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ABSTRACT

Progress on real-time spatial light modulators, image pattern recognition

and optical signal processing for missile guidance is documented. A full

description of our test and evaluation of the Soviet PRIZ spatial light modu-

lator is included. In image pattern recognition, a unified formulation of four

different and new types of synthetic discriminant functions is advanced. These

include synthetic discriminant functions for intra and inter-class pattern recog-

nition and multi-class pattern recognition. In the area of image pattern recog-

nition, we also advance new statistical synthetic discriminant function filter

concepts and a new principal component synthetic discriminant function. These

analyses utilize new performance measures and new image models. Conventional

holographic pattern recognition research conducted under AFOSR support is also

reviewed. Our new AFOSR optical signal processing research concerns optical

matrix-vector processors. Initial research in this area includes fabrication of

a fiber-optic, microprocessor-based iterative optical processor and its use in

adaptive phased array radar processing and for the calculation of eigenvalues

and eigenvectors of a matrix.
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1. INTRODUCTION

During the past year, our research in optical data processing for missile

guidance has addressed various new algorithms, system architectures, component

tests and analyses of various image data bases. As in past years, we have been

quite faithful in reporting our AFOSR sponsored research in various journal and

conference publications. Copies of the more relevant of these papers are thus

included as the chapters of this report to provide concise documentation of

our work.

In Section 2, we provide a summnary and overview of our research progress

made in the past year. Details on the more salient topics of our research are

provided in Sections 3-14. In Section 15, we enumerate our AFOSR sponsored

research publications, the presentations given on this research in the past

year, and the PhD, Master's and research associates that this grant has sup-

ported.
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j 2. SUM4MARY AND OVERVIEW

2.1 SOVIET PRIZ SPATIAL LIGHT MODULATOR (CHAPTERS 3-5)

A unique opportunity arose for us to conduct a four month test and evalua-

tion of a Soviet light modulator. We immediately accepted the offer. our

results are contained in Chapters 3-5. Five Soviet devices for use as real-

time and reuseable spatial light modulators were evaluated in all. These de-

vices were bismuth silicon oxide (BSO) Prom-type devices. The more interesting

devices used a new transverse electro-optic effect. In Chapter 3, we describe

our initial results. In Chapter 4, we detail our MTF and sensitivity tests on

these devices. In general, we found the transverse weighted ESO PRIZ device

to have significantly better sensitivity and resolution that the conventional

longitudinal electro-optic U.S. Prom device. In Chapter 5, we detail the

* unique applications of this device in image and signal processing. Its unique

features include: automatic edge-enhancement and the ability for dynamic image

selection. The latter property is a most unique and attractive feature. Further

U.S. research on the Soviet devices is necessary to facilitate fabrication of

equivalent U.S. PRIZ devices.

2.2 IMAGE PATTERN~ RECOGNITION (CHAPTERS 6-10)

As in past years, the major emphasis of our optical data processing for

missile guidance research has been directed to novel pattern recognition algo-

rithms (that allow pattern recognition and object classification in the face

of various geometrical and textural differences between the input and reference

image) as well as the realization of hybrid optical/digital architectures to

implement these algorithms. our image processing research during the past year
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has continued to emphasize pattern recognition. our major pattern recognition

technique we are investigating involves the use of synthetic discriminant

functions. During the past year, we have devoted increasing attention to dis-

crimination and multi-class pattern recognition with emphasis on maintaininq

object recognition and correct classification in the pre sence of various distor-

tions in the imagery.

In Chapter 6, we describe a new statistical two-class SDF. This SDF dif-

fers from others: (a) in the performance measure optimized (we use SNR of the

output correlation at the peak point, rather than various distance measures as

used in other approaches); (b) its application to discrimination (we defined

the problem as distinguishing two classes of functions rather than extracting

a given function from. noise); (c) in our image model (we assume both classes

of functions are stochastic processes. Note that the noise is now non-stationary

since it is an image with its own spatially varying statistics); (d) in our use

of a finite K-L expansion (we approximate both classes of functions by finite

K-L expansions of two basis function sets); (e) in our representation of randomly

distorted imagery by a basis function expansion with random coefficients; (f) in

our basis function set selection (we derive the SDF as a linear combination of

the two basis function sets obtained from the finite K-L expansion); and (g) our

new iterative digital eigenvalue solution that results (this modified iterative

K-L technique is shown to provide results similar to those obtained from the

exact but very computationally expensive K-L method). we demonstrate our re-

sults for the case of geometrical distortions by considering the discrimination-

between circles and hexagons of random diameters. Further work is necessary on

selection of the parameter y to increase discrimination but retain a large
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correiation peak to ease detection. We hope to be able to continue this re-

search in FY84.

In Chapter 7, we summarize our recent deterministic training set based SDF

research. This pattern recognition technique is very attractive since it

allows off-line calculation and determination of a pattern recognition filter.

The filter is as good as the training set and is appropriate for object recog-

nition as long as the object being searched for (or the other objects possibly

present in the image) change. As with all SDFs, this algorithm allows geo-

metrical distortion-invariant pattern recognition. Since it is realized with

a correlator, it offers a processing gain and thus functions well in the

presence of noise. In our new research, we have unified four different types

of SDFs into the same general formulation. This is attractive because of the

intense computations necessary and the many matrix operations required in the

off-line SDF synthesis. The four new SDFs we have devised include: an equal

correlation peak (ECP) SDF (this is appropriate for intra-class pattern recog-

nition; a mutual orthogonal function (MOF) SDF (this is appropriate for inter-

class discrimination); a non-redundant filter (NRF) SDF (this is appropriate

for multi-class pattern recognition using fewer filters) and a multi-class MOF

SDF (this uses more SDFs than does the NRF, but generally functions better).

Combinations of inter and intra-class pattern recognition and NPF and multi-

class MOFs are subjects of further research, together with the testing and

application of these algorithms on various image data bases.

In Chapter 8, we describe a principal component statistical SDF. In this

case, we address geometrical distortions and intensity differences as arise in

multisensor imagery. We use new image models in which image differences are

Ii



modeled as a stochastic process, derive an optimal filter that maximizes cor-

relation SNR and show that it is the principal component or dominant eigen-

vector in a K-L expansion of the data. As in our other cases, we use a cor-

relator in our final data. Attention is given to the fact that the output

has a deterministic and a noisy part. The optimal filter is shown to be equal

to a maximum likelihood detector. As the model for our statistical corr,'stor,

we use the class of data {x(t)} which can only be modeled statistically le

derived time-averaged and ensemble-averaged correlation functions for th

stochastic process {x(t)}. These are new statistical averaging techniqu

To derive the optimal SDF, we expand the ensemble-averaged correlation func-

tion of the stochastic process in a K-L basis function set. The maximum SNR

is shown to result if the dominant eigenvector of the kernel of the ensemble-

averaged correlation function is chosen. We demonstrate our results on multi-

sensor images. We compare our results for this new principal component SDF

to those obtained using an ECP SDF. We find that requiring optimal SNRs for

the correlation yields larger correlation SNR than are obtained from the ECP

SDF. Registration accuracy in the location of the correlation peakwere also

considered. Both filters were found to give perfect results, whereas normal

MSFs gave large errors. We also considered the 3dB area of the correlations

produced and found small not wide correlation peak widths very close to those

obtained with autocorrelations (thus providing excellent registration accuracy

and essentially perfect equivalence to the results obtained from an autocor-

relation, even though geometrical and intensity distortions were present in the

data set).

In Chapter 9, we discuss a modified hyperplane technique for beam forming.

This represents an efficient technique (in terms of computer time) for handling
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large matrices. We later plan to extend and apply this algorithm to our SDF

synthesis work. This is most necessary, because of the large data sets and

matrices involved in our off-line SDF synthesis technique.

In Chapter 10, we provide a summary and overview of our AFOSR holographic

pattern recognition research. This includes the conventional matched spatial

filter, the use of holographic optical elements, laser diodes, a lensless

matched spatial filter correlator, weighted matched spatial filters, Mellin

transform correlators, hybrid optical/digital pattern recognition systems and

synthetic discriminant function matched filters.

2.3 OPTICAL SIGNAL PROCESSING (CHAPTERS 11-14)

A supplemental AFOSR grant enables us to complete earlier research on an

iterative optical processor (IOP) for adaptive phased array radar, to extend

this system as a general purpose optical processor ana to devise new missile

guidance applications of it. In Chapter 11, we describe the first laboratory

IOP ever fabricated. It uses fiber-optic interconnections, microprocessor con-

trol and a 2-D fixed mask. In Chapter 12, we summarize its applications in

adaptive phased array radar and in Chapter 13 we note its use as a general

purpose processor to perform the very common operation of eigenvalue and eigen-

vector computations. A summary and overview of the use of optical techniques

in signal processing is included as Chapter 14.
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Reprinted from APPLIED OPTICS, Vol. 20, page 3090. September 15. 1981
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Soviet Priz spatial light modulator

D. Casasent, F. Caimi, and A. Khomenko
A. Khomenko is with loffe Institute, Shuvalov Laborato-
ries, Leningrad. U.S.S.R.; the other authors are with Car
negie-Mellon U niversity, Department of Electrical Engi-
neering, Pittsburgh, Pennsylvania 15213.
Received 11 July 1981.
Sponsored by H. .J. Caulfield. Aerodyne Research, Inc.
0003-6935/81/ 183090-0:500.50/0.
c 1981 Optical Sowiety of America.

Optical data processing systems require 2-D spatial light
modulators (SIMs)' that are capable of converting an input
optical (or electrical) signal in real-time into a transparency
suitable for spatial modulation of a collimated laser beam.
These devices must operate in real-time and be reusable. A
we'l-documented candidate SLM is the Prom. 2 It uses a
bismuth silicon oxide (BSO) crystal that is both photocon-
ductive and electrooptic. In operation, the Prom is illumi-
nated with white light of wavelength A w(350-450 nm). The
spatial intensity distribution of this Xw light is converted to
a spatial charge pattern in the BSO. When read out with light
of wavelength X, (633 nm usually), the amplitude of the
readout beam is spatially modulated corresponding to the
intensity modulation present on the *w light pattern.

In the Prom, modulation of the ,R light occurs by the lon-
gitudinal electrooptic effect (the direction of light propagation
and the applied electric field are colinear). A 11001 cut BSO
crystal is used to optimize the corresponding electrooptic
tensor coefficients for the longitudinal electrooptic effect.
The sensitivity of the Prom is low by comparison with other
candidate SLMs.' Furthermore its frequency response
rapidly decreases with increasing spatial frequency f. The
diffraction efficiency is proportional to l//f with low f and to
1/f for high f with a 3-dB point at about 4-5 cycles/m M.

3 -
6

This performance occurs because the spatial charge layer in-
duced in the Prom by the ,w light lies within the volume of

3090 APPIED OPTICS Vol. 20. No. 18 15 September 1981



the material. 'The electric field has oppo si te signs (in tach
side tit' t he charge lavYer, anid when int eg rated acro ss the
crym's tshicknes~s at cancellation io-curs,. lo w phase tnit dulat io
results, the magnhit ude it' t he e lectroot pt it ettect is reduced,

and poor sensi tiv itv andl spatial frequncy result. ' Th us,
although t he optical qtiality and potential resolution (of' th 3t

device is quite gi i, the available light i utensit vat high spatial
frequentcites is vt'rv lo w. Tlh is liminits, its use itn ma nv pract ical
systemns.

Tlhe So v iet s have tabrica ted Promir light nmodlulatoirs (-Itin
parable in quality- and pertormance to the k'S.A. untits. I
RlecentlY. t heY develo ped the I riz (it St viet at-ri n t light
mfiilator' It uses at BSL crystal. hut its fabiricat ion aiid

~~1 ~~nsulat ing javers diftfer fro m t hiose in the P romit. Ftor thle a ii m
present tl ist-ussit n, t he majo r issue t f ti ntern is t hatl t lit' BS( I ...* .. -

crYstal uised in the I 'iz light nitodulatot r has at Ill1101 or I1 I-II ut. V )ofri tI I V1 )i tIIr(IkI'IWvrPIIe'
This cr -vst al ormien tatin proidedit aIarge' transvierse ('let- I-P.I I)trmn and Prii i pati al ltv i g t mu lattotitvfr, 'pnt'f
Irit it tit- effect and at low longit tidlinal efflect. 'The' lriz is still rtiiotIituijltgtu.ttim's
operatedi with tht' a ppliedi eltectric fit'ld anil thi' light pr ipa -
gat ion directins ciillititar. As in th lP'lromni the spatiallY
miolulated \ It light bt'atn iniduces a spat ially varying charge'
pat t ern tin t he tr-rit alI Hi wevtr, the chbarge (listribhutitoin
proiduce'd liv thet longit udinal e'letric field alsot has at
ralusvi'rst' tiomponntt. It is t his spatiallyv varyingl tra nsvt'rse

charge- dist ribti on that pirodtuctes light miodulat ion inl thle
lt riz.

We wt're firttinate t'o i have rt'cet' itlv had fivt' So v iet Priotm

aindt li light motdulatoirs in our laboiratorit's and A. Nhii-
nit'nko it Sovitt sc-iet' ist w lii was atti vt'l) engaged ill a Itri-
tat it in antI rt'search )t I tibest' dt'vices. Thelit' I deitvict' differs

tot aIlly ftn t'e Fretnch BSO d (evice' t 
lsed fo r noine ia r o ptical

imicessilig ill which t'e tlirt'tt in tt light prttpagatill atid ht'
applied i'lect nt field( art' o rt hiogonal. Intli te Iri z. thle
ransvt'rst' fitldul to (lt' iIlit spatial votltage (list ribut ittl inl-

i tict'i Iv t hi' ,\vI light pat tetrni) prtov idt's tile et orttttici
modulitiatitn ill ecitaulst' tilt t'let'ti c field til booth sidles of' the
thargi' lavi r isi f thi' sa lit sign in th l itz device, nitcan cii-
it ittl (oif thlit phase, motduilatiton occurs as is thle cast' in thi'

Protm and1( hi'ncie. bet tetrdt'vice sens1i tivityv resulIts. A (let ailed
resioluttill analYsis with protpt'r nmodtelinig tf tht' charge layer
wit hini the 1150 shotws that diffractiton efficiency (q ftor the Fig. 2. Heal-tIim liimage' rectolst ruction shotwing differentitat ed
P riz decreases atIi hig h spat ial frequencies ' I/f2 rat her t hati versaill ott all I H inIiagi' r'ctrded ,ttl I hi' li spat ial light nit di tat t r.
I~/ 'I as ittcurs for t he PirtomI.

All intt'rferttnittric retcording system was used toi image sine
wave' fringe pittetirns til the (I..S.A. Prtom anid the Soiviet lt riz respontse data shoiwn ill Fig. 1 cotrrespond tot a nitrlinearitY tif'
in Xit = 476 im light frtot anl Ar- itn laser. By vhirving the < I %.
anigle' itt tine (it the mhirruors in the ilitertertiliitter. the inptit As seetn in Fig. I. the lt riz has more useful light at all spat 4.1
spatial frequency retcorded til the light nitidulattir was varied frequencies (by a fact or tof' 10 1ttWl t hall the Pritn. Frotmi Fig.
fromn I t 60t t-vcles/mmn. TIhi' F'ourier tratisfoirm tifthe fringe 1, we alsoi see that the rate lit which q~ decreases with frequency
pattern wats read tout in XI, tj3-nim light frot i He-Ne laser, is much faster for the Prtom I q~ , I/If thani tor the l'riz (qi
and the ittetisitv in the tiroit aind secoind diffracted tirders was II )
measureid. Hith detvites wt'ri' operated dyniamically in real- The Priz exhibits several tither unique features suich as
time at a 2-frame/set' write/reail/erase cycle rate with writitng auttitlatic c suppressioin. This fotlloiws directly fritti the
and reading being sinijiltanetus atid with a I -inset' erase time. oibservatioin that for at uniftorm charge layer ther(' is noi
Faster c 'ycle timies are piossiblt'. tIll tither tests, we oiperated tratnsverse field, and t hus the Priz has nit dc respoitse. This
the deviii' at :10 franies/sec.t The input write light expiisure edge enhancement feature of the device is quite useful in Ill
for the data shmtwn iti Fig. I wats EF5 = 50) p.j/t'ni 2 (for btith image pat tern recognitio itas a preproicessing oiperatiton. Ini
devices). TIhe rt'ad light intensity (0.33t mW) was adjus,-ted Fig. 2 we show the differentiated versioin oif ati Ill imnage re-
tot instire that the stttred puitterti tin the SI.M was not degraded t'onstructed aitter recoirding il the Pt riz. Tlhe rectonstructtioin
Iv thi' Xjg light. Frott the time histotry oiutput tof the first- atnd the imlage differentiatioin shoiwni were perfotrmled in real-
(trdt'r intensity' /I. the idiffrat'cti e'fficiency q~ = 11/1, vs f was time directly tin the dev'ice. kinheti linearly polarized ri'ad
measured. As tnoted in Ref'. 10 Itintirmalized data are shont light is usedi, the It riz is alsoi able tio suppri'ss itnput spat ial
tot destribe motre proiperly t he true aimount oif usable tiutput frequencies tirietited in selected dirt'ct ions.-
light. As also nioted in Rlef'. l1t the sectind-tirder intetnsity I., A new arid nitst attractive feature tif tle li is t hat it tan
in the FTI plane wuis mnititiredl. and tht' write light intensity le operated with a fixed applied voltage hlween eletctrodes
and its duiratioit were adjusted to insure that I., was ovt'r 20 (rather than a voiltage switt'hed betweeti positive atnd negative
i1l hbeltiw 1t, With thbest' prttcedtlres. the spatial frequent'y poltarit ies, as in the Prom). Ili this operatitig mmmde. the re'-
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sponse of the Priz is a function of the velocity with which the
input data move across the input plane.7 In our tests on the
Priz at CMU, we used this feature of the Priz for change de-
tection. Specifically a moving spot was superimposed on a

fixed background noise pattern jFig. 34a), the moving spot isin the back left of the figurel. This image was obtained with
the high voltage applied to the Priz pulsed between positive
and negative polarities in the normal Prom operating mode.
When the applied voltage was constant, only the moving spot
appeared in the reconstruction. Figure :(b) shows a snapshot
view of such a reconstructed image.

In a later publication, we shall describe in more detail the
Priz and our complete test program ,n these Soviet devices
and provide more complete demonstrations and discussions
of the unique features of the Priz such as directioral filtering
and dynamic image subtraction.

(a) We thank Michael Petrov of Joffe Institute for allowing us
to perform this test and evaluation on the Soviet light mod-
ulators fabricated in his laboratory and for permitting A.
Khomenko to assist us in this test and evaluation program.
We also thank the U.S. Air Force Office of Scientific Research
(grant AFOSR 79-00911 for supporting publication of th.,
paper.
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Ii 4. TEST AND EVALUATION OF THE SOVIET PROM~

I AND PRIZ SPATIAL LIGHT MODULATORS



Reprinted from Applied Optics, Vol. 20, page 4215, December 15, 1981
Copyright © 1981 by the Optical Society of America and reprinted by permission of the copyright owner

Test and evaluation of the Soviet Prom and Priz spatial
light modulators

D. Casasent, F. Caimi, and A. Khomenko

Five Soviet bismuth silicon oxide Prom and Priz spatial light modulators were recently tested in the United
States. In this program, their performance was quantified and compared with that of the U.S. Prom. The
resultant laboratory data show that the Soviet Prom is comparable with the U.S. device and that the Soviet
Priz has over ten times the diffraction efficiency and over ten times more usable resolution than the Prom.
Theoretical models of the dependence of diffraction efficiency on spatial frequency were also verified by ex-
periments performed on these devices.

I. Introduction In this paper, we report the result of a recent test and
The key device needed for the practical realization evaluation program conducted in our laboratories at

of a real-time optical data processing system is the input Carnegie-Mellon University on five Soviet BSO light
transducer. This device converts an ambient scene (or modulators. One of these devices was a Soviet Prom,5' 6

an electronic input signal from a mosaic array or other and the others were new Priz (Soviet acronym) 7,8 spatial
sensor) into a transparency suitable for spatial modu- light modulators. Many descriptions, models, and
lation of a coherent light beam. Such elements are re- theoretical derivations of the MTF of the Prom
ferred to as spatial light modulators (SLM). Many exist.2 - ,9, 10 Because of the discrepancies in several of
candidate reusable devices exist' that can perform the these models, a brief unifying summary of the correct
desired operations with varying degrees of resolution model and the predicted spatial frequency response of
and speed. One such candidate SLM consists of a the Prom are included in Sec. II. This description also
bismuth silicon oxide (BSO) crystal with parylene in- provides an excellent vehicle from which to describe the
sulating layers and electrodes on its large faces. This Priz light modulator and the motivation for its devel-
SLM is known as the Prom (Pockels real-time optical opment. In Sec. III, we describe the experimental test
modulator). system used. All tests were performed in real time

The Prom is well-documented. 2-4 In operation, an using a new data acquisition technique to obtain spatial
image is focused onto the device in write light (Xw = frequency response information on the devices. The
350-450 nm), photocarriers are generated within the results of our experimental program are presented and
photoconductive BSO, and a charge layer is produced discussed in Secs. IV and V. Weinclude comparison
with a spatial charge variation proportional to the in- data on a U.S. Prom we have and on the Soviet Prom in
tensity distribution of the Xw light. This stored pat- Sec. IV and on the Soviet Priz SLMs in Sec. V. This
tern is then read out in read light (XR = 633 nm). By represents the first time that this many light modulators
the linear longitudinal electrooptic or Pockels effect, the were tested in the same facility and using the same
output XR light distribution (between crossed polariz- personnel, measurement techniques, and optical sys-
ers) is a coherent spatially modulated replica of the Xw tem. We then summarize our results and advance our
light pattern, conclusions in Sec. VI.

II. Prom Theory and Model
The thickness and location of the induced charge

layer formed within the BSO by the spatially modulated
A. Khimenko is with Joffe Institute, Shuvalov Laboratories, Len- Xw light are most important in determining the device's

ingrad, U.S.S.R.; the other authors are with Carnegie-Mellon Uni-
versity, Department of Electrical Engineering, Pittsburgh. Penn- performance. If the charge layer is assumed to be thin
sylvania 15213. and to occur at the crystal (BSO)-dielectric (parylene)

Received 24 July 1981. interface, the resultant modulation or phase modulation
0003-6935/81/244215-06$00..50/0. A0 (between the ordinary and extraordinary wave
c 1981 Optical Society of America. components) is'
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Sddfd +"4 d ,( To overcome these fundamental limitations of the
dd,.t2.f)lfd coth(2?rfdd) + i, coth(2rd.)] Prom SLM, the Soviets changed the BSO crystal cut

from the 11001 cut used in the Prom (to maximize the
where (d and c,. are the dielectric constants of the par- longitudinal electrooptic effect) to [ 111 and 11101 cut
ylene in the BSO crystal, respectively, dd and d,. are the crystals (to use the transverse electrooptic effect).
thicknesses of the dielectric layer and the crystal, and These new devices are referred to as Priz (the transla-
( is the spatial frequency of the input data. Since d,. t- tion of the associated Soviet acronym is image trans-
500 pm and dd c 5pum, d, >> dd, and we approximate former). In these Priz devices, the optical axis and the
coth(2rfd,) t- 1, where the approximation will be valid applied electric field are still collinear, and a spatial
for spatial frequencies f > 1/27rd,.... 0.3 cycle/mm. charge layer proportional to the Xw light intensity is
From Eq. (1), we see that this model predicts that A0 still produced. However, the transverse field due to this
should decrease p roportionally to 1/f. Since diffraction charge distribution is used (via the transverse elec-
efficiency i JI(Ao), where J, is a Bessel function of trooptic effect) to produce modulation of the Xln readout
the first order and since J, - A0 for low modulation (as light. The modulation and the resultant ty due to the
occurs in BSO devices), we find q/ - (AO)2, or from Eq. transverse electrooptic effect are larger than for the
(1), 17 . 1/f2. longitudinal effect because A0 cancellation does not

In 1978, Petrov et al. 5 noted that the charge layer in occur (since the electric field is of the same sign on both
the Prom was not infinitely thin but had a small but sides of the transverse charge) and because of the larger
finite thickness da. For this model, the resultant de- transverse electrooptic coefficients. In the Priz, A0
pendence of A0 on spatial frequency / is '  1/f and q7 - I1/f. Thus the spatial resolution as well as

the sensitivity of the Priz are expected to be superior to
aon0 r 4111 - exp(-2rfd 11 (2) those of the conventional Prom device. These remarks

(2f)2 d. olfa coth(2rfdd) + e, coth(2rfd,)l are verified in our experimental data in Secs. IV and

For low spatial frequencies, this model predicts A 0 V.

1/f and 17 I /f 2 . But for higher spatial frequencies (f i. Experimental Procedure
> 1/2rdd- 30 cycles/mm), Eq. (2) predicts A0 a 1/f2  The five Soviet "-0 light modulator- we evaluatedand hence ir a 1/ft. Our experimental data (Sec. IV) h ieSve S ih ouaosw vlae
aond the e theI Oure xpal peionad are in agree- are referred to as devices 1-5. Device 1 was a Sovietconfirm these theoretical predictions and are in age- Prom. Device 2 used the conventional Prom fabrica-
ment with earlier Soviet data." Independently, Tan- tion desic e u the c ystal cut f a s
guay and his co-workers in the U.S.A. have subsequently tion and structure, but the BS0 crystal cut used was
provided a more complete and detailed derivation of the 11111. Devices 3 and 4 were identical Priz devices with
performance of the Prom device." '( This analysis a 1111I cut BSO crystal but used a proprietary new
agrees with that predicted by Eq. (2). In this latter fabrication technique. We refer to them (and device
work as in the Soviet papers, it was noted that the 5) as SLMs with a Priz structure. Pevice .5 was a Priz
charge layer does not exist at the crystal-dielectric in- with a 11101 cut BSO crystal. The t,"O layers were
terface, but rather it is within the volume of the BSO -400 pm thick, and each device was 18 mm in diameter.
material (but close to the interface). Itek data4 also Thin (3-5-pm thick) dielectric layers were used on all
note that the charge layer lies within 50 pm of the in- devices.

terface. The test system used is shown schematically in Fig.

The location of the charge layer and its thickness are 1. It consists of an interferometer in which the write
important because it affects the MTF and spatial fre- light beam I is split into two beams by the beam-split-
quency response of the device. Moreover, it provides ting cube (BSC), reflected from mirrors (Mi and M.,),
direction for the improved Priz SLM. In Ref. 12, and focused at P0 to form a sine wave fringe pattern.
Khomenko et al. discuss this subject. The following
simplified description will suffice. We recall" : that the M2
effective extent of the electric field about a sinusoidal
charge layer of spatial frequency f is z, = 1/27r. Thus
for low spatial frequencies, z, is large, and at high spatial I1L SLU
frequencies it is small. We next recall that A0 is pro- - sc-
portional to the integral of the electric field E in the z -
direction (optical axis, light propagation direction, and _.. FTL
electric field direction). Now, if the charge layer lies N1  P FIL
within the volume of the BSO, the + and - fields on /
each side of it will cancel when E is integrated in the z
direction. This will decrease the effective A0 and hence
the light modulation and 1 of the device. Since z, is SEAM

larger at low spatial frequencies, we expect the net A0 Pa
to be a maximum at low spatial frequencies and to de- as
crease rapidly as spatial frequency increases. The osc,.otos,
theoretical and observed 1/f 4 dependence of q with Fig. 1' Schematic diagram of the Prom and Priz spatial frequency
spatial frequency verifies these remarks. response test and evaluation system.

4216 APPLIED OPTICS / Vol. 20, No. 24 / 15 December 1981



By varying the angle of M.,, different spatial frequencies
can be directly produced at Po1 . This sine wave fringe
pattern at Po is then imaged (by lens IL) onto the SLM
under the test at P1. This imaging interferometer
system greatly reduces problems that arise with other
configurations in which the overlap in the beams from
the two interferometer arms varies with the spatial
frequency of the signal being recorded. The depth of
field of the imaging lens IL used was over 2 mm (over
four times the thickness of the SIM used). Thus we
were insured that the interference fringe pattern was
focused at the optimum location within the SLM.

The write light beam was incident on-axis, and the
read light was incident at an angle of 1.70 (This is ex- I
aggerated in Fig. 1 to clarify the schematic.) In all ex- A
periments, Xw = 476 nm (Ar-ion laser), XR = 633 nm qW
(He-Ne laser), the write and read intensities used were
I% = 0.33 mW, and IR = 0.52 mW, the write light energy
was varied from Ew = 25-200 Md/cm 2 by varying the
write time Tw. The read light intensity IR was ad- Fig. 2. Typical first-order li vs time output waveform showing the
justed to insure that it produced no degrading effects effects of increasing the write light exposure as well as the effective-
on the recorded data. In the way in which the system ness of erasure on the device.
was used, both the read and write light beams were on
simultaneously (TR = Tw, equal write and read light
time durations). This facilitated use of a novel data could be used. In all tests, we were also careful to allow
acquisition technique for spatial frequency response sufficient time for charge redistribution to occur in the
information collection. The write light intensity 1w device after each cycle. In all tests, we insured that the
was constantly monitored to insure that no fluctuations write time Tw was much greater than Tp to reduce
occurred in it during the experimental data taking in- detector response time problems. To photograph the
terval. output I vs time display, we note that Tw > 100 msec

The sine wave data recorded on the SLM at Pi are is necessary (to reduce detector response time errors),
Fourier transformed by lens FTL. (The 633-nm filter and that to decrease flicker in the output ohservations
FIL insures that only X, light reaches the detector or on the scope Tw should be <0.5-1.0 sec. As a com-
Fourier transform (FT) plane P 2.1 At P2., we measure promise, we selected Tw = TR " 0.5 sec (or 50 times
the dc lo, first-order 11, and second-order '2 light in- Tp) for all experiments. This figure was obtained after
tensities as a function of time. As noted in Ref. 14. the many experiments with data recorded on the device in
input Xw light can be adjusted to insure that ', is 20 dB the 50-60-cycle/mm spatial frequency range. Thus all
below li. (This insures that the spatial frequency re- our MTF data were acquired dynamically with the SLM
sponse data recorded has a nonlinearity below 1%.) In operated at about a 2-frame/sec write/read/erase rate.
the actual way in which data were acquired in the ex- An erase pulse duration of 1 msec was used. This was
periments to be described here, we monitored 12 and followed by a 9-msec wait time to insure that full charge
verified that it was at least a factor of 10 below II (in redistribution occurred. These parameters provided
most cases). Since the write and read light beams are adequate variations of Ew and adequate user interac-
on simultaneously in this system, the I I vs time output tion time for photographing the 1t vs time outputs and
at P2 rises with time (Fig. 2) as the energy of the write monitoring the input light intensity 'in and the amount
beam accumulates on the SLM. An erase pulse then of second-order distortion 12 present in the data. We
occurs, and the output rapidly drops to zero as shown note that complete erasure was insured in all cases by
in Fig. 2. proper timing and write and erase exposure selection.

Since 11 is -10-2 or 10- ' below the intensity of the dc After erasure, we measure over 101 suppression of the
term and since 12 is over 10- 2 below It, a large output recorded data.
dynamic range is required for measurements. This was We now consider the data acquisition technique used.
achieved by use of a cooled PMT in its photon counting Photographs of the I, vs time outputs for all five Soviet
mode (for low light intensity data acquisition) and in BSO devices and for the U.S. Prom were obtained for
its electrometer mode (for higher intensity light data). approximately ten different spatial frequencies per
Calibration between both modes was achieved by use device. 2 vs time was similary photographed at low
of an attenuator in the readout beam. The PMT sys- spatial frequencies where it was measurable. From a
tem has a 90-dB dynamic range, and with the use of given I, vs time output (e.g., Fig. 2), we note that the
attenuators this range is even greater. In low light level horizontal or time axis also corresponds to the accu-
cases, the response time of the PMT (Tp - 10 msec) mulated Ew values since Ew = Iwt. Thus each 1 vs
limits the speed at which the data acquisition system t graph also provides us with II vs Ew for a given spatial
can be operated and hence the SLM cycle times that frequency f.
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Fig. 3. Diffraction efficiency 17 vs spatial frequency f for the U.S. SPATIAL FAtGUENCY I ", I

Prom with different write light exposure used. Fig. 4. Diffraction efficiency Y7 vs spatial frequency ! for the Soviet

Prom with different write light exposures.

From a given I, vs time photograph, we thus deter- Prom) and for f > 6 cycles/mm (for the Soviet Prom).
mine I, for a given fand all Ew. Dividing 11 by IR = I,,, We also note that a larger range of Ew values was pos-
we obtain 71 for onef and all Ew values. By repeating sible on the Soviet Prom before steady state occurred
the experiment for ten different input f's, we obtain an or before second-order intensity became excessive.
Y1 vs f frequency response curve for all Ew. This rep- Note that below 20-AJ/cm 2 write light exposures, 12 was
resents a considerably more efficient and simpler dy- not measurable for the U.S. Prom and that similar re-
namic MTF measurement technique than prior meth- sults occurred for Ew = 50 AJ/cm 2 or less for the Soviet
ods. We can also obtain the MTF of the device from a Prom. Thus all data generally correspond to exposures
plot of modulation m = 4VG/ vs f. This follows directly for which the response of the device has a nonlinearity
since 17 = m 2/16. of -1% or less.

