KRG AR B Y

T Y

e A P A g T

SN Sy ST

Adaptive Mesh Refinement
for Hyperbolic Partial Differential Equations

MarshaJ. Berger*
Courant institute
New York University
New York, N.Y. 10012

Joseph Oliger*
Computer Science Department
Stanford University
Stanford, CA 94305

Y
Abstract A

-
- /146 AV:‘JA}IJ—
. M@ present an adaptive method based on the idea of multiple, component grids for the solution of

hyperbolic partial differential equations using finite difference techniques. Based upon Richardson-

type estimates of the truncation error, refined gnd;,are created or existing ones removed to attain a

given accuracy for a minimum amount of work. Omr approach is recursive in that fine grids can

themselves contain aven finer grids. The grids with finer mesh width in space also, have a smaller .
d.ocum.q‘f' incho d oS

mesh width in time, making this a mesh refinement algorithm in time and space. -‘Ne-present the

algorithm, data structures and grid generation procedure, and concludeswith numerical examples in

one and two space dimensions.
Y

*This research was supported in part by Office of Naval Research Contract NOD0O14.75-C-1132 and in part by the National
Science Foundation under Grant No. MCS77-02082.

1. INTRODUCTION

In this paper we describe an adaptive finite difference method for
systems of hyperbolic partial differential equations. The solutions of
these equations are often smooth and easily approximated over large
portions of their domains but contain boundary layers or locally
isolated 1internal regions with steep gradients, shocks, or
discontimuities where the solution is difficult to approximate. We
adaptively place finer grids in these regions over a coarse grid
covering the domain. The solution on each fine subgrid can then be
approximated by standard finite difference techniques, as done on the
coarse grid. If we are solving a time dependent problem, the difficult
regions will change in time, and thus our grids must adapt in ¢time {n
response to the solution. Our algorithm is very general, and makes no
assumptiors about the number or type of these 1{irvegular regions, nor
about their direction of motion.

The grid refinements we 1introduce 1in two space dimensions are
rectangles of arbitrary orientation. Our algorithm 1is recursive, {in
that subgrids with finer and finer mesh width can themselves be nested
in other subgrids. We use oriented rectangles for two reasons: {l) it
allows us to approximately align our coordinates with singular surfaces
such as shocks, and (2) it allows us to reduce the size of the refined
reglon and the number of mesh points introduced. Furthermore, this
allows us a very simple wuser {nterface, and requires very 1little
overhead to maintain. Our strategy for grid refinement 1{s to maintain
a constant mesh ratio of time step to space step on all grids. Ve

refine {in time as well as space, so large time steps are taken on

coarse grids and smwall time steps on fine grids. Values on the

———
il

AT . T

et L

-2-
boundaries of the finer grids are defined wusing 1interpolation
procedures applied to the coarser grid in which the refinement {is
embedded, We believe that our adaptive methods are the first to use
such a space-time grid structure and find that this is a major factor
in the ef ficiency of the method.

We have only implemented these methods for problems {n one and two
space dimensions over vrectangular domains. Howeover, they can be
extended to general regions using techniques like those used by Starius
{1980] and B, Kreiss [1982] in a straightforward way. These approaches
break up general domains into subdomains which are mapped onto
rectangles. Our mesh refinement approach allows us to easily use
different methods in different regions -- e.g., higher order
approximations where the solution is smocth, and special lower order
methods specifically designed for shocks were they occur. Our
algorithm, which decomposes the computation into regular blocks, can
also be easily used for parallel or concurrent processing.

Adaptive methods have long been used as standard practice in many
of the classical problems of numerical analysis such as quadrature and
ordinary differentfal equations. Our methods are close in spirit to
those discussed by Pereyra and Sewell {1975] for boundary value
problems. The original motivation for our adaptive method can be found
in Oliger [1979].

Other adaptive methods have now been proposed for both time
dependent and boundary value problems for partial differential
equations, Adaptive multigrid methods have been proposed by Brandt
{1977) for elliptic problems. Adaptive finite element methods have

been developed by Babuska and Rheinholdt [1978] and Bank [1981] for

-3

these same problems. Extemsive theory has been developed for these
adaptive methods. Recently adaptive finite element methods have
started appearing for parabolic equations as well (Davis and Flaherty,
[1982]), Gannon [198], Sherman and Seager [1981)). Miller et al.
{1981] have derived moving finite element methods which they have
applied to both hyperbolic and parabolic equations. Adaptive grid
methods for hyperbolic equations in one space dimension have also been
cosidered by Hyman [198l] and Harten and Hyman [198]. Bolstad [1982]
has developed a one dimensional adaptive mesh refinement algorithm
using methods very similar to ours. Dwyer et al. [1980] and Winkler
[1976] have also done adaptive finite difference calculatirns, but
their grid refinement is done in only one dimension. Our algorithms
and data structures are for problems in two space dimensions, and are
readily extended to three dimensions since there are no new topological
difficulties.

In section 2 of the paper we describe our grid sctructure. Section
3 describes the 1{integration algorithm for this grid structure. This
includes the interactions between the grids as well as the technique
for estimating the 1local truncation error, upon which our adaptive
strategy rests. In section 4 we describe our method of subgrid
generation, ardl in section, 5 the data structures used in our method.
Mumerical vesults obtained using our programs 1in one and two space
dimensions are presented in section 6. Our computational results
obtained with the adapt{ve programs are compared with computations on
uniform grids with mesh intervals which are the same as the finest used

in the adaptive computation. We have been able to achieve comparable

accuracy with considerably less cost using the adaptive method.

i

Y.
2. GRID DESCRIPTION

In this section we describe the type of grids we use in solving a
problem with our adaptive mesh refinement strategy. We also develop
the notation and terminology needed to discuss these grids.

At the start of a computation only the coarsest, or base grid is
specified by the user. This base grid, denoted G, , will remain fixed
for the duration of the computation. We use the term grid to refer to
the convex hull of the point set of the grid, rather than the point set
{tself. GO itself may be composed of several possibly overlapping

comporent grids. Thus, we say that grids overlap if their convex hulls

‘have a nonempty intersection. We call each component grid GO I and
3

loosely say that GO is the wunion of 1its components GO,j . Each
component grid is required to be locally uniform in some coordinate
system. They need not form a simply connected domain. 1In addition,
these grid comporents do not necessarily have the same mesh width. For
example, we might use a grid over a region with a boundary layer that
has a much finer discretization than that of the grid covering the
interior of the domain. Furthermore, within each grid the mesh spacing
in the coordinate directions need not be equal. For simplicity of
exposition, however, we {gnore these points and assume GO has mesh

spacing h, = h, = hy on all components Go,j .

b

During a computation, refined subgrids will be created adaptively
in response to some feature in the transient solution, such as the
estimated error in the solution or the appearance of shock fronts. Our
goal 1s to generate the subgrids to hest fit the area of the domain

where they are needed. The subgrids we create are vrectangles of

arbitrary orlentation. By keeping the subgrids locally uniform,

— r————— e

-5-

integrat{on on these subgrids can be very efficient., By allowing the
arbitrary oriantation, it {s possible to have a coordinate system which
is locally approximately normal and tangent to some feature in the
solution, for example a shock front. For some numerical methods, for
example in fluid dynamics problems, it is important to have the flow
basically along a coordinate direction., Mur rotated grids easily allow
for this. In addition, storage requirements can be significantly
smaller by allowing rotated rectangles.

