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ABSTRACT

Progress on real-time spatial light modulators, image pattern recognition
and optical signal processing for missile guidance is documented. A full
description of our test and evaluation of the Soviet PRIZ spatial light modu-
lator is included. 1In image pattern recognition, a unified formulation of four
different and new types of synthetic discriminant functions is advanced. These
include synthetic discriminant functions for intra and inter-class pattern recog-
nition and multi-class pattern recognition. 1In the area of image pattern recog-
nition, we also advance new statistical synthetic discriminant function filter
concepts and a new principal component synthetic discriminant function. These
analyses utilize new performance measures and new image models. Conventional
holographic pattern recognition research conducted under AFOSR support is also
reviewed. Our new AFOSR optical signal processing research concerns optical
matrix-vector processors. Initial research in this area includes fabrication of
a fiber-optic, microprocessor-based iterative optical processor and its use in
adaptive phased array radar processing and for the calculation of eigenvalues

and eigenvectors of a matrix.
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1. INTRODUCTION

During the past year, our research in optical data processing for missile
guidance has addressed various new algorithms, system architectures, component
tests and analyses of various image data bases. As in past years, we have been
quite faithful in reporting our AFOSR sponsored research in various journal and
conference publications. Copies of the more relevant of these papers are thus
included as the chapters of this report to provide concise documentation of

our work.

In Section 2, we provide a summary and overview of our research progress
made in the past year. Details on the more salient topics of our research are
provided in Sections 3-14. 1In Section 15, we enumerate our AFOSR sponsored
research publications, the presentations given on this research in the past

year, and the PhD, Master's and research associates that this grant has sup-

ported.




2. SUMMARY AND OVERVIEW

2.1 SOVIET PRIZ SPATIAL LIGHT MODULATOR (CHAPTERS 3-5)

A unique opportunity arose for us to conduct a four month test and evalua-

tion of a Soviet light modulator. We immediately accepted the offer. Our

results are contained in Chapters 3-5. Five Soviet devices for use as real-
f . time and reuseable spatial light modulators were evaluated in all. These de-
vices were bismuth silicon oxide (BSO) Prom-type devices. The more interesting !

devices used a new transverse electro-optic effect. 1In Chapter 3, we describe

our initial results. 1In Chapter 4, we detail our MTF and sensitivity tests on
these devices. 1In general, we found the transverse weighted BSO PRIZ device

3 to have significantly better sensitivity and resolution that the conventional
longitudinal electro-optic U.S. Prom device. In Chapter 5, we detail the

unique applications of this device in image and signal processing. Its unique
features include: automatic edge-enhancement and the ability for dynamic image
selection. The latter property is a most unique and attractive feature. Further
U.S. research on the Soviet devices is necessary to facilitate fabrication of

equivalent U.S. PRIZ devices.

2.2 IMAGE PATTERN RECOGNITION (CHAPTERS 6-10)

As in past years, the major emphasis of our optical data processing for
missile guidance research has been directed to novel pattern recognition algo-
rithms (that allow pattern recognition and object classification in the face
of various geometrical and textural differences between the input and reference
image) as well as the realization of hybrid optical/digital architectures to

implement these algorithms. Our image processing research during the past year
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has continued to emphasize pattern recognition. Our major pattern recognition

technique we are investigating involves the use of synthetic discriminant

functions. During the past year, we have devoted increasing attention to dis- '
crimination and multi-class pattern recognition with emphasis on maintaining

object recognition and correct classification in the presence of various distor-

tions in the imagery.

In Chapter 6, we describe a new statistical two-class SDF. This SDF dif-

fers from others: (a) in the performance measure optimized (we use SNR of the !
output correlation at the peak point, rather than various distance measures as

used in other approaches); (b) its application to discrimination (we defined R

the problem as distinguishing two classes of functions rather than extracting

a given function from noise); (c) in our image model (we assume both classes

of functions are stochastic processes. Note that the noise is now non-stationary

since it is an image with its own spatially varying statistics); (d) ir our use

of a finite K-L expansion (we approximate both classes of functions by finite

K-L expansions of two basis function sets); (e) in our representation of randomly

distorted imagery by a basis function expansion with random coefficients; (f) in

our basis function set selection (we derive the SDF as a linear combination of

the two basis function sets obtained from the finite K-L expansion); and (g) our 3
new iterative digital eigenvalue solution that results (this modified iterative

K-L technique is shown to provide results similar to those obtained from the

exact but very computationally expensive K-L method). We demonstrate our re-
sults for the case of geometrical distortions by considering the discrimination

between circles and hexagons of random diameters. Further work is necessary on

selection of the parameter Y to increase discrimination but retain a large




correiation peak to ease detection. We hope to be able to continue this re-

search in FY84.

In Chapter 7, we summarize our recent deterministic training set based SDF

research. This pattern recognition technique is very attractive since it
allows off-line calculation and determination of a pattern recognition filter.
The filter is as good as the training set and is appropriate for object recog-

nition as long as the object being searched for (or the other objects possibly

ey =

present in the image) change. As with all SDFs, this algorithm allows geo-
metrical distortion-invariant pattern recognition. Since it is realized with
a correlator, it offers a processing gain and thus functions well in the

presence of noise. In our new research, we have unified four different types
. of SDFs into the same general formulation. This is attractive because of the
intense computations necessary and the many matrix operations required in the
off-line SDF synthesis. The four new SDFs we have devised include: an equal
correlation peak (ECP) SDF (this is appropriate for intra-class pattern recog-
nition; a mutual orthogonal function (MOF) SDF (this is appropriate for inter-
class discrimination); a non-redundant filter (NRF) SDF (this is appropriate

for multi-class pattern recognition using fewer filters) and a multi-class MOF

SDF (this uses more SDFs than does the NRF, but generally functions better).
Combinations of inter and intra-class pattern recognition and NRF and multi-

class MOFs are subjects of further research, together with the testing and

application of these algorithms on various image data bases.

In Chapter 8, we describe a principal component statistical SDF. 1In this '

case, we address geometrical distortions and intensity differences as arise in

multisensor imagery. We use new image models in which image differences are i




modeled as a stochastic process, derive an optimal filter that maximizes cor-
relation SNR and show that it is the principal component or dominant eigen-
vector in a K-L expansion of the data. As in our other cases, we use a cor-
relator in our final data. Attention is given to the fact that the output

has a deterministic and a noisy part. The optimal filter is shown to be equal
to a maximum likelihood detector. As the model for our statistical corrr*ator,
we use the class of data {x(t)} which can only be modeled statistically Je
derived time-averaged and ensemble-averaged correlation functions for th
stochastic process {x(t)}. These are new statistical averaging techniqu

To derive the optimal SDF, we expand the ensemble-averaged correlation func-
tion of the stochastic process in a K-L basis function set. The maximum SNR
is shown to result if the dominant eigenvector of the kernel of the ensemble-
averaged correlation function is chosen. We demonstrate our results on multi-
sensor images. We compare our results for this new principal component SDF

to those obtained using an ECP SDF. We find that requiring optimal SNRs for
the correlation yields larger correlation SNR than are obtained froﬁ the ECP
SDF. Registration accuracy in the location of the correlation peak were also
considered. Both filters were found to give perfect results, whereas normal
MSFs gave large errors. We also considered the 3dB area of the correlations
produced and found small not wide correlation peak widths very close to those
obtained with autocorrelations (thus providing excellent registration accuracy
and essentially perfect equivalence to the results obtained from an autocor-
relation, even though geometrical and intensity distortions were present in the

data set).

In Chapter 9, we discuss a modified hyperplane technique for beam forming.

This represents an efficient technique (in terms of computer time) for handling

e o d e




large matrices. We later plan to extend and apply this algorithm to our SDF
synthesis work. This is most necessary, because of the large data sets and

matrices involved in our off-line SDF synthesis technique.

In Chapter 10, we provide a summary and overview of our AFOSR holographic

pattern recognition research. This includes the conventional matched spatial

filter, the use of holographic optical elements, laser diodes, a lensless
matched spatial filter correlator, weighted matched spatial filters, Mellin
transform correlators, hybrid optical/digital pattern recognition systems and

synthetic discriminant function matched filters.

2.3 OPTICAL SIGNAL PROCESSING (CHAPTERS 11-14)

A supplemental AFOSR grant enables us to complete ea.lier research on an
iterative optical processor (IOP) for adaptive phased array radar, to extend
this system as a general purpose optical processor and to devise new missile
guidance applications of it. 1In Chapter 11, we describe the first laboratory
IOP ever fabricated. It uses fiber-optic interconnections, microprocessor con-
trol and a 2-D fixed mask. In Chapter 12, we summarize its applications in
adaptive phased array radar and in Chapter 13 we note its use as a general
purpose processor to perform the very common operatcion of eigenvalue and eigen-
vector computations. A summary and overview of the use of optical techniques

in signal processing is included as Chapter 14.
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Soviet Priz spatial light modulator 1

D. Casasent, F. Caimi, and A. Khomenko

A. Khomenko is with loffe Institute, Shuvalov Laborato-
ries, Leningrad. U.S.8.R.; the other authors are with Car
negie-Mellon University, Department of Electrical Engi-
neering, Pittsburgh, Pennsylvania 15213.
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Optical data processing systems require 2-D spatial light
modulators (SLLMs)! that are capable of converting an input
optical (or electrical) signal in real-time into a transparency
suitable for spatial modulation of a collimated laser beam.
These devices must operate in real-time and be reusable. A
we'l-documented candidate SLM is the Prom.2 1t uses a
bismuth silicon oxide (BSO) crystal that is both photocon-
ductive and electrooptic. In operation, the Prom is illumi-
nated with white light of wavelength Ay (350-450 nm). The
spatial intensity distribution of this Ay light is converted to
a spatial charge pattern in the BSO. When read out with light
of wavelength Ag (633 nm usually), the amplitude of the
readout beam is spatially modulated corresponding to the
intensity modulation present on the Aw light pattern.
In the Prom, modulation of the Ag light occurs by the lon-
gitudinal electrooptic effect (the direction of light propagation '
and the applied electric field are colinear). A [100] cut BSO
crystal is used to optimize the corresponding electrooptic
tensor coefficients for the longitudinal electrooptic effect.
The sensitivity of the Prom is low by comparison with other
candidate SLLMs.! Furthermore its frequency response
rapidly decreases with increasing spatial frequency f. The
diffraction efficiency is proportional to 1/f2 with low f and to
1/f* for high f with a 3-dB point at about 4-5 cycles/mm.? € .
This performance occurs because the spatial charge layer in- .
duced in the Prom by the Aw light lies within the volume of

APPLIED OPTICS / Vol. 20. No. 18 / 15 September 1981




the material.* & The electric field has opposite signs on cach
side of the charge laver, and when integrated across the
ervstal’s thickness a cancellation occurs, low phase modulation
results, the magnitude of the electrooptic effect is reduced,
and poor sensitivity and spatial frequency result.* © Thus,
although the optical quality and potential resolution of the
device is quite good, the available light intensity at high spatial
trequencies is veryv low.  This limits its use 1in many practical
systems.

The Soviets have fabricated Prom light modulators com-
parable in quality and performance to the U.S. A units. 44
Recently, they developed the Priz (a Soviet acronym) light
maodulator.” 1t uses a BSQO ¢rystal, but its tabrication and
msulating iavers difter from those in the Prom. For the
present discussion, the major issue of concern is that the BSQ
cryvstal used in the Priz light modulator hasa [110] or [111] cut.
This crvstal orientation provides a large transverse elec-
trooptic etfect and a low longitudinal effect.  The Priz is still
operated with the applied electric field and the light propa-
gation directions collinear.  As in the Prom, the spatially
modulated Ny light beam induces a spatially varying charge
pattern in the crvstal. However, the charge distribution
produced by the longitudinal electric field also has a
transverse component. 1t is this spatially varving transverse
charge distribution that produces light modulation in the
Priz.

We were fortunate to have recently had five Soviet Prom
and Priz light modulators in our laboratories and A. Kho-
menko. a Noviet scientist who was actively engaged in tabri-
cation and research on these devices. The Priz device differs
totally from the French BSO device® used tor nonlinear optical
processing in which the direction ot light propagation and the
applied electric tield are orthogonal.  In the Priz, the
transverse field tdue to the spatial voltage distribution in-
dtced by the Ay light pattern) provides the electrooptic
modulation.  Because the electric field on both sides of the
charge laver is of the same sign in the Priz device, no cancel-
lation of the phase modulation occurs as is the case in the
Prom and hence, better device sensitivity results. A detailed
resolution analvsis with proper modeling of the charge laver
within the BSO shows that diffraction efficiency (n) for the
Priz decreases at high spatial frequencies -+ 1/f” rather than
1//* tas occurs tor the Prom).

An interferometric recording system was used to image sine
wave fringe patterns on the LS. A. Prom and the Soviet Priz
in Ay = 476 nm light from an Ar-ion laser. By varving the
angle of one of the mirrors in the interferometer, the input
spatial frequency recorded on the light modulator was varied
from 1 to 60 cveles/mm.  The Fourier transform of the fringe
pattern was read out in Ay = 6:33-nm light from a He-Ne laser,
and the intensity in the first and second diffracted orders was
measured. Both devices were operated dvnamically in real-
time at a 2-frame/sec write/read/erase cycle rate with writing
and reading being simultaneous and with a 1-msec erase time.
Faster cvele times are possible.  (In other tests, we operated
the device at 30 frames/sec.} The input write light exposure
for the data shown in Fig. 1 was Ey = 50 wJ/em? (for both
devices). The read light intensity (0.33 mW) was adjusted
to insure that the stored pattern on the SL.LM was not degraded
by the Ay light. From the time history output of the first-
order intensity /. the diffraction efficiency n = I/I;,, vs f was
measured. As noted in Ref. 10 unnormalized data are shown
to describe more properly the true amount of usable output
hight. As also noted in Ref. 10 the second-order intensity /.,
in the FT plane was monitored, and the write light intensity
and its duration were adjusted to insure that [, was over 20
dB below /. With these procedures, the spatial frequency

~—ty
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Fie. 1 Diffraction etficiency g vs spatial frequency f response for
Prom and Priz spatial light modulators.

Fig. 2. Real-time image reconstruction showing differentiated
version of an IR image recorded on the Priz spatial light modulator.

response data shown in Fig. 1 correspond to a nonlinearity of
<1%%.

Asseen in Fig. 1, the Priz has more useful light at all spatial
frequencies (by a factor of 10 100} than the Prom. From Fig.
1, we also see that the rate at which n decreases with frequency
is much faster for the Prom (n « 1/f%) than for the Priz (n «
.

The Priz exhibits several other unique features such as
automatic de suppression.  This follows directly from the
observation that for a uniform charge laver there is no
transverse field. and thus the Priz has no de response.  This
edge enhancement feature of the device is quite useful in IR
image pattern recognition as a preprocessing operation. In
Fig. 2 we show the differentiated version of an IR image re-
constructed after recording on the Priz. The reconstruction
and the image differentiation shown were performed in real-
time directly on the device. When linearly polarized read
light is used, the Priz is alse able to suppress input spatial
frequencies oriented in selected directions.”

A new and most attractive feature of the I’riz is that it can
be operated with a fixed applied voltage between electrodes
(rather than a voltage switched between positive and negative
polarities, as in the Prom). In this operating maode, the re-

15 September 1981 / Vol. 20, No. 18 / APPLIED OPTICS 3091



Dynamic image selection using the Priz (a) original input
{moving spot plus fixed noise background) and (b) reconstruction of
only the dynamic portion of the image.

APPLIED OPTICS / Vol. 20, No. 18 / 15 September 1981

sponse of the Priz is a function of the velocity with which the
input data move across the input plane.” In our tests on the
Priz at CMU, we used this feature of the Priz for change de-
tection. Specifically a moving spot was superimposed on a
fixed background noise pattern [Fig. 3(a), the moving spot is
in the back left of the figure]. This image was obtained with
the high voltage applied to the Priz pulsed between positive
and negative polarities in the normal Prom operating mode.
When the applied voltage was constant, only the moving spot
appeared in the reconstruction. Figure 3(b) shows a snapshot
view of such a reconstructed image.

In a later publication, we shall describe in more detail the
Priz and our complete test program «n these Soviet devices
and provide more complete demonstrations and discussions
of the unique features of the Priz such as directional filtering
and dynamic image subtraction.

We thank Michael Petrov of loffe Institute for allowing us
to perform this test and evaluation on the Soviet light mod-
ulators fabricated in his laboratory and for permitting A.
Khomenko to assist us in this test and evaluation program.
We also thank the U.S. Air Farce Office of Scientific Research
(grant AFOSR 79-0091} for supporting publication of this
paper.
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Test and evaluation of the Soviet Prom and Priz spatial

light modulators

D. Casasent, F. Caimi, and A. Khomenko

Five Soviet bismuth silicon oxide Prom and Priz spatial light modulators were recently tested in the United
States. In this program, their performance was quantified and compared with that of the U.S. Prom. The
resultant laboratory data show that the Soviet Prom is comparable with the U.S. device and that the Soviet
Priz has over ten times the diffraction efficiency and over ten times more usable resolution than the Prom.
Theoretical models of the dependence of diffraction efficiency on spatial frequency were also verified by ex-

periments performed on these devices.

l. Introduction

The key device needed for the practical realization
of a real-time optical data processing system is the input
transducer. This device converts an ambient scene (or
an electronic input signal from a mosaic array or other
sensor) into a transparency suitable for spatial modu-
lation of a coherent light beam. Such elements are re-
ferred to as spatial light modulators (SLM). Many
candidate reusable devices exist! that can perform the
desired operations with varying degrees of resolution
and speed. One such candidate SLM consists of a
bismuth silicon oxide (BSO) crystal with parylene in-
sulating layers and electrodes on its large faces. This
SLM is known as the Prom (Pockels real-time optical
modulator).

The Prom is well-documented.2-* In operation, an
image is focused onto the device in write light (Ayw =
350-450 nm), photocarriers are generated within the
photoconductive BSO, and a charge layer is produced
with a spatial charge variation proportional to the in-
tensity distribution of the Ay light. This stored pat-
tern is then read out in read light (Ag = 633 nm). By
the linear longitudinal electrooptic or Pockels effect, the
output Ag light distribution (between crossed polariz-
ers) is a coherent spatially modulated replica of the Ay
light pattern.

A. Khimenko is with Ioffe Institute, Shuvalov Laboratories, Len-
ingrad, U.S.S.R.; the other authors are with Carnegie-Mellon Uni-
versity, Department of Electrical Engineering, Pittsburgh. Penn-
sylvania 15213,

Received 24 July 1981.

0003-6935/81/244215-06$00.50/0.
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In this paper, we report the result of a recent test and
evaluation program conducted in our laboratories at
Carnegie-Mellon University on five Soviet BSO light
modulators. One of these devices was a Soviet Prom,5¢
and the others were new Priz (Soviet acronym)?8 spatial
light modulators. Many descriptions, models, and
theoretical derivations of the MTF of the Prom
exist.2-6.910 Because of the discrepancies in several of
these models, a brief unifying summary of the correct
model and the predicted spatial frequency response of
the Prom are included in Sec. II. This description also
provides an excellent vehicle from which to describe the
Priz light modulator and the motivation for its devel-
opment. In Sec. III, we describe the experimental test
system used. All tests were performed in real time
using a new data acquisition technique to obtain spatial
frequency response information on the devices. The
results of our experimental program are presented and
discussed in Secs. IV and V. We.include comparison
data on a U.S. Prom we have and on the Soviet Prom in
Sec. IV and on the Soviet Priz SLMs in Sec. V. This
represents the first time that this many light modulators
were tested in the same facility and using the same
personnel, measurement techniques, and optical sys-
tem. We then summarize our results and advance our
conclusions in Sec. V1.

Il. Prom Theory and Model

The thickness and location of the induced charge
layer formed within the BSO by the spatially modulated
Aw light are most important in determining the device's
performance. If the charge layer is assumed to be thin
and to occur at the crystal (BSO)-dielectric (parylene)
interface, the resultant modulation or phase modulation
A¢ (between the ordinary and extraordinary wave
components) is!!
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where ¢4 and ¢, are the dielectric constants of the par-
ylene in the BSO crystal, respectively, dy and d.. are the
thicknesses of the dielectric layer and the crystal, and
f is the spatial frequency of the input data. Sinced, ~
500 um and dg =~ 5 um, d. > dy, and we approximate
coth(2wxfd.) ~ 1, where the approximation will be valid
for spatial frequencies f > 1/2rd. ~ 0.3 cycle/mm.
From Eq. (1), we see that this model predicts that A
should decrease ?roportionally to 1/f. Since diffraction
efficiency n « J7(A¢), where J, is a Bessel function of
the first order and since J; « A¢ for low modulation (as
occurs in BSO devices), we find n « (A¢)Z, or from Eq.
(1), p = 1/

In 1978, Petrov et al.5 noted that the charge layer in
the Prom was not infinitely thin but had a small but
finite thickness d,. For this model, the resultant de-
pendence of A¢ on spatial frequency f is”

= aond rall — exp(—2afd, ]
(2712 d, €oleg coth(2xfdy) + €. cothi2nfd,)]

Ao (2)
For low spatial frequencies, this model predicts A¢ «
1/f and n =« 1/f2. But for higher spatial frequencies (f
> 1/2wdq ~ 30 cycles/mm), Eq. (2) predicts A¢ « 1/f2
and hence n « 1/f4. Our experimental data (Sec. IV)
confirm these theoretical predictions and are in agree-
ment with earlier Soviet data.® Independently, Tan-
guay and his co-workers in the U.8.A. have subsequently
provided a more complete and detailed derivation of the
performance of the Prom device.®! This analysis
agrees with that predicted by Eq. (2). In this latter
work as in the Soviet papers, it was noted that the
charge layer does not exist at the crystal-dielectric in-
terface, but rather it is within the volume of the BSO
material (but close to the interface). Itek data* also
note that the charge layer lies within 50 um of the in-
terface.

The location of the charge layer and its thickness are
important because it affects the MTF and spatial fre-
quency response of the device. Moreover, it provides
direction for the improved Priz SLM. In Ref. 12,
Khomenko et al. discuss this subject. The following
simplified description will suffice. We recall!’ that the
effective extent of the electric field about a sinusoidal
charge layer of spatial frequency f is z, = 1/2rf. Thus
for low spatial frequencies, 2, is large, and at high spatial
frequencies it is small. We next recall that A¢ is pro-
portional to the integral of the electric field E in the z
direction (optical axis, light propagation direction, and
electric field direction). Now, if the charge layer lies
within the volume of the BSO, the + and - fields on
each side of it will cancel when E is integrated in the z
direction. This will decrease the effective A¢ and hence
the light modulation and n of the device. Since z, is
larger at low spatial frequencies, we expect the net A¢
to be a maximum at low spatial frequencies and to de-
crease rapidly as spatial frequency increases. The
theoretical and observed 1/f* dependence of n with
spatial frequency verifies these remarks.
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To overcome these fundamental limitations of the
Prom SLLM, the Soviets changed the BSO crystal cut
from the [100] cut used in the Prom (to maximize the
longitudinal electrooptic effect) to [111] and [110] cut
crystals (to use the transverse electrooptic effect).
These new devices are referred to as Priz (the transla-
tion of the associated Soviet acronym is image trans-
former). In these Priz devices, the optical axis and the
applied electric field are still collinear, and a spatial
charge layer proportional to the Ay light intensity is
still produced. However, the transverse field due to this
charge distribution is used (via the transverse elec-
trooptic effect) to produce modulation of the Ag readout
light. The modulation and the resultant n due to the
transverse electrooptic effect are larger than for the
longitudinal effect because A¢ cancellation does not
occur (since the electric field is of the same sign on both
sides of the transverse charge) and because of the larger
transverse electrooptic coefficients. In the Priz, A¢ «
1/f and n « 1/f%. Thus the spatial resolution as well as
the sensitivity of the Priz are expected to be superior to
those of the conventional Prom device. These remarks

are verified in our experimental data in Secs. IV and
V.

. Experimental Procedure

The five Soviet BSO light modulators we evaluated
are referred to as devices 1-5. Device 1 was a Soviet
Prom. Device 2 used the conventional Prom fabrica-
tion and structure, but the BSO crystal cut used was
[111]. Devices 3 and 4 were identical Priz devices with
a [111] cut BSO crystal but used a proprietary new
fabrication technique. We refer to them (and device
5) as SLMs with a Priz structure. Device 5 was a Priz
with a [110] cut BSO crystal. The 1.0 lavers were
~400 um thick, and each device was 18 mm in diameter.
Thin (3-5-um thick) dielectric lavers were used on all
devices.

The test system used is shown schematically in Fig.
1. It consists of an interferometer in which the write
light beam [ is split into two beams by the beam-split-
ting cube (BSC), reflected from mirrors (M, and M),
and focused at P, to form a sine wave fringe pattern.
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Fig. 1. Schematic diagram of the Prom and Priz spatial frequency
response test and evaluation system.




By varying the angle of M., ditferent spatial frequencies
can be directly produced at P,. This sine wave fringe
pattern at P, is then imaged (by lens /L) onto the SLM
under the test at P,. This imaging interferometer
system greatly reduces problems that arise with other
configurations in which the overlap in the beams from
the two interferometer arms varies with the spatial
frequency of the signal being recorded. The depth of
field of the imaging lens /L used was over 2 mm (over
four times the thickness of the SLLM used). Thus we
were insured that the interference fringe pattern was
focused at the optimum location within the SLLM.

The write light beam was incident on-axis, and the
read light was incident at an angle of 1.7° (This is ex-
aggerated in Fig. 1 to clarify the schematic.) Inall ex-
periments, Ay = 476 nm (Ar-ion laser), A = 633 nm
(He-Ne laser), the write and read intensities used were
Iw =0.33mW, and Iz = 0.52 mW, the write light energy
was varied from Ey = 25-200 uJ/cm- by varying the
write time Tw. The read light intensity Iy was ad-
justed to insure that it produced no degrading effects
on the recorded data. In the way in which the system
was used, both the read and write light beams were on
simultaneously (Tg = Tw, equal write and read light
time durations). This facilitated use of a novel data
acquisition technique for spatial frequency response
information collection. The write light intensity /w
was constantly monitored to insure that no fluctuations
occurred in it during the experimental data taking in-
terval.

The sine wave data recorded on the SLM at P, are
Fourier transformed by lens FTL. (The 633-nm filter
FIL insures that only Ag light reaches the detector or
Fourier transform (FT) plane P».] At P, we measure
the dc Iy, first-order I, and second-order I, light in-
tensities as a function of time. As noted in Ref. 14, the
input Aw light can be adjusted to insure that I, is 20 dB
below I,. (This insures that the spatial frequency re-
sponse data recorded has a nonlinearity oelow 1%.) In
the actual way in which data were acquired in the ex-
periments to be described here, we monitored /., and
verified that it was at least a factor of 10 below 7, (in
most cases). Since the write and read light beams are
on simultaneously in this system, the I, vs time output
at P, rises with time (Fig. 2) as the energy of the write
beam accumulates on the SLM. An erase pulse then
occurs, and the output rapidly drops to zero as shown
in Fig. 2.

Since I is ~10~2 or 10~? below the intensity of the dc¢
term and since /5 is over 10~2 below I, a large output
dynamic range is required for measurements. This was
achieved by use of a cooled PMT in its photon counting
mode (for low light intensity data acquisition) and in
its electrometer mode (for higher intensity light data).
Calibration between both modes was achieved by use
of an attenuator in the readout beam. The PMT sys-
tem has a 90-dB dynamic range, and with the use of
attenuators this range is even greater. In low light level
cases, the response time of the PMT (Tp ~ 10 msec)
limits the speed at which the data acquisition system
can be operated and hence the SLM cycle times that

Fig. 2. Typical first-order I, vs time output waveform showing the
effects of increasing the write light exposure as well as the effective-
ness of erasure on the device.

could be used. In all tests, we were also careful to allow
sufficient time for charge redistribution to occur in the
device after each cycle. In all tests, we insured that the
write time Tw was much greater than Tp to reduce
detector response time problems. To photograph the
output I vs time display, we note that Tw > 100 msec
is necessary (to reduce detector response time errors),
and that to decrease flicker in the output chservations
on the scope Tw should be <0.5-1.0 sec. As a com-
promise, we selected Tw = Tr =~ 0.5 sec (or 50 times
Tp) for all experiments. This figure was obtained after
many experiments with data recorded on the device in
the 50-60-cycle/mm spatial frequency range. Thus all
our MTF data were acquired dynamically with the SLM
operated at about a 2-frame/sec write/read/erase rate.
An erase pulse duration of 1 msec was used. This was
followed by a 9-msec wait time to insure that full charge
redistribution occurred. These parameters provided
adequate variations of Ey and adequate user interac-
tion time for photographing the I vs time outputs and
monitoring the input light intensity /;, and the amount
of second-order distortion I present in the data. We
note that complete erasure was insured in all cases by
proper timing and write and erase exposure selection.
After erasure, we measure over 103 suppression of the
recorded data.

We now consider the data acquisition technique used.
Photographs of the I, vs time outputs for all five Soviet
BSO devices and for the U.S. Prom were obtained for
approximately ten different spatial frequencies per
device. I, vs time was similary photographed at low
spatial frequencies where it was measurable. From a
given I vs time output (e.g., Fig. 2), we note that the
horizontal or time axis also corresponds to the accu-
mulated Ew values since Ew = Iwt. Thuseach [ vs
t graph also provides us with I vs Ew for a given spatial
frequency f.
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Fig. 3. Diffraction efficiency 5 vs spatial frequency f for the U.S.
Prom with different write light exposure used.

From a given I; vs time photograph, we thus deter-
mine [, foragivenfand all Ew. Dividing I, by I = I,
we obtain 5 for one f and all Ey values. By repeating
the experiment for ten different input f’s, we obtain an
n vs f frequency response curve for all Ew. This rep-
resents a considerably more efficient and simpler dy-
namic MTF measurement technique than prior meth-
ods. We can also obtain the MTF of the device from a
plot of modulation m = 4y/gvsf. This follows directly
since n = m?2/16.

The FT lens used was of focal length f;, = 500 mm.
Ony a d = 15-mm diam of it was used. Thus the re-
sultant null-null width of the central lobe of each FT
plane peak is 2x; = 2Af./d = 40 um. To facilitate de-
tection, we used a fiber optic microscope with a 150-um
diam probe and a 2.5X objective. This produced an
equivalent 60-um diam detector. This probe size (~1.5
times the theoretical diffraction limited spot size) in-
sured adequate detection of the intensities of the first-
and second-order terius in the FT plane with little FT
plane noise present in the data.

IV. Prom Experimental Data

In Figs. 3 and 4, we show n = [,/[;, vs spatial fre-
quency for the U.S. and Soviet Prom light modulators
for various write light exposures Ew from 10 to 200
ud/em? The second-order /I, data vs spatial fre-
quency is also included in both graphs for low spatial
frequencies. At high spatial frequencies its intensity
is over 108 below that at dc, and thus it becomes com-
parable to the noise of the optical system used. We note
that both devices exhibit comparable peak diffraction
efficiency values no = 0.1% at low spatial frequencies.
We also note that » breaks and starts to decrease at f =~
3 cycles/mm for both Proms. Higher Ew exposure
values yielded slightly larger n values, but second-order
distortion becomes quite severe in these cases. Thus
data for them were not included.

We notice that the second-order intensity is over 20
dB below the first-order light for f > 2 cycles/mm (U.S.
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Fig. 4. Diffraction efficiency n vs spatial frequency f for the Soviet
Prom with different write light exposures.

Prom) and for f > 6 cycles/mm (for the Soviet Prom).
We also note that a larger range of Ey values was pos-
sible on the Soviet Prom before steady state occurred
or before second-order intensity became excessive.
Note that below 20-uJ/cm? write light exposures, I, was
not measurable for the U.S. Prom and that similar re-
sults occurred for Ew = 50 uJ/cm? or less for the Soviet
Prom. Thus all data generally correspond to exposures
for which the response of the device has a nonlinearity
of ~1% or less.

