
AD A79 910 LECTURES ON MATHEMATICAL COMBUSTION LECTURE 4 SVFS AND /
NEFS..U) CORNEL UNIV IHACA NY DEPT OF THEORETICAL
AND APPLIED MECHAN 4 0 DRUCKMASTER ET AL JAN 83

UNCSIID T-4 R-84.0M A698 -- 17 FG 1/ M

EEEND~hE



UIl lll. 1 3=1 14211W

iiiiii

1.25 1-4

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUtREAU 0f SIANDA!RDS 91,3-A

* ! !

II



Ao S~~-

Cornell University

LECTURES ON4 MATHEMATICAL COMBUSTION

Lecture 4: SVFs and NEFs

Technical Report No. 149

J.D. Buckmaster & G.S.S. Ludford

January 1983

Theoretical and DTIC
Applied 3~

Mechanics

Thurston Hall
Ithaca, New Yor

83 06 30 011

0 IT n ;I.71



II

LECTURES ON MATHEMATICAL COMBUSTION

Lecture 4: SVFs and NEFs

Technical Report No. 149

J.D. Buckmaster & G.S.S. Ludford

January 1983

U.S. Army Research Office

Research Triangle Park, NC 27709

Contract No. DAAG29-81-K-0127

Cornell University

Ithaca, NY 14853

Approved for public release; distribution unlimited.

n jn. I ,



The view, opinions, and/or findings contained in
this report are those of the authors and should not be
construed as an official Department of the Army position,
policy or decision, unless so designated by other
authorized documents.



Contents

Page

1. Flame Stretch 1

2. The Basic Equation for SVFs 3

3. The Effect of Stretch on SVFs 5

4. The Basic Equation for NEFs 8

5. NEFs Near a Stagnation Point 11

References 15

Captions 16

Figures 1-4 17

... V

;

:

'I

~I



Lecture 4

SVFs and NEFs

For want of a complete analysis of multidimensional flows in

pre-asym=totic days, it was natural to try to identify special character-

istics that play particularly important roles in the understanding of flame

behavior. Flame speed and temperature are ex-mples of such characteristics

t"hat have already been identified; a more subtle characteristic, introduced

by Karlovitz, is flame stretch. We shall start b:y discussing this concept,

so as to have it available when the later analysis is reached.

1. Flame Stretch

To define this (or for that matter flame speed) in an unambiguous

fashion, we must first define a flame surface, i.e. a surface character-

izinE the location of the reaction. For large activation energy the

reaction zone is such a surface when viewed on the scale of the preheat

zone, since it then collapses into the flame sheet. If the flasme can

ze viewed as a hydrodynamic discontinuity, as in section 3.1, then the

discontinuity itself is a flame surface. In either case, a flow velocity

is defined on each side of the surface, such that v _ is continuous

across the surface.

Consider a point that remains on the (moving) flame surface but

travels along it with the velocity v . The set of such points forming

a surface element of area S will, in general, be deformed by the motion,

so that S will vary with time (figure 1). If S increases, the flame

is said to be stretched; if S decreases, the flame experiences negative

stretch and is said to be compressed. A measure of the stretch is the

prouorTionate rate of change

K = S- dS/dt, (1)

-4.1-~
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kno-n as the Karlovitz stretch. Note that d/dt is not a material

derivative; the fluid particles in the surface element change. The points

advance with the flame surface, i.e. at the speed V and not v •

The deformation of the surface element consists of two parts correspond-

ing to the motions with speed V along the normal and with velocity Y.

tangentially. The first, known as dilatational stretch, is found to

be <V, wnere K is the first (or mean) curvature of the surface, taken

positive when the surface is concave towards the burnt gas; the other, known

as extensional stretch, is V p, where y is the tangential component

of velocity at neighboring points projected onto the tangent plane at the

noint of interest. Since

v =  L V (2)
Lp nL~4 iy 2

the Karlovitz stretch is

K = V *v + KW with W = V+vn. (3)

Thickness is another concept characterizing a flame that can be treated

as a hydrodynamic discontinuity. In section 3.1 the nominal thickness

5/c,,.M! was introduced, but here we need a local, instantaneous definition.

