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Lecture 9

SP1-RICAL DIF. USIO. FLAIMES

Law has shown that the analysis of spherical diffusion flames is quite

similar to that of counterflo-w diffusion flames, so that some explanation

is needed for devoting a separate lecture to them. There are two good

reasons. First, the constant-density approximation has been used through-

out these lectures in discussing all but plane flames, so there is room

for a problem which does not neglect variations in density. (Plane

diffusion flames have to be chambered, i.e. the reactants must be supplied

at finite locations, which leads to distracting complications.) Secondly,

the spherical diffusion flame can lead to quite different (and unusual.)

resvonses. These arise in the technologically important application

to the quasi-steady phase of fuel-drop burning, when a more realistic

bo7undoa- condition than the conventional one is used.

1. Basic Equations

-The -fUel is supposed to be supplied as a liquid at the surface of a

sphere of radius a (figure 1), where the heat from a concentric flame

sheet evaporates it. In turn, the flame sheet is sustained by the

reaction of the gaseous fuel and oxidant in the ambient atmosphere. If

the representative mass flux 1.1 is taken to be X/c pa, then a is the

length unit. The density at infinity will be used for r

We seek a sp.erically synmetric steady solution of the full equations

(2.18-20) under the assumtion of unit Lewis numbers for the reactants.

The ea-uazion of 2zsntinuity integrates immediately to

2r pv = M (const.), (1)

here -. _ is loosely called the burning rate. (The liquid fuel evaporates

-9. !-
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at the rate 4,tM, but the gaseous fuel only burns at that rate if there is

no outflow of fuel at infinity.) Although the radial velocity v is not

determined by this result, the thermal-chemical equations (2.20) are

uncoupled from the fluid-mechanical equations (2.18b,19) because, under

steady conditions, they only involve the mass flux p v, which is determined

(as M/r2). Once T is found, the density follows from

T= T (2)

and then v is known; the momentum equation (2.19) serves only to determine

the pressure field.

We have to deal once more with equations (8.2), where now, however,

M d 1 d 2 dL-2 dr 2 dr . (3)
r r

The boundary conditions are

T = T, dT/dr = .M, X-M. -idX/dr - 0, Y-41ldY/dr - 1 at r 1 1, (4)

T T X- X,Y-o0 as r -, (5)

-Where T, L, T, X are given. Prescription of the surface temperature

will later be replaced by the requirement of liquid-vapor equilibrium;

the latent heat of evaporation L is positive; the conditions (4c,d) ensure

that the sphere is a source of fuel, but neither a source nor sink of

oxidant (or anything else); the prescribed oxidant fraction at infinity

ust of course satisfy 0 < X < 1; and the condition (5c) ensures that

all the fuel has originated at the supply.

The sixth-order system of differential equations is therefore subject

to seven boundary conditions, as a consequence of which M is determined

as a function of D (depending also on Ts, L, T, and X ). The maximum

t mperature could be used to characterize the solution, as for the counterflow

P-
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dit.fusion flarte, but -we shall use M instead. The burning rate is af

greeter interest in applications, and it arises naturally in the analysis.

Th-e Shvab-Zeldovich relations are

T+2X = -T /r -Mir ~C) 6
T+2X (T -L)Cl-e )+(T +2X )e Z()

T+2Y TC= T-C)(- Z +~M), (7)

4here

T a T-L+2

is called the adiabatic flame temperature. For T,, T a, no heat is

conducted to or from the ambient atmosphere when (as is usually the case)

Y = o~r1l) as r - ;this conclusion follows fram the relation (7),

which gives

lim(l4--rr2dT/dr) =lim [141rr 2 T- /r 2) 47r((8)

W-,e further see that

T > T()a

'will ensure the conduction of heat to the environmDent, the aim af combustion

in practice.

The problem now reduces to one for T alone, namely

* CT=XYe~T T T , dT/dr?.flM at r 1, T- TO as r~rC

*where X and Y are to be suppressed in favor ot T by means of the

- .s:-;ab-eldovich relations (6), (7). We shall first derive the frozen

3 -/T' e6/T
(Ve - 0) and equilibrium CDe a)limits of the solution.
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?or frozen combustion, start by setting

-e/T
= :oe (11)

eual to zero. We find

M (l-l/r)
T= Ts-L+Le w with Mw -n[I+(T -T s)/L (12)

-,.ere, since Y must be positive,

M t > 0, i.e. T. > Ts . (13)

-- is is the pure evaooration solution with no combustion; the environment

-- st be hotter than the surface in order to supply the heat necessary to

v-aporize the liquid. (There is no condensation solution.) The result is

1not uniformly valid, since for r = 0C( - ) the reaction term is comparable

:o the convection term in the equation (10a). The variable

R = cr (l)

leads to the ex-ansion

ST= E- )TI-T+L-2CI-e- )]/R+.... (15)

e frozen limit is not an extinguished state, but rather one in which all

te reaction takes -iace at essentially constant temperature far from the

supply.