It 1is {mportant to realize that these subgriss are not patched
into the coarse grid. Rather, a subgrid should be thought of as
overlaying a coarser grid. Each grid is defined independently of the
other grids, with its own solution vector, storage, etc. In this way,
each subgbrid can be {ntegrated (almost) indepeundently of the cther
grids. It aiso easily allows £for the possibdbility cf using moving
subgrids, even if the coarsest grid is stationary. By keeping the
grids independent, the alzorithm can be viewed as a method of domain
decomposition, amd 1s well suited for multiprocessor architectures
currently under development., Other authors (Simpson, ([1978]) have
created refined meshes which are connected into the underlying coarse
grid to mke one global grid. In their approach, fine grid points are
merged into the set of coarser grid points. 1In several dimeunsions this
i1s diffiailt to do. 1t destroys the local uniformity of each grid,
substantially slowing down and complicating the integrator, as well as
preventing {ts vectorization. In addftion, {t requires storage
overhead and processing which is typically proportional to the number

of refined grid points, imtead of the number of refined grids.

It {s possible that the fine subgrids will themselves contain even

- e ol

T e

i ———y . . v 1

-f=
finer subgrids within their boundaries, 1i.e., subgrids can be
recursively generated. We say that a point in one grid is contained in
another grid if it 1lies in the convex hull of that grid. A grid is
contained in another grid if all points in that grid are contained 1in
the other. Similarly, a point of one grid is an interior (boundary)
point of another grid if it lies in the interior (on the boundary) of
the convex hull of the other grid. We define the level of a grid to be
the number of coarser grids the fine grid is contained in. The coarse
grid GO is at level O in the grid hierarchy. The subgrids of GO are
part of G, and they are said to be level | refinements. Refined grids
within the G1 grids are at level 2, denoted Gy , and so on. 1In this
way, a nested sequence of grids with finer and finer discretizations
may be created over some portiocn cf the spatial domain. Each such grid

of G

is one grid component, demted Gz .

. where G, consists of
] L
those grids at level 2 in the hiararchy haviag mesh width h, . A peiat
in the problem domain may therafore be interior to several grids, but
the approximate solution at that point is defined by interpolation from
the finest grid to which that point is interior.

In practice, we assume a set of possible mesh discretizatiouns

{ho,hl,hz,...,h has been specified in advance where each hl is an

max}
integral mltipie of hy41 o Agood choice for this refinement ratio
will depend on how much of the domain needs what amount of refinement.
If only one part of the domain needs to be in a fine grid with nesh
width hj = ho/r , it {s more efficient to create one level of
refinement with h; = hy/r than two levels each with a ratio of /T, In

general, however, not all areas needing refinement will need the same

amount of refinement, arguing for smaller values of the refinement

-7~
ratio r. Since there {s some overhead assoclated with refined grids, we
prefer a refinement ratio of 4 over the ratio of 2 typically used with
mltigrid methods. Irn special cases where it !s expected that all
areas needing refinement will need a lct of {t, higher values of r can
be used efficiently.

We emphasize two points about the grid hierarchy. If at some time
during the computation there is a grid with mesh width hl , we require
that it be contained in a grid at level L-1, which in turn is required
to be contained in a lavel £-2 grid, and so on to the coarsest grid.
All 1{intermediate grids between the finest and coarsest are maintained.
Furthermore, each point {n a fine grid at 1level £ mst be 1in the
{nterior, not just on the boundary, of a grid at the next coarser
level, unless it {s on the physical boundary of the domain.

Second, not all points in a fine grid ara interior to the sanma

coarse grid. We call this tyvpe of nesting level nesting. Figuvre 2.1

Gy,1

G o,

Figure 2.1 Sample Grid Structure

P

rym,

-8~
{1lustrates how the grid at level 2 is nested in the union of grids
Gl,l and GI,Z at level 1. Figure 2.1 also {llustrates the complication
in two or more dimensions of overlapping refined grids, which we
discuss later, In one dimension, where a grid {s just an interval,
level nesting 1is identical to straightforward grid nesting, and
overlapping of fine grids does not occur, Grids at the same level of
refinenent with the same mesh width are either disjoint or else they
are merged into one grid spanning a larger interval.

In sum, using the 1ideas of {ndependent component grids and
recursive refinement, a hierarchy of nestad grids {s formed. The

complete grid structure is denoted

G=UGgG ,
2
where the grid structure at level 2 s the uniorn of rectangular
components
Gz = U Gz,j .

h|

-9~
3. INTEGRATION ALGORITHY

In this section we desciibe the integration algorithm that we use
to solve a hyperbolic pde using mesh refinement. There are three main
components to this algorithm. They are (i) the actual time integration
using finite differences that 1{s done on each grid, (iil) the error
estimation and subsequent grid generation, anmd (1{i) the special
grid-to-grid operations that must be done every time step during the
integration that arise because of mesh refinement itself. We describe
these three components in turn.

Since eazh grid {s defined as an independent compu {onal entity,
with its own solution vector, each grid can be 1integ ed in time
{ndependently of the other grids, except for the dete ion of its
boundary values. We must then consider the questicn of which grids co
integrate when, and determine the order of their integratinn. This is
made easy however by the following requirement.

Recall from section 2 that {n our grid formulation, the mesh
widths hz of grids at level £ are an integral factor r of the mesh
width hz—l of the next coarser level. We use the same factor to set
the ¢time step on the level £ grids, k2 = kl-l/r' In this way we keep
the mesh ratio A of time step to space step comstant on all grids.
This makes our algorithm one of mesh refinement in time and space. One
of the main reasons our merthod 1is efficient 1is because the overly
restrictive small time step of the finest grid is not applied over the
entire danmain.

This constant mesh ratio A makes it easy to deteémine the order of

grid integration. The steps are interleaved so that before advancing a

grid, all {its subgrids are integrated to the same time. At every

-10=~

coarse grid step, all grids should be at the same time. One coarse
grid cycle is then the basic unit of the algorithm. Fig. 3.1
{1llustrates this in one space dimension and time.

Since our refined grids are rotated rectangles, the difference
equations must be transformed into the rotated coordinate system. This
can be done 1in an automatic way, so that the integrator, which is
supplied by the user, can be separated from the adaptive nesh routines.
For standard finite difference equations, this can even be done in a
conservative way (Viviand, (1978]), which is important for problens

with discontinuous solutions. To solve

kg
yi =Y
< Gz,l ?
x 4
¢ G 1 4

)

Figure 3.1 1D SPACE TIME MESH

u, = flu) + g(U)y

under the more general conrdinate transformation

r = r(x,y)

s = s(x,vy)

%(u)r + ;(u)s

and J i{s the determinant

det {

We point out that it is sometimes not necessary to transform the
difference equations for each grid. If the phvsical problea is
invariant to translation and vrotation, we can use the identical
difference equations on each grid. It can also happen that the

difference scheme {tself is invariant under rotation. Jameson [1974]

-12-

By PRl

has proposed a rotated difference scheme for transonic flow

calculations. The rotation {s built {nto the scheme to be able to

properly difference the Jotential equations in the streamline and) }
normal directiouns.

Finally, we note that it is sometimes beneficial to use different
integrators in different regions of the solution. For example, {n a

shock problem one might use a first order integrator on a refined grid /

around 2 shock, and a higher order method elsewhere. Another approach
could be to use a more expensive method such as the Glimn scheme only
'
r
on refined grids, and a less expensive integrator on the coarse grid. ;

One can also solve different equations on different grids. For

example, it {s possible to only add artificial viscosity on a fine grid

(around a shock zone), or solve boundary layer equations oalv on a

separate grid in the boundary layer. Several integration nmodules can
be easily supplied by the user without any further changes to the mesh
refinement program.