It is natural to replace M with M, .and this is found to be appropriate:
- r

decay of the temperature in the preheat zone takes place over distances

proportional to M-1  (cf. equation (3.25)). In turn M = PW may be

replaced by W, since the flow is incompressible on either side of the

surface.

Introduction of the notion of thickness leads to the concept of flame

volu=e generated by a surface element of a hydrodynamic discontinuity;

this is proportional to

A = s/M. (4)

... ... ~~~~1 - ... ,, ..... .. .... -
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Just a-S changes in surface element led to the concett of Karlovitz stretch,

so chanzes in volume lead to the volxiuinal stretch

B 5 d-1/dt = K-.-id/dt (5)

introiuce-4 by Buc*--aster. The stretch B arises naturally in our

consi:erazion of SV;Fs, to which we turn next.

2. T:e 3asi Euation for SVFs

The iiscussion now focuses on the combustion field, i.e. the internal

szructure of the discontinuity. To confine atter.tion to changes that occur

over zi-es and distances 0(e), we make the transformation

(y,z,t) = G(,, -,c). (6)

-o 3(e- ), the governing equations (3.1l) reduce once more to
2/172 2 2

te -'.P1, since the second derivatives and /z become

, , "-.ner this transform-ation. As a consequence, the results (3.25,26)

are S-- 1I valid provided €, is allowed to depend on - ,C as well as r.

C-c: ,irse J does likewise (in spite of the apparent contraction (3.3T)).

:ne relation bet-ween V and 0. is given by the universal result

-. The seccnd comes from the generalization (3.39) of the enthalpy

balanze "iSed in seztion 3.3. Coznariscn of the balances (3.28) and (3.39)

sho';5t-ta ,re ha-e to deal with Just one new term, namely

0 + 2 -1 "(7)

f V (T+L Y)dn;(7

and 7-e conzinued -;lidity of the formulas (3.25,26 ensures that the

ev-ar~aticns of "crespondini; terms in the two balances are the same.

frst glance :the term (7) appears to be 0(8-2), and hence negligible,

zec- -e tte operacor is 0(9-1 ). It is important to realize, however,

: . , !~ I o~ .{



that T, Y are given by the forlas (3.25,26) only when n has its local

meaning. The curvature of the flame sheet, from which n is neasured,

t-ereby tro.-ides a contribution - -1 </3n to V2, so tiat the term (T)

tezomes

_-i K(TbTf -l ) = e -l-ll)'; (8)

here K is the 5-multiplied first curvature of the flame sheet. The

second relation bet-ween % and V is therefore

= V-2-bV- 3 + bV-IK, (9)

.hi.. should be compared with the plane result (3.29).

Elimination of 6* between the two relations now gives the basic equation

2 3 2b(V-V-) = V 3rV + W.V (10)

an S77, shch shc,!d be con-ared with the plane result (3.31). It

can Ce recast in ter=,s of the stretch concepts introduced in section 1

by noting that

W = V, K = KV (11)

for the sta_nnant flo- (3.13) on which our analysis has been based. 7hus.

1 -2(2
b(W. E;/- -) - -W - tn'1 + , (12)

- and B, the Drooortionate rates of change in surface and volume

elezents, are neasured on the slow time scale x(just as K is measured

on t-e 0(9) diszance scale), and b has the definition (3.29a). In

zhis form, the ecuation is valid for an arbitrary flo, field, not Just the

stagnant one thaz we have considered for the sake of simplicity. (The

.........



suzerizial stretch is then -ourely, *il ta'-ional.) %Inen the constant-dernsity

anorox.mati on is abandoned there are t-wo rmodificati-~s or, rather, reinter-

zretati-ons. The -amLeter b becones a more comntlicated function of L

--ut still h-as the pro~oerty (3.32). In 4dition, the equation is only

valid for th-e hydronamic discontinuity-., n~ot for the flame sheet; here it

is aldfor either, because the velocit-Y field does not change throughIthe fl . (When change in density is taken into account, W must be

-2-aLated ahead of the diiscontinuity, -as is customa.)

bz asic equation (12) for STs does not, in zeneral, determine the

-wave snceed W directly; it is a (comp-licated) partial differential

.ia:on for the shapDe of the moving surface. Cnl'; for L=1(~.b=0

ioes it reduce to an equation for W; in particular, W = 1 in the absence

of h-eat. l0ss. For Plane deflagrations, there is no superficial stretch

= )but there is volunrinal stretch (B = -Vt) due to chmanges in flane

thiknesand equati4on (3.31) can be interpreted in terms of it.

