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Lecture 3
GEZVERAL DZTLAGRATIONS .

In the last lecture we examined the plane, steady, adiabatic, premixed
flame and deducad an explicit formula for its speed. By using a judicious
choice of parameters this formula can be nmade %o agree roughly with
experiment; precision is not a reasonable goal, given the crude nature éf
our model. Noteworthy is the extreme sensitivity of the speed to
variations in the flame temperature: an 0(1) change generates en
exponentially large change in flame speed. Such variations in speed
(caused, for example, by changes in mixture strength) are not excessive
runerically (at least for fuels burnt in air), because activation energies
and Sractional changes in temperature are modest; but in an asymptotic
analysis they present a potential obstacls to discussion of multidimen-
s2onal and/or unsteady rlames. Then significant variations, spatial and/or

tamooral

e

, in the flame temperature can be expected and, if the sensitivity

i3

entisned avove is any guide, thers will b2 correspondingly large spatlal
and/or temporal variations in the flame speed. A nathematical framework
irn which to accommodate these is not obvious. (The first lecture dealt
with special circumstances for which suckh variations were manageable.)

As o conseguence, attempts to discuss general deflagrations have,
for the most part, been limited to situations where there is an a priori
siarantee that variations in the flame terperature are 0(6-1); ther flame-

peed changes are C(1l) end present no mathematical difficulties. Two

12}

azorosches are known to provide the guarantee and this lecture is largely

deroted to their disclosure.
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1. The Hvdrodynamic Limit

At the end of section 2.4 the steady plane éeflagrotion was found to.
rave g thickness sx/cnur, end this ma2y be taken &s the nominal tnickness
o7 a general deflsgration. We start by restricting attention to waves
wnose characteristic length (e.g. minimum radius of curvature) is large
compared o their nominal thickness. On this length scale, such a wave
is simply e surface across which jumps in temperszture and density occur
sublect to Cnarles's law (as in eppropriate for an essentially isobaric
trocess).

If the ratio of the two sceles is €, then on either side of the

suriace the appropriaete variables are
(X,¥,2,t) = e(x,¥,2,t)3 (2)

overning equations (2.13%,19,20) becomes

30/3% + §°(oy) = 0, pr/DE = er + eP[vex + % (701, (2)
sDT/Dt - EVQT =0, oDY/D_t—-eL_l 62 Y=0 (3)
o\, : (We

~ave not written the equations for components other than the single
re2actants 1 = 1, and the subseript 1 has been dropped.) As € -+ 0, we

nave
DT/Dt = DY/Dt = O, . ()

:.a, constant values of T and Y are zarried by the fluid particles.

w2 conclude that

e Y=Y, (s)
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everywhere ahead of the discontinuity surface if, as we shall suppose,

these constant values are assumed by each particle at its point of

T=.‘., Y=0 (6)

everywnere behind the discontinuity since, as we shall see presently, these

values are assumed by each particle as it leaves the flame. Charles's

law (2.182) now shows that p has the constant values 0.0, = pf/c on
the two sides of the discontinuity, where
i
= = T = o i
o pf/,ob Tb/‘f 1+ Yf/.f (n

is the expansion ratio due to the flame. Ve are left the Buler's equations

Tov =0, oDv/3t = -Up (8)

=~

for an incompressible, ideesl luid, i.e. one devoid of both viscosity and
nezt conduction.

The tvo ideal-71uid regions are coupled through the jump conditions

=< ; = s - =
polv 4] = 0 (v )y e = Yy (9)
5 4o (v +’(‘2 = p. +p. (v +V)2 T+Y,. =T 3 (10)
BrE oM g 5 "b' nb L b

here V is the sp2ei of the &eflzzrazion wave back along its normal
(fizure 1), and the subscrint danctes the component perpendicular

to a, i.e. in the terngent plane. These conditions are derived iZ the
same way as for a sncck wave in reactionless gasdynemics, i.e. by
insagrating the basic equations (2.18v,19,20) through the flame. Indeed,

