiments based on two pairs of 
128x128 artificial images (figure 1). In the experiments the 
objects were transformed according to the upper values in 
each entry in tables 5.1 and 5.2. The lower numbers in 
these entries are the computed parameters. 

I   rotation I expansion I   vertical      I   horizontal 
I (radians) I I translation I translation 
1 I I   (pixels)      I   (pixels) 

I object A   I 
I    actual      I      0. 
I computed I      0. 

I 

I 
0. 
0. 

0. 
0 

I object B   I I | 
I    actual     I     0.07      10. 10. 
I computed I   0.0781    10. 10. 

0. 
0. 

I object C I 
I actual I 
I computed I 

0. 
0. 

0. 
0. 

table 5.1 - first experiment 

In the first stage - the displacement field was 
computed (figure 2). Note the errors at the boundaries of 
the objects which correspond to low values in the weight 
planes (figure 3). 

In experiment 1, during the first cycle of the 
algorithm for computing the motion parameters, the motion 
transformations of objects A and B were detected (see the 
results in table 5.1). In the second cycle, two windows were 
located around areas in the mask array A with relatively 
dense clusters of 0-entrie$ (figure 4), but only the window 
around object C gave a positive result - the motion 
transformation of object C. In the final cycle no appropriate 
windows were found in the array A (figure 5). 
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Corresponding results from experiment 2 are also 
shown in figure 4 and figure 5, The computed 
transformations are shown in table 5,2, 

1 I rotation 1 expansion 1 vertical 1 horizontal 1 
I 1 (radians) I i translation 1 translation 1 
1                  I                1                   1   (pixels)      1   (pixels)     I 

1 object All i ! 1 
I actual 1 0,025 10, I 0, 10. 1 
1 computed I   0,0234    10,          10,          10          1 

1 object B 1 1 1 1 1 
1 actual 1 0, 1 0,1 1 -1,5 1 0. 1 
1 computed 1      0.        1    0,09375    1      -1,2        1        0.          1 

1 object C 1 1 1 1 1 
1 actual 1 -0,1 1 0, I 0 1 2,2 1 
1 computed 1 -0,09375 1      0,          1      -0.2        1        2,1        1 

1 object D 1 1 1 1 1 
1 actual I 0,12 1 -0.1 10, I 0. 1 
1 computed I     0,125    1    -0,0937    1      -02        1        0,          1 

i object Ell I 1 1 
1 actual 1 0, 1 0,125 I -1,1 I 0,7 1 
1 computed 1      0,        I 0.0625 (•) 1      -1,05      1        0,6        i 

'able 5.2 - second experiment 

(*) The large error indicated in this entry is due to the 
small size of object E (radius = 8 pixels) which reduces the 
possible resolution in the measuremenfi of rotation and 
expansion. 

6,    Conclusions    and    Extensions 

This work demonstrates an efficient and robust 
algorithm, based on the Hough technique, for recovering 
motion parameters in scenes containing several independently 
moving objects. An hierarchical approach, combined with a 
windowing scheme, is implemented in order to deal with 
objects of different size. The storage space and 
computation time can be limited, while still computing the 
motion parameters very accurately and distinguishing 
between real    objects and noise effects. 

We hope to extend this work for sequences of iniages 
and for recovering the 3-D motion parameters of rigid 
objects. However, the latter task is much more difficult 
than recovering 2-D motion parameters In the 2-D case 
each vector contributes two constraints (equations 2.4 and 
2.5) whereas in the 3-D case, assuming that deptl 
information is unknown, each vector contributes only on 
constraint. Therefore, the signal to noise ratio in the 
parameter space (section 3.2) is much lower. In addition, 
we expect to have problems of ambiguity in the 
interpretation of noisy displacement fields, where a group of 
motion  transformations  can  be  equally   consistent  with   the 

data. In such cases a probabilistic approach might be more 
suitable. We also plan to implement less restricted methods 
for computing a displacement field or other equivalent 
information, to use the motion information for 
object-surround separation, and to test the method in real 
scenes. 
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t-j ABSTRACT 

'"^A unifying abstract mathemBtical strticture is presented 
Tor ;i number of vision problems, notably stereo, motion storoo, 
optic (low, and iimlching. Ideas trom modern dUTorcntlal topol- 
ogy arc presented and applied to I lie general matching prob- 
lem, a common approach to stereo matching, defined as follows. 
Given 2 picture functions /'',,/•';. : ,M2 -► R", one finds regions 
l<iJ<2 C A/2 and a 1-1 matching function p„ ; Kl -» K? such 
that /''j = Fj o y,,. It, is shown that generically for monochrome 
pictures (n = 1) there is a large infinity of solutions, but for 2 
or more color dimensions (n > 2) the solution is unique. 

The paper is offered partially in the hope of introducing 
vision workers to this type of matbematics and persuading them 
of its ulility. 

, I     INTRODUCTION 

Analogtiisly to the Erlanger Programm, the task of com- 
puter vision can be viewed as limling invariants of irradiance 
functions under the rigid [notion group of R3. This 'p'lper 
describes this strnclure in the language of modern abstract math- 
ematics, providing a framework for understanding and the pos- 
sibility of applying powerful methods to resolve fundamental 
questions. We^provCa theorem which says that occlusion-l'rcc 
stereo matching rei|mres at least 2 color dimensions or some 
knowledge of the imaging geometry. 

For reasons of space, the treatment here is abridged and 
terse. The interested reader can find a more complete exposition, 
including mathematical details, delimtions. and wider discussion 
in (lilicber lOSii]. 

11     THE MATfII^IATICAL STRUI1TUR_E 

The structure is depicted by the commutative diagram 
Pig. (*')■ The object surface E is embedded in R3 via i. M3 

is a fated .'i dimensional subset of R:!, and is the domain of 
definition for the imaging projection TT, which maps it to M2, the 
2 dimensional image space. /•', is the observed image intensity 
on some dosed set A', of the image plane. S, and Ki are 
corresponding visible regions of R and the image space M2, resp. 

We assume that the surface S admits a runction 
F ! E -* R" which describes intrinsic surface features. E.g., 
for F : V] -, R (i.n. n _ i^ /,• r(,prPSOniB .lrl intrinsic surface 

brightness or luminance. Thus we ignore the effect of viewpoint 
on image irradiance, or cquivalently, ve take the relleelance func- 
tion to be constant. To the extent that we deal only with small 
changes in viewpoint, that will usually be a good approximation. 

/ 

/■' can be thought of as the intrinsic surface property albedo; then 
our analysis deals with quantities that depend only on albedo, 
to good approximation. For the case n > 2, we have in mind 
(■(dor images: nor rial human cone vision incorporates a1 function 
I'i : /\ i —> R' [n = 3). Note that we also subsume cases for a 
smaller (i,e, n = 2) or larger (1 < ?i < oo) number of passbands, 
or in fact any surface attribute, such as a multi-dimensional lex- 
lure measure, which can be thought of as taking poinlwlse values 
in some finite dimensional space. 

/   i'\ 

•This work was siipimrtoH, in part by ARPA contracts MI)A9Ü3-80-C-0102 
anil N00039-82-C-0250,    / 

1'lg,  (*") 

The  map g  :  R3   -.  R3  is a  rigid  motion of R3.    For 
many surfaces D, different viewpoints g have dilferent domains 
of visibility of L.    So,  in general, p, as pictured may not be 
well defined,  since we cannot  be sure that for  Kt, l<g, S^S, 
as we have defined them, that S] C S,, or equivalently that 
TT o i9 : v _ M2 |a |.j on gi    [(i ^ pal>t (|(. w|| u we sre |n the 

picture F) might be hidden from view when we look after doing 
9, Hence the regions ffj. Kg must be chosen in such a way that 
g, is well-defined. For example, having chosen Si,S, as above, 
wc can define S\ = S'g =-- S, n Sg and K\ = noi (.V,) and 
K'g = -Koig [S1], With these restrictions, j, is a diffeomorphism 
/Ci -» Kg with the property that /•',(;)) = Fg(q) = Fg(g,(p]), 
which is the same as saying that g, is a deformation of the 
picture l'\ into the picture Fj. Note that this observation is also 
equivalent to asserting that the diagram Is commutative (for the 
Fi.ff,, Fg loop). 

We have sidestepped the issues of occlusion, shadowing 
and photometry. Nevertheless, major parts of the following 
problems are subsumed in the structure we have presented. 

■    •"•! 
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• Area correlation stereo 

• General matching 

• Motion stereo and optical How 

• Feature based stereo 

• Singularity tracking 

III     STEREO BY GENERAL MATCHING 

As a straighU'orward (but not trivial!) application of 
th? abstract viewpoint we are proposing, we show that for 
monochrome images, the matching problem is insoluble, and 
study the conditions which allow unique solution. 

Flg. (GM) 

A common approach to stereo matching is via general 
matching, I.e., given 2 picture functions /''i,/'a : M2 -* R", 
one finds regions Ki,K% C M and a I-1 mattliing function 
yn : K\ —» Ki »uch that the diagram h'ig ((JM) commutes. Only 
after the matching function is found is the surface embedding 
computed by associating relative depth with relative disparity at 
each point of (say) K\, We assume that for the matching phase 
no information about imaging geometry is used, in particular 
that there is no assumption of rectification, and no knowledge 
of epipolar geometry h used, so that arbitrary (but sullicientlv 

differentiable) distortions are possible. Since we are concerned 
with existence, this is an idealization of what happens in practice, 
where usually there is at least Implicit use of some geometric 
constraints. We show, in fact, that such use is necessary. 

The following question then arises: 

Problem (Uniqueness of General Matching). If we seek 
an arbitrary (piecewise) C difleomorphism gn to make l''ig.(GM) 
commute, when are we guaranteed a unique solution to the 
matching problem? 

Kg., if l'\,F2 are both constant functions, i.e., we have 
uniformly gray pictures, the problem is completely degenerate, 
and any dilfeomorphisrn (;„ is a solution. 

We do not consider problems related to occlusion, and 
instead assume that In fact it, is possible to find regions K[,Ki 
and a map tj, which fulfill the smoothness criteria and make Kig. 
(GM) commute. Our concern is whether g* is then unique, 

Theorem (2 color theorem). Stereo requires at. least 2 
color dimensions or 3 space dimensions. I.e., for a monochrome 
picture, general matching has infinitely many solutions, but for 
2 or more color dimensions, it is generally unique. Hence the 
monochrome case requires knowledge of the imaging situation to 
constrain the problem. (In particular, this applies to gray-level 
correlation.) 

More precisely, consider the commutative diagram Fig. 
(GV1) where g, is a C dilfeomorphism, /''i,/'^ are Cl, and 
KxjK-t are difTerentiabfe submanifofds of R2. 

If n = 1 (i.e. the picture is monochrome), then 3 an 
infinite dimensional family ofC  difTcomorphisms {h^,} such that 

replacing <;„ by h^ also results in a commutative diagram (i.e. 
is a solution). The family hv is parametrized by (at least) the 
continuous functions K\ —> R, and contains an isomorph of a 
neighborhood of the identity. 

If n = 2 (i.e. the picture has 2 color dimensions), then 
generically there will be a finite number of g„ which make the 
diagram commute (note we have assumed that such a 3^ exists). 
If we take l\\, Ki to be rectangles or discs (as in a usual picture) 
then generically there is a unique gr. 

If n > ,'5 (i.e. the picture has at least 3 color dimen- 
sions), then generically there will be a unique gn which makes 
the diagram commute. 

The theorem follows easily from some facts in dilferential 
topology. (An excellent introduction to the subject is [Guillernin 
1971], and (Hirsch l!)7l)j is a good reference.) 

Proof (case 7» = I: monochrome pictures). The idea 
of the proof is very simple; the difficufty ties in establishing 
when it is valid. The idea is this. Observe that if Pj o 
g-r (p) = l'\(l>) (i.e. if Fig. (GM) is a commutative diagram) then 
ffir('''i~ (*)) = l''i~ (^). i.e. (h lakes contour lines to contour 
lines. Conversely, any dilfeomorphisrn h : /\'| —» /\'.j which takes 
contour lines of l''\ to contour lines of Fj satisfies the conditions 
for 9„. Tims any (/„ taking contour fines to contour lines will 
solve our local matching problem. But how many such y^'s can 
there be? Assume for the moment, that, a typical contour map 
contains a diffeomorphic image of the fragment represented by 
the solid lines in Kig. (frag). 

If V : f 1 ~* K\ i* ;l dilfeomorphism leaving contours of 
l'\ invariant, then if </„ Is a matching function so is gnoip. Define 
?/» as follows. As you go along the dotted line 

7 : / -» AT, 
t H. 7(<) 

in Kig (frag), slide each contour along itself by an angle 0(t). As 
long as Ö : / —* R is a diffcomorphistn onto its image, the map 
V' will be a dilfeomorphism in a neighborhood of the dotted line. 
To the extent, that this picture is valid, there •■vill be as many 
matchings ijn o 1(1 as there are such maps 0. 

Kig. (frag) 

Actually, we are going to use a slightly more general (and 
technical) method to construct, a family of difliomorphisins tpa 

roughly in 1-1 correspondence with the set, of all CT functions 
Ki — R. For this we wiil use a canonical vector Held defined 
along the contour lines of l'\, which will tell us how much to 
slide each contour line. Define a new vector Held on K\ by 
rotating each of the local vectors of V/'', by +00°, i.e. +90° 
counterclockwise, (which is uniquely defined because we have a 
globally defined inner product on an 'u'entable manifold). One 
might, e.g. define the new vector field / sn K\ by /(p) = (—6,a) 
if Vl'\(p) x=  (0,6),    Note that / • VF\   = 0 at all p.    Since 
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smoothness is defined with respect to coordinates, Z has the same 
degree of smoothness as W\. Further,sore, wherever / 7^ 0, it 
is tangent to the contour lines of b\, so that the orbits of / are 
exactly those contour lines, and the critical points are exactly 
the critical points of V/'V We now cons'.uer the flow generated 
by the vector field Z. 

Near the boundary of A',, the time-one map of this flow 
may not be defined if a contour line has a boundary. However, 
this is easily overcome by using a "bump" function [Abraham 
1978] ß '' K\ -♦ R to get a vector field ß ■ / on K{ which 
smooth'.y goes to zero very close to the boundary, and hence has 
a flow v?( which never leaves A'i. 

Thus for each t, ift : K\ -» K, is a dilfeomorphism on Ki 
leaving contour lines invariant. This family of diffeomorphisms 
can be enlarged even more. Notice that multiplying the vector 
field / by a scalar (" function p : K\ -• R does dot, alter orbits. 
Therefore we can enlarge the class of dilfeomorphisms (pt by 
taking all difleomorphisms ip,,p given by the Hows of p ■ ß ■ Z on 
Kj. Observe that for any constant n, ipai,f — ipt.apt, so if/> is a 
constant function, ipttl, = v?,,,, = v?,,,. Thus {<pt,p} = {^1,,}, 
so by abuse of notation we will write p^ for ipl:P. QED (n = 1). 

A. Discussion of what we have shown so far 

In the monochrome matching of 2 regions free of occlu- 
sions, the match is far from unique. In fact there are essentially 
as many matches as (" functions from such a region to the reals. 
This stems directly from Iho fact that the iso-hrightness loci con- 
stitute connected dilferentiable l-dimensional objects. That in 
turn is a consequence of the fact that the picture is a map from 
a 2-dimensional object to a l-dimensional object. 

Away from critical points, the matching diffeomorphisms 
can differ greatly: contour lines can be slid along th"n;sclves ar- 
bitrarily large amounts. From a practical point of view, given 2 
pictures and a matching function, it is a simple matter to choose 
a p and compute pp, the time-one map of p- ß ■ Z, giving a new 
match. A matching strategy based on this analysis would first 
match critical points (generically a discrete combinatorial prob- 
lem), and then contour lines intersecting the gradients through 
the critical points. Of course, an actual program would also have 
to deal with noise, digitization, occlusion, and variation of image 
irradiance with viewing position; and it would have- additional 
constraints available. 

B. The validity of the intuitive picture 

Although the theorem is proved for n = I, it's not clear 
how the intuitive idea of the proof is related to the technical 
method we actually used. To illuminate that and to disseminate 
some interesling facts about such mappings, we now turn to the 
validity of the picture (Fig. (frag)) we presented earlier for the 
structure of the contour lines. This will require some basic results 
from differential topology. This is interesting beyond the confines 
of our present problem; e.g. it casts light on the structure of zero 
crossings. 

First, the proof given above fits into the intuitive scheme 
presented earlier for using Fig. (frag), since pß\Z\ is essentially 
the rotation function 0 we discussed earlier, lint is Fig. (frag) 
a reasonable picture for the contour lines of a picture function? 
The following propositions are consequences of the implicit func- 
tion theorem, Milnor's theorem on l-manifolds, Sard's theorem, 
and the genericity of Morse functions (see [Dllchcr lOS.'i] for 
details). 

1) Almost every level set of a picture is a circle or a line 

2) These l-manifolds account for almost all of the brightness 
values; the rest are extrema or saddles (critical points). 

3) Typically, pictures have isolated critical points (i.e. the criti- 
cal points do not form blobs, lines, or accumulations). 

Now, here's what all this means in terms of Fig. (frag), 
('boose a picture at random. (Say the picture is bounded by a 
rectangle l( with interior V .) If it has no critical points, then 
all the level sets are dilTeornorphic to (disjoint unions of) line 
segments (and not circles, which are the oidy other possibility 
by Milnor's result, cited above). 

Suppose the picture does have critical points. Then 
"generically" the critical points are isolated. 

First let's see what happens near such a critical point. 
Hy Morse's Lemma [Guiltemin 197-1, Hirsch lfl7()| we know that 
there is a coordinate system (u, r) in a neighborhood of the 
critical point p such that / = /(p) ± u2 ± v'2   The possible signs 
correspond to a maximum ( ), a minimum ( + + ), or a saddle 
( + - or - + ). So for an extremum, it's easy to see that the level 
sets are just a point surrounded by circles. For a saddle, the 
level sets are the sets u2 - D8 = ronsf, shown in Fig. (saddle). 
Note that the critical point is isolated (from other critical points), 
though it is not isolated as part of a level sot. 

Fig. (saddle) 

•   J 

■ 

Fig. (pass) 

295 



The Morse inequalities tell us that the Ruler characteristic 
is related to the number and type of critical points. In our case, 
if we assume that the whole region o{ interest lies within a single 
circular level set, this means that the number of extrema must 
be 1 more than the number of saddles. In Kig. (frag), for the 
rotation directions of the level sets to be consistont with the 
way we proved the first part of the theorem, we must assume 
that one of the critical points is a maximum and the other a 
minimum. But from the Morse inequalities, there must be a 
saddle somewhere, too. In fact, the larger picture looks like 
Fig. (dimple), and when there are two maxima (or minima, in 
Australia), like Kig. (pass). 

C. Open dense, usually, generically, almost all, typically 

A crucial result used above is that the Morse functions 
are open dense. This allows us to restrict our attention only 
to pictures whose critical points are isolated and (bus to avoid 
considering pathological behavior. A property shared by all 
members of an open dense subset (or a countable intersection 
of such subsets) is called generic, which can bo thought of as»- 
"most" (see jlilicher 1983, Hirsch 1978, Nitecki 1971, Golubitsky 
1973, Cuillemin 1971]). Then the (countable) conjunction of 
generic properties is generic. "Generic" is a key idea in modern 
differential topology. 

D. The cases n > 2 

Let / : A/m -» M", be C and regular at p. The analysis 
is based on the fact that at a regular point, if there is enough 
room in the range space, / is a diffeomorphism from a neighbor- 
hood U of p to f(U). This is yet another version of the implicit 
function theorem. The idea of enough room can be made precise 
simply by requiring the .lacobian to be 1-1. This is the case for * 
regular point if the dimension of the range space is at least that 
of the domain space, i.e. if m < n, which is the situation for us 
if ther, are at least 2 color dimensions. 

