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TIME SERIES ARMA MODEL IDENTIFICATION BY ESTIMATING INFORMATION

Emanuel Parzen

Institute of Statistics
Texas A&M University

Statisticians, economists, and system engineers are becoming aware that to identify
models for time series and dynamic systems, information theoretic ideas can play a
valuable (and unifying) role. Models for time series Y(t) can be formulated as
hylotheses concernigg the information about Y(t) given various bases involving past,
current, and future values of Y(.) and related time series X(.). To determine sets
of variables that are sufficient to forecast Y(t), and especially to determine an
AR14A model for Y(t), an approach is presented which estimates and compares various
information increments. - how to non-parametrically estimate the MAtw -- (rA( ?*,'y.)
representation, and use t to form estimators of the many information numbers that
might compare to identi an ARMA model for a univariate time series. -

1. Information Measures The entropy of Y and conditional entropy of Y
give X are defined by

The information approach to model identification H(Y) = H(f )

formulates a model (or hypothesis about the
probability law of random variables or time H(YjX) = H(fyix) ExH(f yvXx)
series) as a hypothesis that an information
number is zero. Information measures for One can establish a fundamental decomposition:
random variables are defined in terms of infor-
mation measures for probability densities. The I(YjX) = H(Y) - H(YfX).
latter can be regarded as defining "distances" The most fundamental concept used in identify-
between probability measures. ing models by estimating information is

I(Y1X1 ; X1, X2 ), the information about Y in X2
Let f(y) and g(y) be two probability densities conditional on XI; it is defined
on a real line, -- <y<-. The information (I) I(YIXI;XiX 2) H(f)- H(f
divergence of index a of a (model) g from (a (1X) YJX 1.X2
true density) f is defined for a 1 (index 1) = H(Y1X1 ) - H(YIXI,X 2 )
by A fundamental formula to evaluate I(YIXi;XI,X 2 )

11(f;g) -r{ -og f(y) dy is

and for >O (but l) by l(II) I(YIXI;XIX 2 ) = I(YIXI.X 2 ) -- I(YfX 1 )

l0(f;g) - 1 log .J(" ) f(x) dx When X and Y are jointly normal random variables
ratn d of ix fy;x.x(y) is a normal distribution whose

variance (which does not depend on x) is denoted
preferred role because it has an important r(YIX). The variance of Y is denoted r(Y). The
decomposition entropy and conditional entropy of Y are

I(f;g) - H(f;g) - H(f) H(Y) 1 log Ely) + 1 + log 2-0

defining 1

H(f;g) - f"{-log g(y))f(y) dy, H(YIX) - 1 iog r(YlX) + (I + log 2w)

H(f) - H(f7f) a f"(-log f(y)) f(y) dy The information about Y in X when X and Y are
.. f) obivariate normal, with correlation coefficient

We call H(f;g) the cross-entropy of f and g, p, can be expressed I
and H(f) the entro of f. Information (III) I(YX) - log Z1 (Y)Z(YX)-- log(l-)
divergence of Tin d es usually referred toWlo
just us information divergence l(f;g). When Y and X are jointly multivariate normal

random vector, let E denote a covariance matrix. 0
The Information I(YIX) about a continuous One can show that
random variable Y in a continuous random 1 IE
variable X is defined by (IV) +YIX) ( ) log det E (Y)z(YIX)

I(Yx) - I(fyJx; fy) - EXI y - ( 1 sum log elgenvalues Z' (Y)Z(YIX).
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To illustrate the information approach to model memory (white noise) series. Therefore a no
identification (or determining relations between memory (white noise) time series requires no
random variables) consider the general problem further modeling, although one may be interested
of testing the hypothesis Ho: X and Y are in determining such statistical characteristics
independent. One could express Ho in any one of as the mean, variance, and probability
the following equivalent ways: distribution.

H0 : fxy(xy) - fx(x)fy(y) for all x and y; A short memory time series Y(t) is modeled by an

Ho: fy X.x(y) - fy(y) for all x and y; invertible filter which transforms it to white

Ho: (f ,Y; ; noise:

H: I(YX) - 0

The information approach to testing H0 is to t filter g.
form an estimator I(YIX) of I(YIX), and test where YU(.) is the innovation series, or series
whether it is significantly different from zero. of infinite memory one-step ahead prediction
One can distinguish several types of estimators
of I(YIX): (a) fully parametric. (b) fully non- errors, defined by [using v to connote "what's

parametric; (c) functionally parametric which 
new"I

uses functional statistical inference smoothing YV(t) - Y(t) - YU(t)
techniques to estimate I(YIX) [see Woodfield The predictor Y'(t) is denoted(1982). TepeitrY~)i eoe

