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Lecture 6

CELLULAR FLMA.ZS

We shall now examine the left stability boundary that was uncovered

in lecture 5 in our discussion of NEFs (figure 5.3). The boundary is

associated with instabilities leading to cellular flames, i.e. flames

w<hose surfaces are broken up into distinct luminous regions (cells) separated

by dark lines. Each line is a ridge of high curvature, convex towards the

burnt gas. For a nominally flat flame these cells are very unsteady,

growing and subdividing in a chaotic fashion; but curvature, for example,

can make them stationary.

The most striking manifestation of cellular instability is the

polyhedral flame, into which the conical flame on a Bunsen burner can

suddenly transform. The conical surface splits into triangular cells

forming a polyhedron; for a five-sided flame the appearance, from above,

is much like that of thi Chrysler emblem (figure 1). The dark wedges

the white tr..an lar cells correspond to sharp ridges; the dark

central region corresponds to a tip with strong curvature. Figure 2 gives

a sketch of a five-sided flame, derived from a photograph in Smith &

?ickering (1929). Polyhedral flames are often stationary, but can spin

rapidly about the vertical, making several revolutions per second.

We shall discuss chaotic and stationary cellular flames, including

no'".eiral flames, in th' framework of the ieakly-nonlinear theory

pioneered by Sivashinsky. The constant-density approximation will be

used throughout, although perturbations of it will be admitted in two

1. Chaotic Cellular Structure.

T_ e nonlinearity associated with the left stability boundary, will

he weakest in the neighborhood of
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-6.2-

-=-, k 0,

a nossible bifurcation point; accordingly we focus our attention there by

taking

T+ 1 = o(E_), k = O(A), a= oCe , (2)

w.-here e is a small positive parameter that will be found to represent the

aeplitude of the disturbance. The relative ordering of T+l and k is

suggested by the parabolic shape of the stability boundary, while the order

of a follows from the limiting form (5.49) of the dispersion relation

(5.39) as e - 0. This determines the growth rate of the most important

Fourier components (the unstable ones) of the disturbance when 1+1

is small. In terms of any scalar F that represents the disturbance field,

the. diszersion relation is equivalent to

F + 4F -(l+Z)F = 0. (3)

:or .+l < 0, this equation predicts unbounded growth. Bifurcation

(with wekl-.- nonlinear description) is possible if nonlinear effects, not

yet t ken into account, limit this growth. We shall first give a heuristic

argunent to determine these effects and then substantiate the result by

-zrm.. analysis. Tn arjinent consists in recognizing that equation (3)

is actually a for-uls ffor the wave speed, and modifying it appropriately.

in "this cennecticn, suppose that F determines the location of the flame

sheet as

x = -t + eF; (h)

..en - seed t eh is

0 = l+' .... with W= -1 1 ~t' 5

* ~ .
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ard equation (3) becomes

W, = 4F - (l+)F . (6)

This formula. determines the deviations of the flame speed from its adiabatic

value of 1 due to the reaction-diffusion effects that are triggered by the

distortion of the flame front.

Now, equation (5b) is mere kinematics, valid in a linear theory only.

The exact relation betweeu flame speed and displacement is

1 - F 2 2
l t = -12 F2+ -- -  (7)W= I-c t  Y
/+c2F 2

y

and, for disturbances with wave-numbers of the magnitude (2b), the nonlinear

ter=l ; 2 2  is comparable to the linear term eF This suggests that the
y

nonlinear generalization

W = -F -seF (8)
1 t y

should be used in the formula (6) and, when c is purged fror.the result-

ing equation by writing

7+I= -, n = Vey, T = C2t (9)

(in accordance with the ordering (2)), we find

F+ F2 + 4F +F =0. (10)

rinn nT(0

Note that this equa:ion hold for £ < -1.

