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When modeling multiattribute preferences, a decision

analyst has to make three important choices:

1) choice among the basic modeling approach (e.g.

riskless or risky modeling);

2) choice among aggregation rules (e.g. additive or

multiplicative aggregation rules);

3) choice among elicitation techniques (e.g. trade-offs

or direct rating and weighting).

The theoretical and applied literature on multiattribute value

and utility assessment offers some guidance about how to make

these choices. Taxonomies of decision problems can be helpful

in selecting basic modeling approaches (see e.g. MacCrimmon,

1973; v. Winterfeldt, 1980; Brown and Ulvila, Note 1).

Measurement theoretic independence tests can aid the analyst in

identifying obviously inappropriate aggregation rules (e.g.

Fishburn, 1970; Krantz, Luce, Suppes, and Tversky, 1971; Keeney

and Raiffa, 1976; Dyer and Sarin, 1979). In addition, several

researchers have developed criteria for evaluating the

practicability and usefulness of the available elicitation

techniques (see e.g. Kneppreth, Hoessel, and Jo'nson, Note 2;

Johnson and Huber, 1977).

Nevertheless, there exists virtually no hard experimental

data about the relative validity of alternative approaches,

model forms, and elicitation techniques. The reason for this

paucity of data is the inherent difficulty in finding a

validation criterion against which to compare alternative
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multiattribute utility assessments. The few existing

experimental studies had to rely on convergent validation (for

summaries, see Fischer, 1976; 1977; v. Winterfeldt and Fischer,

1975), experimental tests of independence assumptions (for

summaries, see v. Winterfeldt, 1980), and observation of simple

choices (e.g. Schoemaker and Waid, 1982). The results of these

experiments indicated that, from a convergent validation point

of view, the choices of a decision analyst do not matter much.

This unsatisfactory state of validation of multiattribute

utility assessments grew out of the belief that utilities are

simply uncheckable value statements, and that therefore no

external validation criterion exists. But utilities are not

necessarily uncheckable, at least not always. Decisions are

made for a purpose. Often it is possible to see whether the

purpose has actually been fulfilled. In addition, values do

not develop in a vacuum. Rather they are learned, sometimes

through explicit instructions in organizations, sometimes

through outcome feedback. This offers the possibility of

experimentally inducing value or utility structures in

originally naive subjects and using these learned structures as

a criterion for subsequent elicitation. This paradigm is

closely relatd to a procedure used by Yntema and Torgerson

(1961) and the multiple cue probability learning task (MCPL)

task (e.g. Hammond, Stewart, Brehmer, and Steinman, 1975;

Schmitt, 1978).

In a previous study (John, Edwards, and Collins, Note 3)
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we used this paradigm to teach subjects value functions for the

appraisal of diamonds that varied on the attributes "cut",

"clarity", "color", and "carat". Subjects, who did not have

preconceived notions about how diamonds should be appraised,

were told that they would learn, via computer instruction, how

diamonds should be evaluated. Subsequently they were presented

with displays of diamonds varying on the four "C" attributes,

and asked to estimate their prices. The computer then

determined the "true" price through an additive value function

with fixed weight ratio of 8:4:2:1. After either 60 or 120

trials subjects were able to reproduce the value function very

well. (Median correlation of subjects' estimates with the true

value was .93). Various elicitation methods were then applied

to elicit the weights from the subjects, including formal value

assessment methods, e.g. pricing out and trading-off to the

most important dimension (Keeney and Raiffa, 1976); a holistic

rating procedure called HOPE (Barron and Person, 1979), and

direct subjective rating and ranking methods (Stillwell,

Seaver, and Edwards, 1981). The direct subjective judgments of

"importance" produced just as accurate weights as the formally

correct assessments.

The present study goes one step beyond the question of

validating alternative elicitation techniques for weighting

procedures and addresses the ability of alternative techniques

to determine whether a model is additive or multiplicative. An

additional novel feature of this experiment was that the taught

V___
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value functions were recovered in a real life decision analysis

session, in which the analyst (who did not know the taught

function) had to use all the normal "tricks" of multiattribute

utility assessment to test model forms and elicit value

functions.

MULTIATTRIBUTE VALUE FUNCTIONS, TRADEOFF STRUCTURES,

AND AGGREGATION RULES

In a measurable value model the decision maker or expert

is assumed to be able to express his or her strength of

preference among pairs of outcomes in the consequence space

CxC. Formally, this judgment can be represented by a

quarternary relation (a,b) '> (c,d) where a, b, c, d c C and

is interpreted as "the strength of preference of a over b is

larger than or equal to the strength of preference of c over

d." Provided that certain regularity and independence

conditions hold (e.g. transitivity, monotonicity), there exists

a value function v : C - 1R such that

(a,b) >(c,d)

if and only if

v(a) - v(b) > v(c) - v(d)

When outcomes vary on several value relevant attributes

v can frequently be decomposed into some simple form,

provided that independence conditions hold. Dyer and Sarin

(1979) have shown that a difference value function v is

multiplicative, if the order strength of preferences for
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outcomes that vary only on a subset of attributes do not depend

on the remaining (invariant) attributes. Furthermore, v is

additive, if the strength of preference between two outcomes

that vary only in one attribute is invariant under changes in

the other attributes.

The resulting decompositions of v are
n

VXl,= .ilWivi(x 1 ), or (.)

n
1 + Wv(xlx 2 , ... ,x n ) = ill 1{l+Wwi v(xi)} (2)

where

x. is the level of outcome in attribute X

0 (.) 1 is the single attribute difference value fu. ion

with v (x ) = 0 and v.(x.*) = 1 for some
-i -i* i ~i.Ei*' xi *C Xi" *

0 < w i 1 is a scaling constant,

-1< W< - is a parameter of the multiplicative model,

v (.) is the overall difference value function.

It is important to note that the additive model is a special

case of the multiplicative model, in which W = 0. In the

following we frequently will refer to multiplicative models as

including the additive form.

Multiattribute value functions

The usual procedure for obtaining W is to elicit the wi,

1 <1 <n, and observe that Equation 2, evaluated for the best

possible alternative, implies;
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I W f (1 + ww.), (3)i=l 1

where n - number of attributes. Equation 3 clearly shows that

-l-<W!O will be a real root of an (n-1) degree polynomial. For

2-attributes, (3) reduces to

W - w w2
1 2

and for 3-attributes, -1-W O is the real solution of the

quadratic formula, where W (-b+ ) A 7b 4ac)/2ac

a = w1 w2w3 ,

b = wlw2 + w2w3 + wlw3 , and

c = wI + w 2 + w3 - 1.

