
~ADAI29 91 LETRSO HE MATCA COMBUSTION LECTURE 5 STABIIY /
OF THE PLANE DEFL..(U) CORNELL UNIV ITHACA NY DEPT OF

THEORETICAL AND APPLIED MECHAN.. J 0 BUCKMASTER ET AL,
UNCLASSIFIED JAN 83 TR-150 ARO-18243.21-MA F/G 21/2 OL

IEEllllllllllIIIIIIIIEIIIII



112.5

Jill 
W-0~ 11111250

11 1 gl 1111A

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF SIANDARDS 196i A

. . . ... . . "-= " - ii. .-

-- , m m l I



Ak.. /,, 3 - m

Cornell University

LECTURES ON MATHEMATICAL COMBUSTION

Lecture 5: Stability of the Plane

VDeflagration Wave

)Technical Report No. 150

J.D. Buckmaster & G.S.S. Ludford

January 1983

Theoretical and DTIC
Applied

CMechanics ., )

Thurston Hall
2Ithaca, New York

83 06 30 025

,~~~- - 7P I I I



LECTURES ON MATHEMATICAL COMBUSTION

Lecture 5: Stability of the Plane

Deflagration Wave

Technical Report No. 150

J.D. Buckmaster & G.S.S. Ludford

IJanuary 1983

U.S. Army Research Office '

Research Triangle Park, NC 27709

Contract No. DAAG29-81-K-0127

Cornell University

Ithaca, NY 14853

Approved for public release; distribution unlimited.

- I IIV- W W*,



The view, opinions, and/or findings contained in this

report are those of the authors and should not be construed
as an official Department of the Army position, policy or
decision, unless so designated by other authorized documents.

*



Contents

Page

1. Darrieus-Landau Instability 2

2. The Lewis-Number Effect: SVFs 5

3. The Lewis-Number Effect: NEFs 7

4. The Role of Curvature 11

References 15

Captions 16

Figures 1-5 17

1

• ° 2" .-- 4

* -1•

' I'+71*avow.



Lecture 5

STABILITY OF TF PLAtTE DEFLAGRATION WAVE

Steady, plane deflagration was introduced in the second lecture; here

we shall consider infinitesimal perturbations of it and so examine its

stability. We shall find two basic phenomena - the hydrodynamic and Lewis-

number effects.

Without the constant-density approximation our task is not easy, because

the perturbation equations (though of course linear) have variable

coefficients. There are three ways in which this difficulty can be overcome.

i) If attention is restricted to disturbances whose wavelength is

much greater than the thickness of the deflagration, a hydrodynamic

description is appropriate (section 3.1). This eliminates the Lewis-

number effect, though it may be readmitted as a perturbation (Pelce

& Clavin 1982).

(ii) If the constant-density approximation is adopted, then the T-

and Y-equations (the only ones that have to be solved) have constant

coefficients. This eliminates the hydrodynamic effect, leaving the

Lewis-number effect. The hydrodynamics can be reintroduced in the

context of a weakly nonlinear theory based on appropriately small

heat release.

(iii) For one-dimensional disturbances, the governing equations can

be reduced to their constant-density form by means of a von Mises

transformation, the distance variable being replaced by the particle

-znct ion. This requires the diffusion coefficients to be proportional

to T (rather Than constants), by no means an unreasonable assumption

hs ically.

-n this lecture we shall consider the limiting cases i) and (ii), thereby

isolatin the hydrodynamic and Lewis-number effects.

-5.1-
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1. Darrieus-Landau Instability

The treatment of flame stability from a hydrodynamic vieowpoint is due,

independently, to Darrieus and Landau. The work of Darrieus, a French

aeronautical engineer well known for his invention of the vertical-axis

windmill (Darrieus rotor), is often cited as part of the Proceedings of the

19406 International Congress of Applied Mechanics, but these were never

published. Copies of a 1938 typescript are in the possession of several

members of the combustion community.

As we saw in section 3.1, large-scale disturbances of a plane flame

are described by Euler's equations on either side of a temperature

discontinuity, namely

V'y = 0, v/Dt = -Vp - pgi. (1)

3ars have been dropped, so it should be remembered that the scales are

mach bigger than the diffusion time and length. Note that a gravity term

has been added, corresponding (when g is positive) to the burnt gas in

x > 0 lying above the fresh mixture in x < 0. The jump conditions (3.9,10)

apply across the discontinuity, whose nominal position is x = 0.

