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Lecture 3

GMTERAL DEFLAGRATIONS

In the last lecture we examined the plane, steady, adiabatic, pre-ixed

flame and deduced an explicit formula for its speed. By using a judicious

choice of parameters this formula can be .m-ade to agree roughly with

experiment; precision is not a reasonable goal, given the crude nature of

our model. Noteworthy is the extreme sensitivity of the speed to

variations in the flame temperature: an 0(l) change generates an

exponentially large change in flame speed. Such variations in speed

(caused, for example, by changes in mixture strength) are not excessive

numerically (at least for fuels burnt in air), because activation energies

and fractional changes in temperature are modest; but in an asymptotic

analysis they present a potential obstacle to discussion of multidimen-

sional and/or unsteady flames. Then significant variations, spatial and/or

tempora-1, in the flame temperature can be expected and, if the sensitivity

.nti-Oned above is any guide, there will be correspondingly large spatial

and/or temporal variations in the flame speed. A mathematical framework

in -which to accommodate these is not obvious. (The first lecture dealt

-with special circumstances for which such variations were manageable.)

As a consequence, attempts to discuss general deflagrations have,

for the most part, been limited to situations where there is an a priori

g-arantee that variations in the flame temnerature are 0(e-1 ); then flame-

speed changes are 0(1) and present no mathematical difficulties. TWo

approaches are known to provide the guarantee and this lecture iz largely

de-.oted to their disclosure.

-3.1-
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..d.he odn_..eic Limit

At the end of section 2.4 the steady plane deflagration was found to

have a thickness 5X/cp M r , and this may be taken as the nominal thickness

of a general deflagration. We start by restricting attention to -waves

vhose characteristic length (e.g. minimum radius of curature) is large

comoared to their nominal thickness. On this length scale, such a wave

is simply a surface across which Jurps in temperature and density occur

subject to Chrrles's law (as in appropriate for an essentially isobaric

mrocess).

If the ratio of the two scales is c, then on either side of the

surface the appropriate variables are

(x'jy'z-t) = C(x1'y~z't); (!)

D *zhat the governing equations (2.!3b,19,20) becomes

9p/9t + 7.(oy) =0, pDy/th = -V- + cPV2v+ -1 V(7V (2)
- 2-1-2

oDT/t - 7T = 0, pDY/Dt-cL- VY = 0 (3)

(We

have not -written the equations for components other than the single

reactants i = 1, and the subscript 1 has been dropped.) As c ., we

DT/Dt = DY/Dt = 0, (4)

i.e. constant values of T and Y are :arried by the fluid particles.

':e conclude that

T =Tf Y =Yf (5)

7TOW
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everywhere ahead of the discontinuity surface if, as we shall suppose,

these constant values are assured by each particle at its point of

origin. Likewise

T= -, Y = 0 (6)

everywhere behind the discontinuity since, as we shall see presently, these

values are assumed by each particle as it leaves the flame. Charles's

law (2.18a) now shows that p has the constant values of,0b = Pf l n

the two sides of the discontinuity, where

a = Pf/Pt = Tb/Tf 
= I + Yf/Tf (T)

b f-

is the exnansion ratio due to the flame. -e are left the Suler's equations

r , P~~~ -Vp (8)

for an incompressible, ideal fluid, i.e. one devoid of both riscosity and

heat conduction.

The t.o ideal-fluid regions are coupled through the jump conditions

Q,(,I.+v) 0 (v +v), v = I" (9)
b b 4-Lff Lb'

_+(vn+V)2  p" +P (V+V) 2, Tf+Yf = Tb; (10)
n -b b nbf b

here V is the szeei of the defiazrauion wave back along its normal

(figure 1, and the subscript "' denctes the component perpendicular

to _n, i.e. in the tangent plane. These conditions are derived i the

sane way as for a shock wave in reactionless gasdynamics, i.e. by

in-egrating the basic equatiOns (2.18b,19,20) through the flame. Indeed,

the conditions (;% and (10a) are ilentical to those for a shock since

they foliow from the same coninuit'v and momentum equations. The
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.eniement (10b) can also be recognized as a Rankine-Hugonliot condition,

but with kinetic energy neglected and a heat-release ter= (Yf ) added.

i follcws from the combination

oO(_+7)/Dt = V 2(T+L-I Y) (11)

* If t-e basic equations (2.20).

