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Lecture 5

STABILITY OF THE PLANE DEFLAGRATION WAVE

Steady, plene deflagration was introduced in the second lecture; here
we shell consider infinitesimal perturbations of it and so examine its
stadility. We shall find two basic phenomena - the hydrodynamic and Lewis-
numbar eifects.

Without the constant-density approximation our task is not easy, because
the perturbation eguations (though of course linear) heve variable
coefficients. There are three ways in which this difficulty can be overcome.

(i) If attention is restricted to disturbances whose wavelength is

much greater than the thickness of the deflagration, a hydrodynamic

Gescription is appropriate (section 3.1). This eliminates the Lewis~

nunber effect, though it may be readmitted as a perturbation (Pelce

& Clavin 1982).

(i1) If the constant-density aprroximation is adopted, then the T-

end Y-equations (the only ones that have to be solved) have constant

coet?icients. This eliminates the hydrodynamic effect, leaving the

Lewis-number offect. The hydrodynamics can be reintroduced in the

context of a weakly nonlinear theory based on appropriately small

heat release.

(iii) For one-dimensional disturbances, the governing equations can

e reduced to their constant-density form by means of a von Mises

transformation, the distance variable being replaced by the particle

wnetion. This regquires the diffusion coefficients to be proportional

[2Y

to T (rather than constants), by no means an uareasonable assumption
prysically.
Tn this lecture we shall consider the limiting cases (i) and (ii), thereby

iso0lating the hydrodynamic and Lewis-number effects.

"'501-
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1. Darrieus-Landau Instebility

Y

The trestment of flame stebilily from a hydrodynanic viewpoint is due,

independaently, to Darrieus and Landau. 'The work of Darrieus, a French
aeronautical engineer well known for his invention of the vertical-axis
windnill (Darrieus rotor), is often cited as part of the Proceedings of the
194¢é International Congress of Applied Mechanics, but these were never
published. Copies of a 1938 typescrint are in the possession of several
rexbers of the ccmbustion cormunity.

As ve saw in section 3.1, large-scale disturbances of a plare flame
are described by Euler's equations on either side of a temperature

discontinuity, namely

9y = 0, pDv/Dt = -¥Yo - pgi. (1)

Zars nave be2n dropped, so it should be remembered that the scales are
much bigger than the diffusion time and length. Note that a gravity term
has ween 283ed, corresponding (when g 1is positive) to the burnt gas in
;ing above the fresh mixture in x < 0. The jump conditions (3.9,10)
arvly across the discontinuity, whose nominal position is x = 0.

The undisturved flow, found as a solution of equations (1) satisfying
the jump conditions (3.9,10), is

1 i ~gX
for x O, (2)

>4
o
\
-
1 <4
o
1}
-
e
o
it

1/ L ai (1-0)-gx/o

waere ¢ is the expansion ratio (3.7). The deformation of the discontinuity

is redpresented oy

X = ?l(yat) (3)

i? s%e (smzll) disturbance parameter is absorbed by Fl (see figure 1);
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we consider perturbations for which

F,=A exp{iky + at) with k > O. ()

Restriciion to two dimensions, implied by this =nd

v = (u,v), (5)

4

involves no loss of generality. The gozl is to determine the growth
varameter a as a function of k, the prescribed wave number of the
disturbance. The corresponding perturbations of the flow field are

governed by

6. =0, 9v. =0, ooayl/at +pou 3yl/3x = -Vp (6)

00 1’

and “the problem is complete once we have found the jump conditions satisfied

by trhesz2 perturbations.

Since only terms that are linear in disturbance quantities are retained,

the -init vectors in the directions norrmal and tangential to the discontinuit
Yy

4 -
ars 71,-7

y) and (7. ,1) sc that

L ly

VT Uyt a, vy E uOrly . (1)

The ‘urz conditions (3.9,10) now give

= (1-0)7, = (¢™h-1)eF, (8)

Yy T f1e Vv Vir v’ Piv"F1r

wnen we note that

V = ~F,,.

