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Lecture 2

GOVERNING EQUATIONS, ASYMPTOTICS, AND DEFLAGRATIONS

The problem of formulating the governing equations of combustion consists,
at its simplest, in characterizing the flow of a viscous, heat-conducting
mixture of diffusing, reacting gases. This is a formidable task that
could fill a week of lectures by itself, most of which would not be of
great interest to a mathematical audience. Mindful of this, we shall limit
ourselves to a description, rather than a derivation, of the simplest
equations that can be brought to bear on combustion problems. Only the
most important assumptions normally used to justify the equations will
be discussed; for a more extensive treatment the reader is referred to
Buckmaster & Ludford (1982,ch.T)

We shall then outline the asymptotic method on which the whole theory
rests and use it to solve the basic problem of combustion: the steady

propagation of a plane deflagration wave.

l. Equations for Dilute Mixtures

The easiest framework in which to understand the field equations is
the "reactant bath". We suppose that most of the mixture consists of a
single inert component (e.g. nitrogen), the properties of which determine
those of the mixture (e.g. viscosity, specific heat). The reacting
components (and their products) are highly diluted by immersion in this
bath of inert.

Mass concentration for the mixture is always described by the $ingle—

fluid equation

/3t + Z-(oy) = 0, (1)




where p is the density and v the velocity. But only for dilute mixtures

-2.2=-

is the overall momentum balance identical to that for a single homogeneous

fluid, namely

p Dy/Dt = 7°L, (2)
where
£ =0+ X0 + clyye(en)]] (3)

and p is pressure; bulk viscosity has been neglected.

A single-fluid equation for energy balance is also justified, provided
account is taken of the release of heat by chemical reaction. But here
additional approximations are made, based on the observation that tempera-
tures are high and gas speeds low for a large class of combustion
phenomena {excluding detonation); more precisely, a characteristic Mach
number is small (typically in the range 10-2-10-3). Then the only
significant form of energy, other than that of chemical bonding, is thermal;
kinetic energy makes a negligible contribution to the energy balance. For
the same reason, the conversion of kinetic enmergy into thermal energy by

way of viscous dissipation can be ignored. Thus, when variations of the

specific heat cp with temperature are neglected, we have
pc DI/Dt - ¥-(AVT)-3p/3t = q, (4)

where q is the heat released per unit volume of the fluid by chemical-
reaction; the form of q is considered later.

In addition, the assumption of small Mach number implies that spatial
variations in pressure are small, so that 3p/3t in the energy balance (L)
is due to imposed, uniform pressure variations. We shall assume that the
imposed pressure is constant, i.e. the term vanishes. The pressure term

in the momentum equation (2) cannot be neglected, however; the small
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spatial variations are needed to account for changes in the weak velocity
field. A further consequence of the virtual constancy of the pressure

is that the equation of state of the mixture is Charles's law
pT = mpc/R (5)

if the inert is a perfect gas. Here m is the molecular mass of the inert,
pc the imposed constant pressure, and R the gas constant.

Consider now the individual components of the mixture, denoting the
density of the i-component by pYi, where Yi is the mass fraction and
i=1,2,...,N. The reactants and their products are convected with the
gas speed v, diffuse relative to the inert diluent, and are consumed or
generated by reaction. The diffusion laws of general mixtures are
complicated, involving a diffusion matrix; but for dilute mixtures the

matrix is diagonal insofar as the reactants and products are concerned,

so that we may write

pDYi/Dt - Y-(uiiin) =0y for i =1,2,...,N-1. (6)

Here Py is the mass production rate per unit volume of the ith component;
its precise form is considered below. The equation for the mass fraction
YN of the inert is more complicated; but it can be obtained from the

relation

instead, once the other Yi's have been determined.
Coupling between the fluid-mechanical equations (1), (2) and the
thermal-chemical equations {(4),(6) occurs because of density variations.