As for the shock wave, these jup conditions are insufficient. If

the state f immediately ahead of the wave is given, there are five scalar

ecuations for the six unknown scalars pb (=PfT f/T b ),v bv p b and V.

In the case of a shock, another condition is imposed from outside (such as

the deflection of the streamlines at a sharp body or the pressure pb

ehind the -rave in a shock tube). Here there is no external condition;

-'.. nef~ciency arises from discardig. information by using only the

::-binatin (1) of the basic equations (2.20). The reaction rate then

no role in the derivation of the Jurp conditions. Otherise stated,

the -z=bustion inside the wave will nrovide information about the burning

raze ..W, i.e. the wave speed

f .(12)

--aluation of W from a combustion analysis has often been side-

step~ed, even though it should be considered the central question of

-remixed flames. Instead, hypotheses are introduced; the simplest is

t-hat W is a constant, given by the burning-rate formula (2.43) of

s:eaiy, plane deflagrations. This hyrothesis is justified for slowly

-a.ring flames (section 3) when L = 1, and we shall use it in lecture

l -. But, in general, it is not acceptable and attempts have been made

(notably by markstein) to modify it, in particular by taking into account

jn:n-tlanar characteristics of the flame.

I *I I I
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The remainder of this lecture will be preparation for the more general

cobustion analysis that followTs in the next.

2. Gcverning Equations for the Constant-Density Aporoximation

A1though the formulation can be carried through for the full equations

(2.18-20), all the essential features are preserved under the assumption

that density variations due to the presence of the flame are negligible.'

If no temoerature differences are imposed on the flow, the velocity field

is that of a constant-density fluid and can be calculated in advance; we

shall suppose the fluid is at rest. In other words, we shall set

p = 1, v = 0 (13)

in the full equations to obtain

CT/;t - V 2T = 0-e -1(T), ZY/at - L-1Vy = - (! )

as those governing the combustion field under the constant-density approxim--

ti:n. (;-l! equations (2.20b) except the first, corresponding to the sirgle

reactant, can be omitted; the subscript 1 can then be dropped.) Note that

-e have added a term -e I (T) to the temperature equation, representing

small bulk heat loss.

If the representative mass flux Mr is chosen to be the burning rate

(2.43) of the plane, steady (adiabatic) deflagration, then the reaction

term becomes

22 e/Tb 1
Q DYe-9/T -ith V = Yf2 e /2LT . (15)

:ote that L is not necessarily equal to I in these equations: the Lewis

number plays a very important role in the analysis, especially for unsteady

flames. Finally, the heat-loss term is difficult to justify in a multi-

n n I m II h. -
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iensioa!. context (radiation loss, one of the few legitimate candidates,

-- --- blv small unless there are solid articles such as soot in the

-.cure); but for quasi-plane flames -t can renresent multidimensional

effects s'ch as losses to sidewalls.

W'e shall require that

T * T f2 Y - Y f as x - ()

ani deal exclusively with situations where equilibrium prevails behind the

f e sheet, i.e.

Y = 0 in the burnt gas (17)

- emperature behind the flame will be close to the adiabatic flame

-. erature (2.29).

--e constant-density approximation, on which most of the premixed flame

analysis in these lectures is based, clearly provides substantial simplifi-

:s-'cns, It can be justified as a formal limit in which the heat released

*-" the reaction becomes vanishingly small (compared to the existing thermal

e.erz. of the mixture). Small heat release can be due to either a scarcity

:f reactant (Yf 0 0) or weak combustion (Tf - -); by confining ourselves

tz dilute mixtures, we have already assumed the former. The relevant

-ara-eter is the expansion ratio (7); asymptotic expansions in c-l provide

a formal basis for the approximation.

