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TIME SERIES ARMA MODEL IDENTIFICATION BY ESTIMATING INFORMATION

Emanuel Parzen

Institute of Statistics
Texas A&M University

Statisticians, economists, and system engineers are becoming aware that to identify

models for time series and dynamic systems, information theoretic ideas can play a

valuable (and unifying) role. Models for time series Y(t) can be formulated as

hylotheses concernifg the information about Y(t) given various bases involving past,

current, and future values of Y(-.) and related time series X(-). To determine sets

of variables that are sufficient to forecast Y(t), and especially to determine an

ARMA mode! for Y(t), an approach is presented which estimates and compares various .., .
information increments. how to non-parametrically estimate the MATe)— (Mfmfy)
representation, and use jt to form estimators of the many information numbers that

might compare to identify an ARMA model for a univariate time series. C:—--———__,___________
Jhe avthe diSeesSes

1. Information Measures

The information approach to model identification

formulates a mode! (or hypothesis about the
probability law of random variables or time
series) as a hypothesis that an information
number is zero. Information measures for
random variables are defined in terms of infor-
mation measures for probability densities. The
latter can be regarded as defining "distances”
between probability measures.

Let f{y) and g{y) be two probability densities
on a real line, -=<y<ew, The information
divergence of index a of a (model) g from (a
;rue density) f is defined for o = 1 (index 1)

Yy
(fi9) =["t-1og $E 1() &y
and for o>0 (bgt afl) by
. . — X
lu(f'g) 1-a log [:(%H }
Information divergence of index 1 has a

preferred role because it has an important
decomposition

1,(fig) = H(fig) - H(f)
defining
H(fig) = ["(-log g(y)}f(y) dy,

H(f) = H(Fif) = [T(-log f(y)} fly) dy
We call H(f;g) the cross-entropy of f and g,
and H(f) the entropy of f. Information
divergence of Index 1 is usually referred to
Just as information divergence 1(f;g).

l-a
f(x) dx .

The information I{Y|X) about a continuous
random variable Y in a continuous random
variable X is defined by

I(le) - l(fle; fv) bd Exl (fle-x;fv).

The entropy of Y and conditional entropy of Y
given X are defined by

H(Y) = H(f,)
H(YIX) = H(fYIx) = EXH(fYngx)

One can establish a fundamental decomposition:

I{(Y]X) = H(Y) - H(Y{X).
The most fundamental concept used in identify-
ing models by estimating information is
I(Y|Xy; X;, Xz), the information about Y in X,
conditional on X;; it is defined
(I) I(Y|x1;X).X2) = H(flel)' H(fy|x1’x2)

= H{Y|X1) - H{Y|X1,X2) .

A fundamental formula to evaluate I{Y|X;;X;,X)
is

(II) I(lel;XI,XZ) = I(YIX;.XZ) -‘I(lel) .
When X and Y are jointly normal random variables
fle,x(y) is a normal distribution whose

variance (which does not depend on x) is denoted
£(Y[X). The variance of Y is denoted £(Y). The
entropy and conditional entropy of Y are

H(Y) = 7 log Z{Y) + } (1 + log 2r)
H{Y|X) = % tog z(Y|X) + % (1 + log 2n)

The information about Y in X when X and Y are
bivariate normal, with correlation coefficient
p, Can be expressed

(111) 1(Y]X) = - 3 109 5™ (V)z(¥|X)-F og(1-02).

When Y and X are jointly multivariate normal .
random vector, let [ denote a covariance matrix,
One can show that

(IV) L(Y[X) = (-3) log det £™'(V)z(Y]X)
= (- 3) sum log eigenvalues £~ (V)z(¥|X).

Wesearch supported by Office of Naval Research under contract no. NO0014-82-MP-& 0©Of.
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To illustrate the information approach to model
identification (or determining relations between
random variables) consider the general problem
of testing the hypothesis Hy: X and Y are
independent. One could express Hy in any one of
the following equivalent ways:

H_: fX.Y(x.y) = fx(x)fY(y) for all x and y;

(!
Hy: fylx_x(y) - fy(y) for all x and y;
Hy: X(fx’y; fxfy) =0 ;

Hy: 1(Y]X) = 0

The information approach to testing H, is to
form an estimator [(Y|X) of I(Y|X), and test
whether it is significantly different from zero.
One can distinguish several types of estimators
of I(Y|X): (a) fully parametric, (b) fully non-
parametric; (c) functionally parametric which
uses functional statistical inference smoothing
techniques to estimate I(Y|X)} [see Woodfield
{1982)].

