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Lecture 2

GOVRNING EQUATIONS, ASYMPTOTICS, AND DEFLAGRATIONS

The problem of formulating the governing equations of combustion consists,

at its simplest, in characterizing the flow of a viscous, heat-conducting

mixture of diffusing, reacting gases. This is a formidable task that

could fill a week of lectures by itself, most of which would not be of

great interest to a mathematical audience. Mindful of this, we shall limit

ourselves to a description, rather than a derivation, of the simplest

equations that can be brought to bear on combustion problems. Only the

most important assumptions normally used to justify the equations will

be discussed; for a more extensive treatment the reader is referred to

Buckmaster & Ludford (19 8 2,Ch.-)

We shall then outline the asymptotic method on which the whole theory

rests and use it to solve the basic problem of combustion: the steady

propagation of a plane deflagration wave.

1. Equations for Dilute Mixtures

The easiest framework in which to understand the field equations is

the "reactant bath". We suppose that most of the mixture consists of a

single inert component (e.g. nitrogen), the properties of which determine

those of the mixture (e.g. viscosity, specific heat). The reacting

components (and their products) are highly diluted by immersion in this

bath of inert.

Mass concentration for the mixture is always described by the single-

fluid equation

apIlt + '(o) = 0, (.1)i

.... .. * ~ p
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where p is the density and v the velocity. But only for dilute mixtures

is the overall momentum balance identical to that for a single homogeneous

fluid, namely

SDv/Dt = vE, (2)

where

_ -(p + 2 V v)I + ,[vv+(v')T] (3)

and p is pressure; bulk viscosity has been neglected.

A single-fluid equation for energy balance is also Justified, provided

account is taken of the release of heat by chemical reaction. But here

additional approximations are made, based on the observation that tempera-

tures are high and gas speeds low for a large class of combustion

phenomena (excluding detonation); more precisely, a characteristic Mach

number is small (typically in the range 10-2_10-3). Then the only

significant form of energy, other than that of chemical bonding, is thermal;

kinetic energy makes a negligible contribution to the energy balance. For

the same reason, the conversion of kinetic energy into thermal energy by

way of viscous dissipation can be ignored. Thus, when variations of the

specific heat c with temperature are neglected, we have
p

c CpDT/Dt - V.(XVT)-apI3t = q, (4)

where q is the heat released per unit volume of the fluid by chemical

reaction; the form of q is considered later.

In addition, the assumption of small Mach number implies that spatial

variations in pressure are small, so that 3p/at in the energy balance (4)

is due to imposed, uniform pressure variations. We shall assume that the

imposed pressure is constant, i.e. the term vanishes. The pressure term

in the momentum equation (2) cannot be neglected, however; the small

" .. m I i
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spatial variations are needed to account for changes in the weak velocity

field. A further consequence of the virtual constancy of the pressure

is that the equation of state of the mixture is Charles's law

PT = mpc/R (5)

if the inert is a perfect gas. Here m is the molecular mass of the inert,

PC the imposed constant pressure, and R the gas constant.

Consider now the individual components of the mixture, denoting the

density of the i-component by pYi. where Yi is the mass fraction and

i = 1,2,...,N. The reactants and their products are convected with the

gas speed v, diffuse relative to the inert diluent, and are consumed or

generated by reaction. The diffusion laws of general mixtures are

complicated, involving a diffusion matrix; but for dilute mixtures the

matrix is diagonal insofar as the reactants and products are concerned,

so that we may write

pDYi/Dt - V'(u iiVY.) = i for i = 1,2,..., N-1. (6)

Here pi is the mass production rate per unit volume of the ith component,

its precise form is considered below. The equation for the mass fraction

YN of the inert is more complicated; but it can be obtained from the

relation

N
SY = 1(7)

i=l

instead, once the other Y i's have been determined.

Coupling between the fluid-mechanical equations (1), (2) and the

thermal.-chemical equations (4),(6) occurs because of density variations.