Slow Variations with Loss of Heat

As an introduction zo the more complicated analysis of multilimensional

-':-es consider first a plane flame sheet (figure 1), looking like the

ail.abatic deflagratior. studied in section 2.4 but moving unsteadily because

local fluctuations in T and Y (represented by the time derivatives).

:n general, the flame speed can be defined in terms of the mass flux of
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the mixture through the sheet. (This is a vell-defined concept in the limit

8 i for 8 finite there is no natural definition, except when the combus-

tion field is steady in some moving .ranme.) For the ccnstant-density

arzrox.mation adopted here, -he speed is Just

V = -x,(t).

:ooe that, since the speed is not defined for finite 9, to expand it in the

subseouent asympotic analysis would be a futile gesture.

Suppose now that changes in the flame speed occur on an 0(e) time

scale, i.e. that

t/= (19

s the apropriate (slow) time variable to describe them. Then, for an ob

-oving "ith the flame sheet, the combustion field is quasi-stead- to leading

r4er (i.e. steady for t = C(). The temporal variations, along with heat

o)Cs, create O(e- ) nerturbaticns, and hence generate only o(e- ) variations

in :e 'lame temperature.

".e the coordinate

n x-x.(t), (20)

based on the flame sheet, is introduced the basic equations (14) become

2 2 -1 2 2e--/3T+V aT/3T-- , n + 9 ~€ = -a aY/t-vaY/an+L a Y/an = a. (21)

-ese govern the =otion of "what is known as a slowly varying flam- (SVF).

o inoezrate the eq_'a:ions it is first necessary to say something about the

_!a-e te-_.:erature. - leading order, we have

VI(T+Y)/an = a2 (T+ - Y)/an 2  (22)

, a i i-i'Tin



e-.herywere; so that, on integratin- fr-n = - to 0+ and using the

cnditions - w,, we have

= / 0 +, (23)

:--ere m is the1eain.-orer tererature at the flame. Since the deriva-

t -e vanishes (as w-iL be seen -w;e-ialy °e conclude that

S b, (24)

t'e adiabatic flse temperature (2.29).

in view of the requirements (16,17) the solution of equations (21) in

-he frozen region aheai of the flame sheet is

T= +fe ,n Y = Y_(ie *n) for n < 0, (25)

-:rret tc leadin z order. To the sane order behind the flxne sheet, T is

_::ns-ant (hence showin that the derivative in the result (23) is zero, as

ancizipaed); to one more term we find

-1
- iting ' = -b in the e terms of the temverature equation. Here 0,

re-:resenting the _erturbed flame temperature, is as yet unkno,.n.

The structure oroble for the reaction zone determines , as a function

-1 V. This troble- has already been discussed in section 2.5, where the

e;_ression (2.57) for the temperature gradient Just ahead of the flame

sheet was developed. The sa:%e gradient can be calculated from th- result

(25a), leading to the relation

-0*/2
V = e (27)

- .,---.,, .
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Clearl-, there is the same temerature sensitivi:y as for steady adiabatic

d-eflagrations, as expected. Moreover, for such a deflagration the perturba-

tion .. vanishes and V = 1, which confirms the burning-rate formula

(2.3).

Another relation between * and V comes from calculating the

change in enthalpy of the mixture between its fresh and burnt states.

