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Lecture 9

SPXERICAL DIFFUSION FLAMES

Law has shown that the anelysis of spherical diffusion flames is quite
sinilar to that of counterflow diffusion flames, so that some explanation
is neeled for devoting a s2parate lecture to them. There are two good
reasons. rirst, the constant-density approximation has been used through-
out these lectures in discussing 211 but plane flames, so there is rcom
for a problen which does not neglect variations in density. (Plane
diffusion flazmes have to be chambered, i.e. the reactants must be supplied
et finite locations, which leads to distracting complications.) Secondly,
the spherical diffusion flame can lead to quite different (and unusual)
responses. These arise in the technologically important application
to the guasi-steady phase of fuel-drop burning, when a more realistic

doundary condition than the conventional one is used.

1. 3Basic Equations

The Tuel is supposed to be supplied es a liquid at the surface of a
spaere of radius a (figure 1), where the heat from a concentric flame
sheet evaporates it. In turn, the flame sheet is sustained by the

resction of the gaseous fuel and oxidant in the ambient atmosphere. If

ct

he representative mass flux Mr is taken to be X/cpa, then a is the
lengtn unit. The density at infianity will be used for pr.

e s2ek a spa2rically symmetric, steady solution of the full equations
(2.18-20) under +tze assumption of unit Lewis numbers for ihe reactants.

®

T-2 2quetion of z2ontinuity integrates immediately to

rapv = M (const.), (1)

wnere 1 is loosa2ly called the burning rete. (The 1liquid fuel evaporates

.
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at the rate 47, but the gaseous fuel only burns at that rate if there is
1o outflow of fuel at infinity.) Although the radial velocity v is not
determined by this result, the thermal-chemical equations (2.20) are
uncoupled from the fluid-mechanical equations (2.18b,19) because, under
steady conditions, taey only involve the mass flux pv, which is determined

(as M/re). Once T is found, the density follows from
=m
pT =T , (2)

and then v is known; the momentum eguation (2.19) serves only to determine
the pressure field.

We have to deal once more with equations (8.2), where now, however,

.M 4 1 a4 24
l'=r2d.r-r2 ar © ar (3)

~n2 boundary conditions are

T =T, aT/ar = L, XM Lax/ar = 0, YN la¥/ar = 1 at r = 1, (4)

T+T, X+X,Y+0 as r+a, (s)

wnare Ts’ L, ?m, X” are ziven. Prescription of the surface temperature

:s will later be replacsi by the rsquirement of liquid-vapor equilibrium;
<ne latent heat of evaporation I, is positive; the conditions (Lc,d) ensure
+twat the sphere is e source of fuel, but neither a source nor sink of
oxidant (or anything 2lse); the prescribed oxidant fraction at infinity
~ust of course satisiy 0« gn < 1; and the condition (5¢) ensur=s that
211 the fuel has originated at the supyly.

The sixth-order systenm of differential equations is therefore subject

+o seven boundary cozditions, as a consequence of which M is determined

as 2 function of D (depending also on Tgs Ly Tu, and Xm). The maximun

0 SRR

tamperature could be used to characterize the solution, as for the counterflow

Ao Yoo A Y P S | - " -
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diffusion flame, but we shall use M 1instead. The burning rate is of
greeter interest in applications, and it arises naturally in the analysis.

The Shvar~Zeldovich relations are

“M/r -M/r

s .8 v il 2l ¢ b e
Y, 'l‘:" b4 PN N NN "‘l " LI A
. PRI .l 'I'.“'.,'. Loty

T+2X = (T ~L)(1-e " )+(T_+2X_Je =2 (M), (6)
T+2Y = T¢+(Ta-T,)(l-e°M/r) = 2, (M), (M
wWhere
T, = T-L+2

is called the adiabatic flame temperature. TFor Tm = Ta’ no heat is

[

conducted to or from the ambient atmosphere when (as is usually the case)

Y = o(r-l) as r - «; this conclusion follows from the relation (T),

which gives
g

' -
Lin(krr2ar/ar) = 1im [bre2(2 1) (e ™V 7/r2)] = bma(T_-T). (8)
b T
We further see that

