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Lecture 1

?RE-ASYPrTOTIC CONSUSTION REVSITED

The description of reacting systems can be simplified when the so-called

activation energy is large; the notion is an old one, but its full power is

only released by modern singular perturbation theory. More than forty years

ago, Frank-Kamenetskii introduced approximations based on large activation

energy to construct a thermal theory of spontaneous combustion, and we shall

start there. His problem, which neglects the fluid-mechanical effects of

main concern to us, focuses attention on the reaction and thereby acts as a

precursor for the lectures that follow. The problem and its generalizations

have been the happy hunting grounds of mathematical analysts for many years,

but it was not until quite recently that a complete description of the

ignition and explosion processes was made available by Kapila and Kassoy

(working separately) through activation-energy asymptotics, the main theme

of these lectures.

1. Ignition

Let us suppose that a combustion system has a characteristic temperature

T and that the heat generated by reaction can be expressed as a function of

T in the Arrhenius form
c

-e/T
qe c (1)

This function has an inflection point at T = 0/2 and its second derivative
c

is positive for smaller values, where the graph is accordingly concave upwards

(figure 1). Suppose also that the heat loss by conduction and convection has

the linear form

$ k(T -T ) (2)

c f

where T is the ambient temperature.

-f.i-
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The system can only be in equilibrium if the heat generated (1) is equal

to the heat lost (2). The parameters q and k do not then play independent

roles but, rather, it is

D = q/k (3)

that is relevant. This ratio, which will be called the Damkbhler number (cf.

later lectures), can be altered by changing the parameters of the system.

It is apparent from figure 1 that, for 9 > 4Tf, there is either one

solution or there are three solutions, depending on the value of D. If D

is increased, the straight line rotates about its end point in a clockwise

direction; and we can identify the transitions from I solution (cold) to 3

solutions to I solution (hot). It is this second transition that is our

concern in this lecture. The state of the system, represented by a cold point

such as C, moves towards I as the Damkdhler number is increased, and then must

Jump to a hot point such as H at the transition. This Jump is called

ignition.

Ignition is ubiquitous in combustion systems; it can generally be

attributed to the nonlinear dependence of heat generation on temperature and

the essentially linear dependence of heat loss. The precise nature of the

phenomenon can only be determined by detailed analysis, though the results

of different calculations carried out by activation-energy asymptotics often

bear a strong family resemblance. They are characterized by the following

elementary example, introduced by Frank-Kamenetskii.

2. Spontaneous Combustion

Consider the boundary-value problem

d 2T/dx 2 - e e / T for lxj i 1, T a Tf at x a tl. (4)

Heat conduction in the infinite slab is balanced by heat generation due to the
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reaction. Depletion of the reactant has been ignore!, so that the reaction

rate deper.nds only on temperature, as in section 1.

Such models have been used for many years to explain spontaneous

combustion, the auto-ignition that occurs, for example, in large volumes

of damp organic material. Nondimensionalization of the heat-conduction

Laplacian makes the Damkohler number V proportional to a 2 , -where a is

a length characteristic of the volume (here the semi-thickness of the slab).

Thus, an increase in D may be achieved by increasing the volume and, as we

shall see, this can lead to ignition.

We seek a solution of the problem (4) that, as 8 - -, deviates only

by O( - 1 ) from the uniform state, i.e.

TT + a-1T2 ... with * = (I/T) (5)Tf fV

This leads to

2 2
d*$/dx. = -Se with = Ne Tf, (6)

an equation first obtained by Frank-Kamenetskii, and the boundary conditions

=0 at x = t. (7)

Here 6, the scaled Damk6hler number,is assumed to be 0(l).

The perturbation * achieves its maximum ( m) at the midpoint x 0

and so may be written

S 12 2  M

2 Zne sech(cx)] with c a e (8)

The boundary conditions then imply that

- •m osh 1 (em/), (9)

which defines the maximum temperature in terms of the parameter 5. The result
I
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is shown in fi-ure 2, displaying the phenomenon of ignition. For 6 less than

the critical value

= 0.878, (10)

there is a steady solution, in fact there are two solutions; whereas for

6 > 6 there is no solution of the type (5), and in fact none at all. The
C

absence of a steady state for supercritical values of 6 implies that, with

unsteady effects included, the temperature will increase without bound when,

for example, the system is initially in a uniform state T = Tf. In practice,

the increase is limited by depletion of the reactant, an effect that is

ignored here. Of the two solution branches for 6 < 6c, the upper one is

believed to be unstable, though this has never been proved.