Substantiation of this result requires a systematic asymptotic

develD =ent in which x is replaced by the coordinate

n = x + t - F(n,T) (11)

J, 4
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in the go%erning equations (4.24,25); thus,

(I3/2 1a3Fn 3n+ 3 21/x = 3/an, /- = -3/F a/3n+/1, F/t = F)an+ aia (12)

when y, t are replaced by n,r. The normal derivative, required for

the j,'p conditions (h.27-29), is

3 2 3(l+2E F 2)an-e F an (i )
n n

to sufficient accuracy. Perturbation expansions in e are now introduced

for T, h, and F, leading to a sequence of linear problems for the T- and h-

coefficients as functions of n,n, and r. These are to be solved under the

requirements: T T = T ... 0 for n > 0; conditions as n - are
1 2 3

undisturbed; and exponential growth as n - + is disallowed. The problems

are overdetermined, but only at the fourth (for T3 ,h 3 ) is a solvability

condition required, namely equation (10) for the leading term in F.

For two-dimensional disturbances of the flame sheet, the basic equation

is

F T+ (VF)2+ hv4F + V2F = 0. (14)

Disc:ssion for both one- and two-dimensional disturbances has been limited

to n.erical co7.nutations. The solutions obtained display chaotic variations

in a cellular stracture, resembling the behavior of actual flames. Figure 3

clearly shows the ridges that separate the individual cells.

2. Effect of C-ur-.ature.

Equation (!) is a balance of small terms; it may be modified to account

for any additional ;hysical process whose effect is also small. Hydrodynamic

effect- can be incorporated, for example, if the density change across the

flane is aprozriately small (because of small heat release), and this

provi~e s inortant insight into the role of Darrieus-Landau instability

in aztual flanes. Equation (10 ) is replaced by

* f2
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___(n-___ a-I (5

2+F + F dn 0 withy= / (,1
I-- I 21Te

zhe recuirement on the heat release being y = 0(l): the ex-_ansion ratio

a can only differ from 1 by 0( 3/2). Numerical integration shows that the

new (integral) term is destabilizing; an even finer structure is super-

imposed on the chaotic cellular pattern obtained without it. We shall

not consider the topic further, since Sivashinsky (!983) has recently

discussed it in detail. Instead, we shall examine a much simpler effect,

that of curvature.

Consider a line source of mixture supporting a stationary cylindrical

flame; the radial speed of the efflux is taken to be

u = R/r, (16)

wnere R is an assignable constant. The corresponding solution of equations

,25, the jump conditions (".27-29), and the boundary conditions at

--.e or .z and. infinity show that the flame is located at r = R and that

_.,+Yf ( r/R) E ZYfr ln(R/r)/R (17)

- - , h =i for r < 
-.

,ote that the speed (16) is 1 at the flarme location, an unexpected result.

- t effect of fla-me curvature on its speed, normally significant,

is here .ance!ed hv t.he effect of flow divergence.

is 7(£- ) the curvature is 0(E2), as for the disturbed

-ane nea. descri-e4 b-y equation (10). WTe would therefore expect such

.arze f1zes, if 'iisturbed to the same extent, to be described by a modifi-

:a--zin oftha-. -a-.ation; the additional terms w-ill be due to flow divergence

a- !nd .- xrbe] c",'.rvture. The modified eiuation can be derived by formal

* !**
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expansion, as was the original; but such an exercise, although reassuring,

is hardly illu-inating. We shall instead give a heuristic derivation that

enphasizes the physics.

The general effect of large-scale (and therefore weak) stretch on flame

speed -was identified in section 4.5; we may write

w = 1 -(l+Z)K+..., (18)

where K is the Karlovitz stretch (4.3). This effect is the origin of

the second term on the right side of equation (6); the first, corresponding

to what is normally a small correction to the result (18), must be retained

when Z is close to -1. In the present context, where flow divergence
-l 2.

generates a stretch R-1 of order e in the undisturbed plane flame,

equation (6) has to be replaced by

4 F + CF + R- (19)
yyyy yy

Note that F still represents disturbance of a plane flame, so that the

description is valid only up to 0(c) values of y.

Thne kineatic expression (8) for the wave speed is also modified,

because the flame sheez is mo-;ing in a non-uniform velocity field. We

find

=2 2 ,2
W1 = -T,-y? I-7IR-y21cR2 F (20)y Y

t3 suffizient accurac., so that co.:oination with the result (19) now yields

" + ----- + ." + C_ + / + vF /R - /c 2 I/R. (21)
2--.