* tE ffect of Stretch on SV~s

.e ave introduced the concept of stretch because of the importance

attached to it in the past thirty years. Far-reaching use has been made

of it as an intuitive too! in the prediction and explanation of flame

bh-ior, particularly of quenching. In essence, the claim is that stretch-

ing a flame causes i4t to decelerate, and stretching it too much will

extinz.:ish it. Th,-ile the claim has -natured with time, its essence persists.

£oweer, mtil SVFs -,ere identified and their connection with stretch

discov,:erei, the claim w as no more than conjecture: now we can deduce the

effect -Tstretch on -fla-me speed from the basic equation (12), at least

for S',7s. '.ore about stretch, in the context of rNEFs, will appear in

section 13.5.

If
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To be sure, the stretch involved in equation (12) is 3 and not K;

but, if the thickness does not vary, there is no distinction. (An example

is the stagnation-noint flow treated next.) Consider first adiabatic

coniitions, i.e. T = 0. Fron figure 2, which sho-ws a plot of -on

ersus .2, it is clear that, for b > 0 (i.e. L > 1), _positi-e values

of 3 correspond to values of W less than 1, and that there is no value

of 7,7 for

B > e-b- > 0. (13)

7he effect of stretch is indeed as conjectured, provided the Lewis number

is bigger than 1. But, for a Lewis number less than 1, this is not so:

for b < 0 (L < 1), positive values of B correspond to values of W

zreazer than 1, and there is no limit; the flame accelerates when stretched,

ncan tolerate any stretch. In fact, deceleration is associated ith

stretch (comnression) of which the flame cannot tolerate too

-uch: for

B < e-b - 1 < 0, (14)

z-here is no solution.
When there is heat loss, i.e. for # 0, the conditions (13,14) are

replaced by

B ' (e-!-Y)b-! accordingly as L 1; (15)

.he heat loss helps to extinguish the stretched or compressed flame. In

f w, when the loss is large enougn (namely for T > e-1 ) no stretch or

_mnzression is required at all, a result in accord with that for steady

ciane defla_,-rations in section 3.3. Moreoverthe extinction speed e
- 2

obt-ined there is now seen to have general validity for SVFs.
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s--e conclusions about extinction are only of interest if it is known

that stretc- of the required -mount (Positive or negative) can be applied

toa fl-.e. it is concei-:able that, ,hen there is insufficient heat loss

fCr ertinction, the flame can alw.ays adapt to the flow conditions so as

.o a;'o.d being ext __nzushea. T-he stagnation-voint flow considered next

sho-s tat is not so.

x - x/e (16)

to ze slo¢ly var-Ying coordinates (6), and now take axes as sho A

....._ . . -e., stanation-zoint flow is 'hen

y (17)

- e-- > 0 1 he rate of strain. (No confusion ;-ill result from

::- u-ed e in a differet way in section 3.1.) .-nile there is a whole

of solutions of the basic eyuation (12), we shall concentrate on

-he _ s sibility of a stationary flat flame, located at

= n. (say). (18)

ss-ming such a flame exists, ,,e have

= ,*, K = 0, vj= E, (19)

t--- its thickness is constant and

B = K= X)I3X (20)

-.. to the definition (3). The stretch, whether voluminal or super-

:lzi: . , is 'ust the strain rate. We conclude from the result (15) that,

--- '-It n ! l i nn



:nder adiabatic conditions, a stationary flat flame exists for all

, t-e -.-)- . hen L is less than one, but not for

E>e- -1 (21)

when L Is greater zhan one.

-.re is no zractical difficulty" to increasing E; just the speed of

tehe i-cident str-. ... 'ras to be raised. As the strain rate is gradually

...... s o the 'alues (2-1), w.e may exzect the flame to be extingvished.