As be ore, the possible maps gw which'solve the matching 
problem arc exactly those which take level sets to level sets. 
Since the gr are dilTpomorphisms, we can just study the maps 
of the level sets of, say, Fu since they are equivalent by a given 
g.. to the set of all g*. (To see this, consider Fig. (equiv). Let 
/» be a diffeomorphism which takes level sets to level sets, i.e. 
which makes the diagram commutative, and define j/', = (/„ o /i, 
so that any h gives us a (/',.   Likewise given such a g'„, define 

Ki 

Jfl    / 
I* /' 

#2 

Rn 

Fig. (equiv) 

First, let's look at how many points can be in l'']X(p). Hy 
the implicit function theorem, since the dimension of the range 
(i.e. the color space) is at least that of the domain, the level 
set of a regula' value is at most a discrete set of points. Since 
we are restricting ourselves to compact pictures, the level set 
must be a finite set (to avoid an accumulation point). Hence 
on a level set, g,, is constrained to be one of a finite number of 
permutations of the finite level set.   Furthermore, since Fi is a 

local diffeomorphism at a regular value, the permutation cannot 
jump around wildly among neighboring points, so that in fact g, 
is a permutation of "sheets." 

As it turns out, the higher dimensions are easier to deal 
with in our context, so we will start with them. 

E.        Regular points when n > 3 

Theorem. Let M, /V be embedded submanifolds of R". 
Then generically, dim M + dim W - n = dim M n N, where a 
negative dimension means the intersection is empty. 

Locally, the regular sets arc embedded submanifolds (by 
the inverse function theorem), so we can use the preceding to 
study the inverse images of regular values. In particular, /'"i will 
fail to be 1-1 at places where the embedded regular sets inter- 
sect. We are interested in the case that dim M = dim N = 2, 
so we see that the intersection is generically of dimension 2, 1,0, 
and empty for n — 2,3,1,5 reftp. Thus if n > 3 there is 
no dilfeomorphism k other than the identity which makes Fig. 
(equiv) commute, i.e. such that /''| = /'', o h, (Proof: h must 
be the identity wherever A'| is 1-1. liy the above theorem, that 
is generically everywhere except on a lower dimensional sub- 
manifold. Hence h is the identity on a dense subset, and by 
continuity uniquely extends to the whole space. QIC!).) So for 
the regular points, we have disposed of all the cases of 3 or more 
color dimensions. Now we look at the singular points, and their 
dimension. 

The genericity of Morse functions can be generalized as 
follows. 

Theorem(Critical set dimensior), For an open dense 
subset of 6'|c(Mm, Nn), the set of critical points of / where the 
lacobian is of rank r 

1) comprise a submanifold of Mm 

2) =0 if (m-r)(n-r) > m 

3) is of codimension (m-r)(n-r) in Mm if (m-r)(n-r) < m 

( JT is of ccäimensionk in Y it d\in X + t — dimK.) 

Hefore we get involved in studying the critical sets 
for various color dimensions, we state 2 more closely related 
theorems which allow us to immediately understand the situa- 
tions fjr 4 or more color dimensions. An immediate comequenei 
of the critical set dimension theorem is the 

Theorem (Whitney Immersion Theorem). If X,Y are 
smooth manifolds, with dim V > 2-dim A', then maps with no 
singular points are open dense in CtX, Y). 

For a picture, dim A" = 2, so the above theorem applies 
when there are at least 4 color dimensions. In that case, it 
states that the typical picture won't have any singularities at 
all. Hence, typically there is only one "sheet" and no folds. 

A further result is the 

Theorem Whitney 1-1 Immersion Theorem). If X,Y 
are smooth manifolds, with dim Y > S-dimJC + l, then 1-1 maps 
with no singular points are residual (i.e. generic) in C*,{X,K). 

So with at least 5 color dimensions, we can assume no 
color is used twice. 

Returning to the critical set dimension theorem, in our 
ca n = 2, so what the theorem tells us is that the dimension 
of li,. critical set is respectively 1, 0, for n = 2, 3, and it is empty 
for n > i. 
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By reasoning as wc- did for multiple points of the regular 
set. h has unique continuation lo the critical set for n > 3, 
yielding the conclusion that h is generically unique when n > 3 
(for n = 2 the 1-1 set need not be dense, so the conclusion 
wouldn't follow). 

To summarize, we have thus far shown that h must be the 
identity for n > 3, and is at worst one of a discrete set of sheet 
permutations for n = 2. Now we will pursue the case n = 2 a 
bit further. 

F.        More about n — 2 

If we allow the support of a picture to be all of R2 or S2, 
that is all we can say. (Consider, e.g.. the function z (for 
some k > 2) on the complex plane for the picture function. Then 
the sheets can be permuted leaving the picture invariant.) Hut 
a real picture must be finite in extent, so if wc are considering 
subsets of the plane, a rectangle (i.e. a disc) is an appropriate 
domain to consider. If we are thinking about the sphere, then 
since we are restricting ourselves to occlusion-free regions, using 
the entire sphere would imply that there were no observable 
occlusions, which could only happen in the improbable events 
that only one object was illuminated, or that the observer could 
only pee an object which completely enclosed him. Ilight now we 
arc only concerned with the g( nericity of mappings of the plane, 
since we are in the context of general matching, so we will make 
no claims regarding the genericity of occlusion or illumination, 
though such an analysis is possible. 

I.et us now assume that the picture support we arc 
considering is lopologically a disc. In that case, h, being a 
homeomorphism, must map the boundary of the disc (a circle 
S) to itself. If / is 1-1 then h must be the identity. If not, then 
consider what must happen on this circle, h must be continuable 
along S, so for p £ S, /"'(P) 

niusl contain a constant number 
of points. This excludes the possibility of transverse crossings of 
f{S). But transverse crossings for such a map arc generic, so h 
must, therefore genericidly be the identity. QED | 
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EXTRACTION OF TEXTURED REGIONS IN AERIAL IMAGERY 

H.Y. Lee 

Intelligent Systems Group 
Departments of Electrical Engineering 

and Computer Science 
University of Southern California 

Los Angeles, California 90089-0272 

I. Introduction 

^^ In lieu of a complete segmentation approach, 
^ f» wg attempt a partial segmentation for natural 
• "^ scenes to extract the large textured regions. The 

usefulness of texture processing as an early stage 
in the overall system, however, heavily depends on 
the nature of the task and the image data. 
Therefore, as mentioned in an earlier report (1|, a 
way of determining the presence or absence of 
texture should precede any attempt to perform a 
textur» extraction operation. 

A simple method to predict texture presence or 
absence using a pyramid structure is presented. A 
new texture measure is defined and used in a 
reeion-growing extraction scheme. 

II. Prediction of Texture Presence and 
Uniformity Texture Measures 

Local uniformity and the change in uniformity 
at different resolutions are used as the texture 
cue in our extraction scheme. While constructing a 
level of the intensity pyramid where level L is 
obtained by nonoverlapped block averaging of level 
L-l , the corresponding levels of the uniformity 
pyramid indicating the local uniformity at that 
resolution and of the un i fomiity-change (UC) 
pyramid indicating the local uniformity change from 
the lowest level are computed as shown in Fig. 1. 
The underlying supposition on which these measures 
are valid is that the averaging process in 
constructing a pyramid structure changes a large 
textured region into a uniform luminance region at 
the level where the averaging window approximately 
equals the size of the collection of texture 
primitives. This is true only if the variations in 
the illumination and the primitive size are small 
throughout the region. On the assumption that it 
is true, we can make the following conjectures: 

If the given image has a large portion 
of textured regions, the overall 
uniformity keeps increasing as the size 
of the averaging window becomes larger 
until it exceeds the largest primitive 
size so that there is no more 
improvement in uniformity. 

If the image, on the other hand, is 
devoid  of  texture  or  the  textured 

portion is small, the averaging process 
may not improve the uniformi'-.y or may 
even decrease it. 

The average at each level of the uniformity pyramid 
(taken over the entire image or a portion of it) is 
used in determining the presence of large textured 
regions and estimating the proper level of 
resolution which is compatible with the size of the 
texture. 

Two test images (Fig. 2) are used to verify 
the conjecture we made above. These two views of 
the same scene taken at different seasons have a 
resolution of J12*,71 pixels. The average values 
BL different levels are shown in Table la and Table 
lb for Fig. 2a and Fig. 2b respectively. For the 
strong textural structure of the forested regions 
in the first view the iverage value does indeed 
decrease at level 3 and level A, while it begins to 
increase at level 5. From this result, we can not 
only predict textu.-e presence but also assume that 
the diameters of the texture primitives lie between 
8 and 16. Therefore, we can predict that the best 
level for texture extraction in the pyramid is 
level 3 which shows the first significant decrease 
in the average values. For the second view, which 
has a much weaker textural structure, the average 
increases until level 4 and then decreases somewhat 
at level 5 ind level 6. This improvement in 
uniformity, however, can not be considered as the 
sign of texture presence, since texture primitives 
with a diameter between 32 and 6A are very unlikely 
in an '512*512 aerial image. Though more tests with 
a variety of images should be made before we 
confirm th? validity of the conjectures, these 
results show the potential of this simple method. 
The level 3 uniformity and UC images of Fig. 2a are 
shown in Fig . 3. 

III. Extraction of Textured Regions 

Previous approaches to segment an image by 
texture [2,3,4] wore directed to completely divide 
the image into regions of uniform textural 
properties without specifically separating the 
textured portions from the untextured ones. Since 
the untextured portions of an image can be 
segmented more easily and accurately using single 
pixel properties, our approach is to extract 
connected textured regions one by one and leave the 
untextured portion untouched for other stages of 
single pixel processing. 

Si 
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Here, the information from a conservatively 
extracted region guides the region growing in the 
next lower level. The resulting region boundary is 
then refined using the information from the lower 
level. Therefore, three consecutive levels of the 
pyramids are involved in extracting compact 
textured regions. At level T+!, where level T is 
the one compatible with the texture, compact 
regions with high uniformity and large uniformity- 
change are selected as starting elements. At level 
T, one of the starting elements (magnified by the 
factor of 2 to take account of the level descent) 
is grown by merging neighboring pixels whose 
uniformity and UC values lie inside the uniformity 
and UC ranges of the magnified element. Though it 
is unreliable to use the level T-l uniformity and 
UC values inside the textured region, a textured 
region often adjoins untextured regions or regions 
with a texture of different primitive size, which 
are detectable at level T-l ( e.g. a forest region 
touching rivers or roads in an aerial image). At 
level T-l, therefore, boundary refining is carried 
out by eliminating the untextured or differently 
textured portions (with low uniformity or small UC 
values) from the search area which is constructed 
at level T and magnified by 2 to be compatible at 
level T-l. ( After the region growing stops at 
level T, the search area is formed by the exterior 
boundary pixels as well as boundaries of holes and 
their neighboring pixels within a distance of 1.) 
After one region is extracted, the process is 
repeated using another starting elemtr.t which is 
separate from the detected regions. The starting 
elements from Fig. 2a are shown in Fig. 4 and the 
binary images of the resulting regions after each 
step derived from the largest starting element are 
shown in Fig. S. Fig. 6 shows the boundaries of 
the extracted regions on the original image (Fig. 
2a). The final result on another test image (high 
altitude image of ehe San Francisco urban area) is 
shown in Fig. 7. 

IV. Conclusions 

The tests on two aerial images show that the 
proposed technique can extract large textured 
regions     fairly    well. Without    the    sophisticated 
description of textures from a stochastic or 
structural model, simple texture measures achieve 
sufficient   results  in  certain  natural   image  domain. 
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Figure   1.     4   by  4   block at   level   L-l    involved   in   the 
computation  of   level   L  features 

A(k,JO   is  the average   inside  the  2  by  2  block whose 
lower  co-ordinate  is   (k,S),   i.e., 

k_ I 
A(k,ll) 

m=k-l   n^I-l 

G
L_l

(ra,n) 

Level L intensity:  GL(i,j) - a(2i,2j) 
Level L uniformity: 

UT(i,j) = var{A(2i-l),2j-l),A(2i-l,2j+l) 
L A(2i+l),2J-l),A(2i+l,2j+l)} 

Level L uniformity-change: 

UC (l,j) = /var on the level 8 
I values inside the whol 
V block 

e)-UI (i,3) - 

_d 
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Figure  2.     Low altitude aerial   image 

(a) view  1   (October) 
(b) view  2   (August) 

(b) 

Figure 3.  Level 3 images of Fig. 2 lg. 2a 

(a) uniformity 
(b) uniformity-change 
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Figure 4.  Starting elements selected at level •'' 
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(a) 
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(d) 

Figure 5.  Results from the largest starting element 
after each step 

(a) starting element at level 4 
(b) region grown from (a) at level 3 
(c) search area of (b) 

(d) after the elimination of the untextured 
port ions at level 2 
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Figure  6.     region bounda-ies with  small noisy regions 
removed and  smoothing 

■ 

Figure  7.     Final  result  on a  high altitude  image of 
San  Francisco area 
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ABSTRACT 

A complete mathematical treatment is given for 
describing  the topographic  primal  sketch of  the 
underlying grey tone intensity surface of a digital 

image.   Each  picture   element  is  independently 
classified and assigned a unique descriptive label, 

invariant under monotonically  increasing gray tone 

transformations from  the set (peak,   pit,  ridge, 

ravine, saddle, flat, and hillside),  with hillside 

having  subcategories  (inflection point,   slope, 
convex hill, concave hill,  and saddle hill).   The 

topographic classification  is based  on the  first 

and second directional derivatives of the estimated 
image intensity  surface.   A local,   facet model, 

two-dimensional,  cubic  polynomial fit is  done to 

estimate the  image   intensity  surface.    Zero- 

crossings of  the first directional  derivative are 

identified as  locations of interest in  the image. 

Results of the technique appHd to digital terrain 

data  and aerial  photograph;  :ed  in the Passive 
Image Navigation study are presented 

1.  INTRODUCTION 

Representing the fundamental structure of a 
digital image in a rich and robust way is a primary 

problem encountered in any general robotics 

computer-vision system that has to "understand" 

an image. The richness is needed so that shading, 

highlighting, and shadow information, which are 

usually present in real manufacturing assembly line 

situations, are encoded. Richness permits 

unambiguous object matching to be accomplished. 

Robustness is needed so that the representation is 

invariant with respect to monotonically increasing 

gray tone transformations. Current representations 

involving edges or the primal sketch as described 

by Marr (1976; 1980) are impoverished in the sense 

that   they  are  insufficient   for  unambiguous 

This research has been supported by National 

Science Foundation grant MCS-8102872. Experiments 

were carried out with the support of DARPA contract 
DAAK70-81-C-0098 

and Electrical Engineering, 

e and State University, 
24061 

matching. They alsr do not have the required 
invariance. Basic research is needed to (1) 

define an appropriate representation, (2) develop a 

theory that establishes its relationship to 
properties that three-dimensional 
on the image, and (3) prove 

practice. Until this is done, 

research must inevitably be 

sophistication than science. 

objects manifest 

its  utility  in 

computer-vision 
more  ad  hoc 

The  basis of 
consists of the cla 

underlying   image 
according to  the 

gray  tone,   invar 

derivatives.  Examp 

pit, ridge,  ravine 
From  this initial 

categories to obta 
structurally  comp 

fundamental   image 

representation the 

the topographic primal sketch 
ssification and grouping of the 

intensity surface patches 
ategories defined by monotonic, 

iant functions of directional 

les of such categories are peak, 

,  saddle,  flat,  and hillside. 

classification,   we can group 

in a  rich,  hierarchical,   and 

lete  representation  of   the 

structure.    We  call   this 

topographic primal sketch. 

Why do we believe that this topographic primal 
sketch can be the basis for computer vision? We 

believe it because the light-intensity variations 

on an image are caused by an object's surface 

orientation, its reflectance, and characteristics 
of its lighting source. If any of the three- 

dimensional intrinsic surface characteristics ars- 
to be detected, they will be detected owing to the 

nature of light-intensity variations. Thus, the 

first step is to discover a robust representation 

that can encode the nature of these light-intensity 
variations, a representation that does not change 

with strength of lighting or with gain settings on 

the sensing camera. The topographic classification 

does just that. The basic research issue is to 

define a set of categories sufficiently complete to 

form groupings and structures that havf strong 

relationships to the reflectances, surface 

orientations, and surface positions of the three- 
dimensional objects viewed in the image. 
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1.1.  The Invariance Requirement 

A digital image can be obtained with a variety 
cf sensing-car.era gain settings. It can be visually 

enhanced by an appropriate adjustment of the 

camera's dynamic range, The gain setting or the 

enh'inciftg point operator changes the image by some 

monotonically increasing function that is not 

necessarily linear. For example, nonlinear 

enhancing point operators of this type include 

histogram noroial ization and equal probability 
quant ization. 

In visual perception, exactly the same visual 
interpretation and understanding of a pictured 

scene occurs whether the camera's gain setting is 

low or high and whether the image is enhanced or 
unenhanced. The only difference is that the 

enhanced image has more contrast, is nicer to look 

at, and is understood more quickly by the human 
visual system. 

This fact is important because it suggests 
that many of the current, low-level computer-vision 

techniques, which are based on edges, cannot ever 

hope to have the robustness associated with human 

visual perception. They cannot have the 

robustness, because they are inherently incapable 

ot invariance under nonotonic transformations. For 

example, edges based on zero-crossings of second 
derivatives will change in position as the 

monotonic gra> tone transformation changes because 
convexity of a gray tone intensity surface is not 

preserved under such transformations. However, the 

topographic categories peak, pit, ridge, valley, 

saddle, flat, and hillside do have the required 
invariance, 

1.2.  Background 

Marr (1976) argues that the first level of 
visual processing is the computation of a rich 

descrintion of gray level changes present in an 

image, and that all subsequent computations are 
done in terms of this description, which he calls 

the primal sketch. T-ray-level changes are usually 

associat d with edges, and Marr's primal sketch 

has, for each area of gray level change, a 

description that includes type, position, 

orientation, and fuzziness of edge. Marr (1980) 

illustrates that from this information it is 

sometimes possible to reconstruct the image to a 

reasonable degree. Unfortvnately, as mentioned 

earlier, edge is not invariant with respect to 

monotonic image transformations; besides, it is not 

a rich enough structure. Difficulty, for example, 

has been experienced in using edges to accomplish 
unambiguous stereo matching. 

The topographic primal sketch we are 
discussing as a basis for a representation has the 

required richness and invariance properties and is 

very much in the spirit of Harr's primal sketch and 

the thinking behind Ehrich's 'elational trees 

(Ehrich and Foith 1978). Instead of concentrating 

on gray level changes as edges as Marr does, or on 

one-dimensional extrema as Ehrich and Foith do. we 

concentrate on  all types  of two-dimensional  gray 

level variations. We consider each area on an 

image to be a spatial distribution of gray levels 
that constitutes a surface or facet of gray tone 

intensities having a specific surface shape. It is 

likely that, if we could describe the shape of the 

gray tone intensity surface for each pixel, then by 

assembling all the shape fragments we could 

reconstruct, in a relative way, the entire surface 
of the image's gray tone intensity values. The 

shapes that we already know about that have the 

invariance property are peak, pit, ridge, ravine, 

saddle, flat, md hillside, with hillside having 

noninvariant subcategories of slope, inflection, 

saddle hillside, convex hillside, and concave 
hilIside . 

Knowing that a pixel's surface has the shape 

of a peak does not tell us precisely where in the 
pixel the peak occurs; nor does it tell us the 

height of the peak or the magnitude of the slope 

around the peak. The topographic labeling, 
however, does satisfy Harr's (1976) primal sketch 

requirement in that it contcins a symbolic 

description of the gray tone intensity changes. 

Futhermore, upon computing and binding to each 

topographic label numerical descriptors such as 

gradient magnitude and direction, directions of the 

extrema of the second directional derivative along 

with their values, a reasonable absolute 
description of each surface shape can be obtained. 

1.3.  Facet Model 

The facet model states that all processing of 

digital image data has its final authoritative 

interpretation relative to what the processing does 

to the underlying gray tone intensity surface. The 

digital image's pixel values are noisy sampled 

observations of the underlying surface. Thus, in 

order to do any processing, we at least have to 

estimate at each pixel position what this 

underlying surface is. This requires a model that 

describes what the general form of the surface 

would be in the neighborhood of any pixel if there 

were no noise. To estimate the surface from the 
neighborhood around a pixel then amounts to 

estimating the free parameters of the general form. 

It is important to note that if a different general 

form is assumed, then a different estimate of the 

surface is produced. Thus the assumption of a 

particular general form is necessary and has 
consequences. 