:his has the sta- ionar, solution

F = - 2/2ER (22)
'I
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corresponding to the undisturbed circular flame. Replacing F by F+Fo0

so that F now represents disturbance of the circular flame sheet, and

using the scaled variables (9) yield

F+ F2 + 4F + F + yF 0 with Y = 1/c2R. (23)
T Q 71nTIr rnn

Comparison with equation (10) shows that the only new term is yF.

The linearized form of equation (23), -ith F set proportional to

exn(at+iy), -was considered in section 5.4. Figure 5.5 shows that curva-

ture is a stabilizing influence, but that instability occurs for

Y < Yc = 1/16, (24

corresponding to a supercritical bifurcation with wavennber

k c /E7/. (25)

c

T s-ow this we write

Y = F=66f, T= T/6 2  (26)

and expand f is a pover series in 6. In the usual way, we find that the

leading term is of the form

iky -ik y
A Tec + A-T-
A(T)e A(T)e c (27)

where

dA/dt = A- r 2/36 (28)

if t-ere is to be no secular term in the second perturbation of f. The

equation describes the evolution in (slow) time T of the amplitude

frc- sore initial value to the final value IA! = 6.

* 
7WI
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An examination of the first perturbation of f reveals that the

crests of the finaa stationary solution, as viewed from the burnt gas,

are sharper than the troughs. Moreover, the flame temperature is

diminished at the crests (as for the cellular flames discussed in section

5.3), so that they are darker than the rest of the flame sheet. Sharp,

dark crests are a universal feature of cellular flames as observed.

3. F!ames .'ear a Stagnation Point.

Equation (23) is only one of a class of evolution equations that

describe cellular flames in a variety of circumstances. An unusual

example corresponds to a flame located in weak stagnation-point flow

v = a(-x,y) with 3 = 0(c 2). (29)

- o nanses have been made in the notation of section h.5: the x,y-axes

have been rotated, so that the wall is no-,. x = 0 and the unrdisburbed

f!-7e at x = x. > 0 (cf. figure 4.3), to conform with notat-on already

eStabiished in this lecture; and the strain rate is now 8, since the E

usei there has been conscripted as a small parameter here. As for the

z---indrical fl'a-me, -,,e shall be content with a heuristic derivation.

.ne undisturbed flame exneriencesa stretch 8 so that, if it is

&_s_ a-ea -by an amount cF, its speed is

hI."  = 4F y o + F yy + S (30)

to sufficient accurac: (cf. equation (19)). The kinematic expression for

tne wave speed, corresponding to the result (20), is

...../ ES - - 2 (31)

- :utn - these two expre -ions for gives a formula for x, na-mely

7777
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x*= 1/2 Y + E with y =8/ (32)

and an evolution equation for F:

+ LF + F + y(nF) =0. (33)
T h ' nnn rn

Comparison with equation (10) shows that the only new term is y(nF)

The generalization

0 2

F (V) + 4v F + VF + y(nF)n = 0 (34)T -r

accunts for disturbances that vary in the z-direction also. If we now

consider disturbances independent of n, this equation reduces to the

earlier cne (23) -with n reD1aced by Z = Vz. Setting F proportional

to exz(at+ikz) and linearixz'r therefore leads to the dispersion

relaticn (5.49) and hence t: fi-ure 5.5. The bifurcation analysis starting

.-e ransfoi&azion (26) is applicable, so that for values of y

sli~h~1:- smaller than 1/1' there will be a stationary structure charc-

terized by dark ridges pointing towards the burnt gas.

_ henomenon has azcarently been known for many years. For upward

erra -ti~n through sufficiently lean hydrogen-air mixtures in a standard

:1-a-abili; tube, the fle cap is dividei into a nuamber of bright strips

or rizbons, serara&ed by dark lines (fig-ure h); it seems probable that this

is t-- ax:s:.etriz analzo of the nominally: plane flame considered here.