The tundisturbed flow, found as a solution of equations (1) satisfying

the jump conditions (3.9,10), is

fC) = { { ) for x o< , (2)
0 == >

,where o is the e.zansion ratio (3.7). The deformation of the discontinuity

is represented by-

x (Yt) (3)

if the (Smail) disturbance parameter is absorbed by F1  (see figure 1);

I.$ " _ , || = = "
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-e consider perturbations for which

F1 = A ext(iky + at) with k>O. (4)

Restriction to two dimensions, implied by this and

v = (u,v), (5)

involves no loss of generality. The goal is to determine the growth

parameter a as a function of k, the prescribed wave number of the

disturbance. The corresponding perturbations of the flow field are

governed by

PI 1 == 0, 0avl/at + PoU0 Vl/ax = -VpI, (6)

and the problem is complete once we have found the jump conditions satisfied

by t'hese perturbations.

Since only terms that are linear in disturbance quantities are retained,

'he -=iit vectors in the directions norr-al and tangential to the discontinuity

_re (i7) and ( 1 ,) sc thatare -ly ) an ly

vn  u I , v- = o ly + vl -  (7)

The Jump conditions (3.9,10) no-w give

u1b = F it, Vlb-vif- (1-a)Flys Plb- -(a-1)gF (8)

".ehen ...-e note that

V =-Fit*

-Here, fIlowing 'arrieus and Landau, we have taken

W 1, i.e. uIf Flt9 (10)

---. . -.. .. . . I -l] I.l [
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an ass rntion that can be justified for SVFs with L = 1 (section 4.2) and

for NEFs (section 4.4). The conditions (8), (10) may all be applied to the

undisturbed location of the discontinuity, i.e. x = 0.

Solution of the perturbation equations proceeds separately on the two

sides of the discontinuity. In the fresh mixture the flow is irrotational

(since there are no upstream disturbances), so that
I

kx kx _U kPfek '  Vl= ikPfek x P -(a+k)Pfe for x < 0, •(ii)

if the factor exp(ikyj+at) is omitted. The amplitude Pf of this potential

field is as yet unknown. In the burnt mixture there are also rotational

terms, diu to the generation of vorticity at the curved flame, so that

= e-bex +kSe ax/a, v = -ik-be-kx-(ia/a)Se -ax/a,

= ( /o-k)Pbe-kX for x > 0. (12)

-n addition to Pb' the a.plitude S of the solenoidal field is still to

.. leter.inea.

The requirenents (8),(10) at the discontinuity give four homogeneous

equations for A,PfPbS. These have a non-trivial solution if and only

1f

(a+l)a 2 + 2aka + (a-l)(g-ak)k = 0, (13)

i.e.

.(a2+a-l) 2 G-i

In the absence of gravity, i.e. for g = 0, the larger root is positive

-or all k, corresponding to instability for all wavelengths. This is

the Darrieus-Laniau result, which has been an embarrassment to combustion

scientists ever since it was discovered. We shall now see how gravity

n odifies te u:nacceptable conclusion that plane flames are unstable.
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.When g # 0 it is instructive to examine the short and long wavelength

limits. As k - ,

a- [-a - !aa-1k/(o+l)+..., (15)

so that -he influence of gravity dies out and short wavelengths are unstable.

A s k -0 ,

a -±i/ ) I/ (+1) -ak/ (+!) +... (16)

so that gravity stabilizes long wavelengths. The critical wavenumber

separ ating stable and unstable disturbances is

k = g/a. (17)

Hydrodynanic instability is observed in flares (see, e.g., Sivashinsky

1983, but it is often absent. There are several "-ays of reconciling

shis :act with the present results. The flame may be too small to be

treaten as a hydrodynamic discontinuity; the wavenunbers that allow the

dis.urbed flame to be so treated may be less than k ; or there may bec

other stabilizing influences, such as cur-ature (section 4).

2. T.e Effect: Ss

W.e now set aside the hydrod anics and investigate the Lewis-number

effect, b.y adopting the constant-density approximation. The first tart

-zur iscussion is _:oncerned with S7'Ts, which are governed by equation

2.2 -'ifth Y = 0 i volumetric heat losses are negligible.