The general form we use is a bivariate cubic. 

V''e assume that the neighborhood around each pixel 

is suitably fit by a bivariate cubic (Haralick 
1981;1982). Having estimated this surface around 

each pixel, the first and second directional 

derivatives are easily computed by analytic means. 

The topographic classification of the surface facet 
is based totally on the first and second 

directional derivatives. We classify each surface 

point as peak, pit, ridge, ravine, saddle, flat, or 

hillside, with hillside being broken down further 

into the subcategories inflection point, convex 
hill, concave hill, saddle hill, and slope. Our 

set of topographic labels is complete in the sense 
that every combination of values of the  first and 

- . 

305 

'. 



second  directional   derivative     is   uniquely   assigned 
to  one   of   the   ciasses. 

1.4. Previous Work 

Detection of topographic structures in a 

digital image is not a new idea. There has been a 

wide variety of techniques to detect (a) peaks and 
pits (spots), (b) ridges and ravines (lines, 
streaks), (c) hillsides (edges), and other local 

features. Some of this work includes Fischler 

(198?^. Lee and Fu (1981), Hsu, Mundy, and Beaudet 

(19/8), Toriwaki and Fukurma (1978), Grender 

(1976), Paton (1975), Johnston and Rosenfeld 
(1976), Rosenfeld and Kak (1976) and Peuker and 

Douglas (1975). Detailed discussion of these 

methods are beyond the scope of this paper. For an 

excellent discussion of these works the reader is 
referred to Laffey (1983). 

1.5.  A Mathematical Approach 

From the investigation of previous work, one 

can see that a wide variety of methods and labels 

have been proposed to describe the topographic 

structure in a digital image. Some of the methods 

require multiple passes through the image, while 

others may give ambiguous labels to a pixel. Many 

of the methods are heuristic in nature. The Hsu, 

Hundy, and Beudet (1978) approach is the most 
similar to the one discussed here. 

Our classification approach is based on the 

estimation of the first-and second-order 
directional derivatives. Thus, we regard the 

digital-picture function as a sampling of the 
underlying function f, where some kind of random 

noise is added to the true function values. To 

estimate the first and second partials, we must 

assume some kind of paranetric form for the 

underlying function f. The classifier must use the 

sampled brightness values of the digital-picture 
function to estimatt the parameters and then make 
decisions regarding the locations of relative 

extrema of partial derivatives based on vhe 
estimated values of thi parameters. 

In Section 2, we will discuss the mathematical 

properties of the topographic structures in terms 

of the directional derivatives in the continuous 
surface domain. Because a digital image is a 

sampled surface and each pixel has an area 

associated with it, characteristic topographic 
structures may occur anywhere within a pixel's 

area. Thus, the implementation of the mathematical 

topographic definitions is not entirely trivial. 

In Section 3 we will discuss the 
implementation of the classification scheme on a 

digital image. To identify categories that are 

local one-dimensional extrema, such as peak, pit, 

ridge, ravine, and saddle, we search inside the 

pixel's area for a zero-crossing of the first 

directional derivative. The directions in which we 
seek the zero-crossing are along the lines of 
extreme curvature. 

In Section 4, we will discuss the local cubic 

estimation scheme. In Section 5, we will summarize 

the algorithm for topographic classification using 
the local facet model. In Section 6, we will show 

the results of the classifier on digital terrain 
data and aerial photographs. 

2. THE MATHEMATICAL CLASSIFICATION OF TOPOGRAPHIC 

STRUCTURES 

In this section, we formulate our notion of 

topographic structures on continuous surfaces and 

show their invariance under monotonically 

increasing gray tone transformations. In order to 

understand the mathematical properties used to 

define our topographic structures, one must 

understand the idea of the directional derivative 

discussed in most advanced calculus books. For 

completeness, wc first give the definition of the 

directional derivative, then the definitions of the 

topographic labels. Finally, we show the 

invariance under monotonically increasing gray tone 
transformations. 

2.1.  The Directional Derivative 

In two dimensions, the rate of change of a 
function f depends on direction. We denote the 

directional derivatiye of f at  the point (r,c)  in 

the direction ß by f0(r,c). It is defined as 
P 

fß(r,c) lim - 

h-)0 

f(r+h*sinß,c+h*cosß) - f(r,c) 

h 

The direction angle ß is the clockwise angle from 

the column  axis.   It  follows directly  from this 
definition that 

fß(r,c) ■ af(r,c) * sinß + af(r,c) * cosß. 

8r ac 

We denote the  second derivativ^rof f  at the point 

(r,c)  in the  direction ß by f. (r,c)   and it 
follows that " 

3'f a2f 

Or 
--»sin ß + 2* 

3r3c 
'sinp*cosß 

2 
a^f 

ac' 

The gradient of f is a vector whose magnitude, 

1 

at  a given point (r,c)   is the maximum rate  of 
change of f at that point, and whose direction 

tan  | ; 

; af ; 

is  the direction  in which  the surface  has  the 
greatest rate of change. 
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2.2.  The Mathematical Properties 

Vt'e will use the following notation to describe 

the mathematical properties of our various 

topographic categories for continuous surfaces. Let 

Tf = gradient vector of a function f; 

(2) 

llrfll ■ gradient magnitude; 

<i) = unit vector in direction in which 

second directional derivative has 

greatest magnitude; 

= unit vector orthogonal to u  ; 

= value of second directional derivative 

in the direction of ID       ; 

= value of second directional derivative 

in the direction of i»       ; 

value of first directional derivative 

in the direction of u  ; and 

value of first directional derivative 

in the direction of a) 

Without loss of generality, we assume U.I >= IA.,1. 

Each type of topographic structure in our 
classification scheme is defined in terms of the 

above quantities. In order to calculate these 

values the-first and second-order partials with 

respect to r and c need to be approximated. These 
five partials are as follows: 

df     di   a2f a2f  a2f 

ar  ac ar2 ac2 arac 

The eigenvalues of the Hessian are the values 

of the extrema of the second directional 

derivative, and their associated eigenvectors are 

the directions in which the second directional 

derivative is extremized. This can easily be seen 

by rewriting f'' as the quadratic form 

fß  = ( siiiß cosß ) * H * | sinß | . 

I cosß I 

Thus. 

ii (1) - i  <!'   i ii (2) mo    = A u    and IIw    " X u (2) 

Furthermore, the two directions represented by the 

eigenvectors are orthogonal to one another. Since 

H is a 2*2 symmetric matrix, calculation of the 
eigenvalues and eigenvectors can be done 

efficiently and accurately using the method of 

Kutishauser (1971). We may obtain the values of the 

first directional derivative in the direction of 

either extreme of the second directional derivative 

by simply taking the dot product of the gradient 
with the appropriate eigenvector- 

rf " 

rf - 

There is a direct 

eigenvalues X and X t 
directions  u     and w 

.(1) 
(2) 

relationship between  the 

nd. curvature  in  the 

directional  derivative 
X./(l + (rfTfny2   is 

. ,.When the 

Tf0.(l)    =    0, 

1) 

first 

then 
the   curvature  in   the 

direction u11',   i = 1  or  2.   For  further 

discussion on the relationship of surface curvature 

to directional derivative, see Laffey (1983). 

Having the gradient magnitude and direction 
and the eigenvalues and eigenvectors of the 

Hessian, we can describe the topographic 
classification scheme. 

2.2.1. Peak 

3|. AL 
The gradient vector is simply ar' it.  The second 

directional  derivatives  may  be   calculated by 

forming  the Hessian where the  Hessian  is a  2*2 
matrix defined as 

I a2f     a2f 

drac lä"2 
I ar 
1      2 2 I a-'f     a^f 

I dedr a tac 

Ressiaa matrices are used extensively in 

nonlinear programming. Only three parameters are 

required to determine the Hessian matrix H, since 

the order of differentiation of the cross partials 
may be interchanged.  That is 

a2f 
2 

azf 

arac  aear 

A peak (knob) occurs where there is a local 
maxima in all directions. In other words, we are 

on a peak if, no matter what direction we look in, 

we see no point that is as high as the one we are 

on. The curvature is downward in all directions. 

At a peak the gradient is zero, and the second 

directional derivative is negative in all 

directions. To test whether the second directional 

derivative is negative in all directions, we just 

have to examine the value of the second directional 

derivative in the directions that make it smallest 
and largest. A point is therefore classified as a 
peak if it satisfies the following conditions: 

llrfll = 0, X.1 < 0, *,, < 0. 

2.2.2.  Pit 

A pit (sink, bowl) is identical to a peak 

except that it is a local minima in all directions 

rather than a local maxima. At a pit the gradient 

is zero, and the second directional derivative is 
positive in all directions. A point is classified 

as a pit if it satisfies the following conditions: 

>:•:: 
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lUfll = o, ^ > o, x2 > o. 
2.2.5.  Saddle 

A saddle occurs where there is a local maximum 
minimum in  one  direction   and  a  local 

L.l.i.     KidRe perpendicular  direction A saddle  must  therefore 
have  positive  curvature  in   one  direction  and 

A  ridge  occurs  on a  ridge-line,   a  curve negative  curvature in  a perpendicular  direction 
consisting of a series of ridge points.  Al we walk At a saddle,   the gradient magnitude must  be zero 
along the ridge-line,  the points  to the right and and   the  extrema  of   the  second  directional 
lett  of us  are lower  than  the ones  we are  on. derivative must  have opposite signs    A  point is 
Furthermore,  the  ridge-line may be flat,   slope classified  as  a  saddle   if  it  satisifies  the 
upward,  slope  downward,  curve upward,   or curve following conditions: 
downward.   A ridge  occurs where there is  a local 
maiimum in one direction.   Therefore, it must have llrfll = 0, X »A.  < 0 
negative  second-directional   derivative  in   the *  2 

direction across the  ridge and also a  zero first- 2.2.6.  Flat 
directional derivative in that same direction.  The 

direction  in which  the local  maximum occurs  may A  flat  (plain)   is  a  simple,   horizontal 
correspond to either of the directions in which the surface, as illustrated in Fig. 3.   It, therefore 
curvature is " extremized" . since the ridge itself must have zero gradient and no curvature.   A point 
may be curved.   For nonflat ridges,  this leads to is  classified  as  a  flat  if  it  satisfies  the 
the   first   two   cases   below   for   ridge following conditions: 
characterization.   If the ridge is flat,  then the 
ridge-line is  horizontal and the gradient  is zero lUfll = 0, X, = 0, A. =0. 
along it.  This corresponds to the third case.  The 1      ^ 

defining  characteristic   is  that   the   second Given that  the above conditions are  true,  a 
directional  derivative  in the  direction of  the flat  may  be  further  classified  as  a  foot' or 
ridge-line is  zero,  while the  second directional shoulder.   A foot  occurs at that point  where the 
derivative across  the ridge-line is  negative.   A flat just begins  to turn up into a  hill.  At this 
point  is therefore  classified as  a  ridge if  it point,   the third  directional  derivative in  the 
satisfies any  one of the  following three  sets of direction toward the hill will be nonzero,  and the 
conditions: surface increases in this  direction.  The shoulder 

is an analogous  case and occurs where  the flat is 
■I  .. ,. (1)  n ending and turning down into a hill. At this point, 
MM P "'  1 ^ u' Tl w the  maximum  magnitude of  the  third  directional 
..,...„  ?r , „   ,. (2)   „ derivative is nonzero, and the surface decreases in 
II  II ^ 0, 1 < 0, T« «   =0 the  direction  toward  the hill.   If  the  third 

(ir 

' 

,   ,,        /   (\     \     -  (\ directional derivative  is zero in  all directions, 
"""  '•. ^ < o, >.2 - o. then we are on a flat( not near a hill_ Thus | fiat 

may  be  further  qualified  a«  being  a  foot  or 
shoulder, or not qualified at all. 

A geometric  way  of   thinking  about   the 
definition  for  ridge  is   to  realize  that  the    2.2.7.  Hillside 
condition  rfut   =0  means   that  the  gradient 
direction (which is defined for,nonzero gradients) * hillside point is anything not covered by 
ll orthogonal to the direction » of extremized t,le previous categories. It has a nonzero gradient 
curvature. and no strict extrema in  the directions of maximum 

and minimum second directional derivative.   If the 
2.2.4.  Ravine hiii is simply  a tilted flat (i.e.,   has constant 

gradient), we call it a iiüüs■  If its curvature is 
A rtvine (vallsy)   is identical  to a  ridge   positive (upvard),  we call it  a convex hill.   If 

except  that it  is  a  Iocs' minimum  rather  than    its curvature is negative (downward),  we call it a 
maximum in one direction.   As  we walk  along the   Qjpmiye hill.   If  the  curvature  is up  in  one 
ravine-line, the points to the right and left of us   direction and down in a perpendicular direction, we 
are higher than the one we are on (see Fig. 2).   A   cal1 *' a saddle hill, 
point is classified as a ravine if it satisfies any 

one of the following three sets of conditions: A point on a hillside is an  inflection point 

llvfll i n  i  s n    • '!) if it has a zero-crossing of the second directional 
'  1 > 0' Tf (ü'   - 0 derivative taken in the  direction of the gradient. derivative taken in the  direction of the gradient. 

|l f|l , n  j (2) The inflection-point class is the  same as the step 
P O. *2 > 0, Tf M   - 0 ed^e defined by Haralick  (1982),  who classifies a 

llrfll = 0  J  -> n pixel as a step edge if  there is some point in the 
'  j > 0. ^2 = 0- pixel's area  having a zero-crossing of  the se-^nd 

directional derivative  taken in  the direction  of 
the gradient. 

To determine whether a point is a hillside, we 
just take the complement of  the disjunction of the 
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conditions given for all the previous classes. 

Thus if there is no curvature, then the gradient 

must be non zero. If there is curvature, then the 
point must not be u relative extrernum. Therefore, 

a point is classified as a hillside if all three 
sets of the following conditions are true ('->' 
represents the operation of logical implication): 

From the table, one can see that our 

classification scheme is complete. All possible 

combinations of first and second directional 

derivatives have a corresponding entry in the 

table. Each topographic category has a set of 

mathematical properties that uniquely determines 
it. 

and 

and 

Xj - x2 = 0 -> llrfll ^ 0, 

X jt 0 -> rfu 

X2 )t 0 -> rfw 

(1) 

(2) 

^ 0, 

it 0. 

Rewritten as a disjunction of clauses rather 

than a conjunction of clauses, a point is 

classified as a hillside if any one of the 

following four sets of conditions are true: 

-. (1) , „   ,. (2) , n rt ai    £  0,   rt   a p 0 

0r (1) 
rfu  ' it G, X2 = 0 

Tfü.<2) it 0, X  = 0 
or 

llrfll it 0, X1 = 0, X2 - 0. 

We can differentiate between different classes of 
hillsides by the values of the second directional 
derivative. The distinction can be made as follows: 

SLOPE if X. - X. - 0 

CONVEX if X1 >= X2 >= 0, Xj it 0 

CONCAVE if X1 <= X2 <= 0, >•, i* 0 

SADDLE HILL if X^X  < 0 

A s'ope, convex, concave, or saddle hill is 
classified as an inflection point if there is a 
zero-crossing of the second directional derivative 
in the direction of maximum first directional 
derivative (i.e., the gradient). 

(Note:  Special c.ttention is 
degenerate case X 

rem 

vhere u 
red for the 

and egenerate case X  = X. ^ 0 
ui    can be any two orthogonal  directions.  In 
this case, there always exists an extreme direction 
ID which is orthogonal to rf,  and thus the first 
directional derivative rfui i',  always zero in an 
extreme  direction.   To  avoid  spurious  zero 
directional  derivatiyfj,  we choose »,V   and 

' ui  itQ, 

!mC 
im. 

such  that rf'iu    it 0  and vf 
unless the gradient is zero.) 

Table 1, 

llrfll 

Mathematical Properties of Topographic 
Structures 

rf'oi 
(1) 

rf "ID 
(2) 

Label 

0 0 0 Peak 
o - 0 0 0 Ridge 
0 - + 0 0 Saddle 
0 0 0 0 0 Flat 
0 + - 0 0 Saddle 
0 + 1) 0 0 Ravine 
0 + + (! 0 Pit 

+ - - -,+ -,+ Hillside 
+ - * Ridge 
+ * - Ridge 
+ - 0 -,+ Hillside 
+ - + - ,+ -,+ Hillside 
+ I) 0 Hillside 
+ + - - ,+ -,+ Hillside 
+ 1- 0 -, f Hillside 
+ + • Ravine 
+ • ■t 0 Ravine 
4 + + -,+ — # + Hillside 

Cannot Occur 

' 

-\ •- 

2.2.8.  Summary of the Topographic Categories 

A summary of the mathematical properties of 

our topographic structures on continuous surfaces 

can be found in Table 1. The table exhaustively 

defines the topographic classes by their gradient 

magnitude, second directional derivative extrema 

va'.ues, and the first directional derivatives taken 

in the directions which extremize second 

directional derivatives. Each entry in the table 
is either 0, +, -, or », The 0 means not 

significantly different froffi zero; + means 

significantly different from zero on the positive 

side; - means significantly different from zero on 

the negative side, and '♦' means it does not 

matter. The label ''Cannot Occur'' means that it is 

impossible for the gradient to be nonzero and the 
first directional derivative to be zero in two 

orthogonal directions. 

2.3.  The Invariance of the Topographic Categories 

For  a  proof on  the  invariance of  the 
topographic categories [peak, pit,  ridge, ravine, 

saddle, flat, and hillside), see Haralick, Watson, 
and Laffey (1983), or Laffey (1983). 

2.4 Ridge and Ravine Continuums 

The definitions for riage and ravine can lead 
to possibly some unexpected results. For example, 

all points on a right circular cone, except the 

vertex, will be labeled ridge. Whether one wishes 

to call these points ridge points or something else 

is a matter of taste. These points are classified 

as ridge points because as one walks up the cone 

toward the vertex the points to the left and right 

are lower than the one  you are on.   The continuum 

-  -< 
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of ridges nay or may not be acceptable depending 

upon your viewpoint. Further work by Haralick 
(forthcoming) has partially solved this problem. 

3.0  THE TOPOGRAPHIC CLASSIFICATION ALGORITHM 

The definitions of Section 2 cannot be used 

directly since there is a problem of where in a 

pixel's area to apply the classification. If the 

classification were only applied to the point at 
the center of each pixel, then a pixel having a 

peak near one of its corners, for example, wou^d 

get classified as a concave hill rather than as a 

peak. The problem is that the topographic 
classification we are interested in must be a 

sampling of the actual topographic surface classes. 

Host likely, the interesting categories of peak, 

pit, ridge, ravine, and saddle will never occur 

precisely at a pixel's center, and if they do occur 

in a pixel's area, then the pixel must carrj that 

label rather than the class label of the pixel's 

center point. Thus one problem we must solve is to 

determine the dominant label for a pixel given the 
topographic class label of every point in the 

pixel. The next problem we must solve is to 

determine. in effect, the set of all topographic 

classes occurring within a pixels's area without 

having to do the im .ossible brute-ff-rce 
computation. 

For the purpose of solving these problems, we 

divide the set of topographic labels into two 

subsets: (1) those that indicate that a strict, 

local, one-dimensional extremuri has occurred (peak, 
pit, ridge, ravine, and saddle) and (2) those that 

do not indicate that a strict, local, one- 

dimensional extremum has occurred (flat and 

hillside). By one-dimensional■ we mean along a 

line (in a particular direction). A strict, local, 

one-dimensional extremum can be located by finding 

those points within a pixel's area where a zero- 

crossing of the first directional derivative 
occurs. 

So that 

area for the 

directions 
derivative, 

directions 

properties, 

topographic 
importantly. 

we do not search the pixel's entire 
zero-crossing, »«a only search in the 
0fl) extreme /,>second directional 
ü) and u * . Since these 

are well aligned with curvature 

the chance of overlooking an important 

structure is minimized, and, more 

the computational cost is small. 

the  directions 
(1) flfn I - X    *0, 

and ID    are not uniquely defined. We handle this 

case  by  searching  for  a  zero-crossing 
direction  given by H »rf.   This  is the 
direction.   and 

in  the 

Newton 
it  points  directly  toward  the 

extremiuo of a quadratic surface. 