An example of fully parametric estimators arises
when one assumes X and Y are bivariate normal
with correlation coefficient p. Given a random
sample (Xl.Yl).....(xn,Yn) a fully parametric

estimator of I(Y|X) is the maximum 1ikel{hood
estimator

1(Y|X) = - ¥ Tog (1-52)
where 5 is the sample correlation coefficient.

2. Information and Memory Approach to Time
Teries Mode] ldentification ”

The approach to time series analysis developed
by Parzen distinguishes four general types of
time series models:

1. No memory or white noise

2. Short memory or stationary

3. Long memory (or non-stationary)

3a.long memory: transform to short memory
3b.Long memory: long memory plus short memory.

Memory type can be defined in terms of the
information numbers Im

Iy = HYY_qeeea¥ )

= [{Y(t)|Y(t-1),...,¥(t-m)) ;

in words, I_ is the information about a time
series Y(t) at time t in the m most recent
values Y(t-1),...,Y(t-m). Let Y- denote the
infinite past Y(t-1), Y(t-2),... . As m tends
to =, Im tends to

1= 1(Y]Y7) = 1{v(t)|¥(t-1),...)
We define a time series Y(t), t=0,+1,... to be:

no memory if la = 0
short memory if 0 <1 <=
long memory if I_ == .

The models we build for a time series depend on
its memory type. A model corresponds to a
transformation of the time series to a no

memory (white noise; series. Therefore a no
memory (white noise) time series requires no
further modeling, although one may te interested
in determining such statistical characteristics
as the mean, variance, and probability
distribution.

A short memory time series Y(t) is modeled by an
invertible filter which transforms it to white
noise:

V() — ™ B e(t) = v(e)

where YV(.) is the innovation series, or series
of infinite memory one-step ahead prediction
errors, defined by {using v to connote “what's
new"]

Yt) = v{t) - Y¥(t) .
The predictor Y¥(t) is denoted

YH(t) = ELY(t)|Y(t-1), Y(t-2), ...]

= (YIY_]....,Y_n....)(t)

We use u as the superscript for a predictor to
indicate that it is an averaging operator.

The infinite memory mean square prediction error
is defined as the normalized variance

o2 = E[IY () [2] + E[IY(t)|3] .
The appropriateness of normalizing is justified
by the formula for information:

I_=- %— log o2

if a time series Y(t), t=0,+1,... is a zero mean
Gaussian stationary time series, Its probability
law can be described by the covariance function

R(v) = E[Y(t)Y(t+v)] ,
and correlation function
olv) = %{-8- = Corr [Y(t),Y(t+v}] .

Alternatively the probability law of Y(-) can
be described by the spectral density function f
which is defined by

flo) = 1 2Ny, e

VE--

when ] |[p(v)j<= . The frequency variable w
VE-n

is usually assumed to vary in the interval

-0.5<w<0.5. But only the interval 0<w<0.5 has

physical significance. We prefer the Tnterval

O<w<! for mathematical reasons.

Perhaps the most insightfm way to model a
short memory time series is by representing it,

or approximating it, by an ARMA(p,q) scheme:
Y(t) + np(l)Y(t-1)+...hp(p)v(t-p)

= c(t) + aq(I)c(t-1)+.,.+sq(q)c(t-q)
where the polynomials
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g,(2) = l*up(l)z¢...+.p(p) 2P

n(2) = 1ea (12599 (0) 29

are chosen so that all their roots in the com-
plex z-plane are in the regfon {2:[z|>1} outside
the unit circle. Then gp(z) and hq(z) are the

transfer functions of invertible filters. ¢(t)
ts assumed to be a white noise time series which
we fdentify with the innovations ¢(t) = YV(t);

o2 = Efc2(t)] + E[Y2()]

is an estimator of o2. The spectral density of
an ARMA (p,q) scheme is

Ih (CZqu)Iz

f w) = a2 —ATT—-
p.q( ) ap,q |9p(e " u)lz

The process of identifying ARMA(p,q) schemes
which are adequate (and parsimonious) approxi-
mating models for a time series can be studied
by determining information characterizations of
when the exact (or true) model is an AR(p) or
ARMA(p,q).