In all experiments, we will give three parameter
measures for use in comparing the performance of the
different devices. We first note the device’s peak dif-
fraction efficiency 1, (at low spatial frequencies). We
then measure the spatial frequency fo 5 at which n =
0.5n9. (This is the device’s 3-dB spatial frequency
resolution.) Finally, we will give the spatial frequency
fo.or value for which 7 = 0.01np. (This latter spatial
frequency response can only be utilized in high dynamic
range systems where such low light levels can be de-
tected and used.) For the U.S. Prom unit available for
testing, these comparison parameters (for Ew = 80
ud/cm?) are ng =~ 0.1%, fo.5 = 6.5 cycles/mm, and fy o1 =
23 cycles/mm. For the Soviet Prom device tested, we
found ng = 0.1%, fo.5 = 8 cycles/mm, and f(, 01 > 100 cy-
cles/mm (this latter value was obtained by linear in-
terpolation of the data) for an Ey = 100 uJ/cm?2,

We next consider the 7 vs f dependence of these de-
vices. We note that n decreases faster with increasing
f for the U.S. Prom than for the Soviet Prom. However,
this is quite misleading, since the thickness of the par-
ylene layer and the crystal are different for both Proms.
The Prom’s response varies as a function of the thick-
ness of the different layers in the device. Thus, com-
paring any two Proms must be done with such issues in
mind. For the Soviet unit,dy = 3 um and d. = 400 um
were given parameters. Typical U.S. Proms employ dg4
= 5 um and d. ~ 600 um. (The exact values were not
available for the U.S. Prom tested, but the experimental
data obtained support the above values.)
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From the data of Fig. 3, we find that the U.S. Prom
tested shows an  « 1/f3 dependence for the Ey = 40-
ud/em? curve between the 3-30-cycle/mm frequency
range. From Fig. 4, we see that the response of the
Soviet Prom decreases less rapidly with n « 1/f2. This
can be directly explained with reference to the theory
advanced in Sec. Il and the different d4 thicknesses in
the two devices. From Sec. I, we recall that an n = 1/f*
dependence was predicted up to an f ~ 1/2nd, with an
n « 1/f* dependence at f > 1/2rdy. For the S viet
Prom, dj = 3 um, and thus an n « 1/f2 dependeace is
expected up to f =~ 50 cycles/mm. This is approxi-
mately the response observed in Fig. 4. Moreover, with
dg = 5 um for the U.S. Prom, the spatial frequency at
which the n « 1/f2 dependence ends is now ~f > 1/2rdy
= 30 cycles/mm.

Thus the more rapid decrease in n with { for the U.S.
Prom is the direct result of the larger dielectric laver
thickness for this device compared with that of the
Soviet Prom. As clearly indicated in Figs. 3 and 4 and
explained above, direct comparison of Prom data is
difficult unless each device is fabricated with layers of
the same thickness. When the different crystal thick-
nesses (d, = 400 um for the Soviet Prom and d. = 600
um for the U.S. Prom) are included, the theoretical
models in Refs. 9 and 10 can be used to further refine
device comparisons. Since our major intent is only to
show (by experiment) the comparable performance of
two different Proms and that both support theoretical
models advanced in Sec. I, we will not consider more

detailed comparisons and experimental verifications of

the more advanced Prom device models in Refs. 9 and
10. Rather we direct our attention to the performance
data for the Priz SLM in the following section.

V. Priz Experimental Data

In Fig. 5, we show the n vs f experimental data for the
Priz (device 3). Similar graphs were obtained for de-
vices 2 -4, and thus only the data in Fig. 5 are included
here. From Fig. 5, we note only four issues. First, the
mea-ured diffraction efficiency of the Priz is over 20
times more than that of the Prom. Thus, it has more
useful output light at all spatial frequencies. This
verifies the observation noted in Sec. II that the
transverse electrooptic effect in this BSO device is larger
than the longitudinal effect. Second, these data also
show that the spatial frequency response of the Priz is
superior to that of the conventional Prom with n « 1/f*
over the full 3-60-cycle/mm frequency range. From
theory (Sec. I}, it can be shown that the Priz should
exhibit an n « 1/f2 response over its full frequency
range. Third, measured response beyond 60 cycles/mm
was observed for this device (due to the larger I, light
levels available). Fourth, the second-order response
is larger for the Priz than the Prom. This appears due
to the nonlinearity with which a transverse field is in-
duced from a spatial longitudinal one as in the Priz.
However, we note that for f > 10 cycles/mm, negligible
second-order distortion exists. From this initial Priz
device, we find our three comparison parameters to be
no = 2 X 10~2 (or 20 times larger than for the Prom), fo 5

.‘l USSR PRIZ =3 [1]
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Fig. 5. Diffraction efficiency n vs spatial frequency f for the Soviet
Priz for two different write light exposures.
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Fig. 6. Diffraction efficiency 5 vs spatial frequency f for the Soviet
Priz for three different write light exposures showing the suppressed
dc response possible on the Priz unit.

= 8 cycles/mm, and fy01 > 100 cycles/mm. We note
that these Priz comparison parameters were obtained
with a lower Ey = 50-uJ/cm? maximum exposure than
for the Prom device. At higher exposures, the nonlin-
earity due to the second harmonic term was quite
large.

In Fig. 6. we show the measured response of another
Priz (device 5). For this device, the n vs f curve for Ew
= 100 pd/cm? is shown, and data points at spatial
frequencies down to 1 cvcle/mm are included. From
this figure, we see that the Priz exhibits a peak in 7 at
f > 0(f =~ 3 cycles/mm) and moreover that it suppresses
data at dc and low spatial frequencies. This is expected
since (Sec. I at dc the field is uniform across the device
and little transverse field exists. Hence little transverse
electrooptic effect accurs, and thus dc (and low spatial
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Table |. Summarized Comparison of the Prom and Priz Light Modulators

o fos fom
Device %) tevele/mm) teyele/mm)
U8, Prom 0.1 6.5 23 cycles/mm
U.S.S.R. Prom 0.1 8 > 100 eyclesrmm
USSR Priz 25 8 > 100 eveles/mm
Device n at different spatial frequencies
10 cveles/mm 20 cveles/mm 40 eyeles,mm
U.S. Prom 1 x 1073 2% 1078 Ax 10
U.S.S.R. Prom 2% 1074 1x 1074 R (i
U.S.S.R. Priz T.H X 1078 1 %107 25X 10

frequency) data are expected to be suppressed in this
device. In Fig. 6, we also note that, although the sec-
ond-order distortion is high at low spatial frequencies,
it rapidly decreases and becomes negligible for
frequencies above 15 cvcles/mm. This device also ex-
hibits the same 5 « 1/f2 response over its full f = 1-
50-cvele/mm measured frequency range. This Priz
device exhibits a large n comparable with that of the
other units. Its comparison parameter measurements
are comparable with those of the other Priz devices (Fig.
S

VL. Summary and Conclusions

In Sec. 11, we highlighted the model and theoretical
spatial frequency response to be expe-ted from the
Prom and Priz light modulators. The e¢xperimental
system we used (Sec. [11) was shown to be quite stable
(in terms of variations in beam overlap area with varying
input spatial frequency). The new data acquisition
technique we emploved was found to be quite useful.
The experimental procedure for testing these light
modulators followed the ideas advanced in our earlier
work!* and proved to be most appropriate in this ex-
ample also. Our experimental data on the Prom SLM
(Sec. IV) verified the theoretical models advanced in
Sec. [l and demonstrated how difficult it is to compare
two Prom devices with different laver thicknesses.
Nonetheless, we clearly showed that the theory ad-
vanced in Sec. 11 was valid, and we also found that the
Soviet Prom unit evaluated performed comparable with
the U.S. one available. The Priz data (Sec. V) showed
that the diffraction efficiency of this device was over ten
times that of the Prom (as predicted in Sec. [I) and that
its n vs f response obeyed an n « 1/f* dependence over
the full frequency range.

In Table I, we summarized the highlights of our ex-
periments on the Soviet Prom and Priz light modulators
as well as U.S. Prom unit. In this table. we note our
three comparison parameters for each device. We note
that if one considers the MTF resolution of these de-
vices, the y/ 5 vs f curve is appropriate, and in this case
the differences in the performance of the different units
will be even more exaggerated (because of their quite
different n vs f dependencies). In Table I, we also in-
clude a most meaningful set of data (the usable amount
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of light n available from each device at a given spatial
frequency). These data clearly show that the Priz has
from 10 to 100 times more usable light than does the
Prom.

The Priz has many other features that are quite
unique. These include: automatic suppression of de¢
and low spatial frequencies (see Fig. 6)'"; directional
spatial filtering: and dynamic image selection. Some
amplification of the last two items is necessary. From
a detailed analysis of the dependence of 7 on the po-

-larization of the input light (with respect to the crystal's

orientation), one can show” that the [110] cut Priz has
preferential spatial frequency data directions that it will
emphasize and that this effect can be controlled by
properly adjusting the direction of polarization of the
input light with respect to the cryvstallographic axes.
Furthermore, the Priz can be operated with a fixed
voltage betwen electrodes. (This greatly simplifies the
electronic support system needed for the unit.) Inthis
operating mode,'® the Priz responds only to changes in
the input data and thus exhibits dynamic image selec-
tion. In a future paper, we will discuss these unique
image processing features of the Priz, other data on the
dynamic write and erase performance of the device, as
well as its sensitivity, optical quality, and the angular
orientation accuracy required to use the unit.

We note in closing that the Priz can exhibit superior
performance to that indicated in Figs. 5 and 6 when the
write light wavelength Ay is properly chosen to match
the crystal’s thickness. In general, when Eyw and Ay
are properly selected to match the device's fabrication,
optimum performance is possible.

We thank Michael Petrov for allowing us to test and
evaluate the Prom and Priz light modulators fabricated
in his laboratory at loffe Institute (Leningrad) and for
allowing A. Khomenko to assist us in this work. We
also thank the Air Force Office of Scientific Research
(grant 79-0091) for supporting our analysis of this device
and publication of this paper.
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Applications of the Priz light modulator

David Casasent, Frank Caimi, M. P. Petrov, and A. V. Khomenko

The Priz light modulator suppresses input data at zero spatial frequency, can provide directional spatial fil-
tering, and can perform dynamic image selection or change detection. In this paper, we summarize the
Priz's performance and provide experimental confirmation of the above three image processing applications

of this device.

L. Introduction

Optical signal processing and image pattern recog-
nition applications require real-time and reusable de-
vices on which the input data to be processed can be
recorded for subsequent optical processing. These vital
components in an optical processor are known as spatial
light modulators (SLM). Although many candidate
SLM devices exist,! we will restrict our present atten-
tion to only one such device, the Priz light modulator.2-8
Priz is a Soviet acronym that translates as image
transformer. This modulator was proposed by a group
of researchers of A.F. Ioffe Physico-Technical Institute
(FTI) of the Academy of Sciences of the US.S.R. It
employs the same active element, i.e., the bismuth sil-
icon oxide (BSO) type crystal, as the well-known Prom
modulator.?

At the Electrical Engineering Department of Car-
negie-Mellon University (CMU), five Prom and Priz
units fabricated at the FTI laboratory headed by Petrov
were tested and evaluated. One worker of FTI partic-
ipated in the research program (Khomenko).

In Sec. 11, we review the structure of the Priz light
modulator and the motivation for its fabrication and
highlight the spatial frequency response data obtained
on the devices we evaluated at CMU. We then include
(Sec. I1I) a summary of the dynamic and optical per-
formance of the Priz. These data were obtained from
experiments performed in both the Soviet Union and
at CMU. We include several image and signal pattern
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recognition correlation examples of the use of the device
in Sec. IV. Because of the transverse linear electrooptic
effect used in the Priz to modulate read light, it exhibits
three unique features that are of use in various image
processing and pattern recognition applications. These
include: suppression of dc and low spatial frequency
data as well as directional filtering of input spatial
frequencies oriented in selected angular directions (Sec.
V) and a quite unique feature referred to as dynamic
image selection in which the device responds only to
changes in the input image data (Sec. IV). Our sum-
mary and concluding remarks follow in Sec. VII.

il. Operation of the Priz

The Prom light modulator? consists of a BSO crystal
~20 X 20 X 0.4 mm with Parylene insulating layers and
transparent electrodes on the large faces. In operation
the spatially modulated data to be processed are imaged
or scanned onto the device in Aw write light (350-450
nm). Photocarriers are generated in the photocon-
ductive BSO, and a spatially modulated charge layer is
produced within the BSO. When the device is illumi-
nated with a uniform read light beam at Ag (usually 633
nm), the Ag light emerging from the device is polariza-
tion modulated spatially with an amplitude of modu-
lation that varies spatially in accordance with the
original Aw input light or data pattern. This Ap mod-
ulation occurs by the linear-longitudinal electrooptic
or Pockels effect. The polarization modulation can be
converted to amplitude modulation when a crossed
analyzer is placed behind the modulator.

In the Priz light modulator,2-® a [110] or [111] cut
BSO crystal is used rather than the {100] cut crystal
used in the Prom. Other proprietary fabrication
techniques are employed, but the issue of major im-
portance is that with these different crystal cuts, the
device now modulates Ag light by the transverse rather
than the longitudinal electrooptic effect. The spatially
varying Aw light distribution is still incident on the
crystal’s large faces collinear with the applied electric




field direction, and the spatially varying charge layer
parallel to the crystal's large faces is still induced.
However, the transverse component of this field is what
is used to provide the spatial modulation of the Ag
light.

The Prom exhibits low diffraction efficiency n and a
sharp n =~ 1/f4 decrease in usable output light intensity
at high spatial frequencies f.!° If we assume that the
sine wave electric charge grating with amplitude o4 in-
duced during image writing in the Prom is infinitely thin
and that it exists at the crystal-dielectric interface, the
phase modulation vs spatial frequency is described
by"

- 2‘!’00
Usnfteg coth2xfdg + € coth2x/d.)

where ¢4 and ¢, are the relative dielectric constants of
the dielectric layer and the BSO crystal, respectively,
dg and d, are the thicknesses of these layers, and U,/
is the halfwave voltage of the crystal. Equation (1}
indicates that when f increases at f 2 Yodg, coth2rfdy
~ 1 and coth2nfd, =~ 1, and thus A¢ decreases «1/f.
Since n « (A¢)?, Eq. (1) predicts n « 1/f2. However, in
experiments a sharper (n « 1/f4) dependence was ob-
served. This was attributed to the fact that, in the
process of image writing, a volume electric charge dis-
tribution is formed within the crystal volume rather
than an infinitesimally thin one.! Using this new
model, it has been shown that in the case when the
charge is distributed throughout a layer of thickness d,
near the crystal-dielectric interface

- oojcosh2xfd. — cosh2xf(d, — d,)] i

U, raf2d,leg coth2xfdy + ¢, coth2xfd.) - sinh2x/d,

Equation (2) predicts an 7 « 1/f4 dependence at high f,
which agrees with experimental results. Thus the sharp
dependence of n on f for the Prom is attributable to the
volume character of charge distribution. The most
complete and detailed theoretical description of the
Prom device can be found in Refs. 12 and 13. These
papers discuss a model that includes the location of the
charge layer within the BSO, the thickness of the dif-
ferent device layers, the wavelength of the light used.
To overcome the disadvantages of the volume charge
predicted by Eq. (2), it was suggested in Refs. 14 and 15
to use the transverse electrooptic effect for read light
modulation rather than the longitudinal effect used in
the Prom. The modulator that uses the transverse
electrooptic effect is called the Priz. The corresponding
calculation of the phase modulation for the case of the
transverse effect shows that$

(1)

Ae¢

be )

L) ta|cosh2xfd, + cosh2xf(d. —d;) ~ 1]+ k;

Uipef

where k; = ¢, tanh2x{d4 sinh2xfd,.

From this formula, two characteristic features of the
Priz device can be seen. First, A¢(0) = 0; i.e., the
modulator suppresses the dc component. Second, at
high f, A¢ « 1/f and n = 1/f2, i.e., the Priz n vs f char-
acteristic is superior to that of the Prom.
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e &

D S VR e Rl

T 2%f%d,(eq tanh2xfd, + ¢, tanh2x(dg) cosh2xfd.] '

fl. Performance of the Priz

In the MTF tests performed on the Priz at CMU, we
rnerated the device at 2 frames/sec. In other experi-
ments, we operated the device at 20 frames/sec. A
faster frame rate should be possible, but no effort has
yet been made to determine the device’s maximum cycle
time. However, results of several experiments ar:
useful in providing some indication of the final device
performance possible on the Priz.

In the experiments performed in FTI, the device was
operated with write times as short at 7 nsec using a
pulsed laser source with an intracavity electrooptic
modulator. In this case, photocarriers were generated
in a negligible time, but the output light pattern was not
visible until 1 usec later, and it peaked after 10 usec.
Carrier mobility and transit times thus appeared to
limit the minimum write-read cycle times of the Priz
to 10 usec. In the more conventional operating mode,
1-msec exposure times are used, and the output pattern
is then immediately visible.

Erase time is a second limitation on the device's
speed. In all tests performed at CMU, a fixed 1-msec
erase flash (from the standard erase unit provided with
the U.S.A. Prom) was used. However, neither the Prom
nor the Priz can be recycled immediately after erasure,
and a delay time is necessary to allow redistribution and
relaxation of excited carriers within the crystal. One
millisecond of relaxation time and hence a total 1-msec
erase time appear adequate. High-energy erase pulses
cannot decrease this time, since they generate and dis-
lodge other carriers within the bulk of the device, and
Jonger relaxation times between the end of erasure and
the start of a new write cycle then become necessary.
Thus operation of the Priz at a 103-frame/sec (write~
read—erase cycle) rate appears possible, but additional
theory and experiments are necessary to confirm this.
Moreover, an application for which the entire spatial
input data changes every millisecond is necessary to
merit such an effort together with attention to how one
can introduce such a new 2-D Ay spatial distribution
to the device at these 10°-frame/sec rates.

The storage times for the Priz are adequate for most
applications {1-min storage in the dark and 10-20-sec
storage under a high Az = 633-nm read light intensity
(Ig = 2mW/cm)]. These can be somewhat controlled
by varying the thickness of the insulating layers. The
lifetime of the Priz, like that of the Prom, appears to be
excellent. Selected Priz units have been operated for
over one million cycles at a 20-frame/sec rate with no
noticeable change in performance. The only concern

@3)
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with the device's lifetime appears to be its operation
with high Iz light levels. In this case, a device with high
transmittance angd electrodes with good conductivity
is necessary. Forsuch cases, InO, electrodes are used.
The performance of such Priz units appears to be good
(as several of them have operated successfully for sev-
eral years).

The resolution of the Priz is mostly understood and
has been experimentally verified by several techniques.
Its diffraction efficiency ng at low spatial frequencies
is ~1%, its 10-dB spatial frequency response fo, is ~30
cycles/mm, and the spatial frequency foo; at which n =
0.01n is 100 cycles/mm. At CMU, we operated the
device with input data having spatial frequencies as high
as 80 cycles/mm. With higher quality optical systems
and a different area detection technique, FTI re-
searchers have measured diffraction efficiency on the
device beyond 500 cycles/mm. Since the usable output
light intensity at these high spatial frequencies is quite
low, only in selected applications can such resolution

Fig. 1. Priz spatial light modulator.

actually be used. The Priz performs well with input
write light exposures Ew of 50 uJ/cm? or less with cor-
responding interharmonic distortions and hence re-
sponse nonlinearities below 1% at these write light
energies. The sensitivity of the device defined as the
write light exposure Ew necessary to achieve n = 1% at
5 cycles/mm is 50 ud/cm?2. In our CMU data on these
devices,’® an available laser source not optimized to the
thickness of the Priz used was employed. With this
experimental setup, we obtained only fo 5 = 20 cycles/
mm and fo, = 30-mm resolution. If the optimal read
light wavelength were used, we expect superior resuits
with fos in excess of 30 cycles/mm as obtained at
FTI1

Both the Priz and Prom modulators have high optical
quality and allow use of large crystal sizes. The Priz
units evaluated at CMU had a 15-mm diam active area
with A/4 optical quality. Larger units have been fab-
ricated (up to 30-mm diam) with ~1X optical flatness.
The standard Priz units have also been fabricated,
tested, and used with A/10 optical quality. The BSO
crystal in the Priz is nominally 400 um thick, and the
insulating layers are ~3 um thick. No substrate is used
in the Priz, or the Prom, as clamping effects change the
dielectric constants of the materials and induce stresses
in the device. One of the units tested at CMU is shown
in Fig. 1.

In Table I, we summarize the salient Priz perfor-
mance parameters. These data were obtained from
diverse FTI and CMU tests and experiments. As with
any BSO device, a wide range of performance is possible
depending upon the thicknesses used for the different
layers in the device. The parameters in Table I are all
simultaneously obtainable, but they should be inter-
preted with the above consideration in mind. In all
cases, the device should be operated at the intended
write light exposures Ey and write light wavelength Aw
if optimum device performance is to be obtained. MTF
data are frequently used to describe the spatial resolu-
tion of SLMs. Since the Priz has a dc response of zero,
the MTF function 7(f) is not usable for such a device.
Rather the diffraction efficiency 5 of such a device is the

Table ! Priz Par ter and Pert: Spechiications
Parameter Specification Parameter Specification

BSO crystal 400 um thick Address time 7 nsec (min)
Insulating layer 3 um thick Write/read cycle 1 msec {min)
Electrodes Pt or In0, Erase time 1 usec (min)
Active ares ) Erase cycle 1 msec (typical)

m'icx;lum ;g:: g:m Frame rate (typical) 20 frames/sec
Optica! quality Dark Storage 1 min (typical)

mﬁmw‘ ://:o Storage with readout 20-30 sec (typical)
Write light Diffraction effic. (n) 1%

Wavelength 850500 nm Resolution

Exposure (typical) 50 pd/cm? atn=0.In 30 cycles/mm

Sensitivity (for y = 1% ot 5 cycl :'mm) 50 ud/cm? at n=0.01n > 100 cycles/mm
Read light max. measured > 500 cycles/mm

A (typical) 633 nm Spatial freq. response ne1/f?

Intensity (typical) 2 mW/cm?
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appropriate parameter. This is why all spatial fre-
quency resolution data in Table I are given in terms of
nvsf. These data were obtained with the Priz device
operated dvnamically in real time. In coherent optical
processing, the amplitude transmittance m(f) of the
SLM vs frequency [ is the parameter of interest. If an
analyzer is used and the input pattern is the sine wave
grating I = Io(1 + 8in2xfx), the amplitude transmit-
tance for the Priz can be written in the linear approxi-
mation as

t(x) = m({f) cos2x/x. )

Equation (4) implies that the dc component of the Priz
response is zero [since from Eq. (3) A¢ = 0at f = 0], and
the readout pattern has a x/2 phase shift with respect
to the recorded one. In this case, m(/f) is directly ob-
tained from the n(f) data provided by

Im| = 2V (5)

This expression follows from the Fourier transform
analysis of Eq. (4).

In Fig. 2, we show the diffraction efficiency 5 of Priz
and Prom units at comparable Ey = 50-uJ/cm? expo-
sures. From these data, we see the superior diffraction
efficiency and resolution of the Priz. We also see that
the response of the Priz decreases at higher spatial
frequencies at a much lesser rate than that of the Prom.
Where m(f) vs f is plotted rather than n({), the differ-
ences would be even larger. We also note that the Priz
exhibits a suppressed response at low spatial frequen-
cies. This feature follows directly from the fact that,
upon uniform illumination of the device with write light,
a uniform longitudinal electric field is formed that has
little or no transverse component. Since the Priz em-
ploys the transverse electrooptic effect, it will not
modulate in response to such light. As a result n of the
Priz device peaks at a spatial frequency of 4 cycles/mm
(for the unit tested) rather than at dc.

IV. Use of the Priz in Pattern Recognition and Signal
Processing Correlations

An attractive optical correlator for image pattern
recognition is the joint transform correlator.!¢ In this
system, the reference object being sought is placed be-
side the real-time input scene in the input plane of a 2-D
optical FT system. The objective is to determine if the
reference object is present in the input scene and to
determine its location. Such pattern recognition ap-
plications are appropriate for locating objects on an
assembly line and locating areas and landmarks in
satellite imagery as well as in missile guidance and many
other applications. In the joint transform correlator,
the Fourier transform of the input and reference data
is formed on an intensity sensitive material (such as
film, the Priz, or Prom). The Fourier transform of this
joint FT pattern is then formed, and it can be shown!6
that it contains the correlation of the input and refer-
ence images. In Fig. 3 we show an example? of such a
correlation performed on the Priz. The FT of the two
input objects [Fig. 3(a)], identical images of lobsters, was

L1 k)
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Fig. 2. Diffraction efficiency n vs spatial frequency / for the Prom
and Priz spatial light modulators.

Fig. 3. Real-time image pattern recognition with the Priz used in

the Fourier transform plane of a joint Fourier transform correlator:

(a) input and reference images; (b) cross-sectional scan; and (c) an

image of the output correlation plane pattern. The two peaks to the

right and left in (b) and (c) represent the correlations of the two input
objects.

recorded on a Priz placed in the FT plane of a lens,
which was behind the joint input pattern of Fig. 3(a).
The FT of the data recorded on the Priz is shown in Fig.
3(c) and its cross-sectional scan in Fig. 3(b). This full
correlation plane pattern contains a central term that
is the sum of the autocorrelations of each input object.
The large spikes on the left and right in Fig. 3(b) are the
correlation of the two input objects. Their presence
indicates that the two input objects are similar, and the
relative position of the peaks denotes the location of the
reference object within the field of view of the input
image.
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Fig. 4. Real-time correlation or compression of a linear frequency

modulated signal using the Priz as the input transducer: (a) linear

frequency modulated input signal; (b) compressed output correlation
signal.?

(a)

Fig. 5. Real-time image edge enhancement and directional spatial

filtering using & {111) Priz: (a) edge-enhanced reconstructed image;
(b/ directionally filtered reconstructed image.
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Signal correlations have also been performed on the
Priz. An image of a linear frequency modulated (LFM)
signal [Fig. 4(a)] was recorded on the Priz. The FT of
this pattern formed with a lens whose focal length was
matched to the frequency range of the LFM waveform
yields the resultant compressed pulse or output corre-
lation peak? shown in Fig. 4(b). The width of the ex-
perimentally obtained correlation peak was 1/100th of
the width of the original LFM signal. This is in good
agreement with the theoretical pulse compression factor
of 120 for the LFM signal used. The difference between
theory and experiment was due to taper in the input
light beam and other effects.

V. Image Spatial Filtering Using the Priz

In Fig. 2 and Sec. 111, we noted that because of the
transverse electrooptic effect in the Priz, dc and low
spatial frequency data are automatically suppressed.
In Fig. 5(a), we show the reconstruction of a circular
input object recorded on the Priz. As expected, only
the edge contour of the object appears (due to the au-
tomatic dc spatial frequency suppression performed by
the Priz). The amount of dc suppression depends on
how closely the read light beam is incident to the normal
te the crystal. In our experiments at CMU, we were
able to obtain a dc suppression of 10° when the normal
to Priz was aligned within 4° of the read beam. Fora
104 suppression factor, 1° alignment is necessary. In
the image processing experiments at CMU (Figs. 5 and
7), the read beam was incident at an angle of 1.7° to the
normal to the crystal.

The Priz has anisotropic properties arising from those
of the linear transverse electrooptic effect.!’” In par-
ticular, it exhibits a distinct difference in response to
circularly and linearly polarized read light. Figure 6
shows how diffraction efficiency to the Priz depends on
orientation of the crystal’s axes when read out with
linearly and circularly polarized light.2 In the data of
Figs. 5 and 7, the electric vector of the linearly polarized
light was along the [112] axis of the crystal. In Fig. 6,
the diffraction efficiency n as a function of the angle
between the wave vector of the sine wave grating and the
[110] crystal axis is plotted in polar coordinates.

The outer circle in Fig. 6 describes the device’s re-
sponse to circularly polarized input light. As seen, it
is quite uniform, and thus operation with circularly
polarized input light produces no directional preference
for input spatial frequency. The reconstructed image
in Fig. 5(a) verifies this response and is essentially how
the circular outer curve in Fig. 6 was obtained. How-
ever, the response of the Priz to linearly polarized read
light is quite different. In the two inner figure eight
shaped curves in Fig. 6, we show the response for lin-
early polarized read light. When the device is exposed
to linearly polarized input light, it exhibits a preferred
response 7 for input spatial frequencies oriented in one
direction, while greatly suppressing input spatial
frequencies oriented in the orthogonal direction. The
direction in which spatial frequencies are suppressed
can be controlled by the polarity of the voltage applied
to the modulator if the polarization of the read ligh? is
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Fig. 6. Diffraction efficiency 5 for the Priz as a function of the angle
between the wave vector of the recorded sine wave grating and the
crystal’s axes for input read light with circular and linear polarization.
Curves 1 and 2 correspond to experimental points for linearly polar-
ized light, and curve 3 corresponds to circularly polarized read light.

fixed. The two figure eight shaped plots in Fig. 6 were
obtained with the same polarity of the read light but
with different polarities of the applied voltage. Dif-
ferences arising from changing the voltage polarity can
be attributed to the optical activity of the BSO crystal.!”
Figure 5(b) shows the reconstructed image of a circular
object recorded on the Priz and read with linearly
polarized light. As seen, the spatial frequencies in one
direction are suppressed as predicted by Fig. 6.

For a [110] cut Priz, similar plots of 1 vs the read wave
vector’s direction result. However, for circularly
polarized read light, a saddle-shaped response rather
than a circular one results. Similarly, a larger n (a factor
of 2 larger than for the [111] cut Priz) results when the
[110] cut device is operated with linearly polarized read
light. Thus the [110] cut device is preferable for mul-
tichannel 1-D signal processing applications and others
in which directional spatial filtering is desired. Con-
versely the [111] cut Priz is preferable for image pro-
cessing where a uniform response is generally desired
for all input spatial frequency directions.

To achieve a high degree of suppression of the dc
component in the image (both with linearly and circu-
larly polarized read light), the modulator should be
placed between a high-quality polarizer and analyzer,
which in the case of circularly polarized light can be
achieved with a /4 wave plate and a linear polarizer.
The dc suppression, directional spatial filtering, and
edge enhancement features of the Priz are quite useful

preprocessing operations for multisensor and IR pattern
recognition. In Fig. 7, we show the original IR image
[Fig. 7(a)], the image constructed from a [110} cut Priz
with the read light polarized at 45° [Fig. 7(b)] and with
vertically polarized read light [Fig. 7(c)]. The recon-
structed image in Fig. 7(b) approximates an edge-en-
hanced version of the original image, whereas the re-
construction in Fig. 7(c) results in enhancement of
vertical lines in the original image and suppression of
horizontal spatial frequencies in the original input
pattern.

VL. Dynamic image Selection

In investigating the response of the Priz to spatially
moving 2-D input patterns, it was found* that the de-
vice’s response was a function of both the spatial fre-
quency of the input data and the velocity with which the
input data moved across the input field of view. A
modified version of the Priz was used in these experi-
ments. It had no insulating layers, so electrodes were
evaporated directly on the crystal’s surface.!8 The re-
sponse of the device to an 0.5-mm wide input line was
measured for different velocities (1-40 mm/sec) of the
input object across the input plane, and it was found*
that the response of the device peaked when the velocity
was ~7 mm/sec. The response of the Priz is thus a
function of both time and space (i.e., the spatial fre-
quency of the input data and the rate at which it
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Fig. 7. Real-time image edge enhancement and directional spatial

filtering of IR imagery on a [110) Priz: (a) original input image; (b)

edge-enhanced reconstructed image; (c) directionally filtered re-
constructed image.
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Fig.8. Schematic diagram of the optical system used to demonstrate
dynamic image selection or change detection on the Priz.

changes or moves with time). An initial attempt to
describe the combined time and space response of the
device has been reported.5>!® Initial experiments4!8
indicate that as the spatial frequency of the input data
decreases, the input velocity for which the response 3
of the device peaks shifts to higher velocities.