There is no explicit solution to the problem of finding roots

of a polynomial of degree 3 or more; thus, W must be determined

by iterative procedures (e.g., Newton-Raphson method) for

models with four or more attributes.

The usual method for assessing w i involve n different

"extreme" elements in the alternative space. The standard

procedure is to elicit strengths of preference (compared to the

worst possible alternative) for those alternatives whose

outcome levels on each attribute are either the best possible

or the worst possible. More details of elicitation will come

later. The point we wish to make now, however, is that the

mathematics of the multiplicative model does not impose these

assessment strategies on us. Once single attribute value

functions have been determined, any n strength of preference
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judgments will define n equations, which combined with Equation

3 will serve to completely determine the (n + 1) scaling

parameters W, w.(1 < i < n).

In particular, scaling parameters may be specified in the

two attribute case from a judgment of the strength of

preference about the "middle" alternative (v = v = .5), and a

direct ratio judgment about the relative importance of w

and w,. One feature of the usual assessment method is that a

model consistent with Equation 2 can always be specified. As

we shall see, other sets of n equations -- including those just

suggested in the 2-attribute case -- may not yield a solution

consistent with the model form in Equation 2.

Insert Figure 1 about here

The top two graphs in Figure 1 display plots of

indifference curves for moderately substituting (W<O) and

complementing (W>O) 2-attribute value models. The middle two

plots illustrate the most extreme substituting and

complementing models possible under the constraints of Equation

2.

These indifference curves are obtained by setting v(.) in

Equation 2 equal to a constant (.1, .2, ... , .9), and plotting

Y1 vs. !2* It follows from an elementary theorem in analytical

geometry that all curves of this form are hyperbolas,

regardless of the sign of W. Rotating the v 1 V 2 axis
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(Y1 - V, cost/4+ v2 sinn/4

and y2 = -vl sinn/4+ v2 cosn/4),

Equation 2 (n = 2)can be written in the standard hyperbolic

form:

(y1 - h)2  (Y2  -k) 2

where, h - / (wI + w2 )

- (I - w1  w2 )

/ (w2 -w1) an
k - (1- wI 1 w , and

a = b = ( 1 - w2))

(1-w - WI,)

The final two plots are indifference curves for the

lexicographic disjunctive and conjunctive rules that depend

only on the maximum or minimum attribute values. A disjunctive

rule selects that alternative with the most outstanding

quality, regardless of the other attributes, while the

conjunctive rule requires that the chosen alternative satisfy

minimum levels on all attributes. It should be clear that

multiplicative models provide a natural and continuous bridge

linking both the disjunctive and conjunctive rules, from

"opposite" directions, to the additive.

There are some important features of the multiplicative

rules that are not shared by additive, disjunctive, or

conjunctive rules, however. First, multiplicative indifference

curves are not evenly spaced, as they are for the other three.
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That is, multiplicative rules are differentially sensitive to

value differences, depending upon the location of the

alternatives in the space. In particular, substituting rules

(W <0) will be more sensitive to poor alternatives (those in

the lower left corner) than to excellent alternatives (in the

upper right corner). Indifference curves in the upper right

corner are spaced rather far apart, indicating that value

differences in this region will be relatively smaller than

value differences in the lower left corner, where indifference

curves are more tightly packed. Small shifts in poor

alternatives will result in relatively large value shifts.

This effect is exactly reversed for complementing models,

where small changes in good alternatives will be easily

detected by the tightly spaced indifference curves in the upper

right corner. In contrast, changes in bad alternatives will be

hardly detected by the widely spread indifference curves in the

lower left corner.

Another peculiarity evident in only the multiplicative

models is that the degree to which attributes compensate for

one another varies across the space of alternatives. The

trade-off relation is determined by the slope of the

indifference curve in an additive model, and this slope is

constant throughout the space. Disjunctive and conjunctive

rules are completely noncompensating anywhere, but this holds

throughout the space of alternatives, just like the additive.

As demonstrated in the plots, however, the curvature of
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multiplicative indifference curves varies throughout the space.

Multiplicative substituting models define virtually additive

trade-off relations for poor alternatives (lower left corner),

while providing an almost completely disjunctive trade-off

relation for excellent alternatives (upper right corner). In

between these two extremes, attributes substitute to varying

degrees. As before, this pattern is reversed for

multiplicative complementing models. An additive trade-off

provides a good approximation to the indifference curves for a

complementing model in the region of good alternatives, but the

curves in the region of poor alternatives approach a

conjunctive rule.

Figure 1 also illustrates how differential sensitivity

and commensurability are mediated by how extreme the

multiplicative model is. Sensitivity and commensurability are

most dependent upon location in the alternative space for the

most extreme multiplicative models, i.e., W = -1, and W- . As

W.0, trade-off relations and sensitivity become more nearly

constant throughout the alternative space.

Our discussion of the structural properties of

multiplicative models has suggested that a single

multiplicative model will provide widely ranging sensitivity

and attribute commensurability over the alternative space.

This serves to highlight the potential advantages of carefully

selecting strength of preference judgments when constructing a

model.

Iwood
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Our analysis of the differential sensitivity and

commensurability of multiplicative models suggest an even more

important point in regards to determining agreement between

different models. In comparing additive models with different

weights, it has long been known that the characteristics of the

alternative space (e.g., attribute intercorrelations) will

often play as important a role in determining model agreement

as the identities of the models. It is clear from the plots in

Figure 1 that any attempt to gauge the agreement between a

multiplicative and an additive model will be highly dependent

upon the region of the alternative space considered. In

general, an additive model will provide a good approximation to

a substituting model for "poor" alternatives, but will not

correspond well in the region of "good" alternatives. The

exact opposite will hold for complementing models.

EXPERIMENT I

Method

Models taught

All models were two attribute value models, with linear

value functions over "Carat" and "Ouality." "Quality" was

explained as a composite of the three attributes "Color",

"Clarity", and "Cut", expressed on a percentage scale from 0%

to 100%. Carat was operationalized as the diamond weight

ranging from 0.1 to 1.00.
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The model forms varied in terms of the tradeoff relation

between "quality" and "carat". Tradeoffs were either additive

or multiplicative, and multiplicative models were either

complementing or substituting. Additive models were defined

with either a 4:1 or 1:1 trade-off, complementing models with

either a 2:1 or 1:1 trade-off, and substituting models for only

the 1:1 trade-off. This design is summarized in Figure 2,

which displays exact scaling parameters and indifference curves

for each of the five value model conditions.

