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1 INTRODUCTION

.~/ Systclic arrays are highly parallel computing
structures specific to particular computing tasks.
Theyv are well-suited for reliable and inexpensive
implementation using many identical VLSI compon-
ents. The designs consist of one and two-dimen-
sional lattices of identical processing elements.
Communication of data occurs only between neigh-
boring cells. Control signals propagate through
the array like data. These characteristics make
it feasible to construct very large arrays.

Several wodern methods in digital signal pro-
cessing require real time solution of some of the
basic problems of linear algebra 4+3¥~ Fortunately
systolic arrays developed for many of
these problems{{%,10,12}.  But several gaps remain.
unly partially satisfyving results have been pbtain-
ed for the eigenvalue and singular value decomposi-
tions, for example.

vs dutesc-

Here—we considerf;a svstelic array for the sing-
ular value decomposition (SVD). _An SVD of an m x n
{(m > n) matrix A is a factorizatiom *

A=vc vl —

- ———

where U is m X n with nrthonormal columns, C =

diagt'i. Tav eeen -”> with P2 I e 23

and V is orthogonal. [lhere are many important
applications of the SVD [1,6,13].

{here have been several earlier investigations
of parallel SVD algorithms and arravs. Firse,
Finn, Luk, and Pottle describe a svstolic structure
of n-/2 processors and two algorithms that use it.
But the convergence «of their algorithms has not
been proved and may be slow [3]. Heller and Ipsen
[8] describe an array (or computing the singular
values of .1 banded matrix with bandwidth w. They
use 0(w) processors and O{wn~) time. Brent and
Luk [2} describe an n/2 processor linear array
that implements a one-sided orthogonralization
method and converges reliably in O(n log n) time.
Unfortunately the processors in this array are
quite complex, and it is not clear that matrices
with more than n columns can be efficiently
accomodated.

Hhe avtor L, scosre)

——— In this paper ‘we—discuss two top..s. First,
{c e showghow an architecture for computing the

eigenvalues of a symmetric matrix can be modified
to compute singular values and vectors. Second,

e
Are discusyithe implementation using VLSI chips of
these systolic eigenvalue and SVD arrays.

The SVD is often used to regularize ill-condi-
tioned problems. In these there are p < n large
singular values and n-p that are much smaller.
What i{s needed is the pseudoinverse of the rank p
matrix closest (with respect to the 2-norm) to A,

T T
+ ...
» 191 ) + uP op vp
We have recently developed a new algorithm to com-

A =y

-+

A(P) that involves nothing but a sequence of mat-
rix~matrix products, for which systolic arrays are
well-known (see. e.2.. [91.) An alterrate form o¢
the algorithm can be used to compute the related
orthogonal projection matrix

2 AN SVD ARCHITECTURE

Let A be a given matrix. The singular values
of A will be obtained in two phases:

1. A is reduced to an upper triangular
matrix B with bandwidth k+l,

bii =0 if i > j or { - j=k.
and B = QAP where Q and P are orthogonal.

2. B is diagonalized by an iterative process
equivalent to }mplicitly shifted QR
iteration on B B.

With k=1 this is the standard method of Golub
and Reinsch [7]. The reason for allowing k>l is an
increase in the parallelism. In phase 1, kn proc-
essors are emploved; the time is O{(mn/k). In
phase 2, 2k’ processors are used; the time per it-
eration is 6n+0(k).

2.1 Reduction to banded form

The reduction step uses a k x n trapezoidal
array that has been described in detail previously
[12]). Let the m x n matrix X be partitioned as
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wvhere X 1 is k x k. The array applies s sequence
of clve%s rotations to the rows of X to zero the
first k columns below the main diagonal. If Q is
the product of these rocations, then

R N
0 v

QX =
22

where lll i{s k x k upper triangular. Rll' le,
Y,z. and the parameters of the rotations that make
up Q all flow out from the array. The time requir-
ed is m. (Mere and below we give "times" in units
of the time required for an individual cell in the
array to carry out its computation.)