To obtain this effect, the Priz is operated with a fixed
voltage across its electrodes rather than with the applied
voltage switched between positive and negative polar-
ities. In the normal mode (polarization of the applied
voltage switched), the device performs like the Prom.
Only with a fixed voltage will it perform dynamic image
selection. In this mode, the device responds only to
changes in the input image. This operating mode is
attractive for many applications such as change detec-
tion, and it also greatly simplifies the electronic support
system necessary (since a fixed rather than a switching
high-voltage supply can be used). Over a selected range
of input temporal frequencies f; (where this range varies
as a function of the input spatial frequency f; ), the n vs
fi response is linear, and the device performs a time
differentiation of the input data. This range of f, is
quite small, and moreover it varies with the intensity
of the input write light. For these reasons, this Priz
device features is best termed dynamic image selection
(i.e., the device's output represents only the changing
part of the input data) rather than temporal differen-
tiation.¢ This effect can also be observed with a fixed
input and with the write light beam pulsed on and off.
In this case, whenever the write light changes (goes on
or off), an output image of the input data appears and
then decays with a time constant that is a function of the
intensity of the write light. If the differential phase A¢
of the output light is measured, it is seen to be of op-
posite sign when the write light is switched from off to
on compared to when it is switched from on to off.

When the Priz units were being tested at CMU, we
found this Priz feature to be most attractive and thus
assembled the system of Fig. 8 to demonstrate the use
of the Priz in change detection. The system of Fig. 8
contains two input planes. Plane Py contained a fixed
image, in our case a random pattern of uncorrelated
noise and correlated noise of different correlation
lengths and with different mean values. This fixed Py

______——-_
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Fig. 9. Demonstration of dynamic image selection or change de-

tection in real time on the Priz: (a) composite image of a moving

target on a fixed noise background; (b) dynamic real-time selection
of the moving target portion of the image in (a).

pattern was imaged onto the Priz at P, (by imaging lens
IL,) together with the FT of an acoustooptic) (AO) cell
(using the FT lens FTL). The AO cell was operated in
the scanning mode with a repeated LFM input signal.
This caused a scanning spot to traverse the Priz (su-
perimposed on the fixed noise pattern from Py), thus
simulating a moving object on a noise background. The
velocity of the scanning spot was adjusted to be 2.8
mm/sec, and its size was ~1 pixel (40 um).

Both the fixed and moving input patterns were im-
aged onto the Priz in Ay = 476-nm light from an
argon-ion laser. Readout was performed in Ag =
633-nm light incident normal to the Priz as shown in the
left side of Fig. 8. The pattern on the Priz was then
imaged onto P; using imaging lens /L, through a crossed
analyzer and a 633-nm filter (FIL). The output P,
pattern was detected on a vidicon, and the dynamic
moving output was visible on an isometric display where

it could be photographed. A fiber-optic (FO) probe
with a microscope and PMT was also placed at P, to
allow quantitative measurements of the output plane
to be made.

In Fig. 9(a), we show the full output image at P; (with
the high-voltage Priz power supply operated in the
normal pulsed mode). This output shows the fixed
background noise pattern and the moving spot. (The
moving object or spot is present in the back left of the
figure.) When the high-voltage Priz power supply po-
larity was fixed, only the time varying portion of the
input pattern appeared at the output. In this case, only
the moving spot produced by the scanning AO cell was
visible. In Fig. 9(b), we show the P; output for one lo-
cation of the scanning spot (corresponding to a simu-
lated moving target in the constant noise background
image). As can be seen, the Priz suppresses the fixed
background noise quite well.
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Table R Quantitative Dynamic image Selection Data on the Priz

R in 1 2.5
Row [ 50

10 25
48 49

To quantify the amount of background suppression
obtained, the intensity of the moving spot was varied
and the ratio

intensity of the moving spot

k= average intensity of the fixed background ©

was measured at the input and output of the system
(i.e., with and without dynamic image selection or
change detection). The results are summarized in
Table I1. From these data, we note that once the in-
tensity of the scanning spot has been increased so that
Rin = 2.5 or greater, a constant Rou =~ 50 ratio results
with the intensity of the dynamic part of the output
image being 50 times the average background level in
the P; output. This occurred because when R;, was
increased above 2.5, saturation of the Priz occurred, and
thus no further changes in the effective R;, resulted.
This is expected since, with the Priz in the FT plane of
the AO cell, all the light from the cell was concentrated
onto a single pixel on the Priz.

Vil. Summary and Conclusion

A complete and unifying summary (at this present
time) of a new light modulator, the Priz, has been pre-
sented. Many new experimental demonstrations re-
cently obtained at CMU were included. The theory of
operation of the Priz was reviewed and experimentally
verified, and its similarity and differences from the
Prom were noted (Sec. II). The first unifying summary
of the performance parameters of the Priz was also ad-
vanced (Sec. I1I). A summary of many of the possible
applications of the Priz was then presented. This in-
cluded conventional optical pattern recognition and
optical signal processing correlators (Sec. IV) plus three
new image processing operations: dc suppression and
directional filtering (Sec. V) plus dynamic image se-
lection (Sec. VI). The first image processing operation
had been experimentally demonstrated previously.
Directional spatial filtering demonstrations had not
been previously described. Qur dynamic image selec-
tion experiments together with Ref. 18 represented the
first examples of the use of the device for the selection
of the dynamic part of an image from a constant fixed
noise background (i.e., change detection).

Many aspects of the Priz device are well understood.
However, further theoretical analyses and modeling
together with further device fabrication and experi-
mental testing are necessary to understand fully and
describe many of the observed features of the device.
Issues meriting further analysis include the nonlinearity
associated with the transverse electrooptic effect, the
combined time and space dependence of the resolution
of the device, and a theoretical formulation of the dy-
namic image selection feature of the device with at-
tention to the selection of device parameters to optimize
and control this effect.

The promising performance parameters tabulated for
the Priz light modulator and the experimental verifi-
cation included of several of the novel features of this
device indicate that a wealth of new research efforts and
applications are still possible in the field of real time and
reusable spatial light modulators.
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ABSTRACT

The optimal correlation filter for the two-class discrimination problem is considered. A simple
iterative procedure is suggested for the design of the filter. Experimental verification of the per-
formance of this optimal correlator in discriminating the class of circles from the class of hexagons
is included.

1. INTRODUCTION

One of the basic problems in pattern recognition is the discrimination between two classes of data
objects. This problem is usually solved by first extracting the relevant features and then classifying
them. When the class of objects of interest consists of randomly distorted versions of one object,
statistical techniques are needed to obtain useful features. Several general approaches to statistical
feature extraction are available in the literature [1,2]. Most of these methods optimize some distance
criteria such as divergence [3] or Fisher discriminant {4] between the two classes. These distance
measures are not easily available for comparison purposes in optical correlation experiments. A more
useful quantity to optimize is the signal to noise ratio since it can be easily measured. In this
paper, we will develop a new two-class discrimination correlator that optimizes the output correlation
SNR.

The Karhunen-Loeve (K-L) expansion can be shown [5,6] to represent a random process in an optimal
sense. Fukunaga and Koontz [3] suggest a modification of this technique to improve its discriminatory
power. According to their method, the auto~correlation matrix of each class is transformed such that
the best fit eigenvector of one class represents the other class very poorly. Foley and Sammon [4]
determine the optimal discriminant vector that maximizes the Fisher ratio, the ratio of the berween-
class variance to the sum of the within-class variances [1]. Caulfield, et al. [7] have used the same
Fisher criteria to design optically implementable discriminators. 1In this paper, we derive an optimal
correlator to discriminate one class of signals {x(t)} from another class of signals {y(t)}!, where both
{x(t)} and {y(t)} are considered as stochastic processes. The data sets {x(t)} and {y(t)) are in gen-
eral images and, for the problem we consider, each set consists of different geometrically distorted
versions of a different object. Our new approach 1s based on optimizing the cross-correlation output
SNR. This parameter is of more practical significance in optical processors than the other measures.
This optimal correlator will be derived by extending the conventional matched filter model. The
matched filter is a discriminator for the signal {x(t)} in the stationary white noise process {n(t)!},
whereas the optimal correlator considered in this paper is a discriminator of a class of signals ix(t)
from the nonstationary noise process {y(t)}.

In Section 2, the nonstationary noise model is derived from the two-class problem. By assuming
that both stochastic processes {x(t)} and {y(t)} can be approximated by a finite K-L expansion with
basis function sets {¢,(} and {£; )} respectively, we will prove that the optimal discriminator can be
represented by a linear combination of the {¢,} and {{,}. 1In Section 3, the optimal discriminator for .
the two-class problem is determined. We presént experimental results in Section 4 to support our con-
clusions. As our data base for simulations, we use circles with randomly-varying diameters as ome
image class and hexagons with randomly-varying diameters as another class.

2. NONSTATIONARY NOISE MODEL

In the two-class discrimination problem, one class of signals {x(t)} is to be discriminated from
another class of signals {y(t)}. 1In order to find the optimal filter which can discriminate {x(t)}




from {y(t)} in the presence of noise n(t), we use the model in Figure 1. The noise process {y(t)} is
nonstationary since it represents an image class with its own statistics that may be spatially varying.
We thus call this model a nonstatic.aary noise model.

— emm  wam

{x(t)}

or — ) P

{y(t)} + n(r)

FIGURE 1 Schematic of the nonstationary noise model.

The optimal filter is derived by maximizing the output SNR defined as

E[/x(t)h(1-t)dt]?
E[/{y(t) + n(t) Ih(1-t)dt])?

SNR =

™0 , 1)

vhere we assume 1-D functions for notational simplicity and where (with no loss of generality) we
N assume that the correlation peak occurs at T = 0. Letting T = 0 and h(-t) = f(t) in (1), we obtain

E[/x(t)£(t)dt)?
SKR = 3
E[/{y(t) + n(t)}f(t)de]” . 2)
. It can be reasonably assumed that each class of signals {x(t)} and {y(t)} can be represented with

sufficient accuracy by a finite dimensional subspace [8]. Thus when {x(t)} or {y(t)} is represented
. using the K-L expansion, they can be approximated by the subspace spanned by a small number of K-L
! basis functions. Let us assume that {x(t)} can be represented with sufficient accuracy by the basis
! function set {&;} and that {y(t)} can be similarly represented by the basis set {{;}. Then, we can i
compose a basis function set {¥,} (with N elements) which contains both {01) and {£p) and we can prove
the following theorem. The optimal filter f(t) can be represented by a linear combination of the basis
functions {¥,]}.

The proof proceeds as follows. Let the optimal filter f(t) be decomposed into fj(t) and f5(t),
where f)(t) belongs to the subspace spanned by {Wn} and where fy(t) is orthogonal to that subspace, 1
and hence to the spaces spanned by {¢;} and {£;)}. Then, the SNR in (2) becomes

E[fx(t)fl(t)dtlz

SNR = 5 5
E[f{y(t) + n(t)}fl(t)dt] + E[M{y(t) + n(t)}fz(t)dt] . (3)




From (3), the following inequality can easily be proved,

El/x(0)E, (e)de]?

SNR < 3
E{/{y(t) + n(t)}fl(t)dt] . )

The right hand side of (4) 1s the SNR obtained using the filter fl(t). Thus, (4) shows that the filter
f,(t) gives a larger correlation output SNR than the filter f(t) = f3(t) + fa(t). Thus the optimal
filter £(t) can be completely specified by fi(t) and hence by {Vn}. We will use this theorem in deter-
mining the optimal filter in the next section.

3.  OPTIMAL FILTER

To derive the optimal filter, we first describe the class of signals {x(t)} in terms of the ortho-
normal basis {¥,} as

x(t) = a,p,(2) +a b, () + ... + anN(:) » (5)

where the coefficients {an} are random variables and where N 1is the number of basis images Y(t). To
our knowledge, such a representation of randomly distorted imagery by a set of basis functions with
random coefficients and the use of SNR in (1) has not been employed before. Similarly, the noise
process {y(t)} can be represented by

y(t) = wlwl(t) + wzwz(t) + ...+ wNwN(t) . (6)

where the coefficients {w_} are random variables. From our theorem in Section 2, the optimal filter
h(t) is a linear combination of the {¥.}, i.e.

h(t) = p,y, (t) + pyyy(e) + ... + P¥yt) . (@)

The optimal filter £(t) can be determined by solving for the optimal coefficients {p_} in (7)
which maximize the SNR in (2). Since {Wn} is a set of orthonormal functions, the SNR in ?2) becomes,
after substitution of (5), (6) and (7),

E[ § aiajpipj]

SNR = T L,3=1 ¥
E{ wwpop]+1 PP
1,9m1 137103 (3.1 8P . (8)
We will rewrite (8) more succinctly as
T
R AP
SNR = —————*———ir
PHPp+IpPP , 9)

where p is the N x 1 column vector with Pn a8 its n-th element, I is the white noise power, A is the
N x N correlation matrix with its i,j-th element given by E{aja;) and W is a similar N x N correlation
matrix with its {,j-th element given by E[wivj]. Finding the optimal filter h(t) which maximizes the
SNR 1n (9) is equivalent to finding the optimal vector p which maximizes




I+p¥p (10)

under the condition 2?2 = 1. Note that a simple scaling of the filter vector p does not change the
SNR.

The optimization problem in (10) is solved in the Appendix. The solution can be written as
(A-aW)p = Iap . (11)

vhere a 18 a scalar. Because of the inter-dependence of p on a, an iterative method is used to solve
(11) for p. The four steps in this new iterative algorithm follow:

STEP 1: Set ap = 1.

STEP 2: Determine the largest eigenvalue ) and the corresponding eigenvector 2
for the matrix equation

(A -0 Wp = APy - (12)

STEP 3: Modify a according to the Am value obtained as

If Am > amI. set O

1 ™ % + Ma and

if A < al, seta
m m

w1l = O T ba,

where Ax is a positive increment in a.
STEP 4: Repeat Step 2 and Step 3 until

An > amI and km+1 < °m+11

or

Xm < amI and An+1 > um+11.

The eigenvector p, obtained is the solution of (11) and by (7) defines the optimal filter f(t).
For improved accuracy, we select Ax small; whereas for faster computation, a larger Aa is chosen. In
the initial {teration steps, &x = 0.1 is chosen. As A approaches its true value, Ax is dynamically
reduced to 0.01 to yield accurate final estimates of Am. Use of this iterative procedure can be justi-
fied because the maximum eigenvalue A\p of (12) decreases for increasing a and vice versa. Let us
evaluate the maximum SNR obtained by this method. Substituting the solution of (11) into (10), we find

PR R VU D C——-




——

p'Ap g lalp + a¥p) al1 + pTwp]
(SNR) - - - -q . (13)
°Pt 1+ pTup 1+pWp 1+plup

Since a must satisfy (11), and since A, is the largest eigenvalue of (A - aW), then Ia = Ap and

(SHR)opt =q= Xm/I. . Q)

The second class of images in Figure 1 can be treated as a stationary white noise part with power
1 and a nonstationary noise part with the correlation matrix W defined in (6). The values of the
elements of the matrix W are indicative of the amount of nonstationary noise present in image class
{y(t)). To determine the effects of nonstationary noise on the optimal filter, we rewrite (9) as

T
R Ap
= ‘Y-————-—
T T
Pp+Yp¥p

- ysR! 5s)

wvhere

and
T
) PAp
SNR™ = S A . (16)
PR+YRP ¥R

We see from (15) that optimizing sNRl is equivalent to optimizing SNR for a given Y. For a fixed
amount of nonstationary noise, y will decrease as the amount of stationary noise I incrcases. Thus, ¥
can be viewed as a measure of the ratio of the nonstationary noise power to the white noise power in
the image. By analogy with the optimal weight solution of (11) for (9), the optimal weight p to maxi-
mize SNR! in (16) is the lution to

(A-ayW)p ~ap . 17)

The iterative procedure outlined previously is also applicable to the solution to (17).

From (17), we see that the optimal weight vector p will differ for different choices of Y. Since
Y is not easily measurable for a general problem, we must estimate Yy using a priori information about
vhether the data is dominated by stationary noise (emall Y) or non-stationary noise (large Y) and then
use the appropriate filter h derived from p in (1”). For Yy = 0, we obtain the stationary noise case
and (11) and (17) reduce to Ap = ap, which states that the eigenvalues and eigenvectors of A alone
determine p in this case. We will refer to the solutions p to (17) for v ¢ 0 as a modified K-. solu-
tion or MKL(Y) solutions.




4. EXPERIMENTAL VERIFICATION

We have shown that the iterative solution to (11) or (17) can be used to obtain the optimal weight
vector p and to have the coefficients for the discrimination function h in (7), where the {;i) are the
dominant eigen-images (with the largest eigenvalues) of the data set {xy}. Use of the iterative solu-
tion in Section 3 requires knowledge of the correlation matrix A for the {xi} and the correlation
matrix W for the nonstationary noise or the second class of data (yi). Once the Y4 and Ai eigenvectors
and eigenvalues of {x4} have been obtained, we can use them to compute A and W using

WAL ae
and
1 M
wi,j - ii-kgl (yk wi)(yk wj) 19)

where in (19), M is the number of y, patterns, and the y, °* wj are the projections of the elements yy
onto the wj, i.e. cach yy can be written as

y-§(y-ww. (20)
11 k' Yk

In this section, we present digital simulation results to verify the performance of our optimal
discriminator for a specific two-class problem. As our data base, we consider two classes of geometri-
cal shapes: circles and hexagons. Randomness is introduced in each class by varying the radius of the
circles and hexagons from 10.0 units to 10.95 units in steps of 0.05 units. Each picture is recorded
in a 32 x 32 array and each class contains M = 20 such pictures.

We denote the M = 20 circles by {x;} and the M = 20 hexagons by {y;}. We computed the N eigen-
vectors {yy} and associated eigenvalues from the {x4}. For simplicity, we retained the first five
eigenvectors denoted by (¢1), where 1 = 1,...,5 (those with the largest eigenvalues). For simplicity,
we used these {¢i} as the basis set for the optimal filter f rather than computing the composite basis
set {yp)} that includes the primary components of both {xy} and {y;}. The A and ¥ matrices needed in
(11) and (17) were then formed as in (18) and (19) with N = 5 basis functions and M = 20 images. The
iterative procedure described in Section 3 was then used to compute the solution p to (17) for differ-
ent values of Y. The principal eigenvector h found for y = 0 (data dominated by stationary noise) and
for Y = 50 (data dominated by nonstationary noise) are shown in Figures 2a and 2b respectively. In
Figure 2a (y = O case), the exact K-L technique was used, whereas for Figure 2b (y = 50 case), our
iterative MKL method was employed. Both figures appear quite similar, except for small contrast dif-
ferences. Our iterative solution thus appears to produce results quite similar to those obtained using
the exact but computationally expensive K-L analysis.

The optimal discriminatior filters h were calculated for eighteen different values of the param-
eter Y and each of these h's was cross-correlated with all 20 circles and all 20 hexagons. The average
of the correlation intensities at the origin (correct peak location) was then calculated (for the cases
of circle and hexagon inputs) for each different y. These results are presented in Table 1, where C-
PEAK and H-PEAK denote the average correlation peak intensities for the case of the circles and the
hexagons respectively. In general, y is not easily measurable for a given two-class problem ar must
thus be appropriately chosen for a prop.r filter design.
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FIGURE 2 K-L and MKL filters, where intensity is quantized to 16
levels (with O to 9 and + denoting positive values and
the letters A to E denoting negative values).

(&) The primary K-L component of the 20 circles.
(b) The optimal MKL(Y) discriminator for a power ratio y = 50.

TABLE 1: Optimal discriminaror performance by changing
the ratio of the nonstationary noise power to
the white noise power.

Y C-PEAK H-PEAK C/H
0 0.8255 0.1755 4.70
1 0.8056 0.1159 6.95
2 0.7751 0.0852 9.10
3 0.7483 0.0681 10.99
4 0.7265 0.0577 12.59
5 0.7090 0.0509 1,.93
10 0.6580 0.0368 17.88
15 0.6328 0.0322 19.64
20 0.6166 0.0299 20.62
25 0.6044 0.0284 21.26
30 0.5941 0.0273 21.75
35 0.5848 0.0264 22.15
40 0.5760 0.0256 22.49
45 0.5675 0.0249 22.81 1
50 0.5594 0.06242 23.09 .
125 0.4463 0.0169 26.43
250 0.3201 0.0105 30.42
L] 0.0314 0.0002 128.25 |
Y: The ratio of the nonstationary noise power to the
white noise power. |
C-PEAK: Average peak value of the cross-correlation for 20 )
circles. \
H-PEAK: Average peak value of the cross-correlation for 20 ;
hexagons. |
C/H: Ratio of C-PEAK to H-PEAK. '




We see from Table 1, that the filters h give larger relative values for C-PEAK then for H-PLAK for
all vy values as expected. We also include the ratio C/H = C-PEAK/H-PEAK in Table 1 and note that ft is
always greater than 4.70. This indicates that the optimal discriminator results in high average corre-
lation peaks for circles and low average correlation peaks for hexagons. The variance of these peak
correlation values from the average levels quoted was moderate. From this example, we see that our
optimal discriminator fulfills the intended purpose of discriminating two classes of data (here circles
and hexagons were used). The ratio (C/H) is a measure of discrimination performance of the filter.

For this simulation example, C/H is seen to improve as the value chosen for the filter parameter Yy used
in (17) is increased. This occured because no white noise was included in our simulations and thus the
input data set had y, = =. Thus, for this data test, we expect to find that the optimal filter would
have a parameter Y that matched the y, of the data set. In general, a filter designed for a large Y
will better discriminate against the class of hexagons. However, higher values of Yy yield smaller
values of C-PEAK (as can be seen in Table 1) and this will make detection of the correlation outputs
more difficult and the measured SNR values susceptible to system noise. 1f the assumed white noise

for which the filter is to be designed is low (i.e., high Y), then & lower C-PEAK value will be adequate
to provide sufficient detection. The smaller C-PEAK values that resulted for larger choices of the
filter parameter Y in Table 1 show this trend. Thus Y must be chosen as a compromise between the two
conflicting objectives of large C/H and large C-PEAK. This choice can best be made only in specific
applications and pattern recognition scenarios.

Numerical values associated with the correlations of the K-L and MKL filters with the circles
and i.exagons in the input data sets {x(t)} and {y(t)} are presented in detail in Table 2. Table 2a
lists the correlation peak values obtained when the circles were correlated with the K-L and MKL fil-
ters. We gee from this table that the K-L filter ylelds cross correlation peak values between 0.7,
and 0.93 whereas the MKL (50) filter provides correlation peak values between 0.22 and 0.89. We note
that in general, smaller peak values were obtained as Y was increased. This is as expected because
the K-L (y = 0) filter should be the optimal filter in the presence of white noise.

The cross correlation peak values obtained with hexagons as inputs are shown in Table 2b. The
K~L filter is seen to correlate much better with the hexagons than the MKL filters do. As a result,
the simple K-L filter cannot discriminate between circles and hexagons as well as the MKL filters can.
This aspect is more vividly demonstrated in Table 2c, where the ratios of the correlation peak values
in Table 2a to those in Table 2b are tabulated. We see that MKL filters provide much better discrimi-
nation (higher ratics) than simple K-L filters.

TABLE 2: Performance of discriminator.

(a) Peak value of correlation with circle (b) Peak value of correlatjon with hexagons
KL MKL(1) MKL(25) MKL(50) R KL MKL(1) MKL(25) MKL(50)
10.1  0.7593 0.4271 0.2707 0.2204 10.1 0.0846 0.0536 0.0422 0.0418
10.3 0.9056 0.7101 0.5735 0.5266 10.3 0.1020 0.0648 0.0511 0.0507
10.5 0.9284 0.8089 0.6759 0.6133 10.5 0.1397 0.0620 0.0543 0.0639
10.7 0.8860 0.8869 0.7787 0.7042 10.7 0.1935 0.0770 0.0614 0.0631
10.9 0.7347 0.8699 0.8833 0.8899 10.9  0.4527 0.1961 0.1086 0.0934

(c¢) Ratio of cross correlation peaks with
circle to cross correlation peaks
with hexagons

KL MKL(1) MKL(25) MKL(50)

10.1  8.98 7.97 6.41 5.27
10.3 8.88 10.96 11.22 10.39
10.5 6.65 13.05 12.45 9.60
10.7 4.58 11.52 12.68 11.16
10.9 1.62 4.64 8.13 9.53

e e

- il




5. _CONCLUSTONS

The optimal correlator which discriminates between two classes was obtained by applying a new
image model to the conventional matched filter derivation. In our new model, one class was considered
as stochastic signals and the other class as & nonstationary noise process. A primary application for
this two-class discriminator is to recognize and distinguish two objects, when distorted versions of
each can be present. In our model, each image class was described by a linear combination of basis
functions whose weighting coefficients were random. This new description for a set of geometrically
distorted versions of an object allows us to formulate a new two-class discriminator. R

Using the output SNR as our optimality criteria, we derived the optimal filter. We also proposed
a new iterative procedure that makes the discriminator's design practical.

This new discriminator synthesis concept was tested on a data base consisting of 20 circles and
20 hexagons, each with a different radius. From our results, we found that there were tradeoffs be-
tween the discrimination power of the filter and the correlation output peak values for a given dis-
criminant filter and that these could be adjusted by changing one filter design parameter Yy, the ratio
of the nonstationary noise power to the white noise power in the image set. We showed that by changing
Y, we could make the filter perform more efficiently in the stationary or nonstationary noise cases.
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APPENDIX

We now derive the solution p to the optimization problem of (10) by using the Lagrange multiplier
method. Defining

P'Ap T
Le——x— -App-1, (A1)
I1+p¥p

vhere A is a scalar, we observe the deviation 6L of L with respect to the deviation &p of p. From (Al),
8L can be written as - -

(SpARI(T + p'Wp) - (Sp'Wp)(2"AD) - A(Ep'R)1+ p'W pY (A2)
L =

a+pup?

If there exists a p such that 6L = 0 for any Sp, then that p value determines the maximum vaiue of L.
By assuming the existence of such a p, we obtain from (A2) with 6L = 0 for any &p,

1+ ZTEE)AR - (nrﬁz)‘_'z - a1+ p_TEz)zz =0. (A3)
By premultiplying (A3) by 2‘1" we obtain
A1+ pup)? = 1ptAp. (AL)
Using (A4) in (A3), we obtain
{p' (1w + Wplap - AP (L +Wp =0, (A5)
where U is a unit matrix of size N x N. From (A5), we observe that
Ap = a(Il + Wp, (A6)
where a is a scalar. (A6) can also be rewritten as
(A - aW)p = alp. (A7)

Thus the optimal weight p in (10) can be obtained by solving (A7).

P
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ABSTRACT

The synthetic discriminant function concept together with its modifications of maximum
common information filters and decorrelation transformations are reviewed. We then advance
a unified procedure for determining the coefficients for such linear combination filters for
recognition of objects in different orientations and from different aspect views. Our for-
mulation ' cilizes only deterministic techniques and a correlation matrix observation space.
This formulation is most attractive for the realization of shift-invariant filters for use
in correlator architectures. We then advance the highlights of our initial results on the
performance of this new type of generalized shift-invariant filter.

1. INTRODUCTION

In the optical data processing community, considerable attention has recently been {focused
on the use of off-line matrix techniques applied to image trainirg sets to derive filter
functions that are capable of recognizing and distinguishing objects independent of geomet-~
rical distortions in the input image. 1In Section 2, we summarize much of the research in
this area. To permit such a summary, we consider only deterministic techniques applied to
image training set data and to technigues in which the resultant filter(s) is (are) linear
combination (s) of the input training set data. We emphasize the differences between possible
observation spaces used (Fourier transform coefficients [1-3), correlation matrices (4-7),
etc.) and different applications (intra-class recognition of a target object of one class
independent of geometrical distortions present in the input image {4-6), inter-class dis-
crimination of different objects with no geometrical distortions ([l] and prior work {3,7]
and new research in which inter-class discrimination is achieved while retaining intra-class
recognition). We consider only cases in which shift-invariance is retained and thus do not
consider the wealth of research using other observation spaces and image features such as
the moments [8-10). coded-phase processors (11-13), Mellin transforms (14} and techniques
with no organized feature selection.

In Section 3, we review the concepts of a synthetic discriminant function (SDF) [4-5),
maximum common information (MCI) filter [6) and the decorrelation transformation (7). In
our discussion, we include a review of the hyperspace formulation of an SDF and inter-class
problems plus the effects of noise. These provide the basis for our description in Section
4 of a class of linear combination filters obtained by deterministic techniques. This for-
mulation in Section 4 represents a new unified treatment that emphasizes how the coefficients
for these SDFs are obtained. This differs from another unified treatment [15] that empl.a-
sized the philosophy of such filters and the fact that they are linear combinations of fil-~
ters matched to each of the input training set objects. Our emphasis in Section 4 is on
calculation of the weights in a linear combination filter (this issue is not addressed in
[15)). 1In Section 5, we include initial results indicating the power of these SDF tech-~
niques for intra and inter-class pattern recognition for identification of objects in multi-
ple classes with geometrical distortions present.

2. HISTORICAL DEVELOPMENT

In 1969, Caulfield and Maloney [16) considered the correlations of the letters of the
alphabet with matched spatial filters (MSFs) matched to each letter. They noted that each
input letter gave large cross-correlation outputs with many of the different MSFs. They
then reasoned that if linear combinations of all 26 correlation outputs were used rather
than a thresholded version of each correlation output, character recognition could be ir-
proved. Recent research has noted that an MSF that is a linear combination of the MSF of
each character could be used [l] and that such a description was appropriate for intra-class
and inter-class recognition [15]. The resultant MSFs are referred to as generalized matched
filters (GMFs) [1-3), synthetic discriminant functions (SDFs) (4-7), and similar terms. The
key feature in these approaches is that the SDF is a 2-D function through which the input
image is projected or correlated. This differs from the classical feature extraction and
image classification techniques in which scalar features are extracted from a segmented por-
tion of an input image and then used in a classifier. Our SDFs are 2-D functions and are
used in a correlator. Thus, they exhibit processing gain, shift-invariance, the ability to
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recognize multiple targets and operate in noisy backgrounds without the need for segmenta-
tion and extensive preprocessing. For these reasons, such technigues have received consid-
erable attention in recent years (especially within the optical processing community where
correlation is easily achieved).

In (1), Caulfield and Haimes discussed GMFs and their similarity to linear discriminant
functions in conventional pattern recognition. 1In [4-5], Hester and Casasent detailed and
demonstrated the use of a matrix~vector technique by which an SDF could be obtained that
gave the same correlation output intensity for any aspect view of a given object. We refer
to this as an equal correlation peak (ECP) SDF and note that it addresses only the intra-
class pattern recognition problem. Fourier transform and correlation matrix observation
spaces have been the most used. The filter obtained from such observation spaces is easily
fabricated as an MSF and is thus useable in an optical or digital correlator. Thus, we re-
strict attention to such cases. Many techniques are possible by which to obtain the weights.
Those used and documented thusfar include: Foley-Sammon (F-S) [2,3,17) which optimizes the
Fisher ratio [18); Gram-Schmidt (G-S) [5]; optimization of correlation output SNR [5]; maxi-
mum common information (MCI) SDF ([6); decorrelation transformations [7):; and statistical
Rarhunen-~-Loeve (K-L) techniques [7) as used by Duvernoy and Leger {19] and Fukanaga-Koorntz
(F-K) [20] methods [12]). Each of these leads to an SDF that is a linear combination of the
input training set data. However, each approach is intended for different purposes and de-
pending upon how they are realized, shift-invariance is not always achievable.