For inflection-point location (first 
derivative extremum), we search along the gradient 

direction for a zero-crossing of second directional 

derivative. For one-dimensional extrema, there are 

four cases to consider: (1) no zero-crossing, (2) 

one zero-crossing, (3) two zero-crossings, and (4) 

more than two zero-crossings. The next four 
sections discuss these cases. 

3.1.  Case One: No Zero-Crossing 

If no zero-crossing is found along either of 
the two extren-e directions within the pixel's area, 

then the pixel cannot be a local extremum and 
therefore must be assigned a label from the set 

(flat or hillside). If the gradient is zero, we 

have a flat. If it is nonzero, we have a hillside. 

If the pixel is a hillside, we classify it further 

into (inflection point, slope, convex hill, concave 

hill, or saddle hill). If there is a zero-crossing 

of the second directional derivative in the 

direction of the gradient within the pixel's area, 

the pixel is classified as an inflection point. If 

no such zero-crossing occurs, the label assigned to 

the pixel is based on the gradient magnitude and 

Uessian eigenvalues calculated at the center of the 
pixel, local coordinates (0,0), as in Table 2. 

3.2.  Case Two: One Zero-Crossing 

If a zero-crossing of the first directional 
derivative is found within the pixel's area, then 

the pixel is a strict, local, one-dimensional 
extremum and must be assigned a label from the set 

(peak, pit, ridge, ravine, or saddle). At the 

location of the zero-crossing, the Hessian and 

gradient are recomputed, and if the gradient 

magnitude at the zero-crossing is zero. Table 3 is 
used. 

If the gradient magnitude is nonzero, then the 
choice is either ridge or ravine. If the second 

directional derivative in the direction of the 

zero-crossing is negative, we have a ridge. If it 
is positive, we have a ravine. If it is zero, we 

compare the function value at the center of the 

pixel, f(0,0), with the function value at the zero- 
crossing, f(r,c). If f(r,c) is greater than 

f(0,0), we call it a ridge, otherwise we call it a 
ravine. 

3.3.  Case^ Thre£: Two Zero-Crossings 

If we have two zero-crossings of the first 
directional derivative, one in each direction of 

extrene curvature, then the Hessian and gradient 

must be recomputed at each zero-crossing. Using 

the procedure derribed in Section 3.2, we assign a 

label to each zero-crossing. We call these labels 

LABF.L1 and LABEL2. The final classification given 

the pixel is based on these two labels and is given 
in Table 4. 

If both labels are identical, the pixel is 

given that label,, in the case of both labels being 
ridge, the pixel may actually be a peak, but 

experiments have shown that this case is rare. An 

analogous argument can be made for both labels 

being ravine. If one label is ridge and the other 
ravine, this indicates we are at or very close to a 

saddle point, and thus the pixel is classified as a 
saddle. If one label is peak and the other ridge, 

we choose the category giving us the "most 

inlormation,'' which in this case is peak. The 

peaL is a local maximum in all directions, while 

the ridge is a local maximum in only one direction. 

Thus, peak conveys more information about the image 
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surface. An analogous argument can he made if the 

labels are pit and ravine. Similarly, a saddle 
gives us more information than a ridge or valley. 

Thus, a pixel is assigned saddle if its zero- 

crossings have been labeled ridge and saddle or 
ravine and saddle. 

It is apparent fron Table 4 that not ail 

possible label combinations are accounted for. Some 

combinations, such as peak and pit, are omitted 
because of the a'isumption that the underlying 

surface is smooth and sampled frequently enough 

that a peak and pit will not both occur within the 

same pixel's area. If such a case occurs, our 

convention is to choose arbitrarily one of LABEL1 

or LAIJEL2 as the resulting label for the pixel. 

Table 2. Pixel Label Calcula tion for Case One: 
No Zero-Crossing 

Ih fll \ k2 
Label 

0 0 0 Hat 
+ - - Concave Hill 
+ - 0 Concave Hill 
+ - + Saddle Bill 
+ 0 0 Slope 
+ + - Saddle Bill 
+ + 0 Convex Hill 
+ + + Convex Bill 

Table 3 Pixel Lable Calculation for Case Two: 

One Zero-Crossing 

llrfll Label 

- Peak 

0 Ridge 
+ Saddle 
- Saddle 
0 Ravine 
i Pit 

Table 4.  Final Pixel Classification, 

Two Zero-Crossings 
Case Three: 

Resulting 
LABKL1 LABLL2 Label 

Peak Peak Peak 
Peak Ridge Peak 
Pit Pit Pit 
Pit Ravine Pit 
Saddle Saddle Saddle 
Ridge Ridge Ridge 
Ridge Ravine Saddle 
Ridge Saddle Saddle 
Ravine Ravine Ravine 
Ravine Saddle Saddle 

3.4.  Case Four: More than Two Zero-Crossings 

If more than two zero-crossings occur within a 

pixel's area, then in at least one of the extrema 

directions there are two zero-crossings. If this 

happens, we choose the zero-crossing closest to the 
pixel's center and ignore the other. If we ignore 

the further zero-crossings, then this case is 

identical to case 3. This situation has yet to 
occur in our experiments. 

4.0 SURFACE ESTIMATION 

In this section we discuss the estimation of 

the parameters required by the topographic 
classification scheme of Section 2 using the local 

cubic facet model (Haralick 1981). It is important 

to note that the classification scheme of Section 2 

and the algorithm of Section 3 are independent of 

the method used to estimate the first-and second- 

order partials of the underlying digital image- 

intensity surface at each sampled point. Results 

from using basis functions other than the bi-cubic 

polynomial are presented in (Laffey 1983). In 

these experiments the cubic model performed best. 

4.1.  Local Cubic Facet Model 

In order to estimate the required partial 
derivatives, we perform a least-squares fit with a 

two-dimensional surface, f, to a neighborhood of 

each pixel. It is required that the function f be 

continuous and have continuous first-and second- 

order partial derivatives with respect to r and c 

in a neighborhood around each pixel in the re 
plane. 

We choose f to be a cubic polynomial in r and 
c exprcscd as a combination of discrete orthogoncl 

polynomials. The function f ll the best discrete 

least-squares polynomial approximation to the image 

data in each pixel's neighborhood. More details 
can be found in Haralick's paper (1981), in which 

each coefficient of the cubic polynomial is 

evaluated as a linear combination of the pixels in 
the fitting neighborhood. 

To express the procedure precisely and without 

reference to a particular set of polynomials tied 

to neighborhood size, wr will canonically write the 

fitted bicubic surface for each fitting 
neighborhood as 

f(r,c) = k, + k.r + k,c 

v 
+ k.rc + V 

♦ k0r c + 

where  the center 
taken as the origin 

needed  partials 
(r,c) are 

8" 

of the 

It 

k9rc + k 
L0V 

fitting neighborhood  is 

quickly follows that the 
evaluated  at  local  coordinates 

"'a 

: :■:■; 
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3f 

--" " 4 + 2k4r * k5c + 3k7r2 + 2k8rc + k9c2 

äf 
---  = 1.3 ♦ k5r ♦ 2k6c ♦ kgr2 ♦ 2k9rc + 3k10<:2 

2 
a i 

Or 
2" = 2k4 + 6k7r + 2k8c 

a2f 

»I 

ö2f 

dtdc 

r = 2k6 + 2k9r + 6k10c 

k5 ♦ 2kgr + 2k9C 

It is easy to see that if the above quantities 
are evaluated at the center of the pixel where 
local coordinates (r,c) = (0,0), only the constant 
Hrm$ »Hi be of significance. If the partials 
need to be evaluated at an arbitrary point in a 
pixel's area, then a linear or quadratic polynonial 
value must be computed. 

5.  SUMMARY OF THE TOPOGRAPHIC CLASSIFICATION 
SCHEME 

The scheme is a parallel process for 
topographic classification of every pixel which can 
be done in one pass through the image. At each 
pixel of the image, the following four steps need 
to be performed 

1. Calculate the  fitting coefficients,   k 
through k    of 
polynomial  in 

a two-dimensional cubic 
an n-by-n neighborhood 

around the pixel. These coeff.cients are 
easily computed by cinvolvinf! the 
appropriate masks over the image. 

2. Use the coefficients calculated in step 1 
to find the gradient, gradient magnitude, 
and the eigenvalues and eigenvectors of 
the Hessian at the center of the pixel's 
neighborhood, (J,0). 

3. Search in the direction of the 
eigenvectors calculated in step 2 for a 
zerocrossing of the first directional 
derivative within the pixel's area. (If 
the eigenvalues of the Hessian are equal 
and non-zero, then search in the Newton 
direction.) 

4. Recompute the gradient, gradient 
magnitude, and values of second 
directional derivative extrema at each 
zero-crossing. Then apply the labeling 
scheme as described in Sections 
3.1 3.4. 

6. RESULTS 

In this section, we show the results of the 
topographic classification on some digital terrain 
imagery and aerial photographs used in the Passive 
Image Navigation Study. 

6.1  Results on Digtial Terrain Data 

In Figure 1 we show the results of the 
topographic classification algorithm on digitial 
terrain data which represents a roughly 4x17 mile 
strip of land and ocean just east of Monterey, 
California. The actual image resolution is 121x512 
pixels. In Figure 1 we show the results of the 
labeling for several of the categories. The top- 
most shows the ravines in white, the next shows the 
nges, and then the peaks are shown. On the bottom 
the original grey-level picture is shown. 

The algorithm shows excellent results on the 
digital terrain data. The ridges and ravines 
appear to be robust enough for use in a reference 
topographic landmark database. Sensed topography 
would be Biatched against the reference database for 
navigation purposes. 

6.2  Results on Aerial Photographs 
In figure 2 and 3 we show the results o.f the 

classifier on a set of aerial photographs. it 
seems evident that ravines, ridges, and hillsides 
(slopes) could serve as reference data in an 
intensity landmark database. Exactly which 
topographic categraphic are reliable and how they 
should be linked together and pruned remains a 
topic of future research. 

7. CONCLUSIONS 

In this paper, we have given a precise 
mathematical description of the various topographic 
structures that which occur in a digital image and 
have called the classified image the topographic 
primal sketch. Our set of topographic categories 
is invariant under gray tone, monotonical ly 
increasing transformations and consists of (peak, 
pit, ridge, ravine, saddle, flat. and hillside), 
with hillside being broken down further into the 
subcategories inflection point, slope, convex hill, 
concave hill, and saddle hill. The hillside 
subcategories are not invariant under the monotonic 
transformations. 

The topographic label assigned a pixdl is 
based on the pixel's first-and second-order 
directional derivatives. We use a two-dimensional 
cubic polynomial fit based on the local facet model 
to estimate the directional derivatives of the 
underlying gray tone intensity surface. The 
calculation of the extrema of the second 
directional derivative can be done efficiently and 
stably by forming the Hessian matrix and 
calculating its eigenvalues and their associated 
eigenvectors. Strict, local. one-dimensional 
extrema (.uch as pit, peak, ridge, ravine, and 
saddle) are found by searching for a zero-crossing 
of the first directional derivative in the 
directions of extreme second directional derivative 
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(the eigenvectors of the Hessian). We have also 

identified another direction of interest, the 

Newton direction, which points toward the extremum 

of a quadratic surface. The classification scheme 

was found to give satisfactory results on a nup-ber 

of test images. 

7.1.  Directions for Further Research 

Further research on the topographic primal 

sketch needs to be done to (1) develop better basis 

functions, (2) make use of fitting error, (3) find 

a solution for the ridge (ravine) continuuin 

problem, and (4) develop techniques for grouping of 

the topographic structures. Basis functions worth 

ccasidermg include trigonometric polynomials, 

polynomials of higher order, and piecewise 

polynomials of lower order than cubic. The basis 

functions problem is to find a set of basis 

functions and an associatsd inner product for 

least-squares approximation that can correc'.ly 

replicate all common image surface features and be 

simultaneously computationally efficient and 

nuiierical ly stable. Fitting error needs to be used 

in deciding into which class a pixel falls. Noise 

causes the fitting error to increase, and increased 

fitting error increases the uncertainty of the 

labeling. Also, global knowledge of how the 

topographic structures fit together could be used 

to correct the misclassification error caused by 
noise. The way the neighborhood size affects the 

surface fitting error and the classification scheme 

needs to be investigated in detail. 

The ridge (ravine) continuum problem needs to 

be solved.    It may  be that  there is  no way  to 

distinguish  between  a true  ridge  and  a  ridge 

continuum  using   only the   values  of   partial 

derivatives at a point. The solution may require 
complete use of the partial derivatives in a local 
area about the pixel. 

Host important for the use of the primal 

sketch in a general robotics computer vision system 
is the development of techniques for grouping and 

assembling topographically labeKd pixels to form 

the primitive structures involved in higher-level 

matching and correspondence processes. How well can 

stereo correspondence or frame-to-frame time- 

varying image correspondence tasks be accomplished 
using the primitive structures in the topographic 

primal sketch? How effectively can the topographic 

sketch be used in undoing the confounding effects 

of shading and shadowing' How well will the 
primitive structures in the topographic sketch 

perform in the two-dimensional to three-dimensional 
object matching process? 
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Abstract 

.•I system for ohlaimng a smjacc-bascd i/iree-tjiimisiaiial description of 

■ n complex urban scene from a ^.iinji- image is iLcribeJ, and an example 

hmlvins an aerial pholosmph h proridc(l(Wj) approach exploits task- 

specific knowledge ih whing bloek-sliuped objects in an urban scene First, 

linear conm led structures in lite iim^ejirc generated: these arc meant to 

ini-u-s. Third, features of visible surfaces (sudi as irenc edges and 

icxi>:f) aie often more apparent (and thus ea;;ior to ■.•.nrar.t) in one iinaß« 

than another beci-usc ofdinbreaecsin viewpoiai and lisluinscoinlitions. 

rcpK,scnijHiMngb,mndaria Next. the-ZB structures ore comerled into 

JD-nire frames. i-inaHy. an approximate •■urfacebased description of the 

scene is generated fwm die wireframes. The mmiocukr analysis JVS/WH is 

acomponem ofiheM) Mwuk sm;c understandingsysteni r^ 

I. introdection 

After eneh \icvv of the scene is analy/.cd, it results In a partial 3D iccne 

desi.iiotion which llsuallj contain:, errors und omissions. Ihe initial 

rnndcl, constructed from the 3D infoitnation obtained from the Inst 

view, represents an initial approximation of the sc 'ne. A^ each successive 

view is processed, the mcdel is incrcmcntallj/ updated and eradually 

bcoomc.1 more accurate and complete. At any point along its 

dovolopmcnt, the model represents the einem uiülcrstandiug of die 

scene and may ie used for tasks such as matching, display gi'neratioii, 

planning paths through the scene, and making other decisions dealing 

This paper describes a system for interpreting complex images of with the scene environment. Bnü.er details may be found in [3.5,4]. 
urban  scenes.   Wc  show  how  a   ihrcc-dimcnsional,  surface-based 

desciiption oi such a scene is obtained from a single aerial photograph by i:-;dl vil-,w of ^r- scene may lie either a single itl1aßc or a stc|.co ,,.,!,. 

exploiting task-specific knowledge involving block-shaped objects in an      0[ir previous reports have demonstrated how sroreo analysis is used to 
l"'l>im sa'nc- ol)l'li" •' scene model. In (his paper, we will focus our discussion on die 

aerial photograph of Washington, D.C. shown in Rg. I. hi fact, our 

The   work   discussed   here   represents   the   monocular   analysis      previous reports have shown how a stereo pair obtained from a diirlrent 

component of the 31) Mosaic scene understanding system. The goal of      view of ihe same scene as in Rg, 1 has been processed to obtain a scene 

das system is to automatically acquire a JO description (or model) of a      model, The result of processing die image in Fig. 1 should therefore be 
complex urban scene from multiple images. 

In Ulis paper, v.e lirst review briefly the 31) Mosaic system. Then the 

Steps we perform during monocular analysis are discussed. These steps 

include extracting lines and junctions from the image, forming 2D linear 

structures, obtaining 3D wire frames from the 2D structures, and finally 

generating n surface-based description from ihe wire frames. 

2. Tho 3D MOSAIC Syctftrn 
The 31) Mosaic system general« a scene model by incrementally 

accumuhtiiiig infonnation derived from nmiiip'c images obtained from 

multiple viewpoints. This approach arises from three observations: first, 

single images contain only partial infoivnatuin aboiil a scene. Second, 

orrois and inconsistencies orten  rwull  when  inwrpicting cemplex 

used to update die previously obtained scene model. The updating 

procedure, however, has been described elsewhere fl 3.4] and will not 

be discussed hero. Instead, we will show how monocular analysis is used 

to obtain an a (proximate 3D reconstruciion of die scene. 

". Moiiocu'ar Analysis 

Our approach lo huerpreting complex monocular images of urban 

scenes exploits task-specific knowledge. We assume ihat the objects in 

the scene are inlicür-.ii polyhedra romaining only vertical and Itorizontal 

faces, i.e., faces pcrpcndiculai' and parallel, respectively, lo the ground 

plane. In addition, we assume that the vertical vanishing point In die 

image is given. Although finding vanishing points in images of outdoors 

scones is a diflicult problem, some progress has been made, for example, 

t!ariiard|l] describes a method foi finding intersections of extended line 

segments in an image using Oaussian mapping. 
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Che fullüwing sicps arc p'rlbnuoil in our approach to monocular 

reconstruction. Fir«, Biwar connected siructmcs in tlic image that arc 

meant to represent building boundaries are formed. Ihc structures arc 

obtained by fust extracting junctions from the image, many of which 

arise from building corners. To. obtain lines corresponding to building 

edges, we hypudiesize cinn/jctions between the junctions. Hie 2D 

sirucaucs are formed by linking the junctions and hypothesized lines. 

These 21) structures iirc then converted into 31) wire frames using, in 

.iddilion to die lask-specific assumptions mentioned above, the following 

two general asumptions: lines in the image directed toward the \erticai 

vanishing point arc vertical in 3 space, and two lines that are aligned in 

die image arc also aligned in 3-spacc, 

Finally, task specific knowledge is used to convert the 30 wire-frame 

description into a surface-based description, oi scene model. Example« of 

the scene model are shown in ligs. 15 and 16. 

4. Extracting Linoa and Junctions 

The method we use for exiracting lines and junctions is die same as 

that used during stereo analysis in the 31) Mosaic system (3, 5), where a 

jtinciion-bascd stereo matching approach is used. Ihc following is a brief 

review of üiis method. 

The first step is lo extract linear segments. A 3x3 Sobel operator is 

used to detect edge points. These arc then thinned using a modified 

Nevatia and liabu algorithm |7|, as shown in Fig. 2. I lie resulting edge 

points are linked and approximated by piccewisc linear segments using 

the Iterative end-poim lilting algorithm [2, 7). Finally, short lines are 

discarded. The resulting line image corresponding to Fig. 1 is shown in 

i-ig. 3. 

I he next step is to extract junctions (Vom the line image. A junction is 

a group of line segments (fcjj) In the image that meet .it a point. We 

consider the following four junction types: I., ARKOVV, PORK, and 

T. To find junctions, a 5x5 window around each end point of each line is 

searched for ends of other lines, If the window contains the ends of three 

lines, they are classified as an ARROW, FORK, or Tjunction depending 

on the angles between the lines. If the window contains the ends of two 

lines, they are classified as an I. junction, tf the window contains more 

than three lines, each set of two lines is assumed to form a distinct I. 

junction. Junctions that have been found in Ulis manner are labeled in 

Fig. 3. Notice that many sf the junctions correspond to building corners. 

5. Locating 2D Structures 

After lines and junctions arc extracted, connected structures are 

formed by hypothesizing new lines to connect junctions. These lines arc 

meant to correspond to building edges. Two steps are used in the process 

of hypothesizing connccling lines. First, two junctions may be connected 

only if a leg of one points at the other, i.e., the extended leg meets the 

other junction. Second, die two junctions must appear lo be connected 

by line segments in die line image. 

I he first step involves finding all pairs of junctions such that one has a 

leg pointing at the other, and proceeds as follows. First, if two junctions 

share die same leg, üiey are connected. Next, for each leg of each 

junction ./,, a thin rectangular window is located in the direction along 

the leg (Fig. 4). Of the junctions within diis window and within an angle 

a from [he direction of the leg. die one closest to ./, is retained as a 
candidate for being connected to ./,. Fig. 5 shoAS a graph with all 

candidate connections drawn. 