If these variations are ignored, the former may be solved for v, which

can then be substituted into the latter, a substantial simplication.
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Such a procedure is Justified if the heat released by the reaction is small,
but this is not a characteristic of combustion systems, whose main purpose

is to liberate heat from its chemical bonds. For this reason, the simplified
system of equations should be thought of as a model in the spirit of Oseen's
approximation in hydrodymamics. However, to emphasize the mathematically
rational nature of the procedure, we shall refer to the simplified system as
the constant-density approximation rather than mc’el. Phenomena whose
physical pasis is truly fluid-mechanical (e.g. the Darrieus-Landau instability
discussed in lecture 5) are not encompassed by this approximation, but

much of importance is; it will play a central role in our discussion.

There remains the question of the contribution of the individual
reactions to the heat release q and the production rates 6i. It is
possible, in principle, to consider all the reactions that are taking place
between the constituents of a mixture. However, this is done but infrequently;
often a complete chemical-kinetic description (i.e. how the rates depend on
the various concentrations and temperature, or even whether a particular
reaction takes place) is not available. Even when it is, its complexity
may deter soclution by anything short of massive use of computers. For
these reasons, simplified kinetic schemes are normally adopted which model,
in an overall fashion, the multitude of reactions.

The simplest are the one-step irreversible schemes that account for
the consumption of the reactants, Sere tasen to be just a fuel and an
oxidant. If the reactants are simply lumped together as a single entity,

the scheme is represented by
[Yl] + products, (8)

where brackets denote a molecule of the component whose mass fraction is

enclosed. On the other hand, if the separate identities of the fuel and
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oxidant are recognized, we have
vl[YI] + v,[Y,] + products; (9)

here the vy Bare stoichiometric coefficients; specifying the molecular
proportions in which the two reactants participate. We shall adopt the
scheme (8) when discussing premixed combustion and (9) for diffusion flames
(lectures 8-10 only). These terms are defined at the beginning of section L.

If Ni is the number density of the ith compeonent, so that
p. =m.N., (10)
where mi is the molecular mass of the ith component, the reaction rate w is
defined by the formula

!‘.I = -V w. (11)
i

It is then common to write

8
w=k(T)h' 1 YJJ (v,8
J

positive consts.) {12)

J

for the reaction rate, an empirical formula that is suggested by a theoretical
treatment of so-called elementary reactions. The product contains a single

term for the scheme (8), two terms for (9). The Arrhenius law
(B,a,E consts.), (13)

which we shall adopt, is at the heart of our mathematical treatment; E is

: called the activation energy.

The heat release q 1is a consequence of the difference tetween the
heats of formation of the products and those of the reactnats, so that it

is proportional to w. Combustion is inherently exothermic, so that we shall

o T T B e TR AT T @

write
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q = Qu,
where Q(>0) has the dimensions of energy.

2. Nondimensional Equations and Their Shvab-Zeldovich Formulation.

We shall take units as follows:
temperature Q/cp I vaJ (summation over 1 or 2 reactants)
J

pressure p_, density 0.> mass flux Mr’ speed M}/pr,

Ae ) . s .
length /cer, time Apr/cpMi, pressure variations Mf_/or

Appropriate choices for the reference density e and the reference mass flux

Mr will be made according to the problem considered. The governing equations

in nondimensional form are

pT = mpccp § vaJ/DrRQ, /3t + Y’(DY) =0,

oDY/Dt = -Fp + Plvoy + %\Z(Y'y)],
1.2,
oDT/Dt -9°T = q, pDY, /Dt -L7'0%Y, = a2,

where i runs from 1 to N-1, and

P = ch/k (Prandtl number), L= x/uiicp (Lewis number),
Y. JY
a, = -v.m / Ivm, (with Za, =-1), @ = De ny.Y,
i ii 33 i J
J i J
- - =2 - a y,. 1t a=-1l, v.a
8 = Ecp tvm,/QR, D = DMr , D= [xBqQ or/cp (£ v mJ) lo'TY.