It is a general characteristic of ignition that it is associated with

0(0 - ) perturbations of the frozen solution, i.e. the solution obtained for

P = 0. This is certainly true for the diffusion flames treated in lectures

8 and 9 (see section 8.6); the details differ from those presented here,

but the essential ideas do not.

3. Homogeneous Explosion

So far we have inferred ignition from a steady-state theory. The

phenomenon itself is inherently unsteady, and certain aspects of the unsteadi-

ness deserve examination. To that end, it is useful to consider first the

spatially homogeneous initial value problem

dT/dt pe - 0 / T , T - Tf for t - 0. (11)

There is no value of 0 for which a steady state can be attained; the

problem is always supercritical. The physical reason is that no heat-

loss mechanism, such as conduction to the boundaries (section 2), exists.
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In terms of the exponential integral

y u
Ei(y) e du, (12)

u

this has the exact solution

Dt = e(f(Tf)-f(T)] with f(y) = Ei(e/y)-(y/e)e e6 y "  (13)

for any value of e. Since the function f has the symptotic expansion

f(y) = (y/6) 2e/y +... as e =, (i4)

it follows that

e/T-8/T
t= e-(T/T f ) e f with t = 6t; (15)

here

{ = i. (16)

Deviations from the initial-state of the form (5) are therefore described by

* = -In(te-t), (17)

so that te  is the time to explosion (i.e. the time that T takes to deviate

from its initial value Tf by more than 0(e )). The behavior of T in

some small neighborhood of t is called thermal runaway.e

Thermal runaway terminates what is known as the induction phase, the

problem with which pre-asymptotic theory was almost exclusively concerned.

To go substantially further, modern asymptotic methods must be used, as will

be discussed in these lectures. To analyze the so-called explosion phase

that follows induction, we return to the expansion (15), and introduce a

fast time T given by

*- -t. (i)
Ck
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This identifies an e.ponentially snall neighborhood of te within which the

expansion can be written in the form

l/T - i/Tf = -r+2e-ln(Tf/T)+...; (19)

so that, to leading order,

T = Tf/(l-Tf. (20)

Starting at the value Tf for T = 0, the temperature increases without bound

as T increases to l/Tf. The unboundedness is a consequence of our failure

to account for reactant depletion; if that is remedied, T increases towards

a burnt value Tb (see equation (25)), entering the so-called relaxation1i
phase when it is 00 -1 ) away. The relaxation phase lasts an exponentially

short time also.

These features are shown in figure 3 and, so long as T - Tb = 0(1),

the problem without depletion provides a qualitatively accurate description

of them. In particular, the fast time r is still relevant.

The results can also be obtained directly, without recourse to the

exact solution. Thus, if the expansion (5a) is substituted into the

problem (11), we find

d/ = e, - 0 for t 0 0, (21)

with solution (17); and introducing the fast time T into equation (lla)

yields

dT/dr T 2 Tfe(, (22)

Tf

with solution (19).



4I. Inhomogeneous -x~losion

We now combine unsteadiness with spatial inhomogeneity by considering

the slab problem

/ /2 2 ( T -8/T
= , /-f2)(T2 T2 / , (23)

T= Tf for t =0 and at x = ±1. (24)

To account for reactant depletion, D has been replaced by DY/Yf, where Y

is the mass fraction (i.e. concentration) of the reactant and Y its initial
f

value. The Shvab-Zaldovich relation

T + Y = T + Tb  .25)

(cf. section 2.2) is then used to eliminate Y, thereby ensuring conse. ,n

of total enthalpy (the sum of thermal enthalpy, represented by T, and

chemical enthalpy, represented by Y).