1t

cllowing Darrieus and Landau, we nave taken

W=1, i.e. u (10)

Iy

1t’

it
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an assumption thet can be justified for SVFs witn L = 1 (section 4.2) end
for NSFs (section 4.4). The conditions (8), (10) may all te applied to the
undisturved locetion of the discontinuity, i.e. x = 0.

Solution of the perturbation equations proceeds separately on the two
sides of the discontinuity. In the fresh mixture the flow is irrotational

(since there are no upstream disturbances), so that

[ 4

w = kaekx, v, = ikae‘x P, = —(cz-'-k)Pfe'{x for x < 0, -(11)

if the factor exp(iky+at) is omitted. The emplitude Pf of this potential
field is as yet unknown. In the burnt nmixture there are also rotational

terms, dua to the generstion of vorticity at the curved flame, so that

1
)
o

_ up o—XX -ax/o o oKX . -ax/g
u, = kP e +kSe s vy ixP e -(ia/c)Se

*

P, (a/o-k)?be-kx for x > 0. (12)

In addition to P_, the amplitude S of the soleroidal field is still to
T2 dstermined.
The recuirements (8),(10) at the discontinuity give four homogeneous

equations for A,P_.,P, ,S. These have a non-trivial solution if and oanly

£ b’
i
(041)a° + 20xa + (0-1)(g-ok)kx = O, (13)
l1.e.
a=-Z kt/Lii—z:)%l ¥ - (Ehex . (10)

In the absence of gravity, i.e. for g = 0, the larger root is positive
“or all x, corresponding to instability for all wavelengths. This is

tne Darrieus~Lzniau result, which has been an embarrassment {o combustion

scientists aver since it was discovered. We shall now see how gravity

»ydicies tie unacceptable conclusion that plane flames are unstable.
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t is instructive to examine the short =nd long wavelength

=
5
[
s |
&
'S
o
[")

limits., As kX -+ =,
a ~[-0 % /0(02+o-1)]k/(c+1)+..., (15)

so that the influence of gravity dies out and short wavelengths are unstable.

As x —+ 0,

a ~ti\/(c-l)gk/(0+l) -ok/{o+1)+... " (16)

so that sravity stabilizes long wavelenztns. The critical wavenumber

x = z/o. (17)

Zydrodynamic instebility is observed iIn flames (see, e.g., Sivashinsky
1982}, put it is often absent. There are several wayrs ol reconciling
tnis Fact with the present results. The {lame may te too small to be
=reztad a3 & hydrodynamic discontinuity; the wavenuwrvers that allow the

b

lame to be so treated may be less than X,3 or there may be

u
[
0
ct
5
o
[}
je )
Yy

othar stebilizing influences, such as curvature (section 4).

. —an =
2 Tha Tawis-lumpar Zifect: SVSs

e now set asids the hydrodrnamics and investigate the Lewis-nurber
affact, by adopting the constant-densiiy zpproximation. The first part
iiscussion is concernai with 3Vrs, waich ere soverned by equation
{L,12) with ¥ = 0 if volumetric heat losses are negligible.

Zection 3.3 found that sueh flame srz unstable to plane disturbances,

inf<a ones, for L > 1. fonplanar Zisturbances are also unstable,

2ar L <1 23 -ell, This can be lemonstratad by examining large-scale

larze even comzared Lo 3. To this end, we introduce new
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(n,Z,7) = 8(n,z,1) (18)

and considsr the limit & + 0. Then 3B = 0(8) in the basic equation

(L.12), and W =1 to leading order; to next order, we find
W=1-35% with K = s‘lds/df, (19)

an explicit formula for the effect of weak (superficial) stretch on the
flame speed. Clearly such stretch dacreases the wave speed only for
L > 1 (cf. section 4.3).

The instabilility of the plane flame for L < 1 follows immediately
from this relation. Suppose that, decause of some disturbance, corrugations
nave formed (figure 2). The troughs, as viewved from the burnt mixture,
exverience positive stretch, while the crests are compressed. It follows
froa the Tormula (19) with b < 0 that the flame speed at the trougns is
increes2d that at the crests iecréased, so that the azplitude of the
corrizsetions will grov  (corresponiing to instabilitﬁ. Ve are deeslir
g ¢2llular instabililty, whose nature is most clearly ssen For the
¥TTs 3fscussed balew. 3ecausa of the connection (3.27) between the speed

and temzerature of the flame, the crasts are relatively cold and, hence,

less luminous than :ne rest of the Jlame. For L[ > 1 the effect is reversed,

That this stetility conclusion remains valid for disturbances of more

moderate scala cer 2150 Te sean from the basie equation (L.12) of SVTs.

