
ADA LNN3 ECTURES ON MATHEMATICAL COMBUSTION LECTURE 7 PuLSAT14 1/1

7 ADA129 93 FAMES..U) CORNEL UNIV IHACA NY DEPT OF THEORETICAL
AND APPLIED MECHAN I D BUCKMASTER ET AL. JAN 83

UNCLASSIFIED R152 AO-18243.23 -MA DAAG29-1-K-0 27 F/ 21/2 NL

mhIhlllllllll
NEMI



I1.0 1tr8 I11II-LA' 132 WLl 6

III111511iiI - JJJJJ Ill'-

MICROCOPY RESOLUTION TEST CHART
NATIONAl ikE [All ()I STANDARD,, ]llfI A

" (

• . _ - / IE~ acf I



/]
Apo,

Cornell University f7

LECTURES ON MATHEMATICAL COM'BUSTION

Lecture 7: Pulsating Flames

Technical Report No. 152

J.D. Buckmaster & G.S.S. Ludford

cy) January 1983

Theoretical and DTIC
Applied e 3

Thurston Hall

Ithaca, New Yor

83 06 30 023

_ __ ____ ____ ____ ____ ____



LECTURES ON MATHEMATICAL COMBUSTION

Lecture 7: Pulsating Flames

Technical Report No. 152

J.D. Buckmaster & G.S.S. Ludford

January 1983

U.S. Army Research Office

Research Triangle Park, NC 27709

Contract No. DAAG29-81-K-0127

Cornell University
Ithaca, NY 14853

Approved for public release; distribution unlimited.

i~



The view, opinions, and/or findings contained in this
report are those of the authors and should not be con-
strued as an official Department of the Army position,
policy or decision, unless so designated by other

authorized documents.

7

. . .......... ... i ... . . .-..... "-11 "- ": -. 8 i , /



Contents

Page

1. Solid Combustion 1

2. The Delta-Function Model 4

3. Stability of Thermite Flames 5

4. Flames Anchored to Burners 10

5. Stability of Burner Flames 12

6. Pulsations for Rear-Stagnation
Point Flow 15

References 17

Captions 18

Figures 1-5 19

\M 7A

--- 4;

- --.t-

.............- * '' -. ' .< 1 .:



-7.1-

Lecture 7

PULSATING FLAIES

In section 5. it was found that plane E s of sufficiently large

Lewis number are unstable. Since Im(a) C on the stability boundary, the

instability is likely to result in either a pulsating flame or a flame

that supports traveling waves. Such flames are the subject of this

lecture.

One difficulty that immediately confronts us is that, in contrast

to the ubiquitous nature of cellular instabilities, pulsating instabilities

are not ordinarily seen. The reason seems to be the large values of L are

needed; according to the theory2YA/T must exceed 32/3 (or 4(1+/3)
thddrcodf Tb

if the disturbances are one-dimensional). T17here is evidence that fuel-

rich hydrogen-bromine mixtures might attain such values since Golovichev,

Grishin, Agranat and Bertsun (1978) obtained oscillations in a numerical

study, but there is no similar evidence for more com.onplace gas mixtures.

For this reason we must turn from the commonplace and deal either with

u-nusual combustible materials or else with special configurations, in order

to uncover pulsating flames. Our discussion will start with thermites,

-which are solids that burn to form solids (a phenomenon that is

appropriately called gasless combustion). There is no significant

diffusion of mass, so that L is effectively infinite.

1. Solid Combustion

Txperiments by "erzhanov, Filonenko, and 3orovinskaya on thermites

composed of niobium and boron revealed pulsating instabilities, as did

nurerical solutions obtained by Shkadinsky, ?-' haikin, and Merzhanov.

7he latter examined the equations

S - -ii
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where

n = VYee/T with D = DM2  (2)

and uncovered a critical value e of the activation energy: for e < eC C

the propagation is steady, but for 8 > 9 only pulsating propagation isC

seen. The prediction of pulsating propagation is consistent with the

NEF analysis in section 5. , where oscillatory instability was found for

sufficiently large L in the limit 8 ; but activation-energy asymptotics

has nothing to say about a phenomenon (here the switch to steady propaga-

tion) occuring at some finite value of 8. Even though it is not observed

either experimentally or numerically for large enough 8, a steady wave

can nevertheless be constructed by means of activation-energy asymptotics;

we shall start out discussion by doing so.