3. MCI AND DECORRELATION TRANSFORMATION SDFs

Our initial formulation of an SDF [4,5] considered only the intra-class problem or an ECP
SDF. To describe this problem, we consider an input training set of images {fp} of objects
of one class taken from different aspect views. We desire to derive an SDF h that is a lin-
ear combination of the {f;} such that £, » h = ¢ = 1 (where we arbitrarily choose unity as
the constant ¢ output from the correlation of h with any input image in the data set). To

obtain h, we write each f, as a linear sum of a set of basis functions ¢n

fn(x,y) = T (x,y). (1)

manm¢m
In this description, the ¢, are the axes of a hyperspace (each is a 2-D function) and each

f is anM-dimensional vector defining a point in this hyperspace with the projections on

each ¢m axis being described by the coefficients ap,. We write h as a linear sum of the ime

hix,y) = ;lbmom(x,y). (2)
Our ECP condition requires (for an orthonormal basis function set ¢p)

£@h=f -h=Ia b =c=1l. (3)

We determine the ¢, and a,, by diagonalizing the correlation matrix
R = R =f, - £. = {r__.}. (4)
- —fifj =i =3 ij

We originally used a Gram-Schmidt technique to achieve diagonalization of R by selection of
a set of orthogonal basis functions. Once this has been done, the ¢, and apy are then given
by

&m = ;“-,dmnfn' (3

8am = &y 7t (6)
where the dnyn are the elements of the G-S coefficient matrix (assuming a G-S decomposition
is used, as we have initially employed). With the and a s0 determined, the by are then

obtained from (3) and h is then constructed. Denoting the elements of the target matrix Fp
by the apm in (1), we described [4-6) condition (3) by

Fpr *h=cu, ()

where u is the unit vector and the solution for the SDF h is

h=Fptcu. (8)
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This describes h in terms of . Substituting (5) into (8), we obtain an expression for h
in terms of the training set data f,,. 1In Section 4, we advance a direct derivation of this
ECP filter function h from the correlation matrix rather than including the intermediate
basis function description.

To improve the performance of this SDF, we (6) analyzed the effects of noise in a hyper-
space and showed that maximizing the correlation plane SNR required maximizing the filter
energy. In (6], we achieved this by shifting each of the images in our training set to max-
imize cross-correlations (the elements of the covariance matrix). This MCI SDF yielded ex-
cellent results. As a data base, we used several IR images of a tank from different aspect
views (typical images are shown in Figure 1l). The resultant correlation outputs exhibited
correlation peak intensity values that were equal within 5%,

fl (RIGHT SIDE) f5 (REAR/SIDE)

FIGURE 1 Typical images used in initial maximum common information syn-
thetic discriminant function synthesis and correlation tests.

To extend this SDF technique to inter-class discrimination, we (7] suggested and demon-
strated the use of decorrelation techniques, K-L techniques and multiple SDFs. We review
our decorrelation technique below as it forms the basis for our mutual orthogonal function
SDF technique described in Section 4 and our method to realize the orthogonalized correla-
tions of (1,15) from a correlation matrix observation space. We first [7) formed an MCI SDF
from two tank images and then tested its discrimination ability against an APC input object.
The correlation peak intensity for the APC was 7dB below that for the tank images. This in-
dicated the inherent structure and discrimination ability of the MCI SDF. To improve this
discrimination ability, we devised the decorrelation transformation in which the system was
trained with N images of one target and then N images of a second target object. We used a
G-S basis function generation technique and the property of the G-S decomposition that basis
function ¢p is a function of the input images up to fp only. We formed a 2N x 2N target ma-
trix Fp. We then multiplied this by a decorrelation transformation matrix y that retained
only the last N rows and columns of Fp. This new F} target matrix was then inverted and
used in (8) to derive a decorrelation SDF h'. This h' has all of the information of the
first class of targets removed and contains only those portions of the second class of ob-
jects not present in the first class of targets. It should thus be very successful in pro-
ducing a zero output for any input image in class 1 and a unit output for any image in class
2. We successfully demonstrated this filter in a simple test using two objects f; and fg
from one class and an object f¢ from another class. 1In Figure 2, we show the resultant ma-
trices. The final filter function used was a linear combination of all training set images

h' = £, + 0.42f, - 0.1f,. (9)

1

This filter gave equally large outputs for inputs f; and fg and zero outputs for input ob-
ject Sf .
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fe 5 & L N B, 2, % 8, 8
£, [2.68 0.54 0.91 g, | 0.61 0 0 £, |1.63 0 0 £, |2.98 0 54.6 0
ymmm————
£, [0.54 8.79 1.94 g,|-c.06 0.33 0 £, |0.3212.98 0
]
£, 10.91 1.94 18.9 $,]|-0.070.04 0.23 £, 0.54}0.05 4.26 £, [0.05 4.26 0.69 38.2 :
i
(2a) (2b) " (2¢) (24) (2e) '

FIGURE 2 Data matrices for the initial demonstration of the decorrelation trans-
formation. (a) Auto-correlation matrix, (b} G-S coefficient matrix, (c)
full target matrix Fp, (di reduced target matrix F¢ and (e) inverse of
reduced target matrix Fg~i,

4. UNIFIED SDF SYNTHESIS TECHNIQUE

From our discussions in Sections 1 and 2, we see that various SDFs and GMFs exist for di-
verse purposes. In this section, we describe four types of SDFs and show how the synthesis b
of each can be described in one general expression involving the correlation matrix. As our
observation space, we choose the correlation matrix of the training set data. Such an ap-
proach leads directly to an SDF that is a linear combination of the training set data and to
evaluation of the coefficients necessary.

We first consider an ECP SDF h that will yield an equal correlation peak intensity output '

+ fnh = 1 for any aspect view {fn) of an object of one class. As in Section 3, we write f, v
nd h as t

Wy

f =Za

£ 0. h=1Ib ¢, (10)

j ni*I 3 373

and we require the correlation coefficient of h with any gn to equal a constant 1, i.e.

h@f, =h £ =Iab =1, (11)

where the orthonormality of the ¢4 was used in (11). To find h, we first rewrite (10) as

. =rLd, f 12)
QJ n Jn'n (
and h as
h = b1°1 + bzoz + ..
= b1 gdln nt b2 idZn nto
= elfl + e2f2 +
= g enfn ' (13)

where the first expressior is (10) rewritten, the second expression follows by substitution
of (12) and the last expression is obtained by grouping f, terms. To obtain h, we must now
solve h= I e, f, for the coefficients en. Substituting (13) into (11), we obtain our ECP
condition as

h Lyl (Tef) c fuelef, £ = le Ry ao

[k
i

L}
1<

(15)
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where R is the correlation matrix of the training set, e are the desired coefficients and u
is the unit vector. The solution for h (or its coefficlients e) is thus

e = R 1. (16)

Thus, to derive an ECP SDF, we form the correlation matrix R of the training set data of
different aspect views {f,} of one class of object. We then invert R and multiply it by the
unit vector u to obtain the coefficients e from which to synthesize the linear combination
SDF h. This follows the ideas used earlie: [4-6)] with the correlation matrix in (16) re-
placing the target matrix in (8) and without consideration of the details of the basis func-
tion selection used. Our original technique [4-6] simply specified a Gram-Schmidt technigue
by which to find amatrix to invert. This BCP 8DF is useful for intra-class pattern recognition.

Next, we consider a combined inter-class discrimination problem that still retains intra-
class recognition. We consider three classes of objects {f_,}, {fy} and {f.}. We desire
three filters h;, h, and hj such that: for any input fn' hl + £ gives a one output if £
is in class {fa} and zero otherwise; hy, » £, =11if £, is in class {f,)}, etc., i.e.

. =5 .
Dm £n mn (17)

We write these three filters as three separate linear combinations of the entire training
set {fy} = {f,,fp, £}

h, =Ia f , h

=1 nan’ 22 ° zbngn' h

3= Iec £ . (18)

In terms of the correlation matrix R of the full {f;]} data set, we can describe the three

filters (i.e. the coefficient vectors a, b, ¢) by

Ra=u =11007, Rb=y,= 10107, Re =y, =1001", (19)

where the number of 1l's and 0's in the output vectors u depend upon the number of elements N 1r
each class in our training set. The solutions for these three filters are thus from (19
and (16)

2=ty = p e, 0000, 00e0T
b = 5‘122 = B-l[0°"o' 1.0-1, 0..,°]T
c= 3'123 = 5’1[0...0, 0ees0, 1ees11T, (20)

Note that these two filters provide inter-class discrimination and intra-class recognition.
The concept used to synthesize them follows directly from our decorrelation transformation,
but is applied to the correlation matrix. Note that these filters are also eguivalent to
the orthogonalized correlation functions described in 11,151. Moreover, note that the form
for synthesis of these filters in (20) is the same as used in (16) with the exception of the
exogenous vector. In (16), u is all l's, whereas in (20) it contains a 1 only for those
members of the input training set that we wish the given mutual orthogonal function (MOF) SDF to recognize.

This MOF technigue can be extended to an N-class problem by devising N MOF SDFs and ana-
lyzing the N output correlation planes. This can become quite complex if a large multi-
class problem is involved. 1In such cases, use of non-binary correlation output threshold
levels can be employed. 1In this case, a single filter can be designed to perform multi-
class pattern recognition. To describe this and to formulate synthesis of such a filter in
our general form in (16) and (20), we consider the three class problem described above.
However, now we require one filter h such that

(=2

. £n =1 if f is in class {fa)

>

£n =2 if £ is in class {fb}
h . £n = 3 if £ is in class (fc}. (21)

We write this filter as a linear combination of the entire reference set {fn) as
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h=ILaf. (22)
To find the coefficients a,, we solve
T
Ra = u, = (lecel, 20022, 32+3]7, (23)

This follows directly from (21) and (15). As before, the number Mof 1l's, 2's and 3's in
the vector u,s depends upon the number of images present in each class in the training set.
The solution for the coefficients a of this nonredundant SDF (NRF) is thus

a =R u, = 5'1[1..-1l 20042, 3...3]T_ (24)

Fleuret and Maitre [2]1] described an algorithm which used K SDFs (with binary outputs,
i.e. 1 or 0) to achieve recognition of N = 2K classes of objects. In this case, the K cor-
relation outputs are viewed as a K-bit digital word whose decoded output tells us which of
the N classes of data the input image belongs as also described by Braunecker et al [22}.
We now adapt this technique into a coherent correlator (only noncoherent correlators were
addressed in [22)) and we describe it in our general form. We refer to this as a multi-
class MOF. We consider its use for a 4-class problem {f_,]} to {f3}. We require two filters
h) and hp such that the correlations of the input with tge two fllters yields the two cor-
relation outputs: 00, 01, 10, and 11 respectively (the binary combination that occurs de-
termines which of the four classes of data is present in the input). To describe the hl and
h, solution, we denote the full data set by {f,} = {f,,fp,f.,fg}, its correlation matrix by
R and the two filters by

hy =fa f,h,=1Ibf. (25)

To determine a and b and hence the two filters, we solve a matrix equation of the same form
as (16), (20) or (24) with yet a different vector u used.

We have thusfar seen how a single unified formulation involving the inversion of the cor-
relation matrix of the data and multiplication by a simple vector can be used to describe
the coefficients reguired in many linear combination SDFs. The cases considered above in-
clude intra-class, inter-class and multi-class pattern recognition. As the number of images
used in each of the classes is increased, these filters can provide both inter-class dis-
crimination and intra-class recognition in the face of various geometrical and other distor-
tions of the input data.

5. INITIAL RESULTS AND CONCLUSIONS

We have used the general deterministic formulation from a correlation matrix observation
space for synthesis of various SDFs for intra and inter-class recognition. 1In our initial
new tests, we have used images of four different objects with 36 images of each object avail-
able (taken at 10° intervals from an 0° depression angle). As our training set, only 6
images of each class of objects (out of 36 possible images) were used. 1In each case, a par-
ticular SDF was synthesized as described in Section 4. This SDF was then correlated against
all 36 images in each of the indicated object classes. An ECP SDF was produced for the
class one objects and a second one for the class two objects. Each of these SDFs was cap-
able of recognizing all 36 objects in each of their particular classes with no errors and
with less than a 3% variation in the correlation peak intensity obtained. This initial ex-
periment demonstrated the ability of an ECP SDF to recognize objects of a different class
not present in the training set. A 2-class MOF filter was produced. This filter was tested
against all 72 images in each of the two classes. In demonstrated inter-class discrimina-
tion and intra-class recognition with over 90% probability of correct recognition. The 4-
class MOF we formed achieved similar results. These initial tests were most encouraging.

In this paper, we have reviewed several different types of SDFs (equal correlation peak,
maximum common information, decorrelation transformation, mutual orthogonal function, non-
redundant, and multi-class). Each is a linear combination of the input training set. All
have been unified into a direct technique to determine the coefficients by a similar matrix-
vector equation with the matrix being the correlation matrix and with a different vector
used for each type of SDF. Each SDF is intended for a different application (intra-class,
inter-class or both). We have described and experimentally demonstrated an SDF technique
that achieves both inter-class discrimination and intra-class recognition and that in this
technique only a few images (17% of the data was used in our experiments) can be used for
training and yet recognition and correct classification (in multi-class recognition problems)
of over 90% correct recognition can be achieved.
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Principal-component imagery for statistical
pattern recognition correlators

B. V. K. Vijaya Kumar

D. Casasent

H. Murakami*
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Department of Electrical £ngineering
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Abstract. Concepts, measures, and models of image quality are shown to be
quite important in pattern recognition applications. Pattern recognition of
imagery subjected to geometrical differences (such as scale and rotational
changes) and intensity differences (such as arise in multispectral imagery) are
considered. After modeling these image differences as a stochastic process,
the optimal filter is derived. This filter is shown to be the principal component of
the data. This pattern recognition algorithm is verified using multi-sensor
imagery, and the results are found to compare favorably to those obtained
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using other candidate techniques.

Keywords: image quality; pattern recognition.
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1. INTRODUCTION

Efforts have recently been made'? to collect research on image
information content and image quality measures and to discuss their
use in photographic and printing processes as well as in image
processing. In this paper, we consider the effects of image quality in
pattern recognition applications. Specifically, we consider how to
extract the optimum information from a data set and how to use it
for selection and synthesis of the optimum filter for pattern recogni-
tion. We consider a statistical correlator and the problem of recog-
nizing a reference object in the presence of various geometrical and
intensity differences present in the real-time sensed input image. As
we will show: Karhunen-Loeve (K-L) transform techniques3-4 pre-
viously used in bandwidth compression,* ¢ techniques for computing
the primary K-L components of an image data set,” and image or
system quality measures such as space-blur bandwidth product ® are
of use in pattern recognition.

;Pmem address: Toshiba Corporation, 79, Yanagi-Cho, Saiwai-Ku, Kawasaki. 210
span.

Paper 1Q-107 received July 10, 1981; revised manuscript received Aug. 14, 1981;
accepted for publication Aug. 18, 1981; reccived by Mnnapng Editor Aug. 21, 1981,
© 1982 Society of Photo-Optical Instr s.

Our major concern is how to select and synthesize the optimal
filter for a statistical correlator from the image data sets given. The
quality of the imagery and its common information clearly affects
filter selection. In Sec. 2, we describe our statistical correlator model.
It is similar to the conventional one,® except that the reference object
is not deterministic. In Sec. 3 we show that the principal component
of the K-L expansion is the optimal linear filter that maximized the
signal-to-noise ratio (SNR) of the output correlation. Simulation
results are included in Sec. 4to verify the performance of such a filter.

2. STATISTICAL CORRELATORS

We consider only correlation techniques for such scene-matching
problems, because such methods have proven useful in many cases.
A correlation can be realized by both optical'® and digital'! methods;
however, we make no judgment at this time on which is preferable. A
correlation is known to be the optimal operation by which a deter-
ministic reference function can be extracted from additive white
Gaussian noise. However, when random geometrical and intensity
differences exist between the input and reference imagery, the per-
formance of a correlator rapidly degrades. 2 Although much research
exists on general statistical pattern recognition,3-4 little effort has
been devoted to generalized correlators with random image distor-
tions. Prior work in this area has focused attention on performance
improvement by deterministic methods such as coordinate trans-
formations'? and image planc weighting.'* Most prior statistical
pattern recognition work?4 has used the divergence between two
classes as the performance measure for the system. In this paper, we
use correlation SNR since we are considering correlator systems and
since this parameter is casily measured for such systems.5-14

In Fig. 1, we show the model for the conventional correlator with
a deterministic input signal x(t) corrupted by additive noise n(t)
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x(t) __)T___e hit, ’——ﬁt 0.

n(t)

(t)
«i); ! _> nit, L_ﬁc(?‘,

n{t)

Fig. 1. Conventional correlator model.

producing an observed signal y(1). We will consider only 1-D time
domain data for notational simplicity. The extension to the case of
2-D spatial data follows analogously. We denote the correlation
output by ¢(r) where r is the correlation plane shift variable. We
assume (with no loss of generality) that the correlation peak occurs
at r = 0. The linear filter h(t) is designed so that the output ¢(0)
emphasizes the signal x(t) and reduces the noise n(t). We can observe
that the output c(7) contains a deterministic part due to the signal
x(t) and a noisy part and that the optimal filter h(t) is designed to
maximize the output SNR at r =0. The output SNR is expressed as

[fxh(r—udt]?

SNR = —Fe—————— ~
E[fnh(r—0dt] | , =g

h

This represents the ratio of filter output powers when the input is only
signal and only noise. The optimal filter h(t) is chosen to maximize
this SNR because this emphasizes the output power due to the signal
while deemphasizing that due to the additive noise. This SNR is also
an casily measured parameter. We assume that the target and the
correlation peak occur at =0 with no loss of generality. The optimal
filter which maximizes this SNR can be shown to be equivalent to the
maximum likelihood detector, thus yielding the minimum false alarm.
This optimal filter is?

htptimal = x(-1) .

Since this is a time-reversed replica of the signal x(t). this optimal
filter is referred to as matched filter, With this choice for the filter, the
output c(r) is

Cyu(? = Syxt—ndt . 2)

which is the cross-correlation of x(t) and y(t). Thus the presez.ce of
the signal x(t) will be optimally detected by correlating the observed
signal y(t) with the true signal x(t).

Our concern is to maintain recognition and to select the best filter
h(t) to be used when the observed signal y(t) is a noisy version of a
distorted signal x(t). These distortions will be known a priori only in
a statistical manner; e.g., we may be able to bound the range of
magnification and orientational differences. To model such a prob-
lem and the resultant correlator, we describe the signals (images) of
interest by the signal class {x(t)), where {x(t)} can only be character-
ized in a statistical manner and where its parameters depend on the
maximum amount of distortion that we wish to consider in x(t). The
model for the resultant statistical correlator is shown in Fig. 2. The
inputs {x(t)} are the class of signals to be detected and all other
parameters are as in Fig. 1. The input y(t) to the filter in Fig. 2is a
possible signal x(t) in the class {x(t)} with additive noise n(t).

Toderive the optimal filter h(t) for this statistical correlator, new
signal and correlation models are necessary as well as a new output
correlation SNR measure. We will model the input signal x(t) as a
sample realization of the stochastic process {x(t)} as in Ref. 15. We
will then define the correlation function in terms of both the time
average as in Eq. (2) and in terms of an ensemble average. We
describe the time correlation function for the signal x(t) by

Cxx(7) = SXOx(t—n)dt 3
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Fig. 2. Statistical correlator model.

as in Eq. (2), where the averaging is performed for different times
along a single sample realization of the signal (i.e.. a rime-average
correlation function results). We denote the ensemble-average corre-
lation function of the stochastic process {x(t)} by

Kyx(t.s) = E[x()x(s)] . 4)

In Eq. (4). the average is over the ensemble of signals (or images)
x(t). This is a new and quite different statistical averaging from the
one that is usually performed. In normal statistical image process-
ing, the statistics of the pixels of a given image. or biocks of pixels in
a given image, are considered and the statistical averaging is per-
formed over these pixels or these blocks of pixels as in Ref. 16. In our
pattern recognition, the randomness in the data is between different
distorted versions of an image. Thus. in Eq. (4) we form the average
over the ensemble of signals (or images) rather than over the pixels in
one image. This model and performance measure using the ensemble
of signals and SNR has not been used in prior work. We feel that this
isa vital step in the design of optimal correlators. As our correlation
output SNR measure for the statistical correlator of Fig. 2. we thus use

_ E[fx()h(r—n)d1)?

SNR = E[fn)h(r—0dt]? r=0 '

(5

The major difference between Eq. (1) and Eq. (5) is in the numerator
where the E[-] operator is used in Eq. (5) to account for the random
inputs. The SNR in Eq. (1) is appropriate only when x(t) is determin-
istic. In our pattern recognition applications this is not the case since
the x(t) inputs are randomly distorted functions. The optimal statis-
tical filter is defined as the filter h(t) which maximizes this output
SNR in Eq. (5). If we define f(t) = h(—1t), we can rewrite

_ E[fxfMdt] S II0fs)K,  (ts) dtds

= = . 6
E[fn)f)dt]? [ fi0fs)K, q(t.5) dds ©

SNR

where K, . (t.s)and K . (t.s) are the ensemble auto-correlation func-
tions of random processes {x(t)} and {n(t)}, respectively. For the case
when {n(t)} is white noise with uniform power spectral density N, the
auto-correlation function K, (1,s) can be expressed as'*

Kpn(t.s) = N&(t—s) , N

where 8(t) denotes a Dirac delta function. The SNR in Eq. (6) can
then be written as

_ JJEf)K ((ts)dtds

SNR
N ff2(1) dt

8

The white noise assumption in Eq. (7) is commonly made. In cases
for which it is not appropriate, pre-whitening operators can be
applied as preprocessing functions prior to correlation.

3. OPTIMAL STATISTICAL FILTER

We now consider how to determine the optimal filter function f(t)
that maximizes the statistical correlation output SNR expression

o
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Eq. (8) developed in Sec. 2. We note that the integral in the denomi-
nator of Eq. (8) is the energy of the filter. It is thus acceptable to
consider a normalized filter energy or

Jffwde = 1. 9)

To optimize Eq. (8), we thus find the f(t) that maximizes the numera-
tor in Eq. (8) subject to the condition in Eq. (9).

We achieve this by expanding the correlation function K,, in
terms of K-L basis functions ¢,,. where {¢ (1)} are the set of ortho-
normal eigenfunctions of the integral kernel K, , (t,s), as
K51 = 3 Agdy(they(s) (10)

n

where the {A | are the eigenvalues corresponding to the {cbnl. Using
inner product notation and the orthonormality of the {¢,}. we can
restate the optimization problem as finding f that maximizes

R=3 Ajf-0,) . (I
n

subject to the condition

f-HN=1. (12)

The filter function f can also be expanded in terms of the ortho-
normal set {6} as

f = 2 wad, . (13)

n

where from Eq. (12) the coefficients w, in Eq. (13) must satisfy

Swi=1. (14)
n

If we order the eigenvaluessothat A, = A, = ... 2 A, = . ... we
can easily show the quantity R has a maximum of A | as below:

R = Z Aq(f d’n)2 = E )‘n‘”rf
n n

SN W= (15)
n

This maximum R value i1s achieved only if we choose the filter
function f to be

fity = &,(1) . (16)

since when Eq. (16) is substituted into Eq. (11) we find R = A|. Thus
Eq. (16) describes the optimal filter, and we see that it is the princi-
pal-component or dominant eigenvector of the integral kernel K, , (1,5).
This means that if the set of functions {¢,(t)} are the eigenfunctions
of the kernel K, (1, 5) with the corresponding set of eigenvalues {A 1.
then the optimal filter is the eigenfunction ¢,(t) with the largest
cigenvalue.

It can be shown!” that the correlation function K, , (1.5) can be repre-
sented with arbitrary accuracy by a finite number of eigenfunctions

l"nm‘n——— .M

as assumed in Eq. (10). From Eq. (8). Eq. (16), and the orthonormality
of the ¢, we then find that the maximum obtainable SNR is A, /N.

4. EXPERIMENTAL RESULTS

In Sec. 3. we showed that the optimal filter for a statistical correlator
to detect stochastic signals (randomly distorted reference functions)
was the principal component of the stochastic process {x(t)} that
characterizes these signals or equivalently the dominant eigenvector
or eigenimage of the ensemble correlation function K,,(t,s) in Eq.
(4). Inthis section, we provide digital simulation data comparing the
performance of our statistical correlator to other types of correlators
for the recognition of distorted versions of a reference image.

As our image data set, we used four multispectral images of an
area south of Fresno, California (Fig. 3). We denote these images by
P,. P, P, and P,. They were taken from the multispectral scanner
on the Landsat satellite in the spectral bands 0.8to 1.1 um, 0.7t0 0.8
um,0.6t00.7um, and 0.5t0 0.6 um, respectively. Each digital image
was of size 128X 128 pixels with 256 gray levels per pixel. The
principal-component image was computed and is denoted by Py

For comparison, we also computed a synthetic filter image from
F | to P, using the technique described by Hester and Casasent.!* We
denote this synthetic reference by P,. The technique used to produce
Pinvolved diagonalizing the cross-correlation matrix of the imagery
in Fig. 3 using the Gram-Schmidt procedure. A filter P, was then
produced from a linear combination of the basis functions (found
from the matrix diagonalization) subject to the constraint that the
correlation of all inputs with the filter yields a constant. We thus refer
to P as an equal-correlation peak (ECP) synthetic reference function.

Prior to any operations, the average intensity level of each image
was computed and subtracted from the data, and the intensity
variances of all four images were normalized to a fixed constant.
Such image preprocessing eliminated the effects of image bias and
modulation level variations from our data. The 4X 4 correlation
matrix for these preprocessed images was obtained, and its eigen-
values were computed. The four eigenvalues A ;. X,. A5, and A, were
found to be 2218.9, 1594.1, 195.2, and 87.8, respectivcfy, The princi-
pal component image P corresponding to the largest eigenvalue A
=2218.9is shown in Fig. 4. Use of this image as the filter should yiel
the optimum SNR when correlated with any of the four images. By
comparison, correlations with image P should yield equal-correla-
tion peaks for all four input images.

Pl m

Fig. 3. Multispectral image deta base used.
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Fig. 4. Principal- P itimage Pg ob d from the data setin Fig. 3.

Our simulation results are summarized in Tables I- V. In Table I,
we list the peak values of the output correlation for all 24 possible
correlations of the original images P, to P, with P, to P, and the two
synthetic filters P,and P,. We have normalized the correlation peak
values in each column in Table I by the auto-correlation peak value
in cach column. The correlation results for P, to P, correspond to
conventional correlations. The results with P, and P, show how
more advanced filters perform. From Table 1. we note that images P,
and P, correlate rather well with each other but quite poorly with P,
and P, and vice versa. Conversely. filter P correlates well with each
input, with correlation values f~~m 0.31 to 0.67. Similarly. filter P
correlates equally well with all four original inputs. We also note that
our statistical filter P performs better than the ECP filter P for
three of the four input images.

In Table I1. we list the correlation plane peak-to-sidelobe levels
for the 24 correlations. The peak-to-sidelobe level can be shown® to
differ by a constant 3dB from the SNR in Eq. (5). We computed it
rather than Eq. (5) since it provided better sampiing statistics. The
results are similar to those obtained in Table I. Both agree with what
one might expect from a visual inspection of the images in Fig. 3.

In Table I11, we list the displacement of the correlation peak in
pixels from its correct (0, 0) location, and in Table IV, we list the
cross-sectional area of the correlation peak in pixels between its 3dB
points. From these data, we see that the conventional filters P, to P,
perform well for autocorrelations, but have large errors in the loca-
tion of the peak and have quite wide peaks for selected cross-correla-
tions. This occurs because any two images from the set P, to P, are
quite dissimilar even if they represent the same scene. Thus, even at
correct registration, images such as P, and P; will have little in
common, and thus a low correlation will result (as in Table 1). Such
conventional filters thus have a large probability of false alarm at
incorrect registration (as Table 11l shows). The very wide 3 dB
correlation peaks in Table 1V indicate that there is no clear peak in
the correlation output. Conversely, the statistical and synthetic fil-
ters P, and P, yield perfect registration results (Table 111) and 3 dB
correlation peak areas very close to those obtained from auto-corre-
lations (Table IV).

Our emphasis in these initial experiments was to verify the
appropriateness of our proposed statistical correlator. The experi-
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TABLE |. Correlation Matrix for the Test Images in Fig. 3.

P1 P2 P3 Pa

P1 1.0000 06175 00622 00609
P2 06178 1 0000 00023 00026
P3 00622 0.0023 1 0000 08357
P4 0.0609 0.0026 08357 1 0000
PS5 05211 03087 06688 06683
P6 0.3650 03650 0 3650 0 3650

TABLE H. Correlation Peak-to-Sidelobe Ratio for the Test images in
Fig. 3.

P1 P2 P3 P4

P1 63.163 53.286 8 2671 99870
P2 53287 93628 11 060 12533
P3 8.2671 11.060 44912 51848
Pa 9.9870 12533 51848 76 739
P5 46525 36 366 45034 56 355
P6 36.310 43845 28418 39 949

TABLE lIl. Shift in the Location of the Correlation Peak from Its
Correct (0,0} Location for the 24 Correlations in Tables | and If.

P1 P2 P3 P4

P1 (0.0) ©0.-1) (0.~1) (-5.1)
P2 10.1) {0.0) (*.0) -1
P3 (0.1) (*.0) (0.0) {0.0)
P4 (5.—1) ") (0.0) {0.0)
PS5 0.0 ©.0) {0.0) (0.0)
P6 (0.0) {0.0) {0,0) {0.0)

*Denotes a shift of more than ten pixels

TABLE IV. Area of the Correlation Peak at the 3 dB Points for the 24
Correlations in Tables | and il.

P1 P2 P3 P4
1 29 48 129 92
P2 47 25 275 184
P3 140 275 79 66
P4 92 184 65 a1
PS5 49 40 75 55
P6 26 46 78 62

mental results obtained indicate the superiority of this new correla-
tor to the conventional one and to the ECP correlator. Statistical
data on the noise and randomness of the experimental data base
used were not obtained. since accurate statistical estimates cannot be
determined from only four images. Some geometrical distortions
exist in this data base, and sur model and correlator should be
appropriate for such more general distortion cases. However, exper-
imental verification of this is not included at this time, but will be the
subject of a future paper in which the discrimination ability of our
statistical correlator will be addressed.

5. SUMMARY

In this paper. we have described one way to select and synthesize a
filter to recognize distorted versions of a reference function from a
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given data set. We considered the case of white noise and as our
performance measure used a new ensemble SNR definition. For
these cases. we found the principal-component or dominant eigen-
image to be the optimal filter. Our experimental data verified the
expected performance of this statistical filter. Both the statistical and
synthetic filter were shown to perform much better than conven-
tional matched spatial filters. Qur new statistical principal-com-
ponent filter was seen to provide better correlation peak and correla-
uon SNR values than the synthetic filter in 756 of the cases and
quite close performance in the remaining cases.

In future work, we will consider fast and efficient ways to com-
pute the principal-component image as well as revised algorithms by
which to improve the discrimination performance of such filters.

Image quality is of concern in pattern recognition systems as well
as in systems and applications in which the output is an image. In
pattern recognition problems, the SNR of the output correlation is
the quality measure most commonly used to describe the imagery as
well as the performance of the pattern recognition system. In this
work, we have described a method to improve the performance of a
correlator by using a statistical filter obtained from the eigenimage
of the data base and have shown that such an image contains the
image quality features of the data base needed for pattern recognition.
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A Modified Hyperplane Method for Null Synthesis in an {
Array Pattern 4

B. V. K. VJAYA KUMAR

Abstract—It has recently been shown by Prasad that the probliem of
synthesizing nulls in an array pattern admits a geometrical form-
ulation for which the alternative orthogonal projection (AOP) al-
gorithm (previously used in image restoration applications) is 2 useful '
solution. We apply s modification to the original AOP suggested by
Ramakrishnam er ul. for image restoration purposes and show that it
results in a computational savings in array pattern synthesis
problems. A numerical exampie is presented to illustrate the com-
putational advantages of this modification.