L: T >T (9)
= a P
o«
L.
o «+ill ensure the conduction of heat to the enviromment, the aim of combustion J
= in practice.
S?: The problem now reduces to one for T alone, namely
-
- o /m
@ L(7T) = DX¥e 9/‘, T= Ts, T/dr =ML atr =1, T+T as >~ r“,(lo)
-
:Q: where X and Y are to be suppressed in favor of T by means of the
ifz Srwvab-Zeldovich relations (6), (7). We shall first derive the frozen
[
b -3/ - s
;g (De 8/, 0) and equilibrium (De o/T , w) limits of the solution.
. : 1

: 1
-, <4
@

. \ y : o .“ﬂ
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S

Tor frozen combustion, start by setting

-8/T 1

& = iDXwe ® (11) ;ﬁ

3

egual to zero. Wwe find N
-~

M (1-1/r) 5

T = T -L+Le w with M o= 1n[l+(Tw-Ts)/L] (12) g

~there, 3ince Y must ve positive,

M, >0, i.e. T >T. - (13)

Tzis is the pure evaporation solution with no combustion; the environmen

=ust be hotter than the surface in order to supply the heat necessary to

.

—aporize the liquid. (There is no condensation solution.) The result is
not uniformly valid, since for r = 0(5_1) the reaction term is comparable

<o the convection term in the equation (10a). The variable

R = er (1k)
_2a2ds to the expansion
- ) "R '
T = T -af [T -T_+I-2(1-e"") 1/R+..., (15)
“ne frozen linmit is not an extinguished state, but rather one in which all

tre reaction takes place at essentially constant temperature far from the

upzly.

n

Turning now to the (3urke-Schumann) egquilibrium limit, we use the Shvab-Zeldovicl

ralations (5), (T) to obtain

-M_/r
z (1) 0 1-(14X Je °©

, X = M/ Y for r § r,, (16)

“e - e
z, (%) (1+X )e -1 0

r]

-snere the voundary condition (10b) fixes
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)
e
(L]

zn[l+(?w-?s+2xw)/L] (1T)

and the continuity of X ani VY across the flame shast requires

Y

!

r, = /(141 ). (28)

The flame tergerature, i.s. tha coxmon value to which T tends as

+3
*
[]
(D]
+
<
>4
X

ith y = (Ta-Tm)/(1+Xm). (19)

'ef

or consistency, the velus (18) of r, must be greater than 1, i.e.
7T >(L-2)/%,. (20) -

is this conditicn is autcmatically met when the inequalities (9), (13b)
ere satisfied (as they are in the practically important case to which we
shall 1imit our later 3iscussion) it is of interest to note that there
is a2 second limit, foundé by Zucxmaster, when the condition is wviolated.
Tre Tlame sheet lies at the surface itself, instead of some distance away,
30 that there is no oxifani-iree region.

The flame-sheet structure in the Burke-Schumann limit is the same
irragcective 27 whasher the eounterflcw or spherical diffusion flame is

T section 8.1). The continuity conditions

3
')
e
H
[l H
0
9]
5]
[
'J‘
e}
1]
3]
[{]
o)
-~
0
'y
.
[{]
o]
o]
[o]

3(7) = e{x) = 8(¥) = 2 (21)

are preguired Tor 2z striucture o exist, out the gradients of T, I, and Y
Sfarent cn %2 Lwo sides of the flame sheet because the latter is a

sourece of neet ani a sink 3¢ toth reactarts. The Shvab-Zeldovieh relations

Y

W, however,

-

3(37/dr+23X/3r) = §(4T/ér+2dY/dr) = 0. (22)

i AR mm i s c e s—
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Camma R

We turn now to the full response curve M(D) in the limit 6 + =,

ncting once =zgain thet the durning rate is a more convenient and

significent parametsr than the maximurm temperature to characterize the
ssiution. Hare the response is S-shzped i T L, T, satisfy the
regualities (9) and (13b), i.e. when the neat flux (8) is to the
2nriromment, as required in practice, and the surface temperature is less

<nzn thzt of the axmbient atmosvhere. The transition from an S-shaped

response to a monctonic one occurs, for large ectivation energy, when

<he temperature gradient (i.s. the heat flux) beyond the flame is smell,

- i

Ty te = k/8 with k = const.; (23) i

F

rzre T and L are supposed fixed as Ts varies. The inequality (13b) 4
o4

~‘nich ensures 2 weak-burning branch for the resvonse, reguires .