Only the connections in Fig. 5 that appear as connections in die line 

image (Fig. 3) are retained. The following procedure is used to determine 

this. For each pair of connected junctions J, and ,/A, we find all segments 

in the line image that are contained within a thin rectangular window 

connecting ./, and ./k (Fig. (>). and project these segments onto the line 

connecting Ihc two junctions. Next we consider how much of this line is 

covered by projected segments. The connection between ./, and ./k is 

retained only if the percentage of coverage exceeds a threshold. 

Ihc result of this pinning step is shown in Fig. 7. Note diat it does a 

good job in eliminating unwanted connections. We also tried another 

method to perform die pruning. It involved applying the Hough 

transform to a dliu rectangular region in the edge image (Fig. 2) between 

each connected pair of junctions to determine whether a line connecting 

the junctions could be found. The results of this method were not as 

good, probably because the high number of texture edge points 

suggested too many lines. 

At this point in the processing, junctions have two kinds of legs, those 

extracted in the junction finding step and those hypothesized as 

connections between junctions. Some of diese legs arc extraneous and 

are eliminated as follows. For each connected pair of junctions, if one 

has a leg that points at die other, Ihc leg is deleted, for it is replaced by 

the hypothesized leg. Next, we utilize die assumptions that ail vertices in 

die scene arc trihedral and have one vertical and two horizontal legs, and 

diat lines in the image directed toward die vertical vanishing point arc 

vertical in the scene. First, each junction leg is labeled "vertical" or 

"horizontal" depending on whether or not it h directed toward the 

vertical vanishing point. Then, if a junction has more than one "vertical" 

or two "horizontal" legs, the extra ones are deleted according to » 
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priority sdicmc iku rales hjpoLliosi/.cd legs higher than originally 

extracted ones, and riitcs hyputlicsi/ed legsconncciiiig two junctions that 

were originally mutually pointing higher than legs connecting junction! 

where only one was originallv pointing at the other. The extra legs with 

the lowest priorities are deleted. The resulting legs are shown in Rg. 8. 

At Ulis point, we have 21) connected strtittures representing portions of 

building boundaries. 

6. Obtaining 3D Wire Frames 

In order to obtain 30 information from the 21) structures In Kig. .8, 

we assume that llie vertical vanishing point is known, that the camera 

focal length is known, that all lines part of the 21) structures (Fig. 8) arise 

from eidier vertical or horizontal scene edges, and that the lines can be 

labeled as such according to whether or not they are directed torward the 

vertical vanishing point. First, we calculate the vector from the focal 

point to the vertical vanishing point. This results in a 3-space vector in 

the vertical direction [1], which will be very useful for our processing. 

Suppose we want to recover the 3D configuration of the junction 

hP&tPt 'n Fig. 9 under the assumptions outlined above. Suppose also 

that line /yj,, has been labeled "vertical" and lines pfo and Pjft have 

been labeled "hori/ontal". I.et/be the focal length, and let u be the unit 

vector in the vertical direction. The vector u is normal to all horizontal 

planes. First we would like to determine the 3-spacc position of v2, 

corresponding to the junction point p2. Since it is impossible to 

determine the actual position of this point from a single image without 

special information, the position is determined as some arbitrary point 

lying on the ray through p.. If the focal center is the origin of the 

coordinate system and ^ = (jr/j1/,-/) and 1^ = (jf,,^^), then 

where a is die arbitrary distance from v2 to the focal point. 

The equation of the horizontal plane VJVJV, can now be established as 

where u is tl c normal to the plane and r'is any point contained by the 

plane. The 3-space positions of die points \\ and v, can then be 

computed as the intersections of this plane with the rays through p, and 

/;„ respectively, i.e.. 

V ft« A 

V ■PI 

Finally, the 3-space position of the point  v4 is computed as the 

intersection of the ray through /)4 with the line through v, along the 

vector u: 

Although tlnis technique permits us to recover the 3D configuration of 

any junction relative to some arbitrary depth, it is not useful to apply it 

directly to the junctions in the original line image (Fig. 3) because die 

relative heights above die ground plane of the corresponding vertices 

cannot be determined: the height of each vertex is arbitrarily chosen 

without relation to the heights of other vertices. It is more usefol, 

however, to apply die teciinique to die 21) structures in Fig. 8, since the 

heights of the vertices within each structure can be related. To see how 

this is done, consider the example in Fig. 10, which shows a 21) staicturc. 

The solid lines arc part of the extracted structure, while the dashed lines 

are for the reader's convenience to make the 31) shape more apparent. 

Suppose lines p^\ and p.ft have been labeled "vertical", while the other 

solid lines have been labeled "horizontal". Applying our technique to 

(say) point p,, the 3-space positions of the vertices corresponding to 

points /),, /)2. and \\ can be determined relative to some arbitrary depth a 

for /,'|. If the technique is applied next to point ft, die 3-spacc position of 

point ft can be determined as a function of die depth a. This procedure 

continues with points/)„, p4, and soon, until the 31) configuration of the 

whole structure has been determined, relative to some arbitrary depth. 

In order to obtain a coherent scene description, die depths of die 

different structures in the scene must be related. We use two methods to 

do this. The first mcdiod involves finding structures that lie on the 

ground plane. Suppose a junction point p of such a structure is 

hypothesized to arise from a vertex lying on the ground. Then die 3- 

space position vof the vertex is 

p-m 

where u is the unit vector in the vertical direction (thus normal to the 

ground plane) and d is an arbitrarily chosen distance from the origin to 

the ground plane. Since the 3-space position of all junctions arising from 

ground points can be calculated in this manner, the depdis of all 

structures containing such points can be related to one another through 

the parameter </. 

To hypothesize junctions in the 21) structures (Fig. 8) that arise from 

vertices lying on die ground plane, wc use the observation diat if a line 

labeled "vertical" connects two junctions, die line is directed toward the 

vertical vanishing point with respect to one junction, but away from this 

vanishing point with respect to the other junction. The latter junction is 

assumed to represent a vertex lying on the ground plane. Polna ft and ft 

in Fig. 10 arc examples of such junctions. The 3-spacc positions of these 

junctions are then calculated, and their values are propagated throughout 
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their structures as described previously.   Fig.   II depicts a perspective 

view of the M) wire frames obtained in this matincr. 

There arc many structures in Fig. 8 that do not contain points lying on 

the ground plane, cither because such points arc occluded in the scene or 

because they ha\c not been properly extracted from the image. 

Ncvcrthicss. the hoights of some of these structures can be hypothesi/ed 

using the rule diat if two lines arc aligned in the image, assume they arc 

also aligned in 3-spacc [6] To sec how this rule is used, consider Fig. 12. 

Suppose that points pl through p1 have already been assigned 3D 

coordinates, and wc want to obtain die 3-space position of the 2D 

stnitturc /vWWu- Since the lines pj), and pj>n are aligned ir the image 

and both arc labeled "horizontal", they are assumed to be aligr.-d in the 

scene and to lie in the same borizontal plane, 'Die equation of th s plane 

is 

'■u=VH, 

where r, is the 3-spacc point corresponding to p„, and it is the unit 

vector in the vertical direction. The 3-space position of the point /;„ is 

therefore determined as the imerscction of this plane with the ray 

through /;,, or 

-'    it- it   _> 

/V"    8 

I he 31) coordinates of this point may then be propagated to points ft, 

/),„, and />,, as described preveously. Note that all 3D positions arc 

functions of the parameter J. which is arbitrarily chosen for die equation 

of the ground plane. 

I he following tests are used to determine whether two lines in the 

image, 11 and/2, are aligned (I'ig. 13): 

1. They must be almost parallel, i.e., the smallest angle between 

them must be less than the threshold angle ß 

2. They cannot be displaced laterally by too much, i.e., 12 must 

he totally within a band of" threshold diickness W 
surrounding /I. 

3. They cannot be too far from each other, i,c., the ratio of the 

gap j; between the two lines to the average length of the lines 

must be less than a threshold. Although this condition is not 

required for strict alignment, we include it so that the 

alignment rule will not be applied to two lines whose distance 

from one another is large compared to their lengths. 

4. They must be separated from each other, i.e.. the projection 

of 12 onto /I cannot overlap /I. Again, this condition, 

aldiough not required for strict alignment, is included so as 

not to apply the alignment rule to two lines that arc not 
separated enough. 

Fig. 14 depicts a perspective view of the final 3D wire frames obtained 

using both Ute methods of hypothesizing points on (he ground plane and 

applying the alignment rule. 

7. Generating the 3D Scene Model 

In order lo obtain a 3D scene model, we use a geometric modelling 

component diat comerts a wire-frame description of a scene into a 

surface-based description. This geometric modelling component is also 

used during stereo reconstruction in the .31) Mosaic system, since die 

output of the stereo analysis is a wire-frame description [3, 5, 4], ITic 

following is a brief review of tlie geometric modelling system. 

lo generate the surface-based description from the wire frames, it is 

assumed that the objects in the scene can be approximated by polyhedra, 

that each face is a parallelogram unless there is contrary evidence, that 

the position of the ground plane is known, and that the objects have 

walls (hat are perpendicular to the ground plane. (It is not assumed that 

the roofs are parallel to the ground.) 

The processing proceeds as follows. First, wire-frame edges Üiat arc 

nearly parallel and very close to each other arc merged. Next, web faces 

tha; correspond to corners of planar faces arc generated for each vertex 

corner. The web faces that represent corners of a single face are then 

merged. After all mergers, faces that do not have closed boundaries arc 

completed cither as parallelograms or as other closed polygons. After all 

fae.'s are completed, üiosc that seem to be holes in other faces arc 

converted to holes. Finally, objects that are not closed are completed by 

dropping vertical walls from the roofs toward the ground plane. 

Perspective views of the resulting scene model arc shown in Fig. 15. 

In order to render more realistic displays, gray scale obtained from the 

original image (Fig, 1) is added to diem (Fig. 16). 

0. Conclusion 
A system has been described that reconstructs the three-dimensional 

shape of a complex urban scene from a single image. A 3D wireframe 

description of the scene, meant to represent portions of building 

boundaries, is generated first. The wire frames arc then converted into an 

approximate surface-based 3D model of the scene. Wc have also 

demonstrated that task-specific know ledge ii very useful for interpreting 

complex imayes. Such knowledge is used for generating 2D image 

structures, 3D wire frames, and the 31) scene model. 

There are several extensions and improvements wc have in mind for 

the methods and techniques described in this paper: 

I.The 21) structures arc obtained by hypothesising line 
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com.octions between exinucd junctions. More ftimpktc 2D 

«niclures might be obtained by hypothesuü.ig and testing for 

lines elsewhere in the image. T.slcspecitic knowledge can be 
useful for hypothesizing such lines. 

2. Hiere are many sources of knowledge, such as shadows [81 

«Kl UMturc, «hid, should be incorporated into our 
monocular analysis. 

3. The junction based stereo matching used in the 3D Mosaic 

system might be improved if it were m:v»ificd to match the 

kinds of 21) image structures described in his paper. 
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Hgurc 3;   I in« fkted to the edge points of l-ig, 1 alter they 

arc linked. Junctions in the Image arc classified 

as L. A (arrow), I (fork), or T 

Rpre 2:   Result Of thinning the edges obtained by 

applyi ig a Sobel operator to the image of Fig, 1, 

w -'7 > ' 

n 

122 
■ 

.   . :'■.■■.   ■,   •.   •.- ..- •- ■ <_ •."'■ , 



. -  - . 

Vigjm A:   Hie closest junctinn tn,/, within the thin rectangular 

window of length t/aml height )l'. and within the angle 2a. 

is ;J candidcttc for being connected to ./,■. 

Figure 5:  Vxh line represents a possible connection between the junctions 

at its two end points. Kach cml point cotresponds tu a junction In Fig. 3. 

line   Stgrnenis 

I'lgmc 6:   All line segments within the thin rcetaiißiilar window 

connceling iimctioii:;./; a:icl ./k are projected onto line A 

to determine the amotint of coverage. ■-'/■" 

I'lfjure 7:   Result ot'pruniiig the junction cennections in Fig. 5 

by determining whether segments in Kig. 3 adequately 

cover the area between each pair of connected junctions. 
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I Vofe 
rigure 8:   Result of adding to Fig. 7 the junction legs that 

were originally extracted in the junction rinding step, 

„nd then deleting extraneous legs. 

Figure 10:   The solid lines represent a connected 

2D smictiue. The dashed lines are for 

the readers convenience to make die 

^1) shape more apparent. 
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•i!4iirc9:   I he 3D configuration of the junction /.'jyyi can be 

recuvdcd under assumptions explained in the text. 

0 is the local center and die origin of Ihc coordinate system. 

Figore 11:  IVrspectivc view of 3D wire frames generated 

from Hg. 8 using the method of Unding junctions 

arising from vertices lying on the ground plane. 
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l-'iyme 13:   The lines /! and fl arc aligned. 

Ffgnrt 12:   If the 30 conflgurmion of «he structure on die left has been 

determined, die relative 31J position of die structtire on the right 

rn (y also be determined because lines /),,/>, and ft/)u arc aligned. 

s 

■ 

■ •,   . ■ 

Peispecli'.e view of final set of:!; v.irc flumes 

generated from lig. 8. 
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I'ijjurt' 15:   I'cispoclh;? \!..'>,■ s ofivco'i.inu led hiiililinys. 
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Stanford University, Stanford 91305. 
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1: Introduction 
^^^i her than a description of n single piece of research, this is more in 

^OTr 
line of a collective report on some areas we've been addressing in 
research in stereo mapping. We have been developing tools and 

experimenting with mutching strategies that Will build to a rule-based 
stereo matching system.  In particular, WQ have been: 

a) demonstrating the design and the utility of the rule-based 
approach to surface inference from monocular information 
through the hand synthesis of matching strategies; 

b) developing tools to support a mapping interactive test facility; 

c) experimenting with the [Maker 1981] stereo mapping system, 
preparing to run it on some new imagery. 

In a), we have been carrying out research aimed at the analysis and 
synthesis of rules for inference of three-dimensional shape from single 
images. We have been addressing inference of matching rules and 
the use of model-based analysis both with theoretical analyses and 
with hand and automated analyse:: of specilic matching strategies; the 
latter applied to both real and synthesized imagery examples. This 
inference also has appliiation in constraining search for matches in 
stereo correspondence. 

Our work in developing tools has centered on: 

a) a sy::tem for the hand construction of edge descriptions from 
hard copy imagery; 

b) an interactive system for determining the transform to bring 
image pairs Into collinear epipolar registration. 

Uoth of these tools ma.ke extensive use of interactive graphics, and 
the latter takes much advantage of previous stereo research from our 
laboratory ([(Jennery I98n|). 

In c), we have been undertaking to apply the [Baker 19S1] system to 
some new imagery. In this we hope to demonstrate its eflectiveness, 
to expose its limitations, and to suggest both its role in an advanced 
mappinX system and complementary research needed to improve its 
utility. Significant restructuring of the system was called for in enabling 
it to process this new imagery. Details of these changes are described 
in section ■!, which deals with the matching process. ModiRcations have 
now been implemented, enabling the system to: 

• function on the output of an improved edge operator 
[Marimont 1982]; 

• use edije extent aa one of its parameters in seeking 
optimised correspondence; 

• exploit prepared transform information in processing 
images whose epipolar lines are not collinear with the 
scanning :LXes of the cameras. 

We will describe results in these areas of the research through discussion 
of the following: 

a) the use of image edge descriptions produced using the digitiz- 
ing facility and from an automated process [Marimont 1982] 
in synthesizing rules for stereo matching; 

b) development of a system for epipolar registration of image 
pairs; 

c) modilications to the (Raker 1981] stereo system (results later). 

2: Inference and Modelling 
2.1 Preamble - the digitizing facility 

Our approach to rule development begins with hand synthesized and 
some automatically generated edge data. We have systems for the 
automatic generation of edge data (t'.c. (Marimont 1982]). This data, 
extracted from a sulliciently wide selection of imagery types, gives good 
insight into the current capabilities of automated processes. Automated 
processes, however, are not able presently to give aa meaningful a 
description of an image as we would like, and have not been designed 
to provide the aggregrated abstractions research systems ([Lowe 1982]) 
will be soon supplyiiig. To bridge ihis inadequacy, we work with both 
automatically generated data (the current state-of-the-art), and hand 
generated data (representative of the next genoiation of edge analysis 
processes). The hand generated data is obtained from a manually 
operated digitizing tablet. We have written a graphics-based digitizing 
and editing system to run with a GTCO tablet in producing these 
image descriptions. 

Figure 2-1 below shows an image pair of a building complex (referred 
to as the Sacramento imagery). Figure 2-2 shows the results of tablet 
edge extraction on these images. Figure 3-3 shows the results of the 
Marimont operator [Marimont 1982] on the image pair. Manually 
generated edge data was produced using this facility for the analysis 
of rule synthesis of section 2. It was also used to digitize the building 
data of ligures 2-1 for input to the OTV inference process, as figure 
2-5. 

2.2 Data for Rule Synthesis 

We have obtained extended edge data from hand and automated 
processing for use in synthesis of matching rules. Results from ear- 
lier work on OTV analysis (orthogonal trihedral vertices) have been 
exploited ]l>erkins 1968] for rule formation in shape inference and in 
constraining search for correspondence. We have taken examples from 
the modelling of generic structures to produce ground and aerial views 
of a building complex, and have used this, as well as other data, in rule 
synthesis. 

2.3 Modelling and Vision 

S.3.1 - Modelling, prediction and interpretation 

Of course, one of the primary goals of research in computer vision is 
the development of systems that can recognize and locate objects in 
images. In order to identify such an object, it is clearly necessary to 
have some description of its characteristics that can bo detected in an 
image. A representation of an object is the form this description takes. 

One approach to representation is to provide the system with three- 
dimensional models of objects. Rotation of these models will allow 
objects to be observed, con'eptually, from differing viewpoints. If 
parameters in a particular model are allowed to vary it is possible to 
have that single model represent a Whole class of objects; constrain- 
ing the parameters liinctions to delimit sub-classes. Further model 
manipulations, such as partitioning and projection, ran be used to aid 
in mapping model to imagery data. The Information contained in such 
object modele may be used to determine possible interpretations of 
image features (e.g. edges, ribbons, corners) and to provide feedback 
to predict the locations of such features in an image. 

ACRONYM ]llrooks 1981] is a three-dimensional rule-based modelling/ 
vision system developed here at Stanford that provides, among other 
tilings, such feature prediction, model manipulation, and image intcr- 
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Sacr:imcnto Imagery 
Kigure 2-1 

Mnnunlly Extracted Kdgcs 
figure 2-2 

Ainumnlicnlly I'roduccd ICdgcs 
li'i,tiii.„ ^Q Figure 2-3 

preUUon, The nite-btUW opcrala on Die inodnls ;incl on Lho sensed 
(l.ilii to accomplish scene interpretiition. Such a rule-based approach 
has been shown lo be an elleclive form for constraint and search im- 
plementalion, and allows easy modification and addition of new rules 
without the need of altering the underlying code. 

Our group's intention over the next few years is to build a rule-based 
stereo system operating within ACItONYM whose functioning will in- 
clude rnodel-biised prediction. Working toward this, we have been car- 
rying out experiments on scene inference and model-based prediction 
that will lead to a repertoire of stereo matching rules. 

S.S.2 ~ Modelt and »tereo matching 

One of the major diiricultlcs In determining stereo correspondence is in 
dealing with the large number of matches that are possible. Solution 
is generally found by search through a large parameter space, where 
possible correspondences are limited by geometric or photometric con- 
straints. Search can be reduced even more dramatically by endow- 
ing the matcher with broad domain specific and domain independent 
knowledge. Such knowledge can be rule-based ami model-based. Our 
proposition here Is that the three-dimensional information In object 
models, along with inference and prediction mechanisms, can he used 
to interpret features In Image pairs. These interpretations can then be 
used as filters to constrain the matching. We demonstrate this notion 
with the example of Orthogonal Trihedral Vertices, often referred to as 
cube corners or OTVs. Other rules synthesized from analysis of both 
manually extracted and automated edge processes follow. 