Y"(t) - E[Y(t)IY(t-l), Y(t-2), ....
An example of fully parametric estimators arises
when one assumes X and Y are bivariate normal " (YIY-I*...Yn...)it)
with correlation coefficient p. Given a random We use 0 as the superscript for a predictor to
sample (X1 ,Y1),.....(Xn, Y n) a fully parametric indicate that it is an averaging operator.

estimator of I(YIX) is the maximum likelihood The infinite memory mean square prediction error

1t is defined as the normalized variance
i(YX) " i log (l-p2) .2 .ECIyV(t)12] + EClY(t)12]

where ^ is the sample correlation coefficient. E ttThe appropriateness of normalizing is justified

2. Information and Memory Approach to Time by the formula for information:

Series Model Identification - T log 0.

The approach to time series analysis developed if a time series Y(t), tO,+1 .... is a zero mean
by Parzen distinguishes four general types of Gaussian stationary time series. Its probability
time series models: law can be described by the covariance function

1. No memory or white noise R(v) - E[Y(t)Y(t+v)] ,
2. Short memory or stationary
3. Long memory (or non-stationary) and correlation function
3a.Long memory: transform to short memory p(V) - - Corr [Y(t),Y(t+vl)
3b.Long memory: long memory plus short memory. Alternatively the probability law of Y(.) can

Memory type can be defined in terms of the be described by the spectral density function f

information numbers Im  
which is defined by

Im "(YjIY.I....Ym
)  f(W) - e21iv p(v), O I<l

in words, I is the information about a time when Ip(v)]<- . The frequency variable w

series Y(t)mat time t in the m most recent is usually assumed to vary in the interval
values Y(t-l),... ,Y(t-m). Let Y- denote the
infinite past Y(t-l), Y(t-2) ..... As m tends -O.5<w<O.5. But only the interval 0w<<0.5 has

to-, I tends to physrcial significance. We prefer the Tnterval
m O<_w<l for mathematical reasons.I.- i(YlY') - l{V(t)jY(t-l) .... )

We define a time series Y(t), t0,.+l,.... to be: Perhaps the most insightful way to model a
short memory time series is by representing it,

no memory if I. - 0 or approximating it, by an ARMA(p,q) scheme:
short memory if 0.. I. - Y(t) + ap ()Y(t-1)+...+a (p)Y(t-p)

long memory if I . p

The models we build for a time series depend on q (t) + q (1)c(t-1)+...+Bq(q)c(t-q)
its memory type. A model corresponds to a where the polynomials
transformation of the time series to a no



g (Z) - lsp (l)z+...p (p) zp  1 - a (1 + O+ + . )
p p p

N z) - 18lqO)z+... a(qq) zq  The correlations P(v) can be computed by
are chosen so that all their roots in the cor- p(v) - a2 { +

hei rotsin he om v v+l +.
plex z-plane are in the region {z:z1) outside
the unit circle. Then g(Z) and h (z) are the By using matrix sweep operations on the joint

p q covariance matrix of YY 19-.''Y-p, YV ""'YV
transfer functions of invertible filters. £(t) -q
is assumed to be a white noise time series which one can determine (in a stepwise manner) the
we identify with the innovations c(t) - Yv(t); conditional variance Z(YIY.1 ....,Y_p, YV1, ....

a EEC2 (t)) * EEYZ(t)J YVq) required to compute the information Ipq.
is an estimator of o.2. The spectral density of We illustrate the approach being proposed in the
an ARM (pq) schem is case p1, q-1. The covariance matrix of Y,

fh q(e2wiw)l2  Y-i. Y)-I is

fp~q(p)O',q igp(eTviw)j2 I P(O) 0B01

PM 02~

The process of identifying ARMA(pq) schemes E - (1) 1 a2

which are adequate (and parsimonious) approxi- 2 amating models for a time series can be studied
by determining information characterizations of
when the exact (or true) model is an AR(p) or Sweep z on Y_1 to obtain
ARMA(p.q).

Let x(YIY ..... p" Y - q denote the [ l-p2 (1) p() a2 B0-p(l))-

mean square prediction error of Y(t) when pre- El -() 1 -a2 1
dicted by Y(t-])....,Y(t-p), Yv(t-1),...,YV(t-q),or equivalently the conditional variance of o.(1i--p()) a2 02 !)