Before these values are reached the flame will lie at the position (18),

where n. is gi-en by

2
2sEnZn(zn.) + b = 0. (22)

_ner certain conditions, a rear stagnation-point flo can be established

Sfl-.e be nade to lie in it (cf. section 7.6). The analogous conditions

- n- . n n f a staticnry flat - am .ere can be

by anging the s4-n of F above.

- he Esic ~_-uations for N.B Fs

-e :7- is characterized by the requirements (3.34) and (3.Ll), the

sa=e d of which correszonds to using the expansions

S + Y = ( T (H -T)+ (23)
- -0 7""' y f-To "

1f 0 1 * ~ (3

.:en th-ese assu= Zns are used, the basic quations (3.14) become

= - on either side of the flame sheet, (24)

= 2, 25
Th + ;7 everywhere, (25)

if -bulk hen less is necliible; here T stands for T0, and H1  has

eaced b-.- h. Bou.dar-y and initial conditions must be consistent

the ass,':-.tion zhat H is constant to leading order, emphasizing

::nze more that :s are a restricted class of solutions.
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Aea-i of the fla-me shee- the full equations (24,25) hold; but in the

:ur-t as the assumotion of ecuilibri=m leads to

2 = (26)

zhere, the temoerature pe_ turbation accou-.inz for the -whole of h. 7he

solutions on the two sides must be linked by j'i-.p conditions, to be

ieri-ed next.

Tnese conditions are deduced by analysis of the reaction-zone

structure, a question that was addressed in sections 2.h,5. First, the

--er existence of a structure requires

6(T) = 0 with 6( ) ( ) -
( ) -; (27)

then 3T/n = 0 for n = 0+ (as here), thp structure ;ives

3T/nI = Yfe , (28)
0-

is -,e lame-temperature pert urbtion, i.e. the value of

h at the flame sheet. The remaining jump conditions

6(h) = 0, 6(=h/3n) l £T/anf 0 _ (29)

-.ome from integrating the equation (25) through the reaction zone and

zao..hinthe resuiL!t -. ith the combustion fields outside.

. ue eouations governing NEFs have been developed under the assumtion

,3b', i.e. a quiescent mixture. When the mixture is in motion they must

e r eplaced bY

DT/Dt = 2T, Dh/Dt = V2h + v2 T (30)

a'ead of the flame sheet, and

, IC



T = Dh/Dt =Vh (31)

Cehind. -he sys'te. (27-31) defines an ellintic f'ree-boundary _roblem of

the fourth order, w¢ith the f!a..i sheet as the moving bcun4ary. Solution is

a formidable question, tackled in three ways that may." be listed as follows:

(i) small perturbations,

(ii) numerical integration,

(iii) special geometries.

Stability considerations fall under (i); NEFs are prominent in the stability

lectures 5, 6, and 7. (Unlik.e SVFs they are stable for certain values of

the in...ber.) The n..erical work under (ii) has dealt only with a

parabolic limit of the elliptic problem; some resulting Stefan problems

are zonsiders in lecture 10. An example of (iii), stagnation-point flow,

is discussed in the next section, where the effect of stretch will be

e.-ned once more.

-he discussion of' general deflagrations started in lecture 3 with a

.s.-eratio. of hydrodyna-mic discontinuities, i.e. waves whose length

scale is large compared to their thickness (as represented by the parazieter

:- section 3.1). The need to know the wave speed then led to an

exam-ination of the flame structure, and the uncovering of SVFs and MEFs

as classes of solutions that could be handled by the asymptotics. The

7:F is an accertable structure for the interior of the hydrodynamic

:aiscontinuizy if

e = 0(-I) (32)

since then the undulations of the flame sheet follow those of discontinuity.

.o demand of th tye (32) is made of EFs; the activation energy is

indenendently large. In other words, NEFs exist whether hydrodynamic



diszontinuities do or not. if an ,.? can be vie-wed as a h-ydrCdnar.ic

- it corresponds to a solution -ith variati-ns on the

sza =  
- (other than in the n-direction). 7o leading order it must,

-herefore, be a steady, plane deflagration traveling at the adiabatic

Seed: . 1 in the jump conditions (3.9,10,12).