The FT lens used was of focal length fL = 500 mm. In all experiments, we will give three parameter
Ony a d = 15-mm diam of it was used. Thus the re- measures for use in comparing the performance of the
sultant null-null width of the central lobe of each FT different devices. We first note the device's peak dif-
plane peak is 2x 1 = 2XfL/d = 40 ,m. To facilitate de- fraction efficiency 10 (at low spatial frequencies). We
tection, we used a fiber optic microscope with a 150-,um then measure the spatial frequency f0.5 at which r7=
diam probe and a 2.5X objective. This produced an 0.5io. (This is the device's 3-dB spatial frequency
equivalent 60-pm diam detector. This probe size (-1.5 resolution.) Finally, we will give the spatial frequency
times the theoretical diffraction limited spot size) in- fo.01 value for which )? = 0.01o. (This latter spatial
sured adequate detection of the intensities of the first- frequency response can only be utilized in high dynamic
and second-order terms in the FT plane with little FT range systems where such low light levels can be de-
plane noise present in the data. tected and used.) For the U.S. Prom unit available for

testing, these comparison parameters (for Ew = 80
IV. Prom Experimental Data pJ/cm 2) are i c- 0.1%, f0.5 = 6.5 cycles/mm, and f0.o =

In Figs. 3 and 4, we show il = 11/in vs spatial fre- 23 cycles/mm. For the Soviet Prom device tested, we
quency for the U.S. and Soviet Prom light modulators found no = 0.1%, fo.5 = 8 cycles/mm, and f,.ol > 100 cy-
for various write light exposures Ew from 10 to 200 cles/mm (this latter value was obtained by linear in-
pJ/cm 2 The second-order 12/[in data vs spatial fre- terpolation of the data) for an Ew = 100 pJ/cm 2.
quency is also included in both graphs for low spatial We next consider the 77 vs f dependence of these de-
frequencies. At high spatial frequencies its intensity vices. We note that T decreases faster with increasing
is over 106 below that at dc, and thus it becomes com- f for the U.S. Prom than for the Soviet Prom. However,
parable to the noise of the optical system used. We note this is quite misleading, since the thickness of the par-
that both devices exhibit comparable peak diffraction ylene layer and the crystal are different for both Proms.
efficiency values i0 c-- 0.1% at low spatial frequencies. The Prom's response varies as a function of the thick-
We also note that 7 breaks and starts to decrease atf ness of the different layers in the device. Thus, com-
3 cycles/mm for both Proms. Higher Ew exposure paring any two Proms must be done with such issues in
values yielded slightly larger 1 values, but second-order mind. For the Soviet unit, dd = 3 pm and d, = 400 pm
distortion becomes quite severe in these cases. Thus were given parameters. Typical U.S. Proms employ dd
data for them were not included. 5 pm and d, c- 600 pm. (The exact values were not

We notice that the second-order intensity is over 20 available for the U.S. Prom tested, but the experimental
dB below the first-order light for f > 2 cycles/mm (U.S. data obtained support the above values.)
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From the data of Fig. 3, we find that the U.S. Prom U

tested shows an q/ a l/f: dependence for the Ew = 40-
IAJ/cm 2 curve between the 3-30-cycle/mm frequency .-
range. From Fig. 4, we see that the response of the
Soviet Prom decreases less rapidly with n l1/f2 . This ... - " 2

can be directly explained with reference to the theory
advanced in Sec. 11 and the different dd thicknesses in
the two devices. From Sec. II, we recall that an l - I/f2

dependence was predicted up to an f t-- 1/2rdd with an
I)1/ldependence at f > 1/21rdd. For the S iviet is J11- 2

Prom, dd = 3 pm, and thus an q/ I/f
2 dependeace is

I . expected up to f c 50 cycles/mm. This is approxi-
mately the response observed in Fig. 4. Moreover, with
dd = 5 pm for the U.S. Prom, the spatial frequency at
which the il 1/f2 dependence ends is now -f > 1/2lrdd 2 3 4 5 7 ,0 t2 ,s i s 40 50 so

30 cycles/mm.
Thus the more rapid decrease in 1r with f for the U.S. Fig. 5. Diffraction efficiency n vs spatial frequency f for the Soviet

Prom is the direct result of the larger dielectric laver Priz for two different write light exposures.
thickness for this device compared with that of the
Soviet Prom. As clearly indicated in Figs. 3 and 4 and
explained above, direct comparison of Prom data is
difficult unless each device is fabricated with layers of
the same thickness. When the different crystal thick-
nesses (d, = 400 pm for the Soviet Prom and d, = 600 USSR PRIZ -5 (IO

pm for the U.S. Prom) are included, the theoretical
models in Refs. 9 and 10 can be used to further refine
device comparisons. Since our major intent is only to _ 2

show (by experiment) the comparable performance of -s0,,.2
two different Proms and that both support theoretical g5 ' _2

models advanced in Sec. II, we will not consider more
detailed comparisons and experimental verifications of'
the more advanced Prom device models in Refs. 9 and
10. Rather we direct our attention to the performance
data for the Priz SLM in the following section.

V. Prlz Experimental Data
In Fig. 5, we show the il vs f experimental data for the 2 3 7 1 1 15 20 2S 30 40 50 W

Priz (device 3). Similar graphs w, re obtained for de-
vices 2 -4, and thus only the data in Fig. 5 are included
here. From Fig. 5, we note only four issues. First, the Fig. .DiffractionefficiencnvsspatialfrequencyffortheSoviet

mea-ured diffraction efficiency of the Priz is over 20 Priz for three different write light exposures showing the suppressed
dc response possible on the Priz unit.

times more than that of the Prom. Thus, it has more
useful output light at all spatial frequencies. This
verifies the observation noted in Sec. II that the
transverse electrooptic effect in this BSO device is larger
than the longitudinal effect. Second, these data also = 8 cycles/mm, and fi0o > 100 cycles/mm. We note
show that the spatial frequency response of the Priz is that these Priz comparison parameters were obtained
superior to that of the conventional Prom with q a 1/f- with a lower Ew = 50-p,J/cm 2 maximum exposure than
over the full 3-60-cycle/mm frequency range. From for the Prom device. At higher exposures, the nonlin-
theory (Sec. 11), it can he shown that the Priz should earity due to the second harmonic term was quite
exhibit an ry - 1/fl response over its full frequency large.
range. Third. measured response beyond 60 cycles/mm In Fig. 6. we show the measured response of another
was observed for this device (due to the larger It light Priz (device 5). For this device, the 7 vsf curve for Ew
levels available). Fourth, the second-order response = 100 p,/cm2M is shown, and data points at spatial
is larger for the Priz than the Prom. This appears due frequencies down to 1 cycle/mm are included. From
to the nonlinearity with which a transverse field is in- this figure, we see that the Priz exhibits a peak in i at
duced from a spatial longitudinal one as in the Priz. f > 0 (f c- 3 cycles/mm) and moreover that it suppresses
However, we note that for f > 10 cycles/mm, negligible data at dc and low spatial frequencies. This is expected
second-order distortion exists. From this initial Priz since (Sec. II) at dc the field is uniform across the device
device, we find our three comparison parameters to be and little transverse field exists. Hence little transverse
)0 = 2 X 10- 2 (or 20 times larger than for the Prom), fo.s electrooptic effect occurs, and thus dc (and low spatial
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Table I. Sunwnartzed Comparilon of the Prom and Prlz Light Modulators of light 77 available from each device at a given spatial

yt b,,, /,,,l frequency). I'hese data clearly show that the Priz has
Device (I, tcycle/nmm) cvcle/mnmI from 10 to 100 times more usable light than does the

U. S. Prom 0. 1 6.5 23 cycles/inn Prom.

U.S.S.R. Prom 0.1 8 > IWcyclesmn The Priz has nany other features that are quite
U.S.S.R. l'riz 2.5 8 >I 0) cycles/mnln unique. These include: automatic suppression ofdc

and low spatial frequencies (see Fig. 6)''; directional
Device Y7 at different spatial frequencies spatial filtering: and dynamic image selection. Some

to cycles/Inm 20 cvcles,'m 40 cycles, imO amplification of the last two items is necessary. From

U.S. Prom I x 10-4  2 x 10'  :3 x to'; a detailed analysis of the dependence of Y on thc po-
U.S.S.R. Prom 2 X 10-4  1 x to -, :3 X 1t--' -larization of the input light (with respect to the crystal's
U.S.S.R. Priz 7.5 X 1 -" I X 1' 2. x 10 orientation), one can show- that the 11101 cut Priz has it

preferential spatial frequency data directions that it will
emphasize and that this effect can be controlled by
properly adjusting the direction of polarization of the
input light with respect to the crystallographic axes.

frequency) data are expected to be suppressed in this Furthermore, the Priz can be operated with a fixed
device. In Fig. 6, we also note that, although the sec- voltage betwen electrodes. (This greatly simplifies the
ond-order distortion is high at low spatial frequencies, electronic support system needed for the unit.) In this I
it rapidly decreases and becomes negligible for operating mode,"' the Priz responds only to changes in
frequencies above 15 cycles/mm. This device also ex- the input data and thus exhibits dynamic image selec-
hibits the same r l/f response over its full f = 1- tion. In a future paper, we will discuss these unique
50-cycle/mm measured frequency range. This Priz image processing features of the Priz, other data on the
device exhibits a large r7 comparable with that of the dynamic write and erase performance of the device, as
other units. Its comparison parameter measurements well as its sensitivity, optical quality, and the angular
are comparable with those of the other Priz devices (Fig. orientation accuracy required to use the unit.
5). We note in closing that the Priz can exhibit superior

performance to that indicated in Figs. 5 and 6 when the
VI. Summary and Conclusions write light wavelength Xw is properly chosen to match

In Sec. 11, we highlighted the model and theoretical the crystal's thickness. In general, when Ew and ,tw I
spatial frequency response to be expc-ted from the are properly selected to match the device's fabrication,
Prom and Priz light modulators. The experimental optimum performance is possible.
system we used (Sec. 111) was shown to be quite stable We thank Michael Petrov for allowing us to test and
(in terms of variations in beam overlap area with varying evaluate the Prom and Priz light modulators fabricated I
input spatial frequency). The new data acquisition in his laboratory at loffe Institute (Leningrad) and for
technique we employed was found to be quite useful. allowing A. Khomenko to assist us in this work. We
The experimental procedure for testing these light also thank the Air Force Office of Scientific Research
modulators followed the ideas advanced in our earlier (grant 79-0091) for supporting our analysis of this device
work 14 and proved to be most appropriate in this ex- and publication of this paper.
ample also. Our experimental data on the Prom SLM
(Sec. IVI verified the theoretical models advanced in I
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Applications of the Priz light modulator

David Casasent, Frank Caimi, M. P. Petrov, and A. V. Kbomenko

The Priz light modulator suppresses input data at zero spatial frequency, can provide directional spatial fil-
tering. and can perform dynamic image selection or change detection. In this paper, we summarize the
Priz's performance and provide experimental confirmation of the above three image processing applications
of this device.

1. Introduction recognition correlation examples of the use of the device
Optical signal processing and image pattern recog- in Sec. IV. Because of the transverse linear electrooptic

nition applications require real-time and reusable de- effect used in the Priz to modulate read light, it exhibits
vices on which the input data to be processed can be three unique features that are of use in various image
recorded for subsequent optical processing. These vital processing and pattern recognition applications. These
components in an optical processor are known as spatial include: suppression of dc and low spatial frequency
light modulators (SLM). Although many candidate data as well as directional filtering of input spatial
SLM devices exist,' we will restrict our present atten- frequencies oriented in selected angular directions (Sec.
tion to only one such device, the Priz light modulator. 2-  V) and a quite unique feature referred to as dynamic
Priz is a Soviet acronym that translates as image image selection in which the device responds only to
transformer. This modulator was proposed by a group changes in the input image data (Sec. IV). Our sum-
of researchers of A.F. loffe Physico-Technical Institute mary and concluding remarks follow in Sec. VII.
(FTI) of the Academy of Sciences of the U.S.S.R. It 11 Operation of the Priz
employs the same active element, i.e., the bismuth sil-
icon oxide (BSO) type crystal, as the well-known Prom The Prom light modulator9 consists of a BSO crystal
modulator.9  -20 X 20 X 0.4 mm with Parylene insulating layers and

At the Electrical Engineering Department of Car- transparent electrodes on the large faces. In operation
negie-Mellon University (CMU), five Prom and Priz the spatially modulated data to be processed are imaged
units fabricated at the FTI laboratory headed by Petrov or scanned onto the device in ,w write light (350-450
were tested and evaluated. One worker of FTI partic- nm). Photocarriers are generated in the photocon-
ipated in the research program (Khomenko). ductive BSO, and a spatially modulated charge layer is

In Sec. II, we review the structure of the Priz light produced within the BSO. When the device is illumi-
modulator and the motivation for its fabrication and nated with a uniform read light beam at AR (usually 633
highlight the spatial frequency response data obtained nm), the XR light emerging from the device is polariza-
on the devices we evaluated at CMU. We then include tion modulated spatially with an amplitude of modu-
(Sec. i1) a summary of the dynamic and optical per- lation that varies spatially in accordance with the
formance of the Priz. These data were obtained from original Xw input light or data pattern. This XR mod-
experiments performed in both the Soviet Union and ulation occurs by the linear-longitudinal electrooptic
at CMU. We include several image and signal pattern or Pockels effect. The polarization modulation can be

converted to amplitude modulation when a crossed
analyzer is placed behind the modulator.

In the Priz light modulator,24 a 11101 or [1111 cutBSO crystal is used rather than the 11001 cut crystal
M. P. Petrov and A. V. Khomenko are with A. F. loffe Physico- used in the Prom. Other proprietary fabrication

Technical Institute of the U.S.S.R. Academy of Sciences, 194021

Leningrad, U.S.S.R.; the other authors are with Carnegie-Mellon techniques are employed, but the issue of major im-
University, Department of Electrical Engineering, Pittsburgh, portance is that with these different crystal cuts, the
Pennsylvania 15213. device now modulates XR light by the transverse rather

Received 22 April 1962. than the longitudinal electrooptic effect. The spatially

0003-6935/82/21384-09$01.00/0. varying Xw light distribution is still incident on the
* 1982 Optical Society of America. crystal's large faces collinear with the applied electric
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field direction, and the spatially varying charge layer Ill. Performance of the Prlz
parallel to the crystal's large faces is still induced. In the MTF tests performed on the Priz at CMU, we
However, the transverse component of this field is what operated the device at 2 frames/sec. In other experi-
is used to provide the spatial modulation of the XR ments, we operated the device at 20 frames/sec. A
light. faster frame rate should be possible, but no effort has

The Prom exhibits low diffraction efficiency 1 and a yet been made to determine the device's maximum cyclesharp 7 t-- 1/4 decrease in usable output light intensity time. However, results of several experiments ar,
at high spatial frequencies f.10 If we assume that the useful in providing some indication of the final device
sine wave electric charge grating with amplitude a0 in- peformn po sbe n th Prid.

duced during image writing in the Prom is infinitely thin performance possible on the Priz.In the experiments performed in FTI, the device was
and that it exists at the crystal-dielectric interface, the operated with write times as short at 7 nsec using a
phase modulation vs spatial frequency is describedby11 pulsed laser source with an intracavity electrooptic

modulator. In this case, photocarriers were generated
= 2(oo1) in a negligible time, but the output light pattern was not

U~td(fd coth21rfdd + t, coth2r/d,) visible until 1 usec later, and it peaked after 10 psec.
where Cd and t, are the relative dielectric constants of Carrier mobility and transit times thus appeared to
the dielectric layer and the BSO crystal, respectively, limit the minimum write-read cycle times of the Priz
dd and d, are the thicknesses of these layers, and UA/ 2  to 10 psec. In the more conventional operating mode,
is the halfwave voltage of the crystal. Equation (1) 1-msec exposure times are used, and the output pattern
indicates that when f increases at f > 1/2dd, coth27rfdd is then immediately visible.
t- I and coth2irfd, n 1, and thus A0 decreases a 1,'f. Erase time is a second limitation on the device's
Since na (A0 , Eq. (1) predicts i/ 1/f2. However, in speed. In all tests performed at CMU, a fixed 1-msec
experiments a sharper (rja 1/f4) dependence was oh- erase flash (from the standard erase unit provided with
served. This was attributed to the fact that, in the the U.S.A. Prom) was used. However, neither the Prom
process of image writing, a volume electric charge dis- nor the Priz can be recycled immediately after erasure,
tribution is formed within the crystal volume rather and a delay time is necessary to allow redistribution and
than an infinitesimally thin one.'0  Using this new relaxation of excited carriers within the crystal. One
model, it has been shown that in the case when the millisecond of relaxation time and hence a total 1-msec
charge is distributed throughout a layer of thickness d. erase time appear adequate. High-energy erase pulses
near the crystal-dielectric interface cannot decrease this time, since they generate and dis-

lodge other carriers within the bulk of the device, and
,.,r = (olcoh2rfdd - coh21rf(d,) - d. )l (2) longer relaxation times between the end of erasure and

U, f2d. (Ed coth24/dd + (€ COth2Tfd,), sinh2#fd. the start of a new write cycle then become necessary.
Equation (2) predicts an n - 1/f4 dependence at high f, Thus operation of the Priz at a 103-frame/sec (write-
which agrees with experimental results. Thus the sharp read-erase cycle) rate appears possible, but additional
dependence of q on f for the Prom is attributable to the theory and experiments are necessary to confirm this.
volume character of charge distribution. The most Moreover, an application for which the entire spatial
complete and detailed theoretical description of the input data changes every millisecond is necessary to
Prom device can be found in Refs. 12 and 13. These merit such an effort together with attention to how one
papers discuss a model that includes the location of the can introduce such a new 2-D ),w spatial distribution
charge layer within the BSO, the thickness of the dif- to the device at these 103-frame/sec rates.
ferent device layers, the wavelength of the light used. The storage times for the Priz are adequate for most
To overcome the disadvantages of the volume charge applications [1-min storage in the dark and 10-20-sec
predicted by Eq. (2), it was suggested in Refs. 14 and 15 storage under a high ,R = 633-nm read light intensity
to use the transverse electrooptic effect for read light (R = 2 mW/cm). These can be somewhat controlled
modulation rather than the longitudinal effect used in by varying the thickness of the insulating layers. The
the Prom. The modulator that uses the transverse lifetime of the Priz, like that of the Prom, appears to be
electrooptic effect is called the Priz. The corresponding excellent. Selected Priz units have been operated for
calculation of the phase modulation for the case of the over one million cycles at a 20-frame/sec rate with no
transverse effect shows that6  noticeable change in performance. The only concern

4ro I1 tdcosh2rfd, + coh2rf(d - d.) - I+ , (3)
UA j Eef 2f 2d.(td tanh2wfd 4 e, tanh2rfdd) cosh2rfdl '

where kI - tc tanh2rfdd sinh2rfd.
From this formula, two characteristic features of the

Priz device can be seen. First, AO(0) - 0; i.e., the
modulator suppresses the dc component. Second, at
high f, A.* a 1/f and v7 c 1/f2, i.e., the Priz j vs f char-
acteristic is superior to that of the Prom.
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with the device's lifetime appears to be its operation actually be used. The Priz performs well with input
with high IR light levels. In this case, a device with high write light exposures Ew of 50o jJ/cm2 or less with cor-
transmittance and electrodes with good conductivity responding interharmonic distortions and hence re-
is necessary. For such cases, InO2 electrodes are used. sponse nonlinearities below 1% at these write light
The performance of such Priz units appears to be good energies. The sensitivity of the device defined as the
(as several of them have operated successfully for sev- write light exposure Ew necessary to achieve q = 1% at
eral years). 5 cycles/mm is 50 ,J/cm 2. In our CMU data on these

The resolution of the Priz is mostly understood and devices,7 8 an available laser source not optimized to the
has been experimentally verified by several techniques. thickness of the Priz used was employed. With this
Its diffraction efficiency Y/o at low spatial frequencies experimental setup, we obtained only fo.s 20 cycles/
is -1%, its 10-dB spatial frequency response fo.1 is -30 mm and f., - 30-mm resolution. If the optimal read
cycles/mm, and the spatial frequency fo01 at which r; = light wavelength were used, we expect superior results
0.01i7o is 100 cycles/mm. At CMU, we operated the with f0.5 in excess of 30 cycles/mm as obtained at
device with input data having spatial frequencies as high FTI.
as 80 cycles/mm. With higher quality optical systems Both the Priz and Prom modulators have high optical
and a different area detection technique, FTI re- quality and allow use of large crystal sizes. The Priz
searchers have measured diffraction efficiency on the units evaluated at CMU had a 15-mm diam active area
device beyond 500 cycles/mm. Since the usable output with X/4 optical quality. Larger units have been fab-
light intensity at these high spatial frequencies is quite ricated (up to 30-mm diam) with -IX optical flatness.
low, only in selected applications can such resolution The standard Priz units have also been fabricated,

tested, and used with X/10 optical quality. The BSO
crystal in the Priz is nominally 400 ,m thick, and the
insulating layers are -3 pm thick. No substrate is used
in the Priz, or the Prom, as clamping effects change the
dielectric constants of the materials and induce stresses
in the device. One of the units tested at CMU is shown
in Fig. 1.

In Table I, we summarize the salient Priz perfor-
mance parameters. These data were obtained from
diverse FTI and CMU tests and experiments. As with
any BSO device, a wide range of performance is possible
depending upon the thicknesses used for the different
layers in the device. The parameters in Table I are all
simultaneously obtainable, but they should be inter-
preted with the above consideration in mind. In all
cases, the device should be operated at the intended
write light exposures Ew and write light wavelength Xw

. if optimum device performance is to be obtained. MTF
-" data are frequently used to describe the spatial resolu-

tion of SLMs. Since the Priz has a dc response of zero,
the MTF function r(f) is not usable for such a device.

Fig. 1. Priz spatial light modulator. Rather the diffraction efficiency 17 of such a device is the

Table I Prix Pawsmetq and Pedfomance Speclfcafts

Parameter Specification Parameter Specification

BSO crystal 400 pm thick Address time 7 nsec (min)
Insulating layer 3 jm thick Write/read cycle 1 msec (min)
Electrodes Pt or lnO2 Erase time 1 psec (min)
Active area Erase cycle 1 msec (typical)Typical 15-mm diarn
Maximum 30-mm dism Frame rate (typical) 20 frames/sec

Optical quality Dark Storage I min (typical)Typical )/Spcal X /4O Storage with readout 20-30 sec (typical)
Write light Diffraction effic. (qo) 1%

Wavelength 3500 nm Resolution
Ezpoi.ure (typical) 50 jiJ/cm2  at = 0.1o 30 cycles/mm
Sensitivity (for e - 1% at 5 cyck i'mm) 50 pJ./cm2  at 1 - 0.01 n0 > 100 cycles/mm

Read light max. measured > 500 cycles/mm
A (typical) 633 nm Spatial freq. response 11 l/f2
Intensity (typical) 2 mW/cm2
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appropriate parameter. This is why all spatial fre-
quency resolution data in Table I are given in terms of nil
17 vsf. These data were obtained with the Priz device
operated dynamically in real time. In coherent optical "
processing, the amplitude transmittance m(f) of the ,o-' _ _.
SLM vs frequency f is the parameter of interest. If an
analyzer is used and the input pattern is the sine wave "0
grating I - 1o(1 + sin21rfx), the amplitude transmit-
tance for the Priz can be written in the linear approxi-
m ation as 0"3

t(z) -m(f)coe2z/z. (4) 10-4

Equation (4) implies that the dc component of the Priz
response is zero [since from Eq. (3) A = 0 at f = 0], and a o fv sOP,.
the readout pattern has a r/2 phase shift with respect
to the recorded one. In this case, m (f) is directly ob- Fig. 2. Diffraction efficiency i vs spatial frequency /for the Prom
tained from the 'nOf) data provided by and Priz spatial light modulators.

Iml2v'i. (5

This expression follows from the Fourier transform
analysis of Eq. (4).

In Fig. 2, we show the diffraction efficiency 17 of Priz
and Prom units at comparable Ew = 50-pJ/cm 2 expo- a
sures. From these data, we see the superior diffraction
efficiency and resolution of the Priz. We also see that
the response of the Priz decreases at higher spatial
frequencies at a much lesser rate than that of the Prom.
Where m(f) vs f is plotted rather than '?(f), the differ-
ences would be even larger. We also note that the Priz
exhibits a suppressed response at low spatial frequen-
cies. This feature follows directly from the fact that,
upon uniform illumination of the device with write light,
a uniform longitudinal electric field is formed that has
little or no transverse component. Since the Priz em-
ploys the transverse electrooptic effect, it will not
modulate in response to such light. As a result 17 of the
Priz device peaks at a spatial frequency of 4 cycles/mm C
(for the unit tested) rather than at dc.

IV. Us* of the Priz In Pattern Recognition and Signal Fig. 3. Real-time image pattern recognition with the Priz used in
Processing Correlations the Fourier transform plane of a joint Fourier transform correlator:

An attractive optical correlator for image pattern (a) input and reference images; (b) cross-sectional scan; and (c) an
recognition is the joint transform correlator.16 In this image of the output correlation plane pattern. The two peaks to the
system, the reference object being sought is placed be- right and left in (b) and (c) represent the correlations of the two input
side the real-time input scene in the input plane of a 2-D objects.3
optical FT system. The objective is to determine if the
reference object is present in the input scene and to
determine its location. Such pattern recognition ap-
plications are appropriate for locating objects on an recorded on a Priz placed in the FT plane of a lens,
assembly line and locating areas and landmarks in which was behind the joint input pattern of Fig. 3(a).
satellite imagery as well as in missile guidance and many The FT of the data recorded on the Priz is shown in Fig.
other applications. In the joint transform correlator, 3(c) and its cross-sectional scan in Fig. 3(b). This full
the Fourier transform of the input and reference data correlation plane pattern contains a central term that
is formed on an intensity sensitive material (such as is the sum of the autocorrelations of each input object.
film, the Priz, or Prom). The Fourier transform of this The large spikes on the left and right in Fig. 3(b) are the
joint FT pattern is then formed, and it can be shown16  correlation of the two input objects. Their presence
that it contains the correlation of the input and refer- indicates that the two input objects are similar, and the
ence images. In Fig. 3 we show an example3 of such a relative position of the peaks denotes the location of the
correlation performed on the Priz. The FT of the two reference object within the field of view of the input
input objects [Fig. 3(a)], identical images of lobsters, was image.
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urns..,rnueuiaulsnlll~uillunuinllnnmnmSignal correlations have also been performed on the
11111 IIIIIIIIIIIIIIIII~lh~lhIIIIIIIIII~hIII a Priz. An image of a linear frequency modulated (LFM)

i signal [Fig. 4(a)] was recorded on the Priz. The F'T of
this pattern formed with a lens whose focal length was
matched to the frequency range of the I.FM waveform

JI4V. CAMfIA yields the resultant compressed pulse or output corre-
lation peak 2 shown in Fig. 4(b). The width of the ex-
perimentally obtained correlation peak was 1/100th of
the width of the original LFM signal. This is in good
agreement with the theoretical pulse compression factor
of 120 for the LFM signal used. The difference between
theory and experiment was due to taper in the input

CIATUR C'M"AJ light beam and other effects.
V. Image Spatial Filtering Using the Priz

Fig. 4. Real-time correlation or compression of a linear frequency

modulated signal using the Priz as the input transducer: (a) linear In Fig. 2 and Sec. Ill, we noted that because of the
frequency modulated input signal, (b) compressed output correlation transverse electrooptic effect in the Priz, dc and low

signal.2  spatial frequency data are automatically suppressed.
In Fig. 5(a), we show the reconstruction of a circular
input object recorded on the Priz. As expected, only
the edge contour of the object appears (due to the au-
tomatic dc spatial frequency suppression performed by
the Priz). The amount of dc suppression depends on
how closely the read light beam is incident to the normal
to the crystal. In our experiments at CMU, we were
able to obtain a dc suppression of 10- when the normal

Z .. _ to Priz was aligned within 40 of the read beam. For a
104 suppression factor, 10 alignment is necessary. In

. -.the image processing experiments at CMU (Figs. 5 and7), the read beam was incident at an angle of 1.70 to the

normal to the crystal.
The Priz has anisotropic properties arising from those

of the linear transverse electrooptic effect.'7 In par-
ticular, it exhibits a distinct difference in response to
circularly and linearly polarized read light. Figure 6
shows how diffraction efficiency to the Priz depends on
orientation of the crystal's axes when read out with
linearly and circularly polarized light.2 In the data of

(a) Figs. 5 and 7, the electric vector of the linearly polarized
light was along the [1111 axis of the crystal. In Fig. 6,
the diffraction efficiency 17 as a function of the angle
between the wave vector of the sine wave grating and the
[110] crystal axis is plotted in polar coordinates.

The outer circle in Fig. 6 describes the device's re-
sponse to circularly polarized input light. As seen, it
is quite uniform, and thus operation with circularly
polarized input light produces no directional preference
for input spatial frequency. The reconstructed image
in Fig. 5(a) verifies this response and is essentially how
the circular outer curve in Fig. 6 was obtained. How-
ever, the response of the Priz to linearly polarized read
light is quite different. In the two inner figure eight
shaped curves in Fig. 6, we show the response for lin-
early polarized read light. When the device is exposed
to linearly polarized input light, it exhibits a preferred
response il for input spatial frequencies oriented in one

(b) direction, while greatly suppressing input spatial
frequencies oriented in the orthogonal direction. The

Fig. 5. Real-time image edge enhancement and directional spatial direction in which spatial frequencies are suppressed
ftering using a 11 11) Priz: (a) edge-enhanced reconstructed image; can be controlled by the polarity of the voltage applied

(b, directionally filtered reconstructed image. to the modulator if the polarization of the read light is
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lilt'? CIRCULAR POLARIZATIof
INVEARtY POLARIZEo

or to

Fig. 6. Diffraction efficiency Yl for the Priz as a function of the angle
between the wave vector of the recorded sine wave grating and the
crystal's axes for input read light with circular and linear polarization.
Curves I and 2 correspond to experimental points for linearly polar-
ized light, and curve 3 corresponds to circularly polarized read light.

fixed. The two figure eight shaped plots in Fig. 6 were preprocessing operations for multisensor and IR pattern
obtained with the same polarity of the read light but recognition. In Fig. 7, we show the original IR image
with different polarities of the applied voltage. Dif- [Fig. 7(a)], the image constructed from a 11101 cut Priz
ferences arising from changing the voltage polarity can with the read light polarized at 45* [Fig. 7(b)) and with
be attributed to the optical activity of the BSO crystal. 17  vertically polarized read light [Fig. 7(c)]. The recon-
Figure 5(b) shows the reconstructed image of a circular structed image in Fig. 7(b) approximates an edge-en-
object recorded on the Priz and read with linearly hanced version of the original image, whereas the re-
polarized light. As seen, the spatial frequencies in one construction in Fig. 7(c) results in enhancement of
direction are suppressed as predicted by Fig. 6. vertical lines in the original image and suppression of

For a [1101 cut Priz, similar plots of 17 vs the read wave horizontal spatial frequencies in the original input
vector's direction result. However, for circularly pattern.
polarized read light, a saddle-shaped response rather
than a circular one results. Similarly, a larger qi (a factor
of 2 larger than for the [111] cut Priz) results when the VI. Dynamic Image Selection
[110] cut device is operated with linearly polarized read In investigating the response of the Priz to spatially
light. Thus the [110] cut device is preferable for mul- moving 2-D input patterns, it was found 4 that the de-
tichannel 1-D signal processing applications and others vice's response was a function of both the spatial fre-
in which directional spatial filtering is desired. Con- quency of the input data and the velocity with which the
versely the I1111 cut Priz is preferable for image pro- input data moved across the input field of view. A
cessing where a uniform response is generally desired modified version of the Priz was used in these experi-
for all input spatial frequency directions. ments. It had no insulating layers, so electrodes were

To achieve a high degree of suppression of the dc evaporated directly on the crystal's surface.' 8 The re-
component in the image (both with linearly and circu- sponse of the device to an 0.5-mm wide input line was
larly polarized read light), the modulator should be measured for different velocities (1-40 mm/sec) of the
placed between a high-quality polarizer and analyzer, input object across the input plane, and it was found 4

which in the case of circularly polarized light can be that the response of the device peaked when the velocity
achieved with a X/4 wave plate and a linear polarizer, was -7 mm/sec. The response of the Priz is thus a
The dc suppression, directional spatial filtering, and function of both time and space (i.e., the spatial fre-
edge enhancement features of the Priz are quite useful quency of the input data and the rate at which it
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Fig. 8. Schematic diagram of the optical system used to demonstrate
dynamic image selection or change detection on the Priz.

changes or moves with time). An initial attempt to
describe the combined time and space response of the

(a) device has been reported.53 8  Initial experiments 4.18

indicate that as the spatial frequency of the input data
decreases, the input velocity for which the response n
of the device peaks shifts to higher velocities.

To obtain this effect, the Priz is operated with a fixed
voltage across its electrodes rather than with the applied
voltage switched between positive and negative polar-
ities. In the normal mode (polarization of the applied
voltage switched), the device performs like the Prom.
Only with a fixed voltage will it perform dynamic image
selection. In this mode, the device responds only to
changes in the input image. This operating mode is
attractive for many applications such as change detec-
tion, and it also greatly simplifies the electronic support
system necessary (since a fixed rather than a switching
high-voltage supply can be used). Over a selected range
of input temporal frequencies ft (where this range varies
as a function of the input spatial frequency f.,), the 17 vs

(b) f, response is linear, and the device performs a time
differentiation of the input data. This range of ft is
quite small, and moreover it varies with the intensity
of the input write light. For these reasons, this Priz
device features is best termed dynamic image selection
(i.e., the device's output represents only the changing
part of the input data) rather than temporal differen-
tiation.4 This effect can also be observed with a fixed
input and with the write light beam pulsed on and off.
In this case, whenever the write light changes (goes on
or off), an output image of the input data appears and
then decays with a time constant that is a function of the
intensity of the write light. If the differential phase A0
of the output light is measured, it is seen to be of op-
posite sign when the write light is switched from off to
on compared to when it is switched from on to off.