XK=« (20)

o{aw) At~ ) = U, with W) = -F) ., ®) = F, (21)
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X = -1+ Fl(n,r) (22)

is the location of the disturbed flame sheet. Growth of the mode proportional

to exp(at+ikn) is therefore determined by

2 -1 .2 R
a-2b a-k =0, i.e. a=Db + /o +k . (23)
L4
Tor k # 0, one of the roots is positive whatever the value of b (i.e. L),
so that there is instability for all non-planar disturbances whenl # 1.
For k = 0, there is instavility only when b is positive, i.e. for L > 1.
The instability of SVFs restricts their value as a fransv -X within
which to discuss flames, slthough the qualitative insights ¢ :ined from
sucr solutions can be very useful (e2.3. concerning fleme tip see Buckmaster

.59
Tudford 1982~P). In pursuit of stable flames, the more usus ©  iomenon,

W

we now turn to NEFs.

The Lewis-Number Effect: NIFs

i

The equstions governinz NEFs were derived in section L.k, To obtain
+ha combusion field of a steady, plane deflagretion, we introduce the
cooriinate

n=x+t (24)
based sn the flame, and seek a solution of the resulting equations

e - 2 2 2,2 2
YT+ 7?’3:1-32'1‘/3:12-32?/3;-,’ = sh/3t+sh/m-3 h/anz-:?h/ayz—z(a T/an+32'r/a:,' )= 0

(25)
iavanding only on n. This yields
T,+Yfen —tinen
Oy = » hy = for n$0 (26)
Tb c

ne undisturbed temperature and enthalsy (perturbatioan) profiles,

2y
(2]
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since equilibrium must prevail behind the flarme.
IT the equation of the disturbed flame sheet (see figure 1) is
n =7 (y,t), (2m)

. - e

so that “he normal derivative in the Jjurp conditions (L4.27-29) becomes

S/Sn-?ly 3/3y, then these conditions may be written .
- - P - - k=l - = ¥ T +} 0
T = YT a(nl) szLl, aTl/Bn Yf_1+nl/;.s
§(3h, /an) = thi /e -20Y_F. with 2_ = 2T2/V (28
Bhl n) = &hy ls- ['A P wi s = AT 28)

a2ll quantities being evaluated at the undisturted flame sheet n = Q.
{We nave used the relation by = -hI/T§+... and superscripts * to

erote values at n = 0*.) The protlem is to solve the equations (25)
Jeot to these conditions and the reguirezent thas Tl,hl die out as
v ~:x, Arbitrary initial condition: are, as usuzl,taken into account by

considering perturbations for which

F, =4 exo(iky+at). (29)

The possibility of stability can be seen most easily for £ = 0, when

n2 Jump conditions .

k
'

5(hl) = s(ahllan) =0 (30)

hl =0 for all n (31)

3 the aporoprizte solution of the 2differantial equation(esbL The remaining

ey
'y
o]
(5]
|-
1)
i3
1
1]
(44

o solve the Tl-equation for n < 0 alone, subject to the

ol
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T, = aTl/Bn = -YlA at n = 0j
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tne Zzcior exp(iky+ut) has been omitted. How, the solutions of the

Re(x) ~ 1.

