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m-4 vdiscussthe implementation using VLSI chips of
these systolic eigenvalue and SVD arrays.

I INTRODUCTION -
The SVD is often used to regularize ill-condi-

. Systolic arrays are highly parallel computing tioned problems. In these there are p < n large
structures specific to particular computing tasks, singular values and n-p that are much smaller.
They are well-suited for reliable and inexpensive What is needed is the pseudoinverse of the rank p
implementation using many identical VLSI compon- matrix closest (with respect to the 2-norm) to A,
ents. The designs consist of one and two-dimen- T T
sional lattices of identical processing elements. A - u 0 V + ... + u a v
Communication of data occurs only between neigh- (p) 1 1 1 p P P
boring cells. Control signals propagate through We have recently developed a new algorithm to com-
the array like data. These characteristics make +
it feasible to construct very large arrays. A(p) that involves nothing but a sequence of at-

ru-matrix products, for which systolic arrays are
Several modern methods in digital signal pro- well-known (see. e.e.. (017) An alterr'te f-

cessing require real time solution of some of the the algorithm can be used to compute the related
basic problems of linear algebra413- . Fortunately orthogonal projection matrix
systolic arrays ham&...bt.ndeveloped for many of T T
these problemsi[AlO,12]. But several gaps remain. P -v v + ... + v v
Only partially satisfying results have been obtain- P p
ed for the eigenvalue and singular value decomposi-
tions, for examp1.

s .,e- 2 AN SVD ARCHITECTURE
-fter-w onsider'Aa systolic array for the sing-

ular value decomposition (SVD). An SVD of an m x n Let A be a given matrix. The singular values
(m _ n) matrix A is a factorization " of A will be obtained in two phases:

A VT 1. A is reduced to an upper triangular
- - .. matrix B with bandwidth k+l,
where U is m x n with orthonormal columns. -

dia, ..... with b.. -0 if i , j or i j-k.

and V is orthogonal. I'here are many important and B = QAP where Q and P are orthogonal.
applications of the SVD [1.6,13].

2. B is diagonalized by an iterative process[her hae ben sverl erlir inestgatonsequivalent to +mplicitly shifted QR
of parallel SVD algorithms and arrays. First, iteration on B-B.C,. Finn, Luk, and Pottle describe a systolic structure

-if n-12 processors and two algorithms that use it. With k-l this is the standard method of Colub
But the convergence of their algorithms has notbeen proved and may he slow [3j. ieler and psen and Reinsch 7]. The reason for allowing k>1 is an

n p e increase in the parallelism. In phase 1. kn proc-
181 describe an atray for computing the singular
values of .i banded matrix with bandwidth w. They essors are employed; the time is O(mn/k). Inphase 2, 2k' processors are used; the time per it-
use 0(w) processors and O(wn

2) 
time. Brent and eration is 6n+O(k).

Luk 12] describe an n/2 processor linear array
that implements a one-sided orthogonalization 2.1 Reduction to banded form
method and converges reliably in O(n log n) time.
Unfortunately the processors in this array are The reduction step uses a k x n trapezoidal
quite complex, and it is not clear that matrices array that has been described in detail previously
with more than n columns can be efficiently array th h ben desribe indtil iously
accomodated. (12]. Let the m x n mtrix X be partitioned as

In this paper've-44*evs two top.¢s. First, X. 11 12 . ':. ! . -
jc-e showhow an architecture for computing the X I r . - '; . .

eigenvalues of a symmetric matrix can be modified L 21 22J ,7'
to compute singular values and vectors. Second,

-"L. 10



where X is k x k. The array applies a sequence Q are orthogonal.
of GiveAl rotations to the rows nf X to zero the
first k columns below the main diagonal. If Q is First we consider QR iteration on B without
the product of these rotations, then shifts. This can be realized by the procedure

QX . R11 YT 1  1. find QM such that

10 Y Ij L(I) .3 (1) Q(i)

where t is k x k upper triangular. R ill Y12' is lower triangular,

Y,,2 and the parameters of the rotations that make
up all flow out from the array. The time requir- 2. Find p(i) such that
ed is m. (Here and below ve give "times" in units (i+l)
of the time required for an individual cell In the B L

array to carry out its computation.) is upper triangular.

Now let Both steps of this procedure can be carried out by
A A the Heller-lpsen (1i) array [8]. This is a k x w

A . 11 12 rectangular array for Q1 factorization of v-diag-

Sonal matrices. In this array, plane rotations are
L 21 ]22 generated at the left edge and move to the right,

be the given matrix. Send A through the array to affectinga pair of matrix rovs. Take v - k+l.
produce B() enters the matrix at the bottom, each diagonal

entering, one element at a time, into one of the
Fr C processors. The array aoihilates the elements of

QA - 1 Cl the upper triangle of 8(i). This causes fill-in
C221 of k diagonals in the lover triangle. The result-

T TI t ing matrix L emerges from the top in the same
1 2 , 22  diagonal-per-processor format. It immediately

enters a second array; This array annihilates the
lower triangle of L(i) and the resulting upper tri-

c T T -T2 angular matrix B(il) emerges from the top (Fig. 1)
P1[C12' 1 T t1. The time is 2n+