Let Z(YIY_j.....¥ Y2 se--uYY,) denote the

mean square prediction error of Y(t) when pre-
dicted by Y(t-1),...,Y(t-p); Y¥(t-1),...,Y¥(t-q),
or equivalently the conditional variance of

Y(t) given Y(t-1),...,Y(t-p), Y¥(t-1),...,
Yv(t-q). Normalize it to form

2 ap=l v v
0 o TR que Y Vi)

q

.-l 2
Ip,q 7 log °p,q

The information difference between Y ,,...,Y_ .,
Y¥1,..., Y% and ¥° for prediction of 'Y(t) P
sa%isfies

v V .y}l -
({1 PRPS L (SPRIO AL o 1 SR S

The following two hypotheses are equivalent:
Hy: Y(-) is ARMA(p,q)

Hoz 1 - Ip,q =0

3. Information Calculation for ARMA Schemes

Given a sample {Y(t), t=1,2,...T}, we would
1ike to estimate, for many valves of p,q, the
information differences (assuming normality)

- - o) 2 _ (e - 2
1, lp'q 7 log o2 { i log op’q} .

We need to estimate 02 and cz’q. To understand
the method we would 1ike to propose, let us

_first discuss how to compute the true value of

G; @ The MA(=), or infinite order moving

av;rign. representation of Y(t) will play a
central role:

Y(t) = YO(t) + 8, Y (2-1) + 8¥%(t-2) + ... .
Note that E(|Y(t)|2] = E[|Y¥(t)|2] (1+83+...)
$0 that

V=02 (1+83¢88+...)
The correlations o(v) can be computed by
. g2
p(v) = o2 {8 + 8 8, *+... ) '
By using matrix sweep operations on the joint
covariance matrix of Y,¥_ ,,....Y o, Y2,....¥)

one can determine (in a stepwise manner) the
conditional variance :(YIY-].....Y_p, LTI

qu) required to compute the information I

q

P.q°

. We illustrate the approach being proposed in the

case p=1, q=1. The covariance matrix of Y,
Yoo Y is

1 p(1) 0331
L= p(1) 1 o?

2 2 2
osB1 (4 [

Sweep I on Y_; to obtain

1-p2(1) o(1) o2 81-0(1))
= -p{1) 1 "’-2-
Am-s()) @@ o(1-o2)

Sweep I on Yf‘ to obtain

1-028% p(1)-028, 8
£,= p(1)-028, 1-02 1
-8, -1 (62)°!

Sweep I, on Yf] or sweep I on Yy to obtain a
matrix which we write in the following form:

"}] 1)) (8y-0(1))2%02  p(1)-028;, 8,-p(1) ]
-p -
1 -oi 1 -ci 1 -03
R 9(1)'°£B1 1 -1
1-02 1-02 1-02
) 81-0(1) -1 1
1-a2 1-0.2. 03(1-03)_]

We conclude that
T(Y]Y ) = 1-02Q0), (Y]Y_{){t) = 0(2) Y _¢(t)

T(Y[YY) = 1 - o280 (YIYY)(E) = g,vY (t)

(8y-0(1))202

I(Y"_onf]) = (1_92(])) - ]-02

. o e o
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o(1)-a28
(Y|Y_1ov2])(t) - ‘;:;;""‘Y_](t)

B)'D(])

+ —— f](t) .
1-02

These coefficients of Y_,(t) and Yf1(t) can be

used as initial (or perhaps even final) values
for an efficient parameter estimation algorithm
for an ARMA(1,1).

" As a check on these formulas, note that for an_,

, Y(t) = e(t)+b e(t-1), B1= b, o2 =(1+b2)7,
:?%;)- b}(%+02§f )ThecgoefZiciénts o: Y ,(t) and

VV‘(t) in the predictor are respectively 0 and b.

For a numerical i)lustration of these formulas,
consider the ARMA(1,1) model Y(t)-aY(t-1)

= YV(t)+bY¥(t-1). Then 8, = a+b. 1=02(1+(sf/
(1-32))), o(1) = [8,+(fa/(1-22))]e3. For
asb=0.5, 8, =1, o2 = 3/7, p()) = 5/7. The
general formulas yield the values assumed in
the model.

To test whether a time series Y(:) obeys an
ARMA(1,1), form
{8,-0(1)12
v vyl 1-02(1) 7
(Y[Y_q2¥75Y7) =5 logt " —;:;;—-—-1
This information number equals 0 if the time
series obeys any one of the schemes AR(1),

MA(1), or ARMA(1,1). The information numbers
for an AR()) and MA{1) are respectively

- -nl
VYY) = 3 Tog (22l

) =3 1.
I(Y]YY3Y7) = 7 Tog (02 8t}
One accepts Ho: Y(-) is ARMA(1,1) if the last

two information numbers are different from zero,
but I(YlY_], LACEI ) =0.