When the Priz units were being tested at CMU, we
found this Priz feature to be most attractive and thus

40l assembled the system of Fig. 8 to demonstrate the use
of the Priz in change detection. The system of Fig. 8

Fig. 7. Real-time image edge enhancement and directional spatial contains two input planes. Plane Po contained a fixed
filtering ofIR imagery ona 11101 Priz: (a) original input image; (b) image, in our case a random pattern of uncorrelated
edge-enhanced reconstructed image; (c) directionally filtered re- noise and correlated noise of different correlation

constructed image. lengths and with different mean values. This fixed P0
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(b)

Fig. 9. Demonstration of dynamic image selection or change de-
tection in real time on the Priz: (a) composite image of a moving
target on a fixed noise background; (b) dynamic real-time selection

of the moving target portion of the image in (a).

pattern was imaged onto the Priz at P (by imaging lens it could be photographed. A fiber-optic (FO) probe
ILI) together with the F T of an acoustooptic) (AO) cell with a microscope and PMT was also placed at P., to
(using the FT lens FTL). The AO cell was operated in allow quantitative measurements of the output plane
the scanning mode with a repeated LFM input signal. to be made.
This caused a scanning spot to traverse the Priz (su- In Fig. 9(a), we show the full output image at P2 (with
perimposed on the fixed noise pattern from Po), thus the high-voltage Priz power supply operated in the
simulating a moving object on a noise background. The normal pulsed mode). This output shows the fixed
velocity of the scanning spot was adjusted to be 2.8 background noise pattern and the moving spot. (The
mm/sec, and its size was --1 pixel (40 pm). moving object or spot is present in the back left of the

Both the fixed and moving input patterns were im- figure.) When the high-voltage Priz power supply po-
aged onto the Priz in Xw - 476-nm light from an larity was fixed, only the time varying portion of the
argon-ion laser. Readout was performed in AR = input pattern appeared at the output. In this case, only
633-nm light incident normal to the Priz as shown in the the moving spot produced by the scanning AO cell was
left side of Fig. 8. The pattern on the Priz was then visible. In Fig. 9(b), we show the P2 output for one lo-
imaged onto P2 using imaging lens IL 2 through a crossed cation of the scanning spot (corresponding to a simu-
analyzer and a 633-nm filter (FIL). The output P2  lated moving target in the constant noise background
pattern was detected on a vidicon, and the dynamic image). As can be seen, the Priz suppresses the fixed
moving output was visible on an isometric display where background noise quite well.
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Table I Quaotkativ Dynamic knag. Selection Data on vh Paz

R. 1 2.5 10 25
R., 5 50 48 49

To quantify the amount of background suppression Many aspects of the Priz device are well understood.
obtained, the intensity of the moving spot was varied However, further theoretical analyses and modeling
and the ratio together with further device fabrication and experi-

intensity of the moving spot mental testing are necessary to understand fully and
average intensity of the fixed background (6) describe many of the observed features of the device.

Issues meriting further analysis include the nonlinearity
was measured at the input and output of the system associated with the transverse electrooptic effect, the
(i.e., with and without dynamic image selection or combined time and space dependence of the resolution
change detection). The results are summarized in of the device, and a theoretical formulation of the dy-
Table I1. From these data, we note that once the in- namic image selection feature of the device with at-
tensity of the scanning spot has been increased so that tention to the selection of device parameters to optimize
Rin = 2.5 or greater, a constant Rout "- 50 ratio results and control this effect.
with the intensity of the dynamic part of the output The promising performance parameters tabulated for
image being 50 times the average background level in the Priz light modulator and the experimental verifi-
the P 2 output. This occurred because when Rin was cation included of several of the novel features of this
increased above 2.5, saturation of the Priz occurred, and device indicate that a wealth of new research efforts and
thus no further changes in the effective Rin resulted. applications are still possible in the field of real time and
This is expected since, with the Priz in the FT plane of reusable spatial light modulators.
the AO cell, all the light from the cell was concentrated
onto a single pixel on the Priz. References
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ABSTRACT

The optimal correlation filter for the two-class discrimination problem is considered. A simple
iterative procedure is suggested for the design of the filter. Experimental verification of the per-
formance of this optimal correlator in discriminating the class of circles from the class of hexagons
is included.

1. INTRODUCTION

One of the basic problems in pattern recognition is the discrimination between two classes of data
objects. This problem is usually solved by first extracting the relevant features and then classifying
them. When the class of objects of interest consists of randomly distorted versions of one object,
statistical techniques are needed to obtain useful features. Several general approaches to statistical
feature extraction are available in the literature [1,2]. Most of these methods optimize some distance
criteria such as divergence [3] or Fisher discriminant [4] between the two classes. These distance
measures are not easily available for comparison purposes in optical correlation experiments. A more
useful quantity to optimize is the eignal to noise ratio since it can be easily measured. In this
paper, we will develop a new two-class discrimination correlator that 3ptimizes the output correlation
SNR.

The Karhunen-Loeve (K-L) expansion can be shown [5,6] to represent a random process in an optimal
sense. Fukunaga and Koontz [3] suggest a modification of this technique to improve its discriminatory
power. According to their method, the auto-correlation matrix of each class is transformed such that
the best fit eigenvector of one class represents the other class very poorly. Foley and Sammon [4]
determine the optimal discriminant vector that maximizes the Fisher ratio, the ratio of the between-
class variance to the sum of the within-class variances [1]. Caulfield, et al. [7] have used the same
Fisher criteria to design optically implementable discriminators. In this paper, we derive an optimal
correlator to discriminate one class of signals {x(t)j from another class of signals {y(t);, where both
{x(t)) and {y(t)) are considered as stochastic processes. The data sets {x(t)) and {y(t)) are in gen-
eral images and, for the problem we consider, each set consists of different geometrically distorted
versions of a different object. Our new approach is based on optimizing the cross-correlation output
SNR. This parameter is of more practical significance in optical processors than the other measures.
This optimal correlator will be derived by extending the conventional matched filter model. The
matched filter is a discriminator for the signal {x(t)) In the stationary white noise process {n(t),
whereas the optimal correlator considered in this paper is s discriminator of a class of signals ;x(t)'
from the nonstationary noise process {y(t)).

In Section 2, the nonstatIonary noise model is derived from the two-class problem. By assuming
that both stochastic processes {x(t)) and {y(t)} can be approximated by a finite K-L expansion with
basis function sets Id ) and {l) respectively, we will prove that the optimal discriminator can be
represented by a linear combination of the {4 i and {t . In Section 3, the optimal discriminator for
the two-class problem is determined. We present experimental results in Section 4 to support our con-
clusions. As our data base for simulations, we use circles with randomly-varying diameters as one
image class and hexagons with randomly-varying diameters as another class.

2. NONSTATIONARY NOISE MODEL

In the two-class discrimination problem, one class of signals {x(t)) is to be discriminated from
another class of signals {y(t)). In order to find the optimal filter which can discriminate {x(t))
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from fy(t)) in the presence of noise n(t). we use the model in Figure 1. The noise process {y(t)) is
nonstationary since it represents an image class with its own statistics that may be spatially varying.
We thus call this model a nonstatic.iary noise model.

I {x(t)) 1
or 0

(y(t)) + n(t)j)

FIGURE 1 Schematic of the nonstationary noise model.

The optimal filter is derived by maximizing the output SNR defined as

SNR --- E[fx(t)h(T-t)dti2 2

E[fPy(t) + n(t))h(T-t)dt]
2

T-01

where we assume l-D functions for notational simplicity and where (with no loss of generality) we
assume that the correlation peak occurs at T - 0. Letting T = 0 and h(-t) - f(t) in (1), we obtain

E[fx(t)f(t)dt]
2

SNR -2
EIf~y(t) + n(t)lf(t)dt] (2)

It can be reasonably assumed that each class of signals {x(t)) and (y(t)} can be represented with
sufficient accuracy by a finite dimensional subspace [8]. Thus when {x(t)} or {y(t)) is represented
using the K-L expansion, they can be approximated by the subspace spanned by a small number of K-L
basis functions. Let us assume that {x(t)) can be represented with sufficient accuracy by the basis

* function set {Oil and that (y(t)} can be similarly represented by the basis set {(p. Then, we can
compose s basis function set {Yn) (with N elements) which contains both {4i) and {ft) and we can pro-.,e
the following theorem. The optimal filter f(t) can be represented by a linear combination of the basis
functions {Tn}.

The proof proceeds as follows. Let the optimal filter f(t) be decomposed into fl(t) and f2 (t),
where fl(t) belongs to the subspace spanned by {'n} and where f2 (t) is orthogonal to that subspace,
and hence to the spaces spanned by {Oi and {k). Then, the SNR in (2) becomes

E[fx(t)f1 (t) dt2

E[f{y(t) + n(t)}fI(t)dt]2 + Ef{y(t) + n(t))f 2 (t)dt]
2  

(3)

I
Ii

[2
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From (3), the following Inequality can easily be proved,

E (Ix(t)f1 (t)dt]
2

SNR -c12
E[f{y(t) + a(t)IfI(t)dt]2 ()

The right hand side of (4) is the SNR obtained using the filter fl(t). Thus, (4) shows that the filter
fl(t) gives a larger correlation output SNR than the filter f(t) - fl(t) + f2 (t). Thus the optimal
filter f(t) can be completely specified by f1 (t) and hence by {.). We will use this theorem in deter-
mining the optimal filter in the next section.

3. OPTIMAL FILTER

To derive the optimal filter, we first describe the class of signals {x(t)) in terms of the ortho-
normal basis n

} 
as

x(t) = a , (t) + a21)2 (t) + ... + aSON(t) , (5)

where the coefficients {an } are random variables and where N is the number of basis images p(t). To
our knowledge, such a representation of randomly distorted imagery by a set of basis functions with
random coefficients and the use of SNR in (1) has not been employed before. Similarly, the noise
process {y(t)) can be represented by

y(t) = wll((t) + w 2' 2(t) + ... + wNi 4(t) , (6)

where the coefficients {w ) are random variables. From our theorem in Section 2, the optimal filter
h(t) is a linear combination of the {'n)

, 
i.e.

h(t) - p W1 (t) + P2 42(t) + ... + pNN(t (7)

The optimal filter f(t) can be determined by solving for the optimal coefficients {p ) in (7)
which maximize the SNR in (2). Since (TnJ is a set of orthonormal functions, the SNR in ?2) becomes,
after substitution of (5), (6) and (7),

E[ Iaiaipipi]

SNR - i ,l
E[ wiwiPiPi] + I pI, J.1 Ii'j-i (8)

We will rewrite (8) more succinctly as

T

SNR T T+~~SR"T + 1££ ,(9)

where p is the N x I column vector with Pn as its n-th element, I is the white noise power, A is the
N x N correlation matrix with its i,j-th element given by Ejaiaj] and W is a similar N x N correlation
matrix with its ij-th element given by Etwiv]. Finding the optimal Filter h(t) which maximizes the
SNR in (9) is equivalent to finding the optimal vector k which maximizes

3
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I + JY 2  (10)

under the condition - . Note that a simple scaling of the filter vector p does not change the
SNR.

The optimization problem in (10) is solved in the Appendix. The solution can be written as

(A - aW)p£ (1)

where a is a scalar. Because of the inter-dependence of k on a, an Iterative method is used to solve
(11) for k. The four steps in this new iterative algorithm follow:

STEP 1: Set a0 . 1.

STEP 2: Determine the largest eigenvalue Am and the corresponding eigenvector Z

for the matrix equation

(A - a W)pm  Ampm (12)

STEP 3: Modify am according to the Am value obtained as

If Am > am
1
, set a,+,- am + ha and

if AI < a mI, set .+1 , a m - M,

where A is a positive increment in a.

STEP 4: Repeat Step 2 and Step 3 until

A >aIandA < am+lI)m m m+l ml

or

A m 
< 

aml and Am+ I > Im+lI.

The eigenvector p. obtained is the solution of (11) and by (7) defines the optimal filter f(t).
For improved accuracy, we select Aa small; whereas for faster computation, a larger Aa is chosen. In
the initial iteration steps, Aa - 0.1 is chosen. As A approaches its true value, &a is dynamically
reduced to 0.01 to yield accurate final estimates of Am . Use of this iterative procedure can be justi-
fied because the maximum eigenvalue Am of (12) decreases for increasing a and vice versa. Let us
evaluate the maximum SNR obtained by this method. Substituting the solution of (11) into (10), we find

4I
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TA T [apTIa~ r
(SNR)opt " " " T -+ T . (13)

Since a must satisfy (11), and since A, is the largest eigenvalue of (A - aW), then Ia = X, and

(SNR)op t - a " Xm/I. (14)

The second classof images in Figure 1 can be treated as a stationary white noise part with power
I and a nonstationary noise part with the correlation matrix W defined in (6). The values of the
elements of the matrix W are indicative of the amount of nonstationary noise present in image class
{y(t)]. To determine the effects of nonstationary noise on the optimal filter, we rewrite (9) as

SNR RpT T

£TP + A R P

T

P T~Y k MR

-YSNR
I

, (15)

where

1
Y I

and

T

SNR k T + T (16)

We see from (15) that optimizing SNR
1 

is equivalent to optimizing SNR for a given y. For a fixed
amount of nonstationary noise, y will decrease as the amount of stationary noise I increases. Thus, y
can be viewed as a measure of the ratio of the nonstationary noise power to the white noise power in
the image. By analogy with the optimal weight solution of (11) for (9), the optimal weight p to maxi-
mize SNR

1 
in (16) is the lution to

(A - ayW)k - "P . (17)

The iterative procedure outlined previously is also applicable to the solution to (17).

From (17), we see that the optimal weight vector p will differ for different choices of y. Since
-y is not easily measurable for a general problem, we must estimate y using a priori information about
whether the data is dominated by stationary noise (small y) or non-stationary noise (large y) and then
use the appropriate filter h derived from p in (1"). For y - 0, we obtain the stationary noise case
and (11) and (17) reduce to Ak - aj, which states that the eigenvalues and eigenvectors of A alone
determine p in this case. We will refer to the solutions p to (17) for y 0 as a modified K-L solu-
tion or MKL(y) solutions.
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4. EXPERIMENTAL VERIFICATION

We have shown that the Iterative solution to (11) or (17) can be used to obtain the optimal weight
vector p and to have the coefficients for the discrimination function h in (7), where the {,i) are the
dominant eigen-images (with the largest eigenvalues) of the data set {xJi. Use of the iterative solu-
tion in Section 3 requires knowledge of the correlation matrix A for the {xi ) and the correlation
matrix W for the nonstationary noise or the second class of data (yi). Once the Wi and Xi eigenvectors
mnd eigenvalues of {xi) have been obtained, we can use them to compute A and W using

SAi~ - 16,, (18)
Ai'j Xi i.j*

and

Wij M (Yk ik (19)

where in (19), M is the number of Yk patterns, and the Yk " tJ are the projections of the elements Yk
onto the ipj, i.e. each Yi can be written as

Y, ('i '1kI'Pk (20)
k-1

In this section, we present digital simulation results to verify the performance of our optimal
discriminator for a specific two-class problem. As our data base, we consider two classes of geometri-
cal shapes: circles and hexagons. Randomness is introduced in each class by varying the radius of the
circles and hexagons from 10.0 units to 10.95 units in steps of 0.05 units. Each picture is recorded
in a 32 x 32 array and each class contains M - 20 such pictures.

We denote the M - 20 circles by {xi) and the M - 20 hexagons by {yi). We computed the N eigen-
vectors {i

} 
and associated eigenvalues from the {xi}. For simplicity, we retained the first five

eigenvectors denoted by {fi}, where i - 1,...,5 (those with the largest eigenvalues). For simplicity,
we used these {€1} as the basis set for the optimal filter f rather than computing the composite basis
5et {fn

} 
that includes the primary components of both {xi } and {yl

}
. The A and W matrices needed in

(11) and (17) were then formed as in (18) and (19) with N = 5 basis functions and M - 20 images. The
iterative procedure described in Section 3 was then used to compute the solution p to (17) for differ-
ent values of y. The principal eigenvector h found for ( - 0 (data dominated by stationary noise) and
for y - 50 (data dominated by nonstationary noise) are shown in Figures 2a and 2b respectively. In
Figure 2a (y - 0 case), the exact K-L technique was used, whereas for Figure 2b (y - 50 case), our
iterative MYL method was employed. Both figures appear quite similar, except for small contrast dif-
ferences. Our iterative solution thus appears to produce results qiite similar to those obtained using
the exact but computationally expensive K-L analysis.

The optimal discrimination filters h were calculated for eighteen different values of the param-
eter y and each of these h's was cross-correlated with all 20 circles and all 20 hexagons. The average
of the correlation intensities at the origin (correct peak location) was then calculated (for the cases
of circle and hexagon inputs) for each different y. These results are presented in Table 1, where C-
PEAK and H-PEAK denote the average correlation peak intensities for the case of the circles and the
hexagons respectively. In general, -1 is not easily measurable for a given two-class problem ar nust
thus be appropriately chosen for a prop, r filter design.
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FIGURE 2 K-L and IU filters, where Intensity is quantized to 16

levelIs (with 0 to 9 and + denoting positive values and

the letters A to E denoting negative values).

(a) The primary K-L component of the 20 circles.

(b) The optimal MKL(y) discriminator for a power ratio y - 50.

TABLE 1: Optimal discriminator performance by changing
the ratio of the nonstationary noise power to

the white noise power.

Y C-PEAK H-PEAK C/H

0 0.8255 0.1755 4.70
1 0.8056 0.1159 6.95
2 0.7751 0.0852 9.10

3 0.7483 0.0681 10.99
4 0.7265 0.0577 12.59
5 0.7090 0.0509 ... 93

10 0.6580 0.0368 17.88
15 0.6328 0.0322 19.64
20 0.6166 0.0299 20.62
25 0.6044 0.0284 21.26

30 0.5941 0.0273 21.75
35 0.5848 0.0264 22.15
40 0.5760 0.0256 22.49
45 0.5675 0.0249 22.81
50 0.5594 0.6242 23.09

125 0.4463 0.0169 26.43

250 0.3201 0.0105 30.42
-0.0314 0.0002 128.25

Y: The ratio of the nonstationary noise power to the

white noise power.
C-PEAK: Average peak value of the cross-correlation for 20

circles.
H-PEAK: Average peak value of the cross-correlation for 20

hexagons.

C/H: Ratio of C-PEAK to H-PEAK.
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We see from Table 1. that the filters h give larger relative values for C-PEAR than for H-PLAK for

all y values as expected. We also include the ratio C/H - C-PEAK/H-PEAK in Table 1 and note that it is

always greater than 4.70. This indicates that the optimal discriminator results in high average corre-
lation peaks for circles and low average correlation peaks for hexagons. The variance of these peak
correlation values from the average levels quoted was moderate. From this example, we see that our

optimal discriminator fulfills the intended purpose of discriminating two classes of data (here circles
and hexagons were used). The ratio (C/H) is a measure of discrimination performance of the filter.
For this simulation example, C/H is seen to improve as the value chosen for the filter parameter yused
in (17) Is Increased. This occured because no white noise was included in our simulations and thus the
input data set had yn - -. Thus, for this data test, we expect to find that the optimal filter would
have a parameter y that matched the YD of the data set. In general, a filter designed for a large y
will better discriminate against the class of hexagons. However, higher values of Y yield smaller
values of C-PEAK (as can be seen in Table 1) and this will make detection of the correlation outputs
more difficult and the measured SNR values susceptible to system noise. If the assumed white noise
for which the filter is to be designed is low (i.e., high y), then a lower C-PEAK value will be adequate
to provide sufficient detection. The smaller C-PEAK values that resulted for larger choices of the
filter parameter y in Table 1 show this trend. Thus y must be chosen as a compromise between the two
conflicting objectives of large C/H and large C-PEAK. This choice can best be made only in specific
applications and pattern recognition scenarios.

Numerical values associated with the correlations of the K-L and HKL filters with the circles
and i.exagons in the input data sets {x(t)) and {y(t)) are presented in detail in Table 2. Table 2a
lists the correlation peak values obtained when the circles were correlated with the K-L and O. fil-
ters. We see from this table that the K-L filter yields cross correlation peak values between 0.71
and 0.93 whereas the MKL (50) filter provides correlation peak values between 0.22 and 0.89. We note
that in general, smaller peak values were obtained as y was increased. This is as expected because
the K-L (y - 0) filter should be the optimal filter in the presence of white noise.

The cross correlation peak values obtained with hexagons as inputs are shown in Table 2b. The
K-L filter is seen to correlate much better with the hexagons than the MKL filters do. As a result,
the simple K-L filter cannot discriminate between circles and hexagons as well as the MKL filters can.
This aspect is more vividly demonstrated in Table 2c, where the ratios of the correlation peak values
in Table 2a to those in Table 2b are tabulated. We see that MKL filters provide much better discrimi-
nation (higher ratios) than simple K-L filters.

TABLE 2: Performance of discriminator.

(a) Peak value of correlation with circle (b) Peak value of correlation with hexagons

R KL ?0(L(1) MKL(25) MXL(50) R KL MKL(1) MKL(25) 0,L (50)

10.1 0.7593 0.4271 0.2707 0.2204 10.1 0.0846 0.0536 0.0422 0.0418
10.3 0.9056 0.7101 0.5735 0.5266 10.3 0.1020 0.0648 0.0511 0.0507
10.5 0.9284 0.8089 0.6759 0.6133 10.5 0.1397 0.0620 0.0543 0.0639
10.7 0.8860 0.8869 0.7787 0.7042 10.7 0.1935 0.0770 0.0614 0.0631
10.9 0.7347 0.8699 0.8833 0.8899 10.9 0.4527 0.1961 0.1086 0.0934

(c) Ratio of cross correlation peaks with
circle to cross correlation peaks
with hexagons

R ,L HKL(1) HKL(25) KIL(50)

10.1 8.98 7.97 6.41 5.27
10.3 8.88 10.96 11.22 10.39
10.5 6.65 13.05 12.45 9.60
10.7 4.58 11.52 12.68 11.16
10.9 1.62 4.44 8.13 9.53
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5. CONCLUSIONS

The optimal correlator which discriminates between two classes was obtained by applying a new

image model to the conventional matched filter derivation. In our new model, one class was considered

as stochastic signals and the other class as a nonstationary noise process. A primary application for

this two-class discriminator is to recognize and distinguish two objects, when distorted versions of

each can be present. In our model, each image class was described by a linear combination of basis

functions whose weighting coefficients were random. This new description for a set of geometrically

distorted versions of an object allows us to formulate a new two-class discriminator.

Using the output SNR as our optimality criteria, we derived the optimal filter. We also proposed

a new Iterative procedure that makes the discriminator's design practical.

This new discriminator synthesis concept was tested on a data base consisting of 20 circles and
20 hexagons, each with a different radius. From our results, we found that there were tradeoffs be-
tween the discrimination power of the filter and the correlation output peak values for a given dis-

criminant filter and that these could be adjusted by changing one filter design parameter y, the ratio
of the nonstationary noise power to the white noise power in the image set. We showed that by changing
', we could make the filter perform more efficiently in the stationary or nonstationary noise cases.
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APPENDIX

We now derive the solution p to the optimization problem of (10) by using the Lagrange multiplier
method. Defining

____A _ T
I + 1>T .

where A Is a scalar, we observe the deviation 6L of L with respect to the deviation 
6
p of p. From (Al),

6L can be written as

6L - -)(I + -P-) - (PWP)(TA) - T (dP)(I+ (A2)
(I + T Hp)2

If there exists a p such that 6L - 0 for any 6p, then that p value determines the maximum value of L.
By assuming the existence of such a k, we obtain from (A2) with 6L - 0 for any 6p,

(I, + pT_1p) A (p )w1- H2 0( _1>:1.o (A3)

By premultiplying (A3) by pT, we obtain

T(I + P )2 - zT A. (A4)

Using (A4) in (A3), we obtain

{2 (IiU + W)A p - (PA)(IU + _)£ - 0 , (AS)

where U is a unit matrix of size N x N. From (A5), we observe that

AP. - ci(IU + W)p, (A6)

where a is a scalar. (A6) can also be rewritten as

(A - okW)p - cLIp. (A7)

Thus the optimal weight y in (10) can be obtained by solving (A7).
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ABSTRACT

The synthetic discriminant function concept together with its modifications of maximum
common information filters and decorrelation transformations are reviewed. We then advance
a unified procedure for determining the coefficients for such linear combination filters for
recognition of objects in different orientations and from different aspect views. Our for-
mulation c cilizes only deterministic techniques and a correlation matrix observation space.
This formulation is most attractive for the realization of shift-invariant filters for use
in correlator architectures. We then advance the highlights of our initial results on the
performance of this new type of generalized shift-invariant filter.

1. INTRODUCTION

In the optical data processing community, considerable attention has recently been focused
on the use of off-line matrix techniques applied to image trainirq sets to derive filter
functions that are capable of recognizing and distinguishing objects independent of geomet-
rical distortions in the input image. In Section 2, we summarize much of the research in
this area. To permit such a summary, we consider only deterministic techniques applied to
image training set data and to techniques in which the resultant filter(s) is (are) linear
combination (s) of the input training set data. We emphasize the differences between possible
observation spaces used (Fourier transform coefficients [1-3], correlation matrices [4-7],
etc.) and different applications (intra-class recognition of a target object of one class
independent of geometrical distortions present in the input image 14-6], inter-class dis-
crimination of different objects with no geometrical distortions 1] and prior work [3,7]
and new research in which inter-class discrimination is achieved while retaining intra-class
recognition). We consider only cases in which shift-invariance is retained and thus do not
consider the wealth of research using other observation spaces and image features such as
the moments [8-10]. coded-phase processors [11-13], Mellin transforms [14] and techniques
with no organized feature selection.

In Section 3, we review the concepts of a synthetic discriminant function (SDF) [4-5],
maximum common information (MCI) filter [6] and the decorrelation transformation [7]. In
our discussion, we include a review of the hyperspace formulation of an SDF and inter-class
problems plus the effects of noise. These provide the basis for our description in Section
4 of a class of linear combination filters obtained by deterministic techniques. This for-
mulation in Section 4 represents a new unified treatment that emphasizes how the coefficients
for these SDFs are obtained. This differs from another unified treatment [15] that empl,a-
sized the philosophy of such filters and the fact that they are linear combinations of fil-
ters matched to each of the input training set objects. Our emphasis in Section 4 is on
calculation of the weights in a linear combination filter (this issue is not addressed in
(15]). In Section 5, we include initial results indicating the power of these SDF tech-
niques for intra and inter-class pattern recognition for identification of objects in multi-
ple classes with geometrical distortions present.

2. HISTORICAL DEVELOPMENT

In 1969, Caulfield and Maloney [16] considered the correlations of the letters of the
alphabet with matched spatial filters (MSFs) matched to each letter. They noted that each
input letter gave large cross-correlation outputs with many of the different MSFs. They
then reasoned that if linear combinations of all 26 correlation outputs were used rather
than a thresholded version of each correlation output, character recognition could be im-
proved. Recent research has noted that an MSF that is a linear combination of the MSF of
each character could be used [1] and that such a description was appropriate for intra-class
and inter-class recognition [15]. The resultant MSFs are referred to as generalized matched
filters (GMFs) 1-3], synthetic discriminant functions (SDFs) [4-7j, and similar terms. The
key feature in these approaches is that the SDF is a 2-D function through which the input
image is projected or correlated. This differs from the classical feature extraction and
image classification techniques in which scalar features are extracted from a segmented por-
tion of an input image and then used in a classifier. Our SDFs are 2-D functions and are
used in a correlator. Thus, they exhibit processing gain, shift-invariance, the ability to



recognize multiple targets and operate in noisy backgrounds without the need for segmenta-
tion and extensive preprocessing. For these reasons, such techniques have received consid-
erable attention in recent years (especially within the optical processing community where
correlation is easily achieved).

In 11], Caulfield and Haimes discussed GMFs and their similarity to linear discriminant
functions in conventional pattern recognition. In [4-5], Hester and Casasent detailed and
demonstrated the use of a matrix-vector technique by which an SDF could be obtained that
gave the same correlation output intensity for any aspect view of a given object. We refer
to this as an equal correlation peak (ECP) SDF and note that it addresses only the intra-
class pattern recognition problem. Fourier transform and correlation matrix observation
spaces have been the most used. The filter obtained from such observation spaces is easily
fabricated as an MSF and is thus useable in an optical or digital correlator. Thus, we re-
strict attention to such cases. Many techniques are possible by which to obtain the weights.
Those used and documented thusfar include: Foley-Sammon (F-S) [2,3,17) which optimizes the
Fisher ratio [181; Gram-Schmidt (G-S) [5]; optimization of correlation output SNR [5]; maxi-
mum common information (MCI) SDF [6]; decorrelation transformations 17]; and statistical
Rarhunen-Loeve (K-L) techniques [7] as used by Duvernoy and Lager [19] and Fukanaga-Koortz
(F-K) [201 methods [12). Each of these leads to an SDF that is a linear combination of the
input training set data. However, each approach is intended for different purposes and de-
pending upon how they are realized, shift-invariance is not always achievable.

3. MCI AND DECORRELATION TRANSFORMATION SDFs

Our initial formulation of an SDF [4,5] considered only the intra-class problem or an ECP
SDF. To describe this problem, we consider an input training set of images {fn} of objects
of one class taken from different aspect views. We desire to derive an SDF h that is a lin-
ear combination of the if,) such that f • h = c = 1 (where we arbitrarily c~oose unity as
the constant c output from the correlation of h with any input image in the data set). To
obtain h, we write each fn as a linear sum of a set of basis functions m

f (x,y) = E an (X,y). (1)
n m rnm

In this description, the ¢m are the axes of a hyperspace (each is a 2-D function) and each
f. is anM-dimensional vector defining a point in this hyperspace with the projections on
each Im axis being described by the coefficients anm. We write h as a linear sum of the

h(x,y) = 2 b t (X,y). (2)
m m

Our ECP condition requires (for an orthonormal basis function set Cm)

f h = f • h =lZa b = c=li. (3)-n - mrun m

We determine the m and anm by diagonalizing the correlation matrix

R -Rf f. f.={fr) (4)
f ifj -i j ij)

We originally used a Gram-Schmidt technique to achieve diagonalization of R by selection of
a set of orthogonal basis functions. Once this has been done, the om and anm are then given
by

E d nf (5)

i Ln"' (6)

where the dmn are the elements of the G-S coefficient matrix (assuming a G-S decomposition
is used, as we have initially employed). With the $m and anz so determined, the bm are then
obtained from (3) and h is then constructed. Denoting the elements of the target matrix ET
by the anm in (1), we described (4-6] condition (3) by

T h" c u, (71

where u is the unit vector and the solution for the SDF h is

h FT"1 c U. (8)

t",
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This describes h in terms of . Substituting (5) into (8), we obtain an expression for h
in terms of the-training set data f .- In Section 4, we advance a direct derivation of thIs
ECP filter function h from the correlation matrix rather than including the intermediate
basis function description.

To improve the performance of this SDF, we (6] analyzed the effects of noise in a hyper-
space and showed that maximizing the correlation plane SNR required maximizing the filter
energy. In (6], we achieved this by shifting each of the images in our training set to max-
imize cross-correlations (the elements of the covariance matrix). This MCI SDF yielded ex-
cellent results. As a data base, we used several IR images of a tank from different aspect
views (typical images are shown in Figure 1). The resultant correlation outputs exhibited
correlation peak intensity values that were equal within 5%.

f1  (RIGHT SIDE) f5 (REAR/SIDE)

FIGURE 1 Typical images used in initial maximum common information syn-
thetic discriminant function synthesis and correlation tests.

To extend this SDF technique to inter-class discrimination, we [7] suggested and demon-
strated the use of decorrelation techniques, K-L techniques and multiple SDFs. We review
our decorrelation technique below as it forms the basis for our mutual orthogonal function
SDF technique described in Section 4 and our method to realize the orthogonalized correla-
tions of 1,15] from a correlation matrix observation space. We first 17] formed an MCI SDF
from two tank images and then tested its discrimination ability against an APC input object.
The correlation peak intensity for the APC was 7dB below that for the tank images. This in-
dicated the inherent structure and discrimination ability of the MCI SDF. To improve this
discrimination ability, we devised the decorrelation transformation in which the system was
trained with N images of one target and then N images of a second target object. We used a
G-S basis function generation technique and the property of the G-S decomposition that basis
function 0m is a function of the input images up to fm only. We formed a 2N x 2N target ma-
trix FT. We then multiplied this by a decorrelation transformation matrix p that retained
only the last N rows and columns of FT. This new F+ target matrix was then-inverted and
used in (8) to derive a decorrelation SDF h'. This h' has all of the information of the
first class of targets removed and containi only those portions of the second class of ob-
jects not present in the first class of targets. It should thus be very successful in pro-
ducing a zero output for any input image in class 1 and a unit output for any image in class
2. We successfully demonstrated this filter in a simple test using two objects fl and f5
from one class and an object ff from another class. In Figure 2, we show the resultant ma-
trices. The final filter function used was a linear combination of all training set images

h' - f1 + 0.42f 5 - O.lff* (9)

This filter gave equally large outputs for inputs f and f5 and zero outputs for input ob-

ject ff.
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f f1 f5 ff 1 f5 1 2 03 '2 93

f f 2.68 0.54 0.91 0 1 0.61 0 0 f f 1.63 0 0 f 1  2.98 0 54.6 0

f1  0.54 8.79 1.94 02 -0.06 0.33 0 fl 0.32:2.98 0

f5 0.91 1.94 18.9 93 -0.07-0.04 0.23 f5  0.54:0.05 4.26 f5 0.05 4.26 -0.69 38.2

(2a) (2b) (2c) (2d) (2e)

FIGURE 2 Data matrices for the initial demonstration of the decorrelation trans-
formation. (a) Auto-correlation matrix, (b) G-S coefficient matrix, (c)
full target matrix FT, (dJ reduced target matrix F and (e) inverse of
reduced target matrix F 1

4. UNIFIED SDF SYNTHESIS TECHNIQUE

From our discussions in Sections 1 and 2, we see that various SDFs and GMFs exist for di-
verse purposes. In this section, we describe four types of SDFs and show how the synthesis
of each can be described in one general expression involving the correlation matrix. As our
observation space, we choose the correlation matrix of the training set data. Such an ap-
proach leads directly to an SDF that is a linear combination of the training set data and to
evaluation of the coefficients necessary.