+na asnditions (S} znd (10a) are identical to those for a shock since

+way folicw Irom th2 same continuity 2nd momentum equations. The
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renuirement (10b) can 2lso be recognized as a Rankine~Huzoniot condition,

but witkh kinetic enerzy neglected and a h2at-release ter: (Yf) added.
It Tollews from the combinstion
s S 2/ -1
oD(T+7) /Dt = O (T+L7TY) (11)
2 “ne besic equations (2.20).
As for the shock wave, these jurp conditions are insuificient. If

*he giate f immediately shead of the wave is given, there are five scalar 1

equetions for the six unknown scalars py (=prf/Tb)’v and V. ]

nb ’Y_Lb’pb s

In the case of a shock, another condition is imposed from outside (such as

the deflection of the streamlines at a sharp body or the pressure Py

z22iné the wave in a shock tube). Here thare is no externzl condition;
<+2 Zeficiency arises from discarding information by using only the
(11) of %tne basic equaticas {2.20). The reaction rate then

-~ oo

zy: no rolie in the dsrivetion of irne Jump conditions. OQtherwise stated,

=2 cozbustion insicde the wave will rrovide information about the burning

reve o_¥, i.e. the wave speed
Wo= v + v, (12)

Zvaluation of W from 2 combustion analysis has often been side-
stepred, even thouzk it should be considered the central guestion of
prenixed flames. Instead, hypotheses are introduced; the simplest is
+=24 W is a constent, given by the burning-rate formula (2.43) of
st2aiy, plene deflagrations. This hyrothesis is Justified for siowly
aring flazes (section 3) when L = 1, and we shall use it in lecture
i2. But, in generzl, it is not acceptable znd attempts have been made

(r.stedly by Markstein) to modify it, in particular by taking into account

oo

r.cn-tlanar characteristics of the flame.
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The remainder of this lecture will be zrevaration for the more general

combustion analysis thet follows in the next.

2. Cocverning Bquations for the Constant-Density Avoroximation

22

Although the formulation can be carrisd through for the full equations
(2.18-20), all the essential Tfeatures are vreserved under the assunmption
that density variations due to the presence of the flame are negligible.’
If no temperature differences are imposed on the flow, the velocity rfield
is that of a constant-density fluid and can be calculated in advance; we

shall suppose the fluid is at rest. In other words, we shall set
p=l, v=20 (13)

in the full equations to obtain

1.2

°r = Q—e'lw(T), aY/ot - LT9°Y = - (%)

3T/3t - ¢

a5 tnose governing the combustion field under the constant-density agproxima-
=ism, (411 egquations (2.20b) except the first, corrssponding to the single
resctant, can be omitted; the subscript 1 can then be dropped.) Note that
wve have added a term -S—IW(T) to the temperature equetion, representing
smz1l bulk heat loss.

If the representative mass flux Mr is chosen to be the burning rate
(2.43) of the plane, steady (adiabatic) deflagration, then the reaction

term becomes
8/T
-3/7 L
o = 0ve " with D - Yieee b/2LTb. (15)
“ote that L is not necessarily =qual to 1 in these equations: the Lewis
auzber plays & very important role in the analysis, especially for unsteady

£lames. Finally, the heat-loss term is difficult to Justify in a multi-




ontext (radistion loss, one of the few legitimate candidates,

.
|
3
3
o
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Q
]
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O

1z nezligzidly smzll unless there zre solil particles such as soot in the
zixvsurel); 3ut for quasi-plane flames ii can represent multidimensional

IT2¢%s gaenh 23 losses to sidewalls.