The following boundary-value problem presents itself in a frame moving

with the flame sheet:

dT/dx - d 2T/dx = -dY/dx = DYe - / T , (3)

T - Tf, Y - Tf as x - -, T bounded, Y 0 as x +. (4)

The solution outside the flame sheet is

for xO0; (5)
LTb -- 0

T is continuous across the flame sheet, as for the finite-L problem (cf.

section 2. ), but Y jlmps. As a consequence, the structure of the

reaction zone is somewhat different.

II
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The structure variable is, as usual,

= ex (6)

and

T = Tb; (7)

but we now find the equations

2d 2 =-dYo/d& =Yoe- 0 with V= De /a (8)

2
for the temperature perturbation TI = -Tb and the leading term Y0 in

the mass-fraction expansion. Since both 0 and Y vanish as -+

we have

2
Y 0= -T do/d&, (9)Yo b

so that only the temperature equation

d2 2 = - (10)

remains. To match with the solution outside the flame sheet, the usual

boundary conditions

0 = -YfEIT + o(1) as 0 - = o(i) as (11)

must be applied. The first integral

doId = D(e--l) (12)

of equation (10) is obtained by using the boundary condition (llb); then

the boundary condition (ila) leads to the burning rate

-el2Tb

M VD Tbe /2TbyT. (13)
r

7
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This result has apparently not been written down before, but others

have derived it (e.g. Peters 1982).

2. TeDelta-Function Model

We have already noted that there is little point in inv,.?stigating

the stability of this solution using activation-energy asymptotics.

Inst'ead, following Matkowsky and Sivashinsky, we shall use a delta-

function model suggested by the asymptotics above. Thus, the strength

of the delta function that replaces the Arrhenius term will be defined

so that the mass flux through the flame sheet, in quite general circum-

stances, is

-0/2T*
M = YT~e A0(114)

here T* is the flame temperature. The dimensionless mass flux is then

14/Mr = (T./Tb)exmr(T*-Tb)/2TbT*l, (15)

an ex~ression that will be simplified before use. For e large (but not

necessarily infinite), the preexponential factor is not significant

an-i can be repolaced by 1; in addition, for small deviations -of T* from

Tb(such as occur in a linear stability analysis) the exponent can be

re-Iaedbye(T*--Ab)/2Tb2. The formula (15) then becomes

W = exoE e(~r)/2T 2, (16)

since the dimensionless density may be taken to be 1; here W is the

-wa-re speed.

TZhe Arrhenius term (2) is now replaced by

n Y fWA(n) with n =x-F(O,O,t), (17)
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-here A is the Dirac delta function and

x = 7(y,z,t) (18)

is the flame sheet, written in a (fixed) coordinate system chosen so that

the x-exis coincides with the normal at the point of interest at the instant

considered. The equations

3Tl3t - V2T = -aY/3t = q, (19)

which generalize the one-dimensional ones (1), then show that the wave

speed -F t(O,O,t) is just W and that

6(T) = O, 6(9T/3n) = -YfW, 6(Y) = Yr. (20)

Precisely the same formulas can be obtained by applying activation-

energ" asymnptotics to the flaue sheet in the unsteady case (i.e. with

M :. and a flame temnerature T* within O(e ) of T b ) if it is

ssed, without justification, that there is no si-nificant temperature

gradient behind the flame sheet. What sets the delta-function method

apart from activation-energy asyptotics is that, in solving equations (19),

8 is treated as a finite parameter, and that there is no requirement for

the outer solution to =atch the inner in the limit a .

3. Stabilityv of Therdt4e Flames.

Linear stability of the plane vave is investigated in the manner of

section 5. for a plane MT. Disturbances -proportional to exv(at+iky)

are sought, resulting in the dispersion relation

= (2+!) -ith 0 = Y fe/2T2  (21)

The neutral stability curve

7-77M
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2 2 [2+1)

e = [ 6k +2+(2k +1) 1 ] /+51/(k +1) (22)

is shown in figure 1; on it

a = ±i eo(l+hk )/2 (23)

is everywhere non-zero, i.e. the neutral modes are oscillatory. Resemblance

to the right stability boundary for NEFs in figure 5. is striking. Note

that the extreme value

e = 4. (24)
e

is large enough to give credence to the notion that most of the chemical

reaction is confined to a thin sheet.