For that purrose, we rewrite equation (22) correct to O(e- I) before

integrating it as before, to obtain

1 0+ _0 + + 1 0lYO+f - (T+Y)dn + [V(T+Y)]° +  , + L- a (28)3T a -  #d n an --a

--e in;egrals can be evaluated to leading order by means of the formulas

(25); we find

0+ " Vn

f -, _en(-.L _e L-dn - Yf (1-L-1 )V,-

r -.-.,[f vC+Y e )dIV

w,-ere the dot is used to signify rate of change on the t-scale. The formulas

(2":) and bou-ndary conditions (12 enable the remaing terms to be calculated;

we have
]0+ V(,T) -IT2v¢

[v(+Y)1 = V(T*-T = -e T 21
-M b b '

[3a/2n] O  = -O-I(Tb)'-I, [6y/;n]+ 0 .
-e -w

.:.e eouation (28), in which all terms have now been evaluated to ,,e

-erefore gives

YV-2-bV- with b Y (1-L- )/T 2 (29)

h-ere
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L " ) + "(T,-'- ,)dvI., (30)0 f b

the two --s rerresenting heat lost to the burnt mixture and through

te side-walls ahead of the fl.m-e sheet, -'espectively.

B.- elLminating €, bet-.-een the two relations (27) and (29), we

obtain an equation for V, namely

bV = V3£nV2 +YV. (31)

--e only difference when the constant-density approximation is not used is

a nore co-.licated formula for b. The crucial property

b < 0 accordingl- as L 1< (32)

is unaffected, however. N:ote that the SVF is not a solution of the general

-' - va .. roblem (only the value of V may be prescribed at t = 0);

it merely describes the subsequent behavior of any flame that survives

devele-ment on the t-scale. Thus, a prediction of instability is reliable

rnot one of stability, since the flame may have already lost stability

4---S its evolution on the t-scale.

Consider first the steady state (figure 2) determined by setting

V 0 in the evolution equation (31), i.e.

= V2 V2
V 0 or V Zn + T = . (33)

On the first of these , = +, so that the perturbation analysis breaks

do;17.; the corresponding nonuniformity has never beer treated. The second

curve orovides two solution branches so long as the heat loss is not too

l>rge, i.e. Y is less than e-  ( = 0.368); the adiabatic flame speed

-= iis attained on the upper branch as T - 0, so that it is plausible

to suppose that this is the physically relevant one. No solution exists

.. I Im I I I
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-!
for 7' > e :steady combustion cannot *e sustained if the heat loss is

tco large, any existing flam.e being quenched. It is interesticr that the

s-:,eed of the flame at _uencnn, na.e!. e- 0.6C7) times its

a..abati -. a is c letely i. een.ent. of the nature of the heat loss,

i.e. the for of the function i. The quenching phenomenon provides a

juaiitative explanation of the Davy safetr lamp: the wire gauze surrounding

the fla.e is an effective heat sink<, preventing the propagation of the flaeMe

oeycnd its confines.

Equation (31) describes the evolution of plane S;.s. When L = 1,

b is zero and there is no evolution: enuidiffusion prevents any variation

nn zhe i-scale. In fac- - since the equation is asymptotic, there is no

evolution jhen L is 2iose to 1, i.e.

L-1 = I-;./8 with 0(). (34)

Ftthen a trea tent on zhe --scale is nossible in certain circumstances,

leading to the near-equidiffusion flame ('"77) discussed later.

..... enzeuence of the -. ion for > i (b > 0) is that

the flane is unstable: any deviation of V from its value on the upper

br_=n- cf the curve In figure 2 is =ro±:::ed. The same conclusion cannot

be dra n for L < 1, hut this is a consecuence of considering planar

disturbances only. lectuLre 5 -will examine the linear stability of plane

.a...ration *a-es Ln colete detail, and find that plane SVTIs are unstable

- on-- ar disturbances for L > 1. Thus, the SVis are unstable for all

values of L, which decreases their value as a class of solutions 'but

does not elininate then)

_. :.ut i inensionai ?lames

Consider no-w situations in which the flame sheet, in addition to being

j nseady, noves in a non-ulanar fashion. The goal is to find conditions

_ _ _____ ____

Ill I I II I I
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zier-the ' .-.-- i fla_-..e termperature, both. temporal and spatial,

are :,9- I ) at most. -o that end -.e shl- zerfor_ an integration of the

a (2-) that is a eneralization of the one done on their

t-ane :ersicn (21) in the lasz section.