Insert Figure 2 about here

Subjects

Twenty undergraduates (17 females, 3 males) enrolled in

an introductory psychology class at the University of Southern

California volunteered for the experiment. All subjects

received credit toward an experiment participation requirement

of the course. In addition, all subjects were informed at the

beginning of the experiment that they would be paid a cash

bonus between $0 and $10 for their participation. It was

emphasized that the exact amount of the bonus depended upon her

performance during both the learning and assessment phases of

the experiment. All experiment sessions were conducted

individually, and each lasted from 2 to 4 hours.

.. .. ... ... . . .I I n I i IIm n



Learning and recovering value functions
14

Training Procedure

All subjects were told that they were participating in a

study to evaluate a "computer assisted instruction" method of

teaching diamond appraisal that could one day replace the years

of "on the job" training required to become an expert. They

were told that the computer would first display a series of 100

"diamond profiles" consisting of information about two relevant

characteristics for appraising diamonds: size and quality. It

was emphasized that an oral test would follow the computer

instruction, and that a cash bonus would be paid at the end of

the session. Subjects were told that the best possible diamond

(scoring 100% on the quality index and 1.0 carat in size) was

worth $10,000, and that the worst diamond (0% quality score and

.01 carat in size) was worth $10. Scores on the two dimensions

for each diamond profile were independently generated from a

pseudo-random uniform distribution on the unit interval.

Subjects saw different sets of diamond profiles, since a

different random seed was used for each subject. In all 20

"samples" of 100 "diamonds", quality and size were

uncorrelated.

All diamond profiles were presented on the computer

screen in the format shown in the example below:

QUALITY: S7% I I I I I ,l
0% 100%

SIZE: .45 1 II " 1 1 *

0.00 1.'00

The subject then used a keyboard to type an estimate of the
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worth of the diamond to the nearest $10. After checking that

the estimate was between $10. amd $10,000., and requiring that

the subject verify her estimate, the "true price" of the

diamond was displayed, along with the amount that the subjects'

estimate was over or under. When signaled by the subject to

continue, the program cleared the screen and proceeded to

display the next diamond profile. Time to finish all 100

learning trials varied between about 3/4 to 1 1/2 hours, as the

subjects were allowed to pace themselves through the entire

untimed learning task.

All "true price" feedback was computed from one of the

five models defining the five "true model" conditions. (Actual

prices were $10,000 times the aggregate model value, which are

constrained to the unit interval.) In the case of unequal

weight ratios, half of the subjects' true models assumed

quality as more important than size, and half assumed the

opposite. No random error was included in any model condition.

Model Assessment

Immediately following training, subjects underwent a

decision analysis session designed to assess the 2-attribute

value (utility) function for diamonds that had just been

acquired through the 100 outcome feedback learning trials. In

all cases, the analyst knew only that the true model was

additive or multiplicative and that all single-attribute value

functions were linear. The analyst was not even informed about

the possible model parameters comprising the five true-model



Learning and recovering value functions
16

conditions. One of the analysts was an expert professional who

has assessed many value functions, and the other a 2nd year

graduate student in psychology who has had both coursework and

research experience in the area of multiattribute utility

measurement.

Subjects were reminded at the outset of the elicitation

sessions to consider only information about diamonds learned

from the 100 feedback trials and were warned that prior notions

about diamond prices would only hurt their performance (and

payoff). Subjects made three types of judgments about the

diamond model:

(1) value (price) differences between strategically

selected diamonds and the worst (or best) diamond;

(2) ratio estimates of the relative "importance" of

quality and size in determining price;

(3) judgments about outcomes (certainty equivalents) and

probabilities (BRLTS) for creating indifference

between a strategically chosen "sure thing" diamond,

and a lottery between 2 other strategically chosen

diamonds.

The order for making these judgments was randomized across

subjects.

Strictly speaking only the value difference judgments are

formally justified elicitation methods for recovering additive

and multiplicative value functions. Ratio estimates of

importance are often used as approximations for the formally
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correct methods of defining scaling parameters w from-i

indifference judgments (see Edwards, 1977). Lottery procedures

are normally used when the evaluation has to be carried out

under uncertainty. Since our training procedure did not

involve any uncertainty, lottery procedures are also considered

approximations. It is nevertheless of considerable interest to

determine how such approximation methods fare in their relative

ability to recover taught value functions.

Details of each type of assessment follows:

Value difference estimates. Subjects were asked to

estimate the value of 11 strategically chosen diamonds,

displayed in Figure 3. Assuming a multiplicative model with

linear single-attribute value functions, scaling parameters can

be determined from any two of the above judgments. For an

additive model, only one is required. We obtained 11 in order

to explore (a) the shapes of subjects' single-attribute value

functions, and (b) the convergent validity of equivalent model

parameters derived from different value difference assessments.

Insert Figure 3 about here

Subjects were instructed to make their estimates by comparing

the diamonds to both the worst (worth $10.) and the best

($10,000.) possible.

Importance weights. The subject was asked to rank order

the two attributes, quality and size, in terms of their
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"importance" in determining price. The less important

attribute was assigned a "weight" of 10, and the subject was

asked to estimate the "weight" on the more important attribute,

such that the ratio of the two numbers reflected the two

attributes "importance ratio" in determining diamond price.

Lottery judgments. Subjects were asked to consider a

series of two-outcome gambles for diamonds described in terms

of their quality index and size, and various judgments about

these gambles were used to (a) test additive utility

independence, (b) test multiplicative utility independence, (c)

assess single-attribute utility functions, and (d) assess

scaling parameters for a multiplicative utility function.

Additive utility independence CAUI) was tested by asking

subjects to consider two 50-50 lotteries for diamonds.

Outcomes in the first lottery were either the best possible

diamond (100%, 1.00) or the worst possible (0%, 0.01). The

second lottery consisted of a 50-50 chance between a diamond

best in quality and worst in size (100%, 0.01) and one worst in

quality and best in size (0%, 1.00). This is shown graphically

in Figure 4, where the first lottery results in either diamond

B or W, while the second lottery results in 2 or S.

Insert Figure 4 about here

Subjects not indifferent between the two lotteries were asked

to indicate whether their preference was a "strong" preference
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or a "weak" one. AUI requires that subjects be indifferent to

the two lotteries.

Multiplicative utility independence (MUI) was tested by

asking subjects to consider four SO-SO lotteries made up of the

diamond pairs (1) 9 and W, (2) B and S, (3) S and W, (4) B and

9. For each of the four SO-SO lotteries defined by the diamond

pairs above, the analyst asked the subject to consider a sure-

thing diamond "halfway" between the two. For the first lottery

pair, Q=C100%, 0.01) and W-(01, 0.01), the sure-thing diamond

was defined as (50%, 0.01). The analyst then asked the subject

to indicate whether she would rather play the gamble, or

receive the sure-thing diamond with probability one. The

quality index of the sure-thing diamond was raised up or down

until the subject was indifferent between the gamble and the

sure-thing. This iterative procedure was repeated for all four

lotteries, each ending with the subject proclaiming

indifference between the lottery and the newly specified sure-

thing diamond.