!
T+ 7 Y-»Yf as x =+ - (1€)

ens deal exelusively with situations where equilibrium prevails bshind the

flame sheet, i.e.
Y = 0 in the burnt gas a7

Trs temperature behind the flame will be close to the adisbatic flame
-=xrerature (2.29).
Tre constant-density aporoximatisn, on which most of the premixed flame

in these lectures is based, cleerly provides substantial simplifi-~

2z7izns. It can be Justified as o formal limit in which the heat released
2 the rezction becomes vanishingly small (compared to the existing thermal
arargy of the mixture). Smell heat release can be due to either a scarcity
s rezctant (Yf + 0) or weex combustion (Tf + =); by confining ourselves

ts dilute nixtures, w2 have glready assumed the former. The relevant

ramater is the exransion ratio (7); asymptotic expansions in o-1 provide

w

“ormal basis for the approximation.

o

. Slow Variations with Loss of Heat

ts)

is &n introduction to the more complicated analysis of multi®imensional

v,

szmaes consider first a plane flame sheet (figure 1), looking like the

eiZshatic deflagration studied in section 2.4 but moving unsteadily because

[}

= local fluctuations in T and Y (represented by the time derivatives).

In general, the flame speed can be defined in terms of the mass flux of
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the aixture through the skest. (This is a well-defined concevt in the limit
inition, except wnen the combus-
tion field is steady in some zoving frame. For the ccnstant-density

ergroxization adopied nere, tha sreed is just

lote trhat, since the speed is not defined for finite 9, to expand it in the

sudosejuant asymptoiic analysis wouléd be a futile gesture.
Suprose now that changes in the flame speed occur on an 0(8) time

scale, i.e. that
T =1t/ (19

i3 %he zopropriate (slow) time wvariable to describe them. Then, for an ot
- & ?*

or t = C{1)). The temporal variaticns, along with heat

n = x-x,(t), (20)
tzs23d on the flame shzet, is introduced the basic equations (1) become
N - =1.2 2
/32 + 9 Ty = -8 13Y/Z?t -VaY/3n+lL la Y/3n = Q. (21)

Tresze govern the moiicn of whet is known as a slowly varying flam: (SVF).
75 inteszrate the eguzzions it is first necessary to say something about the

-~

> leading order, we have

Y3(T+Y) /o = 32(T+L'1Y)/an2 (22)

etk ¥

-1
verturbaticns, end hence generste only 0(8 ~) variations




(23)

E I :
:
wrers T, 1s the leading-order temrerature at the flame. BSince the derive-

sive vanishes (as will b2 seen immediazely), we coanclude that
(24)

*rea zdisbatic flare temperature (2.25).

In view of the recuirements (16,17) the sclution of eguations (21) in

TeT . +Y¥el, Y=Y (1-e!"%) for n < 0, (25)

22rre2ot tc lezdins corder. T0 the same order behind the flame sheet, T is
22nszant (hence showing thust the derivative in the result (23) is zero, as L

- &2 - = - -~ - - S ~
zrnzicizated); %o cne more term we find

-~
-t e

= -8 TV

(3]
1}
]
[

o™ .'?12 = -
,(-b)nhbqs*(r)], Y=0 for n-0 (26)

. e s - L =1 - .
coowriting T =T in the S terms oI the temperature equation. Here ¢,

ting the reriwrbad lame texperature, is as yet unknow

Tne structure provlex for the reaction zone determines ¢, as a function
{ 2 V. This provlem hzs slready been discussed in section 2.5, where the

sxzression (2.47) for the temperature gredient just ahead of the fleme
s-eet was devaloped. The same gradient can be calculated from th: result

(23a), leading to tkre relation

V=e . (27)




"3-9_

, there is the same temperature sensitiviiy as for steady adisbatic
deflagrations, as expected. lMoreover, Tor such 2 deflagration the perturba-

tion ¥ vanighes and V = 1, whieh confirms the durning-rate {formula

Another relation between ¢, and V comes lroz ceslculating the
cnenge in enthalpy of the mixture between iis fresh and burnt states.

