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OPTIMAL SAMPLING IN SELECTION PROBLEMS*
! by
! Shanti S. Gupta

Purdue University

‘“n;)A selection procedure typically consists of three
ingredients: (1) a sampling rule, (2) a stopping rule, and
(3) a decision rule, though these components are not usually
explicitly so labeled. The problem of optimal sampling
arises in different ways depending on the context of the
problem at hand. Broadly speaking, the problem of optimal
(or optimum) sampling arises because of the need for
balancing between the cost of sampling and the cost of
making a wrong decision. Obviously, increasing the amount
of sampling increases the former cost while decreasing the
o

latter.

1. Indifference Zone Formulation

Suppose we have k independent populations T sTose e oMo
where the CDF of . is F(x; oi), where the parameter o, has
an unknown value belonging to an interval @ on the real
line. Our goal is to select the population associated with
the largest 85 which is called the best population. In the
Indifference Zone Formulation of Bechhofer [2], it is
required that the selection rule guarantees with a probabil-
ity at least equal to P*(1/k < P* < 1) that the best
population will be chosen whenever the true parametric
configuration 0 = (”1’02""’9k) lies in a subset of the
parametric space 2, characterizing the property that the
distance between the best and the next best populations is

at least A. The subset nA is called the Preference Zone.

*This research was supported by the Office of Naval Research Contract
NO0014-75-C-0455 at Purdue University. Reproduction in whole or in
part is permitted for any purpose of the United States Government.
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t The constants P* and A are specified in advance by the

r experimenter. The probability guarantee requirement is 3

- referred to as the P*-requirement.
Now, let us consider k independent normal populations a

LITLPTRRERL with unknown means Hyoligse -« shps respectively,
and common known variance oz. Based on samples of size n
from each population, the single-stage procedure of

Bechhofer [2] for selecting the population with the largest

o . § B

¥y selects the population that yields the largest sample
mean. Here the preference zone is defined by the relation

M[k] " M[k-1] 2 vhere M[1] SeeS VK] denote the ordered

ORI ¢+ NI

My The optimum sampling problem in this case is to

determine the minimum sample size n subject to the P*-

requirement. The optimum value of n is given by the

smallest integer n for which
/ OR"(x + —'r-:-:-é-) e(x)dx > P*

where ¢ and ¢ denote the COF and the density function of a

- standard normal random variable.

Accession For

Suppose that these normal distributions have unknown '_ri'n'é"'r;m&'t"

and possibly unequal varfances. In this case, no single- % z;:::"r,

stage procedure exits. Two-stage procedures have been ~  ~ =lifredtiitio..

studied in this sftuation by Bechhofer, Dunnett, and L e e
| ﬂ{!fclbn;ihE/A N »:
Sobel [4], and Dudewicz and Dalal [9]. One may take a . Ave . eviliiv Guies

- . a

AvQ: . apd or

sample of size o from each population at the first stage v weeatal
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- and on the basis of the information obtained from these
i. samples, determine the sizes of additional samples to be

T taken from these populations. The selection rule is based
t? on the total samples from all the populations. Even when
the variances are known, one may use a two-stage procedure
in which the first stage involves selection of a nonempty
subset of random size with possible values 1,2,..., and k.
If the first stage results in a subset of size larger than
1, then a second stage ensues with additional samples from
those populations that still remain under consideration.
Such procedures have been considered by Alam [1], Tamhane
and Bechhofer [20], [21] and by Gupta and Miescke [15] with
some modifications. A problem of optimum sampling in these
cases is to determine the optimal combination of the sample
sizes in the two stages. This can be done, for example
(Tamhane and Bechhofer [20]), by minimizing the maximum of
the expected total sample size for the experiment over all

parametric configurations subject to the P*-requirement.

2. Minimax, Gamma Minimax and Bayes Techniques

Consider again k normal populations TysTasess sy with
unknown means Myskpsees sy and common known variance 02.
If the selection procedure is to take samples of size n from o
these populations and choose the population that yields the

largest sample mean, one can consider a loss function
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L=cyn+ izl C2‘“[k]’"i)li’ where c; is the sampling cost -
per observation, <y is a positive constant, and Ii =1, if
LF is selected, and = 0 otherwise. Optimum n can be
obtained by minimizing the integrated risk assuming (known)
prior distributions for u;'s; see Dunnett [10]. One may
also determine the optimum n by minimizing the maximum
expected loss over all parametric configurations. However,
the expected loss in our case is unbounded above and we can
find a minimax solution if we have prior information
regarding the bounds on the differences KT ML
i=1,.0.,k=1.

Suppose we take a sample of size n from each of k
normal populations with unknown means MpsHse e sl and

common known variance 02.

For a fixed t, 1 < t < k-1, we
discard the populations that produced the t smallest sample
means and take an additional sample of size n, from each

of the remaining k-t populations. We select as the best
the population that entered the second stage and produced
the largest sample mean based on all ni+n, observations.
Given that the total sample size T = kn]+(k-t)n2 is a
constant, the problem is to determine the optimum alloca-
tion of (n].nz) by minimizing the maximum expected loss,

k
wher- the Joss is L = al + ¢ 1Zl(u[k]-ui)li as defined

PRI WP T Wl W R AP R SN N

Nl AP

PN
dend

|

-t PRIV

-
o

2.