1. INTRODUCTION

In many radar applications, it is desired that the receiving
array of antennas exhibit a high gain in the direction of the
“signal” and a very low gain in the directions of unwanted N
“interference” sources. Such a response from an arrray is H
usually obtained by weighting 1], [2] the signals received at i
each antenna by a different, but appropriate complex con-
stant. Determining these complex weights to obtain a desir-
able array pattern is known as array pattern synthesis, and y
much research [3], [4] has been devoted to this topic. Poly-
nomial approaches, which are computationally burdensome, A
have mostly been used for such pattern synthesis. .

Consider an array of N identical omnidirectional receiving "4
antennas located in three-dimensional space at vector positions ]
Xy, X2, =, Xy. Let ug represent a unit vector in the “laok™ ’
direction of the signal and let u,, u,, -, upy denote unit vec-
tors in the directions of the M “‘interference’ sources. The ob-
jective of the array of antennas is to maximize the signal ar-
riving along ug while minimizing the interference along u,,
Uy, -, Uuy. Antenna pattern synthesis involves determining the
complex array weights W, W,, W3, -, Wy so that the fol-
lowing constraints are satisfied.

C™W =1 (look direction) (1a)
and
S;”W=0  (noise directions), i=1,2, - M, (1b) f

where {*] T denotes the complex conjugate transpose, W is the
column vector of weights W, Wy, = Wy, and the vectors
CT and S,-T defined as in [4] represent the received signals due
to the “‘look” direction signal and due to the ith noise source,
respectively.

For any general geometry of the array, the constraints in
(ta) and (1b} can be solved to obtain the weight vector W,
This set of equations has no solutions if M 2 N. Thus, we :
assume throughout this communication that the number of
interference sources M is less than the number of antenna
elements N. The (M + 1) equations in (1) can be combined

Manuscript received March 27, 1981; revised June 17, 1981. This
work was supported by the Air Force Office of Scientific Research un-
der Grant AFOSR-79-0091.
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as
AW =U', )

where U' = 11000 - 0} s M+ Dielementvectorand A is
a (M + 1) X N matrix with the vectors C and §, as its rows as
below.

A=1G 8.8~ 8ul”. 3

When matrix A is not a square matrix (i.e., when M <(N — 1)),
pseudoinverses (S| shouid be used for solving (2) as below,

w=(ATA) 'ATU. (4)

Even when pseudo-inversescan be used. one is faced with the
prospect of inverting ar V X & matrix. This causes computa-
tional problems for large values of M. This camputation aspect
will be critical in scenarios where nioise sources move continu-
ously and thus new "‘adaptive” weights must be computed at
a rapid rate. Recursive methods are needed to speed this
weight determination.

Recently, Prasad (4] has shown that the problem in (2)
admits a geometrical formulation and has used the alternating
orthogonal projection (AOP) method suggested by Youla
[6] for image restoration purposes. This approach enables
the use of many other interesting image restoration algorithms
in solving the null synthesis problem. We found the modified
hyperplane method (MHP) suggested by Ramakrishnam et al.
{7] to result in better computational efficiency in solving
(2). MHP is based on modifying the (M + 1) equations in (2)
so that the adjacent equations represent pairwise orthogonal
hyperplanes in an N-dimensional space. This modification re-
sults in faster convergence of conventional projection methods
to the solution vector W.

We outline both the AOP and MHP methods in Section 11
and show in Section [l that the MHP method is computation-
ally more efficient. This is justified with the help of a numeri-
cal example in Section IV.

1. PROJECTION METHODS
A. Alternate Orthogonal Projections (AOP)

The AOP derives its name from the fact that we project our
estimates orthogonally onto subspaces perpendicular to S,
and C in an alternating fashion. The recursion Jor the weight
vector Wy 4 can be summarized by

Wi,) =(QPyPy |, ~ PP W +g K=1.23 -
(5)

where

g=C/CTC) (6)
and

W, =g 7
The projection operators Q and P,,, given by

Q=(-cc’ic’c) 8

and
Pm = - Sm Snl T/Sm "Sm ). 9)

project the weight vector to the subspaces orthogonal to C
and §,,,. respectively. In the above equations, I represents the
identity  operator. Further details regarding this recursive
method and its convergence behavior can be obtained from
Prasad’s paper [4].

8. Modified Hyperplane Method (MHP)

For the general case of N weights and (M + 1) constraints
as in (1), we can modity each of the (M + 1) equations so that
each one is orthogonal to all others. This is equivalent to
diagonalizing the ATA matrix in (4). As a result, W can be
easily obtained from (4) by simple matrix multiplication. The
major obstacle in such a procedure is our ability to rapidly
rearrange the equations in the desired manner. One can show
that rearranging the equations to make them mutually ortho-
gonal is computationally as burdensome as evaluating W from
(4) directly. A practical, but suboptimal, procedure sug-
gested by Ramakrishnam er al. [7) involves modifying these
so that each equation is orthogonal to its adjacent one. As we
will see in Section 111, such an approach considerably reduces
the computational complexity of this method. By the MHP
method, we refer to this suboptimal procedure. This MHP
procedure consists of the following two steps.

1) Equation Rearrangement: The Gram-Schmidt procedure
[8] is used to produce the rearranged (primed) equations from
the origina) ones. The equations defining the operations are

Sy’ =Sy, (10a)

T '
. Sm Snnl B
S =8, — c Te 1 St
sm +1 Sm +1

m=M-—1),(M—2), .32, 1, (10b)

and
C=cC CTSL'_ ! (10¢)
SllTSl’ ] ¢

When we modify the left side of (1) as above, we also need to
change the right side of (1) in an exactly identical manner to
obtain the correct solution. The right side of (1) in terms of
the primed equations can be easily shown to still equal U’ =
[100 - Q). Thus the new equation to be solved is

AW=U, an

where the prime denotes the result of the equation rearrange-
ment.

2) Projection Algorithm: Projection methods [9] can be
used on the modified equations to solve for W in (11). The
projection method begins with an initial guess Wg. This point
W, in the N-dimensional space is then orthogonally projected
onto the first hyperplane (C' in this case). Let W, represent
the result of this projection. This is subsequently projected
orthogonally onto the second hyperplane (S, " here) to obtain
W,. This orthogonal projection is carried out on successive
hyperplanes unitl Wy, (. the projection onto Sy’, is obtained.

B
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In our notation, obtaining Wy, from W, represents one
complete iteration. Wy, | is then orthogonally projected onto
the first hyperplane (C') and a complete second iteration
begins. This algorithm can be described by

woaw, | W€t c 12a)
= BT v . (12a
] 0 c rC
and
w Ts °
Woet =W, — m" ‘"L']Sm'-
" " sm rS'"
m=12 3 - M (12b)

The additional unity term in (! 2a) can be understood from the
unity in the right side of (11). In the next section, we compare
these two methods from their computational loading require-
ments,

I1l. COMPUTATIONAL CONSIDERATIONS

As can be seen from (5)=(10), both the AOP and MHP
methods require initial computation before the recursions can
be started. We will now compare the two methods based on
this computational burden as well as on the number of compu-
tations required per iteration.

A. AOP Method

Given the direction vectors C and S, we determine the
projection operators Q and P,, as in (8) and (9). For an .V
element array, this computation requires approximately (M +
A2 complex operations. These (A + 1) projection operators
are then combined to produce a single projection operator
T. where

T=QPyPy, |, P,P. (13)

The computation of T involves M matrix multiplications each
involving v3 complex operations. For large values of NV, MN3
complex operations are required for determining the operator
T

As noted in (5), Wi, can be obtained from Wy by a
matrix/vector multiplication and vector addition. This involves
v complex operations. Thus, the AOP requires MN 3 com-
plex operations for initial set-up and N2 complex operations
for every iteration thercafter.

B. MHP Method

The initial equation rearrangement for the MHP method is
outlined in (10). From (10), we see that S,,," can be obtained
from 8,,, and S,,+ using approximately 2N’ complex opera-
tions. Then the hyperplane rearrangement requires a total of
2UN complex operations. This is the initial computational
load tor the MHP aigorithm equations.

The projection algorithm of (12) is used on the rearranged
equations to obtain the solution. W,,, | is obtained from W,
by determining the dot products W,,, 7S, " and S,,'S,," and
then using the ratio of these products to multiply S,,," by that
scalar. The dot products involve N complex operations each
and (ignoring the scaler multiplication) we need 2V complex
operations to obtain W,,”,T from W,,. Thus, one complete
iteration of MHP (i.c., obtaining Wy, from W) requires a

total of 2MN complex operations. Thus, MHP requires 2MN
initial complex operations and 2MN complex operations per
iterations.

Comparing the two schemes, we note that MHP requires
only 2MN operations while AOP needs MA3 initially. For
large values of N, this represents a substantial reduction. For
every iteration after the initial set-up, the AOP requires N2
operations while the MHP needs only 2MN operations. Usually
N > 2M and as a result the MHP technique is computationally
more efficient than the AOP method.

An equally important consideration in evaluating the two
methods is the number of iterations each requires to approach
the true solution. Since both methods are based on projec-
tions, it is expected that they will perform similarly. However,
because of the rearrangement of the equations, MHP will con-
verge faster. No rigorous comparisons of this aspect have been
considered because the convergence rate is very dependent on
the A matrix in (2). In the next section, we consider a numer-
ical example to compare the convergence behavior of the two
techniques.

IV. NUMERICAL RESULTS

We consider the special case of a linear array of N = 17
elements, uniformly spaced at A/2 intervals, where N\ is the
wavelength of the radiation. The signal “look™ direction is
along boresight (i.e., 8 = 0°) and M = § interference sources
are assumed atanglesof -15° —20°, 5° 45°, and 75° (from
boresight). respectively. The array problem is then formulated
as solving for 17 unknowns subject to six constraints as in (1).

For both schemes, the initial esiimate of the weight vector
Wy has unity for elements because C has unity for all ele-
ments. Fig. 1 shows the array pattern £(6) obtained using the
AOP algorithm after just one iteration. No nulls can be easily
identified in this response pattern. Fig. 2 shows £(8) obtained
using MHP after just one iteration. MHP is seen to yield very
sharp nulls at the two noise source locations, 45° ( 175 dB)
and 75° ( 172 dB), after just one iteration. The null depths
beyond 100 dB are not shown in our figures because they are
practically not significant even though they are computation-
ally possible. A detailed comparison of Figs. | and 2 shows
that MHP also outperforms AOP at three other interference
locations. Fig. 3 shows the array pattern obtained by AOP
after five iterations. This response exhibits good nulls (with
depthsof 113 dB, 94 dB, 94 dB, 10% dB, and 98 dB). But. after
five iterations, MHP (sec Fig. 4) yields even better null depths
(115 dB, 133 dB. 125 dB, 181 dB, and 184 dB) at the five
noise source locations, After ten iterations, both methods are
tound to perform equally well. This supports Prasad’s claim
(4] that AOP requires approximately eight to ten iterations
for convergence.

The null depths obtained with both methods at each of the
five noise source locations after each iteration are listed in
Table L. This table also contains the average null depths as
well as the worst null depths obtained by both methods after
each iteration. From Table I, we see that an average of 99 dB
is obtained with MHP in just one iteration, whereas AQOP
requires four iterations to yield a 100 dB average null depth.
Inspection of this column also indicates that MHP converges
faster than AOP by at least a factor of two. The worst-case
null depths obtained by the MHP are also seen to be consist-
ently better than those of the AOP by at least 10 dB. More
quantitative comparisons are not valid because the converg-
ence behavior is very data dependent. From this limited ex-
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TABLE ]

NULL DEPTHS (dB) WITH AOP AND MPH METHODS

Null Depths

AOP Method MPH Method
Iteration Worst Worst
Number  -15° -20° §° 45° 75° Average Null ~15° -20° 5° 45°  75°  Average Null
| 41 36 29 38 34 35.6 29 39 57 50 175 172 98.6 39
2 59 49 51 S§ 63 55.4 49 59 76 69 180 174 3116 59
3 80 62 17 77 76 82.4 62 78 95 87 174 173 1214 78
4 141 78 83 114 8S 100.2 78 96 114 106 170 175 144.3 96
5 113 94 94 108 98 101.4 94 its 133 125 181 184 1476 115
periment and the analysis in Section IIl, we can say that MHP ACKNOWLEDGMENT

converges faster than AOP in almost all cases.

V. CONCLUSION

Prasad’s [4] geometrical formulations allow us to use the
modified hyperplane projection technique [7] in the gen-
eralized pattern synthesis problem. This MHP algorithm has
been shown to be computationally more efficient than the al-
ternating orthogonal projection method used earlier {4}. Such
computational time savings are important in an environment
where the interference locations are rapidly changing and in
which the array weights must “adapt’ to them at high rates.

The author wishes to acknowledge Professor David Casasent
for his critical reading of this manuscript and for providing
valuable comments on it.
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NEW RESEARCH IN HOLOGRAPHIC PATTERN RECOGNITION
David Casasent

Carnegie~-Mellon University
Department of Electrical Engineering
Pittsburgh, Pennsylvania 15213

ABSTRACT

The major use of holography in optical pattern recognition systems has been in matched
spatial filter correlators. We discuss new uses of holographic techniques in optical pat-
tern recognition applications. These include: optical pattern recognition architectures of
reduced size, weight and volume; optical pattern recognition architectures with reduced com-~
ponent tolerances; new nonlinear local optical preprocessinag architectures: and optical pat-
tern recognition systems that operate when geometrical and other differences are present in
the input image.

1. INTRODUCTION

This SPIE Proceedings Volume addresses holography and its applications. One of the at-
tractive uses of holography is optical pattern recognition (OPR). 1In this paper, we review
recent progress in new OPR algorithms, architectures and applications employing holog.aphy.
Such research has been supported at Carnegie-Mellon University for several years by a grant
from the Air Force Office of Scientific Research. 1In this paper, we review some of the as-
pects of this research. To remain within the context of this issue, we restrict the re-
search reported upon to work involving holography.

When one considers OPR and holography, the optical matched spatial filter (MSF) correla-
tor (1] and the joint transform correlator {2] immediately come to mind. We review these
basic OPR architectures in Section 2. A disadvantage of optical processors frequently noted
is their large size. 1In Section 3, we discuss one technique by which holographic optical
elements (HOEs) and laser diodes (LDs) can be used to fabricate OPR systems of reduced size,

weight and volume [3). These architectures also demonstrate new system concepts that can be
L realized with holographic optical components as well as system architectures with reduced
positional tolerance requirements of the elements [3). MSF correlators are well-known to be
sensitive to geometrical distortions in the input image. 1In Section 4, we review weichted
MSFs [4], Mellin transforms (MTs) [5] and hybrid optical/digital processor techniques [6].
These techniques can reduce the sensitivity of an MSF correlator to geometrical distortions,
but they do not fully overcome intra-class pattern recognition problems (recognition of an
object independent of geometrical distortions between the input and reference object views).
One approach to OPR has been to apply digital preprocessing to enhance the input image to an
optical processor. As input image resolution and frame rates increase, such preprocessing
operators are becoming very computationally burdensome. In Section 5, we discuss new non-
linear local optical preprocessing operators that operate in parallel on all image pixels
[7)]. We then conclude in Section 6, with a review of research on how off-line operations on
i a training set of images can produce a synthetic discriminant function (SDF) MSF capable of
inter-class discrimination while retaining intra-class object recognition [8-11]. Because
of space limitations, we restrict attention in this paper to AFOSR supported holographic
pattern recognition research at CMU. Other holographic OPR research is described elsewhere
[12-16].

2. CONVENTIONAL OPTICAL PATTERN RECOGNITION CORRELATORS

]
The basic OPR correlator architectures are well-known and are thus only briefly reviewed !
here. In the classic frequency plane correlator (Figure 1), a holographic MSF (formed by !
the coherent interference of the Fourier transform (FT) of the reference object and a plane !
wave reference beam) H* is formed at P, with the desired reference object h(x,y) placed at '
Pj. This holographic MSF differs from conventional holograms and specifically FT holograms o
in the beam-balance ratio used (i.e. the purpose of a hologram is to produce an aesthetical-
ly pleasing reconstructed image, whereas an MSF is intended for pattern recognition and thus
conventionally low spatial frequencies are saturated during MSF synthesis), With H* formed !
as noted above, the plane wave reference beam is no longer used and an on-line input image P
f(x,y) (possibly containing the reference object h(x,y)) is placed at P;. The light distri- i
bution incident on Py is F(u,v) (the FT of the input data) and the light distribution leaving
P2 is FH . At P3, lens L, forms the FT of the light distribution leaving P, and at P3 we
find

RN
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u, = [FH*) = £ @ h, (1)

or the correlation of the input and reference patterns.
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FICURE 1 Schematic diagram of the convention- FIGURE 2 Schematic diagram of the conven-
a! holographic matched spatial filter frequency tional holographic joint transform correla-
plane correlator. tor system.

In the joint transform correlator (Figure 2), the two objects to be correlated, ¢ and h,
are placed side-by-side in the input plane and their joint transform is formed at P on an
intensity sensitive material (film or a spatial light modulator). Plane P; is then illumi-
nated (in transmission or reflection) and the FT of its transmittance is formed at P3 where
again we find the correlation of g and h. Any such optical correlation plane output con-
tains peaks of light whose locations correspond to the positions of all occurrences of the
reference object within the field-of-view of the input image. Thus, an optical correlator
can recognize multiple occurrences of a reference object and determine the locations of each.
An optical processor achieves these operations in parallel at high speed and thus such sys-
tems are quite attractive for many applications. However, they are now without shortcomings, 4
as we now discuss.

3. HOLOGRAPHIC OPTICAL ELEMENTS AND LASER DIODES

It is possible to form multiple MSFs at P,. We can form these multiple MSFs by super-
imposing MSFs with different carrier spatial frequencies or by placing the multiple MSFs at
spatially separated locations in Pj. With such architectures, one can achieve multiple cor-
relations in parallel. Researchers at Gruman Aerospace {17], Miradcom {18]) and CMU are pur-
suing such approaches. The use of spatially-multiplexed multiple-MSFs is quite attractive.
However, one must then form multiple replicas of the FT of the input image at the locations
of each MSF. This can be accomplished by multiple point source HOEs.

Holographic optical elements (HOEs) also enable one to fabricate optical systems with new
architectures and of reduced size. We detail one such system [3] in Figure 3. As a light
source, we use a laser and we image it onto the FT plane P;. We view lens L; as an FT lens
and we note that the FT of the input data at P] is fcrmed at P, even when P; is placed be-
hind L;. This scaling FT system allows one to adjust the size of the input and FT plane by
adjusting the distance between P; and P2 As the second new feature associated with Figure

, we note that to form an MSF H* at F,, we place h(x,y) at Pj. However, instead of a plane
wave reference beam, we employ a converging reference wave. The resultant pattern recorded
at P2 is the MSF, plus an FT lens (a lensless MSF or the MSF plus an HOE FT lens). With
this filter formed at P2, if the input image at Pj contains the reference object h, then a
converging plane wave will leave Py and self focus at the correlation plane P3. The loca- )
tion of this correlation peak will correspond to the location(s) of the reference object I3
h(x,y) within the entire field-of-view of the image f(x,y) present at Pj.

We have assembled and demonstrated such a system [3] in the laboratory. This architecture
is very attractive since with the MSF and the second FT lens of Figure 1 encoded on
one plate, we have simultaneously satisfied all positioning requirements between these two
planes. This greatly reduces the positioning requirements of the system as well as its over
all length and size and number of components required. Althouach space permits only this one
HOE architecture to be discussad, many other approaches are possible. The system depicted
in Figure 3 is typical of such architectures and it demonstrates the flexibility that HCEs
provide for new architectures such as the lensless MSF holographic pattern recognition sys-
tem,
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correlation
input HOE /MSF

FIGURE 3 Schematic diagram of a lensless matched spatial filter
holographic correlator using holographic optical elements.

4. WEIGHTED MATCHED SPATIAL FILTERS, MELLIN TRANSFORMS
AND HYBRID OPTICAL/DIGITAL ARCHITECTURES

In {4, Casasent and Furman described how control of the beam balance ratio K durina
synthesis of an MSF could be used to control the spatial frequency region of the input pat-
tern used during the correlation. We refer to such a filter as a weighted MSF. This con-
cept is easily seen by considering the interference of two beams. When the two beams are
of equal intensity, the modulation of the fringe pattern formed is a maximum., Because the
FT of the input data is monotonically decreasing with spatial freguency or distance (in the
transform plane), maximum modulation will occur at one spatial frequency region. During MSF
synthesis, low spatial frequencies are saturated (because of the high intensities of the dc
and low spatial frequencies in the FT of the reference signal). Similarly, high spatial
frequencies have low modulation and emphasis (because of the low beam balance ratio). The
intermediate spatial frequency region where the intensities of the FT of the reference cb-
ject and the plane wave reference beam are approximately equal thus received maximum modu-
lation. By adjusting this spatial freguency region, we can tune the MSF or correspondingly
weight different spatial frequencies of the data. A similar phenomenon occurs during syn-
thesis of the lensless MSF in Figure 3.

In (4], we showed that if this spatial frequency region were optimized for images at
perfect registration, then the performance o. the correlator would be optimum only for
images with no distortions between the input and reference ohject. For such an MSF, asevere
degradation in the system's performance would result if small scale and rotational differ-
ences were present. Similar remarks apply to small translational difference and positioning
accuracies in the components of this processor. However, we also demonstrated (4], that
emphasis of lower spatial frequencies would significantly improve the tolerance of the sys-
tem to such error sources without appreciable degradation in its discrimination ability.
However, this approach avpears to be appropriate only for satisfying small variations in
scale and rotational geometrical differences. For larger variations, advanced techniques
(Section 6) are needed.

The Mellin transform (MT) and its variations such as the polar coordirnate transformation
represent techniques by which one can obtain invariance of the correlation peak intensity
for selected image distortions. These approaches to distortion invariant pattern recogni-
tion are summarized in [5]). These techniques result in a space-variant OPR system in which
the correlation of coord.nate transformed versions of the input and reference object are
produced. If the expected distortion can be described mathematically, then an appropriate
coordinate transformation can be found that will yield a correlation peak intensity that is
invariant to the given deformation. For scale invariance, a logarithmic covrdinate trans-
formation is the solution. The FT of a logarithmic coordinate transformed image is the MT
of the original image. For rotational invariance, we find that a polar coordinate transfor-
mation is necessary. It is possible to combine several of these coordinate transformations
with a cyclic operation of the system. However, one is restricted to producing a system
with only two invariant distortion parameters on each cy:le and to the application of these
techniques for cases in which only one occurrence of the reference object is present in the
input field-of-view. Thus, whereas this approach is very attractive for certain applica-
tions (e.g. for a top-down view of a single object), it is not as powerful as other tech-
niques (Section 6) when multiple distortions or multiple objects are present.

The use of hybrid optical/digital processors is another approach by which the flexibility
of an optical system can be increased. This concept [6] and many detailed versions of it

can significantly improve the performance and repertoire of operations achievable on various
optical processors.

s,
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S. PARALLEL OPTICAL NONLINEAR LOCAL PREPROCESSING OPERATORS

Many nonlinear local operators can and have been used to preprocess image data prior to ]
feature extraction, pattern recognition and classification. These operators have thusfar g
been implemented digitally. A most attractive such nonlinear operator is the Sobel trans- '
form. This operator performs a nonlinear edge-enhancement and smoothing of the input image :
f(x,y) described by

gix,y) = (<3£(x,y)/bx>§ + <3f(x,y)/8y>i]l’. (2)

In recent research [7]), we have devised a technigue to fabricate holographic filters capable
of performing the general class of nonlinear local operators. To describe the necessary
filter, we first write (2) as

2.%

g = (x? + v3)", (3)

where X and Y are best described as the appropriate 3 x 3 local masks

10 +1 1 +2 +1
X = 2 0 +2|, Y = 0o 0 0. (4) 1]
1 0 +1 1-2-1
!
These local 3 x 3 operators in (4) are convolved with each image pixel and then nonlinearly .
combined as in (3). From (2) - (4), we see that the Sobel operator performs the local sec-
ond differencing operations in the x and y directions (averaged over three rows or columns
in y and x respectively). It thus achieves a nonlinear local edge-enhancement operation
J plus smoothing to reduce noise effects. !

To achieve (2) or (3) optically, we rewrite (3) for input image pixel (j,k) as

g(i, i) = x2 + ¥H% = [ix + ¥ 149% = x4 5y, (5)

Next, we recall [19] that the spatial derivative in the first approximation can be realized
by the convolution of the input image with an MSF whose impulse response h is as below

Output = £ * h = f(x,y) * [§(x+d,y) - &(x,y)] = 8£f/&x. (6)

To realize (5) using a technique such as that in (6), we require an MSF with an impulse
response h that satisfies

Output = g(x,y) X + jY = £(x,y) * h(x,y)

fix,y) » mfnkm’né(x-md,y-nd)

f{x,y) = [(1 + j)6(x-d,y-d) + 26(x-4,y)

+ (1 - j)&(x=d,y+d) + 2j8(x,y-4d)
- 238 (x,y+d) - (1 - j)6(x+d,y-4)
- 28 (x+d,y) + (1 + j)6(x+d,y+d)]. (7)

In (6) and (7), the distance @ is the spacing between pixels in the input image and the

weights and locations of the eight delta functions in (7) were obtained from (4) and (5).

We have realized the MSF described by (7) using both multiple exposure holographic tech-

niques and use of a computer-generated hologram. We have also successfully demonstrated

this technique for various 3 x 3 and 5 x 5 nonlinear local preprocessing operators [7]). An

example of optical edge-enhancement preprocessing using these techniques is shown in Figure

4. The preprocessed output image shown was obtained in parallel using the nonlinear local
' operators described above. Extensions of this technique to larger window operators and to
: other preprocessing functions appears to be a quite attractive area for future research.
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FIGURE 4 1Input and output images demonstrating our new parallel optical
nonlinear local edge-enhancement holographic convolution operator
for the case of a 3 x 3 Sobel operator.

6. SYNTHETIC DISCRIMINANT FUNCTION HOLOGRAPHIC MATCHED SPATIAL FILTERS

e

A most attractive new holographic MSF concept is the use of synthetic discriminant func- 3

tions (SDFs) to synthesize the MSFs for use in an optical correlator. These SDFs are linear

combinations of an input image training set data base. When the SDFs are properly produced,

they can provide a correlator whose output is invariant to any geometrical distortions of an

input object. We refer to this as an intra-class SDF or as an equal correlation peak (ECP)

SDF since it yields a correlation output whose intensity is a constant value independent of

any geometrical distortions present in the input object [8-11]. Advanced versions of these

SDFs can provide correlation outputs that enable one to discriminate between different ob-

jects (we refer tothese as inter-class SDFs) and in more advanced cases to SDFs that retain

intra-class recognition while enjoying inter-class discrimination as well.
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FIGURE 5 General functional block diagram for a holographic synthetic ['
discriminant function matched spatial filter system for intra- {
class and inter-class pattern recognition.
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The general approach to the synthesis of such SDFs is shown in Figure 5. 1In this general
system block diagram, we use a training set of images {f,} which can be different aspect
views of an object. From these {fp}, we form an ECP SDF filter h such that h® f, = ¢ = 1
(a constant ¢) for any aspect view of the object being search for. The ECP SDF h(x,y) is a
linear combination of the input training set images f,

hix,y) = g anfn(x,y). (8)

We determine the coefficients ap by forming the correlation matrix R of the training set

data and inverting it. 1In matrix-vector notation, the coefficients ap are a vector a that
satisfy

a = Ry, (9)

where u is the unit vector equal to the constant unity. This ECP SDF and the advanced
inter-class and the combined intra and inter-class SDF synthesis techniques together with
their realization as holographic MSFs are detailed elsewhere in this conference [20].

7. SUMMARY AND CONCLUSION

As these brief pages have noted, OPR research now enjoys many new technigues and archi-
tectures. Many of these new concepts utilize holographic techniques as we have just de-
scribed. These techniques and algorithms are addressing practical pattern recognition prob-
lems and the results of this basic research program are increasing the practicality of OPR
systems and the repertoire of operations achievable on such processors. The recent research
results described in this paper have included new holographic optical element architectures,
nonlinear local optical operators and advanced matched spatial filters using synthetic dis-
criminant functions and other techniques.
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Microprocessor-based fiber-optic iterative

optical processor

Mark Carlotto and David Casasent

The design and fabrication of an iterative optical vector-matrix processor are described. Microprocessor
feedback is used to produce an iterative processor capable of solving simultaneous linear equations. It also
facilitates scaling and biasing of the data and the handling of bipolar and complex-valued data as weil as cor-
rection for selected system error sources. Fiber-optic interconnections are used to improve the system’s
alignment and to reduce its size, weight, and errors. The design, fabrication, and performance of the system

are analyzed.

1. Introduction

Optical vector-matrix multipliers'-? represent a
general class of optical processors since many data
processing problems can be formulated as vector-matrix
equations or as a set of simultaneous linear algebraic
equations. One of the most attractive ways to realize
an optical vector-matrix multiplier with present-day
hardware is to image a linear array of LEDs through a
2-D mask and onto a linear photodetector array.® Both
serial systems*> using one LED (whose output is
time-sequentially modulated) and parallel systems®’
(with a linear array of input LEDs) have been described
to achieve an optical vector-matrix multiplication. In
both cases, the LED outputs describe the elements of
a vector, the transmittances of the 2-D mask describe
the elements of a matrix, and the system’s output is a
vector-matrix product. With a 2-D output CCD shift
register detector, one can perform convolutions on such
a system.” When the transmittances of the mask ele-
ments correspond to the Fourier kernels, the outputs
on the linear photodetector array are the discrete Fou-
rier transform of the sampled input data present on the
linear LED input array.6

In Ref. 8 we described an iterative optical processor
(IOP) in which the linear photodetector outputs from
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a vector-matrix multiplier were combined with an ex-
ternal vector, and the result fed back to the linear LED
inputs. The use of this system in adaptive phased array
radar processing,® eigenvalue and eigenvector compu-
tation,1%!! and for optimal control applications!2 has
been described. In the course of these application
studies increasingly complex operations and control
were required in the electronic feedback loop, and more
attention to the system’s accuracy was necessitated. In
this paper, we describe the microprocessor-based
fiber-optic IOP system we designed and fabricated to
address future applications. In Sec. I we describe the
new iterative algorithm we use with emphasis on the
algorithm’s convergence. Scaling, biasing, and how
bipolar and complex-valued data are handled on the
system are described in Sec. III. Following a descrip-
tion of the microprocessor-based fiber-optic IOP system
we designed and fabricated (Sec. IV), an error analysis
and quantification of the laboratory system’s perfor-
mance are advanced in Sec. V.

Il. Convergence of the Iterative Algorithm

In Fig. 1 we show a simplified schematic diagram of
the IOP. Bipolar-valued matrices are denoted by H
and bipolar-valued vectors by y and x. These are dis-
tinguished from the vector and matrix quantities (a,c,B)
in the physical optical system. This is necessary, since
the latter must be real and positive. Complex-valued
quantities will be denoted by a tilde above the variable.
Considering the physical system first, we denote the
light distribution leaving the linear input LED array at
P, at iteration j by the vector a 7(j) with elements a,, (j).
The light distribution leaving P; is imaged vertically
and expanded horizontally to uniformly illuminate the
rows of the mask at P, with light from the corresponding
input LED. We denote the transmittance of the mask
at P> by the matrix B7 with elements b,,,. The light
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Schematic diagram of the JOP emphasizing the iterative
algorithm.

Fig. 1.

distribution leaving each column of P, is summed on the
corresponding photodetector and the linear output
detector array at P;. The system'’s output is thus the
vector-matrix product ¢7(j) = a7(j)BT. For nota-
tional simplicity, we will suppress the use of transposed
vectors and matrices and thus describe the vector-
matrix product by

c(J) = Ba()), (1)
with elements

M
Cp = Z Ambmn, (2)
m=1
where ¢ has N elements, a has M elements, and B is an
M X N matrix.