(1k)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

Except in the case y = a, the so=-called Damlohler number D is variable;

it is called a number in spite of having the dimensions of Mg, In the

context of activation-energy asymptotics (8 + =), only its value at a fixed
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temperature T, plays a role, so that it may be considered an assigned

constant.

When one of the Lewis number Li is equal to 1, the differential

operator in its equation (20b) is identical to that in equation (20a).

We may therefore write
(eD/Dt -¥°)(T-Y, /) = O, (2k)

of which one solution is

T - Yi/ai Hi 25)

constant. If this solution is appropriate for the problem at hand, Yi may
be eliminated in favor of T, thereby reducing the number of unknowns. The
linear combusion (25) is known as a Shvab-Zeldovich variable; it is easier

to find by virtue of satisfying the reactionless equation (2L).

3. Activation~Energy Asymptotics

In these lectures we shall discus3 a variety of combustion phencmena
on the basis of equations (18)-(20). To do this we need an effective tool
for dealing with the highly nonlinear reaction term Q. Activation-energy
asymptotics, used in an ad hoc fashion by the Russian school (notably Frank-
Kamenetskii and Zeldovich) in the 40Q's, exploited in the framework of modern
singular perturbation theory (but in a very narrow context) by aerothermo-
dynamicists in the 60's, and systematically developed by Western combusion
scientists in the TO's, is Just such a tool.

The limit 8 + ® 1is, by itself, of little interest: the definition
(22b) shows that @ vanishes. To preserve the reaction, it is necessary

for D to become unboundedly large, i.e. we must consider a distinguished

limit characterized essentially by

e e e aa
Wnlﬁe-"ﬁrm-v e DA b, Py W . ' . '




8/T,

D-e (26)

where T, 1is a constant that may have to be found. The consequences of this
limit then depend on the relative magnitudes of T and Ty

For T < T,, the reaction term Q wvanishes to all orders; this is
known as the frozen limit. For T > T,, equations (20) imply T YjJ +0
exponentially rapidly, so that at least one Yi vanishes like ghaa and
again Q vanishes to all orders; the equilibrium limit hoids. For T
no more than 0(6-1) from T,, reaction takes place, usually in a thin
Layer called a flame sheet. Thus, with a few exceptions, the general feature
of high activation energy is the absence of chemical reaction from most of

the combusion field, the description of which is thereby simplified. Reaction

occurs only in thin layers (spatial or temporal), whose desceription is also

relatively simple.

Y. Plane Deflagration Waves.

We are now ready to demonstrate the efficacy of the technique that is
the central theme of these lectures, by examining the fundamental problem
of premixed combusion - the plane unbounded flame. But first we pause for
a few words on terminology.

In general, two-reactant flames can be classified as diffusion or
premixed. In a premixed flame the reactants are mixed and burn when the
mixture is raised to a sufficiently high temperature. 1In a diffusion fiame
the reactants are of separate origin; burning occurs only at a diffusion-
blurred interface.

Both kinds of flames can be produced by a Bunsen burner (figure 1).

If the air hole is only partly open, so that a fuel-rich mixture of gas and

air passes up the burner tube, a thin conical sheet of flame stands at the
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mouth; this is the premixed flame. Any excess gas escaping downstream
mixes by diffusion with the surrounding atmosphere and burns as a
diffusion flame.
Separate origins do not guarantee a diffusion flame, however. In
figure 2 the reactants are originally separated by the splitter plate
but mix before igniting. The flame spread across the oncoming flow is
therefore premixed. Behind this premixed flame the remaining portions of
the reactants are separate again, so that a diffusion flame trails downstream.
The plane unbounded flame of premixed combustion, the so-called (plane)
deflagration wave, propagates at a well-defined speed through the fresh
mixture and, accordingly can be brought to rest by means of a counterflow.
It is natural to take the mass flux of this counterflow as the representative
mass flux Mr; the counterflow is not known a priori, but is to be determined
during the analysis of the combustion field. Indeed, its determination is
the main goal of the analysis. A choice rmust also be made of the reference
density PL3 we shall take it to be that of the fresh mixture.