Section 3.3 found that such flame sre unstable to plane disturbances,

...ones, .or L > 1. holana.r isturbatices are also unstable,

.- " f L < -. a- "ell. This car be lemonstrated by examining large-scale

>r-o even =omtared to - :o this en-J, we introduce new

.*-a



-5.6-

= (18)

and consider the limit 6 - 0. Then B = 0(6) in the basic equation

(4.12), and W = 1 to leading order; to next order, we find

W = 1 -6bK with K = S- dS/dr, (19)

an explicit formula for the effect of weak (superficial) stretch on the

-flame speed. Clearly such stretch decreases the wave speed only for

L > 1 (cf. section 4.3).

The instabilility of the plane flane for L < 1 follows immediately

from this relation. Suppose that, because of some disturbance, corrugations

have forr.ed (figure .2). The troughs, as viewed from the burnt mixture,

experience positive stretch, -while the crests are compressed. It follows

from the formula (19) with b < 0 that the flame speed at the troughs is

increasea that at the crests decreased, so that the amplitude of the

corr,ations ,ill groW (corres-':nding to instabilit.). We are dealing

with a cellular instabililty, whose nature is most clearly seen for the

'- S iscussed belcB. 3ecause of th'e connection (3.27) between the saeed

and tem-erature of the flame, the crests are relatively cold and, hence,

less !i.nincus than the rest of the fl.me. For L > 1 the effect is reversed,

a stable situation.

That this stability conclusion re.rains valid for disturbances of more

moderate scale can also be seen frc= the basic equation (4.12) of SVzs.

Setting

W = !I+, K = (20)

;ives

b(i7~ /dt-K 1 ) = 2;, "ith W1  iF F (21)

1T, , -Inn
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if

X = -T+ F (), T) (22)

is the location of the disturbed flame sheet. Growth of the mode proportional

to ex:p(aT+ikn) is therefore determined by

2 -1 2 = ... (23) 2
a2-2b -- k = 0, i.e. a = b k. (23)

For k 0 0, one of the roots is positive -whatever the value of b (i.e. L),

so that there is instability for all non-planar disturbances when L # 1.

For k = 0, there is instability only when b is positive, i.e. for L > 1.

The instability of SV~s restricts their value as a framAv k within

,which to discuss flames, although the qualitative insights c ined from

such solutions can be ver- useful (e.g. concerning flee tiO iee Buckmaster

Ludford 1982 ). In pursuit of stable flames, the more usu :omenon,

"e now turn to NEFs.

3. The Leuis-NmTiber Effec-:: NEFs

The equations governing NEFs were derived in section 4.4. To obtain

the combusion field of a steady, plane deflagration, we introduce the

zoor linate

n = x + t (2h)

based on the flame, and seek a solution of the resulting equations

2_2 2 22 2 _ 2 -

;= / 3n- aT/3n2 ay 3h/3t+ah/an-3 h/an2- htVy-£(a Tj n $T/ay - ) 0

(25)

4- ending only on n. This yields

Tf+Yfe n  -kYfne n

h for n 1 0 (26)

r n

%S uh_ , n3ls-arbed tempoerature and e-s.i--. (-perturbation) pr'ofiiles,
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since equilibrium must prevail behind the flame.

If the equation of the disturbed flame sheet (see figure 1) is

n = Fl(y,t), (27)

so that the normal derivative in the Junp conditions (4.27-29) becomes

3/3n--ly 31 y, then these conditions may be written

-l = ~Yf?1~ (hI) =-ZYfFI, T1/ n= Y.+i/-i= -YfFls =~ z l.3-; = -Yf7 ++!/Zs

6(3h /3n) = h /Zs-2ZYfF with Zs = 2T ,/Yf (28)
1 L1 L 1i s b 1

all quantities being evaluated at the undisturbed flame sheet n = 0.

+ 2
(Wfe have used the relation . = -h!/T,+... and sunerscripts to

denote values at n = 0±.) The problem is to solve the equations (25)

subject to these conditions and the recuireent tha T I 1

n t .Arbitrary initial conditionZ are, as usual, taken into account by

zonsidering perturbations for which

F1 = A exp(iky+at). (29)

The possibility of stability can be seen most easily for t 0, urhen

the j'ump conditions

= 6( h1 /n) = 0 (30)

ensure that

hI =0 for all n (31)

he appropri-7e solution of the Jifferential equation (25b). The remaining

cro 4em is to solve the Tl-equation "or n < 0 alone, subject to the

-: ;: ar- conditions

_ t._..
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T= 9T1/3n -Y1A at n= 0; (32)

t.-e 'actor exp (iky:+Y~) has been omitted. tow, the solutions of the

=er-&rbz-on equation are

e nwith K = /1+4a+4k (_-/2 < arg K < n/2) (33)