The results suggest that, for the one-dimensional equations (1)

steady propagation is possibly only if

0 < 0 m 2 + /5; (25)c

2therwise pulsating combustion occurs. This is in agreement with the

exerimental and numerical results cited at the beginning of section 1.

Additional evidence is afforded by Matkowsky and Sivashinsky's demonstration

that the passage of 0 through c  zives a s

Traveling-wave instabilities, rather than pulsations, will occur if

disturbances of non-zero .;aven,!ber are permitted by the lateral boundary

cteditions. Tne effect is strikingly seen for propagation through an

insulated circular cylinder of thermite (Sivashinsky 1981). Now distur-

bances nro-cortional to e'oi n0 (kr) are sought, where r,# are polar

cz-ordinates in the y,---plane and n is a non-negative integer. once More

te dispersion relation (21), the neutral stability curve (22), and the

..............
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neutral-mode frequency (23) are obtained; but now not all values of k are

admissible. Thermal insulation of the surface r = a requires

J'(ka) = 0, i.e. ka = (26)

in a standard notation for zeros of derivatives of Bessel functions. The

first seven allowable values of ka are

Jo,1 = 0, ' = 1-8, ' = 3.05, J, 2 = 3.83,

1' = 4.20, 1 ,l = 5.32, j = 5.33 (27)

according to Olver (1964). Some of the eigenvalues

kn,m = Jnm/a (28)

are marked on the neutral stability curve in figure 1 for a = 2 and 4.

These two cases illustrate the general movement of the k -points down
n,m

the curve as a increases.

Consider now what happens for cylinders of different size as 0

is increased up to the first onset of instability. (This is not easily

done in a practical context.) Only the discrete points on the neutral

stability curve corresponding to the values (28) of k are relevant, and

which mode will be triggered first depends on the value of a. As 0

is further increased the mode becomes an admissible instability that

4evelopes a definite nonlinear form of the same general character.

For

a < 2.05 (29)

the point km1 lies to the right of ko,1 on the neutral curve; this is

exe=plified by a = 2 in figure 1. The first manifestation of instability
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will be plane pulsations of frequency

W =±/ /2; (30)

the corresponiing expressions for flame temperature and location are

T.= Tb+ Coswt, x. = -t-(8CW/Yf )sin wt, (31)

where e is the (linear) disturbance amplitude. The speed of the flame

is greater or less than 1 accordingly as its temperature is greater or

less than T b . The temperature gradient

cRe[(cos wt-i sin wt)(l-V-T'+hi)j/2 (32)

behind the flame does not vanish but flucturates about zero (cf. the remark

at the end of the last section).

Tne model is based on the assumption that the reactant is consumed

conpletely, but this is not the case in practice. Indeed, it is sometimes

possible to propagate a flame through the same material twice. It is to

be expected tra: fluctuations in temperature gradient at the reaction front

ill result in a layered burnt state; in the context of activat.on-enert{

as,-.:tics, negative temperature gradients behind the reaction zone permit

reactant leakage. .,erzha-nov, Filonenko, and Borovinskaya noted layered

stricture in burnt thermites, with a layer for each pulsation.

A ouite different nhenomenon occurs if the first manifestation of

instability is associated with Jlil' as is the case for

2.05 < a < 4.88; (33)

now ' is the leftmost point on the neutral curve, as is exemplified

by a = 4 in figure 1. The expressions (31) are replaced by

(
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T* = Tb+Ecos(t+o)Jl(kllr) , x -t-(8cw/Yf)sin(wt+ )J1 (kl 1 r), (34)

"Where now

S 2
=tO2 1 +k /2. (35)

The isotherms of the flame temperature are shown in figure 2; these

_ spin, in either direction, with the frequency (35), producing a single

hot-spot traveling in helical path on the surface of the cylinder. Such

hot spots were observed by Merzhanov, Filonenko and Borovinskaya.