The continuity equation (18b) integrates to give

ov = 1, (27)
so that

dT/dx - dZT/dx2 = Q. (28)

Since there is only one reactant we shall drop the subscript 1. For L =1
in the corresponding equation (20b), the Shvab-Zeldovich formulation applies,

showing that

T+Y 2 H= T +Y_ = T, (29)

where the subscript f denotes the fresh mixture at x = -=, (Actually, H

is the total enthalpy of the mixture). Thus,
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W= D(T.D-'I‘)e'e/T (30)
it the most common choice B, =1 1is made. Equations (28) and (30) form
a single equation for T, which must satisfy the boundary condition
T »T, a5 x > -, (31)

The requirement that all the reactant be burnt provides the final boundary

condition

T - Tb as X -+ 4=, (32)

Note that neither the equation of state (18a) nor the momentum equation (19)
has been used; the former provides p once T has been found, and the latter
then determines p from v = 1/p.

It is immediately apparent, since @ does not vanish for T = Tf,
that the problem for T cannot have a solution. The mixture at any finite
location will have an infinite time to react and so will be completely burnt.
This cold-boundary difficulty, as it is known, is a result of idealizations
and can be resolved in a number of ways: the mixture can originate at a
finite point; an appropriate initial-value problem can be defined, without
the solution having a steady limit of the kind originally sought; or a
switch-on temperature can be introduced below which  vanishes identically.
It is one of the virtues of activation-energy asymptotics that it makes
such resolutions unnecessary. Reaction at all temperatures below T,
(including Tf) is exponentially small, so that it takes an exponentially

‘ large time for it to “ave a significant effect; in other words, T, is a
| switch-on temperature. Consequently, it is not necessary to discuss the

‘ cold-boundary difficulty any further.

We now seek a solution that is wvalid as 6 =+ =, OQur construction

will be guided by the assumption that, in the limit, reaction is confined
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to a thin sheet located at x = 0. On either side of this flame sheet,

eguzation (28) simplifies to
2 2
dT/dx ~ a°T/ax" = 9, (33)

which only hes a constant as an acceptable solution behind the flame sheet
(x » 0), exponential growth being excluded. The boundary condition

{32) thnen shows that .

T = Tb for x > 03 {3%)

Tb is called the adiabatic fleme temperature. It follows that the
temperature at the flame sheet is Tb, so that this is also the value
of T, needed to specify the distinguished limit (26).

An2aé of the fleme sheet, equation {33) has the solution
T =T, + Yfex for x < 0, (35)

satis{ying the boundary condition (31) and meking T coatinuous at x = O.
o structure could be found for the flame sheet if the temperature were
discontinuous.

Turning now to the structure, which must determine the still unknown
Mr {i.2. 7 ), we note that the form of ¢ restricts the variations in
7 to teing 0(9-1). Since the temperaturs gradient must be 0(1) to
effect the transition between the profiles (34%) and (35), the appropriate
layer variable is

£ = 6x; (36)
coefficients in the layer expansion

T =T, - 0T Noe+. .. with ¢ = (1/T), (37

b

are now considersd to be functions of £. Iguation (28) then shows that
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- - -9/T
a%4/ac® = Dpe™® with D = De  ©°/e2, (33)

wnile matching with the solutions (34), (35) gives the boundary conditions
2
b = —YleTb +0o(l) as £+ —, ¢ =0(1) as § + +=.  (39)

In order for this problem (in ¢) to make sense, 0 must be 0(1). Then

De-e/?

*

is 0(82) in x > 0, so that equation (28) is unbalanced unless

v = 0 (to all orders) behind the flame sheet, consistent with the result
(34). Thus, equilibriunm prevails in x > 0 even though the mixture is
no hottér than the flame sheet there.