If the light distribution leaving the LEDs at P, at it-
eration j is x(j), and the mask transmittance is de-
scribed by H, the output from the photodetectors at Py
is Hx(j). We form the difference between this output
and a fixed external vector y, multiply the difference by
an acceleration parameter w, and add the result to the
original input vector x(j) to form a new x{j + 1) input
for iteration j + 1. The system thus realizes the Rich-
ardson algorithm!3

xG + 1) = x(j) + wly - Hx()). 3
When x(j) = x(j + 1) = x, Eq. (3) reduces to
Hx =y, 4)
and the system’s output
x=H"ly (5)
is the desired solution to the vector-matrix equation in

Eq. (4).

To insure convergence of Eq. (3) for all initializations
x(0) of the system, the N roots s, (w) of the character-
istic equation:

determinant|s1 — (I - wH)| (6)

of the discrete time system must lie strictly within the
unit circle in the z-plane.!? If A; are the eigenvalues of
H, we must satisfy

0< |l ~wh| <1 )

to insure convergence of Eq. (3). An obvious choice for
w is

w = =1/Amax. (8)

where Ana is the absolute value of the largest eigen-
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value of H. With w chosen as in Eq. (8), Eq. (7) is sat-
isfied for the largest A; and thus is easily satisfied for
smaller A; values. In practice, we can increase w slightly
from the value in Eq. (8) to insure that |1 — w);| > 0.
In special cases, when highly oscillatory poles of H
occur, we can select w to be a multiple of 1/Apa. (We
have yet to consider cases when this situation arises.)

Let us now consider how to compute the choice of w
noted in Eq. (7). We generally use the conservative
upper-bound!?

e
Amex < | 1H|] = >_‘>_‘hﬁm) ©)

for Amax. However, it is also possible to use the IOP
itself to estimate A, as we now describe.

In this case, we let y = 0, place H at Py, and describe
the initial input vector x(0) at iteration j = 0 by

x(0) = qy¢ + avdy + ...+ aydm, ($10}}

where the ¢,, are the eigenvectors of H. We feed the
output at each iteration directly back to the input and
thus after j iterations find

x() = H'x(0). (11)

We can write H in terms of its eigenvalues A, and its
eigenvectors ¢, by singular value decomposition as

H=Y ¢nlnor (12)

Multiplying both sides of Eq. (10) by ¢% and using the
orthonormality of eigenvectors, we find a,, = ¢7,x(0).
Using this in Eq. (11), we find that x(j) can be rewritten
as

XU) =L dmAnan. (13)

After a sufficiently large number j of iterations, the ei-
genvector ¢y with the largest eigenvalue A, will
dominate the summation in Eq. (13), and the system’s
output will be

X(J) = daMpaxd- (14}
From the ratios x,,(j + 1)/x,,(j) for j large, we find

>\max-

It is also possible to extend this conventional power
method!8 to allow computation of all the eigenvalues
and eigenvectors of H on the 10P as noted in Refs. 10
and 11. In practice, we normally use Eq. (9) to estimate
Amax. Since the calculation of the Euclidean norm of
H in Eq. (9) is easily achieved in the microprocessor
system, and since the calculation need only be done once
and the same acceleration parameter w used for all it-
erations, the technique in Eq. (9) is used in preference
to the one in Eq. (14). When w is properly chosen, the
system’s iterative algorithm monotonically converges,
and the stability of the algorithm and the 10P system
are assured. This solution in Egs. (8) and (9) has
worked well for all vector-matrix and matrix-matrix
problems to which we have applied the IOP. Even
when the matrix is ill-conditioned, use of this acceler-
ation parameter insures convergence of the algorithm,
although many iterations may be required.
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. Bipolar and Complex-Valued Data

The LED and photodetectors outputs as well as the
transmittances of the mask in the system of Fig. 1 must
be real and positive. Since noncoherent light is used,
the IOP cannot handle bipolar or complex-value data
directly. This is a severe limitation of the system, and
thus much work has been done to allow processing of
such data on a vector-matrix system.!” When the
vector-matrix multiplier in Ref. 6 is used to compute
the discrete Fourier transform of the spatial data
present across the LED array, complex- valued data
must be handled by the system. This is accomplished
by formatting the input vector and the fixed elements
of the matrix mask in terms of the bipolar real (Re) and
imaginary (Im) parts of the vectors and matrix as

ERe = (HRv —Hlml [XRA-] . (15)
Im, “lm HRe Xim

This requires 2M input LEDs, a 2M X 2N mask, and a
2N element output detector. One can handle bipolar
data on the system in many ways.!” One technique that
has been used® is to bias all vector and matrix elements
so that they are positive. To obtain the bipolar vec-
tor-matrix product from the measured outputs, elec-
tronic postprocessing is needed. To perform this, ad-
ditional factors such as the product of known bias ma-
trices and the unknown input vector are necessary.
These can be obtained by adding a column to the matrix
mask at P5 that contains all constant elements and by
including an additional detector element in the
output.!”

In our IOP we handle complex data as in Eq. (15), but
we accommodate the bipolar data in Eq. (15) differ-
ently. We first decompose the bipolar input vector x
into its positive x* and negative x~ parts. The optical
system’s input vectors corresponding to each of these
are a; and a,, respectively, with elements

Aym = 0.5(xm + |xm]) Ay = —0.5(xy — |xml|). (16)

The elements of the optical mask B are a scaled and
biased version of the elements of the bipolar matrix H.
Specifically

Ban = (hn = B)/(R — h). an

where h and h are the minimum and maximum ele-
ments of H. With the P, mask described by Eq. (17),
we see that the elements of B satisfy0 < b,,, < lasis
necessary. We then achieve a bipolar vector-matrix
multiplier by operating the system twice, once with a;
as the input vector and once with a, as the input vector,
with the same fixed M X N mask B present in both
cases. The microprocessor forms the difference Ba; —
Ba; between the system’s outputs in the two cvcles and
scales and biases the difference according to

y=Hx=(h~h)Ba, - Bay) + Y xmil,..., nr. 1y

All the required operations in Eq. (18) are easily
performed in the microprocessor support system since
only additions, subtractions, and multiplications by
fixed constants are required. The two-cycle algorithm

Ny Nt et

& P (cy-¢,)

Fig. 2. Photodetector output ¢) and ¢, at two successive iterations
and their difference showing suppression of detector leakage current
and fixed-pattern noise.

in Eq. (18) by which bipolar data are handled on the
IOP has two other attractive features worth noting.
First, the size of the input LED array is only M (rather
than 2M) and the size of the output photodetector array
is N (not 2N). Likewise the matrix mask must be M X
N (rather than 2M X 2N). Thus, larger vectors and
matrices can be handled on a given system at the ex-
pense of using the two cycles of the system. Since the
potential speed of the IOP is so high, trading a factor of
2 in speed for a factor of 2 or 4 in the sizes of the vectors
and matrices that can be handled appears to be a useful
trade off for the applications with which we are con-
cerned. A second practical feature resulting from the
use of the algorithm in Eq. (18) is that all fixed pattern
detector noise is automatically cancelled. In Fig. 2 we
show the system’s outputs (c; = Ba, and ¢2 = Bag) on
two successive iterations with no input present (i.e., a;
= a, = 0) and the electronically calculated difference
¢; — ¢y. The outputs are thus caused by detector noise
only. As seen in the ¢; and ¢, outputs, the detectors
have a large leakage current (=8% of full scale) in a fixed
spatial pattern. However, after subtraction all fixed
pattern noise and leakage current effects are canceled
(as is seen in the ¢; — ¢, difference output), and we are
left with only the temporal noise variations (Johnson
noise) of the detector. In Fig. 2, this noise is measured
to be <0.4% of full scale.

IV. System Fabrication

Let us now consider the laboratory IOP system we
fabricated with attention to the microprocessor system
and the fiber-optic interconnections and how these
features are used to overcome many potential system
error sources. A detailed analysis of the system’s error
sources and quantitative data on the system’s perfor-
mance are included in Sec. V.
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The electronic feedback system was to compute: the
running iterative sum on the right-hand side of Eq. (3),
the acceleration parameter w in Eq. (9), the LED
preprocessing in Eq. (16), the matrix scaling and biasing
in Eq. (17), and the detector postprocessing in Eq. (18).
It must also properly sync, control, and format the LED
inputs and system cycling for bipolar and complex-value
data handling. In practice, LED and photodetector
correction factors are also included in the preprocessing
and postprocessing (Sec. V). All these operations can
be hard-wired and performed at high speed in a dedi-
cated system. However, to enable the use of the IOP
to be studied for many diverse problems and applica-
tions, a flexible rather than a dedicated electronic
support system was desired. We achieved this with a
microprocessor support system. A schematic of the
IOP emphasizing the microprocessor electronic feed-
back and support system is shown in Fig. 3.

The electronic feedback system contains four sub-
syvstems:

(1) An LED board that performs the necessary
preprocessing in Eq. (16) for handling bipolar and
complex-valued data, provides the multiplexed pul-
sewidth-modulated current drive for the LEDs and
corrections for nonuniform LED saturation levels.

(2) A detector board with parallel resettable opera-
tional-amplifier (op—amp) integrators to allow variable
detector integration times and correction for nonuni-
form photodiode responsivity.

(3) Analog to digital (ADC) and digital to analog
(DAC) converters for input to and output from the
microprocessor controller.

(4) a microprocessor controller subsystem. This
controls the scheduling of all IOP operations and per-
forms the operations in Egs. (3), (9), (17), and (18).
The microprocessor subsystem contains a control sec-
tion with a Fairchild 9408 LSI microprogram sequencer
to execute various microprograms stored in a 26K ran-
dom access memory (RAM) program memory and a
thirty-two line instruction decoder to activate various
control points in the system. It also contains an
arithmetic data section containing a custom-designed
arithmetic unit consisting of a 16-bit 300-nsec multi-
plier, a 16-bit arithmetic logic unit (ALU), and a 16K
RAM with a special row-column address structure. In
this data section all arithmetic operations are performed
at highspeed. The 16K RAM is used to store fixed data
such as LED and photodetector response correction
factors w, (h — h), etc. The system is also provided with
a capability of storing up to fifty-four different selected
iterative data outputs for future display on a scope or
for input to a microcomputer for analysis. The labo-
ratory IOP system also contains a front panel console
from which the operator can load any programs into the
26K or 16K memory depending on the IOP application
being considered. It also includes all necessary operator
controls to start, stop, and reset the microprocessor
I0P.

A photograph of the full microprocessor-based IOP
is shown in Fig. 4. The front panel is shown at the top.
Below this is the microprocessor system. The optical
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Fig. 3. Schematic diagram of the 0P emphasizing the micropro-
cessor-based electronic support system.
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Fig. 4. Laboratory IOP and its entire electronic support system
(microprocessor, power supply, front panel console).

IOP system is placed behind the central dark panel, and
the system’s power supplies are on the bottom of the
rack. The presem electronic support system contains
160 integrated circuits, requires 50 W of power, and has
a 300-nsec cycle time. Higher speed is possible, but the
flexibility and cost of the assembled system just de-
scribed were more compatible with our goals. More-
over, it provided us with a sufficiently powerful system
to be used on many different applications and problems,
and sufficient complexity to allow unforeseen problems
in the design .nd fabrication of larger systems to be
uncovered.
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The laboratory IOP system uses a linear input array
of ten RCA SG-1002 LEDs at plane P; of Fig. 1 with
1-mW output at 940 nm for a 50-mA drive current. The
LEDs are mounted on 0.375-cm centers along a copper
block 3.75 cm long. They are held in place by silver
epoxy and sealed in white RTV compound. The inner
connections from P, to the mask at P are accomplished
by a specially fabricated fiber-optic system. It contains
a linear array of ten apertures at one end into which the
LEDs are placed. Each aperture contains ten glass fi-
bers, each 25 um in diameter, that branch outward to
form a line of ten fibers. The output from the fiber-
optic system is thus a 10 X 10 array of 100 fibers whose
locations match the 10 X 10 elements of the mask at P-.
The fiber outputs have a center-to-center spacing of
0.35 mm vertical and 0.94 mm horizontal. The P mask
is placed between these fiber-optic outputs in the de-
tector array. ln the present system, the mask used is
a fixed pattern recorded on film. An advanced IOP
system we are presently designing will use a real-time
light modulator (such as the CCD-addressed liquid
crystal light valvel8) as a real-time adaptive mask ele-
ment. The detector used in the present system is a
Centronics LD-20 silicon photodiode array containing
twenty elements each measuring 4 X 0.9 mm on
0.94-mm centers. The spacings and sizes of the outputs
from the fiber-optic system were chosen to match the
size of the elements in this detector. The horizontal
spacing between fibers equals the spacing between de-
tector elements, and the height of the ten vertical fiber
outputs equals the height of a detector element. This
allowed us to sandwich the mask between the output
from the fiber-optic element and the detector with no
imaging optics necessary between P; and P; in Fig. 1.
A photograph of the optical vector-matrix multiplier
is shown in Fig. 5. From right to left are the LED array,
fiber-optic conrector, mask, and photodetector array.
The photodetector board is also visible on the left. The
components in the system have been separated for
clarity in the photograph. In practice, the entire system
is less than 5 cm long.

V. System Performance

In this section we discuss the performance of the
laboratory IOP system we fabricated and emphasize
how many system designed features were chosen to
improve the accuracy and stability of the system. The
first IOP that we fabricated® used cylindrical lenses for
imaging from P to Py and from P, to P3. Experiments
and simulation analysis on this system showed that two
major error sources were cross talk in the vertical
imaging from P, to Py and nonuniform illumination of
each row of the Py mask. The fiber-optic system (Sec.
IV) effectively removes both of these error sources.
Similar problems were found to occur in the required
imaging from P; to P3. By placing the detector, mask,
and fiber-optic element in contact, these error sources
were similarly removed, and a rugged stable system (Fig.
4) of greatly reduced size and weight resulted.

Amplitude nonlinearities in the light outputs from
the LEDs is a well-known problem. These components

Fig. 5. Laboratory optical vector-matrix multiplier.

are thus usually operated at a fixed bias current and
amplitude-modulated over a restricted range to de-
crease nonlinear effects. This results in a decreased
useful linear dynamic range. Correction for LED
nonlinearities is possible but was not included in the
laboratory system. Rather, we use pulse width modu-
lation (PWM) of the LEDs when linear performance
and large dynamic range data are needed. When op-
erated in the PWM mode, the present laboratory system
has a minimum to maximum pulse-width ratio of 256
and thus a 256:1 input dynamic range. This has proven
adequate for all applications with which we are con-
cerned. Use of laser diodes rather than LEDs for the
input source array allows amplitude modulation with
a large linear dynamic range. However, linear laser
diode arrays are not yet commercially available, and
thus our present system is operated with an LED input
source array.

When operated in the PWM data mode, a large spa-
tial nonuniformity in the output power from the LEDs
of £25% was measured. This fixed error is corrected
for by multiplying the input signal to the mth LED by
the reciprocal of its response. Spatial nonuniformities
of £7% were measured for the responsivity of the output
photodetector elements. These output nonuniformities
were similarly corrected for by multiplying each pho-
todiode output by its appropriate reciprocal respon-
sivity correction factor. These multiplicative source
and detector corrections are directly included in the
preprocessing and postprocessing with no additional
overhead, since the correction factors can be measured
once and stored in the microprocessor system’s 16K
data memory. As noted in Sec. III, the bipolar data
handling algorithm in Eq. (18) automatically cancels all
fixed-pattern detector noise and detector leakage cur-
rent effects.

Residual spatial nonuniformity errors caused by the
source and detector may still remain. In addition,
differences in the coupling loss from the different LEDs
to the different fiber-optic elements may exist together
with spatial variations in the outputs from the 100
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fiber-optic elements (resulting mainly from differences
in the polishing of the ends of each fiber). After
applying the preliminary LED and photodiode correc-
tions, we measured the 2-D spatial variations of the
entire system and found a residual nonuniformity with
a standard deviation of only 0.8%. This level of accu-
racy was sufficient for our purposes. 1t can be reduced
further by placing a fixed correction mask (with trans-
mittances inversely proportional to the system’s 2-D
spatial nonuniformity) in contact with the data mask
at P,. In practice, we include these fixed corrections
on the data mask itself when it is recorded.

From the discussion thus far, we find that all fixed
spatial errors in the system can be reduced to nearly any
desired level, and nearly any desired input data dynamic
range can be achieved (by pulse width modulation with
an associated loss in speed, by amplitude modulation
of a laser diode source array, or by a combination of
amplitude and PWM modulation). The major errors
in the system are thus the time-varying thermal noi.e
in the detector, and noise in the data recorded on the
mask at Py, In the present system, the temporal de-
tector noise is <0.4% of full scale. This can be further
reduced by use of cooled detectors, advanced detector
fabrication techniques, and chopper-stabilized opera-
tional amplifiers if necessary. Noise in the recorded
data at P5 thus appears to represent the major limita-
tion in the system’s performance. A general analysis
of the effect of this error source on the performance of
the iterative algorithm is not possible. Rather, specific
case studies and applications must be individually ad-
dressed. In general, we have found that the accuracy
of the final answer in the iterative algorithm will be less
than or equal to the error in a given vector-matrix
product with final errors of 1% being quite easily
achieved. Insome cases, the Py matrix mask can be row
or column biased to reduce its dynamic range require-
ments. Such issues are best treated for specific appli-
cations. We are in the process of completing such
analyses for adaptive phased array radar® and linear
quadratic regulator controll? applications on the IOP.
These will be published and this issue addressed more
fully when sufficient data and funding are available.

VI. Summary and Conclusion

In this paper, we have described the design and fab-
rication of an iterative optical vector-matrix processor
and the performance possible from such a system. The
use of a microprocessor electronic support system was
shown to provide extensive flexibility in the laboratory
system assembled. The use of fiber-optic intercon-
nections was found to result in a rugged and stable
system of small size and weight and remove cross talk
and nonuniform illumination error sources. A new al-
gorithm for handling bipolar data on the system was
shown to provide cancellation of spatial fixed-pattern
system noise. Source and detector nonuniformities are
also easily corrected by RAM look-up tables. The re-
sidual spatial system error on the laboratory 1OP as-
sembled was <0.8%, and its temporal noise was below
0.4%.
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This present system description has only emphasized
its use in solving linear algebraic equations or vector-
matrix equations. In Sec. II we noted that the system
can also be used to compute the eigenvalues and ei-
genvectors of a matrix. Multiplication of two M X M
matrices is also possible on the system by vectorizing
one matrix or by running the system M times with the
M columns of one matrix as inputs. Matrix inversion
is similarly possible by describing the problem as N
problems each of the form of Eq. (3) withy = 1. We
have also!? used the system to solve nonlinear matrix-
matrix problems using a modified Newton-Rhapson
algorithm. In this latter application the solution in-
volves an inner and an outer iterative loop, with the
output from the inner loop fed to the outer loop after N
iterations and a different mask necessary for each outer
loop iteration. The IOP system thus appears to be a
viable, powerful, flexible, and quite general purpose
processor with many potential applications.

The authors thank Rome Air Development Center
for initial sup-sort of this research, Air Force Office of
Scientific Research (grant 79-0091) for interim support,
and NASA Lewis Research Center (grant NAG 3-5) for
present support of our 10P research.
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Multidimensional adaptive radar array processing using an
iterative optical matrix-vector processor
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Abstract. An iterative optical matrix-vector processor that computes the adap-
tive weights for a phased array radar is described. Muitidimensional adaptivity
in both target angle and velocity is achieved by lexicographically ordering the
antenna elements as they are fed to the optical processor. Complex weights are
computed by spatial muitiplexing of the vector and matrix inputs to the system.
The error sources of the optical system and the convergence of the iterative
algorithm are analyzed, and experimental demonstration of the accuracy and
performance of the system is included. This novel processor is found to perform
quite adequately and to be most appropriate for advanced multidimensional
adaptive phased array radars.

Keywords: two-dimensional signal processing; multidimensional adaptivity,; radar array
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1. INTRODUCTION

Adaptive phased array radar (APAR)' 3 represents a formidable
signal processing problem of considerable current interest4.5 and one
for which advanced signal processing concepts and algorithms are
necessary. The real-time and parallel processing features of optical
systems make them attractive candidates for this application. How-
ever, the nature of the APAR problem requires a new optical process-
ing system that performs more general functions besides the Fourier
transform and correlation operations normally realized in such sys-
tems.s In this paper, we describe a new and general purpose optical
processor, discuss its application for APAR processing, provide exper-
imental demonstrations of its use in APAR processing, and analyze
the accuracy and performance of the system for this application.
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In Sec. 2, we describe the APAR signal processing problem. Com-
putation of the optimum set of adaptive weights to apply to the
receiving elements of the antenna to steer it in a desired direction and
to null all noise sources in other directions is formulated as the solution
of a matrix-vector equation requiring the inversion of a matrix. In Sec.
3, we describe an iterative optical matrix-vector processor (IOP) that
we have fabricated’” to address this problem.? We also discuss how
complex values are accommodated on this system and how conver-
gence of the iterative algorithm is achieved. We also advance an error
source model for the processor. The experimental use of the IOP to
cancel noise sources distributed in angle is then demonstrated in Sec. 4.
In Sec. 5, we extend our theory to the case of multidimensional
adaptive antennas. Experimental demonstration of the use of the IOP
for an antenna adaptive in both space and time is included in Sec. 6
together with an initial error source and accuracy analysis of this new
optical processor for this application.

2. ADAPTIVE PHASED ARRAY SIGNAL
PROCESS..AG

For simplicity, we initially consider a linear phased array antenna
with adaptive steering and noise null cancellation in angle (6) only.
In Sec. 5, we extend this theory to the case of multidimensional
adaptive antennas. Consider the linear (1-D) phased array antenna
system of Fig. | with N isotropic elements spaced d = Ap /2 apart
(where Ag is the wavelength of the radar). In the far field of the
antenna (i.e., at ranges R>>(Nd)2/)\n), we assume a signhal
s(t)exp(jwt) at an angle 8, (this represents the direction in which we
wish to steer the antenna and obtain maximum response) and M
uncorrelated, zero-mean, narrow-band interference sources m(t)

e
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Fig. 1. Simplified pictorial block diagram of an adaptive phased array
radar processor.

exp(jwt) at angles 8, .. ..,0y,. All angles are measured with respect
to boresight (the normal to the array). The objective of an APAR is
to point the antenna in the direction ; and to null the antenna
pattern in the directions 8, of the interference sources. With the
signal and interference sources in the far field of the antenna, the
radiation incident on the array can be described by the superposition
of plane waves from the directions of each source. Since the path
difference between two antenna elements is d sin 8 = (Ag sin6)/ 2, the
signal received at the n-th antenna element is

M
,(t) = s(()ej(wx+1rnsin0°) + z rm(t)ej(«ut+1rnsin8m) S

m=I

Each of these N antenna outputs, 2(t) = {z,(t)}, is multiplied by a
complex weight w = {w_}, and the output from the receiver is the
coherent summation of the products of the weights and the received
signals:

(N—-D
Your(t) = Z wazn(t) = !{T_l_(t) . 2)
n=0

In Eq. (2) and in our future descriptions, we employ vector and matrix
notation to describe the various signal components of the system.
Lower (upper) case letters with an underbar denote vectors (matrices).

The antenna pattern that is obtained from such a receiver is
described by an angular response E(8) which is the inverse Fourier
transform of the weighting pattern {w,}. The attractive feature of a
phased array radar is the ease with which one can steer the antenna. To
direct the antenna to 8 = §,, we simply weight the antenna outputs by
the conjugate phase pattern w, = exp(—jmnsinf,). When uncorre-
lated noise is present, due to uniform background radiation or thermal
noise in the antenna itself, this weighting maximizes the signal-to-noise
power ratio (SNR) at the antenna’s output.? However, * +.2n direc-
tional interference is present, this simple weighting is not optimal, and
the weights must be computed adaptively as a function of the changes
in the rf noise environment. This is the APAR signal processing
problem with which we are concerned. In Ref. 9. we show that the
vector w which minimizes the mean square error between the signal
and array output satisfies the matrix-vector equation

Mﬂ = Po_é. 1) (3)
where M = z#(t)27 (1) the covariance matrix of the received signal

plus interference: P, = s*(t) s(t) the signal power; s = exp(jrnsinfy) is
the steering vector. In Ref. 9, we also show that the solution w to Eq.

FIBER OPTICS

*
wly-Hxin]

Fig. 2. Schamatic diagram of the iterative optical matrix-vector
processor.”

(3) also maximizes the SNR at the output of the antenna. These results
are in agreement with the conclusions in Refs. 1. 2, and 4.

3. ITERATIVE OPTICAL PROCESSOR

From Sec. 2. we found that the solution of the optimal adaptive
weights w that will steer an antenna in a direction s* and nul)
directional interference noise described by the covariance matrix M
must satisfy the vector-matrix equation

Mw = s*. (4)

The constant multiplicative factor Py, in Eq. (3) does not affect the
computed solution w. In Refs. 7-10, we described an iterative optical
processor (IOP) that can solve matrix-vector equations or systems of
linear algebraic equations such as Eq. (4). An improved version of
this IOP is shown schematically in Fig. 2. The input at P| is a linear
array of LEDs or laser diodes (L.Ds). whose outputs at time j
describe a vector x(j). This vector output is imaged vertically and
expanded horizontally to uniformly illuminate row m of P, with the
input x . A 2-D mask whose transmittance is described by a matrix H
is placed at P,. The light distribution leaving each column of H is
collected on a separate photodetector at P;. The output from the linear
photodetector array at P, is thus the matrix-vector product Hx()).

With such a matrix-vector processor (as described in Refs. 11,12
and more recently in Ref. 13) as the basic element of our system, we
subtract an external vector y from H x(j). multiply the difference by a
constant acceleration parameter w, and add the result to the prior
x(j) input to obtain a new iterative input x(j+ 1) for time j+ 1. This
I0OP thus realizes the Richardson algorithm' in the form

xG+1) = 2() + o[ Hx() ~y] . ()
When x(j) = x(j+ 1) = x, Eq. (5) reduces to

Hx =y. (6)
and the system'’s output is

X = H_ly 7

or the solution of the matrix-vector equation in Eq. (6). Such a
system can be directly used for the APAR problem described in Sec.
2and summarized in Eq. (4). We simply use the covariance matrix M
as the matrix H, the steering vector s* as the exogenous vectory, and
the solution vector x is then the desired set of adaptive weights w to
be computed.

In Ref. 7, we detailed the fabrication and performance of the
laboratory 1OP system we assembled. As the inputs, we used ten
LEDs which were interconnected to the mask by a fiber optic system.
A film transparency is used as the mask in our present laboratory
system, although a real-time 2-D light modulator such as the CCD-
addressed liquid crystal light valve's can provide a real-time adaptive
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mask for this systein. Alternatively, a new optical systolic array
architecture'® using a 1-D acousto-optic cell at P, of Fig. 2 with
feedback of the photodetector outputs to the acousto-optic cell’s
inputs!’ can also be used to provide a fully real-time iterative optical
matrix-vector processor. For now, we consider only the system of
Fig. 2. The height of the matrix mask used at P, is 4 mm, and it was
chosen to match the height of the detector elements in our linear
photodetector array at P;. We also chose the horizontal spacings
between detector element: and thus, in our present system, we
simply place the output photodetector array in direct contact with
the mask at P,.

Since the outputs from the LEDs and the transmittances of the
mask elements are real and positive, this system can multiply and
add only positive numbers. In the APAR problem. the elements of
the matrices and vectors are complex valued. Thus, to provide the
complex-valued matrix-vector product in Eq. (4), we employ spatial
and temporal multiplexing. We realize a bipolar matrix-vector prod-
uct y = Hx by scaling, biasing. and partitioning H such thatitis a
unipolar matrix. We then operate the IOP twice. On the first cycle,
the positive values x| of x are the inputs, and on the second cycle the
negative values X, of x are the LED inputs. In the postprocessor, we
form the difference Hx, — Hx, of the two successive matrix-vector
outputs and scale and bias the result to provide the new inputs for the
next iterative cycle. This procedure is detailed in Ref. 7. where we
discuss how this procedure reduces the required space bandwidth
product of the mask and enables all fixed pattern detector noise to be
canceled. To enable the system to perform complex-valued matrix-
ector multiplications. we partition the matrix and the vectors in the
s/stem as

e Mre —M.im Wee 1
y= . H= - X = . 8

§.im Mim Mre Wim
where the subscripts re and im denote the bipolar real and imaginary
parts of the indicated vectors and matrices. To accommodate com-
plex-valued matrix-vector operations on the system, we bias M,
form a unipolar matrix as before, partition it as indicated in Eq. (8).
format the vectors x and y as in Eq. (8), and operate the system for
two cycles with the positive- and negative-valued vector elements as
the inputs. We detail this complex-valued algorithm and demon-
strate its use for a specific example in Sec. 6. In Sec. 4, we describe an
alternate complex-valued algorithm and demonstrate its use on the
1OP system of Fig. 2.

A new feature included in the system of Fig. 2 is the presence of the
acceleration parameter . (We retain the standard notaticn w for the
acceleration factor. This will cause no confusion with the radian
frequency w in practice.) Proper selection of w ensures convergence
of the iterative algorithm and speeds the convergence. as we now
discuss. Since M is a positive definite Hermetian matrix, its N
eigenvalues A, are positive, and thus to ensure convergence of Eq.
(5). we require w to satisfy’

1= whyl < 1. 9

This is ensured by the choice’

-1 2

w = |[H|]7' = (22 B ‘ (10)
mn

where the Euclidean norm of H (the square root of the sum of the
squares of the elements h, of H) is represented by the symbol
shown. When the spatial multiplexing in Eq. (8) is used, [[H[| =
VZ|IM|| is used in Eq. (10).

The accuracy and performance obtainable for any analog or
optical processor is an issue of primary concern. In the error source
model we have developed for the IOP, we separate the errors of the
systemn into spatially-fixed and temporal errors. In terms of these
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errors, we describe the observed output 2 = Hx obtained from the
matrix-vector multiplier as the exact result z,,,., plus two terms:
Z =

1tz

Zspatial tz

Zexac Ziemporal- an

The spatially fixed errors in the 1OP are due to nonuniformity and
nonlinearity in the LED and detector responses, spatial variations in
the transmittances of the fiber optic interconnections, and errors in
the transmittances of the elements of the mask. We can correct for
the source and detector errors by multiplying the inputs to the LEDs
by a fixed correction vector stored in read-only memory. The resid-
ual spatial nonuniformities that remain can all be transferred to the
mask plane. This is quite attractive since we can then correct for all
residual spatial errors by properly modifying the matrix data as they
are recorded on the mask. For our laboratory system, the measured
residual spatial error without a correction mask was 10.8%.7 This
represents z o....1 in Eq. (11) under uniform LED illumination.
Since it is adequate for our applications, as we will see, no further
corrections for it were included in our present system. The temporal
time-varying component of the system noise 2. ;n6ra1 i0 Eq. (1) is
due to the detector. It was measured to be 0.4 for our system. As
before, this is sufficiently small that cooled detectors and other
measures to decrease this noise component were not used. This latter
error source represents the fundamental limit and performance of
the IOP. In Sec. 6. we use our error source model in Eq. (11) and
present an initial analysis (with experimental confirmation) of the
performance of the IOP for a multidimensional adaptive antenna.