If these variations are ignored, the former may be solved for v, which

can then be substituted into the latter, a substantial simplication.

1.
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Such a procedure is Justified if the heat released by the reaction is small,

but this is not a characteristic of combustion systems, whose main purpose

is to liberate heat from its chemical bonds. For this reason, the simplified

system of equations should be thought of as a model in the spirit of Oseen's

approximation in hydrodynamics. However, to emphasize the mathematically

rational nature of the procedure, we shall refer to the simplified system as

the constant-density approximation rather than mc~el. Phenomena whose

physical oasis is truly fluid-mechanical (e.g. the Darrieus-Landau instability

discussed in lecture 5) are not encompassed by this approximation, but

much of importance is; it will play a central role in our discussion.

There remains the question of the contribution of the individual

reactions to the heat release q and the production rates p.. It is
i

possible, in principle, to consider all the reactions that are taking place

between the constituents of a mixture. However, this is done but infrequently;

often a complete chemical-kinetic description (i.e. how the rates depend on

the various concentrations and temperature, or even whether a particular

reaction takes place) is not available. Even when it is, its complexity

may deter solution by any-thing short of massive use of computers. For

these reasons, simplified kinetic schemes are normally adopted which model,

in an overall fashion, the multitude of reactions.

The simplest are the one-step irreversible schemes that account for

the consumption of the reactants, here taken to be Just a fuel and an

oxidant. If the reactants are simply lumped together as a single entity,

the scheme is represented by

[Y1
]  products, (8)

where brackets denote a molecule of the component whose mass fraction is

enclosed. On the other hand, if the separate identities of the fuel and

i I7
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oxidant are recognized, we have

v [Y 1 + V 2[Y 2 products; (9)

here the v, are stoichiometric coefficients, specifying the molecular

proportions in which the two reactants participate. We shall adopt the

scheme (8) when discussing premixed combustion and (9) for diffusion flames

(lectures 8-10 only). These terms are defined at the beginning of section h.
If N. iis the number density of the ith component, so that

1

Pi =m.N. (10)

where m. is the molecular mass of the ith component, the reaction rate w is1

defined by the formula

N. =
1 1.(1

It is then common to write

W = k(T)Po ri Y (Ya positive consts.) (12)

for the reaction rate, an empirical formula that is suggested by a theoretical

treatment of so-called elementary reactions. The product contains a single

term for the scheme (8), two terms for (9). The Arrhenius law

k = BT e-E/'T  (B,a,E consts.), (13)

which we shall adopt, is at the heart of our mathematical treatment; E is

called the activation energy.

The heat release q is a consequence of the difference between the

heats of formation of the products and those of the reactnats, so that it

is p -oportional to w. Combustion is inherently exothermic, so that we shall

write

. *
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q = Qw, (114)

where Q(>O) has the dimensions of energy.

2. Nondimensional Equations and Their Shvab-Zeldovich Formulation.

We shall take units as follows:

temperature Q/cp E v m (summation over 1 or 2 reactants) (15)

pressure Pc, density P , mass flux Mr, speed M r/P r, (16)

length X/CpMr time Xpr/cp r , pressure variations 'r (17)

Appropriate choices for the reference density pr and the reference mass flux

Mr will be made according to the problem considered. The governing equations

in nondimensional form are

pT a mp c Z v m /PrRQ, ap/at + V'(py) = 0, (18)

Cj p 1 i r

PDy/Dt = -Vp + P[V2V + j!(!y), (19)

pDT/Dt -12T = Q, PDY./Dt -Llv72Y. = ian (20)
1 i 2

where i runs from 1 to N-l, and

P = KCp/X (Prandtl number), Li = X/uiicp (Lewis number), (21)

1 = -vimi/ Evm (with E a. n = Dee/ T J Y% , (22)

8 = Ec E v m /QR, V = DM'2r D = rXBQoy/cI+M(z m )jm j-l T4 .  (23)
Pj Jirrp

Except in the case y = a, the so-called Dankohler number D is variable;

it is called a number in spite of having the dimensions of M2 , In the
r

context of activation-energy asymptotics (e * ), only its value at a fixed

I i Hi i a. i i.