The work on cube corners points to additional usefulness for a model- 
based approach. OTV orientation analysis (from matches across pairs 
of views) yields almost complete solution for camera parmamcters; 
constraints on sizes (again, from 'ules and models) could complete 
the camera solution. But the orientation Information yielded by a 
match of a pair of vertices is valid only if the vertex Is a cube corner; 
thus It Is necessary to be able lo distinguish between vertices that are 
cube corners and those that arc not. If the models contain sulTicicnt 
Information to Identify cube corners, then the problem of determining 
cube corners independently of the identification process is eliminated. 
In fact, both the search for cube corners and the search for idcntincation 
are likely to be reduced when they arc '•ombined. 

2.3.S -  OTV rule-bated analytii 

OTV theory 

In cultural scenes, we find a large number of interior and exterior 
corners of cubes typically when two walls at right angles meet the roof 
or the floor. The importance of utilizing this common structural ele- 
ment the Orthogonal Trihedral Vertex (OTV) has been emphiusized 
earlier[l,lebes HJ8IJ. Since they provide a very tight constraint the 
three edges are mutually orthogonal in space It is possible to calculate 
the three dimensional orientations given the projections In the image. 
This can be done for both orthographic and perspective viewing. 

If the eye is assumed to be focussed on the vertex of the cube corner, 
perspective can be Ignored and the projection of a cube corner In 
XYZ space will simply be Its orthogonal projection on the XY plane. 
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Suppose lhat some A - star has angles between its rays a, b and c and 
also that the rays are represented by the unit vectors n,, V|, v3. We are 
interested in detecting whether thei" re three vectors in XYZ space, 
which are mutually orthogonal and project, respectively to vi, v?, «3. 

Since projection is accomplished hy dropping the s component, any 3 
such vectors must be of the form 11, +\i2, v-i + X22, and v3 + \iz where 
2 is the unit vectoj in the z direction. 

Ueqniring mutual orthogonality implies that the dot products of these 
vectors in pairs be zero. From these conditions and some simple 
manipulations we can calculate the formulas lor 

(co-i a)(cos c) 
(cost)       ' 

/     |rosa)(cosfc) / (coscKcost) 
(cos a) 

Hence solutions exist if 

a) cos a, cos 6, cose are all non-zero and 

b) either one or three of cosu, cos6, cose arc negative, so that 
the quantities under the square root sign are positive. 

These results were first derived in [Perkins 1968]. 

Thus we have a way of both eliminating false candidates for being 
OTVs and finding the 3-1) orientations of valid OTV's. This algorithm 
has been implemented and run on data from the digitizing tablet. 

OTV with/from model» 

Our analysis begins on both images, processing bottom up on the two 
images separately. As the rule «ystem identifies likely OTVs in images 
(from its models), it proceeds to match them. The system should 
already have a tentative identilication of the buildings containing the 
OTVs, so there should be relatively few possible matches at this point. 
Only OTVs that could be the same point on the same object netd be 
compared. The analysis results in depths of matched objects, for all 
those objects having OTVs. 

This requires that the modelling system handle point elements, and 
that it include both; 

• inferring OTVs from models (volumes); 

• accessing OTVs stored explicitly with the models. 

2.4 Rule Synthesis 

2.4-1 - Inference rule» 

We continue with the development of inference rules. This work is a 
logical extension of previous work jliinfnrd 1981, Lowe l!)82| done at 
Stanford in developing rules for inferring surface information from a 
single view. Ceneral assumptions about illumination, object geometry, 
the imaging process etc. have been used to derive rules for making 
specific inferences. For stereo vision Arnold and llinford [Arnold 1980] 
have developed conditions on correspondence of edge and surface inter- 
vals. We divide our rules into two categories: monocular rules, which 
enable surface inference from a single view; and stereo rules, which 
facilitate cross-image matching. 

8.4'S  - Monocular and stereo rules. 

I. Monocular rules Rules which have been developed for in- 
ferences from monocular views can be utilised to provide a 
partial 3-dimenMo;ial interpretation which directs search in 
the second view. This category includes the rule for inter- 
pretation of Orthogonal Trihedral Vertices. 

Another example is the T-junction rule [Binford 198l| which 
states that 'In abnence uf evidence to the contrury, the stem 
of a T is not nearer than the top, i.e. M coincident in space 
or further away'. Application of this rule gives a set of 
nearer/farther relations. A hypothesized correspondence of 
edges which leads to inconsistent conclusions from the two 
views can be pruned from the search. 

An image line which is straight must be the image of a straight 
space curve unless the curve is planar and the observer is coin- 
cidentally aligned with the plane of curvature. This enables us 
to dismiss correspondences between straight edges in one view 
and curves in the other view. If two image curves are projec- 
tively consistent with parallel, we assume they are images of 
curves which are parallel in space. That implies that their 
images in the other view would be parallel i.e. parallels map 
to parallels. 

As these examples illustrate, most of tin'rules in [llinford 1981, 
Lowe 1982| and others developed by Malik and liinford have 
as direct corollaries stereo rules for checking the legality of a 
match. They can even direct the search process. 

Stereo Rules - these are rules which have been derived from 
the stereo imaging process, anil are a function of the imaging 
geometry. 

An example rule in this class, which has long been used for 
finding stereo correspondences, is the epipolars rule - cor- 
responding points must lie on corresponding cpipolar lines. 
These rules have inherently no monocular analogs. Here are a 
few: 

a) Horizontal planes in one view get mapped to horizon- 
tal planes in the other view. 

b) Use of projective and quasi-projective invariants. This 
has not been examined in detail. Duda and IIart[l)uda 
1973] devote a chapter to this topic which has not 
really been exploited in stereo work. 

c) Conditions on correspondence of edges and surface 
intervals[Ariiold 1980). 

d) Surface Occlusion rules: 

Surfaces visible in one view can be occluded in the 
other view. We are interested in the conditions when 
this takes place. The basic idea is that if we cross a 
surface, an obscuration of edge occurs. A left surface 
visible in a right view is visible in the left view un- 
less there is obscuration by a tall object. Similarly a 
right surface visible in a left view will be seen unless 
obscured hy a tall object. These surface-obscuration 
rules can be formalWed by the cross-product rule: 

Ü 

For the hypothesized edge match e, with /1 and ca 
with /g, we compute the Z-component of the vec- 
tor cross-product in the left image pair and the right 
image pair. If the z-components have opposite signs, 
we are seeing opposite ;iides of the surface. That im- 
plies that the object is not opaque. 

2.4.3 -   Use of inference rules in a test analysis 

Our preliminary results indicate good potential for the success of this 
approach. On hand simulations with line drawings of stereo pairs, the 
rules helped narrow down the choices considerably. 

Consider the imagery shown in figures 2-^ and 2-5. Figure 2-5 is the 
right view and 2-^ the left view. Vertices 1, 2, 3 are orthogonal trihedral 
vertices. Using he formulae developed earlier, we can find the 3-D 
orientations of tie edge vectors. These can be matched with the 3-D 
orientations of U, 2', 3' to obtain a registering of these vertices when 
combined with the cpipolar constraint. All OTV's in one view need not 
be visible in the other i.e. 1'. Of the monocular constraints, the other 
major constraints which can be seep here are the T-junction rule and 
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Hie paralbbi rule. In Bgurc 2-5 edge S is bcliind edßr (i. li^ca 7 ami 
S .-.re panllrl and m arc 7' nnd S' A match of H with S* would not 
be acfepted. Snrlaca A', uid H-i vc both horisKNitol pl.iri™ (;i.s r;ui be 
doduccr) from the OTV analysis) and can be matched. Surface St \% not 
horizontal. Here of course, this do« not provide any new information. 
. liriacc A, beinR a left face in a left view is not Kuaratiteed to be visible 
m the other v.cw as in fact it is. The cross-product rule could be used 
lo dismiss a match between 10 and 10'. 

Description of Left Image ot Stereo /'air 
I'Mgure 2-4 

Daeriptlon of Iti^hi (mage of Stereo /'air 
Kigure 2-5 

5; Image Registration 

3.1 Introduction to Epipolar Geometry 

The search process in automated stereo mapping can be greatly 
restricted, and computation times signillcanlly reduced, if information 
is available relating the relative camera geometries of a stereo pair. 
Often this information is available in the reconnaissance data (or at 
least a rough approximation to it). Other manual and automated 
schemes have been devised to provide the information when it is not 
present, with the imagery (see (Ilallert KlliO], |Gennery 1980]). This 
camera geometry information allows establishing epipolar correspon- 
dence of lines across images. When this has been done, search in one 
image for match points of a feature in the other image ran be con- 
strained along a single vector. More generally, any features lying along 
a particular vector in the one image may be found along a single vector 
in the other image. These image plane vectors are termed epipolar 
lines. Corresponding vectors ace termed corresponding or conjugate 
epipolar lines. 

In (his section we detail an algorithm for determining conjugate 
epipolar lines in a set, of imagery for which such camera geometry in- 
formation is not explicitly available. Here, we rely upon an operator to 
select corresponding points in the two images. The system automati- 
cally improves the resolut ion of die correspondence through Fourier 
interpolation over a match window (Gcnncry tiWO). The set, of such 
points is taken by an automated camera solver to produce the needed 
geometric information. This point, selecuon is done willl pan/zoom cur- 
sor control on a graphics device. If the camera information is available 
(as, for example, from reconnaissance data), then the point matching 
phase may he omitted (although this provision lias not been enabled 
m the current system). Equally, rough camera geometry information, 
il available, may be used to partially automate the point selection 
phase, although again this is not implemented here. [Gcnncry 1080 
and (Moravec IHHO] have implemented totally automatic camera sol- 
vers m their stereo matching systems. Our next improvement to this 
registration system will be to incorporate the image sampling and fea- 
ture matching of the (Genncry 1080] system, removing the'need for 
manual point selection. 

3.2 Glossary of Terms 

Oiven two cameras (7, and (7, with origins 0, and ff, and focal planes 
/ 1 and /';,, we call: 

liundle of lines; A family of lines containing a common point. 

Kpipi^raor^nUesjirjy^min,: The number of the epipolar line it 
belongs to, and its distance lo a lixed reference, like 
the epipole if it exists. 

Kpipolar direction: The direction of all epipolar lines if they are paral- 
lel. 

The intersection of an epipolar plane with a local plane. 
Alternate definition: the image in one camera of the 
pre-image of a point in the other camera's focal plane. 

Hpipolar plane: Any plane containing the two camera centers 9, and 
02. 

Epipolar »pace; A space where the coordinates are the epipolar coor- 
dinates. In this space, a hori/outal line is an epipolar 
line, and the epipole, if it exists, is a whole vertical 
line. 

lipipole: The intersection, if it exists, of all epipolar lines in a focal 
plane. 

Conjugate epipol«, M«K the intersections of an epipolar plane with the 
two focal planes. 

Kpipola 

n &VÖ,. A Pj, 

Kpipolar Geometry 
figure 3-1 

3.3 Background Theory 

Oiven two steren images /', and I', (the content of the focal plan«. 
/ i and /., of the cameras), and two lines /., and /,.. contained in /', 
M.d /,, In general ..very point of /., maps to a line segment in />,, and 
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there b no particular rclnUonship between the line segments mappiag 
to dUTerent points. 

runihtnicntal properly: 

Every point in /,, will map to a line segment contained in the same line 
L-i i.   ind only if /,, and /,;, are a pair of conjugate epipolar lines. 

Kpipolar Ceomctry: 

The family of epipolar lines in a focal plane is: 

Kilhcr 

a) a set of parallel lines having a common epipolar direction, 

or 

b) a bundle of lines, the intersection of which is the epipole. 

3.4 Requirements of the System 

Given a pair of stereo images, we want to: 

1) identify the kind of epipolar geometry present in the images; 

2) explicitly show the epipolar lines belonging to each image; 

i!)     for each  image,  compute  the  parameters which relate the 
original coordinates to the epipolar coordinates; 

•1)     construct the image transforms in epipolar space. 

gjy,^ka.r qcAiKeVij ,«. \i Qp'.^olty aeavnetry >i* Pj. 

Top view of a .situation with on/y one epipo/e 
Kigure U-'i 

v<U».e» i •<■ ■jj1»-'-*'.    e, •■•« El- 

"^ 
.«^'f* taJU«- B^»«- 

Top view of a .siti/ation with epipo/es 
Kigurc 3-3 

Prior to these \ steps, we will need to solve for the cameras, that is, 
to determine the 5 parameters describing their relative orientation. A 
procedure developed at Stanford [(lennery  1080] is used for this. 

3.5 Algorithm Used 

3.5.1 -  Camera regittration output 

Each camera is viewed as a referential (0,,x,y,z), i e {1,2}. The 
registration procedure yields azimuth, elevation, pan, tilt, and roll of 
one camera with respect to the other. I'Vom there, we compute: 

1)     the rotation matrix li between the two referentials: 

rii     ri2     fit 
ß = I ra,    r22    r2i 

Wi   nt  r33 

2)    the translation unit vector t, the components of which are: 

ß jin the base O^yz,     [ f, |in the base öas-j/i 

Note that tin magnitude of the translation vector cannot be determined 
from a pair uf images. 

3.5.S - Epipolar geometry determination 

The focal planes P, are planes parallel to fl.xj/, intersecting 0^ at z = 
/,, the focal distance. There is an epipole in plane P, if and only if the 
translation vector intersects this plane, that is, if and only if its third 
component is not zero. 

We thus determine the case we are working with: 

If 7 7^ 0 and v ^ 0, there are two epipoles: CASK 1 
if 1 ^ 0 and u ~ 0, there is one epipole /•;,: CASK 2 
if 7 ^ 0 and u fi 0, there is one epipole ICy. CASK 3 
if 7 = 0 and 1/ = 0, there are no epipoles: CASK 1 

Item arid! 

a) 7 = 0 is replaced in the code by [7] < threshold, where 
threshold is chosen as a function of the arithmetic precision 
of the machine: if we had infinite precision, then we could 
consider every case as being case I. Hero threshold »a .0001 
was found to be a good estimate. 

1>) Most image pairs will belong to the first case, with 7 and f 
of the order of .1. The epipoles exist, are outside the picture 
frame, and, for (he images worked with to dale, tend to be at 
a distance of about 10 limes the picture dimension. 

3.5.3 - Epipole* and epipolar directions 

If the epipole /■;, exists, it is the extremity of the vector collinear to the 
translation vector, with a third component equal to /,. If it does not, 
then the translation vector is the epipolar direction. Ilence: 

Case 1: 

Case 2; 

Case 3: 
Case i: 

.»/I  ei 1    I'll >      ,,  /Mi    I'h v 

Vi{a,ß] 
Vi{a,ß) 

Et 

3.6 Epipolar line calculation 

3.6.1 — CASE 1: two epipoles 

a) theory 

Let Af|(z|,j/|,2|) be a point in /V /i', W, defines an epipolar line in 
/'1, and the corresponding /','.jAf, defines the conjugate epipolar line in 
/V The plane (J?i,0|,#3,ii?a, M|t Af|] contains the translation vector 
( and BiMt. Its normal is gjMj X (. The normal of /^ is ffjz. Ilence 
the intersection of the two planes is given by the vector: 

o2z x (/•;, M, Xt) = (0.2z ■ t)lit M, - {9ti ■ /<;, M^t 
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and E2M2 is collinear to this vector.   Suppose that in fliiyj, i?! M, 
(stiVtiO)- 'n terms of components in O'iXyz: 

62z = 1 

EiM'i'v* collinear to: 

fiiMi »1 
Vr3iii + '■32^1 

liix\ -\z\\ = (XX{VTU -Xr3,) + y,(i/ri2 - Xraj)^ 

Wi -/iz'i/      V*»(*^«« -»»■ai) + »i(»'r»|-^r,ly 

If we let A be the matrix: 

Urgj /"■31 

i/r, 
"'••22 

2-Xr32\ 

2 - M'M/ 

Then we can write B,Mj =" AK\Mi where ft', M, is in hasc ö,iy and 
HlM-i is in base 02^J/- 

of i\ with the plane (/i',, W,, öa)- Thus any line contained in this plane 
will intersect /'a at a point contained in /,■.>. In particular, consider the 
parallel to tj driven through 0-,. ll intersects /'o, thus /,2, at Mi auch 
that, in base Ozxyz: 

EiMi 
/ra«i + riaj/i 

rji.r, + r22!/i bence    O'lMt 

ft   ki|J|+'nVi> 
•''-,r3,i,+r:,ij1J 

'»'.i«i+r„»,l 

b) algorithm 

In the same way as in case 1, we define L\(Kx,V\) where ^{.r, = 
ro,ifl,,i2 = ainO-i). Then 1.2 is defined by (jV/3, K2), where the coor- 
dinates of A/3 are 

V ''■3,1,+r32i/i'  'rjiiti H-rsj»!^ 

- 

Ca.ic I 
Figure 3-4 

b) algorithm 

Let Ni be the number of epipolar lines that we want to determine. 
liach epipolar line is uniquely determined by the angle it makes with 
the z-axis. Let 0 be this angle. Given it, the epipolar line number, 
0 < *; < nl - 1, how can we determine Ö? If 0O and 0i are the lower 

and upper limits between which 0 is allowed to vary, and Oi = y'l^>°\ 

then we will choose the middle of each interval: 0 — «o + (t + .5)(?2 Hut 
what arc 0a and flj? Wo have to distinguish between three cases: 

• The epipole is i, the picture (very unlikely). Then 0 
can vary between 0 and 'iir radians; 

• The epipole is outside the image: there is a minimum 
and maximum angle under which the image is seen 
from this point. If we choose these angles in [0. 2;rJ 
then most of the time every 0 f [0o,fl|] will delinc a 
Valid epipolar line in /'1; 

• The exception from above is when the epipole is left 
of the image but on a same vertical level: then [Co, 0ij 
cannot be connected and still included in [0, 2jr]. In 

this case we will choose the angles in [~, |], 

Then />, will be defined by the point, ß, and the vector V^cosO^inO), 
and L-i is defined by IC2 and V^ = AVi. 

3.6.2 - CASE 2: one epipole K, 

a) theory 

Given an epipolar line jfa, we already know that the corresponding 

epipolar line /.2 in Pa is collinear to the vector ( = V^X./i). [ieaee we 
just need to find a point belonging to 1^. Clearly, £,, is the intersection 

C3se2 
Figure 3-5 

S.6.3 - CASE 3: one epipole g2 

a) theory 

Let an cpipolar line in Pj be defined by the translation vector t = V| 
and by a point M, we pick. In P-;, L-2 goes through /i'2 and is collinear 
to a vector E^M^, intersection of Pt with the plane {02, E?, M^. This 
plane is orthogonal to O2M, X t and I'-i is orthogonal to O2Z. Hence 
the intersection is collinear to fl2z X (02Mi X t) 

since 02 M| = trfi + "i Wi 
= kt f (^A/,, 

02M| X t = 0,^, X (, 
and 02* X (02 Mi X t] = [O-iz ■ t)0,Ml - {0..,* ■ 0, M,)*. 