Turning now to the (Burke-Schumanr equilibrium limit, we use the Shvab-Zeldovicl

relations (6), (7) to obtain
-M /r

z_ )  {(:.)0 1-(l+X=)e e
X Y for r c r,, (16)

Z+(, )e (l*:,,)e 1 -0o '

--*ere the bou ndary condition (10b) fixes

• " ~.."......................................... "."". - _""-......._t - ..... "
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.1 Zn[!+(T -+2X )/L(17

and the continuity of X and Y across the fla.e sheet requires

r= .:/n(!+X ). (18)

The fl-.e temperature, i.e. -e coton value to which T tends as

r r + 0, is

T= T + yX with y = (Ta-T)/(+X).

For consistency, the value (18) of r. must be greater than 1, i.e.

T >-T >(L-2)/x. (20)

ehis condition is auto-stically met when the inequalities (9), (13b)

are satisfied (as they are in the practically important case to which we

sh--i.. imit our lazer d4soussion) it is of interest to note that there

: a second limit, found by 3uckmaster, when the condition is violated.

-.e fla.e sheet lies at the surface itself, instead of some distance away,

so zhat there is no oxidant-free region.

'" e f!-me-sheez structure in the Burke-Schumann limit is the same

irreszective of .- '-e:hr.*- h cothe -nterflo.r or spherical diffusion flame is

being considered (cf. end of section 8.1). The continuity conditions.

= 6(- ) = 6(Y) - (21)

are re1uired for a s-ructure -o exist, but the gradients of T, Y., and YK -u different on t.e two sides of the fla-me sheet because the latter is a

source of -est and a sink of *zoth reactants. The Shvab-Zeldovich relations

--ho-w', however, that

,z(I7/dr+2!X/!-) =6(dT/dr+2dY/dr) 0. (22)
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. nearly Adiabatic Burning
. Le turn nc: to the full response curve :,I(D) in the limit 8 -,

noting once again that the burning rate is a more convenient and

si-nificant parazeter than the maxi-_zu, temperature to characterize the

s ution. ?_ere the response is S-sha -ed if T L, T satisfy the

inequalities (9) and (13b), i.e. "--en the heat flux (8) is to the

en-ironent, as required in practice, and the surface temperature is less

-- an that of tne ambient atmosohere. The transition from an S-shaped

response to a monotonic one occurs, for large activation energy, when

-he temperature gradient (i.e. the heat flux) beyond the flame is small,

T- that it ma be described by setting

- = k with k = const.; (23)

here T and L are suncrosed fixed as T varies. The inequality (13b)

-h ensures a -eak-bur-in_ branch for the response, requires

T. < 2. (24)

[c:e that the requirement (20) for the Burke-Schumann limit is

au-.roaticallY satisfied, ensuring a strong-burning branch of that form.

7quilibriu-r ":il! be assumed behind the flame sheet even though the

e-_erature does not rise above T, (= T, to leading order) there by

-n 3(!) amount. Th_.e co.--bustion is frozen between the surface and the

f- e sheet, because of the requi~ent (13b). The Shvab-Zeldovich

-relation (7) therefcre gives us

T = :+(k/e)(l-e - / ) for r > r*, (25)

-ie- of the ass- tion (23); and the boundary conditons (10b,c) lead to

!A
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TI' = ' - e( 1 -! /r) for r < r,. (26)
=-S

-These forulas are correct to any order in 9 - , provided that M is

ieterined to the sar.e order; we shall only need a leading-order determina-

tion of M, and that will be understood in what follows. Leading-order

continuity of T now shows that

r.= M/.I[M+Q.nL2) ], (27)

a result that exhibits the need for the inequality (24). To analy7 he

reaction zone we shall also need the leading-order result

x* (l+X,)ee -1, (28)

coming from the Shvab-Zeldovich relation (6).