MUI requires that the values for the quality index

specified for the sure-thing diamonds corresponding to the

first two lotteries (Q-W and B-S) be equal, as well as those

specified for size corresponding to the last two lotteries (S-W

and B-9).

Single-attribute utility functions for both quality and

size were assessed through a series of four outcome judgments

producing indifference between a lottery and a sure-thing,
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similar to those used to test MUI. The sure-thing diamond

determined during MUI testing as indifferent to a 50-50 lottery

between Q and W was defined for each subject as diamond R.

Similarly, the sure-thing determined as indifferent to the S-W

lottery was defined as diamond T. The identity of R and T were

different for each subject, and are indicated as variable in

Figure 4.

The quality index of R defines one point on the single-

attribute utility curve for quality. An additional point was

obtained by creating a sure-thing outcome indifferent to a

50-50 lottery between diamonds R and W, and a third was formed

by creating a sure-thing indifferent to the 2-R S0-S0 lottery.

Likewise, the size of diamond T defines one point on the

single-attribute utility curve for size, and two additional

points were obtained by creating sure-thing diamonds

indifferent to a 50-50 lottery between diamonds T and W, and to

the S-T S0-S0 lottery. The determination of these sure-thing

diamonds followed exactly the procedure used to construct

diamonds R and T during MUI testing.

Finally, scaling parameters were assessed by asking

subjects to consider a lottery between the best diamond (B) and

the worst (W), with unspecified probabilities, and a sure-thing

diamond best on quality and worst in size (0). The analyst

asked the subject which she would prefer if the lottery were a

50-50 gamble between B and W. The probabilities to B and W

were then varied in the appropriate manner until the subject
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was indifferent between the B-W lottery and the sure-thing

outcome, diamond 2. This exact procedure was repeated with S

used as the sure-thing diamond instead of 0, and the lottery

probabilities were again moved up or down from 50-50 to obtain

indifference.

Results

Bootstrapped Regression Models

In order to verify that our subjects had actually learned

a 2-attribute model for evaluating diamond worth, we

bootstrapped both an additive and multiplicative model for each

subject, based on the second 50 learning trial responses. The

standard approach for accomplishing this is to assume the model

Y - b0 + b x + b x2 + € , and to estimate bo, b1 , and b2 by

regressing the subjects' responses, Y, on diamond quality and

size values, x1 and x2 " However, this yields a model that is

not directly comparable to either the additive or

multiplicative models assumed during the subjective assessment

procedures. In particular, the usual bootstrapping model

allows for 3 free scaling parameters (b0 ' h, b2 ), while the

additive value (utility) model allows only one, and the

multiplicative allows only two. (See equations 1 and 2

earlier). Equivalently, the standard modeling procedures

assume that the value (utility) of the worst diamond (0%, 0.01)

is 0.0 and that of the best diamond (100%, 1.00) is 1.0, while

the bootstrapping model relaxes both of these assumptions.

The usual way of dealing with the discrepancy is to
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impose a linear transformation on the bootstrapped mode],

(Y - b0 ) / ( b I + b2),

resulting in the normalizing restrictions required by the

standard value and utility assessment procedures we employed.

However, this method of a posteriori applying a linear

transformation to a more general prediction model seems ad hoc

to us. Why not just directly bootstrap a one parameter

(additive) or two parameter (multiplicative) model from the

subjects' responses?

One way of doing this for the additive case is to obtain

the least squares estimate of a in the equation

Y - x2 = a (x I - x 2  + E

and write the predicted additive value, Y as

Y = a x1 + (1 - a1 ) x2 . (3)

Likewise, a two parameter multiplicative model follows by

obtaining least squares estimates of m and min the equation

Y - xIx2 = m 1 (xI - xx2) + m2 (x - xlx 2 ) + E (4)

and writing the predicted multiplicative value (utility) as

Y =m xI+m 2 x2  + (1 -i 1  - m2)x1x2.

It is important to note that regression models derived in

this way will not "fit" the subjects' responses as well as

those derived with more parameters. However, there is no way

to predict, a priori, whether our regression models will

correspond more or less to the "true" models than other
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regression models with more parameters; there is no reason to

expect that the true model and bootstrapped model will be

closer when more parameters are estimated in the bootstrapped

model.

Table 1 provides the individual results from this

regression analysis and shows the close fit of the parameters

of the "true" model and the model derived from regression

analysis. Figure 5 is a pictorial representation of the same

data in terms of indifference curves. As this Figure shows,

the "true" indifference curves (dashed lines) are extremely

close to the bootstrapped indifference curves (solid lines)

except for one subject (No. 11).

Insert Table 1 and Figure 5 about here

In addition to these analyses, the expected correlation

between values for each bootstrapped mode] and the true model

were computed for each subject, assuming Xr and x2 independent,

uniformly distributed on the unit interval (same as the

training conditions). Mean values across the four subjects in

each true model condition are presented in the top panel of

Table 1. The multiplicative regression model yields expected

correlations above .99 in all cases except the additive, steep

weights case, which results in an expected correlation only

slightly lower. Although the additive regression model is

comparable for the additive model conditions, mean expected
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correlations in the true multiplicative model conditions are

significantly attenuated.

Insert Table 2 about here

Expected correlations are one indication of the degree of

correspondence of different value models, but monotonicity

tends to make correlations a rather insensitive index to model

deviations. In addition, differences that do appear are often

dependent upon the multivariate distribution of alternatives

assumed. Moreover, correlations are relevant only if there is

some reason to generate a complete ordering of possible

alternatives, which is not the case in the common decision

problem of choosing the one and only "best" alternative.

Thus, we chose to explore two other measures of model

deviation. Mean maximum absolute differences between

bootstrapped and true models are presented in the middle panel

of Table 2. In terms of maximum deviations, the multiplicative

bootstrapped models are much closer to the true multiplicative

models than are the additive regression models. This same

result is also clearly evident in the bottom panel of Table 2,

in which model deviations are squared and "summed" across the

entire space of possible diamonds. Regardless of the

correspondence index used when a multiplicative model was

taught, the multiplicative regression model of subjects' last

fifty responses is significantly closer to the true model than
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is the additive regression model. Subjects did in fact learn

to judge diamond worth in a non-additive manner.

Analyst Assessed Models.

To what extent were our two analysts able to recover the

value models subjects learned so well? Four models were

derived from the judgments subjects made following model

learning: (1) a multiplicative value-difference model, (2) an

additive "importance weight" model, (3) a hybrid multiplicative

value model incorporating the elicited "weight" ratio, and (4)

a multiplicative utility model.