Suppose 0|A/| : (11,;/,,/,) in 0,11/0. Then ia ^syvi 

(:)■ "G) 3ll|  + '32'J1  + r33/l 

A'aA/ij is thus collinear to: 

A»*', -XJ'A = fatWu, -Xr:,,) I y^vr,* -Xrjj) +/,(ria - Xrjj) \ 
V"Vi     I'z'J     {x^vr-t, -iirai) + tli{vttt ~ßr»») + Mvrn -Mti»)) 

Hence, if we let A be the same matrix as in GASH I and OP3 be the 
olfset matrix: 

.     1 

■:-v 

:■•: 

fvrn 
W23 

' ^'"33'\ 
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Then we li^ve: /i^JW,. = A0I M, + 0F3 

VVhrro 0[A/| is in base Oixy and IC-iM-i is in base Ö^ry 

b) algorithm 

Now. how do we pick M\ in tlic first place? Wi: want a set of (V! squally 
spaced epipolar lines, and it appears convenient to pick points on the 
axes. If the epipolar lines are more horizontal, or the image stretched 
in height, then we will pick Ni equally spaced points on the vertical 
axis, suitably located to cover the entire image. If the epipolar lines 
arc more vertical or the image more stretched in width, then we pick 
them on the horizontal axis. I,et Lx,l,y be the picture dimensions and 
(V«i Vy) the epipolar direction: 
If VZLV < VyLx, and      Vy < 0, we pick 

lfc-(i.|£| + £ 
If VJ,y < VyLt, and      Vv > 0, we pick 

f K+O.S 

».-(i-l^l + ^XW- -^ 
If     Vyl;       <      VJ.y,     Mii Vy < 0, we pick 

If VVLX < V'l,y. and Vy > 0, we pick 

^=(M^I + /'xK^)- -'.•£ 
Then we proceed as indicated above: 

Ll{Mi,Vt = 0 ia matched with /^(Rj, Va K,W, 

S.6.^ -  Cyl5E ^; no epipole» 

a) theory 

Let an epipolar line in /', be defined by the translation vector t 

and by a point kit we !>'<*• '" 'a- L' Koes lh«»«8'! Ul0 i"l:1BL' oS Mi< 
that is the extremity of a vector collinear to JiMi and whose third 
comjwnent is /j, In base 0,xys,0,M, : (ii,yi,/i). In base O-iXyz: 

V, 

ff.Mi rjii, + ra 

yii«i+yii »1 -f ^13/1' 
■"/l+r13/l\ I  ■'2''31«l +'-3!Vl+'S3/l 

.ji "VI I   ■'irjiIi+r32lO+r33/i 
2!/i +ruh/ \ f2 

b) algorithm 

the same manner as in case 3. Then we calculate 
match ti^i.O with L»{Et,t). 

We pick points H. 
OiMi as indicated above and we 

3.7 Epipolar Registration and Trangformation 
Figure 3-6 shows a stereo pair of a building complex. I''igurc 3-7 has 
this pair superpositioned with a set of corresponding epipolar lines. 
Figure 3-8 shows the imagery transformed such that epipolar lines arc 
horizontal In the image, and conjugate epipolar lines have the same 
row coordinate. 

Sacramento Building linage Pair 
Kigurc 3-6 

^i^W^VÄl     1 
■^g^^i^^ 

1 *        ■   ■    * ■ -i 

JSplpo/ar Llnca in this Imagery 
Hgure 3-7 

Ttamhrmed Imagery 
Figure 3-8 
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4-' Automated Stereo Mapping 
4.1 Background 

Results from our laboratory over the past few years [Quam 1971 
Hannah 1971, Moravec 1980, Gcnncry 1980, Arnold 1980, Maker 1981' 
Arnold 1983], have demonstrated the possibilities of both area-based 
and feature-based stereo matching. 

Area-bcied stereo matching uses windowing mechanisms to isolate 
parts of two images for cross-correlation. A'cafurf-iased stereo match- 
ing uses two-dimensional convolution operators (and perhaps grouping 
operators) to reduce an imago to a depiction of its intensity bound- 
aries, which can then be put into correspondence. Area-based cross- 
correlation lechniqucB require distinctive texture within the area of cor- 
relation for successful operation. In general, it breaks track where there 
is no local correlation (tero signal, or where two images do not cor- 
respond, i.e. occlusions) or where the correlation is ambiguous (where 
the signal is repetitive). 

Demands of mopping in cultural sites and in locales with surface discon- 
Mnuitjr and ambiguous or non-existent texture make it essential that 
if area-based analysis is to be done, it be done in conjunction with 
lealure-based analysis, /■'raiure-based analysis provides a solution to 
many of the problems of correlation. Principal among its advantages 
is that it operates on the most discriminable parts of an image: places 
that are distinctive in their intensity variation, and where localization 
is greatest. These are typically the boundaries between objects or be- 
tween details on objects, or between objects and their backgrounds 

1 he important point is that the features being put into correspondence 
for depth estimates are the boundaries of objects: area-based analysis 
is at its worst at object boundaries, yet determining boundaries can be 
said to be the most important part of mapping in 3-spacc. 

The [linker I98l| system is the only current system that mixes these two 
niaUniug modalities. We have been working at applying this system to 
some cultural scenes. Itefore carrying out these analyses we wished to: 

a) enhance the system with a capability to work with a better 
edge operator [Marimont 1982]; 

b) enable it to process images that are not graced with collinear 
epipolar geometry (i.e. most images); 

c) introduce an additional correspondence measure - edge extent. 

4.2 Epipolar Registration 

To implement these enhancements required substantial redesign of the 
system, and redesign cycles with the Marimont process. Chosing use- 
able data also presented dilliculties, as the only imagery available was 
not of the correct geometry (see below). The two image pair» initially 
chosen (the Sacramento apartment complex and a section of some im- 
agery of Molfett Field) proved, on closer examination, to require quite 
complex transformation, and could not be easily adjusted for epipolar 
processing. 

In general, to bring imagery data into a property transformed state 
could proceed in one of two ways: 

• one could determine the transforms and then modify 
the imagery, producing an image pair having collinear 
epipolar geometry; 

• one could determine the transforms, and modify the 
output of an edge operator process that functions over 
the original imagery. 

The latter is by far the superior approach, a, it avoids resampling 
Hie image. 1 his approach necessitates incorporating the transform 
computation into the stereo system, to follow e.lge finding and precede 
edge matching. 

The second part of the stereo system's analysis is an intensity correla- 
tion process, rii.s operate» along epipolar lines as well, and clearly 
requires intensity information to be accessible along epipolar lines. One 
solution to this would be to take the original image pair and have the 
correlator rotate and change shape, size, and orientation as it mover 
around the image; Ous is an awkward and probably unnecessary com- 

plication. An alternative would be to access the transformed images 
sampled as accurately as possible, and do the correlation in the rectm- 
guh.r space deilned by collinear epipolar lines. The argument from edge 
accuracy indicated that transforming edges rather then resampling the 
image was the way to go; this argument, from intensity correlation sug- 
gests that the res.impled image can be useful. 

Another implementation detail supported this use of both transformed 
edges and transformed imagery: it was found that the intensity in- 
formation available from the Marimont process had too small a basis 
for uselnl correlation, and in fact, lor transformed edges, had ' ttlc 
relevance for the matching (it, being measured not along epipolar lines 
but normal to the edge direction). The transformed Image had to be 
referenced again l,y the system to obtain more siguilicanl intensity es- 
timates oriented along epipolar lines, and working with the image in 
epipolar space facilitated this. 

The philosophy of the stereo matching process here had been to use 
edge analysis for, among other things. Its higher accuracy, and to use 
intensity analysis for the continuity it provides. To be consistent with 
tins, we wanted to have the highest possible accuracy for edges in 
epipolar space, and If sacrifice bo needed for simplicity, to do it where 
it least degraded the analysis - in the intensity correlation. It is clear 
that transformed edges give higher accuracy than edges from trans- 
lormed images (deteclability might not change much, but localization is 
significantly reduced); and important simplilications could be obtained 
lor httle loss by doing the intensity correlation over the resampled 
image pair. This meant changes in our plans for the registration sys- 
tem: it had to produce not just transform information, but transformed 
images a» well. Iloth forms are made available as output from the 
registration program described in section 3, and the enhanced Baker 
system uses them both. 

4.3 The Marimont Edge Operator 

The Marimont edge operator has greater detection and reliability than 
the original »aker edge operator, and similar localization; earlier ex- 
amples of it» processing convinced us that its output would improve 
tin quality ol our stereo reconstruction. Its ability to track along zero 
signal areas  in  following zero-crossing edges leads to more coherent 
image descriptions.  [Marimont 1982] provides details of the operator's 
lunctioning. Roughly, it works by convolving an m X m lateral inhibi- 
tion Function of nXn centra! window with an image.   Zero crossings 
in this resultant image then indicate edges, and the edge position is 
determined by interpolating over the lateral inhibition surface. 

A  few unanticipated problem« became apparent once work  with the 
edges  was  begun.     One  point,   noted  above,   was  that  the  intensity 
information stored at an edge (its left and right boundary values) had 
quite small support (a single pixel). This is in contrast with the original 
operator which interpolated for these values in an area 3 pixels wide and 
removed one pixel from the determined edge position. Another problem 
was that the edge connectivity produced by the Marimont system can 
be misleading.   Intensity significance was improved by sampling alone 
epipolar hues in the transformed images.   The connectivity problem 
has not been looked at yet. Good connectivity is inherently difficult to 
achieve with zero crossing operators.   Hefinements to the process are 
being considered. 

4.4 Edge Extent 

The introduction of edge extent as a parameter in the dynamic pro- 
gramming solution was an obvious fallout from using the Marimont 
edges. lulge» are output by that process as strings, with 2- 
connectedness. The maximum and minimum of some string, in trans- 
lorm space, is a measure of its (epipolar) extent. Prior to the use of this 
information the only way that global continuity entered the analysis 
was through a consistency enforcement relaxation process which en- 
sured that edges connected in one view were interpreted as continuous 
in .(-space; all matching measures were quite local. With the modilled 
approach, the correspondence measure is a function of (among other 
more statistically based parameters) the ratio of edge extents. In par- 
ticular, the likelihood of edge element a in the left image matching edge 
element 6 m the right image depends on the product of the ratios of 
the two upper extents (up from the edge elements) and the two lower 
extents (down from the two edge elements). 

t'v 
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4.5 Testing on Imagery 

Whoii iniiigi- Irating began with all of the above accomplislicd, another 
problem became apparent: the stereo system, bound into a machine 
architecture with a maximnm of 2,r)f)K words of memory, and always 
tightly wedged anyway, had grown with these changes to the point that 
only small portions of images could be worked on at once. Thus came 
to exist a windowing mechanism within the edge finding/loading and 
stereo matching processes. 

Our testing has been progressing on several sets of imagery: a sya- 
Ihelic image pair from Control Data Corporation, an aerial scene 
from the ICngineering Topographic Laboratory, and a building scene 
of Saciamento. We will report on the results of these analyses at a 
later date. 

5: Summary 

A principal research interest of our group is in developing a rule- 
based advanced automated stereo mapping system to function within 
ACRONYM [lirooks 1081]. Current mapping technique! ignore much 
of the information available from inference on single views of a scene. 
This information can be useful for three-dimensional surface interpreta- 
tion, and also provides extra parameters for stereo matching (i.e. sur- 
face orientation, occlusion cues). Our research effort is directed at 
establishing such monocular inference rules in a rule-base for stereo 
mapping. 

In deriving these rules, we perform analysis of both hand extracted 
and automatically produced edge descriptions. A facility has been 
developed for this manual edge extraction from hardcopy imagery. 
We have studied rule synthesis for several cases, including that of 
orthogonal trihedral vertices - features that dominate cultural scenes. 
This research is very promising, and has shown the utility of the rule- 
based approach to surface inference from monocular information. 

Camera solving provides powerful constraint on the correspondence 
problem In stereo matching. We have developed a facility for interac- 
tively registering images, determining the parameters for transforming 
them (oi their edge descriptions) into colllnear epipolar space, and per- 
forming the actual image transformation. This determination is crucial 
to a mapping process. Incorporating an automated module to provide 
data for the camera solving is a very important next step. 

We have experimented with an existing stereo mapping process, en- 
hancing its flexibility with respect to image format and with respect 
to edge operator format, and have been preparing example outputs of 
its processing on new imagery. Our intent with this effort has been 
U> show the capabilities of a local matching process and to assess its 
applicability to the planned rule-based system. 
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ABSTRACT 

JA design  is   presented     for     a     Content     Addressable 
•Array    Parallel     Processor     (CAAPP)     which    is both 
practical   and     feasible.        Its     practicality    stems 
from     an     extensive    program     of research into   real 
applications      of      content       addressability and 
parallelism. The feasibility of the design stems 
from developnent under a set of conservative 
engineering constraints tied to limitations of VLSI 
technology. We then describe the implementation of 
two procedures for image processing on the CAAPP. 
The first performs image convolutions very quickly. 
It is shown that this algorithm can be generalized 
to perform convolutions with increased mask size 
with only a moderate reduction in speed. The 
second uses the CAAPP to quickly and robustly 
decompose an optic flow field into its rotational 
and translational components to recover sensor 
motion parameters. It is important to note that 
this latter is made possible only by the 
combination of associativity and array processing 
that our design   provides. 

1.0 DESIGN  OF   THE  CAAPP 

We have developed a design for a VLSI-based Content 
Addressable Array Parallel Processor (or CAAPP) for 
image     processing     and    other     applications. Our 
intention has been to produce a feasible design 
which would be simple enough for us to construct 
with reasonable confidence of success but which 
would also provide a significant advance in 
processing       power. Accordingly,       a    number    of 
constraints have been imposed on the design. The 
CAPP would have to consist of no more than one 
hundred circuit boards and each board should have a 
maximun of one hundred off-board connections. 
Additionally, the VLSI chips we were to design 
would be restricted to existing feature and die 
sizes, have a pin-out of no more than forty pins, 
and  a power  dissipation of less that  two  watts. 

r   and   Information  Science 
f  Massachusetts 
sachusetts   01003 

We also set a number of goals which we hoped to 
achieve. It was decided that the CAPP should 
contain 262,144 cells arranged as a rectangular 
512xb12 array to faciliuate image processing. Each 
cell would contain at least thirty-two bits of 
memory (preferably sixty-four bits), multiple tags, 
and some bit serial pr'.>~essing power. One hundred 
nanoseconds was set as a goal for the minor clock 
cycle time. Additionally, for image processing 
applications, we needed to be able to load the 
memory with an image in one video frametime (1/30 
second). For sixteen-bit pixels this means a data 
transfer rate of about sixteen million bytes per 
second. Finally, it was decided that the CAPP 
would.be built to be driven by another machine, 
such as a Digital Equipment Corporation VAX. Once 
the goals and constraints were set, work on the 
design got  under   way. 

1. 1   The   CAAPP and   Its   Environment 

The CAAPP is divided into two main parts: the 
central control and the parallel processor (See 
figure 1). The central control is a simple, fast, 
fetch-ahead pipelined processor which will be built 
from MSI devices. It issues instructions to the 
parallel processor, controls loading and unloading 
of data in the parallel processor, serves as an 
interface to the VAX or other host computer and to 
other data sources and secondary storage devices. 
The central controller contains a ROM with a set of 
micro-coded subroutines for performing commonly 
needed higher level CAAPP operations, and a 
writeable control store which allows users to add 
their own special microcoded instructions. Also 
contained in the central controller is a small 
program memory into which subroutines or entire 
programs may be loaded. The writeable control 
store and program memory are loaded directly by the 
VAX. Once these memories are loaded, the VAX can 
issue commands to the central controller which tell 
it to execute routines stored in the program 
memory, to single step through a stored routine, or 
to execute a single instruction passed as a literal 
by the   VAX. 
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1. 1.2 The   Communications   Interconnect 

head/track 
disk 

Figur;   1 

l.l.i  The   Parallel   Processor 

The parallel processor design consists of an 8x8 
array of processing circuit boards and a set of 
special purpose boards which control how the edges 
of the CAAPP are treated. The parallel processor 
receives data and instructions broadcast to it by 
the central controller. Each parallel processor 
instruction operates in exactly one minor cycle 
time. Sane operations do require multiple clock- 
cycles, but these are taken care of by having the 
central control rebroadcast the instruction as many 
times as necessary. 

Each processor board consists of an 8x3 array of 
special CAAPP integrated circuits plus some random 
buffer logic, ujr current design calls for all 
sixty-four processor circuit boards to be placed in 
four       card       racks       (sixteen       per       rack) and 
interconnected by a broadcast backplane and ribbon 
cables. 

The heart of the CAAPP design is a special purpose 
nMOS VU3I integrated circuit. Each of these chips 
will contain sixty-four CAAPP cells, an instruction 
decoder, and other miscellaneous logic. We have 
designed the chip with as much generality as 
possible, knowing that such generality need not be 
fully used   later  on. 

One of the biggest problems in designing the CAAPP 

was how to handle the rectangular interconnection 
of the cells. The number of wires required for 
such a network, even for bit serial communications, 
is staggering. This became most evident when we 
tried to design the IC communications interface. 
For sixty-four amllt, the arrangement which gives 
the minimum number of external connections is an 
8x8 grid. With a four-way N,S,E,W interconnect 
there are then only thirty-two neighboring cells to 
connect       to. (We      considered       an eight-way 
N,S, E,W, NW, NE,SW,3E interconnect, but were forced 
to abandon it due to the wiring complexity.) By the 
time control, power, and clock signals were added 
to the thirty-two neighbor lines, we found that a 
sixty-four pin package would be required to hold 
the IC. Further examination also revealed that 
full interconnection would require that each 
processor board have 256 ribbon cable communication 
lines — in other words, a two foot wide swath of 
ribbon cable running between each pair of boards! 
Because this violated two of our main design 
constraints, we had to simplify the 
interconnections. 

By 8:1 multiplexing the communications net as it 
crossed chip boundaries, we were able to reduce the 
IC pin count to twenty-two pins and the I/O lines 
per board to sixty-three (of which only thirty-two 
need to be run in ribbon cable, the rest being 
backplane, bus signals). By going from sixty-four 
pin to twenty-two pin packages, the board size was 
also reduced significantly. Unfortunately, all of 
these benefits were paid for in a loss of speed. 
The new interconnect takes 0.8 microseconds to 
transfer one bit between cells (25.6 microseconds 
for thirty-two bits). We should also note here 
that the CAAPP instruction set mpkes this 
multiplexing   transparent  to  the  user. 

1.1.3 Some/Hone   logic 

A common means of controlling loop execution in CAM 
algorithms is to continue processing until none or 
only one of the CAM's tag bits are turned on. It 
is thus essential that we have a fast means of 
determining this. Tlie simplest way of doing this 
is to test whether any tags are on; if so, we find 
the first one and turn it off, then repeat 
some/none test. The "find-first" operation is 
used frequently when a search selects several 
elements with the same key value. Find-first 
provides a way to select one of these 
processing. Thus the need is great for 
some/none and find first operations. On-chip 
Some/None signal is determined by feeding 
output of the main tag bit into a sixty-four-way 
NOR with an inverter between its output and the 
Some/None pad driver. Once the signal goes 
off-chip, it passes through a four-level OR tree 
before reaching   the  central   controller. 
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1. 1.4  Count   Responders 1. 2  Device   Floorplan 

Many CAM designs devote much complex and expensive 
hardware to increasing the speed of the operation 
which counts the tag bits that are turned on. We 
have found, however, that the count of responding 
tags is used primarily as a way of gathering 
statistics for use at much higher levels of 
processing control to direct the strategic 
application of the CAM. It is thus rather 
infrequently applied as compared to operations such 
as comparisons and some/none tests. We thus feel 
that slower, simpler, less expensive response count 
hardware is quite acceptable. Further, we have 
designed & very simple response count system which 
runs only about an order of magnitude slower than 
much more complex  designs. 

The count responders operation requires only three 
changes to be made to the CAAPP circuitry to be 
feasible. First, it must be possible to connect 
all of the response bits on a chip into a circular 
shift register. (This is also useful as a means of 
testing the integrated circuits since it allows us 
to directly examine register contents with a test 
circuit.) This shift register is easily added 
because the neighbor communication network already 
provides most of the necessary links. Secondly, a 
register, a counter, and a full adder must be added 
to each chip. Finally, the cards that control the 
top-bottom edge treatment must be modified to 
include column summing registers and a final sum 
register. The algorithm used is reasonably fast 
(about twenty-six microseconds), inexpensive, and 
most importantly it can be used with any size of 
array without having to modify the basic IC — only 
the bottom   row circuit board   needs to  be changed. 
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The unit cells are arranged in two columns of 
thirty-two (See figure 2). This arrangement was 
chosen because we found that the best compaction 
would be obtained if we could share control and 
memory select lines among as many cells as 
possible. Each cell Is thus very long and narrow. 
A column of thirty-two cells is almost covered by a 
river of metal control and select lines which run 
vertically over it. These lines are simply 
duplicated and mirrored for the two columns. 
Control is generated by a NÜR-NOR network forming 
the instruction and address decoders. Responder 
count hardware is provided in a small block of 
random logic. The overall size estimate of the 
active chip area (excluding pads and drivers) is 
2100x2400 lambda. Thus if lambda is three microns, 
the central portion of the die would be roughly 285 
mils on a side. This is somewhat large, but not 
unreasonable. Access to a fabrication facility 
with slightly smaller feature size and/or two 
layers of metal would significantly reduce the die 
size. Power dissipation is estimated at 1.5 watts, 
which  is  low enough  to   allow forced-air  cooling. 