Error estimation and the subsequent regridding operation 1is the
second mjor task of the mesh refinement algorithm. This is where most
of the computational overhead of the method lies. Every several time
steps, we estimate the error at all grid polnts and possibly create new
fine grids or remove those no longer needed. If a new fine grid {is
created, 1its 1initial wvalues are interpolated using the finest grids
from the already existing grid structure. Nothing need be done to

remove a grid that {s no longer needed except reclaim its storage

space.

We first discuss how often the error estimation should be done,

and then the procedure we use to do it. 1In hyperbolic problems, one

-13-
can estimate the speed of propagation and calculate how fast some
phenomencn needing to be in a fine grid will move. If we add a buffer
zone around the fine grid we can lengthen the time {interval over which
grids are appropriate, and thus lengthen the interval between the
regridding operations. The larger this buffer zone the less often we
have to regrid, but the more work it is to integrate the extra points
ia the ffer zone.

Typical calculations give an optimal regridding frequency of
approximately every 3-4 steps. If there are many levels of refinement,
we apply this result at each level. The finest grids mwmust be moved
more often than the coarsest grids. We call the same regridding
procedure with a base level which is finer than the coarsest level.
The base grids stayv fixed, and finer subgrids will be created within
the boundaries cf the grids at the hase level according tn the proper
nesting restrictions of section 2,1. The potential problem here is
that a refined grid might move off its base or not stay sufficlently
far away from the base grid boundaries. If this happzns, it is
probably time to move the base grids as well.

Finally, we use estimates of the local truncation error to decide
where to refine the grid. There are two reasons for this., First, we
were motivated by the convergence results of (Gustafssom, [1973]) for
initial boundary value problems for hyperholic systems. Under some
assumptions that are mostly about the Cauchy stability of the
difference approximations ard stability in the sense of Kreiss for the
initial boundary value problem, Gustafsson sh;ws that {f

(1) the local truncation error = khmdv(t)

14~

(11) the initial error of the approximation = hBev(cAt), g =

01,...,s

i

{(111) the error for the boundary approximation = thv(t) ' i

where d,e,f are bounded functions, and {f B8 » m, then the convergence :

rate {s order m. Mesh refinement can control these errors by decreasing
k and h in those regions where |h"d,(t)] or Ihsfv(t): are too large.

Gustafsson’s results are for nonadaptive, uniform grid

calculations. More racently, Oliger [1982] has a convergence result

for adaptive mesh refinement under some stronger hypotheses than those
of Gustafsson. Experimentally, the expected rate of convergence 1is

observed along with the expected decrease in constants when the local

L eI TOLLT

truncation error tolerance (that 1is, the refinement criteria) is

s

reduced.

To estimate the arror, we use a method basad on Richardson
extrapolation. For simplicitv, let 9 be a two-level explicic
difference operator. If the solution 1s smooth enough, the local

truncation error is

q1+l q2+l\

u(x, t+k) - Qu(x,t) = k(kql a(x,t) +h2 b(x,t)) +k O(k +h*)
(3.1)

+1 +1
=t +k okl +1%27

where we denote the leading term by 7. If u is smooth enough, then If
we take time two steps with the method O, to leading order the error is

2t,

+1 +1

u(x, £+2%) = Q% u(x,t) = 2r +k 0(k

-15~
Let Q2h be the same difference method as Q but hased on mesh widths of
2h and 2k. Also, assume the order of accuracy in time and space are

equal. q = 93 + Then

u(x, t+2k) = Qpuulx,t) = (2k)((2k)T a(x,t) + (20)T b(x,t)) + 0(h1*2)

= 29%l ¢ 4 o(nd*2y .,
Since u(x+2k) - Qzu(x,t) Z 21, by forming the difference

Q%u(x, t)=Qppu(x, t)

=t +0(hd%2y | (3.2)
2a+l _ 5

we get an estimate of the local truncation error at time ¢, In wouds,
we take one giant step based on mesh widths of 2h and 2k using the
solution at time t, and compare {t with the solution obtained by taking
two regular integration staps to obtain the pointwise error estimate.
This {s {llustrated schematically in Figure 3.2.

This procedure has several points to recommend it. First, it {s
not necessary to know the exact form of the truncation error to apply
it. The functions a(x,t) and b(x,t) in (3.1), which involve higher
derivatives of the solution, need not be known explicitly. Especially
for systems of equations in several wvariables, it can be quite
difficult to compute the exact form of the error. Not only is our
estimator independent of the pde, the error estimation procedure is
i{ndependent of the difference method. This 1s important if mesh
refinement 1{s golng to be generally applicable to a wide variety of

problems without an inordinate amount of programming. The exact same

-16-

Figure 3.2, Richardson Error Estimation Procedure

user-supplied method of integration can be used for the error
estimation. The restriction of this procedure, that the accuracy in
time and space be the same, is not a seavere one. “Marmy popular finite
difference methods fall into this category, for example, second order
methods like Lax-Wendroff or MacCormack’s method, and Leap Frog, and
first order methods such as upstream differencing. For methods where
the accuracy in space and time 1s not the same, a more expensive
variant of this procedure is possible. For example, one could estimate
the spatial and temporal error separately, by first keeping k constant
and taking a step based on 2h differences, then keep h constant and
take a step with time step 2k. Other varfations are possible too.
Finally, we mention that for nongmooth solutions we no longer have
an accurate error estimate. However, the Richardson estimates still

provide a good criterion for refinement since near a singularity the

estimate will probably be large. For plecewise constant {initial

-

-

Y

-17-

condi tions, the Richardson algorithm gives an estimate proportional to
the junp in the solution.

The last major component of the mesh refinement algorithm conceras
the interaction between the component grids, There are three tasks
which fit wunder this heading. The first of these deals with
boundaries. Refined grids have boundaries which are in the interior of
the problem domain, and so they will need boundary values not supplied
with the pde. These values can be calculated in three ways. First, {f
a boundary point 1s in the iaterior of a different fine grid, we can
get the boundary value at the next time step from the interior
integration of the {intersecting grid. If there are no intersecting
fine grids, the boundary values are calculated using values from
underlying coarse grids. We use either the Coarse Mesh Aprroximaticn
Method {Ciment, [1971]) or interpolatiorn from a coarser grid to get the
boundary values. In Berger [198] we prove that if we use Lax Wendroff
as the interfor difference scheme with either of these interface
equations, mesh refinement {n time and space by any integer is stable
in the sense of Xreiss. In addition, stable boundary conditions have
been derived which maintain the conservation form of the difference
scheme at the interface between the fine and coarse grid. These will
also be reported elsewhere.

The second item of intergrid communication {s updating. If a fine
grid is nested i{n a coarse grid, then when they are integrated to the
same point in time the coarse grid values are updated by injecting the
fine grid solution values onto the coarse grid points. If grid points
do not match up at regular {ntervals, {nterpolation is used to find the

value from tha fine grid which replaces the coarse grid value. For

-18-
explicit methods, 1t 1{s only necessary to update as many coarse grid
polnts at the perimeter of the fine grid as the number of points in the
stencil for the coarse grid integrator. For implicit methods, it is
necessary to update the entire coarse grid, and {n fact, some sort of
averaging might be desirable before injection onto the coarse gzrid.
This is similar to the residual weighting used 1in multigrid methods
(Brandt, [1977]).