We first consider an ECP SDF h that will yield an equal correlation peak intensity output
h 1 fn - I for any aspect view {yn) of an object of one class. As in Section 3, we write fn
and h as

fj, h= Z b. (10)-n nj - j=j

and we require the correlation coefficient of h with any fn to equal a constant 1, i.e.

h 0 fn = h • f = Ean jb j . 1, (11)

where the orthonormality of the Oj was used in (11). To find h, we first rewrite (10) as

j= Z d. f (12)
-) n )n n

and h as

h =bl 1  + b2 €2 + ...

b n nd lnf n + b2 Id 2nf + .

E enfn , (13)
n n n

where the first expressior is (10) rewritten, the second expression follows by substitution
of (12) and the last expression is obtained by grouping fn terms. To obtain h, we must now
solve h- enfn for the coefficients en . Substituting (13) into (11), we obtain our ECP
condition as

h I fL e I f f - I e (f - f ) eI R (14)
n n n o n n-n n rn n

or

Re u, (15)
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where R is the correlation matrix of the training set, e are the desired coefficients and u
is the unit vector. The solution for h (or its coefficients e) is thus

e = R-u. (16)

Thus, to derive an ECP SDF, we form the correlation matrix R of the training set data of
different aspect views {fn of one class of object. We then invert R and multiply it by the
unit vector u to obtain the coefficients e from which to synthesize the linear combination
SDF h. This-follows the ideas used earliFr [4-6] with the correlation matrix in (16) re-
placing the target matrix in (8) and without consideration of the details of the basis func-
tion selection used. Our original technique [4-6] simply specified a Gram-Schmidt technique
by which to find amatrix to invert. This ECP SDF is useful for intra-class pattern recognition.

Next, we consider a combined inter-class discrimination problem that still retains intra-
class recognition. We consider three classes of objects {fa) , {fb) and {fc }. We desire
three filters h1 , h andoh 3 such that: for any input fn, fn " gives a one output if fn
is in class {fa ad zero otherwise; h2 f n = 1 if fn is in class fb) etc., i.e.

h f = . (17)-- n mn

We write these three filters as three separate linear combinations of the entire training
set {fn) = {fa,fb,fc}

i =  ann 2 = I bnfn , h3 = 1 c n f . (18)
-3 n-n

In terms of the correlation matrix R of the full {fn } data set, we can describe the three
filters (i.e. the coefficient vectoFs a, b, c) by

1 ) 01OT 0 IT,
Pa = = [1 0 0]T , Rb = H2 = [0 1 0]T , Rc = U 3 = [0 0 1]T , (19)

where the number of l's and 0's in the output vectors u depend upon the ntrber of elements N in
each class in our training set. The solutions for these three filters are thus from (19)
and (16)

a = R -l l = R -111...1, 0.-0, 0..0]
T

b = - 2 = R- [0...0, 1 ...1, 0 ... 0

u = R-I 3  = R 1 [0.. .0, 0.. 0, -.. ]T .  (20)

Note that these two filters provide inter-class discrimination and intra-class recognition.
The concept used to synthesize them follows directly from our decorrelation transformation,
but is applied to the correlation matrix. Note that these filters are also equivalent to
the orthogonalized correlation functions described in 11,151. Moreover, note that the form
for synthesis of these filters in (20) is the same as used in (16) with the exception of the
exogenous vector. In (16), u is all l's, whereas in (20) it contains a I only for those
members of the input training set-that wewish the given mutual orthogonal fuction (MDF) SDF b recognize.

This MOF technique can be extended to an N-class problem by devising N MOF SDFs and ana-
lyzing the N output correlation planes. This can become quite complex if a large multi-
class problem is involved. In such cases, use of non-binary correlation output threshold
levels can be employed. In this case, a single filter can be designed to perform multi-
class pattern recognition. To describe this and to formulate synthesis of such a filter in
our general form in (16) and (20), we consider the three class problem described above.
However, now we require one filter h such that

h • f - I if f is in class {fa }

- -n

h • f - 2 if f is in class {fb )

- -n

h • f - 3 if f is in class {fc). (21)- -nc

We write this filter as a linear combination of the entire reference set {fn) as

I.
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h = Z a f . (22)
- n -n

To find the coefficients an, we solve

Ra = H4 (I ...-' , 2.. 2, 3 .. 3]T . (23)

This follows directly from (21) and (15). As before, the number M of I's, 2's and 3's in
the vector 4 depends upon the number of images present in each class in the training set.
The solution for the coefficients a of this nonredundant SDF (NRF) is thus

a = R-u 4  = -111... , 2 ... 2, 3 ...3 T .  
(24)

Fleuret and Maitre [21] described an algorithm which used K SDFs (with binary outputs,
i.e. 1 or 0) to achieve recognition of N = 2K classes of objects. In this case, the K cor-
relation outputs are viewed as a K-bit digital word whose decoded output tells us which of
the N classes of data the input image belongs as also described by Braunecker et al [22).
We now adapt this technique into a coherent correlator (only noncoherent correlators were
addressed in [22]) and we describe it in our general form. We refer to this as a multi-
class MOF. We consider its use for a 4-class problem {f ) to {fd}. We require two filters
tl and h2 such that the correlations of the input with t9e two filters yields the two cor-
relation outputs: 00, 01, 10, and 11 respectively (the binary combination that occurs de-
termines which of the four classes of data is present in the input). To describe the hl and
h2 solution, we denote the full data set by fn1 = {fafb,fc,fd}, its correlation matrix by
R and the two filters by

I= a 2 = I b f (25)

To determine a and b and hence the two filters, we solve a matrix equation of the same form
as (16), (20)-or (21) with yet a different vector u used.

We have thusfar seen how a single unified formulation involving the inversion of the cor-
relation matrix of the data and multiplication by a simple vector can be used to describe
the coefficients required in many linear combination SDFs. The cases considered above in-
clude intra-class, inter-class and multi-class pattern recognition. As the number of images
used in each of the classes is increased, these filters can provide both inter-class dis-
crimination and intra-class recognition in the face of various geometrical and other distor-
tions of the input data.

5. INITIAL RESULTS AND CONCLUSIONS

We have used the general deterministic formulation from a correlation matrix observation
space for synthesis of various SDFs for intra and inter-class recognition. In our initial
new tests, we have used images of four different objects with 36 images of each object avail-
able (taken at 10* intervals from an 0* depression angle). As our training set, only 6
images of each class of objects (out of 36 possible images) were used. In each case, a par-
ticular SDF was synthesized as described in Section 4. This SDF was then correlated against
all 36 images in each of the indicated object classes. An ECP SDF was produced for the
class one objects and a second one for the class two objects. Each of these SDFs was cap-
able of recognizing all 36 objects in each of their particular classes with no errors and
with less than a 3% variation in the correlation peak intensity obtained. This initial ex-
periment demonstrated the ability of an ECP SDF to recognize objects of a different class
not present in the training set. A 2-class MOF filter was produced. This filter was tested
against all 72 images in each of the two classes. In demonstrated inter-class discrimina-
tion and intra-class recognition with over 90% probability of correct recognition. The 4-
class MOF we formed achieved similar results. These initial tests were most encouraging.

In this paper, we have reviewed several different types of SDFs (equal correlation peak,
maximum common information, decorrelation transformation, mutual orthogonal function, non-
redundant, and multi-class). Each is a linear combination of the input training set. All
have been unified into a direct technique to determine the coefficients by a similar matrix-
vector equation with the matrix being the correlation matrix and with a different vector
used for each type of SDF. Each SDF is intended for a different application (intra-class,
inter-class or both). We have described and experimentally demonstrated an SDF technique
that achieves both inter-class discrimination and intra-class recognition and that in this
technique only a few images (17% of the data was used in our experiments) can be used for
training and yet recognition and correct classification (in multi-class recognition problems)
of over 90% correct recognition can be achieved.
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PATTERN RECOGNITION CORRELATORS

I



I
n Principal-component imagery for statistical

pattern recognition correlators

B. V. K. Vijaya Kumar Abstract. Concepts, measures, and models of image quality are shown to be
D. Casasent quite important in pattern recognition applications. Pattern recognition of
H. Murakami* imagery subjected to geometrical differences (such as scale and rotational
Carnegie-Mellon University changes) and intensity differenceF (such as arise in multispectral imagery) are
Department of Electrical Engineering considered. After modeling these image differences as a stochastic process,
Pittsburgh, Pennsylvania 15213 the optimal filter is derived. This filter is shown to be the principal component of

the data. This pattern recognition algorithm is verified using multi-sensor
imagery, and the results are found to compare favorably to those obtained
using other candidate techniques.

Keywords: image quality- pattern recognition.

Optical Engineering 21(l). 043-047 (January/February 1982)

CONTENTS Our major concern is how to select and synthesize the optimal
I. Introduction filter for a statistical correlator from the image data sets given. The
2. Statistical correlators quality of the imagery and its common information clearly affects
3. Optimal statistical filter filter selection. In Sec. 2, we describe our statistical correlator model.
4. Experimental results It is similar to the conventional one,9 except that the reference object
5. Summary is not deterministic. In Sec. 3 we show that the principal component
6. Acknowledgments of the K-L expansion is the optimal linear filter that maximized the
7. References signal-to-noise ratio (SNR) of the output correlation. Simulation

results are included in Sec. 4 to verify the performance of such a filter.
I. INTRODUCTION

2. STATISTICAL CORRELATORS
Efforts have recently been made1. 2 to collect research on image
information content and image quality measures and to discuss their We consider only correlation techniques for such scene-matching
use in photographic and printing processes as well as in image problems, because such methods have proven useful in many cases.
processing. In this paper, we consider the effects of image quality in A correlation can be realized by both opticalO and digital'I methods;
pattern recognition applications. Specifically, we consider how to however, we make no judgment at this time on which is preferable. A
extract the optimum information from a data set and how to use it correlation is known to be the optimal operation by which a deter-
for selection and synthesis of the optimum filter for pattern recogni- ministic reference function can be extracted from additive white
tion. We consider a statistical correlator and the problem of recog- Gaussian noise. However, when random geometrical and intensity
nizing a reference object in the presence of various geometrical and differences exist between the input and reference imagery, the per-
intensity differences present in the real-time sensed input image. As formance of a correlator rapidly degrades. 12 Although much research
we will show: Karhunen-Loeve (K-L) transform techniques3

.
4 pre- exists on general statistical pattern recognition, 3.4 little effort has

viously used in bandwidth compression,$.6 techniques for computing been devoted to generalized correlators with random image distor-
the primary K-L components of an image data set,' and image or tions. Prior work in this area has focused attention on performance
system quality measures such as space-blur bandwidth product 8 are improvement by deterministic methods such as coordinate trans-
of use in pattern recognition, formations13 and image plane weighting.' Most prior statistical

pattern recognition work' .4 has used the divergence between two
classes as the performance measure for the system. In this paper, weJpresent address: Toshiba Corporation, 70. Yanagi-Cho. Saiwai-Ku. Kawasaki. 210 Ue correlation SN R since we are considering correlator systems and

Japan.
since this parameter is easily measured for such systems.s - 1Paper IQ-107 received July 10. 1931; revised manuscript received Aug. 14. 1981; In Fig. ,weshowthemodelfortheconventionalcorrelatorwith

accepted for publication Aug. 18, 1981; received by Managing Editor Aug. 21. 1981.
0 1482 Society of Photo-Optical Instrumentation Engineers. a deterministic input signal x(t) corrupted by additive noise n(t)
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I
Fig. 1. Conventional correlator model. Fig. 2. Statistical correlator model. i "

producing an observed signal y(t). We will consider only I-D time as in Eq. (2), where the averaging is performed for different times
domain data for notational simplicity. The extension to the case of along a single sample realization of the signal (i.e.. a time-average
2-D spatial data follows analogously. We denote the correlation correlation.function results). Wedenotetheensembe-average corre- I
output by c(T) where r is the correlation plane shift variable. We lation function of the stochastic process I x(t)I by
assume (with no loss of generality) that the correlation peak occurs
at r = 0. The linear filter h(t) is designed so that the output c(O) Kxx(t.s) = E[x(t)x(s)] . (4)
emphasizes the signal x(t) and reduces the noise n(t). We can observe i
that the output c(r) contains a deterministic part due to the signal It

x(t) and a noisy part and that zhe optimal filter h(t) is designed to In Eq. (4), the average is over the ensemble of signals (or images)
maximize the output SN R at T 0. The output SN R is expressed as x(t). This is a new and quite different statistical averaging from the

one that is usually performed. In normal statistical image process- I
[fx(t)h(r-t)dt] 2  ing, the statistics of the pixels of a given image. or blocks of pixels in

SNR = (I) a given image, are considered and the statistical averaging is per-
R E~n(t)h( r t) dt] 2  r = 0 formed over these pixels or these blocks of pixels as in Ref. 16. Inour

pattern recognition, the randomness in the data is between different
This represents the ratio of filter output powers when the input is only distorted versions of an image. Thus, in Eq. (4) we form the average
signal and only noise. The optimal filter h(t) is chosen to maximize over theensemble of signals (or images) rather than o~er the pixels in
this SNR because this emphasizes the output power due to the signal one image. This model and performance measure using the ensemble
while deemphasizing that due to the additive noise. This SNR is also of signals and SN R has not been used in prior work. We feel that this
an easily measured parameter. We assume that the target and the is a vital step in the design of optimal correlators. As our correlation
correlation peak occur at r = 0 with no loss of generality. The optimal output SNR measure for the statistical correlator of Fig, 2. we thus use
filter which maximizes this SN R can be shown to be equivalent to the
maximum likelihood detector, thus yielding the minimum false alarm. E[fx(t)h (r - t)dtj 2

This optimal filter is9  SNR = E[Sn(t)h(r-t)dt]2 r (5)

[htbptimal X(-t) .The major difference between Eq. (I) and Eq. (5) is in the numerator

Since this is a time-reversed replica of the signal x(t), this optimal where the E[.] operator is used in Eq. (5) to account for the random i
filter is referred to as matched filter. With this choice for the filter, the inputs. The SN R in Eq. (I) is appropriate only when x(t) is determin-
output c(r) is istic. In our pattern recognition applications this is not the case since

the x(t) inputs are randomly distorted functions. The optimal statis-
cyx(r) = fy(t)x(t - r) dt . (2) tical filter is defined as the filter h(t) which maximizes this output

SNR in Eq. (5). If we define f(t) = h(-t), we can rewrite
which is the cross-correlation of x(t) and y(t). Thus the piese:,.e of
the signal x(t) will be optimally detected by correlating the observed SNR E[fx(t)f(t)dt] 2 

_ fff(t)f(s)Kxx(t. s)dtds (6)
signal y(t) with the true signal x(t). E[fn(t)f(t)dt] 2  fff(t)f(s)Knn(t.s)dtds (

Our concern is to maintain recognition and to select the best filter
h(t) to be used when the observed signal y(t) is a noisy version of a where Kxx(ts)and Knn(t, s)are the ensemble auto-correlation func- r
distortedsignal x(t). These distortions will be known apriori only in tions of random processes Ix(t)I and In(t)}, respectively. For the case
a statistical manner; e.g., we may be able to bound the range of when In(t) is white noise with uniform power spectral density N, the
magnification and orientational differences. To model such a prob- auto-correlation function Knn(t,s) can be expressed as'5
lem and the resultant correlator, we describe the signals (images) of
interest by the signal class 1x(t)1, where Ix(t)I can only be character- Knn(t, s) =N 1 (t - s) , (7)
ized in a statistical manner and where its parameters depend on the
maximum amount of distortion that we wish to consider in x(t). The where 6(t) denotes a Dirac delta function. The SN R in Eq. (6) can
model for the resultant statistical correlator is shown in Fig. 2. The then be written as
inputs Ix(t)} are the class of signals to be detected and all other
parameters are as in Fig. I. The input y(t) to the filter in Fig. 2 is a fff(t)f(s)Kx,(t,s)dtds
possible signal x(t) in the class Ix(t)} with additive noise n(t). SNR f) (t)dt (8)

To derive the optimal filter h(t) for this statistical correlator, new N J'f2 (t) dt
signal and correlation models are necessary as well as a new output
correlation SNR measure. We will model the input signal x(t) as a The white noise assumption in Eq. (7) is commonly made. In cases
sample realization of the stochastic process Ix(t)} as in Ref. 15. We for which it is not appropriate. pre-whitening operators can be
will then define the correlation function in terms of both the time applied as preprocessing functions prior to correlation.
average as in Eq. (2) and in terms of an ensemble average. We
describe the time correlation function for the signal x(t) by 3. OPTIMAL STATISTICAL FILTER

We now consider how to determine the optimal filter function f(t)
Cxx(r) = fx(t)x(t-r)dt (3} that maximizes the statistical correlation output SNR expression
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Eq. (8) de,,eloped in Sec. 2. We note that the integral in the denomi- 4. EXPERIMENTAL RESULTS
* nator of Eq. (8) is the energy of the filter. It is thus acceptable to

consider a normalized filter energy or In Sec. 3. we showed that the optimal filter for a statistical correlator
to detect stochastic signals (randomly distorted reference functions)

ffZ(tldt = I . (9) was the principal component of the stochastic process Ix(t)i thatcharacterizes these signals or equivalently the dominant eigenvector

To optimize Eq. (8), we thus find the f(t) that maximizes the numera- or eigenimage of the ensemble correlation function Kxx(ts) in Eq.

tor in Eq. (8) subject to the condition in Eq. (9). (4). In this section, we provide digital simulation data comparing the

We achieve this by expanding the correlation function Kxx in performance of our statistical correlator to other types ofcorrelators

terms of K-L basis functions Oin, where {On(t)I are the set of ortho- for the recognition of distorted versions of a reference image.
normal eigenfunctions of the integral kernel Kxx(t, s), as As our image data set, we used four multispectral images of anarea south of Fresno, California (Fig. 3). We denote these images by

t .(10) PI, P2. P3 and P4. They were taken from the multispectral scanner
K 'nn(t)n(S) - (10 on the Landsat satellite in the spectral bands 0.8 to 1.1 gm, 0.7 to 0.8

n pm, 0.6 to O.7 mm, and 0.5 to 0.6 pm, respectively. Each digital image
was of size 128X 128 pixels with 256 gray levels per pixel. The

where the An are the eigenvalues corresponding to the f'n1" Using principal-component image was computed and is denoted by P5.
inner product notation and the orthonormality of the l{nl' we can For comparison, we also computed a synthetic filter image from
restate the optimization problem as finding f that maximizes P I to P4 using the technique described by Hester and Casasent. Is We

denote this synthetic reference by P6 The technique used to produce
R X n)2 ) P6involved diagonalizing the cross-correlation matrix of the imagery

n in Fig. 3 using the Gram-Schmidt procedure. A filter P6 was then
produced from a linear combination of the basis functions (found

subject to the condition from the matrix diagonalization) subject to the constraint that the
correlation of all inputs with the filter yields a constant. We thus refer

(f. f) = I . (12) to P6 asan equal-correlation peak (ECP) synthetic reference function.
Prior to any operations, the average intensity level of each image

was computed and subtracted from the data, and the intensity
The filter function f can also be expanded in terms of the ortho- variances of all four images were normalized to a fixed constant.

normal set 10n) as Such image preprocessing eliminated the effects of image bias and
modulation level variations from our data. The 4X4 correlation

f Xwnn "- matrix for these preprocessed images was obtained, and its eigen-
n(13) values were computed. The four eigenvalues A , A21 A, and A4 were

found to be 2218.9, 1594.1, 195.2, and 87.8. respectively. The princi-
pal component image P5 corresponding to the largest eigenvalue A

where from Eq. 12) the coefficients ( n in Eq. 13) must satisfy =2218.9 is shown in Fig. 4. Use of this image as the filter should yield
the optimum SNR when correlated with any of the four images. By

n = I (14) comparison, correlations with image P6 should yield equal-correla-
n tion peaks for all four input images.

If we order the eigenvalues so that A _ A2  n ... _> An, .... we

can easily show the quantity R has a maximum of A as below:

R : Xn(f'*n)2  n
n n

n

This maximum R value is achieved only if we choose the filter
function f to be

f(t) = o(1) ,(16)

since when Eq. (16) is substituted into Eq. (II) we find R = A. Thus P
Eq. (16) describes the optimal filter, and we see that it is the princi-
pal-component or dominant eigenvector of the integral kernel Kxx(ts). "' -"

This means that if the set of functions 100)) are the eigenfunctions
of the kernel Kxx(t, s) with the corresponding set of eigenvalues IAn.
then the optimal filter is the eigenfunction O1(t) with the largest
eigenvalue.

It can be shown" that the correlation function Kxx(t, s) can berepre- A
sented with arbitrary accuracy by a finite number of eigenfunctions

{on(tOln = .M

as assumed in Eq. (10). From Eq. (8). Eq. (16), and the orthonormality
of the On, we then find that the maximum obtainable SNR is A1 / N. Fig. 3. Mufttpectral Image data baa used.
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TABLE I. Correlation Matrix for the Test Images in FIg. 3.

P1 P2 P3 P4

P1 1.0000 06175 00622 0 0609

P2 0.6175 10000 00023 00026

P3 0.0622 0.0023 1 0000 08357

P4 0,0609 0.0026 08357 1 0000

P5 0.5211 03087 06688 06683

P6 03650 03650 03650 03650

TABLE It. Correlation Peak-to-Sidelobe Ratio for the Test Images in

Fig. 3.

P1 P2 P3 P4

P1 63 163 53.286 82671 99870

P2 53,287 93.628 11 060 12 533

P3 8.2671 11060 44912 51 848
P4 99870 12533 51 848 76739
P5 46525 36366 45034 56355

P6 35.310 43.845 28418 39949

Fig.4. Principal-component image Ps obtained from the data etin Fig. 3. TABLE Ill. Shift in the Location of the Correlation Peak from Its
Correct (0,0) Location for the 24 Correlations in Tables I and II.

P1 P2 P3 P4

Our simulation results are summarized in Tables I IV. In Table I,
we list the peak values of the output correlation for all 24 possible P1 (0.0) (0.-i) (0.-i) (-5,1)
correlations of the original images P, to P4, with P to P 4 and the two P2 (0.1) (0,0) (.0) ('. 1) -
synthetic filters P and P. We have normalized the correlation peak Pa (0.1) (.0) (0.0) (0.0)

values in each column in Table I by the auto-correlation peak value P4 (5,-I) (.1 (0.0) (0.0)
in each column. The correlation results for P, to P4 correspond to
conventional correlations. The results with P, and P 6 show how P5 (0,0) (0,0) (0.0) (0.0)
more advanced filters perform. From Table 1, we note that images P P6 (0,0) (0.0) (0,0) (0,0)
and P2 correlate rather well with each other but quite poorly with P' *Denotes a shift of more than ten pixels
and P4 and vice versa. Conversely. filter P, correlates well with each
input, with correlation values f".-m 0.31 to 0.67. Similarly, filter P6
correlates equally well with all four original inputs. We also note that TABLE IV. Area of the Correlation Peak at the 3 dB Points for the 24
our statistical filter P5 performs better than the ECP filter P6 for Correlations in Tables I and II.
three of the four input images. P1 P2 P3 P4

In Table Il. we list the correlation plane peak-to-sidelobe levels
for the 24 correlations. The peak-to-sidelobe level can be showng to P1 29 48 129 92
differ by a constant 3 dB from the SNR in Eq. (5). We computed it
rather than Eq. (5) since it provided better sampling statistics. The P2 47 25 275 184
results are similar to those obtained in Table 1. Both agree with what P3 140 275 79 66
one might expect from a visual inspection of the images in Fig. 3. P4 92 184 65 41

In Table Ill. we list the displacement of the correlation peak in P5 49 40 75 55
pixels from its correct (0, 0) location, and in Table IV, we list the
cross-sectional area of the correlation peak in pixels between its 3 dB P6 26 46 78 62
points. From these data, we see that the conventional filters P, to P4
perform well for autocorrelations, but have large errors in the loca-
tion of the peak and have quite wide peaks for selected cross-correla- mental results obtained indicate the superiority of this new correla-tar to the conventional one and to the ECP correlator. Statistical
lions. This occurs because any two images from the set P, to P4 are data on the noise and randomness of the experimental data base
quite dissimilar even if they represent the same scene. Thus, even at used were not obtained, since accurate statistical estimates cannot be
correct registration, images such as P, and P3 will have little in dere fo only fime Sme gemetical istoton
common, and thus a low correlation will result (as in Table I). Such determined from only four images. Some geometrical distortions

conventional filters thus have a large probability of false alarm at

incorrect registration (as Table III shows). The very wide 3 dB appropriate for such more generaldistortion cases. However, exper-

correlation peaks in Table IV indicate that there is no clear peak in imental verification of this is not included at this time. but will be the

the correlation output. Conversely, the statistical and synthetic fil- subject of a future paper in which the discrimination ability of our

ters P5 and P6 yield perfect registration results (Table III) and 3 dB statistical correlator will be addressed.
correlation peak areas very close to those obtained from auto-corre- 5 M
lations (Table IV). 5. SUMMARY

Our emphasis in these initial experiments was to verify the In this paper. we have described one way to select and synthesize a -.
appropriateness of our proposed statistical correlator. fhe experi- filter to recognize distorted versions of a reference function from a
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A Modified Hvperplane Method for Null Synthesis in an
Array Pattern

B. V. K. VIJAYA KUMAR

Abstract-It has recently been shown by Prasad that the problem of
synthesizing nulls in an array pattern admits a geometrical form-
ulation for which the alternative orthogonal projection iAOPi al-
gorithm (previously used in image restoration applications# is a useful
solution. We apply a modification to the original AOP suggested by
Ramakrishnam et al. for image restoration purposes and show that it
results in a computational savings in array pattern synthesis
problems. A numerical example is presented to illustrate the com-
putational advantages of this modification.

1. INTRODUCTION

In many radar applications, it is desired that the receiving
array of antennas exhibit a high gain in the direction of the
"signal" and a very low gain in the directions of unwanted
"interference" sources. Such a response from an arrray is
usually obtained by weighting [ 1], [ 2] the signals received at
each antenna by a different, but appropriate complex con-
stant. Determining these complex weights to obtain a desir-
able array pattern is known as array pattern synthesis, and
much research [3], [4] has been devoted to this topic. Poly-
nomial approaches, which are computationally burdensome,
have mostly been used for such pattern synthesis.

Consider an array of N identical omnidirectional receiving
antennas located in three-dimensional space at vector positions
XI, x2 , -", xN . Let us represent a unit vector in the "look"
direction of the signal and let uI, u2 , -, UM denote unit vec-
tors in the directions of theM "interference" sources. The ob-
jective of the array of antennas is to maximize the signal ar-
riving along us while minimizing the interference along ut,
U2, ""-, um. Antenna pattern synthesis involves determining the
complex array weights W1 , W2 , W3 , --, WN so that the fol-
lowing constraints are satisfied.

CTW = I (look direction) (I a)

and

Siw 0 (noise directions), i = 1, 2, -", M, (I b)

where [ •T denotes the complex conjugate transpose, W is the
column vector of weights W t, ,W 2 , -, WN, and the vectors
CT and SiT defined as in [4] represent the received signals due

to the "look" direction signal and due to the ith noise source,
respectively.

For any general geometry of the array, the constraints in
(la) and (I b) can be solved to obtain the weight vector W.

This set of equations has no solutions if M p N. Thus, we
assume throughout this communication that the number of
interference sources M is less than the number of antenna
elements N. The (M + I) equations in (1) can be combined
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work was supported by the Air 1-orce Office of Scientific Research un-
der Grant AVOSR-79-0091

The author is with the Department of Electrical Engineering, Car-
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as and

AW = U', (2? Pm (I -- S,n Sin/Sm S,, 1 (9)

where U '
= I 00O ". 01 is a(.14 1 element vector indA is project the weight vector to the subspaces orthogonal to C

a(1I +- 1) X N matrix with the vectors C and S, as its rows as and S,,,. respectively. In the above equations, I represents the
below, identity operator. Further details regarding this recursive

) method and its convergence behavior can be obtained from
A T O IS,.- ~. (3) Prasad's paper 141.

When matrix A is not a square matrix (i.e., wihen.M < (A' - I )), B. Mtodified 11jyperplane Mlethod (,1111P)

pseudoinverses (S5I should be used for solving (2) as below. For tihe general case of A' weights and (.I + 1) constraints
as in ( I), we can modify each of' the (M + 1) equations so that

W = (ATA) - ' A T U
I

.  (4) each one is orthogonal to all others. This is equivalent to
diagonalizing the AT'A Matrix in (4). As a result, W can be

Even when psetdo-inversescan be used, one is faced with the easily obtained from (4) by simple matrix multiplication. The
prospect of inverting an N X N matrix. This causes computa- major obstacle in such a procedure is our ability to rapidly
tional problems for large values ofN. This computation aspect rearrange the equations in the desired manner. One can show
will be critical in scenarios where noise sources move continu- that rearranging the equations to make them mutually ortho-
ously and thus new "'adaptive" weights must be computed at gonal is computationally as burdensome as evaluating W from
a rapid rate. Recursive methods are needed to speed this (4) directly. A practical, but suboptimal, procedure sug-
weight determination. gested by Ramakrishnam et al. [71 involves modifying these

Recently, Prasad (41 has showxn that the problem in (2) so that each equation is orthogonal to its adjacent one. As we
admits a geometrical formulation and has used the alternating will see in Section Ill, such an approach considerably reduces
orthogonal projection (AOP) method suggested by Youla the computational complexity of this method. By the MHP
[61 for image restoration purposes. This approach enables method, we jefer to this suboptimal procedure. This Ml-P
the use of many other interesting image restoration algorithms procedure consists of the following two steps.
in solving the null synthesis problem. We found the modified 1) P'quation Rearrangement: The Gram-Schmidt procedure
hyperplane method (MHP) suggested by Ramakrishnam et al. 18) is used to produce the rearranged (primed) equations from
[71 to result in better computational efficiency in solving the original ones. The equations defining the operations are
(2). MHP is based on modifying the (M + I) equations in (2)
so that the adjacent equations represent pairwise orthogonal Sm' (IOa)
hyperplanes in an N-dimensional space. This modification re-
sults in faster convergence of conventional projection methods ST S__+
to the solution vector W. Si' ,, S M - -- TS- ' + I',

We outline both the AOP and MHP methods in Section 11 S111+ S+I
and show in Section III that the MHP method is computation-
ally more efficient. This is justified with the help of a numeri- to (l - I ), (. - 2), "", 3, 2, 1. (10O)
cal example in Section IV. and

II. PROJECTION METHODS

A. Alternate Orthogonal Projections (AOP) C, = C - S 0'00

rle AOP derives its name from the fact that we project our jSTS-J
estimates orthogonally onto subspaces perpendicular to Sm
and C in an alternating fashion. The recursion or the weight When we modify the left side of (1) as above, we also need to
vector Wx I can be summarized by change the right side of (I) in an exactly identical manner to

obtain the correct solution. The right side of (1) in terms of
WK +I= (Q PAYPR I ... P2Pt )WK + g, K 1, 2, 3, "" the primed equations can be easily shown to still equal U'

• A 231100" 01. Thus the new equation to be solved is
(5)

A'W = U', (1)

where
where the prime denotes the result of the equation rearrange-

g = C/(CTC) (6) ment.
2) Projection Algorithm: Projection methods [91 can be

and used on the modified equations to solve for W in (11). The
projection method begins with an initial guess W0 . This point

W =(7) W0 in the N-dimensional space is then orthogonally projected
onto the first hyperplane (C' in this case). Let WI represent

The projection operators Q and Pm given by the result of this projection. This is subsequently projected
orthogonally onto the second hyperplane (S1 ' here) to obtain

Q = (I- CCcrCC. (8) W2 . This orthogonal projection is carried out on successive
hyperplanes unitl WM+ I, the projection onto SM', is obtained. "
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In our notation, obtaining W, I from W0 represents one total of 2MN complex operations. Thus, MIHP requires 2M,V
complete iteration. W.t1 1 is then orthogonally projected onto initial complex operations and 2MN complex operations per
the first hyperplane (C') and a complete second iteration iterations.
begins. This algorithm can be described by Comparing the two schemes, we note that MHP requires

only 2MN operations while AOP needs MN3 initially. For
WoFC- 1" ] large values of N, this represents a substantial reduction. For

W1 W0 C( 2a) every iteration after the initial set-up, the AOP requires N 2

operations while the MHP needs only 214N operations. Usually
and N > 2M and as a result the MHP technique is computationally

more efficient than the AOP method.
An equally important consideration in evaluating the two

W[,, I = W,-- t , Sn] methods is the number of iterations each requires to approach
L the true solution. Since both methods are based on projec-

tions, it is expected that they will perform similarly. However,
m = , 3 .11,. (12b) because of the rearrangement of the equations, MHP will con-

verge faster. No rigorous comparisons of this aspect have been
The additional unity term in (I 2a) can be understood frompthe considered because the convergence rate is very dependent on
unity in the right side of(11). In the next section, we compare the A matrix in (2). In the next section, we consider a numer-
these two methods from their computational loading require- ical example to compare the convergence behavior of the two
ments. techniques.