--e x-axis is tak.en instantaneo.sy along- the nornal to the flame sheet

s-: -e toint o: interest (Fcinting into the burnt gas), and a new variable

n = x - F(0,0,t) (35)

i n-roduced, as for plane sheets (of. equation (20)); here F(y,z,t) denotes

e position of the sheet. Equations (!h) then become

:.'-t+ V;T/3n-3 TIn -VT+8-NT) -9Y/3t-VaY/an-L yn 2 -1 V2Y = n (36)

v -F(OOt) (37)

i. the speed of the sheet back along its normal at the instant considered

an.ias 4n section 1, the subscript '1_" denotes the component perpendicular

q:uation (-a) is no- integrated -with respect to n from - to 0+,

-h-_re:: yielding

+ 0 0+
.Z(.T+Y)dn + [V(T+Y)]_. + 0- f dn

-Cc

0+ 0+ (38)
r. + C- + f 7 (T+L1 Y)dn ,  (38)

:h~h should be co-_arei to equation (28). Certain terms can be evaluated

_--st as there; thus,

+ = V(*-Tb), [aT/mn]°+ = aT/an (aYfan]- =
(. ,b -a w0

u n I I u l
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so that -re may wie

0+ 0+
-- +b T-- I +fTLda n (39)

--is expresses the deviation of the flame temperture T. fro= its adiabatic

value - in terms of the heat lost to the burnt mixture, the transverseo

diffusion of heat and reactant up to the flame sheet, the temporal variations

in enthalzy H of the mixture ahead of the flame sheet, and the heat loss

un to the flame sheet.

If deviations of T* from Tb  are to be O(e- ), the right side of

equation (39) must be of the same order. This is guaranteed when the

terms in V/an, 7, and /at are made separately small, a step that can

be taken in two different ways. One way is to confine attention to

disturbances of a steady,plane deflagraticn that vary over times and

distances 0(0). These SV7's are a generalization of the ones introduced

in the last section, where only temporal variations , ere considered. The

s=--cni w,7ay is su-gested . the inef-cveness of the SVF analysis for L

close to 1. In the distinguished limit (34), equation (36a) becomes

2 2 . -1 2 2Q

aHl/t + VmI./an-(32n 2 +7.)H = e-l[( 2-/an +7 _)Y-(T)j, (40)

of w hich
H = Hf + 0(0- ) (ever,-here) 

(4i)

-s one solution. 7or the corresponding class of solutions, called near-

eT:idiffusion flames (N:EFs),

aTi L= 2,,1l 2 -1 (4)TV = -n ,?(T+[-Iy) = V H001 a t 4}2)

0+ an

are all 0(8-  t t re e (oa~e so that the right side of equation (38) is of that order.

a..e alln -- •" <! ! ,mlA.l

If | I
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It should be emphasized that S\--s and ;;EFs are restricted classes of
.lution-, identifie! by setting do'-r. _ul..,ie't (b:t not necessary)

z-:nditions for the flome-tennerature variations to be (-1), itself a

sufficient condition for the efficac." of our asy...totic method. h.ile

-hese classes may be the only general ones, special circunstances nake 4*

cossible to treat other premixed fl.-es. Lack of time prevents our

iscussing the most innortant of these, namely the spherical (pren i x )

'lare: symmetry ensures that the temperature does not vary at all over

its flame sheet, so that it need not be either an SVF or an NIEF. ('!ever-

2-eless, :or certain parameter values it is an SVF and for others an NE.F.)

In the next lecture, the equations governing the SVF and the NEF

-.il! be derived and then solved for a basic non-uniform velocity field:

stagnation-point flow.

.77
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Figure Captions

3.1 Notation for flame as hydrodynamic discontinuity.

3.2 Steady flame speed V versus heat-loss parameter V
Arrows show direction in which speed changes for L > 1

,.z
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