Updating 1s necessary for two reasons. If the coarse grid is unot
updated, the solution can become so dispersed and dissipated that after
a while it will look as {f refinement is no longer necessary. Second,
this prevents a trair of bad values on the coarse grid from spreading

into the buffer zone and contaminating the values that will be used for

the boundary approximation for the fine grid.
The last grid communicatlion task {s that of averaging. This only

arises when two subgrids at the same lavel of refinement overlap. In
gr

general, the region of averlap 1s at most a few coarse mnesh widths
wide. Still, the question arises when updating the underlying coarse
grid, which fine grid should inject the solution values. The solution
on either fine grid is as accurate as the other. Since they are only

overlapping by O(h) widtt, and they are coupled through the boundary

y
values, the solutions do not diverge from each other. However, if one }
i3 not careful about injecting onto the coarse grid, thee can be a jump E
in the solution representation on the coarse grid. So far, this has K
only been important for graphical output,

The overall mesh refinement algzorithm is presented {n Figure 3.3

in outline fomm. it can be written quite simply as a recursiva

— e ——————

-19~
procedure. Of course, in writing the mesh refinement pregram

Fortran, we have converted it to an iterative procedure.

Recursive Procedure Integrate (level)

Repeat (hf/hc)level t imes
Regridding time? =~ error estimation for grids at level
Step Aty . o1 On all grids at level (level)

If (level + 1 exists)

Then Begin
Integrate (level + 1)
Update (level, level +)
End
. end
level = 0 (*coarsest grid level*)

Integrate (level)

Figure 3.3. Coarse Grid Integration Cycle

in

level and finer

-20-
4. CLUSTERING AND GRID GENERATION

Much of the success of this adantive mesh refinement algorithm
lies in the generation of efficlient subgrids. The {dea {s to estimate
the error at all grid points {n level & grids, and flag those polats
where the error (or some other measure for determining the need for
refinement) exceeds a tolerance ¢. The grid generation procedure
creates a new level of grids with mesh width h2+l so that every fliagged
po.t is in the interior of a fine grid. The cost of deciding where
fine grids are needed, and generating them, 1is small since it 1{is
proportiomal to the number of coarse grid points. The most expensive
cost is the cost per step of integiating the fine grids, which {s
proportional to their area. Thus we seek to minimize the total area of
these refined grids. In addirion, we want tn create grids whose
coordinate lines are approximately aligned with the solution,

More precisely, when {t is time to regrid, a new grid level mar be
created, an existing ievzl recreated, or no longer necessary existing
levels removed. Sven if a fine grid should simply be translated in
some direction we use the more general approach of creating a new grid,
and 1inftializing {t with solution values taken from the old refinement
before it is deleted.

The outline of the regridding algorithm is as follows. Suppose
the current grid structure G has £ levels. Based on the error
estimates of level £, we might create new grids at level £+1. Next,
based on estimates from the (larger) level i~1 grids, we recreate a new
level £ , making sure it includes the new level 2+1. Continuing, the

error estimates on 1level £-2 are used to generate level £-1, making

sure level 2 1is properly nested, and so on to the coarsest level. It

e e

-21-
is important to work from the finest to the coarsest levels, even
though this entails the extra work of ensuring proper level nesting.

This way, grids are generated using the most accurate error estimates

taken from the finest grid at any given point.

Thus, for each existing level of grids, we apply the same

procedure to generate the next finer level. This regridding procedure
consists of four steps:

(1) flag points needing refinement

(2) cluster the flagged points
(3) generate a grid for each cluster
(4) evaluate, possibly repeat,
Steps (2) and (3) are the difficult steps.
The first step in the algorithm i{s to identify those grid points

at level & which need to ba in a finer grid at level £+1. In section 3

X = FLAGGED POINT

2
Y S S N N P {
T T XXX T Ch F*T %? & %(1 { % i
|] !] |)
I] T X X X v C% -% \ % *i ‘k k 1
OLD GRID STRUCTURE NEW GRID STRUCTURE ‘ H

Figure 4.1, 1D Regridding Algorithm

-22=
we discussed the use of local truncation error estimates in deciding
where these refined meshes are needed. Using the procedure described
there, we estimate the error at all grid points at level £, flagging
those points X where e(x) >e. At this step we also flag grid points
in level % grids which are interior to grids at level (+2, even if e(§)
< ¢ based on the level 2 grid. Since each flagged point at level &
will be in a level 2+l grid, proper level-nesting 1s assured.

The second step of the algorithm 1s the separation of flagged
points into distinct clusters. . In step three, each cluster will be fit
with a fine grid containing all the flagged points of the cluster. We
describe the procedure for the one dimensional case here separately.
Since in one dimemsion a grid is Jjust an 1interval, cluscefing is
trivial anmd can be done concurreatly with grid generation. The
leftmost and rightmost flagged points of the coarser grid form the left
and right boundary of the new subgrid. The cluster in this case would
consist of all flagged points between and including the leftmost and
rightmost flagged points. Possibly, if a long enough gap of unflagged
points {s found, two or more separate subgrids may be formed instead.
The exact definition of long enough depends on the size of the buffer
zone. After a grid is created, it will be enlarged to include a safety
zone around all {its flagged points. Recall from section 3 that this
buffer zone determines how often grids must be examined versus how
large they are. he size of this buffer zone i{s what determines how
large the {ntergrid spacing should be. Flagged points which are closer
together than twice the sfize of the buffer zone should be in the same

grid refinement.

Figure 4.1 {llustrates the regridding procedure in one dimension.

-23
On the left {s the grid structure before regridding, and on the right
i{s the new grid structure. The x's are the grid points which have been
flagged with high error estimates. The grid structure is {llustrated
schematically by drawing each grid geparately, instead of superimposing
them, We have used a buffer width of one coarse grid point in this

{llustration.

2D Grid Generation

The clustering algorithm serves two purposes: one is to separate
spatially distinct phenomena so that different features of the solutien
will be in separate grids. The second purpose is to subdivide points
when one rather large vregion should be fit wi. i several grids. This
situation {s {llustrated in Figure 4.2, f the entire front

(represented by the darkened 1ine) were fit with one large grid, it

Flgure 4.2, Multiple Grids - One Front

-2 4=
would have an unacceptably large area of refinement. If we had some
{nformation about the directional layout of the points, a smart
subdivision of the points could be made.

It is very tricky to find a general clustering algorithm that 1s
almost foolproof and is not very expensive. Our approach is to start
with a simple algorithm which werks {n the easy cases, and try to
detect when it does a bad job of clustering. In these cases we use a
more expemsive algorithm, and try to tailor it to the special cases
when the first approach falls, We are lucky to be able to draw on the
large literature in pattern recognition and Artificial Intelligence i
(see, for example, Duda and Hart, [1973); Hartigan, [1973]). There are
algorithms for feature extraction or edge detection as well as =aore

general clustering algorithms with goals similar to ours. We report 1

here on the simplest clustering algcrithm in two dimensions, and refer
the reader to Berger [193&] for a detailed discussion of alternatives.
However, this is still an open problem where more research is needed.

The first approach we wusea to cluster points {s the nearest
neighbor algorithm. The nearest neighbor algorithm forms clusters
which are distinguished by having interpoint distances for points in
the same cluster smaller than the i{ntercluster distances. We start
with one point forming a new cluster. Successive points are included
in this cluster i{f the distaace from the point to the cluster is less
than some specified tolerance, whch we usually take to be two mesh
widths.

