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OPTIMAL SAMPLING IN SELECTION PROBLEMS*

by

Shanti S. Gupta
Purdue University

-)A selection procedure typically consists of three

ingredients: (1) a sampling rule, (2) a stopping rule, and

(3) a decision rule, though these components are not usually

explicitly so labeled. The problem of optimal sampling

arises in different ways depending on the context of the

problem at hand. Broadly speaking, the problem of optimal

(or optimum) sampling arises because of the need for

balancing between the cost of sampling and the cost of

making a wrong decision. Obviously, increasing the amount

of sampling increases the former cost while decreasing the

latter.({-

1. Indifference Zone Formulation

Suppose we have k independent populations 7l',2'

where the CDF of wi is F(x; ei), where the parameter ei has

an unknown value belonging to an interval 9 on the real

line. Our goal is to select the population associated with

the largest ei which is called the best population. In the

Indifference Zone Formulation of Bechhofer [2], it is

required that the selection rule guarantees with a probabil-

ity at least equal to P*(l/k < P* < 1) that the best

population will be chosen whenever the true parametric

configuration 0 = (011,02,...,k) lies in a subset of the

parametric space aA characterizing the property that the

distance between the best and the next best populations is

at least A. The subset 0 is called the Preference Zone.

*This research was supported by the Office of Naval Research Contract

NOOO14-75-C-0455 at Purdue University. Reproduction in whole or in
part is permitted for any purpose of the United States Government.
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- The constants P* and a are specified in advance by the

experimenter. The probability guarantee requirement is

referred to as the P*-requirement.

Now, let us consider k Independent normal populations

71 729 ' 9'k with unknown means v"l 2 "' 'uk' respectively,

2
and common known variance a . Based on samples of size n

from each population, the single-stage procedure of

Bechhofer (2] for selecting the population with the largest

Pi selects the population that yields the largest sample

mean. Here the preference zone is defined by the relation

- (k.J > , where u[1 _..._< [kJ denote the ordered

The optimum sampling problem in this case is to

determine the minimum sample size n subject to the P*-

requirement. The optimum value of n is given by the

smallest Integer n for which

k-l n(x ) p(x)dx P*" ii
where s and ep denote the COF and the density function of ana d v b_,_._
standard normal random variable. .2._.

Wn Accesson For :i
Suppose that these normal distributions have unknown -- Tori .... _ 7

and possibly unequal variances. In this case, no single- i , ..

stage procedure exits. Two-stage procedures have been -...

studied In this situation by Bechhofer, Dunnett, and - ,

Sobel [4], and Dudewicz and Dalal [9]. One may take a j* . ,

sample of size no from each population at the first stage , e,
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and on the basis of the information obtained from these

samples, determine the sizes of additional samples to be

taken from these populations. The selection rule is based

on the total samples from all the populations. Even when

the variances are known, one may use a two-stage procedure

in which the first stage involves selection of a nonempty

subset of random size with possible values 1,2,..., and k.

If the first stage results in a subset of size larger than

1, then a second stage ensues with additional samples from

those populations that still remain under consideration.

Such procedures have been considered by Alam [1], Tamhane

and Bechhofer (20], (21] and by Gupta and Miescke (15] with

some modifications. A problem of optimum sampling in these

cases is to determine the optimal combination of the sample

sizes in the two stages. This can be done, for example

(Tamhane and Bechhofer (20]), by minimizing the maximum of

the expected total sample size for the experiment over all

parametric configurations subject to the P*-requirement.

2. Minimax, Gamma Minimax and Bayes Techniques

Consider again k normal populations wl'2s" ' k with

2
unknown means ,,. k and common known variance .

If the selection procedure is to take samples of size n from

these populations and choose the population that yields the

largest sample mean, one can consider a loss function

flI
,'-' ." '''' .. .. . . • - - " - - " - " • -' 4. . * * -,,,,a ,. ~ ' a --

* ,.' * ! .. . -. ' _ - . • .. .: . . . - . . . . ammi mm -mm md W.. ,. , m l m m m d ,
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k
L = cln + c w2(P[k]-h) were cl is the sampling cost

per observation, c2 is a positive constant, and Ii  1 1, if

is selected, and = 0 otherwise. Optimum n can be

obtained by minimizing the integrated risk assuming (known)

prior distributions for pi's; see Dunnett [10]. One may

also determine the optimum n by minimizing the maximum

expected loss over all parametric configurations. However,

the expected loss in our case is unbounded above and we can

find a minimax solution if we have prior information

regarding the bounds on the differences u[k]-[l

Suppose we take a sample of size n1 from each of k

normal populations with unknown means lP2, ...,uk, and

common known variance For a fixed t, 1 < t <k-i, we

discard the populations that produced the t smallest sample

means and take an additional sample of size n2 from each

of the remaining k-t populations. We select as the best

the population that entered the second stage and produced

the largest sample mean based on all nl+n 2 observations.