Integrating equation (38a) once, using the condition (39b), gives
2 P -4
(d9/dg)° = 2p[1-(o+1)e 1. (k0)

Tne ramaining boundary condition will then be satisfied only if

p 2,4 ‘
0 =Y./2T, (L1)
Scrraszponding to the determination

, -8/2T ;

_ b
M, = Y2D T, © /18 (42)

0 tne burning rate. (If D is temperature dependent it must be
evaluated at the temperature Tb')

Tetermination of the wave speed Mr/pr is the main gosl of the analysis,

m

3 rightly so. 3ut, at the same time, the structure of the combustion

cield is obtained (figure 3). The reaction zone appears as a discontinuity
ir +w2 first derivsiives of T and VY, a reflection of the delta function
aztur2 0f N in tne limit 8§ + «. Ahead, the temserature rises and the
rago=ant concentration falls as the reaction zone is approached through

e so-called preazat zone. It is the preheat zone that delimits the
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combustion field and, theréfore, defines the thickness of the flanme.
According to the formula (35), more than 999 of the increase in
temperature from Tf to Tb is achieved in a distence 5, i.e. Sx/cpM
in dizensional terms. With this definition of flame thickress, we find
that hydrocarbon-air flames are about 0.5 mm thick. The thickness of
the reaction zone, which is scaled by 6-1, is typically 10 or 2C times

smaller.

5. Generalizations.

If the reaction-zone structure itself is required, equation (40) must be inte-
grated to obtain ¢ as a function of . The constant of integration is fixed
by the boundary corndition (39a), which is therety used a second time.

Tne three requirerments that the boundery ccnditions imvose on the solution
e? the second-order egquation (382) are resgonsible for a definite value
¢ D. The term laminar-flare esigenvalue is often used.

The analysis in section 4 was carried through with Lewis number
unity for the sake of simplicity alone. For [ # 1, the formula (42)
is replaced by

-9/2'1'b

v = 20D T2 e
r b

AR (43)
he conly change is the replacement of v2D by v2LD.
The rate at which %“he mixture burns is extremely sensitive to the
. . . -1.2 ; -1
{lane temperature. I° “y changes to Tb—e Tbé*’ i.e. by 2n 0(8 )

2wount, the burning rzte changes to

—6,/2
M=le R (L)

i.2. by an 0(1) axcunt. This result has general validity, i.e. it holds

wratever the naturz of the perzurbation, steady or uasteady. The reason

is thet, in determining the eigenvalue D, the perturbation only intrudes
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through the matching of ¢ at & = 4w (which leads to the exvonential
Tagtor); matching ahead of the flame sheet is with an C(l) gradient that
is unaffected by the perturbsation.

Guestions involving deflagration waves are essentially free-boundary
Trodlems: the locetion of the flame sheet and the combustion fields on
either sids have to be determined simultaneously. In that context, the

ssructure problem (38), (39), modified for 0(9-1) perturbations in

(3N

lsme temperature, provides a leading-order jump condition on the normal

derivative 3T/3n, namely

sLGT/mP = e (u5)
=wmanm M is taken to have the value [L42)., This, the true role of the
sTructure proolem, is obscured by the analysis of the steady plane wave
giv2n in the last section, where M = was taken to be the constant (unknown)
rate, I M_  had been given thé value (42) without explanation,
=3 % wused to denote the (Gimensionlsss) burning rate, then x would

~ave been replaced by Mx in the formula (35) and the Jump condition

(=3) would have yielded

M=1, (L6)

l.e. the location o7 the flame sheet.
waen the temperaztiure gradient vanishes to leading order behind the

Tlaze sheet, the lump condition (L3) zives the gredient

-6,/2
37/3n = Y e (u7)

27228, Tails resuls will be needed reveatedly later.

In many circuzstances, locating the flame sheet is relatively easy.

In tre final lecture we shall discuss several problems in which it is the
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Figure Captions ‘

2.1 Bunsen burner.
2.2 Combustion of initially separated reactants.

2.3 Profiles of T and Y , drawn for L =1 and T_ = 0.25 ,
3
Yf = 0.75 .
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