4
k per Iteration: element an enters

(Although the input matrix has m columns, the array the bottom array at time 2n, leaves at the upper
can hnndle this factnrittion in time m hv mnking left earner nt time 2n+2k. and leaven the ton Arrnv

lu/ni passes over the data (12). Now continue this at time 2n+4k.
process using A22 in place of A. Afrer J3rn/kl

such steps we have produced a k+ diagonal, upper Unshifted QR converges slowly. The rate of

triangular matrix B,convergence of b to a1 is a /ol . In some situ-
ations this may 4 adequate and ihe simplicity of

-- L the structure used is then a real advantage.
11 L1,2 It is also easy to pipeline the iterations. As

Rt L 1(i+l) comes out of the second array it can be sent
2,2 2,3 directly into another pair of arrays to begin the

B . .(i+l)th iterations, etc. As many as n/4k itera-
tions can be effectively pipelined; any more and

L, the pipe length exceeds a, so that the pine
J1, never gets full. w ye choose k - 0(nl 2 ) and
it .7 pipeline n/4k - 0(n ' ) iterations j n the number
Ljj of processors in both arrays is O(n ) and the

total time, assuming O(n) iterations of QR are
such that A - QBP vhere Q end P are orthogonal. required, is also O(n

3
/
2
). These considerations

The total time used is mJ - mn/k. also apply to the array implementation of the
implicitly shifted QR algorithm that is discussed

The transposition of data required can be done belay, with one important proviso. When pipelin-
by a specialized switching device, a "systolic Ing the iterations, some strategy for choosing
shifter," described earlier [121. several shifts in advance must be used.

When singular vectors are to be computed, the 2.2.1 Implicitly shifted QR iteration
rotations generated by the array may be applied to
identity matrices of order m and n. This can be To obtain adequate convergence speed we need to
done by the array. These matrices accumulate the incorporate shifts. Following Stewart (14], sup-
product of the rotations used, that is the ortho- pose that o~e QR iteration vith shift X is per-
gonal matrices Q and P above, formed on B B, and the orthogonal matrix so gene-

rated is Q. Then proceed as follows:
.2 QR iteratio

1. Let Q be any matrix whose first k columns
Now we consider QR iteration to get the singu- are te same as those of Q;

lar values of D, hence those ?[)A. We shall gener-
ate a sequence of matrices (B )) having the same 2. Using the same technique as in Section 2.1,
structure a" A and converging to a diagonal matrix, reduce BQ0 to upper triangular k+l diag-
g(0) l and B(i+l) - Q()(BCi) Ci) where P (i) and onal form, yielding a matrix B'.

Qi

-Hi



It can be shown that B'TB* is the matrix chat would Rotations are generated at its right edge and move
riault from one QR step with shift A applied to left, affecting pairs of matrix columns. Let P1
3 1. and Q be the orthogonal matrices implicitly used

by ohl two HI arrays. The matrix emerging from the
To use the trapezoidal array as described above second array is

to carry out step 2 would be inefficient. Rather
we proceed as follow. QT Is composed of plane B1
rotations that zero the frst k columns of (BTS-A)
below the main diagonal. Applying Q0 to 5 causes and it has the form
fill-in in the k diagonals below the main diagonal.
confined to rows 2. 3 .... 2k. See Fig. 2 for the F 1
case k2. 2 321

where 311 is a k x n upper triangular, k+l diagonal
matrix, and B21 is an n-k x n-k matrix of the same
form as B30  Fig. 3 illustrates this for k-2.

Sk -time

k xk+l .PMi
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Figure 3
Let the first 2k rows of 3Q be seat into a

k x 2k+l 81 array. By a sequenge of plane rota- "Chasing the bulge" with two k a 2k+1
tions applied to the rows, the array removes the Ieller-psen arrays
"bulge" in the lower triangle, adding a bulge of
the same shape in the first 3k columns of the upper
triangle. This data flows directly into another
k x 2k+l NI atray chat removes the elements to the Now we do exactly the same thing to B21, etc.
right of the kth supordiagonal and causes a new This yields matrices
bulge to appear in the lower triangle, in columns
kil through 3k-I and extending to row 3k. (The Dj - P*BDJ.QJ, J2 ....,J
second I array is the mirror image of the first. -F



with Furthermore, the elements to be zeroed are the real

elements resulting from previous rotations. The

rotations to do the zeroing can, for this reason,
5 Bj~j be taken to be c.0 rotations.