P

-, L
Dy

T e T
el Y R Iy




[$a]

earlier. For details see Sommerville [19], and Fairweather
(1nl.

In these problems, we can also take the gamma-minimax
approach and minimize the maximum expected risk over a
specified class of prior distributions for the parameters

u;5 see Gupta and Huang [14].

3. Comparison with a Control

An optimal sampling problem can be, as we have seen,
an optimal allocation problem. Such allocation problems
are also meaningful when we compare several treatments with
a control. Let TysTasenssTy be k independent normal popu-
lations representing the experimental treatments and let 0
be the control which is also a normal population. Let F
have unknown mean Hy and known variance of, i=0,1,...,k.
A multiple comparisons approach is to obtain one-and two-
sided simultaneous confidence intervals for, say,
ui=ugs i=1,2,...,k. If n; i; the size of the sample from
Moy 1= 0,1,...,k, such that iZO n; =N, a fixed integer,
then the problem is to determine the optimal allocation of
the total sample size. The optimal allocation will depend,
besides other known quantities, on a specified 'yardstick’
associated with the width of the interval. For details of
these problems see Bechhofer [3], Bechhofer and Nocturne
(5], Bechhofer and Tamhane [6], and Bechhofer and

Turnbull [7].
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Instead of taking the above multiple comparisons

approach, one can use the formulation of partitioning the
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set of k experimental populations into two sets one

consisting of populations that are better than the control

RN 5. WIR)

and the other consisting of the remaining (worse than the
control). For a given total sample size, the problem is to
determine the optimal allocation either by minimizing the
expected number of populations misclassified or by
maximizing the probability of a correct decision; for
details see Sobel and Tong [18].

4. Subset Selection Approach

As before, consider k independent populations ﬁ
TyaTgseeesTys where =, is characterized by the CDF ]
F(x; ei), i=1,...,k. In the subset selection approach, ii
we are interested in selecting a nonempty subset of the k
populations so that the selected subset will contain the

population associated with the largest 8 with a guaranteed

i - 4N

minimum probability P*. The number of populations to be
selected depends on the outcome of the experiment and is

not fixed in advance as in the indifference zone approach.

M T e T T
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Suppose we take a random sample of size n from each

population. Let Ti’ i=1,...,k, be suitably chosen

statistics from these samples. [In the case of location
parameters, the procedure of Gupta [12], [13] selects B

if and only if Ti > T x-n. where T - nmx(T].....Tk)

L] max
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and D > 0 is to be chosen such that the P*-requirement is

A RS

i met. The constant D will depend on k, P*, and n. Unlike'
' in the indifference zone approach, we can obtain a rule for
any given n satisfying the P*-condition.

In the case of k normal populations with unknown means
ysbgse-ealys and known common variance 02, the rule of
Gupta [12] selects =, if and only if Xi 3_Xmax-do/Jﬁ,
where Xi is the mean of a sample of size n from s
i=1,2,...,k. The constant d is given by the equation

/ ¢k'](x+d)¢(x)dx = p*,

-

The expected subset size, denoted by E(S), is given by
k o /n
n
= + —— «q-
E(s) = } ;.¢>{x+d 5 (upigvp)) telx)dx,

i=1 -= J#A
!. where 1] < Mp2] S0 tS VK] denote the ordered u,. We
can define the optimum sample size as the minimum sample

size for which the expected subset size or equivalently,

:

~
[}
~
ot
1

i

the expected proportion of the populations selected does not
exceed a specified bound when the true parametric configur-
ation is of a specified type. Relevani tables are

available in Gupta [13] for the equidistant configuration
given by MEi4177V) =g, 1 =1,2,...,k-1, and in Deely Sl
and Gupta [8] for the slippage configuration given by
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If we use the restricted subset selection approach in
which the size of the selected subset is random subject t&
a specified upper bound, then the P*-condition is met when-
ever the parametric configuration belongs to a preference
zone as in the case of Bechhofer's formulation. In this
case, the minimum sample size (assuming common sample size)
can be determined in a similar way (Gupta and Santner [17]).

In our discussion so far, the optimal sampling related
to optimal sample sizes or optimal allocation under a
given sampling scheme such as single-stage, two-stage, etc.
One can also seek the optimal sampling scheme by comparing
single-stage, multi-stage and sequential procedures.
Comparisons of different sampling schemes for several
selection goals have been made and are available in the
literature. In addition to the usual sampling schemes,

inverse sampling rules with different stopping rules and

comparisons involving vector-at-a-time sampling and Play-
the-Winner sampling scheme have been studied in the case of

clinical trials involving dichotomous data. References to

> SNMSAPCACASAI ) NN

these and other problems discussed can easily be obtained
from Gupta and Panchapakesan [16].
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