Nov let

A A
a1 h2

An A2
be the given matrix. Send A through the array to
produce

R,, C
o - 1 112
0 sz
Next send [CIZ. ngl through to produce

T J,.7 O
Py [Cyp0 Cop) = (g5 Agp)
(Although the input matrix has m columns, the array
can handle this factarization in time m by making

jm/n| passes over the data {12]. Now continue this
Process using A,, in place of A. Afrer IzTa/k]

such steps we have produced a k+l diagonal, upper
triangular matrix B,

-
ri1.1 L2 -
R2.2 L23
B = ..
- L
| N

such that A = QBP vhere Q and P are orthogonal.
The total time used {s nJ = mn/k.

The transposition of data required can be done
by a specialized switching device, a "systolic
shifter,” described earlier [12]. .

When singular vectors are to be computed, the
rotations generated by the array may be applied to
identity matrices of order m and n. This can be
done by the array. These matrices accumulate the
product of the rotations used, that is the ortho-
gonal matrices Q and P sbove.

2.2 QR iteration

Now we consider QR fteration to get the singu-
lar values of 8, hence those ? )A. We shall gener-
ate 2 sequence of matrices {B' ') having the same
structure as B and converging to a diagonsl matrix.

2. 3 and p(*D) . ,(1)'(1)0(1) vhere P4 ana

Q(l)

are orthogonal.
First we consider QR iteration on ITB without
shifts. This can be realized by the procedure

1. Find Q'Y such chat

L) o g8

is lower triangular,

2. Find PY) guch chat
g+ _ (0 (D)

is upper triangular.

Both steps of this procedure can be carried out by
the Heller-Ipsen (HI) array [8]. This is a k x w

rectangular array for QR factorization of w-diag-

onal matrices. In this array, plane rotations are
generated at the left edge and move to the righe,

affecting a pair of matrix rows. Take v = k+l.

B(i) enters the matrix at the bottom, each diagonal
entering, one element at a time, into one of the
processors. The array asvoihilates the elements of
the upper ctriangle of B{1), This causes fill-in
of k diagonals in the lower triangle. The result-

ing matrix L(i) emerges from the top in the same
diagonal-per-processor format. It immediately
enters a second array, This array annihilates the
lower triangle of L{i) and the resulting upper tri-
angular matrix B{i*1) emerges from the top (Pig. 1)
The time is 2nt4k per iteration: element a., enters

the bottom array at time 2n, leaves at the upper
left corner at time 2n+2k, and leaves the ton arrav

at cime 2n+ik. ’ T

Unshifted QR converges slowly. The rate of
convergence of b.. to % is c%/o . In some situ-
ations this may %& adequate and }he simplicity of
the structure used is then a real advantage.

It is also easy to pipeline the iterations. As
B{1+1) comes out of the second array it can be sent
directly into another pair of arrays to begin the
(141)¢th iterations, etc. As many as n/4k itera-
tions can be effectively pipelined; any more and
the pipe length exceeds a, so that the piye

never gets full. 1} we choose k = O(n1 2) and
pipeline n/4k = O(n"'“) iterations §7§n the number
of processors in both arrays is 0(n”’“) and the
total time, assuming O;n) iterations of QR are
required, is also 0(n?/¢), These considerations
also spply to the array implementation of the
implicitly shifted QR algorithm that is discussed
below, with one important proviso. When pipelin-
ing the iterations, some strategy for choosing
several shifts in advance must be used.

2.2.1 Implicitly shifced QR iteration

To obtain adequate convergence speed we need to
incorporate shifts. Following Stewart [14], sup-
pose that o¥c QR fteration with shift A is per-
formed on B°B, and the orcthogonal matrix so gene~
rated is Q. Then proceed as follows:

1. Let Q, be any matrix whose first k columns
are the same as those of Q;

2. Using the same technique as in Section 2.1,
reduce BQ, to upper triangular k+l diag-
onal form, yielding a matrix B'.
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It can be shown that B'TB' is the matrix that would
r§sulz from one QR step with shift A applied to
als.