L < 2, (2%)

s s ¥ _*

ToT2 that the reguirement (20) for the Burke-Schumann limit is

e ERE

z.zomatically satisfied, ensuring a strong-burning branch of that form.

ssuzmed behind the flame sheet even though the

Zquilibrivum will e

o

rature does not ris= above T, (= T,, to leading order) there by

13
P PRI

Kt R
b
1]
4
(’U

-
f z= J(1) amount. The coxbustion is frozen between the surface and the K
3 #l=zma gheet, beczuse 27 the isy nt (13b). The Shvab-Zeldovich :
' 3
g! »aation (7) therelcra gives us 3
s —- e M/r )
T = T _+(x/8)(1-2 ) for r >r,, (25) ]

]

%

@ i <riew 0f the 2ssumption (23); and the boundary conditons (10b,c) lead to 1
r - A
r ]
i A
- \
b :
[ A

M 5.
-
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H(1-1 :
7= TS-L+Le (1-1/r) forr < r,. (26) ‘

. -1 . .
Tnese formulas are correct to any order in 9 T, provided that M is
jeterminaed to the searme order; we shall oniy need 2 leading-order determina-
tion of M, and that will be understood in what follows. Leading-order f

eontinuity of T now shows that

ry = M/[l+en(L/2)1, (27)
a result that exhibits the need for the irnequaliiy (24). To analy: he
reaction zone we shall also need the leading-ordasr result
“M/rx

coming from the Shvab-Zeldovich relation (&).
Determination of M comes from analysis of the reaction zone, for

wnich the appropriate variable is
£ = 0(r-r,). (29)
Coefficients in th2 layer expansion
T =7 -671% +... with ¢ = (1/T) (30)
© o 1
are considered to bs functions of £. The Shvab-Zeldovich relation gives

-M/r
2 *
T {3-¢,)+... with ¢, = -k(1l-e ) /T8

o ?

1

Yy = 313" (31)

so that the structure is governed by equation (8.24) with Tey TePlaced
oy T_. As there, the structure equation provides an expression for the
zemperature gradient in the field (26) in front of the flame sheet, whence

we find the equation
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2 ~¢,/2
T™VDi, e
2 _ Ce"T (32)
7] 6/7 . 3
r., o
hd fe

CY X1 -,

Tor M as a function of D. This function can be défined parametricelly,

2s for the counterflow diffusion flame at the end of section 8.2. Thus,

Ve
(2

is given as a function of r, bty the formula (27), and then D is
determined as a functicz of r, by equation (32) with the substitutions
(28) and (31b) for X, =2ad ¢,.

The corresponding response curve is shown in figure 2 for several
-ralues of k. The curve joins the frozen limit (12b) to the Burke-Schumann
limit (17), monotonically if k is not too vositive but otherwise via an
5. Reponses in the shape of an S appear to be associated with a flux of

n2at from the flame sheet ¢o an environment that is hotter than the supply

face, the normal state of affairs in practice. However, it has never

v
K

teen proved that the inequalities (9) and (13b) will ensure an S-response

in the limit 9 » = .

3. General Extinction and Ignition Analyses

The general extinction analysis under the conditions (9,13b) follows

+that for the counterflow diffusion flame in section 8.3. On the whole upver

. -1
trench of the S-response, the buraing rate lies within 0(8 ~) of the value

(17), so that we write
_1'
M= M, o+ 8Tt (33)

~rn2 combustion field on each side of the flame sheet is again fre:zan but
iiantical to the equilibrium solution, here given by equations (16), so
far as leading terms are concerned. However, we now need

M (1-1/r)

T, = MlL(l—l/r)e N for r < T, (34)
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also,involving the perturbetion Ml' It oprovides the stronger matching

condition

£ » = with

o W o= Y m2
X g To= (1 /7 (35)

in the caznonical problem (3.32,33), at which the analysis finally arrives
with
8/T
- 4 2 *
=1y, D, =Ty Ti D/hmee?’e 3 (36)
here =r,, T,, and Y have the definitions (18) and (19).