Y(t) given Y(t-1),...,Y(t-p), Yv(t-1),...
YV(t-q). Normalize it to form Sweep Z on Y to obtain

p2 q = '(Y) 2(Y Y_] ... Y, Y.-I ,... 1Yq)
Ip~q - log 

I

p q  
*

E2  pl-= S -2

The information difference between Y 1 s .. y LZ -l

YV Yv and Y- for prediction of' Y(t) -P -Bl -1(02)
satisfies~ -

I(yIy.1 ....yp.yi....yq;y-). . p,q Sweep E1 on or sweep E2 on Y-1 to obtain a

matrix which we write in the following form:
The following two hypotheses are equivalent: (IB-p(l)) 2a2  p(l)-a2B 1 0-p()

HV: Y(.) is ARJA(p,q) (1 -A M))- 2 - 1-02H 1-a2  1- 2  1- 2-

pqp(1 )-a2B1  1 -.l

3. Information Calculation for ARMA Schemes

Given a sample Yt), tal,2....T). we would '1)
like to estimate, for many values of pq, the 0-_001
information differences (assuming normality) 1.a2 1-a2  %2(1.a2)

. 1p~q -r log . -{- log a2,q} .

We need to estimate a! and V2,q. To understand We conclude that

the method we would like to propose, let us z(YjY1) = l-p2(1), (Y. 1 )(t) p(1) Y1 (t)
first discuss how to compute the true value of I(YIYVl) . 1 - 202 (Y1YVl)(t) -
a2,q. The MR(-), or infinite order moving I - -

average, representation of Y(t) will play a (B-P(1))l °2
central role: z(YIYYVl) * (1 (1 ))

Y(t) - YV(t) + OSYV(t-1) + 02Yv(t-2) + .... 1-a 2

Note that E[IY(t)12
] - ELIyv(t)12 ] {l+01+...)

so that

" i i ._ _ I I _ i i III~i IL
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a(1)-a28i SAlternatively one could compute the Information
(ylY~ley )(t) - Y-l(t) numbers of AR(p), VA(q), ARNA(p,q) for p,q - 1,

... , (a specified upper limit). Subtract from
estimated informtion number a penalty (1+p+q)/T.

+ - ( .Vl(t) Then sort the array of penalized estimated

1.2 information numbers Ip,q to determine the orders

(p,q) of schemes with the largest amount of

These coefficients of Y_ I(t) and Y91(t) can be information (and which therefore minimize

used as initial (or perhaps even final) values I - Ip,q and correspond to best approximating

for an efficient parameter estimation algorithm ARMA schemes by this measure of divergence

for an ARA(,1). between probability distributions).

As a check on these formul-as, note that for an1  4. Nonparametric Estimation of MA(-)

A(l), Y(t) = ¢(t)+b c(t-1), 01
= b, 

2 =(1+b
2), Representation

p(l) - b/(l+b
2 ). The coefficients of Yl(t) and

YV1 (t) in the predictor are respectively 0 and b. An information approach to computing Ip,q and
thus identifying best fitting schemes has been

For a numerical illustration of these formulas, described which is based on estimating the
consider the ARJA(1,1) model Y(t)-aY(t-l) coefficients of the MA(-) representation. Two

* yv(t)+byv(t-1). Then B1 = a+b. 1=2(1+(BI/ possible methods for non-parametric 4A(-)

(1-a2 ))), p(1) - (s1+(oja/(1-a
2 ))Ja-. For estimation are described in this section: (1)

a b0.5, e1 1, a2 3/7, p(-) 5/7. The approximating long autoregressive schemes; (2)

general formulas yield the values assumed in cepstral correlations. The two methods may be

the model, used simultaneously for greater confidence in
the results obtained. Both methods require

To test whether a time series Y(.) obeys an further theoretical investigation [compare

ARJA(,l), form Bhansali (1982)].

V L-_ 2 1 (aip(l))2
I( Y )Y4l;y log(O _ ( ___"(1}I Denote the MA(-) representation of Y(t) by

" ".2  1-02 Y(t) - b(O) YV(t) + b(l) Yv(t-1) + ...

This information number equals 0 if the time where b(O) = 1. Denote the AR(.) representation
series obeys any one of the schemes AR(l), by
MA(l), or ARMA(l,l). The information numbers
for an AR() and MA(O) are respectively a(O) Yt + a(l) Y(t-]) +... - Y'(t)

I _ 2 lgwhere a(O) a 1.