Scaling parameters for the additive importance-weight

model were derived to be consistent with the subjects' judgment

of the weight ratio and the additivity assumption, i.e., that

the two parameters sum to 1.0.

The usual multiplicative value-difference model was

derived using only subjects' value-difference judgments of the

two "corner" diamonds shown in Figure 3, i.e., (100%, 0.01) and

(0%, 1.00). It is easy to show that the multiplicative model

requires that the two scaling parameters, !1 and w, be equal

to these two value-difference estimates, i.e.,

W, = (v(1001, 0.01) 10)/10000

and

w2 = (v(01, 1.00) - 10)/10000

The hybrid multiplicative value model was derived to be

consistent with (a) the subjects' importance-weight ratio
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judgment, and (b) the value-difference judgment for the

"middle" diamond, (50%, 0.50), shown in Figure 3. If R is the

subject's ratio judgment of w I/w_2, and 10000 - M is the

subject's judgment of (50%, 0.50) - $10, then we can solve for

w1 and w ? from the equations

M = wI(.s) + 2 (.5) + (l-i -) (.S)(.S)
1 21 1

and

R = w I/w2-1 -2

Note that when R = 1, the multiplicative model requires

.25 < M < .75

with equality holding only for 1- w_1 -w 2 = ±1 or 1. For R

1, this restriction may be even more severe. Judgments of M

for 6 subjects fell outside of the necessary interval; however,

the hybrid model was constructed so as to be the "most extreme"

possible, given the subjects' judgment of R. For a

substituting model, this "most extreme" solution could be

determined exactly; for a complementing model, we used a

solution arbitrarily close to the most extreme, since for any

complementing model consistent with R, there are others

slightly more extreme.

Finally, a multiplicative utility model was constructed

to be consistent with subjects' final two lottery judgments.

It is easy to show that w, must be the probability assigned to
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B in order for the B-W lottery to be equivalent to receiving

diamond 9 for sure. Likewise, Y 2 must be the probability of B

making the B-W lottery equivalent to a sure-thing outcome of S.

Figures 6-9 are a graphical depiction of the

correspondence between the indifference curves derived from the

"true" model, and the indifference curves derived from the

elicitation sessions. Each figure presents the results for one

particular elicitation technique. Several patterns emerge from

inspection of these figures.

Insert Figures 6-9 about here

First, there exists no clear cut difference between the

abilities of the "expert" and "novice" analyst to match the

"true" indifference curves. There appears, however, to exist

some method variability, although the picture is far from clear

cut.

The value difference elicitation recovered the value

functions of nine subjects extremely well. In particular in

the case of equal weights and multiplicative value functions,

this method recovered the sign of the interaction parameter and

the extent of the interaction remarkably well. Value

difference elicitation appeared less well suited to pick up the

value functions in the cases of unequal weights.

The additive ratio weight model did predictably poorly in

the case of the multiplicative value functions and it was only
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a marginal improvement on the value function elicitation in the

case of additive functions. When the ratio weights were

combined with multiplicative functions, the matching ability

was markedly improved, in particular in the "most complicated"

case (unequal weights, multiplicative value function). Utility

function elicitation was a clear degradation when compared to

value function elicitation, in almost all conditions. This was

to be expected, as utility elicitation is, strictly speaking,

not the formally correct method for eliciting value functions.

Insert Table 3 about here

The top panel of Table 3 reveals several important

results about the mean values of expected correlations between

each of the assessed models and the true model. First, in

terms of expected correlations of outcomes, all models are

quite good; 19 of the 20 mean expected correlations are in the

90's. Second, in 7 of the 8 cases, the expected correlations

for equal weight additive and complementing models are higher

than those for corresponding unequal weight models. Third,

mean expected correlations using the additive "importance

weight" model are attenuated when the true model is

multiplicative. Fourth, the utility model correlations are

severely depressed for the two unequal weight conditions.

Finally, the value-difference and hybrid models yield highly

comparable expected correlations across all five true model

. .. I III I l I II I I I I I
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conditions.

Mean maximum deviations and mean total squared deviations

are presented in the middle and bottom panels, respectively, of

Table 3. All of the patterns discussed above for expected

correlations are born out by both of the normed distance

measures. The extreme sensitivity of deviation norms, however,

and especially the max norm, causes most of the differences

noted in the top panel to be accentuated in the lower two

panels.

It should be noted that all four of our assessed models

were derived under the assumption of linear single-attribute

value functions for quality and size. Many subjects gave

responses that in fact indicated exactly linear single-

attribute value functions. Non-linear patterns of responses to

stimuli along the axes in Figures 3 and 4 were interpreted as

random deviations from linearity, since none could be

represented by a strictly convex or concave value function.

Since there was no direct single-attribute transformation

placed on quality and size in the models taught, this result is

not surprising.

Structural Analysis

In addition to comparing assessed and true models via

expected correlations and normed distance measures, we explored

the more qualitative structural aspects of the models.
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Insert Table 4 about here

The top panel of Table 4 presents the number of subjects in

each of the 5 true-model conditions whose assessed value

difference model was either complementing (WO), additive

(W=O), or substituting (W<0). The second and third panels

produce the same analysis for the hybrid value-

difference/importance-weight model and the utility model,

respectively. The bottom panel of Table 3 displays the

distribution of complementing vs. substituting models implied

by observed violations of AUI. All subjects violated AUI, in

that none were indifferent between the 50-50 B-W lottery and

the 50-50 _-S lottery (see Figure 4).

For the unequal weights conditions, the AUI test

identified the sign of the interaction parameter equally often

correctly as incorrectly. The test did, however, quite well in

identifying the sign of the interaction parameter for the equal

weight conditions. In all four cases in which W >0, A1HI was

violated by a preference for the "extreme outcomes" gamble for

W and B. Similarly, in all four cases for which W<O AUI was

violated by a preference for the "middle outcomes" gamble for 0

and S. Both preferences are consistent with the sign of W. In

the additive equal weights case (W-0), AUI was violated in

three cases by multiattribute risk aversion, in one case by

multiattribute risk proneness (see v. Winterfeldt, 1980).
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These patterns indicate that a utility model is able to pick up

the riskless interactions, unless the true model is truly

additive.

Several other results emerge from Table 4. Overall,

assessment of the correct model structure is quite good.

Within the three multiplicative true-model conditions, only two

of the twelve assessed value-difference models were

structurally incorrect. The same result held for the hybrid

value model. True additive models tended to be somewhat harder

to correctly detect. In addition, both of the unequal weight

true model conditions yielded more incorrect classifications

than did their equal weight counterparts.