The nearest neighbor algorithm is very successful in accomplishing
the first goal of clusteing, but fails in the second. In these cases

we use special data structures, such as minimal spanning trees and

M“ aki . W > P — . _ j

-2 5=

relative nef{ghbor graphs, to organize and process the points into
separate clusters. These data structures possess certain properties
that should also hold for points in the same cluster. For example, two
points in the relative neighbor graph are connected if no other point
is closer to both of them. Once the points are coannected to each other
in an organized way, we use an iterative method of grid generation,
Starting with a core group of points, the algorithm proceeds by merging
the points connected to the core cluster through the data structure and
immediately gererating the fine grid to the new cluster, until no more
merges can be successfully done. A merge is considered successful if
it has an acceptable efficiency evaluation. This is step 4 in the grid
generation algorithm.

Our practical criterion for measuring the efficiency of a new grid
uses the fraction of the area of the rectangle vhich 1is unnecessarily
refined. This can be estimated quickly by taking the ratio of flagged
points to the total number of coarse grid points in the new fine grid.
If this ratio falls below a cutoff tolerance, typically between 1/2 and
3/4, the merge {s rejected, and the oprevious cluster remains. The
pictures in Figure 4.3 1llustrate the different subgrids that are
formed using the efficiency parameter indicated.

A last important observation is that once we have good clusters
they do not change very fast. 1If at some initial time an expensive
clustering algorithm is used, the same clusters can continue to be used
for many time steps. Flagged pints can be grouped in the same clusters

they were grouped in at the previous step, and only the orientation of

a new refined grid need be calculated. If grid points are flagged on a

Ef f{ciency of Subgrids

Figure 4.3.

-27~
section of a coarse grid not previously refined, the flagged points
should be added to the nearest cluster,

Given a cluster of flagged points, the next step {s to generate a
rectaﬂgular grid so that grid lines are in some sense aligned with the
points. The rectangle should have as small area as possible to
minimize the work of integrating that grid in time. The algorithm we
use for this first determines the orientation of the rectangle, and
then the length of the sides nesded to enclose the poincs. For
simplicity we present it in two space dimensions, but {t generalizes
immediately to higher dimensions.

Let A be the n-by-2 matrix of the coordinates of the n flagged
poiats, and A the matrix of the same dimension with the x and y

m

coordinates of the mean of the points, (x“,ym). The matrix 4% =

(A-Am)t(A-.f\“), where

1 N Xn Ym
A = . . Am =1 .
*n Yn | *n Ym |
and
2_.2
Ly x{=%p Ly ®¥{%Xp¥n

Mt =
2 2

Ly ¥{™Xn¥a Ly Y ~ Vg
contains the second moments of the poiats about their mean. This

matrix M*M determines an ellipse with the same first and second moments

as the original set of points (Cramér, [1951]), and so provides a good

-28-

approximation of the layout of the points. Since MM {s real and
symmetric, it has two real eigenvectors. These eigenvectors are the
major and minor axes of the ellipse. We use these elgenvectors to
determine the orientstion of the ractangular subgrid. This algorithnm
is invariant under translations and rotations of the points, and {is
extremely simple. It is easy to find the eigenvectors since M™™ s a
2-by~-2 matrix. Furthermora, 1f clustecring is done concurrently with
grid generation, the first and second moments can be updated instead of
recalculating them for every additional point. A similar technique of
clustering and fitting ellipsolds has been used by {(Gennery, [1979])
for stereo vision processing. The goal of his work 1is obstacle
avoidance for exploring vehicles, for example, the Viking lander’s
exploration of Mars.

Once the grid orientation has been determined, the dimensions of
the rectangle are «calculated to 1include all points in the cluster.
This is the expensive part of the algorithm. We take the dot product
of a point with the orientation vectors for every point in the cluster.
(Some of this work can be avoided if the convex hull of the set of
flagged point 1is kept. For {iterative algorithms, there are also ways
to update the convex hull of a set of points for the addition of new
points.) Once the dimensions of the rectangle are calculated, a buffer
zone of predetermined size is added around the rectangle perimeter to
complete the new subgrid.

Two additional points will complete the discussion of the
regriddinrg algorithm. As outlined above, this algorithn creates one

new level of refinement for each dinvocation. For time dependent

boundary conditions, {f no assumptions are made on the smoothness of

-29-
the boundary data, an incoming wave might need several new levels of
refinement for {t to be well resolved. To handle this case, the error
estimation and grid generation procedure can be re-applied to a newly
created fine grid at che boundary to see {f even finer new grids are
needed.

Finally, we mention that the irnitial grid creation at time ¢ = 0O
employs a slightly different strategy than the regridding procedure
used at later times. Oaly at this time can we take advantage of the
initial conditions specified with the problem. For example, when a
level 1 refinement {s created, it {s initi{alized using the inicial
condit{ions rather than interpolation. The error estimation and
regridding procedure can then be appliad again on the level 1 grids to

see {f e2ven finer =ubgrids are needed, and so on, until a pointwise

error estimate e(x) < £ holds at all poiats.

—ts

~30~

5. DATA STRUCTURES

The data structures in our adaptive mesh refinement strategy turn
out to be surprisingly simple, although crucial to the feasibility of
the entire approach. A structure is needed which keeps track of the
relationships between the grids, as well as the solution storage for
each grid.

We will first describe the data structure we use in one dimensicn.
A generalization of this data structure is what we use in two or more
dimensions.

Recall from section 2 the nesting requirement for one dimensional
mesh refinement: each fine grid must be entirely contalned in a coarser
grid at the next level. We use this to define a tree data structure,
where each node represents a grid, and make a correspondence betweeun a
parent (of a) node, and a coarser, parent grid. Subgrids are
considered the offspring of thelr parent zrid. Siblings are subgrids
within the same coarser grid., If ftine grids are at the same level of
refinement with different parents, we call them neighbors.
Technically, we use an ordered tree data structure where each node «can
have mltiple descendents. In this representation, we see that a node
will have multiple descendents if the coarse grid corresponding to that
node has several fine grids contained in it. In this one dimensional
case, it i{s also possible to order the nodes using the coordinate value
of the left-most grid point in the associated grid, Figure 5.1 shows a
grid structure and 1ts related tree structure.

All the grid-to-grid operations, such as fine grids updating

coarse grids and setting internal boundary values for fine grids, have

an {nformation flow which follows path links in the tree. The only

Q’G,, - <+ G2 ™ "01,3 >

LML L T Hll’
1

Il |li||| | T 11

<>
GZJ Ga2.2

+a— Qo1

‘7

‘ 4
i Figure 5.1. 1D Data Structure |
%
‘ nonstandard 1link in the tree i{s for the neighbor pointer we described
)
il above. This thread is indicated by the dashed 1line in Figure 5.1.
i This additional link makes it easy to {implement the operation of taking

one integration step on all grids which are at the same level of

refinement.

Because this tree structure can grow or shrink dynamically, some ;

form of dynamic storage allocation 1is needed, both for the grid

information {n each node, and the solution storaga for each grid.

o,

Since Fortran does not provide such a facility, the storage management
mst be explicitly provided by the mash refinement program. We keep a ¥

linked list of free nodes which are assigned to newly created grids and

[

o b e m e 74 e T

~32-

reclaimed when a grid is removad, Sometimes when the regridding
procedure is called, it is to move grids on only the finest levels.
The coarser level grids stay fixed. 1In this case, the top half of the
tree will remain as is. A new bottom half will be generated, and the
two halves connected., Although the number of nodes in the tree vary,
we would like each node to contain a fixed amount of information to
represent each grid. Since the number of offspring of each node is
variable, the tree is implemented with each ncde having an offspring
pointer only for the first descendent, with one sibling poinfer per
node te connect the rest of the subgrid nodes (Knuth, (1968]).