The approximating long autoregressive scheme
I(YIYVl;Y"

)  1 I log (L- op estimates the AR(-) representation of a time
l2 series Y(.) by a finite order AR(p) scheme

Y(t) + a (1)Y(t-1)+...+a (p)Y(t.-p) - C(t)

One accepts Ho: Y(.) is ARtA(,l) if the last p p
two information numbers are different from zero, whose order p is determined by an order deter-

but I(YIY.1, Yvl- Y') " 0. ifining scheme [such as AIC, due to Akaike, or
(Y 1 CAT, due to Parzen]. The generating functions

For the ARA(l,l) model Y(t) - 0.5 Y(t-1) h,(z) - 1 + b(l)z + b(2)z
2+...

yv(t) * 0.5 YV(t-1), g(z) - 1 a(1)z +

I(YjY 1 ; Y) y log = .067 gp(z) + 1 * ap(1) z+...+ap(p) zp

I(YgyV; Y') T log 1 143 satisfy

g.(z) h(z) - 1.

When information p is estimated from a One can solve recursively for b(J) using the

sample of size T, a penalty term (l+p+q)/T is recursion

subtracted from the estimated information Iq a(O) b(k) + &(I) b(k-1)+...+ a(k) b(O) - 0.
in the Akaike information approach. If .06bb
were an estimted value of I(Yly 1; Y ' ) it When 9.(z) is approximated by o(z), one

w replaces a(k) by a (k); note that a (k) - 0

would be regarded as significantly different for kp. The approxmating autoregrelsive
from zero if .067 - (2/T) L 0, which is true method of estimating the MA(-) representation

for T 3_ 30. often yields reasonable results in practice.
However it is difficult to study its properties

To identify the best orders p,q of approximating theoretically.

ARA(pq) one could use subset regression
techniques to steer the calculation of Ipq* The cepstral correlation method is available for
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short memory time series; then log f(w) Is Pourahinadi (1982) also states a recursive
integrable, and can be used to compute 1. using formula for computation of the AR(-)
the fundamental formula (due to Kolmogorov and coefficients a(k) from *(k):

eog o log f(w) dw a(nl) - (1- n+) p(n+l-j)a(j)

The ce stral correlations are defined by, for -
O -. , corlto arbyfrThe properties of cepstral correlations can be- 1 2 understood by examining their values in the
*(v) -;f e "

v log f(w) dw case of an AR(l); then

The name "cepstral correlations" is intended to f(W) -o I1-oe "2 iw12.
connote that #(v) is the Fourier transform of where Ip1< 1. Then, for k ' o
log f(s). However the sequence {#(v)) does not
share an essential property of the sequence *(k) - o log {1-p e 2  lw)eZaikw
{((v)) of correlations; the cepstral-correlations
are not non-negative definite since log f(w) is 1 k
not non-negative. Define v "

-k 
, y*(Z) - . k The rate of decay of k*(k), k-1,2,..... is

T(z) - (k) , *(-k) measure of the memory of the time series.k~l k 1

Then To estimate *(k) from a sample Y(t), t-l,....,T
f(W) - a2 Ih (e2 hiw)12 one could take the logarithm of the sample

spectral density (computed for w - k/Q. where
and 2wiw one should choose Q_2T)

log f(.) - o  (e2  ) + y(e ) T T

A very important relation [which goes back to f(w)= I I Y(t) exp (2riwt)12 * I IY(t)1 2

the dawn of modern time series analysis, due to t=l t-I
Kolmogorov (1939)] is or a smoothed estimator f(,) of f(w). Then

h(z) - exp v(z). IQ-1

One can obtain an explicit formula for b(k) in *(v) - log ) exp (2vivk/Q)
terms of T(k); thus Janacek (1982) writes k0

b(l) = *(l), A convenient formula for f(w) is the windowedb(2) # *(2) + .2(1)121, periodogram of bandwidth l/T defined byb ( 2 * ( 2 +( # ; 1 / 2v ) e p ( v )
b(3) #(3) + #(l) #(2) + 43(1)/3! = k (T) P(v) exp (2ivw)

A more useful representation of the formula for where ;(v) is the sample correlation function
b(k) in terms of #(k) has been given by
Pourahmadi (1982): computed by

b(n+l) . nI+) (nl-j) b(j). ;(v) - 1 k ) exp (2nivk/Q)