- . . . . -1
For that purpose, we rewrite equation (22) correc: %o o0(a ) bvefore

0+ O+
-1 3 . cpmiony0F L -1 AT . ,-1 37,0+
C] L oo (T+0)dn + [V(T+)]7 + s L yan =[-a; + L “—an] . (28)

Tne integrals can be evaluated to l2ading order by means of the formulas

O+ N o+ .
/ 20y (el jan = ¢ 7 [ a(e-el™an = ~Y (1-L Lyy2y,
o+ -

) 5 (.47 e Man = [f w(z +y eVa v,

-0 - - 6] -

ct

he dot is used to signify rate of change on the T-scale. The fornulas
2 v

(2€) and toundary conditions (14) enabdle the remaing terms to be calculated;

1

(V(T+Y) ] = V(T,-T,) = -6~ T§v¢*,

S0+ - -1 +
(370107 = —gThu(n T, [av/3a10" = o

Tua equation (28), in which all terms have now been evaluated to J{e~

i

<serefore zives

2

2o with b = Yf(l-L‘l)/Tb; (29)

0y = ¥V

nere




v = [o(7) + [ u(T 47 2 V)avl/Ts, (30)

the two ferms rerresenting heat lost to tre burnt mixture and through
<n2 sidewalls znead of the flame sheet, ra2spectivelyr.
37 eliminating ¢, betwveen the two relations (27) and (29), we

btain an equation for V, namely

BV = Vieave 4y, (31)

The only difference when the constant-density approximetion is not used is

2 mor2 complicated formula for b. The crucial proverty
b $ 0 accordingly as L : 1l (32)

is un=22facted, however., [ote that the SVF is not a solution of the general
iritisl-valus pdrovlem (only the value of V may be prescribed at 1 = 0);
i~ merely describes the subsejuent behavior of any flame that survives

dsvelcpment on the t-scale. Thus, a prediction of instability is reliable
Tut rot one of stability, since the flame may have already lost stability
3uring its evolution on the i-scale.

Conzider “irst “he steady state (figure 2) determined by setting

V = 0 in the evolution eguetion (31), i.e.

V=0 or V2 n V2 + ¥ = 0. (33)

Cn the first of these ¢, = +o, so that the perturbation analysis breaks
dsvm; the corresponding noruniformity has never beer. treated. Th2 second
wrve provides two solution branches so long as the heat loss is hot too

lerge, i.e. ¥ is less thaxn e-l ( = 0.368); the adiabatic flame speed
v =1 is attained on the ugper branch as Y -+ 0, so that it is plausible

to suppose that this is the physically relevant one. HNo solution exists




TS e

ndh o am 4

.

e
;

for ¥ > e T: steady combustion cannot te sustaineid if the heat loss is
tco large, any existing flame Tteing gquenched. It is interestirg thaet the

zilabatic valu2, Is completely indstendent of the neture of the heat loss,

i.e. the Torm of the Tunction . The guenching thernomsnon provides a
sueiitative explanasticn of the Davy safeiy lamp: the wire gzuze surrounding

tr2 flame is an effective heat sink, vreventing the propagation of the flame
perernd its confines.

Fquation (31) d=scribes $he evolution of vlane SVTs. VWhen L =1,
© is zero and thers is no evolution: eaquidiffusion oprevents any variation
an the t-sczle. In fact, since the sguation is asymptotie, there is no

avolution when L is 2lose to 1, i.e.
L™ = 1-5/3 wish 2 =0(1). (3b)

le in certain circumstances,

n
'q
Q
o
n
Js
o

The t-sczale 1

13
'3
cr
3
[
|5 )
1
t
=
17
O]
t
1
11
o3
ct
O
4]
-

(¥

lz2zi3ing to the near-ecuidiffusion flame (IIT) discussed later.

mmedizte gonszeguence of tha avolution for L>1 (o>0) is that
the flame is unstable: any deviation of V from its velue on the upper
brznen of the surve in figure 2 is smplifisi, The same conclusion cannot
Tor L < 1, zut thls is =z consequence of considering planar
disturbaznces only. ILz2cture 5 will examine the linear stability of plane
d2flagration waves In complate detall, and Zind that plarne SVFs are unstable
£s non-planar &isturdances for L > 1. Thus, the SVFs are unstable for all

valies of L, which 3z2creases their value as a class of solutions "but

ituztions in whizh the fleme sheet, in addition to being

imsteady, moves in 2 non-planzr fashion. The goal is to find conditions




flave tamgersture, both temporel and spatizl,

&1 mOsST. To tnat 2nd we shall perform an integration of the

- ~ v - - e . 4. : .
~ 23uszticns (1Y) thas is 2z generalization of the one done on their