4. ANGLE ADAPTIVITY USING THE 10P

As an initial example of the use of the [OP for APAR processing. we
consider interference sources distributed only in angle as described
in Sec. 2. We also use this initial example to detail an alternate
method to process complex-valued data on the IOP. We consider a
two-clement array with one interference source at an angle 6, with
noise power P, (per received channel) and with additive receiver
noise of N, watts per channel. We ignore the signal strength in this
present treatment. The received signals at the two array elements are

7, = x; ty
7, = Xty ., (12)

where x, and y, are the interference voltage and noise voltage in
channel n. The voltage x, will lag x; by a phase angle ¥ = wsin§,
(where d = Agi2 is assumed), and the noise voltages y, will be
independent of each other and of the x,, signals. For this case, the
covariance matrix is

P, + N, P, exp(—jvy)
M= . (13)
Piexp(+iy) P, + N,

In thisinitial experiment.f we set w =1 in Eq.(5).and to avoid the
need to add the original input to the difference between the matrix-
vector product and the exogenous vector, we place{ I — M] on the
mask, where | is the identity matrix. The iterative algorithm of Eq.
(5) now becomes

x(+ D =30) (1 -M]+y.

For the specific case chosen, we used Py = 0.1 watts and N, = 0.5
watts (these N, and P, values ensure convergence, and thus the
acceleration factor can be unity) and chose 8, such that A =4, 3.
The required matrix mask is thus

04 0.1 exp(—jdm:3)

(I1-M]= . (14)
0.1exp(j4nm/3) 04
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To realize the complex mask transmuttance in Ey. (14), we introduce
an alternate technique'® in which a complex-valued number m’ (one
component of the mask) is represented by three real and positive
components (mg, m,, and my) which are the projections of the mask
elements along axes at angles 0°, [120°, and 240° in complex space, i.e..

m’ = mgexp(J0) + myexp(j2r 3) + myexp(ydm 3) . (15)
For the specific matrix in Eq. (14), the phase angles of its four

components are 0°, 120°, and 240°. and thus we can represent Eq.
(14) by the three matrices

04 0 (0 0.1]
1-M) = 1My =
0 04 [0 0 |
¢ 0'}
[1-M) = (16)
[0.1 0]

We note that each of these matrices and all of their elements are
positive. As the mask used at P, of Fig. 2, we thus spatially multiplexed
these three matrices. and as the formatted matrix mask we used

r— N
040 {0 0 |0 01
l !

0 041010 |0 O
] - - -
0 011040 [0 O

|

[1-M] = | (7

0 0 |0 04[010

,‘__}_-,__}A.v_ﬂ

0 0 |0 01040
| |

010 |0 0 |0 04

For the case of two adaptive antenna elements, there will be two
complex-valued weights. We repre :nt these by w, and wy,. Each of
these weights will have three pos....c-valued elements with a decom-
position similar to that used in Eq. (15): i.e., for w,, its three positive
projections are w,o. w1, and w.,, witha similar notation for wy, The
input vector w to the first six LEDs is formatted in terms of the six
positive numbers corresponding to the three projections of each of
the two adaptive weights as

- 9T
W = [Wag. Wi Wap, Wiy Wao, Wiol' (18)

The mask was arranged as described by Eq. (17), the input vector
was formatted as described by Eq. (18). and the steerir ; vector was
chosen to be

s* = [0.3,03)7 (19

for our experiments. The coefficients in the steering vector in Eq.
(19) were chosen to simplify the solution. This steering vector corre-
sponds to the boresight direction. Solving Eq. (4) for th:s case, we find

w = (03035 [0.6 —0.1exp(—jn/3).
0.6 — 0.1exp(+jm 3)]' (20)

In Fig. 3. we show the outputs from the six relevant photodetector
elements of concern in the output of Fig. 2 at iterations ) =0, 1, and
S. In Fig. 3, the six photodetector outputs shown correspond right-
to-left to the siy w componentsin Eq. (18). The six measured output
voltages after the sixth iteration were found to be

1

N

re—<

j,

JQ <
L 3 -«

zN‘»K,l N'-1l,n z!."-l,.\l—l

Fig. 3. Pictorial description of the antenna receiver for an array antenns
with space and time adaptivity.

[0.5118,0.5118,0.0834, 0. 0. 0.0834) . (20

These compare very well to the exact results in Eq. (20) after an
infinite number of iterations. In the order and format in Eq. (18).
these exact results are

[0.5142.0.5142. 0.0857. 0. 0. 0.0857) . (22)

Comparing (21) and (22). we find that the IOP’s experimentally
calculated weights are within about 167 of the exact vaites. Thus. the
performance of this optical processor appears to be excellent for this
simple initial example.

5. MULTIDIMENSIONAL ADAPTIVITY

We now consider extending our adaptive antenna theory of Sec. 2to
include adaptivity in velocity or time (further extensions such as
polarization and multipath compensation are possible using the
techniques to follow, but the details of such formulations are bevond
the present scope cf this paper). The adaptive weights w = {w}
described in Sec. 2 only affect the spatial frequency response of the
antenna and hence the angular position of nulls in the antenna
pattern. To control the temporal frequency response of the array. we
require taps on the time-history outputs from each antenna element.
In Fig. 3. we show a 2-D space-time antenna array. There are N
antenna elements and N spatial weights as before. These provide
adaptivity in space or in angle. To pruvide temporal frequency
control, we include N’ taps on each antenna element with time delays
7 between each. We choose 7 tosatisfy 7= A /dvy,,, where vy, is
the blind speed of the radar (i.c., thc maximum uniquely resolvable
velocity of an object moving relative to the antenna). These provide
adaptivity in time or target frequency or velocity. The processor for
such an adaptive antenna thus r-quires the caiculation and applica-
tion of N XN’ weights w;, - at the z, . tap points shown in Fig 3.
We first formulate the required proc. .sing as a 2-D extension of the
theory of Sec. 2. We then proyide an experimental demonstration of
the 10P in the solution of such a problem and an analysis of the
accuracy of the results obtaincd (Sec. 6).

We describe this multidur - .1sional adaptive antenna »roblem by
extending our model and analysis of Sec. 2 to includc a target or
signal at §; with a velocity vy and M interfe.ence sources at angles 6,
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with M velocities v . vy, The output at the (n. n’) element of the
antenna in our 2-> model of Fig. 1 is thus

o) = \.“bc)[wwnnsmﬂ‘,w‘rr(dr ARIn'Ng)
n.n :

M .
PR rm“)ej[wl"" mhsingm t m(dr Ag)n'vg] 23)

d—
m=1

where —m 2<8<ym 2and —(4r A)<v<(4r A). The output from
the receiver is now more complex than in Eq. (2) and is a 2-D
summation given by

(N-1) (N 1)
Vou(t) = .‘_ E Zn (W o (24
a=0 n'=0
The weights are now a 2-D function w .. They satisfy the more
complex system of linear algebraic equations

(N—D) AN =)
*hk T Y E my k.n.n%n.n - (25)
n=0 n'=0

where my - - in_Eq. (25) describes the elements of the new
covariance matrix M for the signals in Eq. (23) and where the
steering vector 15 now

Sy = e—Jrr[kSin00+(4r Ar)K'vol . (26)

Equation(25) isin the general form of a matrix-matrix equation.
Since the 10P (Sec. 3) can perform only matrix-vector multipli-
cations. we must convert Eq. (25) into the form of a matrix-vector
equation. We achieve this by performing a lexicographic mapping of
the 2-D antenna outputs in Eq. (23) onto a vector Z(1) = {z,(1)}. Fora
two-element antenna (N = 2) with two taps (N’ = 2} per clement, we
can relate 7 to the elements z, . of 7 by

7p() = 299(1)

(1) = 190(1)

1

7o) = 73(0)

7_1(‘) = 1||(t) . (27)

We describe a new covariance matrix M in terms of Z and a new
steering vector S that is ordered similar to Z. The resultant weights to
be computed are similarly ordered and denoted by &. With this new
notation, we solve the new matrix-vector equation

s§* =

1
1€

(28)

where § and w are lexicographically ordered and where E is the
covariance matrix of the similarly lexicographically ordered received
signals 7 in Eq. (27). The solution of Eq. (28) on the IOP of Fig. 2
now follows directly. The space bandwidth product required for the
input LEDs, the mask, and the output detector are increased by the
lexicographic ordering used. If this becomes prohibitive, one can
operate the system successively with one column vector for one of
the 2-D functions being the input at successive cycles. This alternate
technique for performing matrix-matrix multiplication on a matrix-
vector processor was detailed earlier in Ref. 19.

6. MULTIDIMENSIONAL ADAPTIVITY USING
THE IOP
In this section, we provide an experimental demonstration of the use

of the 1OP for multidimensional antenna processing as formulated
in Sec. 5. We also emphasize the accuracy of the resultant system
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with attention to the error source model formulated for the IOP in
Sec. 3. We use two performance measures to describe the perfor-
mance obtained from our adaptive radar processor. Qur first per-
formance measure used is the SNR of th.. resultant antenna pattern.
For the spatiaily-adaptive antenna. the SNR of the output is

P,IE(B,.))°
M M
S PolE@,. )

m=I

(29)

SNR(j) =

where Py is the strength of the signal located at 6. and P, is the
strength of the interference source at 8,,,. For the spatially adaptive
antenna (Sec. 2), the output antenna pattern E is a function of angle
and the iteration number j. The numerator in Eq. {29) describes the
total power in the antenna pattern at the location 6 of the source. and
the denominator is the sum of the total power in the antenna pattern at
the location of the M noise sources after application of the adaptive
weights. For the multidimensional antenna with adaptivity in space 8
and time (or velocity v). the output SNR is a function of the iteration
number j as well as angle 8 and velocity v. It is described by

Po|E(90~ Vo »j)'z

SNR(j) = —, (30

Pl E(By . v i)
1

TMX

m

As our second performance measure. we use the processing gain
(PG) defined as

PG(j) = SNR() SNR() . 31

The denominator in Eq. (31) describes the initial output SNR with
no adaptive weighting (i.e., after iteration j = 0). The numerator
denotes the SNR that results after j iterations. This PG parameter is
thus a measure of the output SNR improvement obtained after j
iterations. We expect it to increase with j. It is thus most useful in
providing a measure of how various choices of the signal and noise
scenario and the acceleration parameter w affect the speed with
which our iterative algorithm achieves convergence or a given per-
formance (i.e., a prespecified antenna pattern SNR). To graphically
present our results, we will plot the output antenna pattern obtained
for the adaptive weights calculated from the IOP. We also compute
the output SNR and PG defined above for each of the resultant
antenna patterns as a function of the iteration index j and other
system and scenario parameters of concern.

We first consider the effect of the acceleration parameter on the
number of iterations required for the algorithm to converge to its
steady-state value and on the performance obtained after a given
number of iterations ). As our perforrance measure, we use PG(j) in
Eq. (31). where this PG represents the amount by which the various
interference sources are nulled by our adaptive algorithm. We found
this to be a function of the strength P, of the interference sources
(for a fixed antenna or receiver noise N and signal strength Py). To
determine the importance of using Eq. (10) for the acceleration
parameter rather than w = | as we used in Eq. (14), we considered
various signal powers Py, interference .ource powers P, (we con-
sider only one noise source of power P,). and antenna or receiver
noise powers N In Fig. 4, we highlight our results by plotting PG
versus the iteration index j for the two different acceleration parame-
ter measures w = | and w =|| H|] 7!, In Fig. 4(a), we consider the
case when P, >> P, =N, and in Fig. 4(b), we consider the case when
P, = P, = N,. These data (and much additional testing not included
in these drawings) show that SNR increases as in the interference
power P| is increased with a null depth of 40 dB obtained for a noise
source of strength P, = 0.1 [Fig. 4(a)] and a much poorer 9 dB null
depth obtained for a noise source of lower strength P, = 0.001 [Fig.
4(b)]. This is in agreement with the general performance of an
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Fig. 4. The processing gain PG(j) = SNR(j)/SNR(0) describing the out-
put SNR impr btained with different acceleration parameter
choices as a function of the number of iterations j: {a) interference power
Py = 0.1 watts; (b} interference power py = 0.001 watts.

adaptive antenna. which provides deeper antenna pattern nulls for
stronger interference sources than for weaker ones. From Fig. 4, we
also note that the use of our acceleration parameter choice in Eq.
(10) becomes increasingly important as the SNR at the input (Py/ P))
increases and as P,/ N increases. This is in agreement with standard
adaptive array antenna theory.! =% From Fig. 4(b), we notice that our
adaptive algorithm converges to the final value in about ten itera-
tions when the acceleration parameter is chosen according to Eq.
(10), whereas over 100 times more iterations are needed if no acceler-
ation parameter (w = 1) is used. Thus, to accommodate all possible
ratios of signal, interference, and receiver noise, the use of Eq. (10)
for the acceleration parameter is warranted.

In other tests, we studied how the processing gain varied with the
angular separation between the signal and the interference source.
We verified that ou: system could achieve super-resolution beyond
the classical resolution limit as described further in Ref. 20. When
the number of interference sources M is larger than the number of
adaptive elements, we found that choosing the locations of the
adaptive elements to be randomly distributed on the N XN’ grid in
Fig. 3 improves performance very well.

One of our most important theoretical analysis and simulation
results concerns the effect of the system’s spatial Ab and temporal At
errors on SM. of the output. We considered an N = § element
antenna with receiver noise N. = 0.1 and one interference source at
6, =45° with P, = 1.0. In Fig. 5, we show SNR(j) as a function of the
iteration index j for different Ab and At percent errors and noise.
With no errors, a steady-state SNR of 44 dB was achieved after
about 100 iterations. With a 2.5% spatial error and an 0.5% temporal
error (Ab = 10.025, At = 10.005), we find less SNR than the ideal
system can provide, but the SNR is still a very respectable 38 dB
value after only (00 iterations. For increased spatial and temporal
errors, the system’s SNR performance is degraded even worse. The
error values included in Fig. 5 are comparable to what the present
laboratory IOP system can achieve, and, as seen, its performance is
quite acceptable. To obtain the data in Fig. 5. we cmployed a
random number generator with a uniform density function to pro-

Fig. 5. Output antenna pattern SNR (j) as a function of the number of
iterations j for no IOP system errors (Ab = At = 0) and for typical experi-
mental IOP errors {Ab = 0.025, At = 0.006).

duce mask errors and detector noise with the three-sigma variance
value shown. Different sample realizations of each of these errors
were added on each iteration of the IOP. The data in Fig. S are the
average of five Monte Carlo runs.

We conclude this section with a detailed description of a typical
multidimensional adaptive antenna processing experiment per-
formed on the laboratory IOP. For this case, we consideran N =2
element array with N’ =2 time taps. The signal source was of power
Py = 0.1 and located at §, = 45° and vy = 0.5v ;.. We used one
interference source at 6, = 0° and v; = 0 with power 1.0. The
NXN’=4 array elements each with receiver noise power N, = 1.0
were lexicographically ordered as described in Eq. (27). The covar-
iance matrix computed from the received signals for this scenario was

11 2 ' (32)

1124

The Euclidean norm of H calculated from Eq. (32) is 7.48. We used
its reciprocal as our acceleration parameter w = 0.13 as described in
Eq. (10). The complex-valued format in Eq. (8) was then used for M.

For this case, M is real and thus it is arranged as the 8 X8 matrix

M, 0
(33)

=
I

0 Mg

where M. is described by Eq. (32). To obtain the optical mask used
in the actual system, we divided each element of M by (hpmax — Bmin)
= 2 and biased the entire matrix by hp,;. /(hpax = Bmin) = 0. The
resultant optical mask actually placed at P, of Fig. 2 was thus

He 0
H= ) (34)
0 Hpe

Where H,, is the same M, in Eq. (32) with each ¢lement divided by
two. The complex-valued steering vector corresponding to the signal
direction 6, = 45° and v; =0.5 has element values given by Eq.(26).
When arranged in the lexicographic format of Eq. (27), it becomes
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082 — o.en]
097 — 0.27j
3= . (35)
0.6 — 0.82j
0.27 + 0.97j

We easily decompose Eq. (35) into its real and imaginary parts and
obtain the eight element exogenous vector

' = [—0.82,0.97,0.61,0.27, —0.61 ,

.Y. = [él't—-lm

~0.27, —0.82,0.97)" . (36)

The two cycle complex algorithm described in Sec. 3 was
employed with the positive elements of y used on odd iterations and
the negative elements on even iterations. The x outputs were com-
puted by the laboratory 10P for the first fifty iterations. The micro-
processor support system and the dedicated high speed memory in
the IOP were used to combine the positive and negative outputs
from successive iterations and to store the resultant bipolar numbers
w(j) computed at cach iteration j. The eight relevant photodetector
outputs corresponding to the eight elements of the bipolar and com-
plex-valued output vector x = [x' x* ] corresponding to the com-
plex-valued weights w are ‘shown'in f-m 6 after the first, fifth, and
fiftieth iterations. We denote these outputs by x(1), x(5). and x(50),
respectively, in the Fig. 6 caption. The complex-valued weights

W= Wee + jWim = [Wog. Wig. Wor. Wy 1T (37
were directly obtained from the eight x outputs(x,...., xg)accord-
ing to
Woo = X + jxg
Wi = X3 + %
Wo = X3 +jxy
W = x4+ jxg (38)
After the fiftieth iteration, we obtained
B ]
—09 — 045j
0.75 ~ 0.25j 39)
w(50) = .
04 ~08)
02 + 1.1
L |

To determine the accuracy of these results, we first calculated the
rms errors between the exact weights and those computed after 50
iterations. This error was found to be 2.3% (it did not decrease
appreciably when further iterations were performed). The true mea-
sure of the performance accuracy of the weights computed from the
laboratory 1OP lies in the SNR obtained in the output pattern that
results when the weights in Eq. (39) are applied with the interference
sources and receiver noise indicated. The resultant antenna pattern
was obtained. Its SNR was 14.7 dB. This is nearly exactly equal to
the SNR obtained (14.96 dB) if the exact weights were applied. We
thus find the laboratory IOP system to be extremely accurate with
less than 0.26 d B difference in the SNR of the output antenna for the
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Fig. 6. Experimental outputs from the rel oight p detectors of
the IOP of Fig. 2 i in tho computation of the complex-valued weights for a
multidi i with sp and time adaptivity.

cases of the optically computed weights and the exact weights. Initial
simulations were performed to verify that these results were typical
of those to be expected. The above results were found to be typical
for the ten different cases we cansidered. We also produced initial
theoretical expressions?! from which upper bounds on the perfor-
mance of the IOP can be predicted as a function of spatial and
temporal system errors. In all cases, the results obtained in our
experiments were well below the weak bounds we derived. Because
of this, no derivation of these bounds is included at present.

7. CONCLUSION

We have reviewed the basic signal processing requirements for adap-
tive antennas and have provided a summary description of an itera-
tive optical matrix-vector processor that appears most attractive for
such advanced signal processing applications. Modifications to our
initial IOP were described to allow incorporation of an acceleration
parameter, and two techniques were described to allow the system to
operate on complex-valued data (as required for the APAR applica-
tion). Theoretical and experimental data and simulations showed
that use of an acceleration parameter equal to the reciprocal of the
Euclidean norm of the covariance matrix greatly reduced the number
of iterations needed (by a factor of 100 or more), especially as the
interference power approaches the signal power and the receiver
noise. We descrihed and experimentally demonstrated two different
techniques by which the system can operate on complex-valued
data. The technique (Sec. 4) in which each complex number is
represented by its three positive projections on three axes in the
complex plane requires more space bandwidth product with fewer
iterations. The bipolar technique (Secs. 3 and 6) in which the posi-
tive- and negative-valued input data are used on successive iterations
requires twice the number of iterations but less space bandwidth
product than the technique used in Sec. 4. The choice between these
two methods of handling complex-valued data depends upon the
number of adaptive weights, the speed required. the space band-
width product available on the IOP used, and the importance of
canceling fixed-pattern detector noise.

We have also extended the use of the system to include multi-
dimensional adaptivity and have experimentally demonstrated
angular adaptivity and multidimensional space and time adaptivity
on our laboratory IOP. The experimental performance obtained
was quite excellent. Theoretical and simulation studies have shown
that the performance of the present [OP with its 0.8% spatial errors
and 0.4% temporal errors is quite adequate for APAR applications.
Our experiments showed an rms error of only 2.3% in the computed
weights, and, more important, that this resulted in less than an 0.26
dB difference in the SNR of the output antenna pattern. This novel
and most general purpose optical processing architecture merits
more research and analysis for the indicated APAR problem and for
many other diverse applications that can be reduced t» matrix-
vector equations and matrix-inversion problems.
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Eigenvector determination by iterative optical methods

Three power methods to compute the eigenvalues and eigenvectors of a matrix on an iterative optical proces-
sor (IOP) are analyzed. Each is appropriate for a different eigenvalue and eigenvector application. When
implementation on an IOP and the processing speed are considered, the second method is found to be prefer-

able to others recently described.

. Introduction

A noncoherent optical vector-matrix processor! and
an iterative optical processor (IOP)2 version of this
system have recently been described. The IOP system
enables one to solve sets of simultaneous linear equa-
tions at very high computations/second rates. This also
represents a general purpose optical processor, since
many problems can and are easily formulated as vec-
tor-matrix equations. In this paper we describe an-
other operation, computation of the eigenvalues and
eigenvectors of a symmetric matrix, that the IOP can
realize easily.

In Sec. II we briefly review the basic IOP system and
describe our initial® use of it to compute the dominant
eigenvalue and eigenvector of a matrix that we need to
determine the acceleration parameter used in our iter-
ative algorithm. A recent publication? has detailed a
similar power-law algorithm® and has discussed its use
on an [OP to compute all the eigenvectors and eigen-
values of a matrix. Our concern in this paper is thus
with implementational problems associated with the
power-law algorithm® and the use of the IOP in three
different eigenvalue and eigenvector computational
problems. These applications are: calculation of the
largest eigenvalue (Sec. II); calculation of the eigen-

The authors are with Carnegie-Mellon University, Department of

- Electrical Engineering, Pittshurgh, Pennsylvania 15213.
L Received 20 June 1981.
0003-6935/81/213707-04300.50/0.
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vectors in order of decreasingly dominant eigenvalues
(Sec. IIT); and computation of the eigenvector whose
eigenvalue is closest to a given value (Sec. IV). Inall
three problem different modifications of the basic power
method are preferable from implementation consider-
ations. Our summary and concluding remarks follow
in Sec. V.

Methods to accommodate biopolar34€ and com-
plex-valued?38 vector and matrix elements in an IOP
have been previously described and thus are not dis-
cussed explicitly in this paper, as all the techniques are
equally appropriate for any of the algorithms to be de-
scribed.

Il. lterative Optical Processor and Power Method

A new schematic diagram of the IOP, including the
exact iterative algorithm we employ and the accelera-
tion parameter w, is shown in Fig. 1. The input vector
data are described by x(k). It is provided as the spa-
tially varying intensity output from a linear array of
LEDs or laser diodes (LLDs). The output from these
input data at P, is imaged vertically and expanded ho-
rizontally to illuminate uniformly a matrix mask H at
P,. In the present IOP system this is achieved by fiber
optics. The transmittance of each element at P, is
proportional to each element h;; of H. In the final
version of the IOP a CCD-addressed spatial light
modulator (SLLM) will be used at P, (see Ref. 7). The
light leaving each column of P, is integrated vertically
and imaged horizontally onto a linear photodetector
array at P3 with parallel readout. The mask at P, is
presently a fixed photographic film, and the required
imaging from P, to P is achieved by placing the de-
tector array in direct contact with the /’, mask. The

A
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Fig. 1. Schematic diagram of the IOP.

Fig. 2. Schematic diagram of an eigenvector and eigenvalue computational system using the IOP.

height of each detector is chosen to equal the height of
the P, mask (3 mm) to achieve this.

We can thus describe the output from Pj at iteration
k as Hx(k), i.e., by the vector-matrix product of the P,
and P> data. We subtract this output from an external
vector y and multiply the difference by an acceleration
factor w. The result is then added to the prior x(k)
input at iteration % to produce a new x(k + 1) input
vector for iteration k + 1. The resultant system thus
realizes the iterative algorithm

x(k + 1) = x(k) — w[Hx(k) - y]. (1)
When x(k + 1) = x(k), Eq. (1) reduces to
Hx = y. (2)

The IOP system of Fig. 1 thus solves Eq. (2) for the
unknown vector x given H and y. It thus effectively
computes

x = H-ly. (3

To optimize convergence of the algorithm in Eq. (1),
we select w to be Apay (the maximum eigenvalue of H).3
We have used two technigques to compute Ayax. The
first is to determine rapidly an upper bound for Ap ..

from the norm (square root of the sum of the squares of
the elements of H),3

Amas <A/ Zh}. (4)
t

We have also used the power method® to compute A pay.
To describe this method refer to Fig. 2. If the switch
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is in position 1 (initialize), the original P, input vector
x(k) at the first k = O iteration v{(0) [v,(0) for n = 1} is
loaded into the source array at P,. After initialization
the switch is placed in position 2. On the mask H at P,
we place M, the matrix whose A is desired. Then the
system’s output vy(k) at P, after k iterations is

M~V (0) = vi(k). (5)
If the original input v,(0) vector is described by
vi(0) = crer + coer + .. nen, (6)
after k iterations the P; output is
vi(k) = Mkv,(0)
=M*(c,e; + coea + ... cnen)
=c1(A) ke + ealA)kes + .. en(An)en
=~ cy(Ap)¥e. W)

In applying the IOP as described by Eq.(1) to the
computation of A,,,, we denote the N eigenvectors by
M by e, and their eigenvalues by A,. Thus the third
equation in Eq. (7) results. If the A, is ordered as | A,|
> |2l > ... > |An], after a sufficient number of k it-
erations the sum in line 3 of Eq. (7) is dominated by the
first term and the last expression in Eq. (7) results.
Thus with any arbitrary v,(0) input vector at Py, with
the condition that the c,'s are not zero (we have
achieved this condition by using a random number
generator to produce the initial set of ¢, values,* and
with y = 0, the P; output after a sufficiently large
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number (k) of iterations will yield ¢,(A\;)%e;. After one
more iteration we obtain ¢,(A;)#*'e,. The quotient of
these two outputs yields Ay. From our assumptions on
the ordering of the eigenvalues this is an approximation
to A} = Apax as shown in Eq. (7).

Caulfield et al.* have noted this use of the power
method on the IOP to compute A\ = Ay They also
extended this algorithm to allow computation of all N
eigenvectors and eigenvalues of M. The basic algo-
rithm suggested in Ref. 4 to achieve this is to form a new
matrix after each eigenvector and eigenvalue has been
computed. The general form used for the mask after
n — 1 eigenvectors and eigenvalues have been obtained
is

M,=M~-X\DM~ 2D ... (M= Aoil), (8)

wh. re 1 is the identity matrix. This new M,, matrix can
then be placed at P of Fig. 1, v1(0) can be placed at P;,
and after k iterations the output at P; provides the
largest eigenvalue and its eigenvector of M,, as before.
This occurs because the eigenvectors of M and M,, are
the same. For the mth eigenvector e,, we can show

Muen = (Am — A Am — A2) ... (A ~ An-1)em, 9)

which is equivalent to Eq. (21) in Ref. 4. Sincen — 1 of
the eigenvalues of the new M,, matrix is zero, the new
A, eigenvalue can be found from Eq. (9) by postpro-
cessing, given the prior A to A\,,—; eigenvalues obtained
from n — 1 prior operations of the system as described
in Ref. 4. In Secs. III and IV we describe preferable
eigenvalue and eigenvector computational algorithms
for realization on the IOP for selected applications that
are also preferable from implementation, speed of
computation, and accuracy considerations.

lil. Computation of Ordered Dominant Eigenvalues
and Eigenvectors

In many cases one desires only the first two or three
eigenvectors of M with the largest eigenvalues. This
need arises in Karhunen-Loeve analysis,® bandwidth
¢ »mpression,' pattern recognition,'! and other cases.
In these instances we would like to compute the eigen-
vectars e, of M orderd in terms of their largest eigen-
values (absolute values). The method? of Sec. Il does
not provide this ordered set of eigenvectors. Rather,
it provides the eigenvector with the largest eigenvalue
of the modified matrix M,,. This is not necessarily the
eigenvector of M with the next largest eigenvalue.
Thus, to avoid computing all N eigenvalues and eigen-
vectors and then ordering them to determine the two
or three most dominant ones, we suggest a modified
algorithm.

A second reason for considering an alternate algo-
rithm is that solving the nth-order polynomial equa-
tions of the form in Eq. (9) (as is required for each ei-
genvector) can become as computationally difficult as
computing the eigenvectors of M Yy conventional
methods. As a third motivational reason to consider
an alternate eigenvector computational algorithm, we
note that the prior power method (Sec. II) requires a
new matrix mask, as described by Eq. (8), to be com-

puted and generated for each new eigenvector e,. This
computation requires n matrix-matrix multiplications
and is thus prone to computational errors. Also, it re-
quires a new P> mask M,, to be generated and hence a
real-time electronically addressed light modulator at
P;. The most advanced device of this type is a CCD-
addressed liquid crystal light valve.” This device and
other 2-D light modulators can presently be cycled only
once every 30 msec. This can represent a considerable
decrease in the overall computational speed of the IOP
for eigenvector calculations.

For these reasons an algorithm permitting the use of
a fixed mask and requiring less complex postprocessing
is preferable for many applications. The modified al-
gorithm uses the original IOP concept that it is far easier
to alter the photodetector’s output than the matrix
mask. We thus enter v;(0) and M at P, and Ps and
estimate A; ard e; as before withy = 0in Fig. 1. The
P; output (after k iterations) is c;{A\;)*e,. We deter-
mine A; from the ratio of the outputs at the k and k +
1 iterations as noted in Sec. II. We then compute the
elements of e, by dividing each measured photodetector
output value by the square root of the sum of the
squares of the photodiode outputs. This yields the el-
ements of e and simultaneously normalizes ¢;. Then
we can compute ¢, (again in dedicated output logic)
by

¢y = [v1(0) - &q], (10)

where - in Eq. (10) denotes the vector inner product
operation.

With A, and e, determined by Eq. (7), we then sub-
tract cye; from the original v,(0) input vector for iter-
ation k = 0 for the first or n = 1 eigenvector. This
yields a new initial (iteration k& = 0) starting vector for
computation of the n = second eigenvector, given by

Vz(o) = V](O) —Ciey. (11)
Substituting Eq. (6) into Eq. (11) we find ¢hat

vo(0) = coes + czez + ... + cnen. (12)

After k iterative cycles with the same M at P5, and with
the P; input described by Eq. (12), the P3 output is

MkV2(0) = vylk) ~ (‘2()\2)"92. a3
As before, we compute Ay, €3, and then ¢y from
¢z = {va(0) - eg]. (14)

At the next set of & iterations we compute c3 and ey
using the input vector

va(0) = vy(0) — coes. (15)

Inspection of Egs. (11), (12), and (15) shows that the
required postprocessing to obtain the initial starting
vector v,,+1(0) for computation of the (n + 1)st eigen-
value and eigenvector simply requires subtraction of
cne, from the previous initial vector v,,(0). This is
easily achieved as shown by switch position 3 in Fig. 2.
We denote the iteration number by the index k and the
eigenvector being computed by the subscript n. The
three steps in this algorithm can be realized by a
three-position switch as shown in Fig. 2. The opera-
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tions performed by the system with the switch in each
of the three positions can be summarized as below:
(1) Initialize. In this case v,(0) = v(0).
(2) Iterate. After k iterative cycles, the P; output
(forn=1)is

M*v,(0) = vi(k) >~ c1(A)*ey, (16)

from which ¢, and e, can be found by direct postpro-
cessing.

(3) Reinitialize. The starting vector v,(0) for
computing the nth eigenvector is determined from the
initial input v,,_,(0) used in computing A\,_, and e,
and the ¢,— e, product by

va(0) = v,-1(0) — cp-r1€n-1. an
The system’s output in mode 3 after k iterations is
M*v,(0) = vu(k) =~ ca(An)¥e,. (18)

Equations (16)-(18) thus describe the general reini-
tialization and iterative algorithms for the use of the
IOP in computing the ordered eigenvectors of a matrix
M. As seen, the required postprocessing in Egs. (10)
and (11) is trivial compared with that in Eq. (9). In
addition, the matrix mask at P; need not be changed as
was required in Eq. (8). Furthermore, this new algo-
rithm provides the eigenvectors of M ordered in terms
of their decreasing eigenvalues (absolute values),
whereas the prior power method does not. It is thus
superior for the application indicated in terms of com-
plexity of the postprocessing required, its speed (no P;
mask changes are needed), and accuracy (n — 1 matrix
multiplications are not needed to produce the new M,,
mask}.