--e s:raining flow is zene.r=. ed b,. the gravity-induced convection of the

ugh- hrnt gas behind the flame (see, for example, Buckmaster & Mikoalitis

..... rent -.-e Df diszurbance (which can be combined with the previous

-ne tho , ho'ee'er, adding to the discussion) corresponds to

-- : .-. ]e:<p().( 35 )r Ii~ex~(ikeYT) 3

____
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Substitution into the linearized version of the evolution equation (33)

gives

d-k/dr = A(k2e-2Y-1K4e-hYT-¥) (36)

-which has the solution

A = r(- -2";T)k 2 /2y + (e-h 1)k-yT• (37)

Figure 5 shows that an- disturbance e-entually has a decreasing amplitude,

although for a time the amplitude increases if y is less than 1/16.

Tn the limit T , the solution (37) tends to zero. We conclude that

the flame is stable to this type of disturbance.

The chao-ic cellular instability found experimentally for weak strain-

_nn suggests that all disturbances should grow. Moreover, in the limit

y Z the theoretical results in lecture 5 predict instability for all

ksmall) waenumbers. 7hese facts are at variance with the conclusion

ab-e, "~which prompted Sivas! insky, Law & Joulin (1982) to provide the

:- o-wing explanation.

If the nonlinear'tern is retained in equation (33), harmonics are

continually generatel and these may grow during part of their lifetime,

providing a mechanism for sustaining the overall gro-.rh of the distur-

bance into instabilit-. ":uerical computations confirm this notion and

suggests that the ne:essar-: values of y are significantly smaller than

I/i. There -a: be im o _o. tic.s for the hydrogen flame of figure 4. Away

from the nose tha rate o: strain -,ill be diminished, and may be small

enougn in t.e z' .ki_ to . erm.it instabilities in the direLzion of the flow.

-hat is, the ribbon ins-_bility may become a cellular instability. Inter-

ticl. .7h, the tails of the ribbons are often seen to break up into

a,1 'a s a flame f-ire



h. ?olyhedral Flames.

In the 90 years since Smithells first observed these flames, they have

become established as a familiar laboratory curiosity. They are associated

with tube burners, but analogs can be created with different geometries:

M:arkstein (1964, p. 81 ) designed a slot burner on which he observed a

cellular flame behaving essentially like an unw rapped (linear) polyhedral

flae. In particular, the cells could be made to travel rapidly from one

end of the slot to the other, just as the zolyrhedral flame can be made to

spin. Markstein's photographs of the flame showed that the traveling

corrugations are saw-toothed in shape (figure 6).

It is the propagation that distinguishes polyhedral flames from other

types of cellular instability, so that will be the focus of our discussion.

Since the left stability boundary is not associated in any obvious way with

zroragating disturbances (unlike the right stability boundary), the challenge

is zo uncover a mechanism for such behavior.

One of the difficulties with polyhedral flames is that the undisturbed

fa--e is conua_, i.e. non-tIanazr. Follc-:ing 3uclunaste: (1983), we shall

overcome this obstacle by adopting a nominally planar model. Consider the

corzion .S of the burner flame that is located near the rim (figure 7a).

h.e flame speed varies from a small value (perhaps zero) at A, to a value

comparable to the adiabatic flame speed at B. This portion is modeled

zy a plane flame with some intermediate speed and standoff distance (figure To).

?er-_rb'ticnz of the planar configuration are permitted in the y-direction,

-;hic> is perpendicular to 'he page and parallel to the rim. Corrugations

that irise in this way are associated with the corrugations along the

entir en of the nominally concial-shaped flame whose base is being

no Ce1? .
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In the context of the weakly nonlinear theory, perturbations are

governed by equation (10), provided a term is added to account for the

presence of the rim. The rim is a heat sink that anchors the flame in a

simple fashion: an increase (decrease) in the standoff distance reduces

(increases) the heat loss to the rim, thereby increasing (decreasing)

the flame speed, a restorative mechanism. If F is now the perturbation

of the standoff distance, this effect can be represented by the modification

= 4F F-(l+ ) + qF (38)

2of the eauation (6). Here q is a positive constant of order c , and

the factor -(i+) has been restored (since the parameter E, which was

ear-'er equated to it, -wrill be given a different definition). From the

kinematic result (8) we now see that the governing equation is

t+ 2F2 + 4F - (l+Y)F + qF = 0, (39)

a result identical to the curvature equation (23) when the scaling (9) is

tLdone and R - replaced by q.