",:Fs are most useful when they cannot be viewed as hydrodynamic

oiscontinuities, witness what ,e shall hate to sa~y about the= from now on.

--eir po'wer is evident in the stability considerations of lecture 5. As

so often happens in truly basic research, a concept born of one question

has reached its full power in circumstances where that question is

-eaningless. Such unpredictability is not easily understood by those who

zcntrol research funds.

5. :.77s Nsear a Stagnation Point

--e pcroblem is sketched in figare 3. The velocity field is

v = €(x,-y), (33)

- ere e is the rate of strain, so that equations (30,31) have solutions

for -.-~ch T and h are functions of Y only. The combustion field

zan -- stratified -ith the flame flat, as for an SV7. If the flame sheet

: lozated at

y= Y,(3)

W = E < = 0, V~j. = EX, (35)

an-- the Karlo-itz stretch

K a(cx)/,x = (36)

:s- e:*-e strain rate.

7 77 -Vq.
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.. e .all y = 0 is a thermal insulator, or there is an identical

o::osin- et. in y < 0, the boundary condition

3h/y = 0 at y = 0 (37)

must 'e a::-z7ed. (The leading-order temperature (31a) satisfies the

corresponding condition autonatically.) Th1.e requirement (37) is also

satisfied .,rhen the flo'w is unifor., the flame being then plane with

reaczion zone at y = y.. The only role of the wall is to change the

uniform flow into one that stretches the flame; heat-loss effects because of

this geometrical role are prevented by the condition (37).

Behind the fla-e sheet

d h/dAY + sy dh/dy = 0, (38)

h n=-2 for 0 < y < y (39)

of the --ondition (37). A-ead of the flame sheet

d2U/ - + eydT/dy 0, d h/dy + eydh/dy = tedT/dy for y.<y<- (hO)

T Th 0 as y (41)

the f.... sheet itself, the '1=p conditions (27-29) require

= T=h - , dT/iy -Z-idh/dy =-Yfe at y = y* + 0. (42)

f

-e :roble- is therefore reduced to solving the differential equations (40)

ar,4e The boundary co)nditions (hl,42). Since there are six boundary

AVL

1.I
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conditions on this fourth-order system, -.e may e.-pect the parameters 0*

and tto be determined as functions of e.

indeendent solutions of the T-equation-(4Ca) are 1 and erf(6y), where

6 = (E/2)% (43)

the bo,-undary conditions (41a), (
42a) then shov that

T = Tf + Y ferfc(6y)/erfc(d) with d = 6.. (44)

A particular solution of the h-equation (40b) is nou found proportional to

2

y exn(-&2y2), from which we construct the solution

S= -T2 ,erfc(6)/erfc(d)

2 22
+ XY[6ye - Y erfc(d)-de- erfc(.I)'/,;(erfc d)2 (45)

satlsfing the boundary conditions (41b),(42b). The relation

= 2(in[Hrerfc(d)/26] + d-}  (46)

and, finally, the equation

6 = (wT/2)erfc(d)exp{d 2+[ded / erfc(!)-2-d2]1}withd=Yf /2T b(47)

for -he standoff distance y. as a function of c, follow from the

zoundary conditions (L2c,d).

Cf greatest interest is the flame speed (35a) as a function of stretch

(36), and this is plotted in figure 4 for various values of Z. As c 0,

; tends to the value 1 (that for an adiabatic plane flame). As c

r



increases from zero, W initially decreases for 2 > -1, but increases for

Z < -1, in agreement with SV7s for L < 1. This behavior is described

the o r.ula

w = -(+Z) + O(),(48)

which can be shown- to hold quite generally for flows with small strain.

(:he formula has implications for stability, see section 5. .) Further

increase in e leads to two possibilities: for I < 2, the flamue sheet

e-entually moves to the wall and is extinguished; for t > 2, extinction

takes place in the interior of the flow.

In short, stretch usually decelerates the flae and always extinguishes

4t. Acceleration rill occur for weak stretch if the Lewis number is

sufficiently far below 1.

