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Lecture 7

PULSATING FLAMES

’ In section 5. it was found that plane XEFs of sufficiently large
Lewis number are unstable. Since Im(a) # C on the stability boundary, the
instability is likely to result in either a pulsating flame or a flame
that supports traveling waves. Such flames are the subject of this
lecture.

~
One difficulty that immediately confronts us is that, in contrast
to the ubiquitous nature of cellular instabilities, pulsating instabilities

are not ordinarily seen. The reason seems to be the large values of L are

needed; according to the theorXrYfz/Ti must exceed 32/3 for L(1+Y3) !
if the disturbances are one-dimensional). There is evidence that fuel-
rich hydrogen~bromine mixtures might attein such values siace Golovichev,
Grishin, Agranat and Bertsun (1978) obtazineé oscillations in 2 numerical
study, but there is no similar evidence for more commonplace gas mixtures.
For this reason we must turn from the commonplace and deal either with
unusuzl combustible materials or else with special configurations, in order
to uncover pulsating flames. Our discussion will start with thermites,
-mich are solids that burn to form solids (a phenomenon thet is
aprropriately called gasless combustion). There is no significant

difcusion of mass, so that L is effectively infinite.

1. Solid Combustion

~“xperiments by Merzhanov, Filonenko, and 3orovinskaya on thermites
composed of niobium and boron revealed pulsating instabilities, as did
aumarical solutions obtained by Shkadinsky, Xhaikin, and Merzhanov.

The latter examined the equations
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3T/3t - 3°T/3x° = -3¥/3t = Q

where

0= er'e/T with D = Dmf, (2)

and uncovered a critical value ec of the activation energy: for 0 < ec
the propagation is steady, but for 6 > ec only pulsating propagation is
seen. The prediction of pulsating propagetion is consistent with the
NEF analysis in section 5. , where oscillatory instability was found for
sufficiently large L in the limit 0 + =; but activation-energy asymptotics
has nothing to say about a phenomenon (here the switch to steady propaga-
tion) occuring at some finite value of 6. Even though it is not observed
either experimentally or nuzerically for large enough 0, a steady wave
can nevertheless be constructed by means of activation-energy asymptotics;
we chall start out discussion by doing so.

The following boundary-value problem presents itself in a frame moving

with the flame sheet:

2

aT/dx - & T/dx2 = -d¥/dx = er'e/T, (3)

T > Tf, T > Tf es x + -=», T bounded, Y + 0 as x + +m, (&)

The solution outside the flame sheet is

Tf+‘£__,ex Y
T = : , Y= for x 3 03 (5)

T, =4H 0

T 1{is continuous scross the flame sheet, as for the finite-L problem (cf.

section 2. ), but Y Jumps. As a consequence, the structure of the

reaction zone is somewhat different.
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The structure variable is, as usual,

£ = 0x (6)
and

T, =T ; (1)
but we now find the equations

T§d2¢/d52 = -dYo/dg = 13Y°e'¢ with D = De /8 (8)

the temperature perturbation Tl = 5@ and the leading term Yo in

the mass-fraction expansion. Since both ¢ and Yo vanish as & -+ +=,

fo

"

we have

2
Y = -de¢/as, (9)

so that only the temperature egquation

a%s/dag® = -Dag/ag)e™® (10)

remains. To match with the solution outside the flame sheet, the usual

boundary conditions
¢ = -YfE/Tg +0(1) as £ +=», ¢ = o(l) as & + += (11)
must be applied. The Zirst integral
as/dg = D(e~%-1) (12)

of equation (10) is obtained by using the boundary condition (11b); then

the boundary condition (lla) leads to the burning rate

-8/2T

M= vD Tye b//Yfe. ' (13)
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This result has apparently not been written down before, but others

have derived it (e.g. Peters 1982).