111. COMPUTATIONAL CONSIDERATIONS IV. NUMERICAL RESULTS

As can he seen from (5)-( 10), both the AOP and MHP We consider the special case of a linear array of N 17
methods require initial computation before the recursions can elements, uniformly spaced at X/2 intervals, where X is the
be started. We will now compare the two methods based on wavelength of the radiation. The signal "look" direction is
this computational burden as well as on the number of compu- along boresight (i.e., 0 = 0) and M = 5 interference sources
tations required per iteration.

are assumed at angles of - 150 , -200, 50, 450 , and 750 (from
A. A OP Method boresight). respectively. The array problem is then formulated

Given the direction vectors C and S., we determine the as solving for 17 unknowns subject to six constraints as in ( 1).

projection operators Q and P,. as in (8) and (9). For an V For both schemes, the initial e~iimate of the weight vector

element array, this computation requires approximately (M + Wo has unity for elements because C has unity for all ele-

I)N 2 complex operations. These (M + I) projection operators ments. Fig. I shows the array pattern E(0) obtained using the

are then combined to produce a single projection operator AOP algorithm after just one iteration. No nulls can be easily

T, where identified in this response pattern. Fig. 2 shows E(0) obtained
using M|IP after just one iteration. MHP is seen to yield very

T = QP.%PJI --- P,P1- (13) sharp nulls at the two noise source locations, 450 ( 175 dB)
and 750 ( 172 dB), after just one iteration. The null depths

The computation of T involves .11 matrix multiplications each beyond 100 dB are not shown in our figures because they are

involving V 3 complex operations. For large values ofV A.tIN 3  practically not significant even though they are computation-

complex operations are required for determining the operator ally possible. A detailed comparison of Figs. I and 2 shows
T. that MHP also outperforms AOP at three other interference

As noted in (5), WK, I can be obtained from WA: by a locations. Fig. 3 shows the array pattern obtained by AOP

matrix/vector multiplication and vector addition. This involves after five iterations. This response exhibits good nulls (with

XV2 complex operations. Thus, the AOP requires .11/3 com- depthsof 113 dB,94 dB. 94 dB, 10 dB, and 98 dB). But. after

plex operations for initial set-up and N 2 complex operations five iterations, MIIP (see Fig. 4) yields even better null depths
forvery teration initalet-p as(115 dB, 133 dB, 125 dB, 181 dB, and 184 dB) at the fivefor every iteration therc'after, noise source locations. After ten iterations, both methods are

B. MIP Method found to perform equally well. This supports Prasad's claim
(41 that AOP requires approximately eight to ten iterations

The initial equation rearrangement for the MIIP method is for convergence.
outlined in (10). From (10), we see that Sm' can be obtained The null depths obtained with both methods at each of the
from SM and S,,,+ 1' using approximately 2A' complex opera- five noise source locations after each iteration are listed in
tions. Then the hyperplane rearrangement requires a total of Table I. This table also contains the average null depths as
2.11,V complex operations. This is the initial computational well as the worst null depths obtained by both methods after
load for the MIP algorithm equations, each iteration. From Table I, we see that an average of 99 dB

The projection algorithm of (12) is used on the rearranged is obtained with MHP in just one iteration, whereas AOP
equations to obtain the solution. Wm. I is obtained from Wm requires four iterations to yield a 100 dB average null depth.
by determining the dot products W ,,rS, and S 'IS ' and Inspection of this column also indicates that MHP converges
then using the ratio of these products to multiply Smn' by that faster than AOP by at least a factor of two. The worst-case
scalar. The dot products involve N complex operations each null depths obtained by the MHP are also seen to be consist-
and (ignoring the scaler multiplication) we need 2,V complex ently better than those of the AOP by at least 10 dB. More
operations to obtain W,, +I T from W,,,. Thus, one complete quantitative comparisons are not valid because the converg-

iteration of MHP (i.e., obtaining W+ I from W0 ) requires a ence behavior is very data dependent. From this limited ex-
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TABLE I
NULL DEPTHS (dB) WITH AOP AND MPH METHODS

AOP Method MPH Method r
Iteration 

Worst 
Worst

Number - 15' -20* 50 450 75' Average Null -15 
° 
-20' 50 450 750 Average Null

1 41 36 29 38 34 35.6 29 39 57 50 175 172 98.6 39

2 59 49 51 55 63 55.4 49 59 76 69 180 174 111.6 593 80 62 117 77 76 82.4 62 78 95 87 174 173 121.4 784 141 78 83 114 85 100.2 78 96 114 106 170 175 144.3 96

5 113 94 94 108 98 101.4 94 115 133 125 181 184 147.6 115

periment and the analysis in Section I, we can say that MHP ACKNOWLEDGMENT en
converges faster than AOP in almost all cases. The author wishes to acknowledge Professor David Casasent

for his critical reading of this manuscript and for providing -
V. CONCLUSION valuable comments on it.
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ABSTRACT

The major use of holography in optical pattern recognition systems has been in matched
spatial filter correlators. We discuss new uses of holographic techniques in optical pat-
tern recognition applications. These include: optical pattern recognition architectures of
reduced size, weight and volume; optical pattern recognition architectures with reduced com-
ponent tolerances; new nonlinear local optical preprocessing architectures; and optical pat-
tern recognition systems that operate when geometrical and other differences are present in
the input image.

I. INTRODUCTION

This SPIE Proceedings Volume addresses holography and its applications. One of the at-
tractive uses of holography is optical pattern recognition (OPR). In this paper, we review
recent progress in new OPR algorithms, architectures and applications employing holography.
Such research has been supported at Carnegie-Mellon University for several years by a qrant
from the Air Force Office of Scientific Research. In this paper, we review some of the as-
pects of this research. To remain within the context of this issue, we restrict the re-
search reported upon to work involvinq holography.

When one considers OPR and holography, the optical matched spatial filter (MSF) correla-
tor 11] and the joint transform correlator [2] immediately come to mind. We review these
basic OPR architectures in Section 2. A disadvantage of optical processors frequently noted
is their large size. In Section 3, we discuss one technique by which holographic optical
elements (HOEs) and laser diodes (LDs) can be used to fabricate OPR systems of reduced size,
weight and volume 13). These architectures also demonstrate new system concepts that can be
realized with holographic optical components as well as system architectures with reduced
positional tolerance requirements of the elements [3]. MSF correlators are well-known to be
sensitive to geometrical distortions in the input image. In Section 4, we review weiohted
MSFs [4], Mellin transforms (MTs) [5) and hybrid optical/digital processor techniques [6].
These techniques can reduce the sensitivity of an MSF correlator to geometrical distortions,
but they do not fully overcome intra-class pattern recognition problems (recognition of an
object independent of geometrical distortions between the input and reference object views).
One approach to OPR has been to apply digital preprocessinq to enhance the input image to an
optical processor. As input image resolution and frmne rates increase, such preprocessino
operators are becoming very computationally burdensome. In Section 5, we discuss new non-
linear local optical preprocessing operators that operate in parallel on all image pixels
[7]. We then conclude in Section 6, with a review of research on how off-line operations on
a training set of images can produce a synthetic discriminant function (SDF) MSF capable of
inter-class discrimination while retaining intra-class object recognition [8-11]. Because
of space limitations, we restrict attention in this paper to AFOSR supported holographic
pattern recognition research at CMU. Other holographic OPR research is described elsewhere
[12-16].

2. CONVENTIONAL OPTICAL PATTERN RECOGNITION CORRELATORS

The basic OPR correlator architectures are well-known and are thus only briefly reviewed
here. In the classic frequency plane correlator (Figure 1), a holographic MSF (formed by
the coherent interference of the Fourier transform (FT) of the reference object and a plane
wave reference beam) H* is formed at P2 with the desired reference object h(x,y) placed at
Pl. This holographic MSF differs from conventional holograms and specifically FT holograms
in the beam-balance ratio used (i.e. the purpose of a hologram is to produce an aesthetical-
ly pleasing reconstructed image, whereas an MSF is intended for pattern recognition and thus
conventionally low spatial frequencies are saturated during MSF synthesis). With H* formed
as noted above, the plane wave reference beam is no longer used and an on-line input image
f(x,y) (possibly containing the reference object h(x,y)) is placed at P1 . The light distri-
bution incident on P 2 is F(u,v) (the FT of the input data) and the light distribution leaving
P2 is FH*. At P3 , lens L 2 forms the FT of the light distribution leaving P 2 and at P 3 wefind

12
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u 3 = [FH* I f ! h, (1)

or the correlation of the input and reference patterns.

00 XA s E

FICURE 1 Schematic diagram of the convention- FIGURE 2 Schematic diagram of the conven-
a! holographic matched spatial filter frequency tional holographic joint transform correla-
plane correlator. tor system.

In the joint transform correlator (Figure 2) , the two objects to be correlated, a and h,
are placed side-by-side in the input plane and their joint transform is formed at P2 on an
intensity sensitive material (film or a spatial light modulator) . Plane P2 is then illumni-
nated (in transmission or reflection) and the FT of its transmittance is formed at P3 where
again we find the correlation of g and h. Any such optical correlation plane output con-
tains peaks of light whose locations correspond to the positions of all occurrences of the
reference object within the field-of-view of the input image. Thus, an optical correlator
can recognize multiple occurrences of a reference object and determine the locations of each.
An optical processor achieves these operations in parallel at high speed and thus such sys-
tems are quite attractive for many applications. However, they are now without shortcornings,
as we now discuss.

3. HOLOGRAPHIC OPTICAL ELEMENTS AND LASER DIODES

It is possible to form multiple MSFs at p2. We can form these multiple MSFs by super-
imposing MSFs with different carrier spatial frequencies or by placing the multiple MSFs at
spatially separated locations in P2. With such architectures, one can achieve multiple cor-
relations in parallel. Researchers at Gruman Aerospace [17], Miradcom [18] and CMU are pur-
suing such approaches. The use of spatially-multiplexed multiple-MSFs is quite attractive.However, one must then form multiple replicas of the FT of the input image at the locations
of each MSF. This can be accomplished by multiple point source HOEs.

Holographic optical elements (HOEs) also enable one to fabricate optical systems with new
architectures and of reduced size. We detail one such system [3] in Figure 3. As a light
source, we use a laser and we image it onto the FT plane P2. We view lens L1 a an FT lens
and we note that the FT of the input data at tl is formed at P2 even when P1 is placed be-
hind L i. This scaling FT system allows one to adjust the size of the input and FT plane by
adjusting the distance between P and 2 As the second new feature associated with Figure
3, we note that to form an MSF H at P2, we place h(x,y) at P1i However, instead of a plane
wave reference beam, we employ a converging reference wave. The resultant pattern recorded
at P2 is the MSF, plus an FT lens (a lensless NSF or the NSF plus an HOE FT lens). Withthis filter formed at 2, if the input image at P1 contains the reference object h, then a
converging plane wave will leave P2 and self focus at the correlation plane P3. The loca-
tion of this correlation peak will correspond to the location(s) of the reference object
h(x,y) within the entire field-of-view of the image f(x,y) present at P1 .

We have assembled and demonstrated such a system [3] in the laboratory. This architectureis very attractive since with the M SF and the second FT lens of Figure 1 encoded on
one plate, we have simultaneously satisfied all positioning requirements between these two
planes. This greatly reduces the positioning requirements of the system as well as its over
all length and size and number of components required. Althouh space permits only this one
sOE architecture to be discussed, many other approaches are possible. The system depicted
in Figure 3 is typical of such architectures and it demonstrates the flexibility that HOEs
provide for new architectures such as the lensless SF holographic pattern recognition sys-

tem.

I
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FIGURE 3 Schematic diagram of a lensless matched spatial filter
holographic correlator using holographic optical elements.

4. WEIGHTED MATCHED SPATIAL FILTERS, MELLIN TRANSFORMS
AND HYBRID OPTICAL/DIGITAL ARCHITECTURES

In [41, Casasent and Furman described how control of the beam balance ratio K durina
synthesis of an MSF could be used to control the spatial frequency region of the input pat-
tern used during the correlation. We refer to such a filter as a weighted MSF. This con-
cept is easily seen by considering the interference of two beams. When the two beams are
of equal intensity, the modulation of the fringe pattern formed is a maximum. Because the
FT of the input data is monotonically decreasing with spatial frequency or distance (in the
transform plane), maximum modulation will occur at one spatial frequency region. During MSF
synthesis, low spatial frequencies are saturated (because of the high intensities of the dc
and low spatial frequencies in the FT of the reference signal). Similarly, high spatial
frequencies have low modulation and emphasis (because of the low beam balance ratio). The
intermediate spatial frequency region where the intensities of the FT of the reference cb-
ject and the plane wave reference beam are approximately equal thus received maximum modu-
lation. By adjusting this spatial frequency region, we can tune the MSF or correspondingly
weight different spatial frequencies of the data. A similar phenomenon occurs during syn-
thesis of the lensless MSF in Figure 3.

In [4], we showed that if this spatial frequency region were optimized for images at
perfect registration, then the performance o. the correlator would be optimum only for
images with no distortions between the input and reference object. For such an MSF, asevere
degradation in the system's performance would result if small scale and rotational differ-
ences were present. Similar remarks apply to small translational difference and positioning
accuracies in the components of this processor. However, we also demonstrated [41, that
emphasis of lower spatial frequencies would significantly improve the tolerance of the sys-
tem to such error sources without appreciable degradation in its discrimination ability.
However, this approach aopears to be appropriate only for satisfying small variations in
scale and rotational geometrical differences. For larger variations, advanced techniques
(Section 6) are needed.

The Mellin transform (MT) and its variations such as the polar coordirate transformation

represent techniques by which one can obtain invariance of the correlation peak intensity
for selected image distortions. These approaches to distortion invariant pattern recogni-
tion are summarized in [5]. These techniques result in a space-variant OPR system in which
the correlation of coordinate transformed versions of the input and reference object are
produced. If the expected distortion can be described mathematically, then an appropriate
coordinate transformation can be found that will yield a Lorrelation peak intensity that is
invariant to the given deformation. For scale invariance, a logarithmic courdinate trans-
formation is the solution. The FT of a logarithmic coordinate transformed image is the MT
of the original image. For rotational invariance, we find that a polar coordinate transfor-
mation is necessary. It is possible to combine several of these coordinate transformations
with a cyclic operation of the system. However, one is restricted to producing a system
with only two invariant distortion parameters on each cy:le and to the application of these
techniques for cases in which only one occurrence of the reference object is present in the
input field-of-view. Thus, whereas this approach is very attractive for certain applica-
tions (e.g. for a top-down view of a single object), it is not as powerful as other tech-
niques (Section 6) when multiple distortions or multiple objects are present.

The use of hybrid optical/digital processors is another approach by which the flexibility
of an optical system can be increased. This concept [6] and many detailed versions of it
can significantly improve the performance and repertoire of operations achievable on various
optical processors.
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5. PARALLEL OPTICAL NONLINEAR LOCAL PREPROCESSING OPERATORS

Many nonlinear local operators can and have been used to preprocess image data prior to
feature extraction, pattern recognition and classification. These operators have thusfar
been implemented digitally. A most attractive such nonlinear operator is the Sobel trans-
form. This operator performs a nonlinear edge-enhancement and smoothing of the input image
f(x,y) described by

g(x,y) - [<f(xy)/&x>2 + <af(x'y)/3y>2  12)
y x

In recent research [7], we have devised a technique to fabricate holographic filters capable
of performing the general class of nonlinear local operators. To describe the necessary
filter, we first write (2) as

g = Ix + y 21, (3)

where X and Y are best described as the appropriate 3 x 3 local masks

X= +2 , Y = 0 (4)
10 + -2

These local 3 x 3 operators in (4) are convolved with each image pixel and then nonlinearly
combined as in 3). From (2) - (4), we see that the Sobel operator performs the local sec-
ond differencing operations in the x and y directions (averaged over three rows or columns
in y and x respectively). It thus achieves a nonlinear local edge-enhancement operation
plus smoothing to reduce noise effects.

To achieve (2) or (3) optically, we rewrite (3) for input image pixel (j,k) as

g(i,j) = (X 2 + y 2 ) = [' X  jy2 X + jY. (5)

Next, we recall 119] that the spatial derivative in the first approximation can be realized
by the convolution of the input image with an MSF whose impulse response h is as below

Output = f * h = f(x,y) * [6(x+d,y) - 6(x,y)] = 6f/6x. (6)

To realize (5) using a technique such as that in (6), we require an MSF with an impulse
response h that satisfies

Output = g(x,y) = X + jY = f(x,y) * h(x,y)

= f(x,y) * I k 6(x-md,y-nd)
m,n m,n

= f(x,y) [ (1 + j)6(x-d,y-d) + 26(x-d,y)

+ (1 - j)6(x-d,y+d) + 2j6(x,y-d)

- 2j6(x,y+d) - ( - j)6(x+d,y-d)

- 26(x+d,y) + (1 + j)6(x+d,y+d)]. (7)

In (6) and (7), the distance d is the spacing between pixels in the input image and the
weights and locations of the eight delta functions in (7) were obtained from (4) and (5).
We have realized the MSF described by (7) using both multiple exposure holographic tech-
niques and use of a computer-generated hologram. We have also successfully demonstrated
this technique for various 3 x 3 and 5 x 5 nonlinear local preprocessing operators [7). An
example of optical edge-enhancement preprocessing using these techniques is shown in Figure
4. The preprocessed output image shown was obtained in parallel using the nonlinear local
operators described above. Extensions of this technique to larger window operators and to
other preprocessing functions appears to be a quite attractive area for future research.tI

I.
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3, SC:9EL

FIGURE 4 Input and output images demonstrating our new parallel optical
nonlinear local edge-enhancement holographic convolution operator
for the case of a 3 x 3 Sobel operator.

6. SYNTHETIC DISCRIMINANT FUNCTION HOLOGRAPHIC MATCHED SPATIAL FILTERS

A most attractive new holographic MSF concept is the use of synthetic discriminant func-
tions (SDFs) to synthesize the MSFs for use in an optical correlator. These SDFs are linear
combinations of an input image training set data base. When the SDFs are properly produced,
they can provide a correlator whose output is invariant to any geometrical distortions of an
input object. We refer to this as an intra-class SDF or as an equal correlation peak (ECP)
SDF since it yields a correlation output whose intensity is a constant value independent of
any geometrical distortions present in the input object 18-11]. Advanced versions of these
SDFs can pztvide correlation outputs that enable one to discriminate between different ob-
jects (we refer totese as inter-class SDFs) and in more advanced cases to SDFs that retain
intra-class recognition while enjoying inter-class discrimination as well.

I OFF-LINE SYNTHEISIS

I -
*TRAINING SET SDF

I -~~.----.4~ FILTERI
I ~n1 f SYNTHESISI

h

It-PUT PRE- TARGIT IDLNIII'ICATIO N

IMAGE PROCESS I TARVCT LOCATION;

FIGURE 5 General functional block diagram for a holographic synthetic
discriminant function matched spatial filter system for intra-
class and inter-class pattern recognition.
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The general approach to the synthesis of such SDFs is shown in Figure 5. In this general

system block diagram, we use a training set of images {fn) which can be different aspect
views of an object. From these {fn), we form an ECP SDF filter h such that h Q fn = c = 1
(a constant c) for any aspect view of the object being search for. The ECP SDF h(x,y) is a
linear combination of the input training set images fn,

h(x,y) = Ia f (x,y). (8)
n n n

We determine the coefficients an by forming the correlation matrix R of the training set
data and inverting it. In matrix-vector notation, the coefficients an are a vector a thatsatisfy

a = R-lu, (9)

where u is the unit vector equal to the constant unity. This ECP SDF and the advanced
inter-class and the combined intra and inter-class SDF synthesis techniques together withtheir realization as holographic MSFs are detailed elsewhere in this conference [20].

7. SUMMARY AND CONCLUSION

As these brief pages have noted, OPR research now enjoys many new techniques and archi-
tectures. Many of these new concepts utilize holographic techniques as we have just de-
scribed. These techniques and algorithms are addressing practical pattern recognition prob-
lems and the results of this basic research program are increasinq the practicality of OPP
systems and the repertoire of operations achievable on such processors. The recent research
results described in this paper have included new holographic optical element architectures,
nonlinear local optical operators and advanced matched spatial filters using synthetic dis-
criminant functions and other techniques.
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Microprocessor-based fiber-optic iterative

optical processor

Mark Carlotto and David Casasent

The design and fabrication of an iterative optical vector-matrix processor are described. Microprocessor
feedback is used to produce an iterative processor capable of solving simultaneous linear equations. It also
facilitates scaling and biasing of the data and the handling of bipolar and complex-valued data as well as cor-
rection for selected system error sources. Fiber-optic interconnections are used to improve the system's
alignment and to reduce its size, weight, and errors. The design, fabrication, and performance of the system
are analyzed.

I. Introduction a vector-matrix multiplier were combined with an ex-
Optical vector-matrix multipliers' -  represent a ternal vector, and the result fed back to the linear LED

general class of optical processors since many data inputs. The use of this system in adaptive phased array
processing problems can be formulated as vector-matrix radar processing, 9 eigenvalue and eigenvector compu-
equations or as a set of simultaneous linear algebraic tation,' 0,t t and for optimal control applications 2 has
equations. One of the most attractive ways to realize been described. In the course of these application
an optical vector-matrix multiplier with present-day studies increasingly complex operations and control
hardware is to image a linear array of LEDs through a were required in the electronic feedback loop, and more
2-D mask and onto a linear photodetector array.: Both attention to the system's accuracy was necessitated. In
serial systems 4,5 using one LED (whose output is this paper, we describe the microprocessor-based
time-sequentially modulated) and parallel systems' ,- fiber-optic IOP system we designed and fabricated to
(with a linear array of input LEDs) have been described address future applications. In Sec. II we describe the
to achieve an optical vector-matrix multiplication. In new iterative algorithm we use with emphasis on the
both cases, the LED outputs describe the elements of algorithm's convergence. Scaling, biasing, and how
a vector, the transmittances of the 2-D mask describe bipolar and complex-valued data are handled on the
the elements of a matrix, and the system's output is a system are described in Sec. III. Following a descrip-
vector-matrix product. With a 2-D output CCD shift tion of the microprocessor-based fiber-optic IOP system
register detector, one can perform convolutions on such we designed and fabricated (Sec. IV), an error analysis
a system.- When the transmittances of the mask ele- and quantification of the laboratory system's perfor-
ments correspond to the Fourier kernels, the outputs mance are advanced in Sec. V.
on the linear photodetector array are the discrete Fou- II. Convergence of the Iterative Algorithm
rier transform of the sampled input data present on the In Fig. 1 we show a simplified schematic diagram of
linear LED input array.6  the IOP. Bipolar-valued matrices are denoted by H

In Ref. 8 we described an iterative optical processor and bipolar-valued vectors by y and x. These are dis-
(lOP) in which the linear photodetector outputs from tinguished from the vector and matrix quantities (a,c,B)

in the physical optical system. This is necessary, since
the latter must be real and positive. Complex-valued
quantities will be denoted by a tilde above the variable.
Considering the physical system first, we denote the
light distribution leaving the linear input LED array atWhen this work was done bth autho rs were with Carnegie -Mel lon P I at iteration j by the vector a T(j) with elements a, (j).

Universitv Department of Electrical Engineering, Pittsburgh.,
Pennsylvania 1521:1; M. Carlotto is now with Analytical Sciences The light distribution leaving PI is imaged vertically
Corpora tion, I .Jacob Way, Reading, Massachusetts 01867. and expanded horizontally to uniformly illuminate the

Received 24 July 1981. rows of the mask at P2 with light from the corresponding
000:169:5/82/010147-06$01.00/0. input LED. We denote the transmittance of the mask
*c 1982 Optical Society of America. at P 2 by the matrix B 7 with elements bmn. The light
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F Wvalue of H. With w chosen as in Eq. (8), Eq. (7) is sat-
isfied for the largest Ai and thus is easily satisfied for
smaller Ai values. In practice, we can increase w slightly
from the value in Eq. (8) to insure that I I - w) I > 0.
In special cases, when highly oscillatory poles of H

I occur, we can select w to be a multiple of 1/Ama,. (We
) 81.1111 L M P ARA have yet to consider cases when this situation arises.)E * Let us now consider how to compute the choice of w

wl,_-Hxl noted in Eq. (7). We generally use the conservative

Fig. I. Schematic diagram of the JOP emphasizing the iterative upper-bound'
a lg o r it h m . sX . .< 1 1H ' = m ( L 1 h 1 ) 

'  / 
2 9

distribution leaving each column of P2 is summed on the for Ama. However, it is also possible to use the IOP
corresponding photodetector and the linear output itself to estimate ,max as we now describe.
detector array at P3. The system's output is thus the In this case, we let y = 0, place H at P2, and describe
vector-matrix product eT) = aT(j)BT. For nota- the initial input vector x(O) at iteration j = 0 by
tional simplicity, we will suppress the use of transposed
vectors and matrices and thus describe the vector- x(O) = QC1 + U 2 0-2 + ... + amom, (10)
matrix product by where the 0,m are the eigenvectors of H. We feed the

cOi) =f Ba(j), (1) output at each iteration directly back to the input and
with element(s) thus after j iterations find

with elements
M x(j) = HJx(0). (11)

S= E a,,b,,,, (2) We can write H in terms of its eigenvalues Xm and its

where c has N elements, a has M elements, and B is an eigenvectors ¢m by singular value decomposition as
M X N matrix.

If the light distribution leaving the LEDs at PI at it- H = (12)
eration j is x(j), and the mask transmittance is de- Multiplying both sides of Eq. (10) by 0T and using the
scribed by H, the output from the photodetectors at P:j orthonormality of eigenvectors, we find an = OT X (0).
is Hx(j). We form the difference between this output Using this in Eq. (11), we find that x(j) can be rewritten
and a fixed external vector y, multiply the difference by as
an acceleration parameter we, and add the result to the
original input vector x(j) to form a new x(j + 1) input x'j) = Z , (13)
for iterationj+1. The system thus realizes the Rich-
ardson algorithm' 3  After a sufficiently large number j of iterations, the ei-

genvector *d with the largest eigenvalue Amax willxfj + 1) = X(j) + ally -Hx(j)j. (3) dominate the summation in Eq. (13), and the system's
When x(j) = x(j + 1) = x, Eq. (3) reduces to output will be

Hx = y, (4) x(j) - b#XdMad. (14)

and the system's output From the ratios x ,(j + 1)/xm(j) for j large, we find

x = Hy A5max.
It is also possible to extend this conventional power

is the desired solution to the vector-matrix equation in method' 6 to allow computation of all the eigenvalues
Eq. (4). and eigenvectors of H on the lOP as noted in Refs. 10

To insure convergence of Eq. (3) for all initializations and 11. In practice, we normally use Eq. (9) to estimate
x(0) of the system, the N roots s,, (w) of the character- Amax. Since the calculation of the Euclidean norm of
istic equation: H in Eq. (9) is easily achieved in the microprocessor

determmnantfsl - (I - H)f (6) system, and since the calculation need only be done once
and the same acceleration parameter w used for all it- r

of the discrete time system must lie strictly within the erations, the technique in Eq. (9) is used in preference i
unit circle in the z-plane." IfX, are the eigenvalues of to the one in Eq. (14). When w is properly chosen, the
H, we must satisfy system's iterative algorithm monotonically converges,

o< I - <~ 7 and the stability of the algorithm and the IOP system
are assured. This solution in Eqs. (8) and (9) has

to insure convergence of Eq. (3). An obvious choice for worked well for all vector-matrix and matrix-matrix
W is problems to which we have applied the IOP. Even

(8) when the matrix is ill-conditioned, use of this acceler-
ation parameter insures convergence of the algorithm,

where Ama, is the absolute value of the largest eigen- although many iterations may be required.
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Ill. Bipolar and Complex-Valued Data
The LED and photodetectors outputs as well as the

transmittances of the mask in the system of Fig. 1 must
be real and positive. Since noncoherent light is used,
the IOP cannot handle bipolar or complex-value data
directly. This is a severe limitation of the system, and
thus much work has been done to allow processing of
such data on a vector-matrix system.' 7 When the
vector-matrix multiplier in Ref. 6 is used to compute
the discrete Fourier transform of the spatial data
present across the LED array, complex- valued data
must be handled by the system. This is accomplished
by formatting the input vector and the fixed elements
of the matrix mask in terms of the bipolar real (Re) and
imaginary (Im) parts of the vectors and matrix as

ty.nHi.m HR. Il 1J (
This requires 2M input LEDs, a 2M X 2N mask, and a
2N element output detector. One can handle bipolar

Fig. 2. Photodetector output cl and c.2 at two successive iterations
data on the system in many ways. 1 7 One technique that and their difference showing suppression of detector leakage current
has been used6 is to bias all vector and matrix elements and fixed-pattern noise.
so that they are positive. To obtain the bipolar vec-
tor-matrix product from the measured outputs, elec-
tronic postprocessing is needed. To perform this, ad-
ditional factors such as the product of known bias ma- in Eq. (18) by which bipolar data are handled on the
trices and the unknown input vector are necessary. IOP has two other attractive features worth noting.
These can be obtained by adding a column to the matrix First, the size of the input LED array is only M (rather

mask at P 2 that contains all constant elements and by than 2M) and the size of the output photodetector array
including an additional detector element in the is N (not 2N). Likewise the matrix mask must be M X

output.,7  N (rather than 2M X 2N). Thus, larger vectors and
In our IOP we handle complex data as in Eq. (15), but matrices can be handled on a given system at the ex-

we accommodate the bipolar data in Eq. (15) differ- pense of using the two cycles of the system. Since the
ently. We first decompose the bipolar input vector x potential speed of the IOP is so high, trading a factor of
into its positive x + and negative x- parts. The optical 2 in speed for a factor of 2 or 4 in the sizes of the vectors
system's input vectors corresponding to each of these and matrices that can be handled appears to be a useful

are a, and a 2, respectively, with elements trade off for the applications with which we are con-
cerned. A second practical feature resulting from the

a ,, =0.5(x. + Ix. 1) a2. = -0.5(x,. - Ix.I). (16) use of the algorithm in Eq. (18) is that all fixed pattern

The elements of the optical mask B are a scaled and detector noise is automatically cancelled. In Fig. 2 we
biased version of the elements of the bipolar matrix H. show the system's outputs (ci = Bal and C2 = Ba2) on
Specifically two successive iterations with no input present (i.e., a,

= a2 
= 0) and the electronically calculated difference

b,, = (h,,, - h)/(h - h). (1) c-c 2 . The outputs are thus caused by detector noise

where h and h are the minimum and maximum ele- only. As seen in the cl and c 2 outputs, the detectors
ments of H. With the P 2 mask described by Eq. (17), have a large leakage current (=8% of full scale) in a fixed
we see that the elements of B satisfy 0 < bmn < 1 as is spatial pattern. However, after subtraction all fixed
necessary. We then achieve a bipolar vector-matrix pattern noise and leakage current effects are canceled
multiplier by operating the system twice, once with a, (as is seen in the cl - c., difference output), and we are
as the input vector and once with a2 as the input vector, left with only the temporal noise variations (Johnson
with the same fixed M X N mask B present in both noise) of the detector. In Fig. 2, this noise is measured
cases. The microprocessor forms the difference Ba, - to be <0.4% of full scale.
Ba 2 between the system's outputs in the two cycles and IV. System Fabrication
scales and biases the difference according to Let us now consider the laboratory IOP system we

y =Hx = (h - h)(Ba1 - Ba2 ) + x(.... . fabricated with attention to the microprocessor system
and the fiber-optic interconnections and how these

All the required operations in Eq. (18) are easily features are used to overcome many potential system

performed in the microprocessor support system since error sources. A detailed analysis of the system's error
only additions, subtractions, and multiplications by sources and quantitative data on the system's perfor-
fixed constants are required. The two-cycle algorithm mance are included in Sec. V.
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The electronic feedback system was to compute: the
running iterative sum on the right-hand side of Eq. (3), c

the acceleration parameter w in Eq. (9), the LED
preprocessing in Eq. (16), the matrix scaling and biasing
in Eq. (17), and the detector postprocessing in Eq. (18).
It must also properly sync, control, and format the LED ;"
inputs and system cycling for bipolar and complex-value
data handling. In practice, LED and photodetector
correction factors are also included in the preprocessing
and postprocessing (Sec. V). All these operations can .
be hard-wired and performed at high speed in a dedi-
cated system. However, to enable the use of the lOP
to be studied for many diverse problems and applica-
tions, a flexible rather than a dedicated electronic
support system was desired. We achieved this with a
microprocessor support system. A schematic of the
lOP emphasizing the microprocessor electronic feed- Fig. 3. Schematic diagram of the lOP emphasizing the micropro-

back and support system is shown in Fig. 3. cessor-based electronic support system.

The electronic feedback system contains four sub-
systems:

(1) An LED board that performs the necessary
preprocessing in Eq. (16) for handling bipolar and W1 L.L.4 L
complex-valued data, provides the multiplexed pul- 1 L".".."
sewidth-modulated current drive for the LEDs and e
corrections for nonuniform LED saturation levels. • LLLL

(2) A detector board with parallel resettable opera-
tional-amplifier (op-amp) integrators to allow variable
detector integration times and correction for nonuni- : :-::
form photodiode responsivity. ....... .......

(3) Analog to digital (ADC) and digital to analog
(DAC) converters for input to and output from the
microprocessor controller.