As the radius a increases beyond 4.88 for a certain interval, k2,1

becomes the leftmost point on the neutral curve; there are then two spinning

hot spots at opposite ends of a diameter. Hot spots can also occur in the

interior, for example for k1 ,2' which is the leftmost point for an interval

of still larger values of a.

Other cross sections give rise to their own distinctive sets of admissible

wavenumbers and isotherm patterns. For rectangles, Judicious choice of

proportion leads to 2 or even 3 modes simultaneously characterizing the

onset of instability. A small change in the proportion will cause the

corresponding eigenvalue to split, leading to secondary or tertiary

bifurcations. ivatkowsky & Olagunju (1982) have carried out the unimodal

bifurcation analysis for circular cross sections; Margolis & Matkowsky

(1982) have considered the multi-modal analysis for rectangular cross

sections.

The stability bou iary identified here, coupled with the nature of

the instabilities, shows that we are dealing with the analog of the right

stability boundary in the UEF analysis. This suggests that SVFs, which

lie between NEFs (with L close to 1) and thermite flames (with L =

6&77 -
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should also exhibit pulsations as their instability; however, for L > 1

their disturbances grow monotonically. Resolution of this apparant contradic-

tion undoubtedly lies in the result (30) which suggests that the SVF analysis,

by restricting attention to evolution on the time scale t = 0(0), filters

out a pulsating mode. In fact, Rogg (1982) has reported numerically

determined pulsations for flames that would otherwise be candidates for SVF

analysis.

4. Flames Anchored to Burners

We now turn our attention to gases, which necessarily have finite Lewis

nu bers, almost invariably lying to the left of the right stability boundary

in figure 5. . The problem is to find a mechanism that will shift this

boundary to the left, making it accessible to mixtures of practical interest.

Joulin and Clavin have shown that such a mechanism is the distributed heat

loss of section 3. , which suggests that heat loss to a burner anchoring

the flame will have the same effect. There is now experimental evidence

that burner flames can indeed pulsate.

Consider a flame anchored to the so-called porous-plug burner. The

mathematical problem to be solved is

3T/3t + 3T/x-V2 T = -aY/at-yY/ax + L-lV 2 Y = VYe-'ft with D = D142 (36)

T = T /Y - al/ x = J at x = 0, T bounded, Y - 0 as x -m+ (37)

Here -.1 is the prescribed mass flux through the face of the plug atr

x = 0; "¢hile T and a are the prescribed temperature and mass-flux

fraction there. (i practice, cooling coils are used to maintain T

constant.) The physical idea underlying the boundary condition (3Tb)

is that the porous surface inhibits the flux of reaction products, so

___ __ ___ p r| , . -| - -_
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that the flux fractions of the mixture as supplied by the burner are

identical to the mass fractions in the reservoir supplying the burner.

Analysis of the steady problem in the limit 8-+ - proceeds as in

section 2. for the unbounded flame, except that the burnt-gas temperature

T2 is the fundamental quantity to be determined, not M • Integration of the
o r

steady version of equation (36a) from x = 0 to - yields

T'T +J -T (38)
s s s b9

i.e. the heat received by the plug in terms of T . This enables us to
b

write the solution in the form

T -J +(T +J -T )ex J = s l-L ( T s +J xs - ' ) Le Lx

T b s s s b s for x. ]c x*.9
kTb

where

x= 2,n[Js/(Ts+J-Tb ]. (h0)

Consistency requires x* to lie between 0 and -, so that we must have

Ts -s + s

The right inequality shows that T' is necessarily positive, i.e. theS

plug must be a heat sink. Finally, a flame-sheet analysis gives

M = v2LD T2 exp(-9/2Tb)/OJ s , (42)
r bb a

from which Tb  can be determined. (The result (2. ) is recaptured on

reDlacing J with Y,.) Ferguson and Keck have made satisfactory
- L

compoarisons between experiment and a theoretical result essentially

equivalent to the determination (40) of the stand-off distance x* as

a function of the injection rate M r (Note that M is also used in makingSr r
( x* nondimensional.)