-2.7-

temperature T. plays a role, so that it may be considered an assigned

constant.

When one of the Lewis number L. is equal to 1, the differential

operator in its equation (20b) is identical to that in equation (20a).

We may therefore write

(oDIDt -2 )(T-Yilai ) = 0, (24)

of which one solution is

T - Y./1. = H. 25)

constant. If this solution is appropriate for the problem at hand, Yi may

be eliminated in favor of T, thereby reducing the number of unknowns. The

linear combusion (25) is known as a Shvab-Zeldovich variable; it is easier

to find by virtue of satisfying the reactionless equation (24).

3. Activation-Energy Asymptotics

In these lectures we shall discuss a variety of combustion phenomena

on the basis of equations (18)-(20). To do this we need an effective tool

for dealing with the highly nonlinear reaction term Q. Activation-energy

asymptotics, used in an ad hoc fashion by the Russian school (notably Frank-

Kamenetskii and Zeldovich) in the 40's, exploited in the framework of modern

singular perturbation theory (but in a very narrow context) by aerothermo-

dynamicists in the 60's, and systematically developed by Western combusion

scientists in the 70's, is Just such a tool.

The limit 8 - is, by itself, of little interest: the definition

(22b) shows that Q vanishes. To preserve the reaction, it is necessary

for D to become unboundedly large, i.e. we must consider a distinguished

limit characterized essentially by
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D - eelT* (26)

where T* is a constant that may have to be found. The consequences of this

limit then depend on the relative magnitudes of T and T*.

For T < T*, the reaction term Q vanishes to all orders; this is

known as the frozen limit. For T > T,, equations (20) imply H Yj - 0

exponentially rapidly, so that at least one Y. vanishes like that, and

again Q vanishes to all orders; the equilibrium limit ho~.ds. For T

no more than 0( - 1 ) from T., reaction takes place, usually in a thin

layer called a flame sheet. Thus, with a few exceptions, the general feature

of high activation energy is the absence of chemical reaction from most of

the combusion field, the description of which is thereby simplified. Reaction

occurs only in thin layers (spatial or temporal), whose description is also

relatively simple.

h. Plane Deflagration Waves.

We are now ready to demonstrate the efficacy of the technique that is

the central theme of these lectures, by examining the fundamental problem

of premixed combusion - the plane unbounded flame. But first we pause for

a few words on terminology.

In general, two-reactant flames can be classified as diffusion or

premixed. In a premixed flame the reactants are mixed and burn when the

mixture is raised to a sufficiently high temperature. In a diffusion flame

the reactants are of separate origin; burning occurs only at a diffusion-

blurred interface.

Both kinds of flames can be produced by a Bunsen burner (figure 1).

If the air hole is only partly open, so that a fuel-rich mixture of gas and

air passes up the burner tube, a thin conical sheet of flame stands at the

S- - I
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mouth; this is the premixed flame. Any excess gas escaping downstream

mixes by diffusion with the surrounding atmosphere and burns as a

diffusion flame.

Separate origins do not guarantee a diffusion flame, however. In

figure 2 the reactants are originally separated by the splitter plate

but mix before igniting. The flame spread across the oncoming flow is

therefore premixed. Behind this premixed flame the remaining portions of

the reactants are separate again, so that a diffusion flame trails downstream.

The plane unbounded flame of premixed combustion, the so-called (plane)

deflagration wave, propagates at a well-defined speed through the fresh

mixture and, accordingly can be brought to rest by means of a counterflow.