There was no clear structural shift from assessed value

models to assessed utility models. In particular, the

anticipated shift toward a multiattribute risk averse

(substituting) utility model did not occur in any of the true-

model conditions, with the possible exception of the unequal

weight, complementing condition. As for value models,

diagnosis of model structure via utility assessments tended to

be hampered by additive trade-offs and/or unequal weights in

the true model.

Discussion

Experiment I demonstrated that subjects could learn non-

additive trade-off relations, and that these newly acquired

value structures could be successfully discovered via standard
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multiattribute value and utility assessment procedures. We

found that all versions of the multiplicative value (utility)

model were an improvement over the additive (importance-weight)

value model when the true model was multiplicative. However,

the multiplicative value model assessments were not

particularly successful in detecting additivity when the true

model was in fact additive. The unequal weight true-models

were somewhat more difficult to assess than the equal weight

models, and this was particularly evident for the assessed

utility models. Non-linear single-attribute functions were not

detectable.

Although the results of Experiment I are intriguing, they

are not without some qualification. One of the most serious

caveats is the restriction to a two-attribute stimulus domain.

To what extent do our findings about learning and assessment of

additive and multiplicative value functions hold in contexts

involving more than 2 attributes? The purpose of Experiment II

is to examine the replicability of our results in a four-

attribute domain.

EXPERIMENT II

Method

Design Overview

Ten undergraduates were taught one of five different

four-attribute models of diamond worth. The training procedure

was similar to that in Experiment I, except that diamonds were



Learning and recovering value functions
33

described in terms of the "four C s"; cut color, clarity,

and carat. Just as in Experiment I, true models were either

additive, complementing, or substituting. Weights for additive

and complementing models were either all equal, or in the ratio

4:3:2:1. Only an equal weights substituting model was defined.

Exact model parameters are given in the top portion of Table 5.

Following training, value and utility model assessments

analogous to those in Experiment I were performed.

Insert Table S about here

Subjects

Ten undergraduates (8 females, 2 males) volunteered under

the same contingencies as outlined for Experiment I.

Training Procedure

The training procedure was virtually identical to that

for Experiment I, except that diamond profiles consisted of

four variables rather than two. An example of the 4-attribute

video display is shown below:

CUT: 58% I I I I I I I I 1 I I
0% 160

COLOR: 9.5 I I I I I I I 1 I -1-
0 10.

CLARITY: 24 I i I - I I i i I I
0 100

CARAT: .45 I ll I 'I II I I I
0 1.0
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Each subject was shown a different sample of 100 diamond

profiles, generated such that each of the four attributes was

independently, uniformly distributed on the unit interval.

(Values for color and clarity were simply multiplied by 10 and

100, respectively, for video display.) A somewhat more

elaborate cover story was provided than in the first

experiment, giving a rather detailed (fabricated) description

of how cut, color, clarity, and carat scale scores are

determined. As for Experiment I, aggregate diamond values were

multiplied by $10,000, such that the worst diamond (0%, 0.0,

0.0, 0.01) was worth $10., and the best (100%, 10.0, 100, 1.00)

was worth $10,000. No random error was added in any mode)

condition.

Model Assessment.

The same two analysts from Experiment I again led

subjects through an elicitation protocol immediately following

training. Each analyst interacted with one subject in each of

the five model conditions. At no time did analysts know what

the possible model parameters were or even how many conditions

there were. Analysts knew only that subjects had been taught a

four-attribute multiplicative (possibly additive) model via

outcome feedback.

Judgments about value-differences, "importance weights,"

and lotteries and sure-things were obtained in a manner

analogous to Experiment I assessmenti. Again, the ordering for

these three assessments was randomized.
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Subjects estimated "importance-weight" ratios between all

six pairs of attributes. Inconsistencies were simply pointed

out to subjects, and a coherent set of ratios was obtained from

all.

Value-difference elicitation procedures were similar to

those in Experiment I. Assessments were obtained for diamonds

varying in cut and color (analogous in form to those shown in

Figure 5), and constant in their level of clarity (=0) and

carat (-.01). One additional assessment, for cut and color

both at their "best" levels, was also made. Likewise, the same

12 assessments were obtained for diamonds varying in clarity

and carat, and constant in cut (-0t) and color (=0).

Just as in Experiment I, AUI was tested by asking

subjects to indicate a "weak" or "strong" preference between

two lotteries (one "risky" and one "safe") with identical

marginal outcome distributions. MUI was tested for all four

attributes; single-attribute utility functions were elicited

for all four attributes. Since MUI tests and single-attribute

assessments involve only one attribute at a time, these

elicitations take the same form, regardless of the number of

attributes. Thus, procedures were identical to those in

Experiment I. Subjects also made four BRLTS type judgments

implying equivalence between a lottery resulting in either the

best diamond (100t, 10, 100, 1.0) or the worst diamond (.0%, 0,

0, 0.01), and a sure thing that was best on one of the four

attributes, and worst on the other three. As before,
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probabilities assigned to the two extreme lottery outcomes were

varied until the subject felt indifferent between the lottery

and the sure thing.

Results

The only multiplicative bootstrapping model analogous to

Equation 2 for 4 attributes requires the estimation of 15 free

parameters. Because our assessed models use only four free

scaling parameters (the fifth is determined by equation 3), a

multiplicative bootstrapping model would not be comparable.

Also, it is likely that a 15 parameter regression model would

be susceptible to instability, due to multicollinearity among

the 2, 3, and 4 way "interaction predictors," and the

restricted sample size (S0) of holistic responses.

Thus, we relied on correlations between the diamond price

feedback and subjects' estimates over the second fifty learning

trials to gauge the degree to which subjects learned the

4-attribute value model. Whereas the (expected) correlation

between the true model and the bootstrapped model (used in

Experiment I) is often referred to as an index of "knowledge",

the correlation between actual feedback and subject responses

is called "achievement." Achievement scores are virtually

always smaller than knowledge scores, since disagreements due

to small random inconsistencies in responding are "removed"

from the knowledge index. Achievement correlations for our ten

subjects are displayed in the bottom panel of Table 5. As all

of the correlations are above .96, we can conclude that
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subjects were able to successfully learn our 4-attribute

additive and multiplicative models.

Table 6 presents two different assessments of model

structures based on strength of preference judgments, and two

based on lottery judgments, both as a function of the true

model structure. There are two major results in Table 6.

First, both of the value techniques recovered the correct

structure quite accurately. Both methods were 100% correct for

the 4 subjects with true complementing multiplicative trade-off

structures.