'0777.,757Y
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The inequalities (4i) define limits on M . When the injection rate isr

decreased (increased) beyond its limiting value a surface (remote) flame is

obtained, requiring a different asymptotic analysis. We shall be concerned

only with injection rates within the limits.

5. Stability of Burner Flames

In considering the stability of the solution in the last section it is

natural to turn to a EF analysis. However, such an analysis requires not

only L to be sufficient close to 1 but also that the boundary conditions

Der-mit T + Y to be constant to leading order. In general, the conditions

(37) do not satisfy the second requirement.

One way out of the dilemma is to abandon activation-energy asymptotics

and adopt a suitable modification of the delta-function model used in the

discussion of thermites. (The strength of the delta function is again

proportional to exp(-e/2T.).) Such an approach was used by Margolis who,

by means of a numerical investigation of the complicated dispersion

relation obtained from a linear stability analysis, was the first to

demonstrate the leftward displacement of the stability boundary alluded to

at the beginning of the last section. He also carried out a complete

n~u-erical simulation of a fuel-rich hyrogen-oxygen flame, thereby demon-

sxtrating pulsations; these were apparently confirmed by experiments performed

at Sandia-Livermore, although there is no published account of them.

The NEF requirement that T+Y should be constant to leading order is a

sufficient but not necessary condition for the flame temperature to vary

S (8- ) only. Thus, Bucklmaster (1982) also approached the question

by means of a delta-function model but then, a posteriori, justified the

model through activation-energy asymptotics. This amounts to identifying

t*e circumstances under which the dispersion relation is asymptotically

meaningful, and for which there is a flame structure linking the states
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on the two sides of the flame sheet obtained by the equivalent jump conditions.

Some care is necessary because of the sensitivity of the solution to variations

in flame temperature; the disturbance field is 0(l) on the e-scale, which

entails calculating the flame-temperature perturbations correct to 0(6-).

In turn, this entails deriving jump conditions (from the flame-sheet structure)

correct to the same order. Buckmaster found

S(T) = -S(Y) = cT*1 /8, (43)

6(aTlax) = -6(3Y/ax) + ZJ w/e -J w+qe -ith W= 1T b (44)

Here L has the same meaning (4. ) as in NZEF analysis, c is the small

parameter characterizing the size of the disturbance, the flame temperature

is Tb + cT* 1 /e, and q is a quantity (calculated from details of the flame

structure) that is never needed. The term - J W is the linearized form

of the term -Y fW appearing in the jump condition (20b), with Js replacing

Yf-

:ith the jump conditions in hand, it is a straightfor-ward matter to

carry out the analysis of unstable disturbances proportional to exp(at+iky).

Circumstances justifying the delta-ftunction model are then found to be

ee- X* = 0(1) (45)

where K has the definition (5. ). An asymptotically self-consistent

dispersion relation

22 (1-K 2 )+(l+1C)[(l-) 2 -k 2 1 = 3 -Kx *  (46)

is obtained, the corresponding ccmbustion field matching the structure

used to deduce the jump conditions (43), (44); here T and 0 have the definitions

(4. ) and (21b) with Js in place of Yf.

166
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A similar dispersion relation (but free of 8 and with k = 0) was derived

by Matkowsky and Olagunju for a somewhat artifical burner whose boundary

conditions are compatible with TEF analysis. They do not discuss the full

ramifications of their results.

What emerges from Buckmaster's analysis is essentially a NEF. To get

a 'hint of this, note that the boundary conditions imply that the disturbance

satisfies

T1 + Y1 =L 3Y hx at x = 0. (T7)

Now- the disturbance field decays rapidly ahead of the flame sheet, because

Ax* is logarithmically large in 8. It follows that aYl/ax is small at the

plug, small enough for the condition (47) and the near-equality of thermal

and mass diffusions to ensure that T1+Y1 is, at most, 0(8
-1 ) throughout the

co-_bustion field.