It is natural to take the mass flux of this counterflow as the representative

mass flux M ; the counterflow is not known a priori, but is to be determined
r

during the analysis of the combustion field. Indeed, its determination is

the main goal of the analysis. A choice must also be made of the reference

density pr; we shall take it to be that of the fresh mixture.

The continuity equation (18b) integrates to give

v= , (27)

so that

dT/dx - d 2T/dx2 = Q. (28)

Since there is only one reactant we shall drop the subscript 1. For L = I

in the corresponding equation (20b), the Shvab-Zeldovich formulation applies,

showing that

T+Y S H= T +y (29)f Yf T,

where the subscript f denotes the fresh mixture at x -- (Actually, R

ris the total enthalpy of the mixture). Thus,

" _ . . . . ._III _ _ _ I _ _I _ _I_ _ _ _ _ _
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- D(Tb-T)ee/T (30)

if the most common choice B1 = 1 is made. Equations (28) and (30) form

a single equation for T, which must satisfy the boundary condition

T - Tf as x -i-. (31)

'Me requirement that all the reactant be burnt provides the final boundary

condition

T - Tb  as x-*+ . (32)

Note that neither the equation of state (18a) nor the momentum equation (19)

has been used; the former provides p once T has been found, and the latter

then determines p from v = l/p.

It is immediately apparent, since 0 does not vanish for T = Tf,

that the problem for T cannot have a solution. The mixture at any finite

location will have an infinite time to react and so will be completely burnt.

This cold-boundary difficulty, as it is known, is a result of idealizations

and can be resolved in a number of ways: the mixture can originate at a

finite point; an appropriate initial-value problem can be defined, without

the solution having a steady limit of the kind originally sought; or a

switch-on temperature can be introduced below which Q vanishes identically.

It is one of the virtues of activation-energy asymptotics that it makes

such resolutions unnecessary. Reaction at all temperatures below T.

(including Tf) is exponentially small, so that it takes an exponentially

large time for it to have a significant effect; in other words, T. is a

switch-on temperature. Consequently, it is not necessary to discuss the

cold-boundary difficulty any further.

We now seek a solution that is valid as e =. Our construction

will be guided by the assumption that, in the limit, reaction is confined

-I TV
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to a thin sheet located at x 0. On either side of this flame sheet,

ecuation (28) simplifies to

dT/dx - d2T/dx =, (33)

which only has a constant as an acceptable solution behind the flame sheet

(x > 0), exponential grovth being excluded. The boundary condition

(32) then shows that

T = Tb  for x > 0; (34)

-bb
Ir is called the adiabatic flame temperature. It follows that the

temperature at the flame sheet is Tb , so that this is also the value

of T. needed to specify the distinguished limit (26).

.Ahead of the flea.e sheet, equation (33) has the solution

T = Tf + Yfex for x < 0, (35)f

satisfying the boundary condition (31) and making T continuous at x = O.

:. structure could be found for the flame sheet if the tem.peraT-ure were

discontinuous.

'lurning now to the structure, which must determine the still unknown

" (i.e. D ), we note that the form of 0 restricts the variations inr

? to being O(e-l). Since the temperature gradient must be 0(i) to

effect the transition between the profiles (34) and (35), the appropriate

layer variable is

e8x; (36)

coefficients in the layer expansion

T = T T 2 with (I/T) (37)b b 1(w

are nov considered to be functions of . Equation (28) then shows that

I'-
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d 2/dE2 =V _e -o with = De /0 2 (33)

while matching with the solutions (34), (35) gives the boundary conditions

-Y V -f/ 2 + o(I) as -, - o(i) as E (39)

In order for this problem (in *) to make sense, 0 must be 0(i). Then

De-6: is o(02) in x > 0, so that equation (28) is unbalanced unless

Y = 0 (to all orders) behind the flame sheet, consistent with the result

(34). Thus, equilibrium prevails in x > 0 even though the mixture is

no hotter than the flame sheet there.