For the ARMA(1,1) model Y(t) - 0.5 Y(t-1)
= YV(t) + 0.5 Y¥(t-1),

HY]Y_5 Y7) =  log 3 = .067
VY5 ¥) =} log 3= 143 .

When information I is estimated from a

sample of size T, a'penalty term (1+p+q)/T is
subtracted from the estimated information I

in the Akaike information approach. [f .06
were an estimated value of I(YlY_]; Y-y it

would be regarded as significantly different
from zero if .067 - (2/T) > 0, which is true
for T > 30.

To identify the best orders p,q of approximating
ARMA(p.q) one could use subset regression
techniques to steer the calculation of Ip‘q.

Alternatively one could compute the information
numbers of AR(p), MA(q), ARHk(g.q) for p.g= 1,
...,M (a specified upper 1imit). Subtract from
estimated information number a penalty (1+p+q)/T.
Then sort the array of penalized estimated
information numbers lp q to determine the orders

(p.q) of schemes with ihe largest amount of
information (and which therefore minimize
I, - Ip and correspond to best approximating

ARMA scﬁemes by this measure of divergence
between probability distributions).

4. Nonparametric Estimation of MA(e)
Representation

An information approach to computing lp'q and

thus identifying best fitting schemes has been
described which {s based on estimating the
coefficients of the MA(=) representation. Two
possible methods for non-parametric MA(=)
estimation are described in this section: (1)
approximating Jong autoregressive schemes; (2)
cepstral correlations. The two methods may be
used simultaneously for greater confidence in
the results obtained. Both methods require
further theoretical investigation [compare
Bhansali (1982)].

Denote the MA(«) representation of Y(t) by
Y(t) = b(0) Y¥(t) + b(Y) YV(t-1) + ...
:here b(0) = 1. Denote the AR{=) representation
Yy
a{0) T{t) + a(d) Y(t-1) +... = ¥ (1)
where a{0) = 1.

The approximating long autoregressive scheme
estimates the AR(=) representation of a time
series Y{+) by a finite order AR(p) scheme

Y(t) + ap(l)Y(t-l)+...+lp(P)Y(trp) = ¢(t)
whose order p is determined by an order deter-

mining scheme [such as AIC, due to Akaike, or
CAT, due to Parzen]. The generating functions

h(2) = 1+ b(1)z + b(2)z2+...

g (2) = 1 a(1)z + a(2)2%+...

gp(z) =] 4+ ap(I) z+...*lp(9) bl
satisfy

g_(2) h (2) = 1.

One can solve recursively for b(j) using the
recursion

a(0) b(k) + a(1) b(k-1)+...+ a(k) b(0) = 0.

when g.(z) is approximated by g,(z), one
replaces a(k) by = ap(k): note Bhat’a (k) =0
for k>p. The approx?natiax autoregregslve
method of estimating the MA(=) representation
often yields reasonable results in practice.
However 1t is difficult to study its properties
theoretically.

The cepstral correlation method is available for
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short memory time series; then log f(uw) is
integrable, and can be used to compute 1_ using
;he ﬁ)mdamental formula (due to Kolmogorov and
2e90

log ai = !; Tog flw) dw .
The cepstral correlations are defined by, for
ve0, +1,...,

o(v) = ; eZriov log flu) du .

The name “cepstral correlations* is intended to
connote that ¢(v) is the Fourier transform of
log f(u). However the sequence {y(v)} does not
share an essential property of the sequence

{o(v)} of correlations; the cepstral-correlations

are not non-negative definite since log f(u) is
not non-negative. Define

W) = 3 k) 2K, we(z) = T wl-k) 2K .
1 k=]

k=
Then
f(w) = o2 [n (e2*19)}2

and
log flu) = v, sy(e2™lo) ye(ed oy

A very important relation [which goes back to
the dawn of modern time series analysis, due to
Kolmogorov (1939)] is

h_(z) = exp ¥(z).

One can obtain an explicit formula for b(k) in
terms of v(k); thus Janacek (1982) writes

b(1) = ¢(1),
b(2) = v(2) +v2(1)72!,
b(3) = w(3) + (1) w(2) +y3(1)/3! .
A more useful representation of the formula for

b(k) in terms of y(k) has been given by
Pourahmadi (1982):

. n
b(n+1) = j;o (- 237) v(m1-3) b(3).