T =3 e(l+x)n/2 -

"1

Iz ?ollows that the ezpprovriate solu:

where, I gtiention is restricted to unsizble modes Rela) > 0, we have

(34)

cn is

2
h < = /l+la+thk” (-7/2 < arz « < ©/2) (33)

or n < J, (35)

B= {l4+c}2, i.2. v =1 ora=-%". (35)

233i03Ts our zsswmsTion thazt trne mode 1s unstabls, so we rmust

..... Tai2 fhag <hers are 7D unst2dle medes: when L = 1 the flame is

-— - al - ER - - -~ -

sTezla Tor 2ll wawanumbers g,
Trzm She resulits odbtained i
Toim the re s odbtzainz d in

wzvelength disturtezaces

T—Taex ..
=3

% - - -~ -~ el 2
nzzrenz, we now consifer the fump
- SN s
S2litizn 27 the rars
sidaz of sna flames shest. In fro
f -
- S (1+dn/2 L L A mhe
- = = v Ly T oveTax !
wrers < has the da2finition (33b
=3 Zaning we have

sextion 2 for slovwly varying disturbances,

[

arge [rositively or regatively), long
will become unstable. To see how this

aonditions (28) for 5 # 0.
————

urtation equations oroceeds separately on the two

1+ )n/2

2, 2 (
k™ ~{1+<) /k]2n}e for n < 0, (37

) an3 a3ain tihe factor exv(iky+at) has

.
)

s o e s b e s 7 cni o e
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De(l_K)nlz for n > 0. (38)

The exprassions are valid oni- for Re(l#x) > 0 and Re(l-k) < 0, i.e.
when the condition (3%) is sciisfied, as it is for unstable modes. The
Jump conditions (238) now yieid a homogenzous system for the coefficients -

A,3,C,3;5 2 rnon~trivial soiution exists only i
2x2(1-<) + [(1-<) -kx Jza 0 with ¢ = 1/1 . (39)

a result due to Sivashinsky.

This Aispersion raletion should be viewed as determining, for each E;
the growtn taraneter a of eany unstable disturbance mode of wave number k.
The stabilizy boundaries in the 7, k-plane therefore correspond to Re(a)
{ney are shzwm in fizure 3. At any wave number there is a finite band
, 2lways irclulding L = 1, for which the flame is stable

ani outsiia of which it is uns%abla. The left boundary, on which Im(a)

vanishes 2159, is a creation of nonplanar disturbances: the dispersion
»3laticon [32) ices not yia2ld zn o with positive real part for £ < -1

zni = = 2. In fact, the unstabls mode becomes neutrzl as this part of
%2 l-axis is approzcned., On the other hand, the instabilily predicted

- She rizht doundary, where Im(a) # 0, does survive a planar treatment:

+he dispersion relation (38) with k = 0 does yield an o with positive

razl rars for 2 > 2{1+ J/3).
Tha 372b5ilility Toundaery in tie neighborhood of the point Q = -1,
2 = 7 2an 22 explzinad T flawe stretch, &s was the destabilizing effect

o7 rer: long wavelenssh digturbences for L <1 in section 2. We

msei anli m2za2 472 r2lotion (5,LE) vetiesn weak stretch and {lame speed:

s . < -1, rositive (negzative) stretch decreases (increases) the wave
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spe2d, tending to increase the amplitude of any long-wavelength disturbance
(ef. figure 2); for & > -1, emplitudes are decreased.

There are convincing reasons for believing that the left boundary
is zssociated with cellular flames, a cormon laboratory phenomenon:
it correspvonds to L < 1, the Lewis numbers for which such flames are
seen; the crests of disturbed flames are darker than the troughs (just
as for SVFs with [ < 1), this being a characteristic of cellular flemes;
and, for 2 < -1, all modes with k < 1V/-{1+1) are unstable, sﬁggesting
that the outcome of the instability will rot be monochromatic, another
cheracteristic of cellular flames. In lecture 6 we shall give a nonlinear
theosry that arises naturally from the present linear zanalysis and reinforces
this conviction.

The right stability boundary is associated with pulsations or traveling
wavesy it is relatively inaccessible because L is rarely much bigger
than 1. Howevef, similar rhenomena may te expected in so-called thermites,
Sor whienh L = «, OQOtherwise, svecial means rust be devised to make the

oouniary more accessible. These matters form the sudject of lecture T.

“, The Role of Curvature

The plane premixed flame whose stability has been discussed so far
is zn idealizatior seldom approximated, since in practice the flame is
usuzily curved. Iven under circumstances designed to nurture a plane
staza, imperfections can thwart the best =lforts and give a curvature,
ailzeit weak, to the Jlame. 1In this section we shall investigate certain
- curved “lsres, those amenable to the SVF analysis in section 2

ani “hose associatad with the left statiliity boundary for NEFs in section 3.