During the induction phase, the 0( - ) departures of T from Tf

expressed by the expansion (5) satisfy

*/ t- 2 ¢/3x2- 6e, * = 0for t = 0 andx=±i• (26)

Reactant depletion plays no role during this initial evolution of the

temperature. When the system is subcritical, i.e. for 6 < 6 c, the

perturbation * tends to the steady state (8) with the smaller m as

t - -. But, for 6 > 6 c' the absence of a steady-state solution implies

that # will increase without limit, and indeed thermal runaway is found

(numerically) to occur after a finite time.

Further progress depends on a description of this runaway, which by

symetry must take place in the neighborhood of x = 0. Since the spatial

derivatives must play a role, they have to be increasingly large in order

to be comparable to the ever-increasing time derivative. It follows that
___________________________•____________
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the region in which ruraway occurs, called a hot-spot, must continally

shrink; this self-focusing is an essential feature of the process.

The a crooriate variables for the runaway are t and

x/(te-t) (27)

(see figure 4), where te(6) is the runaway time, to be determined numerically.

The use of n is suggested by the form of equation (26) and by the focusing

discussed above, though Kassoy's achievement in identifying it is in no way

diminished by such a posteriori observations. Now we have

30/a _ e-) -[0/a-2 30/n ] = e (28)

and we seek an asymptotic expansion

0 = -Zn(t -t)+,( )+... as t+t with n fixed, (29)

finding

of- 2n*I + e= 1 with *'(O) 0 (30)

(as a symmetry condition). Another boundary condition is needed to c-mplete

the problem for 0, and this comes from matching with the solution outside

the shrinking hot spot, i.e. as n - with x fixed. Thus, since

cannot become exponentially large, it has the asymptotic form

*= -2Ln4- lA+... as n +-, (31)

corresponding to

* = -21nx-Xn6+A+... as t + t with x fixed. (32)
C

Numerical solutions of the supercritical problem (26) exhibit the behavior (32),

and hence determine the constant A(S) that is needed for the second boundary

condit ion

Urn (*+2tnn) a A(. (33)



The mroblem (30), (33) uniquely deter.ines the function ,p, wrhich can be

readily calculated nuzerically.

Following the initiation of ther-_a runaway, the temperature rises at

an increasing (exponential) rate, so that self-focusing continues. The

variable n still plays a role during this process but now the appropriate

time variable is the fast one (18); in terms of n,T equation (23) becomes

aT/ar+ 8('n T/ n-2T/an 2 (T2/Yf)(Tb-T)exp(9/Tf-@/T-ef). (34)
f f b

Note that x = 6-2ne -e /2 with n = 0(1) provides a =easure of rapid

focusing.

The homogeneous result (20) is, to leading order, the solution here

also; otherwise the reaction plays no role. The perturbation is found to be

T1 = Tff- W)-n[(1-TfC)(Yf-TfTbT)/Yf]}/(l-TfA) T (35)

where ' satisfies the equation (30a). It must, in fact, be identical to

the runaway function Just constructed, since othernise there would be a

mismatch as T - 0.

The hot-spot evolves so rapidly that the temperature outside has no

time to change, i.e.

T = Tf + 0-1T2(-2tnx-ZnS + A)+... as x - 0, (36)
f f

and this does not match the hot-spot expansion, even to leading order. The

reason is clear: the expansion (36) breaks down at points inside the hot-

spot when it is thickest (T small), and such points can be well outside

once the focusing is under way (T moderate). The shrinking hot spot leaves

behind an intermediate structure, which turns out to be stationary (i.e.

independent of T); to leading order it is described by

T - f/(l-T X) with x = -201 ln x. (37)



For the homogeneous problem of section 2, with no reactant depletion,

the tem;erature increases indefinitely as - * I/Tf; but, with depletion,

figure 3 shows that T is limited by trie value Tb, which is approached
-lt

within 0(8" ) as T - Y f/TfTb (an earlier time). The latter is true here

also, but there can no longer be the single relaxation phase shown in

figure 3 as being described on the scale

- 2 -@Y /T T= (-t)/ with e = (Y e/T 2 )e , (38)

e ff

since now the temperature is close to Tb  only in the vicinity of x = 0.