Integrating equation (38a) once, using the condition (39b), gives

2(delti) 2  2D[-,+)-] (40)

The remaining boundary condition will then be satisfied only if

DV Yf/2Tb, (1

,crreanonding to the determination

2 -e/2Tb
Mr = , Tb e /Y f (42)

of th9 burning rate. (If D is temperature dependent it must be

evaluated at the temperature T.)

Determination of the wave speed Mr/Pr is the main goal of the analysis,

anz rightly so. But, at the same time, the structure of the combustion

field is obtained (figure 3). The reaction zone appears as a discontinuity

in the first derivatives of T and Y, a reflection of the delta function

nat-ure of P. in the limit 0 . w. Ahead, the temperature rises and the

reactant concentration falls as the reaction zone is approached through

the so-called nreaeat zone. It is the preheat zone that delimit! the

i -II II m ... 7
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combustion field and, therefore, defines the thickness of the flame.

According to the formula (35), more than 9952 of the increase in

temperature from Tf to T is achieved in a distance 5, i.e. 5X/c Mf b p

in dimensional terms. With this definition of flame thickness, we find

that hydrocarbon-air flames are about 0.5 - thick. The thickness of

the reaction zone, which is scaled by 8- , is typically 10 or 20 times

smaller.

5. Generalizations.

If the reaction-zone structure itself is required, equation (4o) must be inte-

grated to obtain € as a function of E. The constant of integration is fixed

by the boundary condition (39a), which is thereby used a second time.

T.e three requirements that the boundary conditions impose on the solution

of the second-order equation (38a) are responsible for a definite value

of D. The term laminar-flr-e eigenvalue is often used.

The analysis in section 4 was carried through with Lewis nun.ber

u.it-; for the sake of simnlicity alone. ?or L 0 1, the formula (42)

is replaced by

,: =2 -e/12T
r2 Tb e /Yfe, (43)

The only change is the replacenent of V by 2-L).

The rate at whi.h the mixture burns is extremely sensitive to the

flame temperature. b changes to Tb-e T b, i.e. by an 0(a- )

--ount, the burning rate changes to

-6*/2

= e (44)

.e.= b" an 0(!) a-ount. This result has general validity, i.e. it holds

Sw'ate-rer the nature of the rer7urbation, steady or unsteady. The reason

is that, in deter-ining the eigenvalue D, the perturbation only intrudes
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through the matching of € at = I (which leads to the exponential

factor); matching ahead of the flame sheet is with an 0(i) gradient that

is unaffected by the perturbation.

Questions involving deflagration waves are essentially free-boundary

problems: the location of the flame sheet and the combustion fields on

e-iher side have to be determined simultaneously. In that context, the

structure problem (38), (39), modified for 0( -1) perturbations in

f"--_- temperature, provides a leading-order jump condition on the normal

derivative 3T/3n, namely

S[(Tlan) 21 = Y2  (45).f (145)

r r is taken to have the value (42). This, the true role of theer

structure problem, is obscured by the analysis of the steady plane wave

*.en in -he last section, here w was taken to be the constant (unknown)

zurngn rate. If Mr had been given the value (42) without explanation,

s-i V. used to denote the (dimensionless) burning rate, then x would

ha-.-e been replaced by ",x in the form-ula (35) and the Jump condition

{-5) would have yielded

M = 1, (46)

.e. the location of the flame sheet.

-.hen he temperature gradient vanishes to leading order behind the

'"a-me sheet, the I.=- condition (45) gives the gradient

DT/3n = Y.e (47)

a-ead. This resuZ w ill be needed repeatedly later.

In nany circumstances, locating the flame sheet is relatively easy.

n --.. final lecture -e shall discuss several problems in which it is the

principal question.
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Figure Captions

2.1 Bunsen burner.

2.2 Combustion of initially separated reactants.

2.3 Profiles of T and Y ,drawn for L 1 and T - 0.25,
Y f =0.75.
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