Finally, it should not be thought that the requirement (45) is a

constraint on x*. Insofar as the right stability boundary is concerned,

the relation (46) implies that as x* is decreased, Re(K) increases

(trough an increase in the frequency of pulsations) so as to keep the

ter= on the right balanced. When x. is 0(l) the frequency is logarithmically

large in e.

he displacement of the right stability boundary is illustrated by

figure 3, which shows how- the point k = 0 on it varies with x*. (Note that

- 2(1+43) as x. - -, in agreement with the result in section 5. for

,nbc-inded flames.) As x* is decreased the boundary first moves to the

left, by an anount that increases with 0. But eventually this motion is

-slted and the boundary moves back to the right.
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6. Pulsations for Rear-Stagnation Point Flow.

It seems likely that there are other mechanisms that Vill make the

pulsations accessible. One that has been suggested by theory (but not

confirmed experimentally) is negative strain, such as is experienced by

a flame in a rear stagnation-point flow.

For moderate Reynolds numbers, flames can be stabilized behind the

closed laminar wake at the rear of a thin plate or rod. Figure 4 shows

the configuration, which Mikolaitis & Buckmaster (1981) treated with a

NEF formulation based on the equations

2 2
(W/at+eya/ay-a /ay )(T,h) = Zc7y1(O,T)/3y (48)

and the Jump conditions (4.1+-1I.These equations are the unsteady version

of equations (h.4) with the sign of E changed because we are dealing with

a rear instead of a front stagnation point. The problem is completed by

the boundary conditions

T = Tf h = 0 at y = 0, (49)

the latter corresponding to the prescription Y = Yf at y = 0.

The steady solution can be written in a closed form similar to that in

section 4. for a front stagnation point. Its stability to one-dimensional

disturbances was carefully explored using a combination of Galerkin's method

and the method of weighted residuals. The results are illustrated by the two

curves in figure 5, which shows variations in the stand-off distance y, of the

flame with (negative) straining rate. All responses have the form of a

backward C, so that there is a maximum straining rate beyond which the

flame must blow off.

IMW
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__2
For values of (=£Yf/2Tb) less than about 0.91 the response is character-

ized by the curve (a); the lower branch is stable and the upper branch is

unstable, -ith a real eigenvalue crossing through the origin as the turning

point T is traversed. For other values of t, as characterized by the

curve (b), part of the lower branch is also unstable, with a complex

conjugate pair of eigenvalues crossing the imaginary axis as the point P

(for pulsations) is traversed. This raises the possibility that, for

sufficiently large values of the Levis number, blow-off will in practice

be preceded by pulsations. (The critical value of £ is quite accessible.)

1

I. -.

-- 4 . . .. a
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Figure Captions

7.1 Linear stability regions for thermite flames, with admissible
values of k when confined to insulated circular cylinder.
Labels to the right (left) of the neutral stability curve
correspond to a - 4(2) .

7.2 Isotherms of spinning thermite flame, with +/- denoting the
hot/cold sides.

7.3 Displacement of the right stability boundary in figure 6.8

due to the presence of a burner, for various values of e
The purely imaginary numbers are values of a

7.4 NEF in a rear stagnation-point flow.

7.5 Variation of stand-off distance y, with straining rate c
for NEFs in rear stagnation-point flows.
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In section 5. it was found that plane NEFs of sufficiently large Lewis
number are unstable. Since Im(ct) 0 0 on the stability boundary, the instabilit
is likely to result in either a pulsating flame or a flame tha-. supports
traveling waves. Such flames are the subject of this lecture.

One difficulty that immiediately confronts us is that, in contrast to the

ubiquitous nature of cellular instabilities, pulsating instabilities are not
ordinarily seen. The reason seems to be the large-values of L are needed;

I_ - according- to the theory, YcL/T2 must exceed 32/3 Cor 4(l + vri) if the
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disturbances are one-dimensional). There is evidence that fuel-rich hydrogen-
bromine mixtures might attain such values since Golovichev, Grishin, Agranat,
and Bertsun (1978) obtained oscillations in a numerical study, but there is no
similar evidence for more commonplace gas mixtures.

For this reason we must turn from the commonplace and deal either with
unusual combustible materials or else with special configurations, in order to
uncover pulsating flames. Our discussion will start with thermites, which
are solids that burn to form solids (a phenomenon that is appropriately called
gasless combustion). There is no significant diffusion of mass, so that L
is effectively infinite.
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