(4) a microprocessor controller subsystem. This
controls the scheduling of all lOP operations and per-
forms the operations in Eqs. (3), (9), (17), and (18).
The microprocessor subsystem contains a control sec-
tion with a Fairchild 9408 LSI microprogram sequencer
to execute various microprograms stored in a 26K ran-
dom access memory (RAM) program memory and a = LJ
thirty-two line instruction decoder to activate various
control points in the system. It also contains an
arithmetic data section containing a custom-designed
arithmetic unit consisting of a 16-bit 300-nsec multi-
plier, a 16-bit arithmetic logic unit (ALU), and a 16K
RAM with a special row-column address structure. In Fig. 4. Laboratory 1OP and its entire electronic support system
this data section all arithmetic operations are performed (microprocessor, power supply, front panel console).
at high speed. The 16K RAM is used to store fixed data
such as LED and photodetector response correction
factors wv, (h - h), etc. The system is also provided with
a capability of storing up to fifty-four different selected 1OP system is placed behind the central dark panel, and
iterative data outputs for future display on a scope or the system's power supplies are on the bottom of the
for input to a microcomputer for analysis. The labo- rack. The present electronic support system contains
ratory lOP system also contains a front panel console 160 integrated circuits, requires 50 W of power, and has
from which the operator can load any programs into the a 300-nsec cycle time. Higher speed is possible, but the
26K or 16K memory depending on the lOP application flexibility and cost of the assembled system just de-
being considered. It also includes all necessary operator scribed were more compatible with our goals. More-
controls to start, stop, and reset the microprocessor over, it provided us with a sufficiently powerful system
IOP. to be used on many different applications and problems,

A photograph of the full microprocessor-based lOP and sufficient complexity to allow unforeseen problems
is shown in Fig. 4. The front panel is shown at the top. in the design 4 nd fabrication of larger systems to be
Below this is the microprocessor system. The optical uncovered.
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The laboratory IOP system uses a linear input array
of ten RCA SG-1002 LEDs at plane P1 of Fig. 1 with
1-mW output at 940 nm for a 50-mA drive current. The
LEDs are mounted on 0.375-cm centers along a copper
block 3.75 cm long. They are held in place by silver
epoxy and sealed in white RTV compound. The inner
connections from P to the mask at P 2 are accomplished
by a specially fabricated fiber-optic system. It contains
a linear array of ten apertures at one end into which the

LEDs are placed. Each aperture contains ten glass fi-
j bers, each 25 um in diameter, that branch outward to

I ,form a line of ten fibers. The output from the fiber-
optic system is thus a 10 X 10 array of 100 fibers whose
locations match the 10 X 10 elements of the mask at P 2 .
The fiber outputs have a center-to-center spacing of

40.35 mm vertical and 0.94 mm horizontal. The P2 mask
is placed between these fiber-optic outputs in the de- Fig. 5. Laboratory optical vector-matrix multiplier.
tector array. In the present system, the mask used is
a fixed pattern recorded on film. An advanced IOP
system we are presently designing will use a real-time
light modulator (such as the CCD-addressed liquid are thus usually operated at a fixed bias current and
crystal light valve18) as a real-time adaptive mask ele- amplitude-modulated over a restricted range to de-
ment. The detector used in the present system is a crease nonlinear effects. This results in a decreased
Centronics LD-20 silicon photodiode array containing useful linear dynamic range. Correction for LED
twenty elements each measuring 4 X 0.9 mm on nonlinearities is possible but was not included in the
0.94-mm centers. The spacings and sizes of the outputs laboratory system. Rather, we use pulse width modu-
from the fiber-optic system were chosen to match the lation (PWM) of the LEDs when linear performance
size of the elements in this detector. The horizontal and large dynamic range data are needed. When op-
spacing between fibers equals the spacing between de- erated in the PWM mode, the present laboratory system
tector elements, and the height of the ten vertical fiber has a minimum to maximum pulse-width ratio of 256
outputs equals the height of a detector element. This and thus a 256:1 input dynamic range. This has proven
allowed us to sandwich the mask between the output adequate for all applications with which we are con-
from the fiber-optic element and the detector with no cerned. Use of laser diodes rather than LEDs for the
imaging optics necessary between P 2 and P3 in Fig. 1. input source array allows amplitude modulation with
A photograph of the optical vector-matrix multiplier a large linear dynamic range. However, linear laser
is shown in Fig. 5. From right to left are the LED array, diode arrays are not yet commercially available, and
fiber-optic connector, mask, and photodetector array. thus our present system is operated with an LED input
The photodetector board is also visible on the left. The source array.
components in the system have been separated for When operated in the PWM data mode, a large spa-
clarity in the photograph. In practice, the entire system tial nonuniformity in the output power from the LEDs
is less than 5 cm long. of ±25% was measured. This fixed error is corrected

for by multiplying the input signal to the mth LED by
V. System Performance the reciprocal of its response. Spatial nonuniformities

In this section we discuss the performance of the of ±7% were measured for the responsivity of the output
laboratory lOP system we fabricated and emphasize photodetector elements. These output nonuniformities
how many system designed features were chosen to were similarly corrected for by multiplying each pho-
improve the accuracy and stability of the system. The todiode output by its appropriate reciprocal respon-
first IOP that we fabricated9 used cylindrical lenses for sivity correction factor. These multiplicative source
imaging from Pi to P2 and from P2 to P 3. Experiments and detector corrections are directly included in the
and simulation analysis on this system showed that two preprocessing and postprocessing with no additional
major error sources were cross talk in the vertical overhead, since the correction factors can be measured
imaging from PI to P 2 and nonuniform illumination of once and stored in the microprocessor system's 16K
each row of the P 2 mask. The fiber-optic system (Sec. data memory. As noted in Sec. III, the bipolar data
IV) effectively removes both of these error sources. handling algorithm in Eq. (18) automatically cancels all
Similar problems were found to occur in the required fixed-pattern detector noise and detector leakage cur-
imaging from P 2 to P:1. By placing the detector, mask, rent effects.
and fiber-optic element in contact, these error sources Residual spatial nonuniformity errors caused by the
were similarly removed, and a rugged stable system (Fig. source and detector may still remain. In addition,
4) of greatly reduced size and weight resulted. differences in the coupling loss from the different LEDsAmplitude nonlinearities in the light outputs from to the different fiber-optic elements may exist togetherthe LEDs is a well-known problem. These components with spatial variations in the outputs from the 100
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fiber-optic elements (resulting mainly from differences This present system description has only emphasized
in the polishing of the ends of each fiber). After its use in solving linear algebraic equations or vector-
applying the preliminary LED and photodiode correc- matrix equations. In Sec. II we noted that the system
tions, we measured the 2-D spatial variations of the can also be used to compute the eigenvalues and ei-
entire system and found a residual nonuniformity with genvectors of a matrix. Multiplication of two M X M
a standard deviation of only 0.8%. This level of accu- matrices is also possible on the system by vectorizing
racy was sufficient for our purposes. It can be reduced one matrix or by running the system M times with the i
further by placing a fixed correction mask (with trans- M columns of one matrix as inputs. Matrix inversion
mittances inversely proportional to the system's 2-D is similarly possible by describing the problem as N
spatial nonuniformity) in contact with the data mask problems each of the form of Eq. (3) with y = 1. We
at P 2. In practice, we include these fixed corrections have also 12 used the system to solve nonlinear matrix-
on the data mask itself when it is recorded. matrix problems using a modified Newton-Rhapson '

From the discussion thus far, we find that all fixed algorithm. In this latter application the solution in-
spatial errors in the system can be reduced to nearly any volves an inner and an outer iterative loop, with the
desired level, and nearly any desired input data dynamic output from the inner loop fed to the outer loop after N
range can be achieved (by pulse width modulation with iterations and a different mask necessary for each outer
an associated loss in speed, by amplitude modulation loop iteration. The lOP system thus appears to be a
of a laser diode source array, or by a combination of viable, powerful, flexible, and quite general purpose 3
amplitude and PWM modulation). The major errors processor with many potential applications.3
in the system are thus the time-varying thermal noie The authors thank Rome Air Development Center
in the detector, and noise in the data recorded on the for auport th i Re Air orce ceofr
mask at P 2. In the present system, the temporal de- for initial sup,)ort of this research, Air Force Office of

tector noise is <0.4% of full scale. This can be further Scientific Research (grant 79-0091) for interim support,
reduced by use of cooled detectors, advanced detector and NASA Lewis Research Center (grant NAG 3-5) for 
fabrication techniques, and chopper-stabilized opera- present support of our TOP research.
tional amplifiers if necessary. Noise in the recorded
data at P2 thus appears to represent the major limita-
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Multidimensional adaptive radar array processing using an
iterative optical matrix-vector processor

David Casasent Abstract. An iterative optical matrix-vector processor that computes the adap-
Mark Carlotto" tive weights for a phased array radar is described. Multidimensional adaptivity
Carnegie-Mellon University in both target angle and velocity is achieved by lexicographically ordering the
Department of Electrical Engineering antenna elements as they are fed to the optical processor. Complex weights are
Pittsburgh, Pennsylvania 15213 computed by spatial multiplexing of the vector and matrix inputs to the system.

The error sources of the optical system and the convergence of the iterative
algorithm are analyzed, and experimental demonstration of the accuracy and
performance of the system is included. This novel processor is found to perform
quite adequately and to be most appropriate for advanced multidimensional
adaptive phased array radars.

Keywords: two-dimensional signalprocessing; multidimensional adaptivity; radar array
processing iterative optical matrix- vector processor; adaptive phased array signal pro-
cessing angle adaptivity.

Optical Engineering 21(5), 814-821 (September/October 1982).

CONTENTS In Sec. 2, we describe the APAR signal processing problem. Cor-
I. Introduction putation of the optimum set of adaptive weights to apply to the
2. Adaptive phased array signal processing receiving elements of the antenna to steer it in a desired direction andto null all noise sources in other directions is formulated as the solution4. Angle adaptivity using the lOP of a matrix-vector equation requiring the inversion of a matrix. In Sec.

5. Multidimensional adaptivity 3, we describe an iterative optical matrix-vector processor (lOP) that
6. Multidimensional adaptivity using the lOP we have fabricated7 to address this problem.8 We also discuss how
7. Conclusion complex values are accommodated on this system and how conver-
8. Acknowledgment gence of the iterative algorithm is achieved. We also advance an error
9. References source model for the processor. The experimental use of the lOP to

cancel noise sources distributed in angle is then demonstrated in Sec. 4.
I. INTRODUCTION In Sec. 5, we extend our theory to the case of multidimensional

adaptive antennas. Experimental demonstration of the use of the lOP
Adaptive phased array radar (APARV - represents a formidable for an antenna adaptive in both space and time is included in Sec. 6
signal processing problem of considerable current interest 4'5 and one together with an initial error source and accuracy analysis of this new
for which advanced signal processing concepts and algorithms are optical processor for this application.
necessary. The real-time and parallel processing features of optical
systems make them attractive candidates for this application. How-
ever, the nature of the APAR problem requires a new optical process- 2. ADAPTIVE PHASED ARRAY SIGNAL
ing system that performs more general functions besides the Fourier PROCESSINLG

• - transform and correlation operations normally realized in such sys- For simplicity, we initially consider a linear phased array antenna
tems.6 In this paper, we describe a new and general purpose optical w ith e ingtand ose anea in a n ennaprocessor. discuss its application for APAR processing, provide exper- with adaptive steering and noise null cancellation in angle (6) only.

oimental demonstrations of its use in APAR processing, and analyze In Sec. 5, we extend this theory to the case of multidimensionalthe accuracy and performance of the system for this application, adaptive antennas. Consider the linear ( I-D) phased array antennathe a a n r a o e tsystem of Fig. I with N isotropic elements spaced d = kR/ 2 apart
*Present address: The Analytical Sciences Corporation, I Jacob Way, Reading, MA (where AR is the wavelength of the radar). In the far field of thencr17. antenna (i.e., at ranges R>>(Nd) 2/AR), we assume a signal

Invited PaperTD402 received Apr. 27, 1982; revised nmanuscript received May18, 1982; s(t) exp(wt) at an angle 00 (this represents the direction in which we
accepted orT publication May 21. 192; received by Managing Editor June , 1982. wish to steer the antenna and obtain maximum response) and M
S1"92 Society of Photo-Optical Instrumentation Engineers. uncorrelated, zero-mean, narrow-band interference sources rm(t)
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(3) also maximizes the SN Rat the output of the antenna. These results
Fig. 1. Simplified pictorial block diagram of an adaptive phased array are in agreement with the conclusions in Refs. I. 2, and 4.
radar procemor.

3. ITERATIVE OPTICAL PROCESSOR

From Sec. 2, we found that the solution of the optimal adaptive
expjowt) at angles 0 .... 

8
M . All angles are measured with respect weights w that will steer an antenna in a direction s* and null

to boresight (the normal to the array). The objective of an APAR is directional interference noise described by the covariance matrix M
to point the antenna in the direction 00 and to null the antenna must satisfy the vector-matrix equation
pattern in the directions 0 m of the interference sources. With the
signal and interference sources in the far field of the antenna, the M w =s . (4)
radiation incident on the array can be described by the superposition - - -

of plane waves from the directions of each source. Since the path The constant multiplicative factor P0 in Eq. (3) does not affect the
difference between two antenna elements is d sin 0 = (AR sin 0) 2. the computed solution w. In Refs. 7-10, we described an iterative optical
signal received at the n-th antenna element is processor (lOP) that can solve matrix-vector equations or systems of

M linear algebraic equations such as Eq. (4). An improved version of

Zn(t) = s(t)eJ((t+mrnsin00) + rm(t)e(wt+irrnsinom) (1) this lOP is shown schematically in Fig. 2. The input at P, is a linear
I array of LEDs or laser diodes (LDs), whose outputs at time j

M=I describe a vector x(j). This vector output is imaged vertically and
expanded horizontally to uniformly illuminate row m of P, with the

Each of these N antenna outputs, z(t) = lzn(t)}, is multiplied by a input x . A 2-D mask whose transmittance is described by a matrix H
complex weight w = {Wn}, and the output from the receiver is the is placed at P2. The light distribution leaving each column of H- is
coherent summation of the products of the weights and the received collected on a separate photodetector at P3.The output from the linear
signals: photodetector array at P3 is thus the matrix-vector product H x(j).

(N-1) With such a matrix-vector processor (as described in Refs. II. 12
= = WT . (2) and more recently in Ref. 13) as the basic element of our system, wev0 t(t) wnz(t) - (2) subtract an external vector y from H x(j), multiply the difference by a

n=0 constant acceleration parameter o, and add the result to the prior

In Eq. (2) and in our future descriptions, we employ vector and matrix x(i) input to obtain a new iterative input x(j + I) for time j + I. This
lOP thus realizes the Richardson algorithm"4 in the form

notation to describe the various signal components of the system.
Lower (upper) case letters with an underbar denote vectors (matrices). x0(+ 1) = _() + (0[ y] (5)

The antenna pattern that is obtained from such a receiver is I- y
described by an angular response E(0) which is the inverse Fourier When x(j) = x(j + I) = x Eq. (5) reduces to
transform of the weighting pattern {wn}. The attractive feature of a

phased array radar is the ease with which one can steer the antenna. To Hx = y(6)
direct the antenna to 0 = O0 , we simply weight the antenna outputs by
the conjugate phase pattern wn = exp(-jirnsin00). When uncorre- and the system's output is
lated noise is present, due to uniform background radiation or thermal
noise in the antenna itself, this weighting maximizes the signal-to-noise x = H- y (7)
power ratio (SNR) at the antenna's output.' However. :n direc- - -

tional interference is present, this simple weighting is not optimal, and
the weights must be computed adaptively as a function of the changes or the solution of the matrix-vector equation in Eq. (6). Such a
in the rf noise environment. This is the APAR signal processing system can be directly used for the APAR problem described in Sec.
problem with which we are concerned. In Ref. 9, we show that the 2 and summarized in Eq. (4). We simply use the covariance matrix M
vector N which minimizes the mean square error between the signal as the matrix H, the steering vectors* as the exogenous vector y, and
and array output satisfies the matrix-vector equation the solution vector x is then the desired set of adaptive weight-s w to

be computed.
= P0 s* . (3) In Ref. 7, we detailed the fabrication and performance of the

laboratory lOP system we assembled. As the inputs, we used ten
LEDs which were interconnected to the mask by a fiber optic system.

where M m z*(t)z'(t) the covariance matrix of the received signal A film transparency is used as the mask in our present laboratory
plus interference; P0 = s*(t) s(t) the signal power;s = exp(j rn sin 00) is system, although a real-time 2-D light modulator such as the CCD-
the steering vector. In Ref. 9, we also show that the solution W to Eq. addressed liquid crystal light valve|- can provide a real-time adaptive
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mask for this system. Alternatively, a new optical systolic array errors, we describe the observed output , = Hx obtained from the
architecture'6 using a I-D acousto-optic cell at P, of Fig. 2 with matrix-vector multiplier as the exact result 7,,,,, plus two terms:
feedback of the photodetector outputs to the acousto-optic cell's
inputs" can also be used to provide a fully real-time iterative optical = + 7spatial + ?temporal" (II)
matrix-vector processor. For now, we consider only the system of
Fig. 2. The height of the matrix mask used at P, is 4 mm, and it was The spatially fixed errors in the lOP are due to nonuniformity and
chosen to match the height of the detector elements in our linear nonlinearity in the LED and detector responses, spatial variations in
photodetector array at P . We also chose the horizontal spacings the transmittances of the fiber optic interconnections, and errors in
between detector element, and thus, in our present system, we the transmittances of the elements of the mask. We can correct for
simply place the output photodetector array in direct contact with the source and detector errors by multiplying the inputs to the LEDs
the mask at P, by a fixed correction vector stored in read-only memory. The resid-

Since the outputs from the LEDs and the transmittances of the ual spatial nonuniformities that remain can all be transferred to the
mask elements are real and positive, this system can multiply and mask plane. This is quite attractive since we can then correct for all
add only positive numbers. In the APAR problem, the elements of residual spatial errors by properly modifying the matrix data as they
the matrices and vectors are complex valued. Thu-, to provide the are recorded on the mask. For our laboratory system, the measured
complex-valued matrix-vector product in Eq. (4). we employ spatial residual spatial error without a correction mask was ±0.8%.' This
and temporal multiplexing. We realize a bipolar matrix-vector prod- represents 1spatial in Eq. (II) under uniform LED illumination.
uct y = Hx by scaling, biasing, and partitioning H such that it is a Since it is adequate for our applications, as we will see, no further
unip-olar matrix. We then operate the lOP twice. On the first cycle, corrections for it were included in our present system. The temporal
the positive values x, of xare the inputs, and on the second cycle the time-varying component of the system noise ztemporal in Eq. ( II) is
negative values x, of x are the LED inputs. In the postprocessor, we due to the detector. It was measured to be ±0.4 for our system. As
form the difference Hxl - H , of the two successive matrix-vector before, this is sufficiently small that cooled detectors and other
outputs and scale and bias the result to provide the new inputs for the measures to decrease this noise component were not used. This latter
next iterative cycle. This procedure is detailed in Ref. 7, where we error source represents the fundamental limit and performance of
discuss how this procedure reduces the required space bandwidth the IOP. In Sec. 6. we use our error source model in Eq. (11) and
product of the mask and enables all fixed pattern detector noise to be present an initial analysis (with experimental confirmation) of the
canceled. To enable the system to perform complex-valued matrix- performance of the lOP for a multidimensional adaptive antenna.
:ector multiplications, we partition the matrix and the vectors in the
s..'stem as 4. ANGLE ADAPTIVITY USING THE IOP

As an initial example of the use of the lOP for APAR processing, we[!I:re [Mre -±iim I [re consider interference sources distributed only in angle as descrihed
= ,x , (8) in Sec. 2. We also use this initial example to detail an alternate

- *im im MreJ I Wiml method to process complex-valued data on the lOP. We consider a
two-element array with one interference source at an angle 01 with

where the subscripts re and im denote the bipolar real and imaginary noise power P, (per received channel) and with additive receiver
parts of the indicated vectors and matrices. To accommodate com- noise of Nr watts per channel. We ignore the signal strength in this
plex-valued matrix-vector operations on the system, we bias M, present treatment. The received signals at the two array elements are
form a unipolar matrix as before, partition it as indicated in Eq. (8)
format the vectors x and y as in Eq. (8), and operate the system for zi = x1 +Yi
two cycles with the positi'e- and negative-valued vector elements as
the inputs. We detail this complex-valued algorithm and demon- z2 = x2 + Y2 . (12)
strate its use for a specific example in Sec. 6. In Sec. 4, we describe an
alternate complex-valued algorithm and demonstrate its use on the where xn and Yn are the interference voltage and noise voltage in
lOP system of Fig. 2. channel n. The voltage x2 will lag x, by a phase angle y = 7rsin0,

A new feature inclu"ied in the system of Fig. 2 isthe presence ofthe (where d = hR!2 is assumed), and the noise voltages Yn will be
acceleration parameter w.(We retain the standard notation W for the independent of each other and of the xn signals. For this case, the
acceleration factor. This will cause no confusion with the radian covariance matrix is
frequency to in practice.) Proper selection of w ensures convergence
of the iterative algorithm and speeds the convergence, as we now P + Nr P1 exp
discuss. Since M is a positive definite Hermetian matrix, its N L P r ,ep--
igenvalues An are positive, and thus to ensure convergence of Eq. M =rJ(13)

(5), we require w to satisfy' P, exp(+j-y) P +N,

In this initial experiment,8 ve set w I in Eq. (5), and to avoid the
II - WAnI < I. (9) need to add the original input to the difference between the matrix-

vector product and the exogenous vector, we place [I - M] on the
This is ensured by the choice' mask, where I is the identity matrix. The iterative algorithm of Eq.

1 2 (5) now becomes

( = 111-11-' h (10n() x(j + I) = (j) [/- M] + y
For the specific case chosen, we used P1  0.1 watts and Nr = 0.5

where the Euclidean norm of H (the square root of the sum of the watts (these Nr and P, values ensure convergence, and thus the
squares of the elements hmn of H) is represented by the symbol acceleration factor can be unity) and chose 01 such that A, 4 7r, 3.
shown. When the spatial multiplexing in Eq. (8) is used, IIII The reqtired matrix mask is thus41 1 11 is used in Eq. (10).

The accuracy and performance obtainable for any analog or
optical processor is an issue of primary concern. In the error source 0.4 0.1 exp(-j4r ri3)
model we have developed for the lOP, we separate the errors of the [ - M] L . (14)
system into spatially-fixed and temporal errors. In terms of these 0.1 exp(j4 r/3) 0.4
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To realize the complex mask transmittance in Eq. ( 14), we introduce
an alternate technique"N in which a complex-%alued number m' (one
component of the maskI is represented b% three real and positive ,"
components (mij, mi'. and m;) which are the projcctions of the mask
elementsalongaxesatangles, 0' , 120',and 240' incomplex space, i.e..

m rrexp(j0) + ml'exp(j2rr 3) + mexp(j4r 3) . (15)

For the specific matrix in Eq. (14). the phase angles of its four L ''

components are 00. 120'. and 240'. and thus we can represent Eq. -

(14) by the three matrices

0 1 0.O]  r , 0] _[I1i =,[-.M]; =16 ,1J 7W-
-o 1. 00 U

1  
I

I-J = zi ,2 ,.

poiiv.A/temakueda , ..12. multipexed, -, .- 2% .........

We note that each of these matrices and all of their elements are
P° tive. As the mask used at P, of Fig. 2, we thus spatially multiplexed
these three matrices, and as the formatted matrix mask we used

Fig. 3. Pictorial description of the antenna receiver for an array antenna

4 0with space and time adaptivity.

0.4 0 ;o0 0 1I0 0.1

0 0.410.1 0 1 0 [0.5118. 0.5118, 0.0834, 0.0. 0.0834] (21). . . .-- J --- 4- - -1

0 0.1 I 0.4 0 I 0 0 These compare very well to the exact results in Eq. (20) after an
I -.M] = I k 17) infinite number of iterations. In the order and format in Eq. (18).

0 0 1 0 0.41 0.1 0 these exact results are

0 0 1 0 0.1 1 0.4 0 10.5142. 0.5142. 0.0857, 0. 0. 0.0857] (22)

0.1 0 1 0 0 1 0 0.4 Comparing (21) and (22). we find that the lOP's experimentally
calculated weigh's are within about I f of the exact ,aiies. Thus. the

For the case of two adaptive antenna elements, there will be two performance of this optical processor appears to be excellent for this

complex-valued weights. We repre :nt these by wa and wb. Each of simple initial example.
these weights will have three pos....,:-valued elements with a decom-
position similar to that used in Eq. (15); i.e., for wa, its three positive 5. MULTIDIMENSIONAL ADAPTIVITY

projections are w; 0. w;,. and W;2, with a similar notation for wb. The We now consider extending our adaptive antenna theory of Sec. 2 to
input vector w to the first six LEDs is formatted in terms of the six include adaptivity in velocity or time (further extensions such as
positive numbers corresponding to the three projections of each of polarization and multipath compensation are possible using the
the two adaptive weights as techniques to follow, but the details of such formulations are beyond

the present scope of this paper). The adaptive weights w = 1%,1
w = [wa. Who. wal . wbi. Wa2, Wb2] . (18) described in Sec. 2 only affect the spatial frequency response of the

antenna and hence the angular position of nulls in the antenna
The mask was arranged as described by Eq. (17), the input vector pattern. To control the temporal frequency response of the array, we

was formatted as described by Eq. (18). and the steerir _ vector was require taps on the time-history outputs from each antenna element.
chosen to be In Fig. 3, we show a 2-D space-time antenna array. There are N

antenna elements and N spatial weights as before. These provide
s* = [0.3, 0 .31T (19) adaptivity in space or in angle To prkw ide temporal frequency

control, we include N' taps on each antenna element with time delays
for our experiments. The coefficients in the steering vector in Eq. ; between each. We choose T to satisfy r = \R / 4vmox , where vmax is
(19) were chosen to simplify the solution. This steering vector corre- the blind speed of the radar (i.e., the maximum uniquely resolvable
sponds to the boresight direction. Solving Eq. (4) for th s case, we find velocity of an object moving relative to the antenna). These provide

adaptivity in time or target frequency or velocity. The processor for
w = (0 3 0,35) [0.6 - 0.1 exp(-jrr/3). such an adaptive antenna thus r -quires the calculation and applica-

tion of N X N' weights wn n at the zn n, tap points shown in Fig 3.
0.6 - 0.1 exp(+j ir, 3)1T (20) We first formulate the required proc, sing as a 2-D extension of the

theory of Sec. 2. We then proN ide an experimental demonstration of
In Fig. 3. we show the outputs from the six relevant photodetector the lOP in the solution of such a problem and an analysis of the
elements of concern in the output of Fig. 2 at iterations j = 0, I, and accuracy of the results obtai",d (Sec. 6).
5. In Fig. 3. the six photodetector outputs shown correspond right- We describe this multidiir : sional adaptive antenna ,roblem by
to-left to the siy w components in Eq. (18). The six measured output extending our model and analysis of Sec. 2 to includc a target or
voltages after the sixth iteration were found to be signal at 00 with a velocity v0 and M interfe, ence sourct-s at angles 0,
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,ith M '.elocities %. M. The output at the ( n. n') element of the with attention to the error source model formulated for the lOP in
antenna in our 2-) model of Fig. 3 is thus Sec. 3. We use two performance measures to describe the perfor-

+ t
4
T r '%mance obtained from our adaptise radar processor. Our first per-

In. n(0= s(t)ejIt±+ frn lfl!I) + r )f'5] formance measure used is the SNR of th. resultant antenna pattern.
For the spatiaily-adaptise antenna, the SNR of the output is

MV rm t)e I[wt + iTnsnm + rr(4r AR)n*m] (23) PIE0 0 .j)12 (29)M -I SNROj) = M (9

where -r 2<0<r" 2and -(4r X)<v<(4r X). The output from i PmIE(0m.j)
2

the recei er *s now more complex than in Eq. (2) and is a 2-D i
summation gien b. where P0 is the strength of the signal located at 00. and Pm is the

(% - ) strength of the interference source at 0m . For the spatially adaptive
'out(t) = V N 'n. 00 Wn. n'• (24) antenna (Sec. 2). the output antenna pattern E is a function of angle11 =0 n'= and the iteration number j. The numerator in Eq. (29) describes the

total power in the antenna pattern at the location 00 of the source, and

The weights are now a 2-D function wn. n" They satisfy the more the denominator is the sum of the total power in the antenna pattern at
l sthe location of the M noise sources after application of the adaptivecomplex system of linear algebraic equations weights. For the multidimensional antenna with adaptivity in space 0

(N-I) (N-I) and time (or velocity v). the output SNR is a function of the iteration
' k  V 'mk~k.nlf.Wnln . (25) number j as well as angle 0 and velocity v. It is described by

n=0 n'=0
eoE E(00* v0,5 lo (0

where mk,k..nn in Eq. (25) describes the elements of the new SNR(j) (30)
co.ariance matrix M for the signals in Eq. (23) and where the V PmjE(0m,Vmj)j2
steering vector is now A"

m1l
S~k~. =e - j r ~ks n 0° 14r g~kv°](26)

s =A ef[ksin~o+(4r As)k'vI (26) As our second performance measure, we use the processing gain

Equation (25) is in the general form of a matrix-matrix equation. (PG) defined as
Since the lOP (See. 3) can perform only matrix-vector multipli- PG(j) - SNRO)SNR(0) (31)
cations. we must convert Eq. (25) into the form of a matrix-vector
equation. We achieve this by performinga lexicographic mapping of The denominator in Eq. (31) describes the initial output SNR with
the 2-D antenna outputs in Eq. (23) onto a vector !(t) = {zt(t)l. Fora no adaptive weighting (i.e., after iteration j 0). The numerator
two-element antenna (N 2) with two taps(N' 2, per element, we denotes the SN R that results afterj iterations. This PG parameter is

t e t -o thus a measure of the output SNR improvement obtained after j
i0 (t) =iterations. We expect it to increase with j. It is thus most useful in

(t) )(t) providing a measure of how various choices of the signal and noise

I (t) = z 1(t) scenario and the acceleration parameter w affect the speed with
which our iterative algorithm achieves convergence or a given per-

z 10 (t) formance (i.e., a prespecified antenna pattern SNR). To graphically
present our results, we will plot the output antenna pattern obtained

,(t) 711(t) .(27) for the adaptive weights calculated from the lOP. We also compute
the output SNR and PG defined above for each of the resultant

We describe a new covariance matrix M in terms of i and a new antenna patterns as a function of the iteration index j and other
steering vector_ that is ordered similar toT. The resultant weights to system and scenario parameters of concern.be computed are similarly ordered and denoted by . With this new We first consider the effect of the acceleration parameter on thenotation, we solve the new matrix-vector equation number of iterations required for the algorithm to converge to itssteady-state value and on the performance obtained after a given

(28) number of iterationsj. As our perforriance measure, we use PG0j) in
Eq. (31). where this PG represents the amount by which the various

where .i and * arc lexicographically ordered and where Mi is the interference sources are nulled by our adaptive algorithm. We found
wheriand ar e lexicographically ordered hrecie this to be a function of the strength Pm of the interference sources
covariance(for a fixed antenna or receiver noise Nr and signal strength P). Tsignals _ in Eq. (27). The solution of Eq. (28) on the lOP of Fig. 2 0now follows directly. The space bandwidth product required for the determine the importance of using Eq. (10) for the acceleration
input LEDs. the mask, and the output detector are increased by the parameter rather than w = I as we used in Eq. (14), we considered
lexicographic ordering used. If this becomes prohibitive, one can various signal powers P0. interference .ource powers Im (we con-

operate the system successively with one column vector for one of sider only one noise source of power PI). and antenna or receiver
the 2-D functions being the input at successive cycles. This alternate noise powers Nr. In Fig. 4, we highlight our results by plotting PG
technique for performing matrix-matrix multiplication on a matrix- versus the iteration indexj for the two different acceleration parame-
vector processor was detailed earlier in Ref. 19. ter measures w = I and o = II ! II-1. In Fig. 4(a), we consider thecase when P, >> P0 = Nr, and in Fig. 4(b). we consider the case when

6. MULTIDIMENSIONAL ADAPTIVITY USING P, = P0 = Nr. These data (and much additional testing not included
THE lOP in these drawings) show that SNR increases as in the interference

power P, is increased with a null depth of4O dB obtained for a noise
In this section. we providean experimental demonstration of the use source of strength P, = 0. 1 [Fig. 4(a)] and a much poorer 9 dB null
of the lOP for multidimensional antenna processing as formulated depth obtained for a noise source of lower strength P, = 0.001 (Fig.
in Sec. 5. We also emphasize the accuracy of the resultant system 4(b)]. This is in agreement with the general performance of an
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Fig. 5. Output antenna pattern SNR(j) as a function of the number of
iterations j for no lOP system errors tab = At = 0) and for typical experi-
mental lOP errors lAb = 0.025, At = 0.005).

duce mask errors and detector noise with the three-sigma variance
- :value shown. Different sample realizations of each of these errors

were added on each iteration of the lOP. The data in Fig. 5 are the
average of five Monte Carlo runs.

We conclude this section with a detailed description of a typical
Fig. 4. The processing gain PG(j) = SNR (jl)/SNR (0) describing the out- multidimensional adaptive antenna processing experiment per-
put SNR improvement obtained with different acceleration parameter formed on the laboratory ]OP. For this case, we consider an N = 2
choices as a function of the number of iterations j: Is) interference power element array with N' = 2 time taps. The signal source was of power
P, = 0.1 watts; (b) interference power p = 0.001 watts. P0 = 0. 1 and located at 0o = 450 and v0 = 0.5vmax. We used one

interference source at 00 = 00 and v, = 0 with power 1.0. The

adaptive antenna, which provides deeper antenna pattern nulls for N XN'=4 array elements each with receiver noise power Nr = 1.0

stronger interference sources than for weaker ones. From Fig. 4, we were lexicographically ordered as described in Eq. (27). The covar-
also note that the use of our acceleration parameter choice in Eq. iance matrix computed from the received signals for this scenario was

(10) becomes increasingly important as the SNR at the input (P01 PI)
increases and as P, Nr increases. This is in agreement with standard F2 i i i
adaptive array antenna theory. I- 5 From Fig. 4(b), we notice that our
adaptive algorithm converges to the final value in about ten itera- 1 2 I 1
tions when the acceleration parameter is chosen according to Eq. M - (32)(10), whereas over 100 times more iterations are needed if no acceler- 1- 1 2 (32

ation parameter (c = I) is used. Thus. to accommodate all possible

ratios of signal, interference, and receiver noise, the use of Eq. (10) I I 2..2
for the acceleration parameter is warranted.