2. The Delta-Function Model

We have already noted that there is little point in investigating
the stability of this solution using activation-energy asymptotics.
Instead, following Matkowsky and Sivashinsky, we shall use a delta-
function model suggested by the asymptotics above. Thus, the strength
of the delta function that replaces the Arrhenius term will be defined
so that the mass flux through the flame sheet, in quite general circum- o
stances, is

-8/2T, .
M = /DT,e xy (1k) -
hera T, 1is the flame temperature. The dimensionless mass flux is then

M/M = (Ty/T, )exp[8(T,-T, /2T, 7y ], (15)

an expression that will be simplified before use. For 6 large (but not
necessarily infinite), the preexponential factor is not significant

ani can be replaced by 1; in addition, for small deviations - of T, from
T (such as occur in a linear stability analysis) the exponent can be

rezlaced by e(T*—Tb)/2T§. The formula (15) then becomes

2 = oo™ 2
W= /M = explo(T,-7)/2T, ], (16)

sirce the dimensionless density may ve taken to be 1; here W is the
wevTe speed.

mr~e Arrhenius term (2) 1is now replaced by

\ Q = Y WA(n) with n = x-F(0,0,t), (17)




o T

~T.5-
wnere A is the Dirac delta function and
x = *y,z,t) (18)

is the flame sheet, written in a (fixed) coordinate system chosen so that
the x-exis coincides with the normal at the point of interest at the instant

considered. The equations
3T/t - 72T = ~3Y/3t = @, (19)

which generalize the one-dimensional ones (1), then show that the wave

speed -Ft(0,0,t) is just W and that
§(T) = 0, §(3T/an) = -¥. W, §(¥) = Y. (20)

Pracisely the same formulas can be obtained by applying activetion-
enerzy esymptotics to the flame sheet in the unsteady case (i.e. with
cav s -1 s sk
¥ # 11 a2nd & fleme temperature T, within 0(8 7) of Tb) if it is

assumed, without justification, that there is no sisnificant temperature

sradient behind the flame sheet. What sets the delta-Tunction method
apart Srom activation-energy asyrptotics is that, in solving equations (19),
§ ig trested as a finite parameter, and that there is no requirement for

tha outer solution to —atch the inner in the limit 8 + =,

3., Stacility of Thermite Flames.

.

Linear stability of the plane wave is investigated in the manner of
section 5. for a planme YET. Disturbances proportional to exp(at+iky)

are sought, resultizg in the dispersion relation
(20+0)/1+k (a+x%) = 0(2a+1) with 0 = ¥ 8/2T2, (21)

The neutral stability curve

*
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0 = [6k2+2+(2k241) /16245 1/ (bk241) (22)
is shown in figure 1; on it
1 2 1
a = *i 0%(1+kx")?/2 (23)

is everywhere non-zero, i.e. the neutrazl modes are oscillatory. Resemblance
Tc the right stability boundary for NEFs in figure 5. is striking. Note

+hat the extreme value
6 =4, (24)

is large enough to give credence to the notion that most of the chemical

4

reaction is confined to a thin sheet.
The results suggest that, for the one-dimensional eguations (1)

steady propagation is possibly only if
8 <o, =2+ 5 (25)

s+harwise pulsating combdbustion occurs. This is in agreement with the
sxrverimental and numerical results cit=d at the beginning of section 1.
A33itional evidence is afforded by Matkowsky and Sivashinsky's demonstration
+hat the passage of @ through ec gives a supercritical Hopf bifurcation.

Traveling-wave instabilities, rather than pulsations, will occur if

Sisturbances of non-za2ro wavenumber are pernitted by the lateral boundary i

coniitions. The effect is strikingly seen for propagation through an

i=sulated circular cylinder of thermite (Sivashinsky 1981). Now distur-

ing . !
cences proportional =3 e ' Jn(kr) are sought, where r,» are polar .

ocsordinates in the 7 ,z-plane and n is 2 non-negative integer. Once more

tze dispersion relation (21), the neutral stability curve (22), and the
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neutral-mode frequency (23) are obtained; but now not all wvalues of k are

admissible. Thermal insulation of the surface r = a requires
' = 3 = 1
Jn(ka) 0, i.e. ka Jn,m (26)

in a standard notation for zeros of derivatives of Bessel functions. The

first seven allowable values of ka are R
o1 =% 31" 1.8k, 351 =3:05, 35 5= 3.83,
317 L.20, I3 =532, 3] 5 =537 (21)
according to Olver (1964). Some of the eigenvalues .
Ky = Jt'l’m/a (28)

are marked on the neutral stability curve in figure 1 for a = 2 and L.
Tnese two cases illustrate the general movement of the kn m—points down
s

the curve as a increases.