SitJ+,.] Now we look at the second phase. Because of
the structure of 3, the Rein, kth super and kth sub-

and J - r(n-l)/j. Finally B' - ... PIBQo ...Qj diagonals of BTB are all real. The rotations that
is the matrix we require, comprise QO can be taken to be c,o rotations since

they zero real elements. And by keeping track of
The time needs is 6n. It takes 2k steps for an the locations of real elements one can show that in

MI array to start producing output. Thus, the sec- BQ all elements of the outer diagonals are real.
ond array starts its output at time 4k. The first Again because the elements to be annihilated are
element of 3 j+l j , which is the (k+l)st element real, co rotations can be used to eliminate the
of the main diagonal to come out of the second bulge. A matrix with the same structure as IQ
array, comes out at time 6k. By this time the results, and the proof therefore follows by inuc-
first arrays Lnputs have become idle, so this tion.

element can immediately reenter. Therefore one
step, from B to Bj+ l, takes time 6k. There are

Fn-l)/kl such steps, hence about 6n time for the Gene Golub has pointed out that the eigenvalues
whole process. of the 2n x 2n matrix

2.3 Complex matrices

In signal processing applinations, complex B
T

matrices often rise. Here we discuss the alor- C th r akn
ithm to be used for QR iteration with complex are the singular values of A taken with positive and

matrices. Essentially we show that the plane rata- negative sign, and if (zT, y
T
) is an eigenvector of

tions used can be of a special form: C then x is a left singular vector of B and y is a
right singular vector of B [5). Thus we may attempt

(l) X'C¢* + cr to find the eigendecomposition of C. After a sym-
y -ox + cy metric interchange of rows and columns corresponding

to the permutation (n+l, 2, n+2, 2, ..., 2n, n),
where x, y, and c are complex and a is real. This C is a symmetric 4k-1 diagonal matrix. A 2k-1 x
saves 1/4 of the multiplications used by a fully 4k-l HI array can implement one step of the QR
complex plane rotation with complex s instead of method with shifts for this matrix in n + O(k)
q- 12 ar umed insred nf 16. We %hall rnll tfme f1l. Tn the crjmnlcx case. hnth C ind rh-
cnese co rotations, permuted C have real outermost diagonals, so co

rotations can be used. Thus, although tvice as much
It Is possible to compute the SVD of a complex hardware is used, the time per iteration is 1/6 as

a x n matrix A - AR+LAl using real arithmetic. One great as for the previous scheme.
finds the SVD of the 2m x 2n real matrix

3 VLSI IMPLEMENTATION

A, J Nov we consider how to build the cells of the

1I array. The fundamental unit we use in this con-
Among the 2n singular values each singular value of struction is a multiply-add cell, whose finction is
A occurs twice, and the singular vectors are of the this:
form i [. x

T ] 
where x * xW + ix1 is a singular

vector of A. But the cost is much greater. In w
units where the cost of doing an a x n real SVD is
one. the cost for the real 2m x 2n SVD is 8 while x - X
the complex a x n approach costs 3 (not 4. since Y e y
the use of the c.o rotations saves 1/4 of the worki

We now show that the co rotations suffice.
To start, we note that the banded matrix 3 produced Outputs leave the cell one clock after inputs enter.
by the reduction phase can always be chosen to fave
positive real elements on its main and kth super- Although other primitive units (CORDIC blocks,
diagonals. Indeed the reduction 3 - QAP to k+l for example) might be used, we feel that the mult-
diagonal, upper triangular form is not unique: iply-add is a good basis for such an investigation.

Currently, a floating point multiply-add is about
-D 1 (D I AD

1
2) D2P what can be integrated on a single chip. It is

almost universally useful. Indeed, the multiply-
is also such a reduction for any unitary diagonal add pair is often the inner loop in numerical linear
mtrices D and 0 2 .Tesecan always be chosen to algebraic computations. Even when larger cells and
give a the stated property. In fact, the trap- pieces of arrays can be integrated into single
esoidal array can do this automatically (121. When chips, designs based on the multiply-add primitive
It generates a rotation to zero some matrix ele- will be useful.
meat, the second element of the pair (xy) for
instance, it chooses the paramentere so that the We shall discuss implementation of the RI array
result of the rotation is the pair cells for complex data. The real case was discussed

earlier (111 as were the calls of the trapezoidal
(1112 + 1,12)1/i  . 0) array 1121. -I-
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The complex RI array triangularizes a handed A second primitive, for divide and square root, is
input matrix using c.0 rotations uf the form (1). needed Co implement the boundary ce:l. We assume
The rotations are appilud to ai pair (x.y) of matrix that a chip for computing
etuments by an internal cel (ab) -- a /b

K,
+ is available. A compund cell using one multiply-

yI I'-4 d and two of these square root chips can produce
results at the rate required to keep up with the
internal cell. A schedule Is shown in Table 2.

+ The overall array timing is nov that of the "Ideal"
y I array in which everything happens in a single

cycle (of length 3 chip clocks) . The cells are
after having been generated by a boundary cell used 1/2 of the time, but two iAdependent problema

can be solved simultaneously, making full use of
the hardware.

e

Table 2. Schedule for HI Boundary Cell
C timeI  Chips 1/0

+ mult-add sqrt #1 sqrt 92

n P2  + 2 x

2 2 (.R ;R
by 2 i+X (-02

)  
x

2~~~ 21/2 3 1DJ

X, (n + xi2) /=  
x '2 )1 / . o=2

c - X 1 x' I 21/2 2 , R
0 - n / x' 5 O,2 - 2 I-1/2

In the internal cell computation, 4 quantities 6 ,
are computed, each requiring 3 multiplies and 2
adds. Let tR and z denote the real and imaginary ACKNOWLEDGMENT
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