Insert Table 6 about here

Secondly, there is a shift in the direction of greater

attribute substitution for utility methods. One intriguing

interpretation is that the model was taught under conditions of

certainty, while utility models are, by design, defined over

lotteries. Hence, the utility assessments may simply reflect a

rather pervasive aversive attitude toward risk that is in fact

meaningful, although not a part of the riskless feedback model.

Another interpretation of this shift is an artifactual

response-mode bias in elicitation that causes a systematic

misdiagnosis of the model structures. Our data do not permit

separation of these two competing hypotheses.

We also examined the agreement between assessed w and

the true w.. Ratios of the maximum to minimum w. are presented
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in the top panel of Table 7 for the direct "importance weight"

assessments. Ratios for the value-difference and utility

assessments of w. are given in the middle and bottom panels,

respectively. For the unequal w. true model conditions, the

number of rank order inversions is given in parentheses. Zero

inversions indicate perfect rank order agreement; an exact

opposite rank ordering would result in 6 inversions.

Insert Table 7 about here

There are two findings evident in Table 7. First, all of

the assessment methods are rather poor at determining the

ordinal properties of the four w. for the multiplicative model

conditions. This was true regardless of whether the model was

complementing or substituting, and whether the true model w

parameters were equal (1:1) or unequal (4:1).

Secondly, the value-difference method elicited the most

extreme weights, while the utility (gamble) techniques obtained

the flattest. Direct ratio judgments tended to be between

these two extremes. We seem to have discovered a rather blatant

response mode effect that mediates the extremeness of w-i

assessments.

As was the case for Experiment I, many single attribute

value and utility curves were exactly linear. Again, there

were no non-linear functions that could be interpreted as

srictly concave or convex, leading us to interpret :.v¢iations
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from linearity as random response errors.

Discussion

We extended the finding that subjects could learn non-

additive trade-off relations to the four attribute case. We

also found that such complementing or substituting models could

be recovered, for the most part, using the standard assessment

procedures. There was a marked shift towards substitution

(risk aversion) for models derived via utility theoretic

methods.

None of the three assessment techniques was able to

recover wi ratios in any of the three multiplicative model

conditions. There was a marked bias across all model

conditions toward more extreme wi from the value-difference

assessments, and flatter w. from the utility assessments. No

strictly concave (or convex) single-attribute value or utility

curves were found.

SUMMARY AND CONCLUSIONS

The most significant findings of our study were that

multiplicative trade-off structures could be learned through

outcome feedback and, even more importantly, that they could be

reliably recovered using standard value-difference and utility

assessment techniques. This result was found in the case of

both 2- and 4-attribute stimuli. Assessed multiplicative

models were gnerally better than the "importance weight"
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additive model in the multiplicative true-model conditions.

In the case of four attributes, we found that ordinal

information about the wi for multiplicative model conditions

was not recovered by any of the assessment techniques.

Furthermore, we found that the corner point value-difference

assessments produced rather extreme weight ratios, while the

corner point gamble elicitations produce relatively flat

ratios. There was some indication that 4-attribute utility

assessments tend toward substitution (risk aversion) compared

to either of the value-difference assessments of the true

model.

We conclude that:

1. Multiplicative trade-off structures can be learned via

outcome feedback; furthermore, these non-additive

models can be recovered via standard value and utility

measurement models,

2. Distinctions among value, utility, and approximate

approaches are behaviorally observable, and

3. Strictly concave or convex (nonlinear) transformations

of single-attribute outcome measures are not

"automatically" applied before attributes are

aggregated.

We will highlight some of the important questions left

unanswered by these conclusions. The observed value-utility

differences are important regardless of whether these are

psychologically valid distinctions, or whether we are simply
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exposing pervasive response mode biases. More research,

perhaps with "taught" utility models, is necessary before these

two competing interpretations can be disentangled. For now, it

is clear that value and utility models derived on the same

stimulus domain will not, in general, be interchangeable.

That subjects can learn and analysts can recover

multiplicative trade-off structures is less open to

interpretation. This clear finding suggests that if the actual

trade-off structure is multiplicative, an assessed

multiplicative model will perform better than an additive

model. However, the question of "how much better" cannot be

answered by our study. As is evident in Tables 3 and 4,

conclusions about the overall level of model agreements depends

upon how agreement is defined. Since agreement is obviously

defined by the particular decision problem context, we cannot

answer the question of "how much" in the abstract.

The three primary variables controlling model agreement

that may vary from one problem context to the other are:

1. The multivariate distribution of alternatives along

attributes;

2. The choice problem, e.g., choose the one best

alternative, choose the best X%, rank order all, etc.,

and

3. The standard against which difference in actual

obtained value (utility) is to be compared.
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Measures of agreement such as those displayed in Tables 3

and 4 make different implicit assumptions about the above three

variables. For example, our expected correlation measure is

predicated on a choice problem to produce an interval scaling

of all alternatives, the attributes of which are mutually

statistically independent.

Even if these assumptions are reasonably approximated,

the practical difference beween an expected correlation of .95

and .99 will depend on the decision problem in at least two

important ways: (1) What is the worst correlation obtainable,

e.g., using an additive equal weights mode]? and (2) What are

the actual value (utility) losses experienced by the .95 model

relative to the .99 model? If an equal weights or random

weights additive model performs at a rather low level, (e.g.,

below .70), then the increment from .95 to .99 seems relatively

rather small. If the naive mode] performs at a higher level

(e.g., .90+), then the relative increment from .95 to .99 takes

on potentially greater significance. In addition, our

perception of the benefits of a more complicated trade-off

structure over a simpler one may depend on the absolute benefit

of the increased accuracy. Whether the .04 increment

translates into pennies or dollars depends on the decision

problem in an obvious way.

Thus, the extent to which eliciting a multiplicative

trade-off st ucture is justified is an open question (and

probably unanswerable in the abstract). The comparability of
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our standard value-difference model and the hybrid model

(derived from "importance weight" judgments and one additional

value difference question about the "middle" alternative)

suggests an obvious practical solution for appliers of the

approximate methods advocated by Edwards and others. Namely,

obtain a single additional judgment of the strength of

preference of the middle alternative (v = .5 for all i)-i

relative to the worst and best alternatives possible. Then, a

multiplicative model can be derived and at least compared to

the usual additive model. If this leads to an extreme

multiplicative model, further assessment may be suggested.