Tha xeaxis is taken instantzneously zlcng the normzl to the flame sheet

£ irterest (rointing irto the burnt gas), and a new variable

, . -1 - -
37738+ VSI’/an-BZT/ane-‘;’ET'*G w(T) = -2Y/at-V3Y/an-L 182‘.'/3n2-l. 13_2'! = Q (35%)

v = ~F(0,0,%) (37)

Zz =re speed o the shest back ealong its normal at the instant considered

.z2s in section 1, tha subseript "|" denotes the component perpendicular

Tiuetion (36z) is now integreted with respect to n from -= to 0+,

O+ O+

3 -1 3y 2 -1
[S=+ 1L 35]-» + _£ Vi (T+L7 ¥ )an, (38)

-~ should be comparei to eguation (28). Certain terms can be evaluated

-~ es there; thus,

(rzen)® = w(z,en), (ar/anl’) = an/em| , (av/am]2 = o,
- o+
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=S¢ that we may writs
O+ O+
. - 27T 2, ,=1.. 334. -1 \
V{T,-T) = 2+ [ [ep(TelTTY) - £2lan - 87 [ yan. (39}
o] an N 3t
o+ - -0

Ea =)

This expresses the deviatlion of the flame temperature T, from its adiabatic

1]

~

velue Tb in terms of the heat lost to the burnt mixture, the transverse

(2

¢iffusion of heat and reactant up to the fleme sheet, the temporal varietions
in enthalpy H of the mixture ahead of the flame sheet, and the heat loss

us to the flame sheet.

1

If deviations of T, from T, are to be 0(8 ), the right side of

b

equation (39) must be of the seme order. This is guaranteed when the
. 2 <

terms in 3/9n, ZL’ and 3/3t are made separately small, a step that can
e taken in two different ways. Cne way is tec confine attention to
&isturbances of a steazdy,plane deflagraticn that <ary over times and
distances 0(8). These SVFs are =z generalization of the ones introduced
ir the last section, where only temporal variaticns were considered. The

SVF analysis for L

- - < PalFal Ed - P
7 tne 1nefflactivernass ¢l ik

("]

szoond way is suggestad o

close to 1. 1In the distinguished limit (3L), eguation (36a) becomes

a/at + Var/an-(32an 2470 = 07 (2% /a0 y-u (D], (10)

ol which

=H,+ 0(67Y) (everywhere) (k1)

one solutioa. Tor the corresponding class of solutions, cz2lled near-

1
)

eq.idiffusion fleres (JJI7s),

3T 3z 2 -1 2 -1, 3
= =, vS(T+LTTY) = vyH+0(e ), = k2)
anly, n}o+ L 4 at

2 .
are all 0(87 "), so that the right side of eguation (38) is of that order.
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It shoull be emphasized that S'Fs and EFs are restricted classes of

fas

entified by setting down sufficient (but not necessary)

zslutions, i

aznditions for the fleme-temperature variations to be (8

m
5
1y
Hy
)
0
H.
1]
3
ot
[£]

sndition for the efficacy of our asimptotic method. thile

thes2 classes may be the only generzl ones, specizl circumstances make it
i
cossible to treat other premixed flames., Leck of time vrevents our . :

Ziscussing the most important of these, namely the spherical (rremixed) '

flara: symmetry ensures that the temperature does not vary at all over {

its flame sheet, so that it need not be either an SVF or an iIEF. (MNever-

thaless, for certain parameter values it is an SVF and or others an [iZ7.)
In the next lecture, the equations governing the SVF and the NIF

will be derived and then solved for =2 basic non-uniform velocity field:

stagnation-point flow.
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Figure Captions

3.1 Notation for flame as hydrodynamic discontinuity.

3.2 Steady flame speed V versus heat-loss parameter Y .
Arrows show direction in which speed changes for L > 1 .
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