Cornsider now what happens for cylinders of different size as ©
is increased up to the first onset of instability. (This is not easily
done in a practical context.) Only the discrete points on the neutral
stability curve corresponding to the values (28) of k are relevant, and
which mode will be trigzgered Tirst depends on the value of a. As 0O
is further increased the mode hecomes an admissible instability that
3evelopes a definite nonlinear form of the same general character.

For

a < 2,05 (29)

the point kl 1 lies to the right of ko 1 on the neutral curve; this is
bl

b4

sxerplified by a = 2 in figure 1. The first menifestation of instability
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will be‘plane sulsations of frequency
w =2/0_/2; (30)
the corresponiing expressions for flame tempersture and location are

Ty = T tecosut, x, = -t—(8€m/Yf)sin wt, (31)

where € is the (linear) disturbance emplitude. The speed of the flame ~

is greater or less than 1 accordingly as its temperature is greater or

ess than Tb' The temperature gradient

eRel (cos wt-i sin wt)(l-/1+kiw)]/2 (32)

behind the flame does not vanish but flucturates about zero (cf. the remark
at the end of the last section).

Tre model is based on the assumption that the reactant is consumed
ecmpletaly, but this is not the case in practice. Indead, it is sometimes

e to propazate a flame through the same meterial twice. It is to

Us}
0O
v
0w
[e
(&)
-4

e expected that fluctuations in temperature gradiont at the reaction front
will result in a layered burnt state; in the context of activat.on-energy
as;ptotics, nezative temperature gradients behind the reaction zone permit
resctant leakage. Merzhanov, Filonenko, and Borovinskaya noted leyered
striucture in burnt thermites, with a layer for each pulsation.

A quite different phenomenon occurs if the first menifestation of

instarility is assoclated with Ji 1 as is the case for
’

2.05 < a < 4,88; (33)
row %, 1 is the leftrost voint on the neutral curve, as is exemplified
-~y
by a2 =L in figzure 1. The expressions (31) are replaced by
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T, = Tb+ecos(mt+¢)Jl(k1,lr) y Xy = —t-(aem/Yf)sin(mt+¢)J1(kl’lr), (34)

w“here now
1
. 2 4
w =20% | (3] |)?/2. (35)
The . isotherms of the flame temperature are shown in figure 2; these

. spin, in either direction, with the frequency (35), producing = single
hot-spot traveling in helical path on the surface of the cylinder. Such
hot spots were observed by Merzhanov, Filonenko and Borovinskaya.

As the radius a increases beyond 4.88 for a certain interval, k2,1
becones the leftmost point on the neutral curve; there are then two spinning
hot spots at opposite ends of a diaxeter. EHot spots can also occur in the

interior, for example for k which is the leftmost voint for an interval

1,2°
of still larger values of a.
Other cross sections give rise to their own distinctive sets of admissible
wavenunbers and isotherm patterns. TFor rectangles, Judicious choice of
orovortion leads to 2 or ever 3 modes simultaneously characterizing the
onset of instability. A small chanzse in the proportion will cause the
corresvoniing eigenvalue to split, leading to secondary or tertiary
bifurcations. Matkowsky & Olagunju (1982) have carried out the unimodal
bifurcation analysis for circulaf cross sections; Margolis & Metkowsky
{1982) nave considersd the multi-modal analysis for rectangular cross
sections.
The stability bouniary identified here, coupled with the nature of
the instabilities, shows that we are dealing with the analog of the right