Finally, our inability to uncover strictly concave (or

convex) single-attribute function forms suggests that the

standard single-attribute elicitation procedures do not suffer

from obvious response mode effects that would tend to produce

non-linearity when the function form is in fact linear. Closer

study in which exponential single-attribute functions are

taught, is warranted.
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TABLE 
1

True weights and weights of best fitting
multiplicative regression model

Subject No. True Model Regression Model

wI  w2  W w1 w2  W

3 .50 .50 0 .48 .51 .04
4 .50 .50 0 .S0 .49 .04
13 .50 .50 0 .55 .51 -.21
14 .50 .50 0 .56 .49 -.18

1 .80 .20 0 .82 .12 .61
11 .80 .20 0 .68 .57 -.64
2 .20 .80 0 .11 .89 0
12 .20 .80 0 .25 .77 -.10

7 .09 .09 99 .18 .06 70
8 .09 .09 99 .04 .22 84
17 .09 .09 99 .11 .09 85
18 .09 .09 99 .07 .14 81

9 .91 .91 -.99 .92 .74 -.97
10 .91 .91 -.99 .83 .97 -.99
19 .91 .91 -.99 .85 .88 -.98
20 .91 .91 -.99 .84 .88 -.99

s .13 .06 99 .00 .20
15 .13 .06 99 .23 .18 14
6 .06 .13 99 .15 .12 41
16 .06 .13 99 .07 .20 52
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TABLE 2

Mean Expected Correlations, Maximum
Deviations, and Total Squared Deviations

Between Bootstrapped and True Models

True Model Trade-Off

Additive Complementing Substituting

Weight 4:1 1:1 2:1 1:1 1:1
ratio

Bootstrapped Model

Expected Correlation

Multi- .974 .999 .990 .994 .993
plicative

Additive .968 .999 .899 .928 .929

Maximum Deviation

Multi- .146 .034 .102 .070 .094
plicative

Additive .112 .018 .531 .507 .506

Total Squared Deviation

Multi- .004 .000 .002 .001 .001
plicative

Additive .004 .000 .050 .048 .048
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TABLE 3

Mean Expected Correlations, Maximum
Deviations, and Total Squared

Deviations Between Assessed and True Models

True Model Trade-Off

Additive Complementing Substituting

Weight
ratio 4:1 1:1 2:1 1:1 1:1
assessed
model

Expected Correlation
Importance
weight .978 .969 .920 .934 .942

Value-Diff. .945 .974 .936 .988 .983

Hybrid .956 .974 .957 .980 .981

Utility .856 .994 .906 .982 .964

Maximum Deviation
Importance
weight .110 .088 .529 .473 .465

Value .363 .208 .407 .127 .180

Hybrid .325 .206 .360 .223 .184

Utility .450 .095 .541 .249 .323

Total Squared Deviation

Importance .003 .003 .048 .048 .047
weight

Value .022 .015 .040 .010 .012

Hybrid .018 .023 .030 .015 .006

Utility .023 .003 .069 .015 .028
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TABLE 4

Structural Comparisons of True Models
with Assessed Models and Utility Structure Test Results

True Model Trade-Off

Complementing Additive Substituting
W >0 W=0 W< 0

Assessment 2:1 1:1 4:1 1:1 1:1

sgn (W)

Value + 2 4 3 2 0
difference 0 1 0 0 2 0
model - 1 0 1 0 4

+ 3 3 1 2 0
Hybrid 0 0 1 1 2 0
model - 1 0 2 0 4

+ 1 4 2 1 1
Utility 0 0 0 0 2 0
model - 3 0 2 1 3

Additive U. + 2 4 2 1 0
Independence 0 0 0 0 0 0
Test - 2 0 2 3 4
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TABLE 5

Experiment II: True Model Parameters
and Achievement correlations

Trade-Off Structure

Additive Complementing Substituting

Weights Equal Unequal Equal Unequal Equal

Para

meters W 0 0 15.000 28.230 -.750

W .250 .400 .067 .080 .390

W .250 .300 .067 .060 .390

W .250 .200 .067 .040 .390

W .250 .100 .067 .020 .390

Achievement .987 .997 .964 .969
.993 .998 .971 .981 .992
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TABLE 6

Structural Comparisons of True Models
with Assessed Models and AUI Tests

True Model Trade-off

Complementing Additive Substituting
W >0 W=0 W <0

Assessment sgn(W)

Value + 4 1 1

Difference 0 0 3 0

Model - 0 0 1

Hybrid + 4 1 1

Model 0 0 2 0

0 1 1

Utility + 2 0 0

Model 0 0 0 0

2 4 2

AUI + 2 1 1
0 0 0 0

test - 2 3 1



Learning and recovering value functions
54

TABLE 7

Experiment II: Assessed Weight Ratios
(Max. wt : Min. wt.)

Additive Complementing Substituting

Assessment
--True Maximum Wt. Ratio--

Methods

4:1 1:1 4:1 1:1 1:1

Direct
Ratio 1:1 1.5:1 2.9:1 (3) 1.4:1 2.9:1
Import-
ance 5.3:1 (0)* 1:1 3.1:1 (1) 3.5:1 4.5:1

Value 1.2:1 (0) 1:1 17.:1 (3) 1:1 2.3:1
Diff.
Corner 40:1 (0) 1:1 10.:1 (1) 5:1 10.:1
points

Utility 1:1 1:1 3:1 (3) 1:1 1.3:1
Measure
BRLTS 2.5:1 (0) 1:1 4:1 (1) 2.5:1 1.2:1

*Note: In the case of unequal true weights, the
number of rank order inversions is given in parentheses.
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Figure Captions

Figure 1. Indifference curves for moderate multiplicative,

extreme multiplicative, and lexicographic 2-attribute value

functions, V(') = .l,.2,.3,.4,.5,.6,.7,.8,.9.

Figure 2. Indifference curves for the five models taught in

Experiment I, V(') a .l,.2,.3,.4,.5,.6,.7,.8,.9.

Figure 3. Strategically chosen diamond stimuli (*) for value-

difference assessment.

Figure 4. Strategically chosen diamond stimuli (*) for utility

model assessment.

Figure 5. indifference curves for each subject's

multiplicative bootstrapped mode] (bold lines) and the taught

model (light lines), V(-) = .25,.50,.75.

Figure 6. Indifference curves for each subject's elicited

value-difference model (assuming linear single attribute v.)1

(bold lines) and the taught model (light lines), V(.) =

.25,.50,.75.

Figure 7. Indifference curves for each subject's elicited

additive ratio "importance weight" model (assuming linear

single attribute vi ) (bold lines) and the taught model (light

lines), V(.) a .25,.50,.75.

Figure 8. Indifference curves for each subject's elicited

hybrid model ratio ("importance weights" and one value

difference judgment, assuming linear single attribute vi) (bold

lines) and the taught model (light lines), V(') - .25,.SO,.75.

Figure 9. Indifference curves for each subject's elicited
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utility model (assuming linear single attribute u.) (bold

1
lines) and the taught model (light lines), V(.) * .25,.5O,.75.
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