Determination of M comes from analysis of the reaction zone, for

which the appropriate variable is

= e(r-r,). (29)

Coefficients in the layer expansion

T T -8 1T 2  + with 0 = (lIT)1  (30)

are considered to be functions of E. The Shvab-Zeldovich relation gives

2,
Y = -with 04 = -k(l-e )/TW, (31)

so that the structure is governed by equation (8.24) with Tf+ replaced

by T . As there, the structure equation provides an expression for the

;.emmerature gradient in the field (26) in front of the flame sheet, whence

-we find the eauation
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2~.t e
2 _IT (32)

r. ee

-or :/ as a function of D. T1his function can be defined parametrically,

as for the counterflow diffusion flee at the end of section 8.2. Thus,

. is given as a function of r. by the formula (27), and then V is

deter-ined as a function of r* by equation (32) with the substitutions

(28) and (31b) for X. and

The corresponding response curve is shown in figure 2 for several

?alues of k. The curve joins the frozen limit (12b) to the Burke-Schumann

limit (17), monotonically if k is not too positive but otherwise via an

S. Reponses in the shape of an S appear to be associated with a fluxc of

heat from the flame sheet to an environment that is hotter than the supply

Surface, the normal state of affairs in practice. However, it has never

Ceen proved that the inequalities (9) and (13b) will ensure an S-response

in the limit e •

3. General Extinction and Ignition Analyses

The general extinction analysis under the conditions (9,13b) follows

that for the counterflo- diffusion flame in section 8.3. On the whole upper

branch of the S-response, the burning rate lies ,iithin 0( - 1 ) of the value

(17), so that we write

M= Me + ey+.... (33)

-he combustion field on each side of the flame sheet is again frczen but

::entical to the equilibrium solution, here given by equations (16), so

far as leading terms are concerned. However, we now need
I:. (l-l/r)

T1 = MIL(1-1/r)e e for r < r. (3h)

I



-9.9-

also,i.-olving the perturbation M. It 3rovides the stronger matching

condition

U - .(35)

in the canonical problem (3.32,33), at which the analysis finally arrives

-With

4 8 M203 6/T.
1-YDe r T /hM e e ; (36)

here r., T., and y have the definitions (18) and (19).

Since the problem is "ell posed under the weaker condition, it follows

t h a,

T = -lie (0+) (37)

can 'e calculated as a function of De' thereby deter.-ining the response.

_hi- response is shown in figure 3 for various values of y; it has been

found nunerically, but not yet been proved, that the curve turns to form

a C -;henever y is positive, consistent with the conjecture that the

inequality (9) must hold for an S-response.

:he general ignition analysis that was promised in section 8.6 will

no-w be presented. Th.'-e starting point is the analog of the assumption

(33), naely

• M + e 1  (38)

where , has the frozen value (12b). Correspondingly, the reaction all

taoes place far finn the surface, the combustion field being frozen to

all orders at any finite r. (The latter is ensured by the inequality (13b).)



' - -9.1.0-

h s u r e frulas

M (l-/r) M (l-11r)
O s -1 A- l (39)

are obtained by satisfying conditions (10b,c) at the surface; but these do

not satisfy the condition (10d) at infinity.

The azpropriate variable at large distances is

R = r/e, (4o)

and then coefficients in the expansion (30) are to be considered functions

of R. The equation for € is

(T 2~ -e/T
1d 2 d a W)~ 2 0-R ))+ ]e -a with D vX e e (41)~ 

dR

2

it is to be solved under the boundary conditions

Le ' (-MI+, /R)T +... as R 0, € = o(I) as B * (12)

1 CO

heffirst off -iich cornes ffron atching :with the expansion coefficients

t3r) for finite r.

Since the problem is well posed under the weaker condition

M
li= R= Le 'M IT2  (143)
R-0O

it ollows that

M

can be calculated as a function of D., thereby determining the response.
M w 2 2 2 2 4

--.e relation bet;eer the scaled parameters (Le /T2)MI, (M L e /T)V

4-ezends only on

L
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figure 4 shows the corresponding response for several positive values of 8.

it is found n-umerically, but has never been proved, that the curve does not

.urn for non-oositive values of B, consistent with the conjecture that

t -he inecuality (9) must hold for an S-response.

It is worth noting that D is 0(3 e ) at extinction

2 e/T
compared to 0(8 e ) at ignition, so that lies to the left of 1,

as required. The part between the ignition and extinction points, i.e. the

middle branch of the S, will not be discussed here because it is very similar

to that for the counterflow diffusion flame (section 8.l.). Again the

partial-burning and premixed flames occur, with the same structures for

their reaction zones. Since the stability analysis of the branch is

confined to the reaction zones, it is the same here as in section 8.5,

s no further discussion is necessary.