Sinc2 the problem is well posed under the weaker condition, it follows

-

M = “lim ($+E)

) (3M)
1 Er—m

~

calcoulated as a function of De, thereby determining the response.
for various values of ¥y; it has been
nuzericall;, but not yet been proved, that the curve turns to form
whenever < is positive, consistent with the conjecture that the
inacuelity (9) must hold for an S-response.

general ignition analysis that was promised in section 8.6 will

no# be presented. The starting point is the analog of the assumption

(38)

wrare M has the Trozen value (12v). Correspondingly, the reaction all

Bha S

.

- +akes slace far Tror the surface, the combustion field being frozen to

P -

t @

b~ 2]l orders at any Finite r. (The latter is ensured by the inequality (13b).)
-

p »

} @

A
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Taus, thne formulas

M (1-1/r) M (1-1/r)

Ty = Tg-Ltle » Ty S b&L(l—l/r)e (39)

er2 obitained by satisfying conditions (10b,c) at the surface; but these do
not sstisfy the condition (1Cd) at intTinity.

The appropriate verieble at large distances is q
R =1r/8, (ko)

and then coefficients in the expansion (30) are to be considered functions

of 3. The equation for ¢ is

1 6 (o2 dd (T T, | 2 —8/T, .
‘E'Eg (R Eg) = Dw[¢+ ————Er———-}e with D= 30X 8% ; (L1) -
= TR
It is to be solved under the boundary conditions 5
L
- Z-:."‘. 1 3 .~|2 !
$ = Le (-Inl+ui,"_/R)L°° +...85 R>0, ¢ =o(l) as R » =, (42) ]
q

<ne first ol whlch comes from mateaing with the expansion coefficients

(32} fer finite r.
Since the problem is well posed under the weaker condition

M

lin R$ = Le "M /T2, (43)
20)
it folleows that
2 M'v.r
¥ = 1lim (M /R - T¢/Le ") (L4)
1 w ®
R+0

czn be calculated 25 a function of Dw’ thereby determining the response.

— b < " " - W2 222Mwh
T-2 relation betweern the scaled parameters (Le /Tw)Ml, (MwL e /TQ)Dw

- Tll

Yy r Yy
i
o
b
Y]
(]
3
o)
0
[0]
=]
’_l
by
(o]
3
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g = (7 -7 V/ie " (L5)

figure 4 shows the corresponding resvonse for several positive values of 8.

It is found numerically, out has never t2en proved, that the curve does not

"y

wrrn for non-positive values of B, consisten® with the conjecture that

<

the irequality (9) must hold for an S-response.
3 8/ (T_+yX )
It is worth noting that ¥ is 0{(37% } at extinction
2 e/Te° .

compared to 0(8 “e ) at ignition, so that = lies to the left of I,
2s required. The part between the ignition and extinction voints, i.e. the
miédle branch of the S, will not be discussed here because it is very similar
+to that for the counterflow diffusion flame (sectiocn 8.4.). Again the
partial-burring and premixed flames occur, with the same structures for
troir reaction zones. Since the stability analysis of the branch is
coanfined to the reaction zones, it is the same here as in section 8.5,

52 no further discussion is necessary.

4, Surfzce Zaguilibrium

There are at least two ways in which the fuel can be supplied as a
liquid at the surface: the sphere can be completely liquid, i.e. a fuel
d»op, or it can be a liquid-saturated porous solid. Whatever the method of

supply, it is difficult to Justify prescription of the surface temperature

#-}

n

anless we abandon the specification of L. Maintaining & value of Ts
would, in general, reguire heating or cooling the liquid at the surface,
23 “hat would upsat the heat balance revpresented by the boundary condition
{13¢). Prescription of surface tempersture should, more realistically, be
wavlaced by the reguirement of liquid-vapor equilibrium at the sﬁrface,
i.e. the Clausius-Clageyron relation

/T -8/T

Ys = (Ts/Tb)Be o S with 8,0 consts.. (46)

.