We outline Pourahmadi's proof; differentiate
with respect to z the relation h, = exp v.
Obtain h. = h, v'; explicitly
I onb(n) 2" M= T b(n) 2" § neln) "N
n=) n=0 n=1

or
T (m1)b(ne1)2" = ¢ T b(n)z2™
n=0 n=0 )
(Eo (n*1)y(ne1) 2" .
"I
Therefore

(n+1) b(n+1) = kfo (k*1)w(k+1) b(n-k)

n
= 1 b(3) (n*1-§) w(nei~g) .
=0

Divide by n+1 to obtain the desired conclusion.

o oy e R i A A3 it e S8t iy 110, 3 e b e 1 i bl

Pourahmadi (1982) -also states a recursive
formula for computation of the AR(w)
coefficients a(k) from v(k):

n
savl) = - 3 01- AD ve-nag) .

The properties of cepstral correlatfons can be
understood by examining their values in the
case of an AR(1); then

f(u) = °£ ll_OQZliwl-Z'
where |o|< 1. Then, for k > 1,

w(k) = j; - log {1-p e~ 2"1®
k

}eZwiku

. } 0
The rate of decay of key(k), k=1,2,..., is a
measure of the memory of the time series.

To estimate y(k) from a sample Y(t), t=1,...,T
one could take the logarithm of the sample
spectral density (computed for w = k/Q, where
one should choose Q2T)

- T T

flw)= | T Y(t) exp (2riwt)|2 + J |Y(t)[2
t=1 tr1

or a smoothed estimator f(u) of f(w). Then

- Q-1 -
1 k .

wiv) = log f(3) exp (2nivk/Q)
6 kgo Q X nlv

A convenient formula for %(m) is the windowed
periodogram of bandwidth 1/T defined by

flo) = |vf<T k() p(v) exp (2nivw)

where o(v) is the sample correlation function
computed by

o(v) = ) Qil %(k) exp (2rivk/Q)
oVl =7 L, f@
and k(t) is a suitable kernel (providing non-
negative estimators) such as the Parzen window
k(t) = 1-6t2 + 6t3 , [t] < 0.5 .
=2 (1 - |t])? , 0.5 < |t] <1 ,
=0 . 1<t} .
A kernel with superior properties (but not
necessarily non-negative estimates) is the

spline-equivalent window [Parzen (1958),
Cogburn and Davis (1974), Wahba (1980)]

k(t) =« 1
1et"

where r is usually chosen to equal 2 or 4.

An obvious moral of the foregoing formulas is
that modern time series model identification
requires the scientist to integrate -time domain
and frequency domain techniques. The cepstral
correlations approach to ARMA model

T e
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identification also may provide a unification
of ARMA models and the exponential spectral
wmodels introduced by Bloomfield (1973).

5. Conclusion

Given a sample of time series, one should
estimate its correlations o(v) and cepstral
correlation y(v) through Fast Fourier trans-
formation from the sample spectral density f(w)
and its logarithm log f(u). .

Using the estimated correlations, the Yule-
Walker equations are solved to estimate
innovation variances o2, m=1,2,... . Order
determining criteria, such as AIC and CAT, are
applied to this sequence to determine orders m
of approximating AR schemes, to determine the
memory type of the time series [Parzen (1982)],
and to form autoregressive estimators of f(uw),
log f(w), and y(v).

when a time series is classified as short memory
the estimated cepstral correlations are used to
form the MA(=) coefficients b(k). They are used
to form information numbers (via sweep or subset
regression procedures) for determining best
fitting ARMA schemes, and the corresponding ARMA
spectral density estimator.

We do not believe that spectral estimation is a
non-parametric procedure to be conducted
independently of model identification. The
final form of spectral estimator should be
based on an identification of the type (AR, MA,
or ARMA) of the whitening filter of a short
memory time series.

Statistical computing has a vital role in time
series analysis in two important ways: (1) to
rapidly make available to the broader scientific
community new algorithms for time series
analysis; (2) to make old theoretical ideas of -
time series analysis practically useful and to
stimulate the integration of old and new
techniques of time series analysis.

For other aspects of the role of entropy and
information measures in model identification,
see Akaike (1977) and IFAC (1982). For model-
ing of multiple time series, see Parzen and
Newton (1980), Newton (1983), and Cooper and
Wood (1982). A review (and power study) of
some standard statistical procedures for
determining the orders p and q of an ARMA
scheme is given by Clarke and Godolphin (1982).
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