The linearized form of this equation was considered in section 2, but

-..e .ha.ll interret the analysis differently. Rather than fixing £ and

determ-ntn 7;-e range of unstable .!avenunbers for each q (there R-1

we s-al! fix c and determine the range of unstable waventumbers for each

7. ;7i:U . roportional to exp(at+iky), the stability boundary

= is seen to be the curve

hkh + (l+)k 2 +q= 0 (40)

-e. in -:-re i.

a-ot all v'_ues of k are admissible, however, because an integer

... ~~r of l_..ethz .us:; fit around the burner rim. The length L of

_.MP
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the circumference provides the definition of the small parameter e, namely

=_ 4 72 /L 2  (41)

and then the restriction is

k =_.;1 with kN = T.7/c , N = 1,2,3,... (42)

The mositions of the corresponding points on the neutral curve depend on

the value of q; in drawing fingite 8 we took q = 117 2 . The corresponding

values of Z then lie in the order T T For larger

values of q there are more points on the lower branch of the curve: in

general, for q > 4M L 2 there are M.

Those points for -which the (reduced) rewis number of the mixture is

less than Z correspond to unstable modes. Thus, each kN determines a

" sunerzritical bifurcaticn corresponding to a stationary N-sided polyhedral

'l-e Such unimodal bifurcations are essentially the same as those considered

earlier in the conzexz of flame curvature.

- Z an- can v 7ar ein n in an experiment _Y changing the mixtue

strength and flo- rate. We have seen that changes in q will move the

coin, s corresponding to k-, along the neutral curve, altering the stability

characteristics of the fla-e. Changes in I will do so too. For certain

choices of q, two bifurcation branches merge, i.e. Z. 9z for some
.I N

[,J. The solution cn such a merced branch corresponds to a srinnin-

~o heda2.flame, n=oviied M=2:T.

The most stisfaztry case, frcm a mathematical point of view, is

1:=2, = , (i.e. 16:2), for then the merged branch is the rightmost

-n an" rrsu ab " - ---S azcessiole as the first manifestation of instability.

,red ocihelra do not fit comfortablyon a circle, so

th i_S-- D' a ?h si:~Iiy satisf*.,ing choice. The objection does not apply
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to the choice ! = 6, IT = 3 (i.e. q = 129 6c 2), but then the two branches

originating at 2 and L. lie to the right of the merged branch, and

our elementary analysis can -provide no evidence that the latter is

* 1 accessible. Buc-mster does not resolve this difficulty but, instead,

argues that the 'favorable comparison of the merged-branch solution with

the physical flame is good evidence of accessibility.

To ensure that k- and k gixe the same Z, we must take
2N sae t ersttk

q = 16 N -4 2, (43)

and theni2
-12,'C. (4N 2'N

To dete=nine the solution on the rerga branch, we perturb q and z

ra-a; fro= the values (43,Lh) by 0(62, where 6 is a small perturbation

-ara-eter. At the sane tie w;e write

-- - :, - = ti (45)

-d expand -' in a -ow-er series in 8. T"he leading term is found to
be of' the : 2m:. .

-- ~ - i .yi ""- .2 [

-a :-[)e <": (t ' -2:2 -;
S"(t)e + A(t)e + 3(t)e + Bt)e , (46)

3A/lt = -2:< , 3aBI = i 2  (47)

if there is to 'e no sec,2ar term in the perturbation of f. Partial

i.eri'r-s. are use! beca-use A and 3 also depend on the slo-w time

-t; evz n :his-cale determines the ultimate amlitude of the

I -- n fla-e, -- e shall nor L--ursue the ratter here.
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Equations (47) have solutions corresponding to

-o --o sin(w S±k.y)-cos 2(,,t+o± with w a (48)

here A0  and are real and constant on the t-scale. These are waves

traveling in the negative/positive y-direction with an amplitude-dependent

phase speed kA 0. The shape of the wave resembles the sawtooth profile in

figure 6, and Buckmaster has argued that the propagation speed is consistent

with the rapid rotations seen in experiments.