stability toundary ia the NET analysis. This suggests that SVFs, which

lie between XEFs (with L close to 1) and thermite flames (with L = ),
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should also exhibit pulsations as their instability; however, for L > 1

their disturbances grow monotonicelly. Resolution of this epparant contradic-
tion undoubtedly lies in the result (30) which suggests that the SVF analysis,
by restricting attention to evolution on the time scale t = 0(e), filters

out a pulsating mode. In fact, Rogg (1982} has reported numerically
determired pulsations for flames that would otherwise be candidates for SVF

analysis.

4., Tlames Anchored to Burners

We now turn our attention to gases, which necessarily have finite Lewis
nurbers, almost invariably lying to the left of the right stability boundary
in figure 5. . The problem is to find a2 mechanism that will shift this
voundary to the left,making it accessible to mixtures of practical interest.
Joulin and Clavin have shown that such a mechanism is the distributed heat
loss of section 3. , which suggests that heat loss to 2 burner anchoring
the flame will have the same effect. There is now experimental evidence
that burner {lames can indeed pulsate.

Consider z flame anchored to the so-called porous-plug burner. The

mathematical problem to oe solved is

2 /T

3T/t + 6T/8x—V2’I’ = -3Y/3t-3Y/3x + 1% vy = pYe /T with p = Dm;a’ (36)

T = Ts’ Y - L-ISY/Bx = Js at x = 0, T bounded, Y >~ 0 as x + += (37)

Here Mr is the prescribed mass flux through the face of the plug at
x = 03 while Ts and Js are the prescribed temperature and mass-flux
fraction trere. (In practice, cooling coils are used to maintain Ts

constant.) The physical idee underlying the boundary condition (37b)

is that the vorous surface inhibits the flux of reaction products, so
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that the flux fractions of the mixture as supplied by the burner are
identical to the mass fractions in the reservoir supolying the burner.
Analysis of the steady problem in the limit 6 » » proceeds as in
section 2. for the unbounded flame, except that the burnt-gas temperature
Tb is the fundamental quantity to be determined, not Mr' Integration of the

steady version of equation (36a) from x =0 to o yields

TL =T +J -T, (38)

i.e. the heat received by the plug in terms of Tb’ This enables us to

write the solution in the form

(7 _7 +(T +7 -7 )e* 7 -3 Lp 45 pLelx .-
T=ib s s s b , y={s s sts T for x £ x,.(39) -
Tb 0
where
r X, = Qn[Js/(Ts+Js-Tb)]. (ko)

Consistency requires x, to lie between 0 and =, so that we must have

T <D <T +J.. (L1)

The right inequality shows that T; is necessarily positive, i.e. the

plug must be a heat sink. Finally, a flame-sheet analysis gives
- 2
M, = valD 'I‘b exp(—S/2Tb)/6Js, (¥2)

from which T, can be determined. (The result (2. ) is recaptured on
revlacing JS with Yf.) Ferguson and Keck have made satisfactory
comparisons between experiment and a theoretical result essentially
eguivalent to the determinaticn (40) of the stand-off distance X, 83

a function of the injection rate M.. (Note that Mr is also used in making

Xy rondimensional.)

- - s . . " T e — Y - - e
" W . - ‘14 '.ui“‘..,,‘,‘,
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The irequalities {41) define limits on M_. When the injection rate is
decreased {increased) beyond its limiting value a surface (remote) flame is
obtained, reqguiring a different asymptotic analysis. We shall be concerned

only with injection rates within the limits.

5. tability of Burner Flames

In considering the stability of the solution in the last section it is,
natural to turn to a NEF analysis. However, such an analysis requires not
only L to be sufficient close to 1 but also that the boundary conditions
permit T + Y to be constant to leading order. In general, the conditions
{37) Qo not satisfy the second requirement.