A grid then s characterized by the following piecés of
information stored in each node of the tree.

1) G6rid location

2) Number of grid points

3) Level in tree

4) Offspring pointer

5) Sibling pointer

6) Parent pointer

7) Pointer to the next grid at the same level

8) Time to which this grid has been integrated

9) Index into main storage array where approximate solution values
are stored.

The same information characterizes two dimensional grids as well.
However, the two dimensional wversion of this data structure is nmore
intricate than the one dimencinnal version since in two dimensions a

grid can be partially nested in more than one coarser grid. An

additional complication is that grids at the same level of refinement

L maye =

et SR i i AL 74 4

-33
can intersect. Finally, in two dimensions there {s the possibility of
having several base grids GO,j in an in{tial domain specification. We
have generalized the ne dimensional data structure to account for these
differences i{in the following way. We start with an n-tuply rooted

tree, where each of the n root nodes correspond to a component grid in

the coarsest mesh., Technically, a tree with more than one root {is
called a forest, which is simply a collection of trees. Next, since a
subgrid can have many possible parent grids, we replace this single
slot of information in each node with a pointer to a short linkedfist
of parenc grids. Lastly, we add to the information for each grid a
pointer to another linked list of {ntersecting grids at the same level
of refinement. Schematically thiec data structure {is {llustrated in
Figure 5.2.

The final data structure used 1in our mesh refinement program
manages the large array which 1s the storage area for the solution
values on all grids. For problems in p space dimensions, we use a
p~dimensional array. For vector rather than scalar problems, we use a
ptl dimensiomal array where the extra dimension is the number of
variables in the problem. This storage area is managed as a linked
list of used and avaflable blocks of storage. When a grid is created,
contiguous storage space is reserved from the sorted 1list of free
blocks using a first-fit algorithm (Knuth, [1968])., 1In this algorithm,
the list of free blocks of storage {s scanned until a large enough
block 1s found. The requested space {s allocated, and the unused
portion returned to the list. Reclaimed space, which occurs when a
grid 1is no longer necessary, is inserted back into the linked 1list of

free space. For quick memory access, space i{s never allocated in a

)
)
|

~34m

level0 —

Go,1

G QQZ‘ level 1
N

GD.Z level 2 —_

Figure 5.2. 2D Data Structure

circular fashion across the array bLoundary: all memory allocation mist
be contiguous. A compaction, or garbage collection, routine could be
included to provide for case where there 1s enough total but
noncontiguous space available 1{in this array to satisfy a storage
request. However, as Knuth {1968] reports, if storage 1s too
fragmented to service a request, compaction usually adds only a few
more transactions before space 1is exhausted. A routine which would
allow the user to restart with a larger memory area would be wore

useful,

= 0 St i it N N e o s B o s i s

=35~
6. COMPUTATIONAL FEXAMPLES

In this section we will present some numerical experiments in one
and two dimensions to i{llustrate how our adaptive mesh refinement
algorithm works. Our procedure for comparing results is the following.
We solve each problem with mesh refinement with a specified coarse
grid, a maximum number of levels of refinement, and an error tolerance
which is the criterion we use in deciding to refine a grid. We conmpare
the solution to that obtained on a uniform grid with first the
coarsest, then the finest (if possible) mesh spacing used in the mesh
refinement calculaticn. We measure the computer time without I/0 costs
(vwhen possible) and the error in the solution., In all these cases, we
compute the 2 norm of the error at only the coarse grid points. In one

dimension, this means we compute

[~

lerrod, = "4 1. error(x =ihc)2 ’
c n

i=1

and similarly in two dimensions. For the fine grid this means we
compute the error only at every h_/h¢ grid points. The one dimersional
examples were run on an IBM 370/168 using the Fortran H Extended
compiler, optimizatfon level 3. The two dimensiomal examples were run

using the same compiler on an IBM 370/308l.

Example 1. Shock Tube Problem
In this example, we compute the solution to the shock tube problem
in one space dimension. This P{emann problem {s taken from Sod [1978)

where {t was used to compare a numbher of methods for solving gas

dynamics problems. The 1initfal conditions are chosen so that the

-36-
solution contains a shock, contact discentinuity, and a rarefaction

wave. The problem is:

u, = f(u)x

for 0< x< 1, and 0 < t € 0.15, where

[D [pu
u= pu , f = ooy P

2
P
e %+ p)
o]

Here, p is the density, e is energy per unit volume, u is velocity, and

m is the momentum density pu. The equation of state {s p = (y-l)pe,
where we takey = l.4 and e 1is the internal energy per unit masse = e
- % puz. The initial conditions we use ave
u(x,0) = 0
1.0 , if %<0
p(x,0)
{ 0.1, if x>0
1.0 , if x €0
p(x,0) =
0.125 , if x>0

The integration method we use is the two-step Lax-Wendioff schene.
The <coarse grid step size is the same as in Sod [1978]. Reflecting
boundary conditions are used. Hopscotch artificial viscosity 1is used
to smooth the solutiva. The coefficient of the hopscotch artificial
viscosity was the same for all but the uniform coarse grid run. For
the coarse grid this 1led to too much smearing and so a sraller

coefficient {s used.

i
{
|
!

-37-
The parameters for the mesh refinement <calculation are shown

below.

buffer size 4

grids move every S steps
error tolerance 0.0005
refinement ratio 10

A 0.1

In Figures A.l1 and 6.2 and Table 6,1 we show the results of our
tests., Flgure 5.1 shows the solution, and Figure 6.2 the plots of the
errors. In this experinent, we have done two uniform zrid runs with a
mesh spacing of 0.0l, ard 0.00l. We compare this to a two level =mesh
refinement wun with a refinement ratio of 10, and a three level
refinement run, which means the mesh spacing on the finest grid 1is
0.0001. During the calculation, the aumount of the coarse grid which
was refined varied from 20 % to 70 %.

The most interesting results here are that in less thar 'ne fourth
the time, mesh refinement is able to calculate a solution which is as
accurate as the uniform fine grid calculation. As we see in Figure
6.2, most of this error is due to the smearing of the corners of the
rarefaction and contact discontinuity. To improve the calculatiocn of
the contact discontinuity, a better method than Lax-Wendroff should be
used,

Table 6.1 shoss the computation time and the t«1, errors for the
c

Coarse Only Soln for t=.15 Fine @nly Soin t=.15

102 El T v l LIRS l AR l 1 1 l LG 1.2 El LB l IR R l TR TI DR LS I LR BRI 3

0.8 - — 0.8 -
3 3 E

0.6 —5 0.6 -

0.4 & 3 0.4 -
E 3 3 3

0.2 — 0.2 - —3 ,
t1 | IS l L . ,l' ') R l I o J_l_LLLL‘ : ‘ IS IR | 1) .l ‘ Y

0'00 0.2 0.4 05 08 1 0'Oo 0.2 0.4 0.6 0.8 !