--here, f attention is restricted to uns.zable modes Re(a) > 0, we have

Re(W "i (34)

-ollo-s that the appropriate solution is

= m e(1+)n/2T1  e fo-- n < 0 (35)

a_.-.j -h,- he boundary condition ,32a' .'eires

" = '- i.e. < 1 or a = -k . (36)

our ass!um._-ion tna. th'-- .ode is unstable, so we Must

:! e---ee are no ".st ble m-es: when L = I the flanme is

-efor all -'en-._.oers k.

-rz -- e results obtained in se:tior 2 for slo-wl. varying disturbances,

-e .- e- -ha, as Z beco es large (:ositively or negatively), long

wavelenrz_.- disturba-nce (k small) "ill become unstable. To see how this

-w noe-w - 4- r the .-.. -nitions (28) for Z # 0.

-l- -
. of the rer.zlrbaion equations proceeds separately on the two

F C-- f!-e sheet. in front -e find

:.l)+n/ -'k (+< /4]Bn}e (l+ )n/2 for n < 0, (37)

're < has - --inition (33b) an aza-in tle factor ex(iky+ct) has

_--e ni c_ . eni.. 2eh..-
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T1  0, hI = De(l1
- )n /2 for n > 0. (38)

7-e e:c-ressions are valid onj " for Re(l+t) > 0 and Re(l-K) < 0, i.e.

when zhe condition (34) is sa:.isfied, as it is for unstable nodes. The

juoop conditions (23) no-, yield a homogeneous system for the coefficients

A,3,C,D; a non-trivial solution exists only if

2K (1-<) + Hi-) -k 2  0 with t. = 1 (39)

a result due to Sivashinsky.

This diszersion relation should be viewed as determining, for each 2,

the grow -_-arameter a of any unstable disturbance mode of wave number k.

The stabili:: boundaries in the Z, k-plane therefore correspond to Re(a) = 0;

they are shs-.-n in figure 3. At any wave number there is a finite band

C Le-sf n--es, a!-.ays including L = 1, for which the fla-me is stable

and outside of -hich it is unstable. Th-e left boundary, on which Im(a)

*-' .es also, is a creation of nonplanar disturbances: the dispersion

i-ticn,'32 des n: -4yield sn a with positive real part for Z < -1

= C. Tn fact, the nstable mode becomes neutral as this part of

he .-ax is a prohei. Cn the other hand, the instability predicted

the r4.t bouniar-, -:here -n(a # 0, does survrive a planar treatnent:

t'he dispersion relation (39) with k = 0 does yield an a with positive

r:eal- r--t or 7, > (+,3

-ne s biliit" zoundar. in the neighborhood of the point 2. -l,

= C.an be e' d i 'ined flne - stretch, as was the destabilizing effect

' l-er ong waveien g'-.iszurbances for L - . in section 2. We

::::-,a " re!tion (k.L) bet.:een weak stretch and flame speed:

< -I, oosftive (negazive) stretch decreases (increases) the wave

I i .i I I
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speed, tending to increase the amplitude of any long-wavelength disturbance

(cf. figure 2); for X > -1, amplitudes are decreased.

7here are convincing reasons for believing that the left boundary

is associated with cellular flames, a coron laboratory phenomenon:

it zorresponds to L < 1, the Lewis numbers for which such flames are

seen; the crests of disturbed flames are darker than the troughs (just

as for SVFs with L < 1), this being a characteristic of cellular flames;

and-, for T < -1, all modes with k < !.Z(l+7) are unstable, suggesting

that the outcome of the instability will not be monochromatic, another

characteristic of cellular flames. In lecture 6 we shall give a nonlinear

theory that arises naturally from the present linear analysis and reinforces

this conviction.

he right stability boundary is associated with pulsations or traveling

-waves; it is relatively inaccessible because L is rarely much bigger

than 1. Ho-wever, similar rhenomena may be expected in so-called thermites,

-or w;ch L = w. Otherwise, special means must be devised to make the

'o ar-; more accessible. These matters form. the subject of lecture 7.