Zonsider the eylindrical source/sink rlow
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where 9r is radial distance and u,v are now polar components. The

undisturved flame is then circular, with 8-multiplied curvature

x = ¥R : (k1)

determined by the requirement that the mass flux through the unstretched

flame is 1. The expressions (20) are replaced by

W=14W, K=U v, +x +i, (k2)

whersa Yij. is due to the displacement of the flame in the source/sink

flow, wnich {for the constant-density approximation) is undisturbed.

Substitution in the basic equation (4.12) gives

b(aw, /ar UYLt KW1)= v, (43)
with
. -1, - a2
“y = -(R :li'Fl,l.), Y k'.,L--" 2R rl’ Kl = *R (F1+F1¢¢) (54)
r=R+F($,7) (45)

is the location of the disturbed flame sheet (figure 1). The behavior of

the mode proportional to exp(at + in¢) is therefore given by

- - -1
a2—2(b-1;R1)u-R Leop hen®r ) = 0. (u6)

To discuss this result we introduce the wavenumber

k = 8 1 (L7)

and note “n2t *na2 ejuation(23a) is recovered as R -+ ». There will be -
inszavility for those values of k, R that make one of the {always real)

roots of =2suazion (L&) positive. Such values are bounded by ones for
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“hich a = 0, but the reverse is not true. Figure L shows the line on which
one rcot vanisnes and the corresponding value of the other root; the full
vart of the line is therefsore e stability boundary but the dashed part

is not. BResults for R + =, given in the discussion of equation (23),

then show that the stability regions are as lableled. %We conclude that

curvature is never stabilizing for a2 sinx flow, but that it is for a source

L<1, k < /=2/ER.

We turn now to the neighovorhood of 2= -1,k = 0 in figure 3, where

Tthe dispersion relation (39) reduces to
-.2 . .
a = -(1+2)x -bkx 3 (u8)

TC heve a bpalanced 2zuation we must regulre

2 T 2, (49)

P
f
Q
—~~
)
+
=
~—

»

u
6}
ct
1y
[©]
ct
o
It
(&)
~~
H
+
& |
-

To see how this relstion is modified by curvature, we consider once

R sustaeined by a source/sink flow. A

~ore a circular flame r
arivation of the new dispersion relation will ke given in section 6.2,
w~are it is needei for a norlinear analysis. Here we shall only note

2% the connectiosn tatween wave speed and stretch, represented by the

seneralization (43' o7 the relation (4.48), is preserved; but that
racaleulations of the stretch, represented by the term in ke, and of

.

o s SN A N A = x i
- . Y S I8 ket Db
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. Tne modified dispersion reletion is

o = —(147)k2-lic" TR, (50)

wnere Xk is now limited to the vaiues (47); 2 balancedequation requires

R = 0(147) 7 (54

8

n 2ddition to the earlier restriction (50a). For 2 < -1 and no curvature,

there is a band of wavenumbers

0 <k < 3/-(1+1) (52

or which a 1is positive, corresponding to instability (cf. figure 3). !

'y

Source flow, i.e. convexity of the flame sheet towards the burnt mixture,

o

narrows the band (figure 5) and, for sufficiently high curvature
R > (1472715, (53

iminates it, Sinx flow on the other hand, widens the band indelinjtely.
Tcr 4 > -1 &nd no curvature, a is negative for all x, corresponding to

5222ilit;. BSource flow does rnot change this conclusion, but sink flow

For both the SVF and the JEF, convexity towards the burnt mixture is

fcund to be stabilizing, concavity destebilizing.
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Figure Captions

Notation for stability analysis of plane flame as
hydrodynamic discontinuity (x) and as NEF(n) .
Flame surface is given by Fl(y,t) .

Instability of SVF for L <1 .

Linear stability regions for plane NEFs. The
boundaries are P: 4kZ = -(3+1); B: T = 2(1+8k2)
[1 + /3(T%8Kk2) 1/1+12k2).

Effect of curvature on SVF stability.

Effect of curvature on NEF stability.
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