IV. Determining an Arbitrary Eigenvector

The power method in Sec. 11 produces all eigenvectors
of a matrix M, whereas the method in Sec. III produces
the eigenvectors ordered in terms of their eigenvalues.
However, it is often desired to determine the eigenvalue
closest to a given value. This problem arises in phys-
ics!2 and in control applications. The former case is
discussed by Gamba.!2 The latter case arises when a
given RC time constant response is desired from a sys-
tem. We can also use the IOP for this application by
modifying the algorithm in Sec. III as described in Ref.
12. This is preferable to use of the technique in Sec. 111
since its cumulative errors can become excessive.

The algorithm we use is quite simple. We create a
new matrix M’ from M, where

M’ = (M- A2 - (|]A] + K)I. (19)

In Eq. (19), A is the eigenvalue whose eigenvector we
desire, and K is a constant (that must be larger than the
largest eigenvalue A of M). We can use Eq. (4) or the
power method of Sec. II to sstimate K. It is easy to
show that M’ and M have the same eigenvectors. Their
eigenvalues differ, however. For the nth eigenvalue A,
and eigenvector e, we find that

Me, = (M - AD)%, — (|A]| + K)1e,
= [(An = A2 = (|A] + K)Zen. (20)

3710 APPLIED OPTICS / Vol. 20, No. 21 / 1 November 1981

Since K is larger than any |\, |, the term in brackets in
Eq. (20) has a negative maximum when A, ~ X. Thus,
since the power method yields the eigenvector with the
largest absolute eigenvalue, we can use the IOP with M’
at P; and the input initial vector in Eq. (6). The output
at P3 will then yield data for the eigenvector e with the
eigenvalue closest to A\. A simple numerical example
can be found in Ref. 12. We note in conclusion that
computing M’ in Eq. (19) from M requires only two
matrix multiplications.

V. Summary and Conclusions

In this brief paper we have discussed three power
algorithms by which the IOP can be used to compute the
eigenvalues and eigenvectors of a matrix. We found the
first method to be adequate for estimating the maxi-
mum eigenvalue. We suggested a new scheme (Sec. I1I)
for computing the dominant-ordered eigenvectors that
did not require altering the mask in the IOP. The
second method requires less electronic processing and
thus should be more accurate than the technique in Sec.
I1. However, the accuracy with which either technique
can identify a nondominant eigenvector may not be
adequate. We thus advanced a third power algorithm
(Sec. IV) that can compute the eigenvector whose ei-
genvalue is closest to a given value.

These applications of the IOP serve to show how
general purpose this IOP processing system architecture
is for a diverse selection of applications in different
disciplines.

We thank the Air Force Office of Scientific Research
(grant 79-0091) for support of such extended applica-
tions of the IOP. We also thank NASA Lewis (grant
NAG 3-5) for recent support of our continued I0OP
program.
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The present, the future, and the
potential of this discipline.

ULK acousto-optic and other optical processors

for spectrum analysis, correlation, ambiguity

function computation, and other signal proces-

sing functions are described. Basic architectures
and algonthms are reviewed and several case studies are
described. These include spread spectrum, wide-band signal
processors, radar ambiguity function processors, passive
ambiguity function computation, and adaptive phased array
radar processing.

Advanced radar, sonar, and communication systems
require increased processing capacity to keep abreast of the
computation load produced by the larger bandwidth and
longer time-bandwidth products of new sophisticated wave-
forms, as well as the denser target and signal environments to
be handled. This paper contains a review of recent advances
in optical signal processing for such applications. Major
attention is given to bulk acousto-optic (AQ) systems, since
they have recently [1], [2] emerged as a major component
with the necessary high bandwidth and large time -bandwidth
product for advanced signal [ >cessing needs. This has
occurred because of parallel advances in devices, algorithms,
and system architectures. The repertoire of basic AO
processor architectures and algorithms are briefly reviewed in
Section I. Wide-band optical signal processing systems and
techniques for folded-spectrum analysis are then described in
Section Il. Several spread spectrum OSP techniques for
synchronization and decoding are treated in Section III.
These involve new signal processors such as Spann
correlators and hybrid time and space integrating and space-
vanant AO systems. Simultaneous determination of the
range and Doppler of multiple targets represents one of the
most demanding radar processing functions. In Section IV,
two optical processors that compute the ambiguity function
are described, one for active radar applications and the
second for passive signal processing use. Adaptive phased
array radar signal processing applications are the subject of
Section V. Major attention is given to an iterative optical
vector-matrix processor that represents a new class of an
optical system of quite general use for any problem that can

_

be formulated as a vector-matrix equation or a set of
simultaneous linear equations. Concluding and summary
remarks are then advanced in Section VI. Throughout the
various sections, new architectures and signal processing
techniques as well as complete optical systems that have been
fabricated and delivered to several agencies are noted. This
combination of new research techniques and optical system
engineering has been selected to demonstrate the state of the
art of optical signal processing, future research directions for
this technology, and the quite major potential this discipline
has to offer.

BASIC TECHNIQUES

The basic operation of AO transducers [2] can be briefly
reviewed with attention to Fig. 1. An electrical signal of
amplitude A, and frequency w, is fed to the AO cell. We can
describe the output pattern from this transducer in three ways.
We first note that the angle 8, + 6 ;at which the diffracted light
leaves the cell is proportional to the frequency w) of the input
signal, and that the amplitude of the diffracted Light is
proportional to the amplitude A, of the input signal. Optical
systems are linear. Thus, if multiple input signals are present
at frequencies w. and with amplitudes A ,, multiple diffracted
plane waves leave the cell at angles proportional to w, and
with amplitudes proportional to A .. A lens placed behind the
cell focuses these plane waves to different spatial locations in

I“l,\

-

5
|

o Rt
A .

-

Fig. 1. Schematic diagram showing the operation of an
acousto-optic transducer.
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the back local plane of the lens, with the amplitude of each
component proportional to the amount of each frequency
present in the input data. Such a system is thus a spectrum
analyzer.

We next consider the output light distribution when the
input signal to the cell is a chirp or linear frequency modulated
waveform whose frequency increases linearly with time. In
this case, the angle of the deflected light distribution increases
linearly with time and a scanner results. Use of a
galvanometer or similar defiector on the second orthogonal
axis yields a two-dimensional (2-D) deflector. AO cells
operated in such a mode result in fast deflector systems for use
in recording input data at high rates. The third mode of
operation for AO cells, and the one most used in this paper,
can be seen by noting that the input signal g(t) to the cell
moves along the length of the cell at a velocity v, (the acoustic
velocity of propagation of the AO material used). We can
thus describe the transmittance 7 of the AO cell with such an
input signal for this mode of operation as a function of time (t)
and space (x) by

T(x,t) = g{t-x/v;) (la)

or
r(x,t) = g(x-vd). (1b)

In this summary presentation, we assume that the response of
the AO cell is linear, and we note that this can and is achieved
in practice by restricting the range of the input voltage.

Acousto-optic transducer technology has produced cells
with 1 GHz bandwidth (and 1 us aperture transit times),
100 MHz bandwidths (and 20 us aperture times). or similar
intermediate values with effective time-band- <51 product
values of 1 X 10°-2 X 10", These performanc  >ccifications
make the AO spectrum analyzer attractive for many
applications. Bragg receivers with 1 MHz frequency resolu-
tion over a 1 GHz bandwidth have been fabricated and used
in many diverse applications to determine the frequency
content of radar signals and other sources. Such information
is also of use in determining the frequency and pulse repetition
frequency of operation and the coding employed in a given
signal transmission. This information is of subsequent use for
jamming, countermeasures, and other techniques.

Another technique of immense use in discriminating the
multitude of signals entering an advanced receiver is to
determine the direction of arrival and frequency (f) of all input
signals and to display the full spectrum of wide-band signals in
a 2-D direction-of-armval versus f plot. A technique to achieve
such a display is shown {3]in Fig. 2. Such a systemhas been
fabricated by GTE Sylvania for the Naval Research
Laboratory. In this AO processor, the received signals from
different elements of a.phased array receiver are fed to a
multichannel AO processor, and the 2-D Fourier transform of
the input signal pattern is produced on a detector system. The
vertical Fourier transform provides frequency information on
the input data, and the horizontal Fourier transform produces
a deflected beam with deflection angles proportional to the
time delays between the signals in successive channels, and
hence proportional to the angle from which the input signal
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Fig. 2. Functional diagram of s multichannel acousto-optic
system to provide a 2-D direction of arrival versus frequency
output display of multiple input signal data {3].
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Fig. 3. Schematic diagram of a space integrating acousto-
optic correlator.

originated (i.e., the direction-of-arrival of the data). Several
such systems with diverse performance specifications have
been fabricated and used with quite good success.

The major concern of this review paper will be advanced
AQ processors, specifically, correlators for signal demodula-
tion and target range and Doppler determination rather than
for spectrum analysis and the various 2-D displays noted
above. The two fundamental AO correlator architectures use
space integration and time integration. The space integrating
system is shown [4] schematically in Fig. 3. In this system,
the transmittance of the AO cell at P, fed with a
signal g(1), is described as g(x-vst). This light distribution is
imaged onto plane P, (by lenses L, and L) where a fixed
mask with transmittane h(x) is placed. The light pattern
leaving P, is then the product h(x) g(x-v:t). Lens L ; forms
the Fourier transform of the this product of two signals. This
Fourier transform is evaluated by a single on-axis photo-
detector. The output plane pattern is then

R(t) = § h(x) g(x-vst)dx = h®g 2)

or the correlation of the input and reference signals g and h.
From (2), we note that the integration is performed over
space (x) and the correlation appears as a function of the time
output from the photodetector. Hence, this system is referred
to as a space integrating AQ correlator.

In practice, the input signal to the AQ cell and the reference
pattern h on the mask are carrier modulated and biased to
yield real and positive waveforms. The Fourier transform of
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the input data is formed at P, where the dc component (bias
level) and one sideband are removed by spatial filtering. This
single sideband (SSB) filtering in conjunction with quadrature
input modulation yields a complex wavefront incident on
plane P,. For simplicity, such issues together with other
detailed system aspects such as illumination of the AQ cells at
the Bragg angle will be suppressed in owr AO signal
processing system analysis. Instead we shall assume that
these techniques (or equivalent optical and electronic
heterodyne detection) are used to enable complex correla-
tions to be realized on such systems when necessary, even
though real and positive inputs are used.

The second general class of AO correlator 1s the time
integrating system [ 5] of Fig. 4. In this system, the signal g(t)
is used to modulate the output light from a light-emitting diode
(LED) or laser diode source in time proportional to the input
signal. This light distribution is collimated and used to
uniformly illuminate an AO cell at P, fed with the signal h(1).
In this system, we describe the light distribution incident on P,
by g(1) and the transmittance of the AO cell as h(t-x/v;).
Leaving P), we find the product g(t) h(t-x/v,). This pattem is
imaged onto a one-dimensional (1-D) output detector at P;
(with SSB modulation at P, as needed). The P; detector
provides time integration of the incident signal, yielding an
output pattern

R(x) = f g(t) h(t-xfv,)dt = g®h 3)

that is the correlation of the received and reference
signals g and h. In this system, the correlation is performed by
integration in time on the detector and the correlation is
displayed as a function of space. Thus, this system is referred
to as a time integrating correlator.

At this point, it is worthwhile to pause to reflect upon the
advantages and disadvantages of these two AO correlators.
The space integrating system of Fig. 3 can search a large
range delay or time delay in the amval of the input signal.
This is obvious since the photodetector has no out; 1t until the
received signal enters the AO cell. Conversely, in this system,
the signal must be in the AO cell for the correlation to occur.
Thus, this space integrating system can only handle signals
with a time -bandwidth product equal to that of the AO cell or
the P, mask (the mask resolution is normally not the limiting
factor) or approximately 10’ for most devices. Conversely, in
the time integrating system of Fig. 4, the received and
reference signals must be present within a much smaller time
delay equal to the aperture time of the AO cell. However, this
system can provide integration over a signal of longer time
duration and time-bandwidth product than that of the
AO cell. The practical imitation is the SNR or dynamic range
of the output detector used, although digital storage and
addition of detector outputs in a postprocessor can increase
the possible integration time even further. Thus, we find the
space integrating system to provide large range or time delay
searches, whereas the time integrating system allows
processing of large time-bandwidth product signals. In
Section [ll, we describe a hybrid time and space integrating
AO system that realizes the advantages of both processors.

The AO systems of Figs. 3 and 4 achieve high bandwidth
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Fig. 4. Schematic diagram of a time integrating acousto-optic
correlator.

(up to 1 GHz) and long integration times; however, both
systems use 1-D transducers and provide only 1-D output
patterns. Some of the most demanding operations requiring
advanced signal processors necessitate 2-D output data
displays such as the simultaneous range and Doppler of
multiple targets. AO signal processing architectures have
responded to this challenge with new algorithms and
architectures. The basis for these techniques is the optical
realization of the chirp-Z transform. To understand this
algorithm, we consider how to achieve a Fourier transform on
a AO correlator system. A 1.D analysis is used for simphcity.
We first wnte the Fourier transform of a 1-D signal f(t) as

F(w) = § (t) exp (—jwt)dt. (4a)
We then substitute the identity
“wt = (t—w) % —th —aw’
into the exponent in (4a). This yields
Flo}=e’*" ff(tye" e “ dl,  (ab)
which can be rewritten as a correlation
Fwy = [ie* 0[] o)

In the form shown (4c), we see that the Founier transform
of £(t) can be reali »d [6] by premultiplying /(t) by a chirp
exp (—jt’4) and correlating the signal with another chirp
exp (+jt). Postmultiplication by another chirp exp(~jw¥:)
yields the exact Founer transform. Such an exact Fourer
transform is rarely necessary as the magnitude is usually
sufficient for most applications. This algorithm can be used on
the time integrating system of Fig. 4 by feeding #(t)
exp(—ijt%: to the LED and exp(+jts) to the AO cell. A
similar technique can be used to convert the space integrating
correlator of Fig. 3 to a Fourier transform system. An
interesting multichannel Fourier transform version of Fig. 4
can be realized [7] i a linear array of N input LED's and a
2-D output time integrating detector are used. If each LED is
fed with a separate signal f,-fx multiplied by a chirp, the
2-D outputs are the 1.D transforms F,-F of the N input
signals, each present on a separate horizontal line in the
output plane. Such a system should be of use in advanced
Fourier spectroscopy imaging signal processors.
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Let us now consider how the above techniques can be used
[8] to achieve 2-D signal processing operations using only
two 1-D AO transducers. The basic architecture [9) used is
the triple product processor shown in simplified form in Fig. 5.
In this 2-D time integrating system, the input LED and AO-1
produce the correlation of s, and s, vertically in x at the ouput
plane. The correlation of so and s, is formed vertically by
AO-2 at the ouput plane. The 2-D system output can be
described in terms of three input signals and the delay
factors 7, and T2, associated with AO-1 and AO-2 by

fx,y) = Hr2, 1) = § so(t) si(t—7)) s2(t—r2)dt. (5)

In Sections I and [V, two specifi~ applications of this system
using the chirp-Z algorithm are described to demonstrate the
flexibility and processing power of this architecture.

FOLDED-SPECTRUM WIDE-BAND OPTICAL
SIGNAL PROCESSING

In many wide-band applications, greater than a 10’-point
Fourier transform (10’ resolvable frequencies) is necessary.
In such cases, a 1.D signal can be rastered-recorded on
V lines with H cycles per line in a 2-D format. The 2.D optical
Founier transform of this signal record results in a folded-
spectrum output with coarse and fine frequency axes [10).
With T = VT, (where f,=1/T,is the honzontal line scan rate)
seconds of data recorded covering a bandwidth W, the
2-D folded-spectrum output contains H coarse frequency loci
with a coarse frequency resolution of f, and with V fine
frequencies resolvable on each locus. The output thus has a
fine frequency resolution /, = 1/T over the kll signal
bandwidth W and represents a VH point (or up to a 10°-point)
Fournier transform.

This technique has been known and used for over 14 years
with film recorded data and with real-time 2-D spatial light

modulators such as the General Electric light value. These
systems have proven most useful and promising; however,
they have limited real-time bandwidth capability. Recent
device architecture and optical engineering advances now
make much larger bandwidth systems of this type possible.

One version of such a system, shown[11]in Fig. 6, usesa
new 2-D addressing technique to provide wider bandwidth
data recording. In this system, the 1-D input data are fed to an
AO cell of length T, us. Every T. us, a cavity-dumpedlaseris
pulsed on, imaging the full contents of the AO cell in parallel
onto one line of a 2.D optically addressed liquid crys-
tal light valve (LCLV) [12]. Successive T. us portions
of the input signal are recorded on successive vertical
lines on the liquid crystal light valve by the AO vertical
deflector shown. The raster-recorded signal pattern on
the liquid crystal light valve is then read out in reflec-
tion with the continuous laser that passes through the
beam splitter (BS) shown, reflected from the right-hand
side of the liquid crystal light valve, passed back to the

Fig. 5. Schematic diagram of an acousto-optic 2-D time Iinte-
grating triple product processor [9).

Fig. 6. Schematic dis-

gram of a snapshot-
addressed real-time
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beam splitter, and then up to a 2.D Fourier transform lens
system whose output is sensed by a vidicon or other output
detectors and fed to various displays and/or digital analysis
systems.

This system allows writing of one line of information
of T. = 6 us duration with greater than 10° points of data
written in parallel every 6 us. Vertical deflection with 6 us
times and over 500-point resolution are readily available.
Such a system can thus provide a spectrum analyzer with
over 5 X 10° resolvable frequencies in a signal bandwidth of
100 MHz. The well-engineered real time system of Fig. 6 was
fabricated and achieved a bandwidth of 150 MHz and a time-
bandwidth product of 200 000. Other larger bandwidth and
resolution systems can be fabricated with present optical
components using this snapshot line-at-a-time addressing
technique.

The triple product processor system of Fig. 5 has also been
used to realize a 2-D folded-spectrum optical signal
processing system [9]. To achieve this, periodic chirps
of period T and chirp rates a and a(N-1)/N are fed to the
LED source and AQ-2, respectively. The input signal is
multiplied by the chirp fed to the LED. A slow chirp of period
NT and chirp rate a/N is fed to AO-1. The chirp rates are
chosen so that the triple product in (5) generates a constant
difference frequency. A 2.D folded-spectrum output pattern
then results, with 7, and 7, being the fine and coarse
frequency axes, respectively. A total integration time of NT'is
used and a frequency resolution proportional to 1/NT results.
Several fully automated and on-line versions of such a system
exist in various facilities. We achieve large bandwidths and
frequency resolutions, both of which can be electrically
adjusted by appropnately varying the chirp signals fed to the
different system inputs.

OPTICAL SIGNAL PROCESSING FOR SPREAD
SPECTRUM COMMUNICATIONS

The long coded waveforms being used in spread spectrum
systems pose many unique problems for the associated signal
processors. Long coded signals are used to achieve large
processing gains for increased noise immunity, better ranging
accuracy, and to enable transmission below the noise level to
reduce signal detectability by unwanted persons [13]. To
achieve the full processing gain possible with such wave-
forms, the reference and received signal patterns must be time
or space aligned, i.e., synchronized. Once this signal
alignment is achieved, a correlation on a quite long signal
(often much greater than 10° bits in length) must be
accomplished. Several optical signal processing techniques to
address these spread spectrum signal processing issues follow
to demonstrate quite new and different algorithms and
approaches to signal processing.

Let us first consider how to determine the starting location
of a long coded waveform that is repeated for several cycles.
If the signal is 10* bits in length and the full processing gain is
desired, we could record all 10 possible sets of the signal in
each of its 10* possible starting locations and correlate the

input signal with all of these possible signal replicas. The size
of the associated filter and the required system time-
bandwidth product are quite excessive. A more attractive
technique was suggested by Spann [14] and later applied to
an optical system [15]. In this Spann correlator, the received
signal is raster-recorded in the input plane and a unique
Fourier transform mask is placed in the frequency plane. The
Fourier transiorm of the product of the transform of the input
signal and the mask is formed in an optical frequency plane
correlator [16]. The system output is then the correlation of
the input and the mask functions. To record the mask for
an N-bit signal, we write N as N = N|N,. We then raster-
record the N-bit input signal repetitively with 2N, points
per line for 2N, lines, remove the first line in the first column
from this pattern, and record an optical matched spatial filter
of the remaining (2 N,—1) X (2 N,—1) bit pattern.
Spann [14] has shown that all possible N; X N; raster-
recorded versions of the N-bit repetitive input signal in all N
possible starting locations exist in this mask. Thus, the
location of the output peak in such a folded-spectrum optical
correlator provides information on the starting location of the
signal, and the amplitude of the output correlation at this
location is the decoded signal data.

AO correlators are also useful for vanous spread spectrum
signal processing functions. If a large range delay search is
desired, a space integrating correlator is preferable; con-
versely, if a correlation of a long coded waveform is desired, a
time integrating correlation is the preferred choice. In cases
when a large time delay (for synchronization) and correlation
of a long signal (for spread spectrum applications) are both
desired, a new hybrid time and space integrating AQ
correlator architecture with the best advantages of both the
space integrating and time integrating systems can be used. A
schematic diagram of such a system is shown [17]in Fig. 7.
Consider its use in the synchronization and decoding of along
frequency-hopped signal in which the transmitted frequency
changes every T us according to a direct sequence or similar
code (i.e., a new frequency, or chip, is transmitted
every T us). In Fig. 7, we assume that the AO cell has an
aperture time of T us and that the output time integrating
CCD shift register detector has a clock rate of 1/T us. The
mask at P, contains an aperture on each of its N vertical lines,
with the horizontal location of the aperture on line N propor-
tional to the frequency transmitted at time NT. In operation,
as each new signal frequency chip enters the AO cell, light
passes through the corresponding aperture at P and falls on
the corresponding photodetector. With the shifting of the
output detector data, successive chips add by time integration
on the detector. Thus, the time of occurrence of the output
from the shift register detector provides time synchronization
information and the output correlation peak value has the
SNR of the full code. This system provides both a large time
delay search (by virtue of the space integrating front end) and
a long signal integration time (achieved by time integrating on
the detector with over 10° detector elements easily possible
with present technology). This system is typical of a new class
of AO processors that combine the best features of time and
space integrating systems. Many versions of such hybrid time
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Fig. 7. Schematic diagram of & hybrid time and space inte-
grating correlator for spread spectrum signal synchronization
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Fig. 8. Functional block disgram (a) and schematic (b) of »
spece-variant spread spectrum system and processor [18).

and space integrating systems for diverse signal processing
applications are expected to emerge in future years.

A quite different spread spectrum technique is shown [18]
in functional block diagram form in Fig. 8(a). In this system, a
log coordinate transformation (with t, = 0 for simplicity) is
applied to the signal f(x) = cos[wox + ¢(x)] to produce the
transmitted signal (1) = cos[Inwot + @(int)]. The signal is
transmitted, and upon reception, the inverse exp coordinate
transformation is applied to yield /.(e* — {) where /, will, in
general, be a delayed and Doppler shifted version of f,. The
correlation of f, and f will have a peak in time { proportional

to the range of the target and in space x at a location
proportional to the target's Doppler velocity. The fatter
property results because the Fourier transform of a log
coordinate transformed signal is the Mellin transform, which
is scale invariant [ 19], The entire receiver processing can be
performed optically on the system [20] of Fig. 8(b). The
received signal is fed to the AO cell at P, and imaged onto a
vertical slit at P;. A frequency plane mask at P, achieves the
required exp coordinate transformation for all possible time
delays t. The rest of the system is a conventional 1-D matched
spatial filter correlator. The moving window input to this
system produces 1-D outputs on the detector at Ps. At each
instant of time, the Ps output is a slice in space x (or Doppler)
for a given time delay search in the starting location of the
coordinate transformation.

Such a system thus provides synchronization (or ranging)
and data decoding with Doppler invariance to platform
motion. But more so, the transmitted signal is a nonlinear
spread spectrum waveform with nonlinearity produced by the
coordinate transformation applied prior to transmission. This
coordinate-transformation operation nonlinearly spreads the
carrier wo to prevent its detection. It also spreads the coded
waveform itself. Upon reception, the inverse coordinate
transformation compresses the signal so that the correlation
need be performed over a shorter length coded signal. Should
noise enter the receiver, the exponential coordinate trans-
formation spreads it and shifts its frequency out of the signal
passband, providing increased noise immunity. Such a space-
variant optical system represents a quite different approach to
spread spectrum, radar, and signal processing.

OPTICAL SIGNAL PROCESSING FOR
AMBIGUITY FUNCTION COMPUTATION

Determining the range and Doppler of a target simul-
taneously is one of the most demanding processing functions
required in radar. The resultant ambiguity function that must
be computed to achieve this operation on two signals s; and
5218

x(r.0) = § §s1(8) s2*(t—7)e?™dt, (6)

Many OSP systems have been proposed and several
laboratory systems to realize this operation have been
fabricated. Perhaps the most well-engineered system is the
one shown [21] in Fig. 9. This system was built and
demcastrated. It was required to be a fully real-time system
operating at over 150 MHz bandwidth on pulse burst
waveforms with time-bandwidth product > 2 X 10°. The
transmitted reference signal for this processor was to be
adaptive under computer control at a rate of 30 times/second.
All necessary specifications were met by the system, and thus
it represents a major achievement in optical engineering and
signal processing system performance achieved with state of
the art components.

The pulse compressor system of Fig. 9(a) is a space
integrating correlator modified with optical heterodyne
detection (not shown for simplicity) and a real-time reference
mask. The sequence of received pulsed burst waveforms to be
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Fig. 9. Schematic diagram of a radar ambiguity function
processor (a) pulse compressor, (b) Doppler processor [21].

 processed are fed to the AQO cell, whose output is SSB filtered
and imaged onto the left side of a liquid crystal light valve on
which the reference signal is written by imaging from a CRT
under computer control. The product of the transmittance of
the AO cell and the reference signal is then reflected from the
liquid crystal, Fourier transformed, and heterodyned-detected
by a photodiode. The time output from the photodiode thus
represents the N complex correlations of the reference with
the N received signals in the pulse burst. The location of the
correlation peak with respect to the signal’s time reference
provides the necessary range information. Doppler informa-
tion is contained in the phase across the sequence of
correlations.

To obtain the necessary Doppler data, the N correlations
are fed to the system of Fig. 9(b). Here they are snapshot
written (as in the system of Fig. 6) one line at a time onto
N lines of the second liquid crystal light valve. These data are
then read out in reflection from the right-hand side, and the
1-D vertical Fourier transform of the pattern on the light valve
is formed on the output plane. This provides the necessary
range and Doppler output ambiguity function display.

A more complex form of ambiguity function arises when
two signals from the same source are passively received at
different detectors. To determine the target's differential
range and Doppler, the ambiguity function of the received
passive signals must be formed. To classify the target, this

operation must be performed for many band-limited received
signals in different threat bands. The space integrating AO
system of Fig. 3 can achieve the necessary operations if a
linear output photodetector array is used [22]. In this case,
one signal is recorded (with quadrature modulation) on the
mask and the second signal is fed to the AO cell. As a
function of time, the output from one detector is the
correlation of the two signals. If the two signals have different
frequencies, imaging one onto the other produces a beat fre-
quency equal to the difference between the frequencies of the
two signals. This signal is deflected to different elements of
the output detector. Thus, the detector output at each instant
of time is a slice of the ambiguity function parallel to the
Doppler axis for one 7 value. Note that this modified
AOQ system yields the 2.D ambiguity function output using
only 1.D transducers and a 1-D output detector.

A more advanced version of an optical signal processing
system for this application that is presently being fabricated
uses the triple product processor system of Fig. 5. If the inputs
to this system are chosen as

solt) = fi(t)e”™" (7a)
si(t) = (1) (7b)
sa(t) = e, (7¢)

it is easy to show that the output in (5) is the desired ambiguity
function of (6). In practice, real and positive input signals are
necessary. Thus, quadrature modulation, SSB filtering, and
other system modifications are necessary to produce the
desired result. The triple product processor system thus
represents a quite general purpose optical signal processing
architecture with the ability to perform 2.D folded-spectrum
wide-band signal analysis or ambiguity function computation
merely by changing the electronic input signals appropriately.

OPTICAL SIGNAL PROCESSING FOR
ADAPTIVE PHASED ARRAY RADAR

The final signal processing application that we consider is
the computation of the weights w, necessary to apply to the
received signals s, of an N element phased array to steer the
output antenna in a given direction defined by a steering
vector S and to adaptively null the entire far field antenna
noise distribution in angle and frequency or time. Many
candidate techniques [23] exist to solve this problem; the
processing necessary for each is usually the problem. In one
technique, the cross correlation of all N received signal pairs is
computed, and these peak correlation values are entered in a
covariance matrix M. Describing the antenna weights as a
vector W, we can describe the relationship between the
known matrix M and steering vector S and the unknown Wby

MW =5, (8)
The solution to (8) is
wW=M"S. 9)

However, for arrays with many adaptive elements, inverting
the matrix M in (9) is quite time consuming.
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Fig. 10. Schematic diagram of an iterative optical processor for
adaptive phased array radar signal processing [24].

An optical system to solve (8) for W has been devised and
fabricated [24). It solves (8) using the iterative algorithm

Wnl =(_’_M) Wl+§ (10)

where | is the identity matrix and W, is the ith iterative.
When W,=W,. |,(10) reduces to (8). The system’s output is
thus W and it has been obtained without having to invert M.
The iterative optical processor used is shown schematically in
Fig. 10. The input at P, is a linear array of LED’s or laser
diodes whose outputs are the elements of W. Each LED is
imaged vertically and expanded horizontally to uniformly
iluminate the respective row of P, where a mask with
transmittance (I — M) is placed. The light distribution leading
each column of this mask is then summed on separate output
detectors at P;. The P; output is thus the matrix-vector
product (] — M) W.. To this we add S and return the sum
to P, as the new iterative input, thus realizing (10).

In practice, the parallel addition of S can be achieved by
adding a row to the P, matrix with the summation performed
directly on the output detector. Other system modifications
allow it to perform complex-valued matrix- vector operations.
To decrease crosstalk between LED outputs at P, and to
provide uniform dllumination of each row of P,, fiber optic
connections are used between P; and P, in the system
fabricated. The height of the detector elements used was
chosen to equal the vertical size of the P, mask. This enabled
the photodetector to be mounted directly behind the mask,
thus eliminating all optics from the system. The electronic
feedback loop includes a microprocessor, arithmetic logic
unit, controller, analog-to-digital converters, and the neces-
sary drive and demultiplexing circuitry. Random access
memories are used to correct for LED and photodetector
nonuniformities and pulse-width modulation of the LED's was
employed to provide increased system accuracy. The final
10 X 10 element fiber optic/microprocessor-based iterative
optical processor system assembled performs quite ac-
curately and satisfactorily. More so, it represents yet another
OS? architecture that promises to be of quite general use in
many diverse data processing problems.

SUMMARY/CONCLUSION

In this review paper, | have attempted to convey the wealth
of optical signal processing algorithms, architectures, and
systems that exist. By example and specific signal processing

case studies, | have described many optical signal processing
systems and their use in different applications. In all cases
considered, many fabricated systems exist and many other
quite attractive new advanced optical .ignal processing
techniques are available with the high bandwidth and
throughput necessary for advanced signal processing. It thus
appears that optical signal processing systems and the use
of bulk acousto-optic transducers offer a quite flexible and
powerful approach to signal processing needs of the future.
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