2 level Mesh Refinzment, t=.19 3 level Mesh Refirsment, t=.12
A o IR R o
112 E|T_rl—[_rl Tt ljti‘]fl—» 1 l M 1.4 :1711Tn ‘Tr‘ ; ' j
L0 & 3 1.0 E
3 E : E
0.8 £ 3 0.8 & j
E 3 F
0.2 ; =3 0.2 —3
0'0 E! 1;!4 ’ A , It ‘ I 0.0 EA Lol od] L il g
6 0.2 0.4 03 08 1 0 0.2 0.4 0.5 0.3 1

Figure 6.1, Solutions for Riemann Problem

-

-39~

Error For Coarse only Error For Fine only

Ilrl]’ﬁl erll 1|x‘|T]7Tr TIrYvY Tr!liTIf]]fll]llfi]W

0.04
N

4

0.04
0.c2
0.00
-0.02
-0.04
-0.C6

0.02
- 0.00
-0.02
-0.04

008
0 02 0.4 0.6 0.8 1

'l"” n"lnu"
HIHULJJL’HHI“LLL

_

lIlllT'Il'Illll ll’l'll‘r"v'

A lLILlllllLLLlllllllLllllll

0 0.2 0.4 0.6 0.8

E

—

Error for MR 2 [evels Error For MR 3 levels
0.04 i-!ﬁ]'_llﬁlll.*rl‘.];}1||| T

' 0.02
0.00
-0.02
-0.04
-0.06

rfll’}T’rT'—iYIYAITTrTerlI’I

0.04

0.2

0.00 !
-0.02
-0.04
-0.06

]

llLlllllJl]_LllLlllLL]JllJll—
lllllllllll[llllllllllllllll

llr"lTlI1‘rllll" lﬂ'll'll

_Il""'l'Y"‘ll'“ lrrvlrrrr

ll[l_Lll_LllLl[ilealjll

0 0.2 0.4 0.6 0.8

lLl'jl'-’ll]l‘ 1"f||l
0 0.2 0.4 0.5 0.8

"
[

-

Figure 6.2. Ervors for Riemann Problem

-40-

four computations. There are a large number of floating point
underflows, each of which {s hendled very {nefficiently as an interrupt
to the processor. This skews the timings and so the correct asymptotic
ratio of fine to coarse timings of !90 is not observed.

An Important feature to note here {s that while a refinement by hg
(which {s a factor of 100) is possible by using mesh refinement (given
our computing resources), a computation with a uniform hz grid would
not be possible (it would take abcut 347« 102 seconds, or about 9 and a

half hours).

j me thod h Ietrorﬂzc time
(secs)
coarse 0.01 2,14 E -2 7.36
fine 0.001 1.15E -2 347
MR 2 lev hg = 0.001 1.15E -2 79.9
MR 3 lev he = 0.000!l 6.53 E -3 591

Table 6.1. Results of Computations for 1-D Nonlinear Example.

Example 2. 2D Rotating Cone

The rotating cone problem has been used by Cottlieb and Orszag

[1977] to compare numerical methods for convection problems. The
problem {is:

up = yuy = Xuy

0, if (x -

u(x,y,0) =

1 - 2((x - %)2 F 1593, 1f (x - D2+ 1.5 y2 <

(3%

-4~
on a recangular domain -1 < x< 1, -1 < y< 1, and 0 < ¢t < 3.375, The
solution to this problem {5 a cone with elliptical base, which rotates
counterclockwise about the origin. We {ntegrate the solution until the
cone is approximately halfway through the first revolution.

We use Lax~Wendroff as the incegrator. The boundary conditions
are zero inflow and first order extrapolartion outflow. The parameters

for the mesh refinement calculation are:

buffer size 2

grids move every 8 steps
error tolerance 0.001
refinement ratio 4

A 0.25

In Figura 6.3 we show snapshot views of the location of the one subgrid
in this problem at various intermediate time stens.

The results of this computation are what we would expect. The
mesh refinement computation achieves about the same error as the
uniform fine grid in about one sixth of the time. In ttis example, we
can also get a rough estimate of the overhead of the method. A uniform
fine grid run should asymptotically take 64 times the computer time for
the coarse grid run. This is because the grid is refined by 4 in both
coordinate directions, and there {s a factor of 4 for refinement {a
time as well. 1In this rotating cone problem, voughly 12 % of the grid

is refined during the computation. Adding !2 % of the cost of the fine

grid run to the coarse grid time gives an estimated time of 78 seconds,

42~

1.0 b

Figure 6.3.

Subgrids for Rotating Cone Problem

4
"

-43

and so 9 seconds of the total mesh refinement computation time are
spent on other things bes ides iatagrating the grids. This {s roughly
12 % of the computing time, most of which 1s present estimating the
error and generating the subgrids. However, the entire run costs only
16 %Z of the cost of a run on the uniform fine grid with the same
accuracy.

Notice that in the mesh refinement computations, the wake behind
the cone 1s greatly reduced over the wake {In the coarse grid
computations. This shows that the moving grid is correctly computing
the solution and keeping the coarse grid computation under the cone
from contaminating the solution. This also shows why the coarse grid

mist be uplated from the fine grid.

me thod h Yerror Zc time
(secs)
coarse 1/20 5.27 E -2 6.86
fine 1/80 9.34E -3 588.
MR he = 1/80 9,78 E - 3 86.6

Table 6.2. Results for computation of the solution to 2-D linear

example.

Example 3. 2-D Burgers Equation

-

. et - Y - PR - PO

mesh refinement

coarse

~44=
Solutions for Rotating Cone Problem

Figure 6.4,

exact

-45-

For a nonlinear example we have chosen a problem from Gropp
[1980]. This problem contains complicated shock interactions, and is
the most difficult example for the clustering and grid generation
algorittms. The problem is:

u:+uux+uuy-0

where
1 1 1
3 if x < 3 and y < 3
u(x,y,0) = -%— , 1f x >% and y >%
71- » otherwise

on the unit square 0 < x< 1, 0< y< 1. At the discontinuities x = 1/2
or y= 1/2, the initial data {s taken to be the average of the values
on either side.

We use MacCormack’s method to integrate the problem. We specify
the inflov boundary conditions to maintain the plecewise constant
solution, and use first order extrapolation for the outflow boundaries.

The parameters for the mesh refinement calculation are shown below:

buffer size 1

grids move every 4 steps
error tolerance .001
refinement ratio 10

A 0.5

In Figure 6.5 we show the solution, and in Figure 6.6 the error.
The plots for this problem might be a little misleading. Because of

the limitations i{n graphics packages, both the error and the solution

. -

IR)

~46=

coarse

0
O

-

5 .&.

QXN
e ——

.)

O R — QY
oool l ‘\.\;\U{nﬂ\’\u\lln) 00 ./MX.\ 0“0
T ... N —— ...". ..«.”.
u .:..V = O
g\ .v.) — XY
8 ..." XX —— .4“‘....
WA T AN
...““...“. . 4
e
.I...&.:....
N
..“:

mesh refinement

fige

Solutions for Burgers Equation

Figure 6,5,

ju)
5
[=]
[}
[=]
A
o o :
3 o S
S = S
& :
Z
o
Q
“44.1. NQ
<0 5
XX :
e .
W P
O
o0n
1 ¥
[o]
} ¥
&
3
<
.1}
&Y
&
=
§
WO
...."... /.
:.:..:“..
OO)
LR g
S8 3
QRS 8
AN
W .m
SO

At e

-48-

plots for all runs are done with the resolution of the «coarser grid.
For the runs with a finer grid, this means the solution {s plotted only
every 10 fine grid points. In a oproblem with discontinuities 1like
this, the size of the overshoot is independent of the mesh width h
(Hedstrom, [1976]). However, it appears as if the arror on the fine
grids (both the uniform and mesh refinement calculations) is smaller.
This is because the overshoot in the solution is confined to the region
close to the discontinuity, and 10 fine grid points away from the
discontimuity the oscillation has decayed.