PP )
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Here Tb is the boiling temperature, i.e. the value of Ts for which
Ys = 1; it is related to the pressure lavel in the combustion field by
g -8/7,
Ty e = pc/k with k = coast.. (k7)

In order to trensform the Clausius-Clapeyron relation into a temperature

condition, we eliminate Ys between it ané the Shvab-Zeldovich relation ,

2T /T Pe = 2-L+(TQ-TS+L-2)e-M. (48)

This replaces the boundary condition (10b‘; clearly T, changes with M.
Determination of the response M({P) now requires that T, be
calculated afresn for each point. In general, iterations are involved
because the siructure problem determing M as a function of D coatains
g (see, for example, the definitiocns (36)). Different results are
sotained according to the way in which 7 1is varied, via p, or the radius
2 of the sphere, the resson being that P, apvears in the boundary
condition (48) through T,. (Since Op has been taken proportional to

b

T_, and Mr inversely proportional to the radius a of the sphere, the

Normandia and Luiford have considered the response when U is varied
~ia a. In particular, they find that the curve is again S-shaped when the
inequalities (9), (13b) are satisfied by the T_ corresponding to smell 0
j.a. the solution of equation (48) when If has the value (12b). (There
is always such a solution, satisfying the left inequality autome:ically.)
The previous anelysis (for Ts fixed) is qualitatively, but nof
suantitatively, correct: while extinction and ignition analyses can be
cerformad as in section 3, figures 3 and 4 cannot be carried over because

he varistions in T, though only o _1) on the upper and lower branches

- . P P TP TP AP D S I O S A S S T T i Y

.
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of the S-respcnse, modify the extinction and ignition values. These

=odifications have been worked out by Normandia and Ludfeori.

The resulis are strikingly éifferent when U is varied via o,
as Janssen & Ludford (1983a) hzve shown. The S is replzced by the
rather odd shapes in figure 5, which covers the practical cases of
heat being conducted to the environment. These responses were so
unexpected that, to obtain more confidence in their validity, numerical

integzrations of the problem (10a,c,d, 48) were performed
Z L ] T

'y

or
3 = 10. In every instance, the numericel results confirmad the essential
features of the asymptotic responses. Nothing similar has apparently

vean obtained in combustion theory, and certainly not in vrevious

studies of diffusion flames. -
Two features of these resronses deserve to be pointed out, since

they contradict conventional wisdem. First, the Burke-Schumann value

(17) is not attained on any of the curves as D -+ = . The Burke-
Schumann solution discussed in section 1 is considered a good arproxima-
o “icn since in practice DU is large. 3But, instead of standing off

.ll fro= the sphere for high pressures, separating equilibdriun regions,

.;- the flam= sheet actually moves to the surfece, forming the second

-;: (Buckraster) equilitrium limit mentioned in connection with the

Fﬂ! condition (20). Secondly, the burning rate decreases over most of

Ef sach response, Whereazs the general beliel iIs that it shoulq incresse.
Jezztive slope of th2 response curve is thought to be inevitably

associateé with instebility, and indeed we found that to be the zase

'
st

Dl A RN
. .“ K

D)

ne end of section 3. But experience refutes

for +he S-response 2L T

such a conclusion nere: by and large, fuel drops do burn steadily.

.
2o

T Y

RSN
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A physicelly reasonable range of pressures focuses attention on

ot
)
[
._l
5
[
of
[]]

nds of the curves in figuwre 5, and there the decrease of
burning ra2te with pressure is by no means insigrnificant. Iloreover,
the coxzuted response curve for methanol over the range .002 to 500
atmosgheras clearly shows the steady declire (Janssen & LudZord 1983b).
Zvperiment should therefore e able to zgive a clear-cut decision on

the vhrsicel reality of this unexpectad phenomenon.
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Figure Captions

9.1 Burning fuel drop.

9.2 Steady-state responses when the combustion is nearly
adiabatic. Drawn for L=0.2, T _=0.2, X =1.

9.3 Extinction curves.. For Y < 0 no turning point is found
numerically. :

9.4 Ignition curves. For B8 < 0 no turning point is found
numerically.
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9.5 Sketch of steady state responses when there is surface
equilibrium.
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