In other tests, we studied how the processing gain varied with the The Euclidean norm of H calculated from Eq. (32) is 7.48. We used
angular separation between the signal and the interference source, its reciprocal as our acceleration parameter w = 0.13 as described in
We verified that ou. system could achieve super-resolution beyond Eq. (10). The complex-valued format in Eq. (8) was then used for M.
the classical resolution limit as described further in Ref. 20. When For this case, M is real and thus it is arranged as the 8 X8 matrix
the number of interference sources M is larger than the number of
adaptive elements, we found that choosing the locations of the Rre 0

adaptive elements to be randomly distributed on the N XN' grid in M r (33)
Fig. 3 improves performance very well. L Mre

One of our most important theoretical analysis and simulation
results concerns the effect of the system's spatial Ab and temporal At
errors on SN. of the output. We considered an N = 5 element wherereisdescribed bypEq(32)'To°btainthe optical mask used
antenna with receiver noise Nr = 0. 1 and one interference source at in the actual system, we divided each element of M by (hmax - hmin)
01 =450 with PI = 1.0. 1n Fig. 5. we show SNR(,j)as a function ofthe =2 and biased the entire matrix by hmin/(hmax - hmin) = 0. The
iteration index j for different Ab and At percent errors and noise, resultant optical mask actually placed at P2 of Fig. 2 was thus
With no errors, a steady-state SNR of 44 dB was achieved after
about 100 iterations. With a 2.5% spatial error and an 0.5% temporal 0[ re
error (Ab = ±0.025, At = ±0.005). we find less SNR than the ideal H = (34)
system can provide, but the SNR is still a very respectable 38 dB li-re]
value after only 100 iterations. For increased spatial and temporal

errors, the system's SNR performance is degraded even worse. The
error values included in Fig. 5 are comparable to what the present Where Hre is the same Mre in Eq. (32) with each element divided by
laboratory lOP system can achieve, and, as seen, its performance is two. Thecomplex-valued steering vector corresponding to the signal |
quite acceptable. To obtain the data in Fig. 5. we employed a direction 0o=45° and vo=0.5 has element valuesgiven by Eq. (26).
random number generator with a uniform density function to pro- When arranged in the lexicographic format of Eq. (27), it becomes
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-0.97 - 0.672

-0.82 - 0.27j j. . (35)
0.61 - 0.82j

0.27 + 0.97j

Fig. 6. Experimental outputs from the relevant eight photodetectors of
We easily decompose Eq. (35) into its real and imaginary parts and the lOP of Fig. 2 in the computation of the complex-valued weights for e

multidimensional antenna with space and time adaptivity.
obtain the eight element exogenous vector

( e. f *mIT = -0.82, 0.97, 0.61,0.27, -0.61 cases of the optically computed weights and the exact weights. Initial
simulations were performed to verify that these results were typical

-0.27, -0.82, 0.971T . (36) of those to be expected. The above results were found to be typical
for the ten different cases we considered. We also produced initial

The two cycle complex algorithm described in Sec. 3 was theoretical expressions" from which upper bounds on the perfor-
employed with the positive elements of y used on odd iterations and mance of the lOP can be predicted as a function of spatial and
the negative elements on even iterations. The x outputs were com- temporal system errors. In all cases, the results obtained in our
puted by the laboratory lOP for the first fifty iterations. The micro- experiments were well below the weak bounds we derived. Because
processor support system and the dedicated high speed memory in of this, no derivation of these bounds is included at present.
the lOP were used to combine the positive and negative outputs
from successive iterations and to store the resultant bipolar numbers 7. CONCLUSION
)yj) computed at each iteration j. The eight relevant photodetector
outputs corresponding to the eight elements of the bipolar and com- We have reviewed the basic signal processing requirements for adap-
plex-valued output vector x = [x xm I corresponding to the com- tive antennas and have provided a summary description of an itera-
plex-valued weights w are shown inpig. 6 after the first. fifth, and tive optical matrix-vector processor that appears most attractive for
fiftieth iterations. We denote these outputs by x(l), 2[(5), and x(50), such advanced signal processing applications. Modifications to our
respectively, in the Fig. 6 caption. The complex-valued weights initial lOP were described to allow incorporation of an acceleration

parameter, and two techniques were described to allow the system to
= Wre + [woo, W10, w01, w1I]

T  (37) operate on complex-valued data (as required for the APAR applica-
tion). Theoretical and experimental data and simulations showed

were directly obtained from the eight x outputs (x1.  ) accord- that use of an acceleration parameter equal to the reciprocal of the
ing to Euclidean norm of the covariance matrix greatly reduced the number

of iterations needed (by a factor of 100 or more), especially as the
interference power approaches the signal power and the receiver

o x1 + Jx5  noise. We describcd and experimentally demonstrated two different
techniques by which the system can operate on complex-valued

Wl0 = Y2 + jx6  data. The technique (Sec. 4) in which each complex number is
represented by its three positive projections on three axes in the

W01 = x3 + ix7 complex plane requires more space bandwidth product with fewer
iterations. The bipolar technique (Secs. 3 and 6) in which the posi-

WII = X4 + jx8 (38) tive- and negative-valued input data are used on successive iterations
requires twice the number of iterations but less space bandwidth

After the fiftieth iteration, we obtained product than the technique used in Sec. 4. The choice between these
two methods of handling complex-valued data depends upon the

- - number of adaptive weights, the speed required. the space band-
-0.9 - 0.45j width product available on the lOP used, and the importance of

canceling fixed-pattern detector noise.
0.75 - 0.25j (39) We have also extended the use of the system to include multi-

w(50) dimensional adaptivity and have experimentally demonstrated
0.4 - 0.8 j angular adaptivity and multidimensional space and time adaptivity

on our laboratory lOP. The experimental performance obtained
0.2 + 1.1 j was quite excellent. Theoretical and simulation studies have shown

_ that the performance of the present lOP with its 0.8% spatial errors
and 0.4% temporal errors is quite adequate for APAR applications.

To determine the accuracy of these results, we first calculated the Our experiments showed an rms error of only 2.3% in the computed

rms errors between the exact weights and those computed after 50 weights, and, more important, that this resulted in less than an 0.26

iterations. This error was found to be 2.3% (it did not decrease dB difference in the SNR of the output antenna pattern. This novel

appreciably when further iterations were performed). The true mnca- and most general purpose optical processing architecture merits

sure of the performance accuracy of the weights computed from the more research and analysis for the indicated APA R problem and for

laboratory lOP lies in the SNR obtained in the output pattern that many other diverse applications that can be reduced to matrix-
results when the weights in Eq. (39) are applied with the interference vector equations and matrix-inversion problems.
sources and receiver noise indicated. The resultant antenna pattern 8. ACKNOWLEDGMENT
was obtained. Its SNR was 14.7 dB. This is nearly exactly equal to
the SNR obtained (14.96 dB) if the exact weights were applied. We The support of the Air Force Office of Scientific Research on a
thus find the laboratory lOP system to be extremely accurate with supplement to Grant AFOSR-79-0091 whichenabled us to complete
less than 0.26 dB difference in the SNR of the output antenna for the the work herein is gratefully acknowledged.
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Eigenvector determination by iterative optical methods

B. V. K. Vijaya Kumar and D. Casasent

Three power methods to compute the eigenvalues and eigenvectors of a matrix on an iterative optical proces-
sor (lOP) are analyzed. Each is appropriate for a different eigenvalue and eigenvector application. When
implementation on an IOP and the prccessing speed are considered, the second method is found to he prefer-
able to others recently described.

I. Introduction vectors in order of decreasingly dominant eigenvalues
A noncoherent optical vector-matrix processor' and (Sec. III); and computation of the eigenvector whose

an iterative optical processor (IOP) 2 version of this eigenvalue is closest to a given value (Sec. IV). In all
system have recently been described. The IOP system three problem different modifications of the basic power
enables one to solve sets of simultaneous linear equa- method are preferable from implementation consider-
tions at very high computations/second rates. This also ations. Our summary and concluding remarks follow
represents a general purpose optical processor, since in Sec. V.
many problems can and are easily formulated as vec- Methods to accommodate biopolar :3 .4,6 and com-
tor-matrix equations. In this paper we describe an- plex-valued 2,3,6 vector and matrix elements in an IOP
other operation, computation of the eigenvalues and have been previously described and thus are not dis-
eigenvectors of a symmetric matrix, that the IOP can cussed explicitly in this paper, as all the techniques are
realize easily. equally appropriate for any of the algorithms to be de-

In Sec. II we briefly review the basic IOP system and scribed.
describe our initial3 use of it to compute the dominant
eigenvalue and eigenvector of a matrix that we need to II. Iterative Optical Processor and Power Method
determine the acceleration parameter used in our iter-
ative algorithm. A recent publication 4 has detailed a A new schematic diagram of the IOP, including the
similar power-law algorithm5' and has discussed its use exact iterative algorithm we employ and the accelera-
on an lOP to compute all the eigenvectors and eigen- tion parameter w, is shown in Fig. 1. The input vector
values of a matrix. Our concern in this paper is thus data are described by x(k). It is provided as the spa-
with implementational problems associated with the tially varying intensity output from a linear array of
power-law algorithm5) and the use of the IOP in three LEDs or laser diodes (LDs). The output from these
different eigenvalue and eigenvector computational input data at P1 is imaged vertically and expanded ho-
problems. These applications are: calculation of the rizontally to illuminate uniformly a matrix mask H at
largest eigenvalue (Sec. II); calculation of the eigen- P2. In the present IOP system this is achieved by fiber

optics. The transmittance of each element at P2 is
proportional to each element hij of H. In the final
version of the IOP a CCD-addressed spatial light
modulator (SLM) will be used at P2 (see Ref. 7). The
light leaving each column of P2 is integrated vertically

The authors are with Carnegie-Mellon University, Department of and imaged horizontally onto a linear photodetector
Electrical Engineering, Pittsburgh, Pennsylvania 15213. array at P: with parallel readout. The mask at P2 is

Received 20 June 1981. presently a fixed photographic film, and the required
000:3-6935/81/213707-04$00.50/0. imaging from P 2 to P:j is achieved by placing the de-
c 1981 Optical Society of America. tector array in direct contact with the P 2 mask. The1
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Fig. 1. Schematic diagram of the lOP.

M

Fig. 2. Schematic diagram of an eigenvector and eigenvalue computational system using the IOP.

height of each detector is chosen to equal the height of is in position 1 (initialize), the original P1 input vector
the P2 mask (3 mm) to achieve this. x(k) at the first k = 0 iteration v(0) v(0) for n =1] is

We can thus describe the output from P 3 at iteration oaded into the source array at P 1. After initialization
k as Hx(k), i.e., by the vector-matrix product of the P 1  the switch is placed in position 2. On the mask H at P2

and P2 data. We subtract this output from an external we place M, the matrix whose max is desired. Then the

vector y and multiply the difference by an acceleration system's output v1 (k) at P2 after k iterations is
factor ti. The result is then added to the prior x(k)
input at iteration k to produce a new x(k + 1) input MkV 1(0 = v(k). (5)

vector for iteration k + 1. The resultant system thus If the original input v(0) vector is described by
realizes the iterative algorithm

VI(O)=Ce + c2e2 +. . \,eN, (6)

x~k 1)= z~) -wl~xk) Yj*(1) after h iterations the P3 output is

When x(k + 1) = x(k), Eq. (1) reduces to
v1(k) = Mkv1(0)

Hz y.(2)= M5(c~e1 + c~e2 +.. cNeN)
The lOP system of Fig. 1 thus solves Eq. (2) for the
unknown vwctor x given H and y. It thus effectively = C(? )el + °(Ak2 )e 2 + .'" CN(N)keN

computes - c(A 1)e. (7)

= f H-y. (3) In applying the lOP as described by Eq.(l) to the
To optimize convergence of the algorithm in Eq. (1), computation of Xmax, we denote the N eigenvectors by

we select w to be max (the maximum eigenvalue of H).3' 5 M by e 0 and their eigenvalues by Xn. Thus the third
We have used two techniques to compute max. The equation in Eq. (7) results. If he Xn is ordered as l xii
first is to determine rapidly an upper bound for max > I X2

1 I " " " I XkNI, after a sufficient number of k it-
from the norm (square root of the sum of the squares of erations the sum in line 3 of Eq. (7) is dominated by the

the elements of H), 8  first term and the last expression in Eq. (7) results.
Thus with any arbitrary v 1 (0) input vector at P 1, with

• ,/h, 4 the condition that the c0 's are not zero (we have
v-',, ,,achieved this condition by using a random number

We have also used the power method 3 to compute X'ma. generator to produce the initial set of cn values, 3  and
To describe this method refer to Fig. 2. If the switch with y =f 0, the P;1 output after a sufficiently large
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number () of iterations will yield cl(XI)kel. After one puted and generated for each new eigenvector e. This
more iteration we obtain CI(XI)k+lel. The quotient of computation requires n matrix-matrix multiplications
these two outputs yields XI. From our assumptions on and is thus prone to computational errors. Also, it re-
the ordering of the eigenvalues this is an approximation quires a new P 2 mask Mr to be generated and hence a
to X, = Amax as shown in Eq. (7). real-time electronically addressed light modulator at

Caulfield et al.4 have noted this use of the power P 2. The most advanced device of this type is a CCD-
method on the IOP to compute X, = Xm.a. They also addressed liquid crystal light valve. 7 This device and
extended this algorithm to allow computation of all N other 2-D light modulators can presently be cycled only
eigenvectors and eigenvalues of M. The basic algo- once every 30 msec. This can represent a considerable
rithm suggested in Ref. 4 to achieve this is to form a new decrease in the overall computational speed of the loP
matrix after each eigenvector and eigenvalue has been for eigenvector calculations.
computed. The general form used for the mask after For these reasons an algorithm permitting the use of
n - e eigenvectors and eigenvalues have been obtained a fixed mask and requiring less complex postprocessing

is is preferable for many applications. The modified al-
n = (M - )'(M - X21)... (M - X_ 1 IM, (8) gorithm uses the original IOP concept that it is far easier

to alter the photodetector's output than the matrix
whre I is the identity matrix. This new Mn matrix can mask. We thus enter vi(0) and M at P1 and P2 and
then be placed at P 2 of Fig. 1, vl(0) can be placed at P1 , estimate X1 ah.d el as before with y = 0 in Fig. 1. The
and after k iterations the output at P 3 provides the P 3 output (after k iterations) is cI(X1)ke 1 . We deter-
largest eigenvalue and its eigenvector of Mn as before. mine X1 from the ratio of the outputs at the k and k +
This occurs because the eigenvectors of M and Mn are I iterations as noted in Sec. II. We then compute the
the same. For the mth eigenvector er, we can show elements of el by dividing each measured photodetector

output value by the square root of the sum of the
M,. e= (X- - ,\)(X, - \ 2 ) ... (X. - X ,-)e., (9) squares of the photodiode outputs. This yields the el-

which is equ-valent to Eq. (21) in Ref. 4. Since n - 1 of ements of el and simultaneously normalizes el. Then
the eigenvalues of the new Mn matrix is zero, the new we can compute cl (again in dedicated output logic)
An eigenvalue can be found from Eq. (9) by postpro- by
cessing, given the prior X1 to Xn- eigenvalues obtained Cl = (Vl{O) -el, (10)
from n - 1 prior operations of the system as described
in Ref. 4. In Secs. III and IV we describe preferable where • in Eq. (10) denotes the vector inner product

eigenvalue and eigenvector computational algorithms operation.

for realization on the IOP for selected applications that With A1 and el determined by Eq. (7), we then sub-

are also preferable from implementation, speed of tract clei from the original v,(0) input vector for iter-
computation, and accuracy considerations. ation k = 0 for the first or n = 1 eigenvector. This

yields a new initial (iteration k = 0) starting vector for

I. Computation of Ordered Dominant Elgenvalues computation of the n = second eigenvector, given by

and Eigenvectors V2(0) = v (o) cie 0 1)
In many cases one desires only the first two or three Substituting Eq. (6) into Eq. (11) we find that

eigenvectors of M with the largest eigenvalues. This
need arises in Karhunen-Loeve analysis,9 bandwidth v 2 (0) = C2e2 + c3e.1 +.. + CNeN. (12)

c -npression,10 pattern recognition,"1 and other cases. After k iterative cycles with the same M at P 2, and with
In these instances we would like to compute the eigen- the P1 input described by Eq. (12), the P3 output is
vet.'rs e, of M orderd in terms of their largest eigen-
values (absolute values). The method4 of Sec. II does Mv 2 (O) = v2(k) c(., 2)he2. (13)
not provide this ordered set of eigenvectors. Rather, As before, we compute X2, e2, and then c2 from
it provides the eigenvector with the largest eigenvalue
of the modified matrix M,,. This is not necessarily the C2 = 1v2(0) . e2.1

eigenvector of M with the next largest eigenvalue. At the next set of k iterations we compute c:j and et
Thus, to avoid computing all N eigenvalues and eigen- using the input vector
vectors and then ordering them to determine the two
or three most dominant ones, we suggest a modified vi(o) = v2(0) - c2e 2. (15)

algorithm. Inspection of Eqs. (11), (12), and (15) shows that the
A second reason for considering an alternate algo- required postprocessing to obtain the initial starting

rithm is that solving the nth-order polynomial equa- vector V,,+ 1 (0) for computation of the (n + l)st eigen-
tions of the form in Eq. (9) (as is required for each ei- value and eigenvector simply requires subtraction of
genvector) can become as computationally difficult as c,, e, from the previous initial vector v,, (0). This is
computing the eigenvectors of M by conventional easily achieved as shown by switch position 3 in Fig. 2.
methods. As a third motivational reason to consider We denote the iteration number by the index k and the
an alternate eigenvector computational algorithm, we eigenvector being computed by the subscript n. The
note that the prior power method (Sec. 11) requires a three steps in this algorithm can be realized by a
new matrix mask, as described by Eq. (8), to be com- three-position switch as shown in Fig. 2. The opera-
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tions performed by the system with the switch in each Since K is larger than any I,, 1, the term in brackets in
of the three positions can be summarized as below: Eq. (20) has a negative maximum when ,n t- X. Thus,

(1) Initialize. In this case vn (0) = v1 (0), since the power method yields the eigenvector with the
(2) Iterate. After k iterative cycles, the P 3 output largest absolute eigenvalue, we can use the lOP with M'

(for n = 1) is at P 2 and the input initial vector in Eq. (6). The output
at P3 will then yield data for the eigenvector e with the

Mhv1 (0) = v1 (k) ci(i)kel, (16) eigenvalue closest to A. A simple numerical example
from which c, and el can be found by direct postpro- can be found in Ref. 12. We note in conclusion that
cessing. computing M' in Eq. (19) from M requires only two

(3) Reinitialize. The starting vector vn(0) for matrix multiplications.
computing the nth eigenvector is determined from the
initial input vn-1(0) used in computing Xn_ I and en- 1  V. Summary and Conclusions
and the cn-en- 1 product by In this brief paper we have discussed three power

vn(0) = Vn-1(0) - c-ten-1 . (17) algorithms by which the IOP can be used to compute the
eigenvalues and eigenvectors of a matrix. We found the

The system's output in mode 3 after k iterations is first method to be adequate for estimating the maxi-
Mhvn(0) = vn(k) - cn(1n)ke_. (18) mum eigenvalue. We suggested a new scheme (Sec. III)

for computing the dominant-ordered eigenvectors that
Equations (16)-(18) thus describe the general reini- did not require altering the mask in the IOP. The

tialization and iterative algorithms for the use of the second method requires less electronic processing and
IOP in computing the ordered eigenvectors of a matrix thus should be more accurate than the technique in Sec.
M. As seen, the required postprocessing in Eqs. (10) II. However, the accuracy with which either technique
and (11) is trivial compared with that in Eq. (9). In can identify a nondominant eigenvector may not be
addition, the matrix mask at P 2 need not be changed as adequate. We thus advanced a third power algorithm
was required in Eq. (8). Furthermore, this new algo- (Sec. IV) that can compute the eigenvector whose ei-
rithm provides the eigenvectors of M ordered in terms genvalue is closest to a given value.
of their decreasing eigenvalues (absolute values), These applications of the IOP serve to show how
whereas the prior power method does not. It is thus general purpose this lOP processing system architecture
superior for the application indicated in terms of com- is for a diverse selection of applications in different
plexity of the postprocessing required, its speed (no P 2  disciplines.
mask changes are needed), and accuracy (n - 1 matrix
multiplications are not needed to produce the new M We thank the Air Force Office of Scientific Research
mask). (grant 79-0091) for support of such extended applica-

tions of the IOP. We also thank NASA Lewis (grant
IV. Determining an Arbitrary Elgenvector NAG 3-5) for recent support of our continued IOP

The power method in Sec. II produces all eigenvectors program.
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SIGNAL PROCESSING
DAVID CASASENT

The present, the future, and the be formulated as a vector-matrix equation or a set of
potential of this discipline, simultaneous linear equations. Concluding and summary

remarks are then advanced in Section VI. Throughout the
various sections, new architectures and signal processing
techniques as well as complete optical systems that have been

ULK acousto-optic and other optical processors fabricated and delivered to several agencies are noted. This
for spectrum analysis, correlation, ambiguity combination of new research techniques and optical system
function computation, and other signal proces- engineering has been selected to demonstrate the state of the
sing functions are described. Basic architectures art of optical signal processing, future research directions for

and algorithms are reviewed and several case studies are this technology, and the quite major potential this discipline
described. These include spread spectrum, wide-band signal has to offer.
processors, radar ambiguity function processors, passive BASIC TECHNIQUES
ambiguity function computation, and adaptive phased array
radar processing. The basic operation of AO transducers [2] can be briefly

Advanced radar, sonar, and communication systems reviewed with attention to Fig. 1. An electrical signal of
require increased processing capacity to keep abreast of the amplitude A 1 and frequency w I is fed to the AO cell. We can
computation load produced by the larger bandwidth and describe the output pattern from this transducer in three ways.
longer time-bandwidth products of new sophisticated wave- We first note that the angle 6, + Odat which the diffracted light
forms, as well as the denser target and signal environments to leaves the cell is proportional to the frequency cu 1 of the input
be handled. This paper contains a review of recent advances signal, and that the amplitude of the diffracted light is
in optical signal processing for such applications. Major proportional to the amplitude A, of the input signal. Optical
attention is given to bulk acousto-optic (AO) systems, since systems are linear. Thus, if multiple input signals are present
they have recently [ 1 ], [21 emerged as a major component at frequencies u,, and with amplitudes A ,, multiple diffracted
with the necessary high bandwidth and large time-bandwidth plane waves leave the cell at angles proportional to w, and
product for advanced signal p )cessing needs. This has with amplitudes proportional to A,. A lens placed behind the
occurred because of parallel advances in devices, algorithms, cell focuses these plane waves to different spatial locations in
and system architectures. The repertoire of basic AO
processor architectures and algorithms are briefly reviewed in
Section I. Wide-band optical signal processing systems and
techniques for folded-spectrum analysis are then described in
Section II. Several spread spectrum OSP techniques for
synchronization and decoding are treated in Section Ill.
These involve new signal processors such as Spann
correlators and hybrid time and space integrating and space-
variant AO systems. Simultaneous determination of the
range and Doppler of multiple targets represents one of the
most demanding radar processing functions. In Section IV,
two optical processors that compute the ambiguity function
are described, one for active radar applications and the
second for passive signal processing use. Adaptive phased II t
array radar signal processing applications are the subject of ASection V. Major attention is given to an iterative optical
vector-matrix processor that represents a new class of an Fig. 1. Schematic dagram showing the operation of an

optical system of quite general use for any problem that can acousto-optc transducer.

0163.6804/81/0900.0040 $00.75 1981 IEEE
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the back focal plane of the lens, with the amplitude of each
component proportional to the amount of each frequency
present in the input data. Such a system is thus a spectrum 40A

analyzer. -

We next consider the output light distribution when the
input signal to the cell is a chirp or linear frequency modulated
waveform whose frequency increases linearly with time. In -

this case, the angle of the deflected ight distribution increases
linearly with time and a scanner results. Use of a
galvanometer or similar deflector on the second orthogonal
axis yields a two-dimensional (2-D) deflector. AO cells.,,ao

operated in such a mode result in fast deflector systems for use Fig. 2. Functional diagram of a multichannel acousto.opic
in recording input data at high rates. The third mode of system to provide a 2-0 direction of arrival versus frequency
operation for AO cells, and the one most used in this paper, output display of multiple Input signal data [3].
can be seen by noting that the input signal g(t) to the cell
moves along the length of the cell at a velocity v, (the acoustic
velocity of propagation of the AO material used). We can acou01o-
thus describe the transmittance T of the AO cell with such an optic
input signal for this mode of operation as a function of time (t) Cell S SB9(t) flilter h(x) Pethoto
and space (x) by deteilerc~) htor

( x , t ) = g O t -x / v , ) ( a ) I
or

T(x't)= R(X-vJ). (lb) ps 1 2ta Pb 3a 3

In this summary presentation, we assume that the response of
the AO cell is linear, and we note that this can and is achieved Fig. 3. Schematic diagram of a space Integrating acousto-
in practice by restricting the range of the input voltage. optic correlator.

Acousto-optic transducer technology has produced cells
with I GHz bandwidth (and I ps aperture transit times),
100 MHz bandwidths (and 20 ;s aperture times). or similar originated (i.e., the direction-of-arrival of the data). Several
intermediate values with effective time-band, -; product such systems with diverse performance specifications have
values of I X 103-2 X 10'. These performanc )cifications been fabricated and used with quite good success.
make the AO spectrum analyzer attractive for many The major concern of this review paper will be advanced
applications. Bragg receivers with I MHz frequency resolu. AO processors, specifically, correlators for signal demodula-
tion over a I GHz bandwidth have been fabricated and used tion and target range and Doppler determination rather than
in many diverse applications to determine the frequency for spectrum analysis and the various 2-D displays noted
content of radar signals and other sources. Such information above. The two fundamental AO correlator architectures use
is also of use in determining the frequency and pulse repetition space integration and time integration. The space integrating
frequency of operation and the coding employed in a given system is shown (41 schematically in Fig. 3. In this system,
signal transmission This information is of subsequent use for the transmittance of the AO cell at Pta, fed with a
jamming, countermeasures, and other techniques. signal g(f), is described as g(x-vt). This light distribution is

Another technique of immense use in discriminating the imaged onto plane PIb (by lenses L1 and L 2) where a fixed
multitude of signals entering an advanced receiver is to mask with transmittane h(x) is placed. The light pattern

determine the direction of arrival and frequency (f) of all input leaving Pb is then the product h(x) g(x-vt). Lens L3 forms
signals and to display the full spectrum of wide-band signals in the Fourier transform of the this product of two signals. This
a 2-D direction-of-arrival versus f plot. A technique to achieve Fourier transform is evaluated by a single on-axis photo-
such a display is shown [3] in Fig. 2. Such a system has been detector. The output plane pattern is then
fabricated by GTE Sylvania for the Naval Research
Laboratory. In this AO processor, the received signals from R(t) = f h(x) g(x-v31dx heg (2)

different elements of a .phased array receiver are fed to a or the correlation of the input and reference signals g and h.
multichannel AO processor, and the 2.D Fourier transform of From (2), we note that the integration is performed over
the input signal pattern is produced on a detector system. The space (x) and the correlation appears as a function of the time
vertical Fourier transform provides frequency information on output from the photodetector. Hence, this system is referred
the input data, and the horizontal Fourier transform produces to as a space integrating AO correlator.
a deflected beam with deflection angles proportional to the In practice, the input signal to the AO cell and the reference
time delays between the signals in successive channels, and pattern h on the mask are carrier modulated and biased to
hence proportional to the angle from which the input signal yield real and positive waveforms. The Fourier transform of
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the input data is formed at P2 where the dc component (bias .
level) and one sideband are removed by spatial filtening. This-
single sideband (SSB) filtering in conjunction with quadrature S4It
input modulation yields a complex wavefront incident ot, B M
plane Pib. For simplicity, such issues together with other
detailed system aspects such as illumination of the AO cells at I!M sow"

the Bragg angle will be suppressed in our AO signal 0()
processing system analysis. Instead we shall assume that
these techniques (or equivalent optical and electronic L P L R _P
heterodyne detection) are used to enable complex correla.
tions to be realized on such systems when necessary, even
though real and positive inputs are used. Fig. 4. Schematic diagram of s time Integrating ecousto-optic

The second general class of AO correlator is the time correlator.
integrating system [5] of Fig. 4. In this system, the signal g(t)
is used to modulate the output light from a light-emitting diode
(LED) or laser diode source in time proportional to the input
signal. This light distribution is collimated and used to (up to 1 GHz) and long integration times; however, both
uniformly illuminate an AO cell at P fed with the signal h(t). systems use I -D transducers and provide only 1 -D output
In this system, we describe the light distribution incident on P, patterns. Some of the most demanding operations requiring
by g(t) and the transmittance of the AO cell as h(t-x/v,). advanced signal processors necessitate 2-D output data
Leaving Pi, we find the product g(t) h(t-x/u,). This pattern is displays such as the simultaneous range and Doppler of
imaged onto a one-dimensional (1.D) output detector at P3  multiple targets. AO signal processing architectures have
(with SSB modulation at P2 as needed). The P3 detector responded to this challenge with new algorithms and
provides time integration of the incident signal, yielding an architectures. The basis for these techniques is the optical
output pattern realization of the chirp-Z transform. To understand tlis

R(x) = f g(t) h(t-x/v,)dt = g ® h (3) algorithm, we consider how to achieve a Fourier transform on
a AO correlator system. A I -D analysis is used for simplicity.

that is the correlation of the received and reference We first write the Fourier transform of a I -D signal f(t) as
signals g and h. In this system, the corelation is performed by F() = f 40 exp -iwt)dt. (4a)
integration in time on the detector and the correlation is
displayed as a function of space. Thus, this system is referred We then substitute the identity
to as a time integrating correlator.

At this point, it is worthwhile to pause to reflect upon the
advantages and disadvantages of these two AO correlators. into the exponent in (4a). This yields
The space integrating system of Fig. 3 can search a large F(
range delay or time delay in the arrival of the input signal. Ftu) = e f At)e' "  dt, (4b)

This is obvious since the photodetector has no outiit until the which can be rewritten as a correlation
received signal enters the AO cell. Conversely, in this system, F(w)=eJ' /[f(t)e'l®Ee'l. (4c)
the signal must be in the AO cell for the correlation to occur. =e (4

Thus, this space integrating system can only handle signals In the form shown (4c), we see that the Fourier transform
with a time-bandwidth product equal to that of the AO cell or of f(t) can be reali -d (61 by premultiplying (t) by a chirp
the P, b mask (the mask resolution is normally not the limiting exp (-jt I) and correlating the signal with another chirp
factor) or approximately 10' for most devices. Conversely, in exp (+jIt -/,.). Postmultiplication by another chirp exp(-.Ia /A)
the time integrating system of Fig. 4, the received and yields the exact Fourier trarisform. Such an exact Fourier
reference signals must be present within a much smaller time transform is rarely necessary as the magnitude is usually
delay equal to the aperture time of the AO cell. However, this sufficient for most applications. This algorithm can be used on
system can provide integration over a signal of longer time the time integrating system of Fig. 4 by feeding 1(t)
duration and time-bandwidth product than that of the exp(-jt2/ to the LED and exp(+jt'/) to the AO c l. A
AO cell. The practical limitation is the SNR or dynamic range similar technique can be used to convert the space integrating
of the output detector used, although digital storage and correlator of Fig. 3 to a Fourier transform system. An
addition of detector outputs in a postprocessor can increase interesting multichannel Fourier transform version of Fig. 4
the possible integration time even further. Thus, we find the can be realized [71 if a linear array of N input LED's and a
space integrating system to provide large range or time delay 2-D output time integrating detector are used. If each LED is
searches, whereas the time integrating system allows fed with a separate signal fI-(. multiplied by a chirp, the
processing of large time-bandwidth product signals. In 2-D outputs are the I-D transforms F,-F.. of the N input
Section Ii, we describe a hybrid time and space integrating signals, each present on a separate horizontal line in the.
AO system that realizes the advantages of both processors. output plane. Such a system should be of use in advanced

The AO systems of Figs. 3 and 4 achieve high bandwidth Fourier spectroscopy imaging signal processors.
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Let us now consider how the above techniques can be used modulators such as the General Electric light value. These
[81 to achieve 2-D signal processing operations using only systems have proven most useful and promising; however,
two I-D AO transducers. The basic architecture [9) used is they have limited real-time bandwidth capability. Recent
the triple product processor shown in simplified form in Fig. 5. device architecture and optical engineering advances now
In this 2-D time integrating system, the input LED and AO. I make much larger bandwidth systems of this type possible.
produce the correlation of so and s, vertically in x at the ouput One version of such a system, shown [ 1] in Fig. 6, uses a
plane. The correlation of so and s2 is formed vertically by new 2-D addressing technique to provide wider bandwidth
AO-2 at the ouput plane. The 2-D system output can be data recording. In this system, the I -D input data are fed to an
described in terms of three input signals and the delay AO cell of length T, ,s. Every T, ps, a cavity-dumped laser is
factors r , and r2, associated with AO. 1 and AO-2 by pulsed on, imaging the full contents of the AO cell in parallel

onto one line of a 2-D optically addressed liquid crys.
f(xJy) = f(r2 , T,) = s0(t) sI(t-TI)s 2(t-r)dt. (5) tal light valve (LCLV) [12]. Successive T, jus portions

In Sections II and IV, two specific applications of this system of the input signal are recorded on successive vertical
using the chirp-Z algorithm are described to demonstrate the lines on the liquid crystal light valve by the AO vertical
flexibility and processing power of this architecture, deflector shown. The raster-recorded signal pattern on

the liquid crystal light valve is then read out in reflec-
FOLDED-SPECrRUM WIDE-BAND OPTICAL tion with the continuous laser that passes through the
SIGNAL PROCESSING beam splitter (BS) shown, reflected from the right-hand

In many wide-band applications, greater than a 103-point side of the liquid crystal light valve, passed back to the

Fourier transform (10' resolvable frequencies) is necessary.
In such cases, a I -D signal can be rastered-recorded on
V lines with H cycles per line in a 2-D format. The 2-D optical
Fourier transform of this signal record results in a folded-
spectrum output with coarse and fine frequency axes [101.
With T = VTh (where 1h = I /Th is the horizontal line scan rate)
seconds of data recorded covering a bandwidth W, the
2-D folded-spectrum output contains H coarse frequency loci
with a coarse frequency resolution of h and with V fine
frequencies resolvable on each locus. The output thus has a
fine frequency resolution If = I/T over the full signal
bandwidth W and represents a VH point (or up to a I 06-point)
Fourier transform.