We outline Pourahmadi's proof; differentiate and k(t) is a suitable kernel (providing non-
with respect to z the relation h. - exp Y negative estimators) such as the Parzen window
Obtain h' a h V"; explicitly

zn.) n - n- k(t) - 1-6t 2 + 6t0 Itl o.0.5
nb(n) ob(n) zn)(nI n*(n) z - 2 () - ItI)3  .. 0.o. t 1

or 0 1 cItI
nl)b(nl n)zn A kernel with superior properties (but not

) n  - b( necessarily non-negative estimates) is the
n-C nIO spline-equivalent window [Parzen (1958),

Cogburn and Davis (1974), Wahba (1980)]
{ID (n+l)*(n+l) zn1  k(t) - 1

Therefore n 
1 t

(n+l) b(n+l) I [ (k+l)(k+l) b(n-k) where r is usually chosen to equal 2 or 4.

kIO An obvious moral of the foregoing formulas is
n that modern time series model identification
I b(j) (n+l-j) *(n+l-J) requires the scientist to integrate-time domain
J-0 and frequency domain techniques. The cepstral

Divide by n+l to obtain the desired conclusion. correlations approach to ARMA model

I _i i
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identification also my provide a unification prediction. Time Series Analysis: Theory
of ARA models and the exponential spectral and Practice I. ed. 0. D. Anderson, North
models introduced by Bloomfield (1973). Holland: Amsterdam, 31-52.

5. Conclusion Bloomfield, P. (1973). An exponential model

for the spectrum of a scaler time series.
Given a sample of time series, one should Biometrika 60. 217-226.
estimate its correlations 0(v) and cepstral
correlation *(v) through Fast Fourier trans: Clarke, B. R. and Godolphin, E. J. (1982).
formation from the sample spectral density f(w) Comparative Power Studies for Goodness of
and its logarithm log f(w). Fit Tests of Time Series Models, Journal

of Time Series Analysis, 3, 141-1. T -
Using the estimated correlations, the Yule-
Walker equations are solved to estimate Cogburn, R. and Oavis, H. T. (1974). Periodic
innovation variances 4, m-1,2. Order splines and spectral estimation. Annals
determining criteria, such as AIC and CAT, are of Statistics, 2, 1108-1126.
applied to this sequence to determine orders m
of approximating AR schemes, to determine the Cooper, 0. M. and Wood, E. F. (1982). Identi-
memory type of the time series (Parzen (1982)], fying multivariate time series models.
and to form autoregressive estimators of f(w), Journal of Time Series Analysis, 3,
log f(w). and *(v). 153-164.

When a time series is classified as short memory IFAC (1982). Symposium on Identification and
the estimated cepstral correlations are used to System Parameter Identification,
form the MA(-) coefficients b(k). They are used Arlington, Virginia, June 7-11, 1982.
to form information numbers (via sweep or subset Session on "New Ideas in System Identi-
regression procedures) for determining best fication" emphasizing information theory
fitting ARMA schemes, and the corresponding ARMA and entropy function approaches.
spectral density estimator.

Janacek, G. (1982). Determining the degree of
We do not believe that spectral estimation is a differencing for time series via the log
non-parametric procedure to be conducted spectrum. Journal of Time Series
independently of model identification. The Analysis, 3, 177-183.
final form of spectral estimator should be
based on an identification of the type (AR, MA, Kolmogorov, A. (1939). Interpolation and
or ARMA) of the whitening filter of a short extrapolation of stationary random
memory time series, sequences (in French). t endus

Ac. Sci. (Paris), 208, 2A4-205.
Statistical computing has a vital role in time
series analysis in two important ways: (1) to Newton, H. Joseph (1983). An Introduction to
rapidly make available to the broader scientific the Methods of Time Series Analysis in
community new algorithms for time series the Time and Frequency Domains: A User's
analysis; (2) to make old theoretical ideas of Guide to the TIMESBOARD Computing
time series analysis practically useful and to Library. Manuscript.
stimulate the integration of old and new
techniques of time series analysis. Parzen, E. (1958). "On asymptotically

efficient consistent estimates of the
For other aspects of the role of entropy and spectral density function of a stationary
information measures in model identification, time series" J. Roy. Statist. Soc., B.,
see Akaike (1977) and IFAC (1982). For model- 20, 303-322.
ing of multiple time series, see Parzen and
Newton (1980), Newton (1983), and Cooper and Parzen, E. (1982). Time Series Model Identi-
Wood (1982). A review (and power study) of fication and Prediction Variance Horizon,
some standard statistical procedures for Aplied Time Series Analysis II, ed. 0.
determining the orders p and q of an AleXA Findley, Academic Press: New York, 415-
scheme is given by Clarke and Godolphin (1982). 447.
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