Success in treating stagnation-point flow is due to the reduction

_rom rarzial to (tractable) ordinary differential equations that is

effected by the velocity field (33); han-ingthe boundary conditions

makes no difference, provided they are independent of x. For example,

-uck-aster and ikolaitis have replaced the wall by an inert counterflow

a a temperature close to Tb, and Daneshyar, Ludford, & Mendes-Lopes

(1953) have considered loss of heat to the wall. Daneshyar, Ludford,

.-endes-Topes, & Tromans (1983) have even taken account of expansion

through the flam-e by modifying the velocity field without losing

tractability'. ?inally, Mikoalitis & Buckmaster (1981) have considered

rear stagnzaton-point flow (i.e. c < 0); see section 7.6.

'. '
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Figure Captions

4.1 Flame stretch.

4.2 Graph determining effect of voluminal stretch on

flame speed.

4.3 Notation for SVF and NEF in a stagnation-point flow.

4.4 Variation of flame speed W with straining rate e
in stagnation-point flow.

ft7



~-f lame surfaces



NO.5-
C

0- E
1  W 1

* ~C
-0.5- -e



U~l,

-61



0 -



SECURITY CLASSIFICATION OF THIS PAGE (tp
h

en Date Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 49 1. ,OVTAC ,O. 3. RECIPIENT'S CATALOG NUMBER

149q ,c

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

LECTURES ON MATHEMATICAL COMBUSTION Interim Technical Report

Lecture 4: SVFs and NEFs 6. PERFORMING ORG. REPORT NUMSER

7. AUTHOR(s) 
S. CONTRACTOR GRANT NUMBER(q)

J.D. Buckmaster & G.S.S. Ludford DAAG 29-81-K-0127

9. PERFORMIG ORGANIZAT'ION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS

Department of Theoretical and Applied Mechanics

Cornell University, Ithaca, NY 14853 P-18243-M

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Resev,', Office
Post Ofiice 1?! 1 13. NUMBER OF PAGES

Resea'. Triigle PRA. NC 27709 20

14. MONITORING AGENCY NAME & AODRESSII different from Controlling Ollic*) IS. SECURITY CLASS. (of this report)

Unclassified

1Sa. DECLASSIFICATION/DOWNGRADING
SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Rep rt)

Appromver f'r ptillic -olPa.e: distribution
jn;imired.

17. DISTRIBUTION STATEMENT (o Che ebstract entered In Block 20. If different from Report)

NA

IS. SUPPLEMENTARY NOTES

THE VIEW, OPIINIONS AND/OR FINOINGS CONTAIkTOF) IN THIS REPORT

ARE TWOSF Cc ' ..4 * -- $1 S1 ." S":-'J:. 0 * - z CO'S'rUED AS

A'. OFF.C.A,L c~Oql,,f~ JF THE A.N1 ;05 V.:4., P.LICi. CR 0E-
CISION, UNLESS SO DESIGNATED BY OTHER DOCUMENTATION.

I9. KEY WORDS (Continue an reverse aide it n*ecoersY ,d identify by block number)

Flame surface, flame thickness, wave speed, Karlovitz stretch, voluminal

stretch, slowly varying flames, near-equidiffusional flames, stagnation-

point flow, strain rate, extinction.

2. AsTRACT (c ont refwto @o .Fn em?- a msd I'de--r by block mbr)

. For want of a complete analysis of multidimensional flows in pre-

asymptotic days, it was natural to try to identify special character-

istics that play particularly important roles in the understanding of

flame behavior. Flame speed and temperature are examples of such

characteristics that have already been identified; a more subtle

characteristic, introduced by Karlovitz, is flame -stretch. ..-

DtD 'Jt* on=R I M7 a m -o to r 9 ov .B o , O SO ETE
secun7y CLASIFICATION OF THIS PAGE (Whn Dte nteed)

II



SECURITY CLASSIFICATION 0" -41S pS,(Whm Oatil etd) -

- att start by discussing this concept, so as to

have it available whenvt come to discussing general slowly varying and

near-equidiffusional flames.k\

NA

SECURITY CLASSIFICATION OF THIS I*AaE('W'hen Dau* nteEo)

- - IIII I I I I I IIII .



DATE,

FILMED

-.mop*

DTIC