This technique has been known and used for over 14 years re

with film recorded data and with real-time 2-D spatial light Fig. S. Schematic diagram of an acousto-optic 2-D time Inte-
grating triple product processor [9].

ig6.Schematlic dis-
gram of a snapshot-
addressed real-time
folded-spectrum opti- i TOP
dat signel processing
sslm fill.

AID



SEPTEMBER 1981

beam splitter, and then up to a 2-D Fourier transform lens input signal with all of these possible signal replicas. The size
system whose output is sensed by a vidicon or other output of the associated filter and the required system time-
detectors and fed to various displays and/or digital analysis bandwidth product are quite excessive. A more attractive
systems. technique was suggested by Spann [ 14] and later applied to

This system allows writing of one line of information an optical system [151. In this Spann correlator, the received
of T, = 6 As duration with greater than 10' points of data signal is raster-recorded in the input plane and a unique
written in parallel every 6 As. Vertical deflection with 6 js Fourier transform mask is placed in the frequency plane. The
times and over 500.point resolution are readily available. Fourier transform of the product of the transform of the input
Such a system can thus provide a spectrum analyzer with signal and the mask is formed in an optical frequency plane
over 5 X 10 resolvable frequencies in a signal bandwidth of correlator [ 16]. The system output is then the correlation of
100 MHz. The well.engineered real time system of Fig. 6 was the input and the mask functions. To record the mask for
fabricated and achieved a bandwidth of 150 MHz and a time- an N-bit signal, we write N as N = NN 2. We then raster-
bandwidth product of 200 000. Other larger bandwidth and record the N-bit input signal repetitively with 2N , points
resolution systems can be fabricated with present optical per line for 2N. lines, remove the first line in the first column
components using this snapshot line-at-a-time addressing from this pattern, and record an optical matched spatial filter
technique. of the remaining (2 NI-1) X (2 N 2-1) bit pattern.

The triple product processor system of Fig. 5 has also been Spann [141 has shown that all possible N, X N2 raster-
used to realize a 2-D folded-spectrum optical signal recorded versions of the N-bit repetitive input signal in all N
processing system [9]. To achieve this, periodic chirps possible starting locations exist in this mask. Thus, the
of period T and chirp rates a and a(N-I)/N are fed to the location of the output peak in such a folded-spectrum optical
LED source and AO-2, respectively. The input signal is correlator provides information on the starting location of the
multiplied by the chirp fed to the LED. A slow chirp of period signal, and the amplitude of the output correlation at this
NT and chirp rate a/N is fed to AO- 1. The chirp rates are location is the decoded signal data.
chosen so that the triple product in (5) generates a constant AO correlators are also useful for various spread spectrum
difference frequency. A 2-D folded-spectrum output pattern signal processing functions. If a large range delay search is
then results, with rt and T2 being the fine and coarse desired, a space integrating correlator is preferable; con-
frequency axes, respectively. A total integration time of NTis versely, if a correlation of a long coded waveform is desired, a
used and a frequency resolution proportional to 1/NTresults. time integrating correlation is the prelerred choice. In cases
Several fully automated and on-line versions of such a system when a large time delay (for synchronization) and correlation
exist in various facilities. We achieve large bandwidths and of a long signal (for spread spectrum applications) are both
frequency resolutions, both of which can be electrically desired, a new hybrid time and space integrating AO
adjusted by appropriately varying the chirp signals fed to the correlator architecture with the best advantages of both the
different system inputs, space integrating and time integrating systems can be used. A

schematic diagram of such a system is shown [171 in Fig. 7.
Consider its use in the synchronization and decoding of a long
frequency-hopped signal in which the transmitted frequency

OPTICAL SIGNAL PROCESSING FOR SPREAD changes every T As according to a direct sequence or similar
SPECTRUM COMMUNICATIONS code (i.e., a new frequency, or chip, is transmitted

The long coded waveforms being used in spread spectrum every T As). In Fig. 7, we assume that the AO cell has an
systems pose many unique problems for the associated signal aperture time of T ps and that the output time integrating
processors. Long coded signals are used to achieve large CCD shift register detector has a clock rate of 1/ T Is. The
processing gains for increased noise immunity, better ranging mask at P2 contains an aperture on each of its N vertical lines,
accuracy, and to enable transmission below the noise level to with the horizontal location of the aperture on line N propor-
reduce signal detectability by unwanted persons [13]. To tional to the frequency transmitted at time NT. In operation,
achieve the full processing gain possible with such wave- as each new signal frequency chip enters the AO cell, light
forms, the reference and received signal patterns must be time passes through the corresponding aperture at P2 and falls on
or space aligned, i.e., synchronized. Once this signal the corresponding photodetector. With the shifting of the
alignment is achieved, a correlation on a quite long signal output detector data, successive chips add by time integration
(often much greater than 10' bits in length) must be on the detector. Thus, the time of occurrence of the output
accomplished. Several optical signal processing techniques to from the shift register detector provides time synchronization
address these spread spectrum signal processing issues follow information and the output correlation peak value has the
to demonstrate quite new and different algorithms and SNR of the full code. This system provides both a large time
approaches to signal processing. delay search (by virtue of the space integrating front end) and

Let us first consider how to determine the starting location a long signal integration time (achieved by time integrating on
of a long coded waveform that is repeated for several cycles, the detector with over 103 detector elements easily possible
If the signal is 10' bits in length and the full processing gain is with present technology). This system is typical of a new class
desired, we could record all 10' possible sets of the signal in of AO processors that combine the best features of time and
each of its 10' possible starting locations and correlate the space integrating systems. Many versions of such hybrid time
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to the range of the target and in space x at a location
m au WNW proportional to the target's Doppler velocity. The latter

property results because the Fourier transform of a log
coordinate transformed signal is the Mellin transform, which
is scale invariant [ 19]. The entire receiver processing can be
performed optically on the system [20] of Fig. 8(b). The

a., % , Le received signal is fed to the AO cell at P, and imaged onto a
vertical slit at P3. A frequency plane mask at P2 achieves the

fig. 7. Scimet c lgran of a hybrid time and spee. Inte- required exp coordinate transformation for all possible time
grohn coneator for spread spectrum igal synofronizafon delays t. The rest of the system is a conventional I -D matched
ma deci Ng [173. spatial filter correlator. The moving window input to this

system produces I -D outputs on the detector at P5. At each
instant of time, the Ps output is a slice in space x (or Doppler)
for a given time delay search in the starting location of the/ coordinate transformation.

Such a system thus provides synchronization (or ranging)
and data decoding with Doppler invariance to platform
motion. But more so, the transmitted signal is a nonlinear
spread spectrum waveform with nonlinearity produced by the

t1f1?r ISCEEVEcoordinate transformation applied prior to transmission. ThisItot) () coordinate-transformation operation nonlinearly spreads the
carrier wo to prevent its detection. It also spreads the coded
waveform itself. Upon reception, the inverse coordinate

n tots) iI t p-. X transformation compresses the signal so that the correlation
need be performed over a shorter length coded signal. Should

Yjf1(U) noise enter the receiver, the exponential coordinate trans.
formation spreads it and shifts its frequency out of the signal
passband, providing increased noise immunity. Such a space-
variant optical system represents a quite different approach to
spread spectrum, radar, and signal processing.

OPTICAL SIGNAL PROCESSING FOR
AMBIGUITY FUNCTION COMPUTATION

ma, Determining the range and Doppler of a target simul-
A A taneously is one of the most demanding processing functions

__ /1 required in radar. The resultant ambiguity function that must
be computed to achieve this operation on two signals $I and
32 is

I ft PA to i PIS Iof X(T,f)=ffs (t) s 2 *(t-)e-J 21fdt. (6)
i. Funetionul block diagram (a) and sohematic (b) of a Many OSP systems have been proposed and several
qsec-wen spead sp um sysem ad procesor []. laboratory systems to realize this operation have been

fabricated. Perhaps the most well-engineered system is the
one shown [21] in Fig. 9. This system was built and
demomstrated. It was required to be a fully real-time system
operating at over 150 MHz bandwidth on pulse burst

and space integrating systems for diverse signal processing waveforms with time-bandwidth product > 2 X 10'. The
applications are expected to emerge in future years. transmitted reference signal for this processor was to be

A quite different spread spectrum technique is shown [ 18] adaptive under computer control at a rate of 30 times/second.
in functional block diagram form in Fg. 8(a). In this system, a All necessary specifications were met by the system, and thus
log coordinate transformation (with to = 0 for simplicity) is it represents a major achievement in optical engineering and
applied to the signal f(x) = cos[oox + #(x)] to produce the signal processing system performance achieved with state of
transmitted signal ,(t) = cos(nwot + 6(0n)1. The signal is the art components.
transmitted, and upon reception, the inverse exp coordinate The pulse compressor system of Fig. 9(a) is a space
transtormtion is applied to yield f,(e- - 1) where I, will, in integrating correlator modified with optical heterodyne
general, be a delayed and Doppler shifted version of f,. The detection (not shown for simplicity) and a real-time reference
correlation of f, and f will have a peak in time f proportional mask. The sequence of received pulsed burst waveforms to be

4.
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operation must be performed f or many band-limnited received
signals in different threat bands. The space integrating AO
system of Fig. 3 can achieve the necessary operations if a
linear output photodetector array is used [22]. In this case,
one signal is recorded (with quadrature modulation) on the
mask and the second signal is fed to the AO cell. As a
function of time, the output from one detector is the
correlation of the two signals. If the two signals have different
frequencies, imaging one onto the other produces a beat fre-
quency equal to the difference between the frequencies of the
two signals. This signal is deflected to different elements of
the output detector. Thus, the detector output at each instant
of time is a slice of the ambiguity function parallel to the
Doppler axis for one r value. Note that this modified
AO system yields the 2-D) ambiguity function output using
only I -D transducers and a 1 -D output detector.

A more advanced version of an optical signal processing
system for this application that is presently being fabricated
uses the triple product processor system of Fig. 5. If the inputs
to this system are chosen as

so(t) = fi(t0e"'W (7a)

S10t) =f 2(tW (7b)

it is easy to show that the output in (5) is the desired ambiguity[
Pig.g. cheati d~aram@1 raar abig~y uncion function of (6). In practice, real and positive input signals are

processor (a) pulse compressor, (b) Doppler processor [211. necessary. Thus, quadrature modulation, SSB filtering, and
other system modifications are necessary to produce the
desired result. The triple product processor system thus
represents a quite general purpose optical signal processing

procsse ar fedto he O cll, hos ouputis S13 iltred architecture with the ability to perform 2-D folded-spectrum
procsse ar fe tothe O cilwhoe otputas SB iltred wide-band signal analysis or ambiguity function computation

and imaged onto the left side of a liquid crystal light valve on merely by changing the electronic input signals appropriately.
which the reference signal is written by imaging from a CRT
under computer control. The product of the transmittance of
the AO cell and the reference signal is then reflected from the OTICAL SIGNAL PROCESSING FOR
liquid crystal, Fourier transformed, and heterodyned-detected ADAPTIVE PHASED) ARRAY RADAR
by a photodiode. The time output from the photodiode thus The final signal processing application that we consider is
represents the N complex correlations of the reference with the computation of the weights w. necessary to apply to the
the N received signals in the pulse burst. The location of the received signals s. of an N element phased array to steer the
correlation peak with respect to the signal's time reference output antenna in a given direction defined by a steering
provides the necessary range information. Doppler informa- vector 9 and to adaptively null the entire far field antenna
tion is contained in the phase across the sequence of noise distribution in angle and frequency or time. Many
correlations. candidate techniques [23] exist, to solve this problem; the

To obtain the necessary Doppler data, the N correlations processing necessary for each is usually the problem. In one
are fed to the system of Fig. 9(b). Here they are snapshot technique, the cross correlation of all Nreceived signal pairs is
written (as in the system of Fig. 6) one line at a time onto computed, and these peak correlation values are entered in a
N lines of the second liquid crystal light valve. These data are covariance matrix M. Describing the antenna weights as a
then read out in reflection from the right-hand side, and the vector W, we can describe the relationship between the
1 -D vertical Fourier transform of the pattern on the light valve known matrix M and steering vector S and the u~nknown W by
is formed on the output plane. This provides the necessary MyW = .(8)

range and Doppler output ambiguity functon display.
A more complex form of ambiguity function arises when The solution to (8) is

two signals from the same source are passively received at
different detectors. To determne the target's differential W=Ms 9

i range and Doppler, the ambiguty function of the received However, for arrays with many adaptive elements, inverting
pasiye signals must be formed. To classify the target, this the matrix Ml in (9) is quite time consuming.

L 4?
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case studies, I have described many optical signal processing
systems and their use in different applications. In all cases
considered, many fabricated systems exist and many other
quite attractive new advanced optical ignal processing
techniques are available with the high bandwidth and
throughput necessary for advanced signal processing. It thus

I 06- appears that optical signal processing systems and the use
of bulk acousto-optic transducers offer a quite flexible and

Fw 1 , T1 011 5OW powerful approach to signal processing needs of the future.

Fig. 10. Schematic diagram of an iterative optical processor for ACCOWLEVDIGAM T
adaptive phased array radar signal processing [243. The assistance of many companies in providing data and

photographs for this paper is acknowledged, as is the support

An optical system to solve (8) for W has been devised and of the author's research by the Air Force Office of Scientific
fabricated [24]. It solves (8) using the iterative algorithm kesearch, Hanscom Air Force Base, NASA, and in part by

the National Science Foundation.
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where I is the identity matrix and W, is the ith iterative. REFERENCES

When W, = W,, (10) reduces to (8). The system's output is [ I ] Proc. IEEE, Special Issue on Acousto.Optics, Jan. 1981.
thus W and it has been obtained without having to invert M. [2] Proc. Soc. Photo-Opt. Instr. Eng., Vol. 214, 1979.

[3] R. Coppock and R. Croce, Proc. Soc. Photo-Opt. Instr. Eng., vol. 214,The iterative optical processor used is shown schematically in p. 124, 1979.
Fig. 10. The input at Ps is a linear array of LED's or laser [4] L Cutrona et al., IRE Trans. Inform. Theory, vol. IT-6, p. 386,1960,
diodes whose outputs are the elements of W. Each LED is and D. Hecht, Proc. Soc. Photo-Opt. Instr. Eng., vol. 90,

P. 148, 1976.
imaged vertically and expanded horizontally to uniformly [51 R. Sprague and C. Koliopoulos, Appl. Opt., vol. 15, p. 89, 1976.
illuminate the respective row of P2 where a mask with [6] L. Rabiner et al., Bell Syst. Tech. J., p. 1249, Me- 1969.
transmittance (/- M) is placed. The light distribution leading [7] D. Casasent and D. Psaltis, Appl. Opt., vol. 19, p. 2034, 1980.eansomittane (I ts m is acedThe lighdistriion sa ate o[8] H. J. Whitehouse et al., "Signal processing architectures using
each column of this mask is then summed on separate output transversal filter technology," in Proc. IEEE Symp. Circuits Syst.,
detectors at P3. The P3 output is thus the matrix-vector Boston, MA, Apr. 1975.
product (U - M) W. To this we add S and return the sum [9] P. Kellman, Opt. Eng., vol. 19, p. 370, 1980.
po c P as the new t thi e input, th a realizin the0 [10] C. Thomas, Appl. Opt., vol. 5, p. 1782, 1966.
to P( as the new iterative input, thus realizing (10). [11] J. Anderson et al., Proc. Soc. Photo.Opt. Instr. Eng., vol. 180,

In practice, the parallel addition of S can be achieved by p. 128, 1979.
adding a row to the P2 matrix with the summation performed [12] W. Bleha et al., Opt. Eng., vol. 17, p. 37 1, 1978.[13] R. C. Dixon, Spread Spectrum Systems. New York: Wiley, 1976.
directly on the output detector. Other system modifications [14] R. Spann, Proc. IEEE, vol. 53, p. 2137, 1965.
allow it to perform complex-valued matrix-vector operations. [15] D. Casasent and R. Kessler, Opt. Commun., vol. 17, p. 242 , 1976.
To decrease crosstalk between LED outputs at P2 and to [16] A. Van der Lugt, IEEE Trans. Inform. Theory, vol. IT-10, p. 139,

1964.
provide uniform illumination of each row of P2, fiber optic [17] D. Psaltis and D. Casasent, Appl. Opt., vol. 19, p. 1546, 1980.
connections are used between PI and P2 in the system [18] D. Casasent and D. Psaltis, Opt. Lett., vol. 4, p. 18, 1979.
fabricated. The height of the detector elements used was [19]-, Proc. IEEE, vol. 65, p. 77, 1977.

[20] , Proc. Electro.Opt. Syst. Design Con/., Oct. 1979, p. 333.
chosen to equal the vertical size of the P2 mask. This enabled [211 H. Brown and B. Markevich, Proc. Soc. Photo-Opt. Instr. Eng.,
the photodetector to be mounted directly behind the mask, vol. 128, p. 204, 1977.
thus eliminating all optics from the system. The electronic [22] B. Kumar and D. Casasent, EASCON 79 Rec., Oct. 1979, p. 595.

[23] IEE, vol. 127, part F, Aug. 1980.feedback loop includes a microprocessor, arithmetic logic [24] D. Psaltis et al., Opt. Lett., vol. 4, p. 348, 1979.
unit, controller, analog-to-digital converters, and the neces-
sary drive and demultiplexing circuitry. Random access
memories are used to correct for LED and photodetector
nonuniformities and pulse-width modulation of the LED's was
employed to provide increased system accuracy. The final David Casasent is a Full Professor of Electrical Engineering at
10 X( 10 element fiber optic/microprocessor-based iterative Carnegie-Mellon University, Pittsburgh, PA, where he holds the George
optical processor system assembled performs quite ac- Westinghouse Chair of Electrical Engineering. He is Head ol the Hybrid
curately and satisfactorily. More so, it represents yet another Image and Signal Processing Laboratory. He is the author and Editor of

several books and eight journal special issues, chapters in eleven books, and
OSP architecture that promises to be of quite general use in over 180 technical journal papers.
many diverse data processing problems. He has received various honors and awards including Felow of SPIE,

OSA, and IEEE for his research in optical data processing. He has also
SMMARY/CONCLW O received other awards such as the Ryan Prize for outstanding teaching and

In this review paper, I have attempted to convey the wealth research and Best Paper Awards for IEEE-AES and AIAA for his work on
radar and missile guidance. He is quite active in conference organizations,

of optical signal processing algorithms, architectures, and varous technical societies, and as a consultat to many companies and
systems that exist. By example and specific signal processing several government agencies. U

4.



-96-

15. PUBLICATIONS AND TALKS

15.1 PUBLICATIONS (AFOSR SUPPORTED, 1979-DATE)

Publications from 30 September 1979 - 30 September 1980 on work performed

under AFOSR-79-0091 are listed in Section 15.1.1. Publications during 30 Sep-

tember 1980 - 30 September 1981 follow in Section 15.1.2 and our new publica-

tions from September 1981 - September 1982 follow in Section 15.1.3. A list

of submitted and pending papers follows in Section 15.1.4.

15.1.1 PUBLISHED PAPERS UNDER AFOSR SUPPORT (30 SEPTEMBER 1979 - 30 SEPTEMBER 1980)

1. "Photo-DKDP Light Valve in Optical Data Processing", Applied Optics, 18,
3307-3314, October 1979 (Casasent, Luu).

2. "Coherent Optical Pattern Recognition", Nikkei Electronics, 150-181,
October 1979 (in Japanese) (Casasent).

3. "Optical Data Processing for Advanced Missile Guidance Needs", AIAA,
October 1979 (Casasent).

4. "Spread Spectrum Optical Signal Processors", Proc. EOSD, 333-342, October
1979 (Casasent, Psaltis).

5. "Space Blur Bandwidth Product in Correlator Performance Evaluation", JOSA,
70, 103-110, January 1980 (Kumar, Casasent).

6. "Optical Image Processing", EOSD, Tokyo, January 1980 (in Japanese)
(Casasent).

7. "Optical Signal Processing", EOSD, Tokyo, January 1980 (in Japanese)
(Casasent).

8. "Beyond Matched Filtering", opt. Engr., 19, 152-156, March 1980 (Caulfield
et al).

9. "Multivariant Technique for Multi-Class Pattern Recognition", Applied
Optics, 19, 1758-1761, June 1980 (Psaltis, Casasent).

10. "Optical Fourier Transform Techniques for Advanced Fourier Spectroscopy",
Applied Optics, 19, 2034-2037, June 1980 (Casasent, Psaltis).

11. "Nonlinear t-E Curve Effects in an optical Correlator", opt. Commun., 34,
4-6, July 1980 (Kumar, Casasent).



-97-

12. "Correlation of Images with Random Contrast Reversals", SPIE, 238, 156-
165, July 1980 (Barniv, Mostafavi, Casasent).

13. "A Laser Diode Lensless MSF-HOE Correlator", Applied optics, 19, 2653-
2654, August 1980 (Caimi et al).

15.1.2 PUBLISHED PAPERS UNDER AFOSR SUPPORT (30 SEPTEMBER 1980-30 SEPTEMBER 1981)

14. "Hybrid Processor to Compute Invariant Moments for Pattern Recognition",
Opt. Lett., 5, 395-397, September 1980 (Casasent, Psaltis).

15. "Optical Word Recognition, Case Study in Coherent Optical Pattern
Recognition", Opt.Engr., 19, 716-721, September 1980 (Casasent et al).

16. "Lensless Matched Spatial Filter Correlator Experiments", Opt. Commun.,
34, 311-315, September 1980 (M. Shen et al).

17. "HOE/Lensless Matched Spatial Filter Correlator Experiments", Opt. Commun.,
34, 316-320, September 1980 (M. Shen et al).

18. "A Laser Diode/Lensless MSF Optical Pattern Recognition System", EOSD, 46-
52, November 1980 (Casasent et al).

19. "Optical Pattern Recognition: Matched Spatial Filter Processors", EOSD,
33-39, November 1980 (Casasent).

20. "Optical Pattern Recognition: Beyond Matched Spatial Filtering", EOSD,
39-47, March 1981 (Casasent).

21. "Pattern Recognition: A Review", IEEE Spectrm, 28-33, March 1981
(Casasent).

22. "Processing Flexibility by Hybrid Optical/Digital Techniques", Proc. Work-
shop of Future Directions in Optical Data Processing, Texax Tech. Rept.,
1 March 1981, 17-23 (Casasent, Kumar).

23. "Beyond Holographic Matched Filtering", Israel Journal of Technology, 18,
255-260, March 1981 (Casasent).

24. "Binarization Effects in a Correlator with Noisy Input Data", Applied Optics,
20, 1433-1438, April 1981 (Kumar, Casasent).

25. "Correlation of Images with Random Contrast Reversals", SPIE, 238, 156-
165, July 1980 (Barniv, Mostafavi, Casasent).

26. "Image Quality Effects in Optical Correlators", SPIE, 310, 183-192, August
1981 (Casasent, Eiva, Kumar).



-98-

27. "Multisensor Image Registration: Experimental Verification", SPIE, 292,
160-171, August 1981 (Barniv, Casasent).

28. "Intra-Class IR Tank Pattern Recognition Using SDFs", SPIE, 292, 25-33,
August 1981 (Hester, Casasent).

29. "Inter-Class Discrimination Using SDFs", SPIE, 302, 108-116, August 1981
(Hester, Casasent).

15.1.3 PUBLISHED PAPERS UNDER AFOSR SUPPORT (30 SEPTEMBER 1981- 30 SEPTEMBER 1982)

30. "An Iterative Optical Processor: Selective Survey of Operations Achievable",
Proceedings NASA Langley Conference on Optical Information Processing,
Publication 2207, August 1981, 105-118 (Casasent, Neuman).

31. "A Review of Optical Signal Processing", IEEE Conmmun., 40-48, September
1981 (Casasent).

32. "Optical Signal Processing II: Applications, Systems and New Techniques",

EOSD, 41-47, September 1981 (Casasent).

33. "The Soviet Priz Spatial Light Modulator", Applied Optics, 20, 3090-3092,
September 1981 (Casasent, Caimi, Khomenko).

34. "A Laser Diode/HOE Pattern Recognition System", Acta optica Sinica, 1,
401-410, September 1981 (Casasent et al).

35. "Eigenvector Determination by Iterative Optical Methods", Applied optics,
20, 3707-3710, November 1981 (Kumar, Casasent).

36. "A New Soviet BSO Light Modulator for Optical Data Processing", Proc. EOSD,
297-303, November 1981 (Casasent, Caimi).

37. "A Correlator for Optimum Two-Class Discrimination", Proc. EOSD, 321-330,
November 1981 (Casasent et al).

38. "Test and Evaluation of the Soviet Prom and Priz Spatial Light Modulators",
Applied Optics, 20, 4215-4220, December 1981 (Casasent, Caimi, Khomenko).

39. "A Microprocessor-Based Fiber-Optic Iterative Optical Processor", Applied
Optics, 21, 147-152, January 1982 (Carlotto, Casasent).

40. "Principal Component Imagery for Statistical Pattern Recognition Correlators",
Opt. Engr., 21, 43-47, January/February 1982 (Kumar, Casasent).

41, "Adaptive Phased Array Radar Processing Using an Optical Matrix-Vector
Processor", SPIE, 341, May 1982 (Casasent, Carlotto).
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42. "Advanced Acousto-Optic Signal Processors", Proc. SPIE, 352, August 1982
(Casasent).

43. "New Research in Holographic Pattern Recognition", Proc. SPIE, 353,
August 1982 (Casasent).

44. "Synthetic Discriminant Functions for 3-D Object Recognition", Proc. SPIE,
360, August 1982 (Casasent, Kumar, Sharma).

45. "Multidimensional Adaptive Radar Array Processing Using an Iterative
Optical Matrix-Vector Processor", Opt. Engr., Vol. 21, No. 5, 814-821,
September 1982 (Casasent, Carlotto).

46. "Applications of the Priz Liqht Modulator", Applied Optics, 21, No. 21,
3846-3854, November 1982 (Casasent, Caimi, Petrov, Khomenko).

15.1.4 PENDING PAPERS

47. "Realization of a Sobel Operator by Coherent Optical Techniques", Published
in the Proceedings of the First International Congress on Applications of
Lasers and Electro-Optics, Laser Institute of America, Boston, Massachusetts,
September 1982 (Chen, Casasent).

48. "A Fisher Discriminant Approach to Distortion-Invariant Pattern Recognition
Using Autocorrelations", Published in the Proceedings of the First Inter-
national Congress on Applications of Lasers and Electro-Optics, Laser
Institute of America, Boston, Massachusetts, September 1982 (Casasent, Chang).

49. "Nonlinear Local Image Preprocessing Using Coherent Optical Techniques",
Applied Optics, Submitted September 1982 (Casasent, Chen).

50. "Frequency-Multiplexed and Pipelined Iterative Optical Systolic Array
Processors", Applied Optics, Submitted September 1982 (Casasent, Jackson,
Neuman).

51. "An Iterative Optical Vector-Matrix Processor", SPIE Institute Series,
Accepted (Carlotto, Casasent).

52. "Hybrid Time and Space Integrating Processors for Spread Spectrum Applica-
tions", Submitted IEEE AES, (Silbershatz, Casasent).

"Generalized Chord Transform for Pattern Recognition", To be Submitted
(Casasent, Chang).
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15.2 SEMINAR AND PRESENTATIONS OF AFOSR RESEARCH (1 September 1981 - 1 September 1982)

September 1981:

1. NSA - Ft. Meade, Maryland, "Optical Pattern Recognition and Robotics".

2. Carnegie-Mellon University - Pittsburgh, Pennsylvania, "Optical Information

Processing at CMU in Electrical Engineering".

3. Westinghouse Corporation - Pittsburgh, Pennsylvania, "Robotics".

November 1981:

4. La Habra, California, "Optical Data Processing".

5. EOSD Conference - Anaheim, California, "A New Soviet BSO Light Modulator
for optical Data Processing".

6. EOSD Conference - Anaheim, California, "A Correlator for Optimum Two-Class
Discrimination".

7. Robotics Institute - Pittsburgh, Pennsylvania, "Optical Data Processing".

December 1981:

8. Northrop Corporation - Anaheim, California, "Optical Image Processing".

9. Itek Conference - Palo Alto, California, "Optical Pattern Recognition Using
Moments".

10. Itek Conference - Palo Alto, California, "Optical Pattern Recognition Using
Synthetic Discriminant Functions".

January 1982:

11. BDM Corporation - Virginia, "Optical Image Processing".

February 1982:

12. NASA Langley - Hampton, Virginia, "Optical Pattern Recognition for
Industrial Inspection".

13. iron and Steel institute - Pittsburgh, Pennsylvania, "Uptical Pattern
Recognition for Industrial Automation".

March 1982:

14. Carnegie-Mellon University -Pittsburgh, Pennsylvania (Sophomore Seminar),
"Optical Data Processing".
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15. Optical Society of America - Pittsburgh, Pennsylvania, "Optical Data
Processing".

16. AFIT - Dayton, Ohio, "Iterative Optical Processor for Missile Guidance".

May 1982:

17. SPIE Conference - Washington, D.C., "Adaptive Phased Array Radar Processing
Using an Optical Matrix-Vector Processor".

18. Lockheed Corporation - Palo Alto, California, "Sub-Pixel Image Registration".

19. General Dynamics, Pomona Division - Pomona, California, "Moment-Based
Optical Pattern Recognition".

20. General Dynamics, Pomona Division - Pomona, California, "Soviet 'riz Light
Modulator".

June 1982:

21. Eglin Air Force Base - Ft. Walton Beach, Florida, "Optical Patt Recogni-
tion Using Synthetic Discriminant Functions for Target Identifi _n".

22. Night vision and Electro Optics Laboratory - Ft. Belvoir, Virgii,-.,, "Optical
Pattern Recognition: Recent Advances".

23. Kodak - Rochester, New York, "Recent Pattern Recognition and optical
Computing Advances".

July 1982:

24. DARPA Materials Research Council - La Jolla, California, "The U.S. Prom and
USSR Priz Spatial Light Modulators".

August 1982:

25. SPIE Conference - San Diego, California, "New Research in Holographic
Pattern Recognition".

26. SPIE Conference - San Diego, California, "Synthetic Discriminant Functions
for 3-D Robotic Ojbect Recognition".

15.3 THESES SUPPORTED BY AFOSR SUPPORT (SEPTEMBER 1980 - SEPTEMBER 1982)

1. Hiroyasu Murakami, M.S. Dissertation, "Matched Filter Statistical Cor-
relator" (February 1981).
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2. Saulius Eiva, M.S. Dissertation, "Image Quality Effects in Optical
Correlators" (May 1981).

3. Charles Hester, PhD Dissertation, "Synthetic Filters for Multi-Class
Pattern Recognition" (May 1981).

4. Yair Barniv, PhD Dissertation, "Multi-Sensor Image Registration" (May
1981).

5. Mark Carlotto, PhD Dissertation, "Iterative Electro-Optic Matrix Pro-
cessor" (May 1981).

6. Andrew Sexton, M.S. Dissertation, "Digital Analysis of Space-Variant
Optical Processors" (July 1981).

7. Vinod Sharma, "Synthetic Discriminant Functions" (PhD expected in early
1984).

8. John Lycas, "Iterative Optical Processor for Missile Guidance" (Master's

expected in 1983).

9. Warren Allmond, "New Holographic Optical Elements and Architectures"
(Master's expected in 1983).

10. Eugene Pochapsky, "Digital Preprocessing and Simulation for Optical Pattern

Recognition" (Master's expected in 1983).

11. Wen-Thong Chang, "Optical Pattern Recognition" (PhD expected in 1984).

15.4 PATENT DISCLOSURES (SEPTEMBER 1980 - SEPTEMBER 1982)

1. Multiple-Invariant Space-Variant Pattern Recognition System.

2. Pattern Recognition by Invariant Moments

3. Synthetic-Discriminant Functions for Multi-Class Pattern Recognition.

4. Equalization and Coherence Measure Correlator.

5. Multi-Variant Technique for Multi-Class Pattern Recognition.
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