To use the trapezoidal array as described above
Lo carry out step ! would_be inefficient. Rather
we proceed as [ollows. Q, is composed of plane
rotations that zero the first k columns of (BIB-1)
below the main diagonal. Applying Qo to B causes
f111-1n in the k diagonals below the main diagonal,

confined to rows 2, 3, ..., 2k. See Fig. 2 for the
case kw2,

Fieure 1

Unshifted QR iteratfon with two Heller-
Ipsen arrays

OO X X %
OX X %A

Structure of lQo . k=2

Let the first 2k rows ‘'of BQ, be sent into a
k x 2k+1 HI arvay. By a ncqucngo of plane rots-
tions applied to the rovs, the array removes the
"bulge” in the lower triangle, adding a bulge of
the same shape in the first 3k columns of the upper
trisngle. This data flows directly into another

k x 2k+l HI array that removes the elements to the
right of the ktM superdiagonal and causes & new
bulge to appear in the lover triangle, {n columns
k+1 chrough 3k-1 and extending to row 3k. (The
second HI array is the mirror image of the first.

Rotations are generated at its right edge and move
left, affecting pairs of matrix columns. Let Pl
and Q$ be the orthogonal matrices implicitly used

by thé two HI arrays. The matrix emerging from the
second array is

B, = P1BQyQ,

and it has the form

wvhere B 1 is a k x n upper triangular, k+l1 diagonal
matrix, and B 1 is an n-k x n-k matrix of the same
form as lQo. Fig. 3 illustrates this for k=2.

k x 2k+1 HI array

11
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44
45
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56
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k x 2k+l HI array .

11
12

22
23

33
1)

44
45

Figure 3

"Chasing the bulge" with two k x 2k+l
Reller-Ipsen arrays

Now we do exactly the same thing to '21’
This yields matrices

By =Py 10 3e2ee..d




8.3

0 ‘j+l.j

and J = [(n-1)/K]. Finally B = P, ... PBQ, ...Q;
is the matrix we require.

The time neede 1is 6n. It takes 2k steps for an
HI array to start producing output. Thus, the sec-
ond array starts its output at time 4k. The first
element of 'j+1.j' which is the (k+1)®% element

of the main diagonal to come out of the second
array, comes out at time 6k. By cthis time the
firvst arrays Inputs have become idle, so this
element can immediately reenter. Therefore one
step, from B, to B +1° takes time 6k. There are

r?n-l)/kT such steps, hence about 6n time for the
whole process.

2.3 Complex matrices

In signal processing appli:ations, complex
matrices often arise. Here we discuss the algor-
ithms to be used for QR iteration with complex
matrices. Essentially we show that the plane rota-
tions used can be of a special form:

%)) x' « c*x + oy
y' w —ox +cy

wvhere x, y, and ¢ are complex and ¢ is real. This
saves 1/4 of the multiplications used by a fully
complex plane rotation with complex s instead of

7 ~= 12 are used insread nf 16, We shall eall
tnese ¢,0 rOoCAT1ONS.

It is possible to compute the SVD of a complex
® X n matrix A = Ap+iA; using real arithmetic. Ome
finds the SVD of the Im x 2n real matrix

s T
ALK

Among the 2n singular values each singular value of
A occurs twice, and the singular vectors are of the
form {xI, xg] vhere x = x, + ix; is a singular
vactor of A. But the cost is much greater. In
units where the cost of doing an m x n real SVD is
one, the cost for the real 2m x 2n SVD is 8 while
the complex m x n approach costs 3 (not 4, since
the use of the ¢,0 rotations saves 1/4 of the work)

We now show that the ¢,0 rotations suffice.
To start, we note that the banded matrix B produced
by the reduction phase can always be chosen to have
positive real elements on its main and kth super-
diagonals. 1Indeed the reduction B = QAP to k+l
diagonal, upper triangular form is not unique:

B0, '(o;‘m;l) 0P

is also such a reductior for any unitsry diagonal
aatrices Dl and D,. These can alvays be chosen to
give B the stated property. In fact, the trap-
ezoidal srray can do this automatically [12]). When
it generates a roctation to zero some matrix sle-
ment, the second slement of the pair (x,y) for
instance, it chooses the paramenters so that the
result of the rotation is the pair

«x)? + |y1HY2 | o

Furthermore, the elements to be zeroed are the real
elements resulting from previous rotations. The
rotations to do the zeroing can, for this reason,
be taken to be ¢, rotations.

Now we look at the second phase. Because of
the structure of B, the main, kP guper and kth sub-
diagonals of BTB are all real. The rotations that
comprise Q. can be taken to be ¢,0 rotations since
they zero real elements. And by keeping track of
the locations of real elements one can show that in
8Q, all elements of the outer diagonals are resl.
Again because the elements to be annihilated are
real, ¢,0 rotations can be used to eliminate the
bulge. A matrix with the same structure as BQ
results, and the proof therefore follows by induc-
tion.