1.3 The   Unit   Cells 

A unit cell consists of thirty-two bits (which will 
be expanded to at least 6H bits in the final 
design) of fully static memory, four one-bit static 
tag "registers" called A, B, X, and Y, and a static 
carry bit "register" called Z. Each cell also 
contains an ALU which continuously generates X nand 
Y, X nor Y, and X + Y + Z. Finally, each cell 
contains logic for selecting one so-irce of data (a 
register, memory, an ALU function, broadcast data, 
or a neighbor cell), possibly inverting the 
selected signal and storing it in a destination 
(memory or register). Neighbor communication lines 
run vertically in two channels in the middle of the 
cell. The Z register is special in that it is not 
available for selection as a data source. It can 
be copied directly to the X register and can be 
loaded fr^tn the output of the selector. It also is 
loaded with the carry from X + Y + Z whenever that 
function  is  selected. 

The X register is special in that its output is 
connected to the some/none logic and the neighbor 
communication network. In some sense it is the 
"main"   tag  bit. 

The A register is also special. It controls 
whether the cell is active. If a call is not 
active, it ignores all instructions broadcast by 
the central  controller   except a   special   few. 

The Y register is intended to be used for storing a 
second set of tag bits which may eventually be 
combined with other sets through the logical 
operations   provided by the  ALU. 

Fig ■JUr 

338 



e- 

s- 

X 

ON-CHIP 
NEiGitUUII 

SELECf 

EF 

ywZjj)- 

ir^v ^L> 

32Ü1T   MEMORV 
little  naul 

UIT 
SELECT 

•; 

Organization of One  PE 

Figure 3 

The B register is intended as temporary storage for 
a second set of activity bits, essentially 
providing a single level of "subroutine call" or an 
alternative   activity "screen". 

Figure 3 shows the logical arrangement of a unit 
cell. 

l.n CAAPP  IC   Instruction  Set 

Each CAAPP IC instruction executes in one minor 
clock cycle (100 ns). This was done to avoid 
feedback loops in the decoder on the chip and to 
avoid special instruction states in the central 
controller. This means that the central controller 
must be programmed to re-issue some instructions 
several times. For example, transferring data to 
neighbor cells across chip boundaries requires 
eight individual transfers because of the 8:1 
multiplex. The central control must therefore 
issue   the   shift   instruction eight  times  in   a row. 

There are eight basic instructions recognized by 
the chip. Of these, six are memory transfer 
operations and use a five-bit address value (this 
will be expanded to at least six with the increase 
in metnory size) to select the bit to be read or 
written. The other two instructions treat the 
address as a sub-operation specifier. For the most 
part these are non-memory-data-source to register 
transfer operations with one op code causing the 
data to be inverted before storage and the other 
causing a direct transfer. There a> e nineteen 
special sub-ops, however, which are reserved for 
unusual operations such as transferring data on and 
off the chip or counting  responders. 

Some operations are also designated as "jam 
transfers". This means that they are performed 
regardless of whether the A register contains a 
logic one. These prjvide a means of storing and 
retrieving different activity patterns and of 
applying global operations which ignore activity 
without the usual overhead of having to save the 
current activity pattern,  and   retrieve  it later. 

1. 5 Current   Status 

As of this writing we have designed a sixteen-cell 
CJxl) test chip. Using a simple set of three 
micron design rules, we have succeeded in fitting 
the circuitry onto a 180x180 mil body area with 
room to spare. The actual cell area occupies only 
110x150 mils. Estimated power dissipation is only 
350 milliwatts. The design includes about 7000 
transistors. The memory portion of the chip is 
being fabricated as part of a student project by 
MOSIS. We are working closely the General Electric 
Cooperation on a feasability study examining the 
technologies they could bring to bear should we 
embark on a cooperative development  project. 

We have already written a number of programs for 
the CAAPP and estimated their operation times by 
hand. For example, one special purpose convolution 
of interest in computer vision processing (a simple 
3x3 mask) required only 100 microseconds for the 
entire 512x512 image. (This will be presented in 
the next section.) More complex convolutions take 
longer, of course, but most of interest can b ,- 
performed in less than five milliseconds. We have 
also examined motion analysis and found the results 
to be quite encouraging (some of which will be 
discussed   later).     An   instruction  level   simulator 
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has been programmed for the CAAPP and is currently 
being used to develop and test small applioatlons, 
and to gather statistics on instruction set usage 
and predict execution times. (It is, of course, 
nearly impossible to test any really large 
applications on the simulator because most of these 
would require several days of computer time.) A 
higher level simulator is also being integrated 
into our department's computer vision research 
system so that researchers can begin to develop 
vision related   algorithms   for  the  CAAPP. 

2.0  IMAGE  CONVOLUTION ON THü   CAAPP 

Our previous work on Conway's Game of Life 
implemented on a CAM [2] demonstrated that such a 
device could be effectively used to speed up 
algorithms which dealt with rectangular grids of 
cells and small neighborhoods about each of those 
cells. Conway's Game of Life actually involves 
performing a very simple image convolution and the 
technique developed for it was applied to more 
general convolutions. This method was further 
refined   with the   CAAPP design. 

2. 1   Basic   Technique 

One simple implementation of convolution involves 
each cell on a rectangular grid examining its 
immediate neighborhood and then updating its own 
contents based upon some function of that 
neighborhood. The update must, of course, be 
performed after all cells have finished examining 
their neighborhoods. On a parallel array processor 
this examination can be performed simultaneously by 
all of the cells on the grid, as can the update 
operation. Thus the algorithm for the convolution 
can be described as the actions of a single cell 
with the understanding that each action is 
performed   simultaneously by all  of the  cells. 

There are two different ways of approaching the 
problem of examining the neighborhood. The one 
that first comes to mind is that each cell "looks" 
at each cell in its neighborhood, gathering what 
information it needs to perform an update. In 
practice this involves moving data from each cell 
in the neighborhood into the "central" cell where 
some function is then applied to it and the result 
stored for the update phase of the convolution. 
The problem with this is that the data must often 
pass through other cells before it reaches the 
central cell. For example, when the neighborhood 
is 7x7 cells, data from the outer ring of cells 
must pass through at least two other cells before 
reaching the center cell. Because movement of data 
takes time, this "passing through" is rather 
inefficient. The solution is to have the data 
stored in the intermediate cells on its way to the 
center, thus taking advantage of the fact that 
those cells will also need to know the values in 
order to compute the function of their 
neighborhoods.     Although this will   work,  the 

algorithm becomes rather messy since we must now 
consider the actions of several cells at once and 
how these relate to erch other. It also becomes a 
complex problem to determine an optimal set of data 
collection paths as the neighborhood's diameter 
var ies. 

It turns out that the other approach to examining 
the neighborhood greatly simplifies these problems. 
This approach takes the opposite view of the 
collection       process. Instead       of      each      cell 
collecting all of the data from its neighborhood, 
each cell distributes its own data to every cell in 
the neighborhood. Because every other cell is also 
doing this, tha end result is that the central cell 
(and hence all cells) gets the data it needs from 
all of the cells in the neighborhood. The problem 
of establishing an optimal distribution path is 
trivial for a square array of odd diameter: It is 
simply a rectangular spiral out from the center 
cell. For even diameter square neighborhoods the 
problem is only slightly more difficult because the 
center cell is actually half of a cell width off 
center in two directions. In this case it is 
simply required that the appropriate choice of 
initial direction and of clockwise or counter 
clockwise spiral be made to select the optimal 
path. The only other point that requires 
mentioning is that, because this is a distribution 
process rather than a collection process, the 
function mask for the convolution must be mirrored 
across the central cell. For example, when the 
cell's value is being stored in its north neighbor, 
the function applied to that value is the south 
neighbor function. The reason for this can be seen 
when it is realized that the central cell is 
actually the south neighbor of the cell to its 
north. The mirroring of the convolution function 
mask is actually quite easy to accomplish: we 
simply step through the n.ask in exactly the 
opposite direction that the distribution path 
ta ke s. 

Let's look at an example: A simple convolution for 
smoothing isolated cells of noise out of an image. 
We will use a 3x3 convolution mask in which the 
cell accumulates the sum of its neighbor's values, 
weighted inversely with distance away from the 
center. The sum w?ll then be normalized. Define 
the mask to be  an   array M 

M   = 
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Where M, 1 is the central cell. Then the following 
algorithrfi will perform the convolution {north is 
up,   west  is to  the  left, etc.): 

1 :• 1 
j   ::  i 
sum   :=  value  •M. . 
move value  nortfiJ 

i   :=  i+1 
sura   := sum  +  value 
move value  east 

j   := j+l 
sum   :=  sum +   value 
move value   south 
i   :z i-i 

sura   := sum +  value 
move value   south 
i   := 1-1 
sum   :=  sum +  value 
move value  west 

j   :+ j-l 
sura   :=  sum  +  value 
move value  west 

J   !•  j-1 
sura   :-  sum -  value 
move value   north 
i   := i+1 
sum   :=  sum  +   value 

ij 

ij 

ij 

ij 

M. . 
ij 

value   :=  sum *   normalizing   factor 

It should be noted that the time required to 
perform a convolution using the parallel processor 
is independent of the size of the image and only 
dependent upon the area of the convolution mask. 
Since the CAAPP does cell level arithmetic 
bit-serially, the size of the data values also 
affects the speed of the algorithm. It has been 
determined that convolution with a 3x3 mask 
requires 980 CAAPP operations. This corresponds to 
98 micro-seconds per      convolution       or       340 
convolutions per frame time or 10204 convolutions 
per   second. 

Convolutions with more general and/or larger masks 
will take longer. A very rough worst case estimate 
of the time required for such convolutions can be 
obtained   from the   formula: 

T  =  P(.8N+.2M+. 1)  +   .3M(N2P+N+1) 

where 

T  = time  in microseconds 
N   =  number of bits   in  a   pixel 
M   ■  number  of bits in   a mask value 
P  -  number of   pixels  in  the mask area 

This is a worst case time which assumes that all of 
the bits in all of the mask values are ones (since 
this gives the slowest multiply speed). Under 
normal circimstances, T will be about half of the 
value  obtained   from   the   formula.     This also   assumes 

a totally general square mask where the values can 
change. If constants are to be used for the mask 
values, a significant speed increase can be 
obtained by optimizing the multiplies for those 
values. Thus, for example, a convolution on 16 bit 
values with 8 bit mask values could be applied over 
at most a 7x7 mask in one video frame time with a 
worst case situation. For normal situations, it 
should be possible to convolve a 10x10 area. Given 
constant mask values, and depending upon the amount 
of optimization possible, even a 25x25 mask could 
be done  in one video   frame time. 

As a final note, this method is not restricted to 
square      masks      and     in     fact    should     be    readily 
general! zeable  to  any    mask     shape. All     that    is 
required     for    this is an   algorithm for  efficiently 
shifting  the center cell's value   so that  it    covers 
the    mask    area.       Thus     it    should be possible to 
easily adapt it to such mask shapes as annuli and 
disjoint areas. 

3.0 OPTIC  FLOW  FIELD  DECOMPOSITION ON THE  CAAPP 

The  reali zation of motion   perception in     artificial 
systems will   require highly parallel architectures. 
We   have     explored    the     use    of    the CAAPP    as    an 
effective means of quickly and   robustly decomposing 
a   flow  field   into  its  rotational   and translational 
components    [4,5]    to     recover     the parameters    of 
sensor motion. 

The algorithm is an exhaustive search procedure 
which uses a set of rotational and translational 
flow field templates to find a component pair which 
can account for the motion depicted in a given flow 
field. Currently, 1000 rotational templates and 
200 translational templates are used. These are 
generated from 100 axes which are uniformly 
distributed with respect to a unit hemisphere, and 
all pass through the origin of the sensor 
coordinate system. Each flow field consists of 
16x16 vectors and is stored on a 2x2 square of 
chips consisting of 256 cells. The 2x2 chip 
arrangement facilitates flow field addressing. 
Each cell contains the horizontal and vertical 
components of a flow vector, each specified with 10 
bits of  precision. 

The   algorithm consists of four  basic   steps. 

(0) The rotational templates are loaded into the 
CAAPP, one template for each flow field location. 
Each flow field location corresponds to one of the 
squares in the CAAPP diagrams shown in Figures 5a, 
5b, and 5c. The rotational templates need only be 
loaded once since they are used in determining any 
flow  field  decomposition. 

(1) A copy of the input flow field is loaded into 
each flow field location in the CAAPP. Figure la 
and 4b show two sample input fields, both produced 
by the same motion and environment, except that 
Figure 4b was produced by adding random spike noise 
to   Figure  4a. 
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(2) set     of    difference     fields     is     formed     by 
subtracting each rotational template from the copy 
of the input flow field stored with it. For each 
resulting difference field, the slope of each 
difference vector is computed by dividing the 
vertical component by the horizontal component. 
These subtraction and division procedures ar.> 
performed in parallel across all flow fields 
represented   in  the   CAAPP, 

(3) The similarity between the difference fields 
and each of the translational templates is 
evaluated, proceeding sequentially through all the 
translational templates. For a given translational 
template, this conparison is done in parallel with 
all difference fields stored in the CAAPP and 
consists of the   following   steps: 

(3a) The slope of each component vector of th« 
translational template is loaded into the 
corresponding vector location of each difference 
field. The sign of the slope of each difference 
vector is compared with the sign of the slope of 
the corresponding translational template vector. 
If the signs agree, the absolute value of the 
difference between the slope of the difference 
vector and the slope of the translational template 
vector is computed, and then scaled according to 
the absolute value of both slopes. If the scaled 
slope difference does not exceed a predetermined 
maximun error value, then a vector match is 
designated »t that position. Ihe quantity of error 
permitted here allows the algorithm to be resistant 
to uniformly distributed Gaussian noise of low 
variance   present   in  the original   flow  field. 

(3c) For all difference fields yielding at least 
the required minimun number of matches, the 
variance of the scaled slope difference is 
computed, and the difference field with the minimum 
variance is determined. This value is compared to 
the minimun variance found from processing the 
preceding translational templates. If this value 
is less than the preceding minimum, it becomes the 
new global minimum, and the rotational template 
associated with the difference field together with 
the current translational template become the 
current best candidate pair for the flow field 
decomposi tion. 

Steps 3a, 3b, and 3c are performed for each 
translational   template. 

(4) The flow field decomposition considered to be 
the best is the rotational and translational 
templat-ä pair resulting in the difference field 
yielding at least the required minimum number of 
matches and the least slope difference variance. 
Utilizing minimum variance instead of the -naximum 
riunbar ~r latches, the algorithm has achieved 
better results, oartioularly for motions whose 
component parts lie between sets of templates. 
Figures 7a and 7b show the rotational and 
translational template sslsotad by the algorithm 
in the presence of and in the absence of noise, for 
the input fields in Figures 4a and 4b. These 
templates are the closest ones to the actual 
motions. Figures 8a and 8b show the diffj-ence 
fiel is resulting from subtracting the rotational 
motion in 7a from the original fields in Figures 4a 
and  4b  respectively. 

W 

(jb) For each difference field the number of vector 
slope matches is counted. If this sun exceeds a 
predetermined minimum number of matches (in our 
implementation, 75% of the field size), then the 
associated rotational and translational templates 
become a candidate pair for the flow field 
decomposition. Utilization of a minimum number of 
required matches ensures that only templates which 
are reasonably close to the actual motion will be 
chosen and permits some resistdnce to random spike 
noise. Figure 5a shows, for difference fields 
resulting from the input field in Figure 4a, the 
CAAPP response to the translational template which 
is closest to the actual translational motion. 
Each black dot, within a square represents a 
position in a difference field at which the slope 
of the difference vector matches the slope of the 
translational template. Figure 5b shows, for 
difference fields resulting from the input field in 
Figure 4b, the CAAPP response to the translational 
template which is closest to the actual 
translational motion. Figure 5c shows the CAAPP 
response to a translational template which is not 
close to the actual translational motion. This 
incorrect translational template is shown in Figure 
6. 

3. 1  Flow  Field   Decomposition   E<p"r i iieiits 

Experiments li-we been performed with a CAAPP 
simulator on a VAX 11/780 using a wide variety of 
motions and simulated environments. In all cases 
examined, the translational template closest to the 
actual translational motion was selected. The 
rotational template was always close to the actual 
rotational motion, but was sometimes not the 
closest template. The procedure proved to be 
resistant to limited Gsumi I--I nils; as well as to 
limited random spike noise in the original flow 
field. Applying motion to points at random depths 
produced results similar to those obtained in the 
noise experiments. The algorithm's performance 
degraded slightly if each flow vector oowponent was 
specified by eight bits of precision instead of by 
ten . 

The CAAPP timing calculations revealed that thu 
algorithm could perfom the 
rotational-translational decomposition in slightly 
more than 1/4 second. If two CAAPPs are used in 
parallel, then the time can be reduced to less than 
1/5 second, since only half of the translational 
templates need be teste i on each CAAPP. Given 
fabrication   techniques  available   in  the   immediate 
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future, we expect execution times to be 
alfnlflujntly improved. We        suspect       that 
performance will improve and be ipplicaM« fco lore 
realistic image sequences by increasing both the 
number and size of the rotational and translational 
templates. This amounts to utili zing more CAAPPs 
in   parallel. 
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4. 0 CURRENT   RESEARCH 

Based on the results of our test chip experience, 
we intend to proceed to full sixty-four cell ICs 
and, eventually, construction ot the entire 
machine. Architectural changes which we intend to 
pursue are increasing the memory size to at . 'ast 
sixty-four bits per cell and perhaps going to an 
8:2 communications multiplex (with a twenty-eight 
pin package) for a doubling in the data transfer 
rate. 

Our work thus far has indicated that a djntn-it 
Addressable Array Parallel Processor is well suited 
for many aspects of image processing, vision, and 
motion analysis. We are exploring the effective 
implementation of a wide range of i'Tage pror ^Jiuig 
algorithms on the CAAPP [6], We intend to pursue 
further applications in these areas and also in new 
areas such as tactile object recognition in 
robotics. 

5.0 CONCLUSIONS 

The key feature of this design is its integration 
of associativity with array processing. The result 
does well what each of these architectures normally 
can do individually but additionally may be applied 
in a number of ways that can only be approached by 
the integrated combination. Thus it becomes 
possible to perform both low level (such as image 
convolutions) and high level (such as real-time 
LISP   [7])   processing   in the   same machine. 

The importance of usirij a conservative approach to 
development cannot be over emphasized. Too often 
designs for computers have been fielded which push 
technology too far. The result has usually been a 
single machine which is nearly impossible to keep 
running and too costly to be replicated. By 
keeping our design conservative, we hope to produce 
a machine that is both useable and replicable at a 
reasonable cost (on the same order as a 
mini-mainframe). This would then make it possible 
for other research facilities to have similar 
machines without the extra cost of development. 
The study of parallelism and its applications can 
then be advanced by providing the research 
community with a useable standardized parallel 
processor . 

A design has been p-esented for a Content 
Addressable Array Parallel Processor suitable for 
both general use and image processing applications. 
The architecture of the processor is based in 
practical experience and the hardware design h.^s 
been constrained to make it possible to construct 
using existing technology and with a high 
confidence of success. Despite these constraints, 
simulations have shown that such a inaohtlf wnuld 
provide a signifikant increase in processing power 
over   what is   presently available. 

A method has been shown which can be used to 
program the Co-itenl Addressable Array Parallel 
Processor to perform image convolui, i ns sl.nply and 
efficiently. Such      a       program,     for    a     simple 
convolution,       was       shown       which       operates in 
ninety-eight      microseconds. The       time    of    the 
algoi ithm is independent of the size of the image 
and depends only upon the size of the n-isk and, for 
bit serial processing, upon the number of bits in 
the pixel and mask values. A formula was given for 
a worst case time estimate and a factor for 
estimating normal «Mse time from this was 
discussed. It was also noted that the method could 
be  applied   to masks of other   than   square   shapes. 

We have also shown how the CAAPP may be used in the 
analysis of motion from image sequences. For 
certain applications, the parallelism provided oy 
the CAAPP would make it possible to perform such 
analysis robustly and   nearly at  video   frame rate. 
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