This problem is a hard test for mesh refinement because such a
large fraction of the region {s refined. However, even in this
example, the mesh refinement calculation is faster than a uniform fine
grid. In Figure 6.7, we show the subgrids the algorithm generates at
the initial time t = 0, and at the final time when we output the
solution. In this case, we have the slightlv surprising result of the
error for the mesh refinement run being slightly better than the
uniform fine grid run. This 1{s due to the grid retation (Figure
6.7(b)). When the fine grid values are injected onto the coarse grid
(both for wupdating and graphics), we use linear interpolation for the
rotated grid, since the grid points do not match up. This has the
effect of smoothing the solution in this region, which contains most of

the discontinuities. This {s why the error 1s 1less for the mesh

refinement run.

-49-

0.0

TIME =

o ¢ o

® o o o

* o © o o

* o & 0

® & & o & o 0 ¢ @

* o o & * o0

0.500

TIME

* o o 0
*

Subgrids for Burzers Equations

Figure 6.7.

-50-

me thod h Ierroﬁlzc time

secs
coarse 1/20 8.0E ~2 0.18 ;
fine 1/200 3.86E - 2 155 ;
MR he = 1/200 2.7%E - 2 109 |

Table 6.3. Results of computations for 2-D nonlinear example.

i ey it e = = R e

-5]=-
7. CONCLUSIONS

We have presented an algorithm for the numerical solution of pdes
using automatic grid refinements. Several novel features make this
algorithm possible. An automatic procedure which estimates the local
truncation error determines the points to be included in finer
subgrids. Our method of generating the subgrids is a key feature of
the algorithm. We cluster the parts of the domain needing refinement,
using a nearest neighbor algorithm for simple regions or an all nearest
neighbors graph with an iterative procedure for complicated shapes, and
to each cluster wa fit a rotated rectangular subgrid. Another feature
of this algorithm is our use of data structures, which has made such an
automatic algorithm posible. We have implemented the mesh refinement
algoritim in both one and two space dimensious, and it gemeralizes
immediately to three (or more) dimensions. We have demonstated with
several numerical experiments that with cur grid structure, we can do
calculations with the same accuracy for a fraction of the cost of a
calculation cn a conventional, uniform grid.

There are several areas in mesh refinement still needing research.
We list somz of the more important omes. The best solution strategy
for steady state computatinns {s still unknown. For example, is it
better to iterate to near «convergence on the coarse grid before
introducing a refinement, or should the solution on two grid levels be
mixed. The use of implicit finite difference methods with our grid
structure needs to be developed further, The development of data
structures for component zrids in different coordinate svstems 1is an
important project, with applications beyond our adaptive mesh

refinement strategy. Finally, adaptive subgrid generation Iis a

-52-
relatively new topic, and the hest grid generation procedure {s an

{mportant opeun question,

ACKNOWLEDGMENTS

We thank William Gropp for many helpful discussions, and for providing
the graphical output for this paper. Computer time for this work was provided

by the Stanford Linear Accelerator Center of the U.S. Department of Energy.

MO

D.

-S53~

Babuska and W. Rheinboldt, Error Estimates for Adaptive Finite

Element Computations, SIAM J. Numer. Anal, 15 (1978), 736-754.

Bank, A Multi-Level Tterative Method for Nonlinear Elliptic

Equations, {in Elliptic Problem Solvers, M. Schultz (ed.),
Ac ademic Press (1981), 1-l16.

Berger, Ph.D. thesis Department of Computer Science, Stanford
University, 198,

Bols tad, Ph.D, Thesis, Computer Science Department, Stanford
University, 198.

Bramdt, Multi-Level Adaptive Solutions to Roundary Value Problems,

Math. Comp. 31 (1977), 333-390.

Ciment, Stable Difference Schemes with Uneven Mesh Spacings, Math,

Comp. 25 (1971), 219-227.

Cramér, Mathlematical Methods of Statistics, Princeton University

Press, 1951.

Davis and J. Flaherty, An Adaptive Finite Flement Method for
Initial-Boundary Value Problems for Partial Differential
Equations, SIAM J. Sci. and Stat. Comp. 3 (198), 6-27.

Duda and P. Hart, Pattern Classification and Scene Analysis, Wiley,

1974.

Dwyer, R. Kee and B. Sanders, Adaptive Grid Method for Problems in

Fluid Mechanics and Heat Transfer, AIAA J. 18 (1980), 1205-1212.

Gannon, Self Adaptive Methods for Parabolic Partial Differential
Equations, Dept. of Computer Science, Univ. of Iliinois-U. C.,
UIUCDCS-R-80-1020, 1980.

Gennery, Object Detection and Measurement Using Stereo Vision,

Proc. 6%h 1JcAT (1979), 320-327.

[

D'

K.

-S54~

Gotlieb and S. Orszag, Numerical Analrsis of Spectral Methods:

Theory and Applications, SIAM, 1977.

D, Gropp, A Test of Moving Mesh Refinement for 2-D Scalar

Hyperbolic Problems, SIAM J. Sci. and Stat. Comp. 1 (1980),

191-1¢7,

Gustafsson, The Convergence Rate for Difference Approximations to

General Mixed Initial Value Problems, Math. Comp. 29 (1975),

396-425,

Harten and J. Hyman, Self-Adjusting Grid Methods for
One-Dimensional Hyperbolic Conservation Laws, to appear in J.
Comp. Physics, 1983.

Y, Hedstrom, “odels of Difference Schelzes for u + u = 0 by
a2 2 il X L

t
Partial Jiffsrencinl Rauations, *ath. Com. 29 {1975), 964-5977.

Hartigzan, Zlusterint Al ;ovithns, Acadenic Press, 1973,

Jameson, Iterative Solution f Transynic Flows over A{rfoils and

Wings, Including Flows at Mach 1, Comm. Pure Appl. Math. XXVII

(1974), 283-309.

Knuth, The Art of Computer Programming, V.i. 1, 2nd ed.,

Addison~Wesley, 1973.

Kreiss, Construction f a Curvilinear Grid, preprint, 1982.

Submited to SIAM J. Sci. and Stat. Comp.

Mller and R, Miller, Moving Finite Elements. I, SIAM J. Nuner.
Anal., 18 (1981), 1019-1032,

Oliger, to appear.

Oliger, Approximate Methods for Atmospheric and Oceanographic

Circulation Problems, in Lecture YNotes in Phycsics 91, R.

Glowinski and J. Lions (eds.), Springer-Verlag (1979), 171-184,

R.

G.

H.

-55-

Pereyra and £. Sewell, Mesh Selection for Discrete Solution of

Boundrav Problems in Ordinary Differantial Equations, Numer.

Math. 23 (1975), 251-268.

Sheman and M. Saeger, An Approach to Automatic Software for

Parabolic Partial Differenti{al Equations, in Advances in Computer

Methods for Partial Different{al Equations - IV, Vichnevetsky and
Stepleman (eds.), (1981), 88-92.

B. Simpson, Automatic Local Refinemen:t for Irregular Rectangular

Meshes, Reearch Report CS$-78-19, Department of Computer Science,
University of Waterloo, 1978.

Sod, A Surwey of Several Finite Difference Methods for Systems of

Nonlinear Hvpebolic Conservation Laws, J. Comp. Phvsics 27

(1978, 1-31.

Starfus, Cn Composite Mesh Difference Methods for Hyperholic

differential Fquations, Numer. Math. (1980), 241-255.

Viviand, Conservative Forms of Gas Dynamic Equations, La Recherche

Aerospatiale, No. 1, Jan./Feb. 1974, 65-68.

H. Winkler, A Numerical Procedure for the Calculation of Nonsteady

spherical Shock Fronts with Radiation, Ph.D. Thesis, Max Planck

Institute for Physics and Astrophysics, 1977,

[