4. Surface Equilibrium

There are at least two ways in which the fuel can be supplied as a

liquid at the surface: the sphere can be completely liquid, i.e. a fuel

drop, or it can be a liquid-saturated porous solid. Whatever the method of

supoly, it is difficult to justify prescription of the surface temperature

.nless -. abandon the specification of L. Maintaining a value of T

would, in general, require heating or cooling the liquid at the surface,

And that would upset the heat balance represented by the boundary condition

(13c). Prescription of surface temperature should, more realistically, be

._-'_aced by the requirement of liquid-vapor equilibrium at the s'..face,

4.e. the Clausius-Clapeyron relation

9/T -6/T
YS (T s/T b e swith 8,0 consts.. (46)
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'ere Tb is the boiling temperature, i.e. the value of Ts for which

Y= 1; it is related to the pressure level in the combustion field by

-a 4/Tb
T~e -  b P /k with k const.. (47)
b c

In order to transform the Clausius-Clapeyron relation into a temperature

condition, ve eliminate Y between it and the Shvab-Zeldovich relation
S

(7) to obtain

J 2(Ts/Tbl8e8/Tb-O/Ts-

2(T e ) e 2-L+(T -T +L-2)e ". (48)

- is replaces the boundary condition (10b'; clearly Ts changes with M.

Determination of the response M(D) now requires that T beS

calculated afresh for each point. In general, iterations are involved

because the structure problem determing M as a function of D contains

-s (see, for exa~ple, the definitions (36)). Different results are

obtained according to the way in which D is varied, via p or the radius
c

a of the sphere, the reason being that P appears in the boundary
_c

condition (48) through Tb. (Since Pr has been taken proportional to

c- and M inversely proportional to the radius a of the sphere, the
r2

definition (2.23b) shows that V is proportional to pya 2 .)

Normandia and Ludford have considered the response when D is varied

7ia a. In particular, they find that the curve is again S-shaped when the

inequalities (9), (13b) are satisfied by the Ts corresponding to small V,

i.e. the solution of equation (48) when M has the value (12b). (There

is always such a solution, satisfying the left inequality automatically.)

The previous analysis (for Ts fixed) is qualitatively, but not

quantitatively, correct: while extinction and ignition analyses can be

terformed as in section 3, figures 3 and 4 cannot be carried over because
-1

-:he variations in T, though only 0~ (P on the upper and lower branches

I&.



-9.13-

of the S-response, modify the extinction and ignition values. These

modifications have been worked out by Nor=andia and Ludford.

The results are strikingly different when D is varied via DC,

as Janssen & Ludford (1983a) have sho-.i. The S is replaced by the

rather odd shapes in figure 5, which covers the practical cases of
heat being conducted to the environment. These responses -were so

inexpected that, to obtain more confidence in their validity, numerical

integrations of the problem (!Oa,c,d, h8) 0ere perf-r-ed for

9 = 10. In every instance, the numerical results confirmed the essential

features of the asymptotic responses. 'Nothing similar has apparently

been obtained in combustion theory, and certainly not in previous

studies of diffusion flames.

Two features of these responses deserve to be pointed out, since

they contradict conventional wisdom. First, the Burke-Schumann value

(17) is not attained on any of the curves as D . The Burke-

Sch-mann solution discussed in section 1 is considered a good approxima-

ticn since in practice D is large. But, instead of standing off

from the sphere for high pressures, separating equilibrium regions,

the flame sheet actually moves to the surface, forming the second

(Bucl1aster) equilibrium limit mentioned in connection with the

condition (20). Secondly, the burning rate decreases over most of

each response, 'hereas the general belief is that it should increase.

:Tegative slope of the response curve is thought to be inevitably

associated with instability, and indeed we found that to be the case

for the S-res-onse at the end of section 3. But experience refutes

such a conclusion here: by and large, fuel drops do burn steadily.
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A physically reasonable range of pressures focuses attention on

the left ends of the curves in figare 5, and there the decrease of

burning rate -ith pressure is by no means insignificant. ..:oreover,

the co-puted response curve for =ethanol over the range .002 to 500

at.moszheres clearly sho-ws the steady decline (Janssen & Lud:ford 1983b).

.oeri-ent should therefore be able to give a clear-cut decision on

the physical reality of this uznexpected phenomenon.

*" ' [ i -.. - . --- - i . . .- . . - .. .'
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Figure Captions

9.1 Burning fuel drop.

9.2 Steady-state responses when the combustion is nearly
adiabatic. Drawn for L = 0.2 , T - 0.2 , XW 1 

9.3 Extinction curves., For y < 0 no turning point is found
numerically.

9.4 Ignition curves. For B < 0 no turning point is found
numerically.

9.5 Sketch of steady state responses when there is surface
equilibrium.

.
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