5. Other Cellular FlKames.

So far we have been concerned with the evolution of the linear

instabilities associated with values of T slightly less than -1.

Various additional effects -were incorporated into the basic nonlinear

theo-., and others could have been (Sivashinsky 1983). Our final remarks

are oncerned with values of z slightly greater than -1, where the

.. reart ability of the flame can be destroyed by hydrody-n mic effects.

-e -. s e. v nonlinear description is now

+ F2(,t) Idn=0 -
+n inn 27t1 E3/2 (9

a rison with e-uation (15) reveals that the sign of F. has been changed,

because now the definition

S=l+ Z (50)

:s reede: to obtain a "ositive oarameter; n and T still have the

definitins (9b,c,. Without the integral tern, F - 0 as T - - what-

initial c.onditions are, corresponding to linear stability; as

-?: re, -he .. hydrol..nar i c effects (represented by the integral) are

:es -:.izinz, aichelson S Sivashinsky's comutations show that a

uro-Tressi.:: -ave, consisting of stationary cells, eventually forms

... .. . .I t
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provided the flame is not too large. For large flames, the chaotic

cellular structure first found in section 1 reasserts itself.

The shane of this progressive wave satisfies a much simpler equation

in the limit 0 0, i.e. for significantly larger departures of T

from -1 :han of a from 1. Evolution is then on the scales Yn, Y

rather than nt, so that the fourth derivative drops out. If a

progressive -wave is sought by setting F = -V, and F is neglected
T Fnn

(a valid step where the cuz-rature is not large), the result is

1 1-L -- 1) -+ - - l)F ()dn = 0 with V = y - dn, (51)
-CO f-n n~ -GO

a nonlinear integral equation for the slore F 1

The rough solution found by Sivashinsky was not very satisfactory

-n .so McConnaughey, Ludford & Sivashinsky (1983) recently integrated

the equation more accurately. A continuous periodic solution is sho-n in

f!Eare 9; the solution for any other period can be obtained from it by

scaling n without changing V (there is no preferrei ;avelength in the

li.ear theory). At the cusps, F has a logarithmic singularity, whichn

-oa-es the structure of the combustion field quite different from that of

-runsen fla=e near Its tip, for example. (Of course the singularity will

be smoothed out by the neglected tern = as .ichelson and Sivashinsky's

comnutations show.)

Of oar: icular interest is the value

V = 1.4y
2

.ta.n.. a- ..by nau..ey, Ludford, and Sivashinsky. For an expansion

.o cf .tis leads to a flame speed that is 1.6 times the plane

.ii.batic -.-a a result in surprisingly good agreement with measured

__ _ _ __, .- -. -.^ J,
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-al-..es (which range between 1.5 and 2). The theory, which assumes a

to be sma!l, is not valid for such large expansion ratios, but neve-heless

-akes an aczurate Prediction. This type of success is one of the hallzarks

of a -reat theory.

-- .- . * I -
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Figure Captions

6.1 Chrysler emblem.

6.2 Five-sided polyhedral flame.

6.3 Numerical calculation of cellular flames.
(Courtesy G.I. Sivashinsky.)

6.4 Flame in a standard flammability tube.

6.5 Curve in k2 e- 2yt, y-plane determining sign of right

side of equation (36).

6.6 Analog of spinning polyhedral flame for slot burner.

6.7 (a) Behavior of tube flame near rim of burner.

(b) Plane model of (a) used to describe polyhedral flames.

6.8 Linear stability regions for polyhedral flames, with
admissible values of k .

6.9 Stationary wrinkling of an otherwise stable plane flame
due to hydrodynamic disturbances; possible outcome of
Darrieus-Landau instability.
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