One way out of the dilemma is to abandon activation-energy asymptotics
and adopt a suitable modification of the delta-function model used in the
discussion of thermites. (The strength of the delta function is again
vreportional to exp(-e/2T*).) Such an aprrcach wes used by Margolis who,
by neans of a numerical investigation of the complicated dispersion
relation obtained from a linear stability analysis, was the first to
demonstrate the leftward displacement of the stability boundary alluded to
at the beginning of the last section. He also carried out a complete
nurerical simulation of a fuel-rich hyrogen-oxygen flame, thereby demon-
strating pulsations; these were apparently confirmed by experiments performed
at Sandia-Livermore, although there is no published account of them.

The NEF requiremsnt that T+Y should be constant to leading order is a
sufficient but not necessary condition for the flame temperature to vary

o O(S‘l) only. Thus, Buckmaster (1982) also approached the question

by means of a delta-function model but then, & _posteriori, Justified the
model through activation-energy asymptotics. This amounts to identifying
+he circumstances under which the dispersion relation is ssymptotically

meaningful, and for which there is a flame structure linking the states

e et e

N L
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on the two sides of the flame sheet obtained by the equivalent Jjump conditions.
Some care is necessary because of the sensitivity of the solution to variations
in flame temperature; the disturbance field is 0(1) on the 8-scale, which

entails'calculating the flame~temperature perturbations correct to 0(6-1).

In turn, this entails deriving Jump conditions (from the flame-sheet structure)

correct to the same order. Buckmaster found

§(T) = -8(Y) = Ty, /6, (43)

5(3T/3x) = -8(3¥/3x) + 23 Wfo = I Wrafe with W = leeT, /2To.  (bb)

Here % has the same meaning (4. ) as in HEF analysis, € is the small
paraneter characterizing the size of the disturbance, the flame temperature
is T, + eT,lle, and q is a quantity (calculated from details of the flame
structure) that is never needed. The term - JSW is the linearized form
of the ternm —YfW appearing in the jump condition (20b), with Js replacing
Y..
s
With the jump conditions in hand, it is a2 straightlorward matter to

carry out the analysis of unsteble disturbances proportional to expl(at+iky).

Circumstances Justifying the delta-function model are then found to be
ge ™ ** = 0(1) (u5)

where Kk has the definition (5. ). An asymptotically self-consistent

dispersion relation
2:2(1-x2)¥f(1+n)[(l-m)z-hkel = 89K3e_Kx* (46)

is obtaired, the corresponding ccmbustion field matching the structure
used to deduce the Juzp conditions (43), (LL); here ¢ and O have the definitions

(k. ) and (21b) with J, in place of Y.
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A sinmilar dispersion relation (but free of 8 and with k = 0) was derived
by Matkowsky and Olagunju for a somewhat artifical burner whose boundary
conditions are compatible with NEF analysis. They do not discuss the full
rerifications of their results.

What emerges from Buckmaster's analysis is essentially a NEF. To get
a aint of this, note that the boundary conditions imply that the disturbance

satisfies

T, + Y = L'layl'/ax at x = 0. (47)

Now the disturbance field decays rapidly ahead of the flame-sheet, because
Ax, is logarithmically large in 6. It follows that aYllax is small at the e
olug, small enough for the condition (47) and the near-equality of thermal
ané mass diffusions to emsure that T1+Y1 is, at most, 0(6_1) throughout the
comzustion field.

Tinally, it should not be thought that the requirement (45) is a
consiraint on x,. Insofar as the right stability boundary is concerned,
tre relation (46) implies that as x, is decreased, Re(x) increases
(tzrough an increase in the frequency of pulsations) so as to keep the
ter= on the right balanced. When x, is 0(1) the frequency is logarithmically
larze in 8,

The displacement of the right stability boundary is illustrated by

"y

izure 3, which shows how the point k = 0 on it varies with x,. (Note that
T ~ 2(1+/3) as x, +~ =, in agreement with the result in section 5. for
untsanded flames.) As X, 1s decreased the boundary first moves to the
lest . by an amount that increases with 0. But eventually this motion is

nal+2d and the boundary moves back to the right.

il.l.ll.'.'liii‘illlﬁi-‘ - . . MR
;
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6. Pulsations for Rear-Stagnation Point Tlow.