2.4 An_alternate scheme

Gene Golub has pointed out that the eigenvalues
of the 2n x 2n matrix

[¢] B
Ce
8T o

are the singular values of A_taken with positive and
negative sign, and if (xT, y') is an eigenvector of
C then x is a left singular vector of B and y is a
right singular vector of B [5]. Thus ve may attempt
to find the eigendecomposition of C. After a sym-
ametric interchange of rows and columns corresponding
to the permutation (n+l, 2, a+2, 2, ..., 2n, n),

C is a symaetric 4k-1 diagonal matrix. A 2k-1 x
4k-1 HI array can implement one step of the QR
method with shifts for this macrix in n + O(k)

time [10). Tn the comnlcex case. hnth @ and rhn
permuted C have real outermost diagonals, so c,0
rotations can be used. Thus, although twice as much
hardvare is used, the time per iteration is 1/6 as
great as for the previous scheme.

3 VLS1 IMPLEMENTATION

Now we consider how to build the cells of the
HI array. The fundamental unit we use in this con-
struction is a multiply-add cell, whose function is
this: ’

- x
-y

T
vixy

Outputs leave the cell one clock after inputs enter.

Although other primitive units (CORDIC blocks,
for example) might be used, we feel that the mult-
iply-add is a good basis for such an investigation.
Currently, a floating point multiply-add is about
what can be integrated on a single chip. It is
almost universally useful. Indeed, the multiply-
add pair is often the inner loop in numerical linear
algebraic computations. Even when larger cells and
pieces of arrays can be integrated into single
chips, designs based on the multiply-add primitive
will be useful.

We shall discuss implementation of the HI array
cells for complex data. The real case was discussed
earlier [11] as were the cells of the trapezoidal
array [12].




A

wé

The complex Rl array triangularizes a handed
input matrix using c.v rotations of che form (1).
The rotations are applivd to o pair (x,y) of matrix
elements by an internal cell

. X

+
y* - x
c + +c
[ - g

+

Yy

after having been generated by a boundary cell
'\'
+
-x
c
~a
+
n
by
%' = (nz + |x|2)1/2
c =x/x'
¢ =n/x'

In the internal cell computation, 4 quantities

are computed, each requiring 3 multiplies and 2

adds. Let and z. denote the real and imaginary
parts of the colplei quantity z. The computed
values are

R

X} ® CoXy = CyXp = 0¥y

4 - -

Yo" SRR " 171 * Xy
! e P

yp mep¥p Y Sp¥r * 9%

Using 4 multiply-add chips we can construct a
compound cell that gives these results [n the least
possible time, 3 clocks. We assume that complex
quantities are represented in "word serial” form,
with the real part preceding the imaginary part on
the same data path. A schedule using 4 chips that
achieves the minimum latency is shown in Table 1.

Table 1. Schedule for Internal HI Cell
Chip Input/Output Chip
time! Cl C2 c, v x Cc3 Cd

0 R
1) i S| YR | *R| KR
S B R S R R R R e W &
3}lo 3 e¥1 | Sz -0 ¥g SpXy
4 oxp e | Vp| % RS §
S o yi xi

The computation at the boundary cell is this:
given inputs x and n2, compute

PRI P
n' = ¥n

cg "X/ 0’

ey =% /'

¢ = n/n'

A second primitive, for divide and square root, is
needed to Implement the boundary ce l. We assume
that a chip for computing

(a,b) =eme> g / p1/2

is available. A compund cell using one aultiply-
add and two of these square root chips can produce
results at the rate required to keep up with the
internal cell. A schedule is shown in Table 2.

The overall array timing is now that of the "ideal"
HI array in which everything happens in a single
cycle (of length 3 chip clocks) . The cells are
used 1/2 of the time, but two iadependent problems
can be solved simultanecusly, making full use of
the hardware.

Table 2. Schedule for HI Boundary Cell
time Chips 1/0
mulr-add sqre #1 sqre #2
1 92 + X: DZ,XR
2 ﬂ% (=p'2) x
2,-1/2 I

3 [o*°] )

4 ‘1[9'2]-1/2 o'z.cn
s O Rk B L il B
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