.he Role of Curvature

:he plane premixed flame whose stability has been discussed so far

"s an iaealization seldom approximated, since in practice the flame is

usually cur-ved. z--e. under -circumstances designed to nurture a plane

staze, imperfections can thwart the best efforts and give a curvature,

albeit -reak, to t-e flame. In this section we shall investigate certain

li=htl " curfed flnes, those amenable to the SVF analysis in section 2

and 4hose associated "with the left stability botundary for NEFs in section 3.

Dnsider .he cylindrical source/sink flow

u = _R/r, v =(0)

k --- Mm
~ I. ' I
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where 6r is radial distance and u,v are now polar components. The

undisturbed flame is then circular, with 8-multiplied curvature

= ;R -I  (41)

determined by the requirement that the mass flux through the unstretched

flame is 1. The exvressions (20) are replaced by

W=l+W , K= *v - + K + Kif (42)

where v is due to the displacenent of the flame in the source/sink

flow, which (for the constant-density approximation) is undisturbed.

Substitution in the basic equation (4.12) gives

b(dW /dT -Viv - K- K:W )= 2W (43)

with

-(R-1 F 1  1 ~.~~ 2R2 FI, R-2 (FI+F (44)

r = R + F ( ,r) (45)

is the location of the disturbed flame sheet (figure !). The behavior of

the mode proportional to exp(aT + inO) is therefore given by

a 2_2(b - I TR1 )aR -1 (±2b-l +n 2R-  = 0. (h6)

To discuss this result we introduce the wavenumber

k = R-In (h7)

and note t-a t"-4 euation(23a) is recovered as R - . There will be

inssability for those values of k, R that make one of the (always real)

iraoots oT, equation (46) pezitive. Such values are bounded by ones for

------------
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which a = 0, but the reverse is not true. Figure 4 shows the line on which

one root vanishes and the corresponding value of the other root; the full

tart of the line is therefore a stability boundary but the dashed part

is not. Results for R ) -, given in the discussion of equation (23),

then show that the stability regions are as lableled. We conclude that

curvature is never stabilizing for a sink flo-, but that it is for a source

flow -hen

L < 1, k < V-2/bR.

We turn now to the neighborhood of Z -l,k = 0 in figure 3, where

the dispersion relation (39) reduces to

a = -(l+)k -4k ; (48)

zc have a balanced ezuation we must require

k= J(+Z), so thrat a 0(1+z)2. (49)

To see how this relation is modified by curvature, we consider once

more a circular flsze r = R sustained b a source/sink flow. A

4erivation of the new dispersion relation will be given in section 6.2,

-;-ere it is needed for a nonlinear analysis. Here we shall only note

-Wa: the connection tetween -ave speed and stretch, represented by the

eneralization (4?' of the relation (4.48), is preserved; but that

2reca~culations of the stretch, represented by the term in k , and of

th-e wave speed, renresented by .he term a, are needed because of the

n -':siforit ot v.,locj"y f i ld.
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The modified dispersion relation is

+ (50)

-Xhere k is now limited to the values (47); a balancedequation requires

R = 0(14) -2  (-5-V

in. additon to the earlier restriction (50a). For I < -1 and no curvature,

there is a band of wavenumbers

0 <k < !~T (52)

for which a is positive, corresponding to instability (cf. figure 3).

Source flow, i.e. convexity of the flane sheet towards the burnt mixture,

narro-ws the band (figure 5) and, for sufficiently high curvature

-2 (53)

e-in-nates it. Sink flo'w, on the other hand, widens the band indefinitely.

Z > -1 and no curvature, a is negative for all k, corresponding to

stability,. Source flow does not ch!ane this conclusion, but sink flow

nroduces instability for wavenubers belo-w an ever-increasing upper limit

~iue5).

For both the Slv and the NEF, convexity towards the burnt mixture is

fcund to be stabiIizing, concavity destabilizing.

-- - - - ,----
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Figure Captions

5.1 Notation for stability analysis of plane flame as
hydrodynamic discontinuity (x) and as NEF(n)
Flame surface is given by FI(y,t)

5.2 Instability of SVF for L < 1 .

5.3 Linear stability regions for plane NEFs. The
boundaries are P: 4k2 - -(!+I); B: = 2(1+8k 2)

[1 + /3(-l+8kZ)]/1+12k 2 ).

5.4 Effect of curvature on SVF stability.

5.5 Effect of curvature on NEF stability.

A.
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