It seems likely that there are other mechanisms that will make the
pulsations accessible. One that has been suggested by theory (but not
confirmed experimentally) is negative strain, such as is experienced by
a flame in a rear stagnation-point flow.

For moderate Reynolds numbers, flames can be stabilized behind the
closed laminar wake at the rear of a thin plate or rod. Figure L shows
tke configuration, which Mikolaitis & Buckmaster (1981) treated with a

NEF formuletion based on the equations
2,..2
(3/3t+eya/ay-3~ /3y )(T,h) = 2€y3(0,T)/3y (18)

and the Jump conditions (ﬁ.rf-#B.These equations are the unsteady version
of equations (4.40) with the sign of € changed because we are dealing with
a8 rear instead of a front stagnation point. The problem is completed by

the boundary conditions

T=T, h=0 s y=0, (k9)
the latter corresponding to the prescriptior Y = Yf at y =0,
The steady solution can be written in a closed form similar to that in
section L. for a front stagnation point. Its stebility to one-dimensional

disturbances was carefully explored using a combination of Galerkin's method
and the method of weighted residuals. The results are illustrated by the two
curves in figure 5, vhich shows variations in the stand-off distancey, of the
fleme with (negative) straining rate. All responses have the form of a

beckward C, so that there is a maximum straining rate beyond which the

flame must blow off.

R R R R R - ) T

[y
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For values of £ (=2Yf/2‘1'§) less than about 0.91 the response is character-
ized by the curve (a); the lower branch is stable and the upper branch is
unstable, with a real eigenvalue crossing through the origin as the turning
point T 4is traversed. TFor other values of 'f, as characterized by the
curve (b), part of the lower branch is also unstable, with a complex
conjugate peir of eigenvalues crossingthe imaginary axis as the point P
(for pulsations) is traversed. This raises the possibility that, for
sufficiently largze values of the Lewis number, blow-off will in practice

be preceded by pulsations. (The critical value of t is quite accessible.)

R SR,
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Figure Captions

7.1 Linear stability regions for thermite flames, with admissible
values of k when confined to insulated circular cylinder.
Labels to the right (left) of the neutral stability curve
correspond to a = 4(2) .

7.2 1Isotherms of spinning thermite flame, with +/- denoting the
hot/cold sides.

7.3 Displacement of the right stability boundary in figure 6.8
due to the presence of a burner, for various values of 6 . -
The purely imaginary numbers are values of a .

7.4 NEF in a rear stagnation-point flow.

7.5 Variation of stand-off distance y, with straining rate e
for NEFs in rear stagnation-point flows.
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In section 5. it was found that plane NEFs of sufficiently large Lewis
number are unstable. Since Im(a) # O on the stability boundarv, the instability
is likely to result in either a pulsating flame or a flame tha:. supports
traveling waves. Such flames are the subject of this lecture.

One difficulty that immediately confronts us is that, in contrast to the
ubiquitous nature of cellular instabilities, pulsating instabilities are not
ordinarily seen. The reason seems to be the large- values of L are needed;

aceording to the theory, YEIL/‘I‘zl must exceed 32/3 (or 4(1 + /3) if the
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disturbances are one-dimensional). There is evidence that fuel-rich hydrogen-
bromine mixtures might attain such values since Golovichev, Grishin, Agranat,
and Bertsun (1978) obtained oscillations in a numerical study, but there is no
similar evidence for more commonplace gas mixtures.

For this reason we must turn from the commonplace and deal either with
unusual combustible materials or else with special configurations, in order to
uncover pulsating flames. Our discussion will start with thermites, which
are solids that burn to form solids (a phenomenon that is appropriately called
gasless combustion). There 18 no significant diffusion of mass, so that L
is effectively infinite.
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