Given that the total sample size T - kn,+(k-t)n2 is a

constant, the problem is to determine the optimum alloca-

tion of (nl,n 2) by minimizing the maximum expected loss,

k

wher- the loss is L c IT + c2  (1(]l' I as defined

. .. . J



earlier. For details see Somerville [19], and Fairweather

[11].

In these problems, we can also take the gamma-minimax

approach and minimize the maximum expected risk over a

specified class of prior distributions for the parameters

pi; see Gupta and Huang [14].

3. Comparison with a Control

An optimal sampling problem can be, as we have seen,

an optimal allocation problem. Such allocation problems

are also meaningful when we compare several treatments with

a control. Let 12'... Ink be k independent normal popu-

lations representing the experimental treatments and let w0

be the control which is also a normal population. Let

have unknown mean ui and known variance ai, i 0,1,...,k.

A multiple comparisons approach is to obtain one-and two-

sided simultaneous confidence intervals for, say,
i = 1,2,...,k. If ni is the size of the sample from

ik
Si, i = 0,1,...,k, such that I n. = N, a fixed integer,

i=O

then the problem is to determine the optimal allocation of

the total sample size. The optimal allocation will depend,

besides other known quantities, on a specified 'yardstick'

associated with the width of the interval. For details of

these problems see Bechhofer (3], Bechhofer and Nocturne

-5], Bechhofer and Tamhane [6], and Bechhofer and

Turnbull (7].
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Instead of taking the above multiple comparisons

approach, one can use the formulation of partitioning the

set of k experimental populations into two sets one

consisting of populations that are better than the control

and the other consisting of the remaining (worse than the

control). For a given total sample size, the problem is to

determine the optimal allocation either by minimizing the

expected number of populations misclassified or by

maximizing the probability of a correct decision; for

details see Sobel and Tong [18].

4. Subset Selection Approach

As before, consider k independent populations

l, 2,q..., k, where wi is characterized by the CDF

F(x; eo), i = 1,...,k. In the subset selection approach,

we are interested in selecting a nonempty subset of the k

populations so that the selected subset will contain the

population associated with the largest eI with a guaranteed

minimum probability P*. The number of populations to be

selected depends on the outcome of the experiment and is

not fixed in advance as in the indifference zone approach.

Suppose we take a random sample of size n from each

population. Let TI, i = l,...,k, be suitably chosen

statistics from these samples. In the case of location

parameters, the procedure of Gupta [12], [13] selects ni

if aril only if Ti x-n, where T ,uax "ax(T 1 .... T k)
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and D > 0 is to be chosen such that the P*-requirement is

met. The constant 0 will depend on k, P*, and n. Unlike

in the indifference zone approach, we can obtain a rule for

any given n satisfying the P*-condition.

In the case of k normal populations with unknown means

2
72., and known common variance a , the rule of

Gupta [12] selects vi if and only if Ri > Rmax-do/ri,

where R, is the mean of a sample of size n from wi'

i 1,2,...,k. The constant d is given by the equation

f (k-(x+d)o(x)dx P*.
-OD

The expected subset size, denoted by E(S), is given by
k o,

E(S) = 1 n x+d+ F ([i]-j])(x)dx,

where [ - [ - "[k] denote the ordered Vi. We

can define the optimum sample size as the minimum sample

size for which the expected subset size or equivalently,

the expected proportion of the populations selected does not

exceed a specified bound when the true parametric configur-

ation is of a specified type. Relevant tables are

available in Gupta [13] for the equidistant configuration

given by U[i+1 = , i = 1,2,...,k-1, and in Deely

and Gupta [8] for the slippage configuration given by
E i  Ul] =..= ~k.1 = pk]-L

E'I
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If we use the restricted subset selection approach in

which the size of the selected subset is random subject to

a specified upper bound, then the P*-condition is met when-

ever the parametric configuration belongs to a preference

zone as in the case of Bechhofer's formulation. In this

case, the minimum sample size (assuming common sample size)

can be determined in a similar way (Gupta and Santner [17]).

In our discussion so far, the optimal sampling related

to optimal sample sizes or optimal allocation under a

given sampling scheme such as single-stage, two-stage, etc.

One can also seek the optimal sampling scheme by comparing

single-stage, multi-stage and sequential procedures.

Comparisons of different sampling schemes for several

selection goals have been made and are available in the

literature. In addition to the usual sampling schemes,
1*

inverse sampling rules with different stopping rules and

comparisons involving vector-at-a-time sampling and Play-

the-Winner sampling scheme have been studied in the case of

clinical trials involving dichotomous data. References to

these and other problems discussed can easily be obtained

from Gupta and Panchapakesan [16].
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