Instead, there is a transition phase at the hot-spot, described in terms of

r and the spatial variable

1 1

X= , x/A (39)

followed by propagation and, finally, relaxation phases. Figure 5 is the

result of numerically integrating the limit problem for the transition phase,

during which the focusing of the hot-spot is opposed by reactant depletion,

thereby forming an incipient deflagration wave (section 2.4). Once formed

the wave propagates rapidly through the right side of the slab burning up the

reactant, after which the relaxation phase takes over. (Of course, similar

remarks apply to the left side of the slab too.) Buckmaster & Ludford (1982,

p. 216) give the details, following Kapila.

5. Ignition by External Agencies

So far we have confined the discussion to ignition due to self-heating,

but it can also be caused by an external agency. As an example, suppose

the half-space x < 0 is f.lled with a combustible material subject to a

prescribed heat flux at its surface. The mathematical problem is

3T/at - 2T/3x 2 , De-e/T,1 (40)



/ at X = 0, A for t = 0 and as x * -a. ( l)

Here the constant T' is the dimensionless heat flux and we shall suppose that

9/T
D - r with Tr > Tf (42)

The Parameter Tr  characterizes the reactivity of the material: for

temperatures below Tr, the reaction is negligibly weak in the limit

9 -b=. A pre-exponential factor (even depending on 8) can be given to D,

but this is equivalent to changing Tr slightly, provided nothing is added

to the exponential growth of e with 8.

During an initial (finite) time interval, the material is colder than

the reactivity temperature so that the reaction is frozen (i.e. exponentially

weak) and the heat equation governs. Because of the heat flux T' the
s

temperature rises, its maximum value occuring at the surface x = 0.
Ignition occurs when the surface temperature reaches T . The subsequent

r :1

process of thermal runaway, hot-spot development and deflagration-wave

formation has been discussed by Kapila. Here we shall mention only the

mathematical problem involved in the thermal runaway.

The rise in temperature is much more rapid than that for spontaneous 3

I
combustion, extending only over a period 0(9- ). If conduction is to

rival the temporal changes, spatial gradients must therefore be 0( ) so

that, at corresponding distances from the surface, the temperature has

dropped by O(e-) and there is no reaction. (In the limit e , reaction

only occurs at temperatures O(0- 1 ) away from T .) The thermal runaway

is therefore governed by the heat equation

2 3;- aT2/X (43

and its cause lies in the nonlinear boundary conditions

at21/a' e for -0, t 2 a o(l) as { -- w and is T -.

Here x and ; are appropriately transformed space and time variables while
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T2 represents the seconi .perturbation in an expansion of the temperature.

The problem (42,43) should be compared with that for spontaneous

combustion, given by equations (26). Clearly they have entirely differently

forms.

6. Ignition by an Externally Generated Hot-Spot

Suppose some portion of an infinite combustible material is burnt very

rapidly so that there is a local rise in temperature and depletion of reactant.

That is, we create a hot spot (using a spark, for example) somewhat like the

one that develops in auto-ignition. The hot-spot can have one of two fates:

either it decays by diffusion, so that after a certain time the temperature

is essentially uniform once again (and constant until a homogeneous explosion

occurs because of self-heating); or it acts as a ignition source, producing

a deflagration, wave that sweeps across and consumes the fresh material. If

the hot-spot is very small, temperature gradients will be very large and the

resultant cooling will eliminate it. On the other hand, the results for

auto-ignition suggest that a sufficiently large hot-spot will ignite the

material. In general, the initial-value problem that must be solved to letermine

the fate of a particular hot-spot is difficult. We shall therefore consider

a very special configuration from which plausible conclusions can be drawn

quite easily.

Consider the spherically symmetric form

T i T (T -Te-T
- 2 7 (r2 _D) = b - (45)

at 2 r ar)
r Yf

of equation (23). This has an exact, stationary solution

T zj b  for r r, (46)
(Tf+Yfr*/r
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in the limit 8 , Provi.ed

r, B f Oe l2Tl/ Tb .  (4T)

Thus, the reaction term is asymptotically zero on either side of the flame at

r = r*, where the temperature gradient takes a Jump

e-le/2Tb

aTIarj 'VY 2 0e- /2 b (48)
r*+O f b

(cf. the deflagration-wave solution in section 2.4).

This combustion field is now subjected to spherically symmetric

disturbances. A straightfor-vard stability analysis shows that the perturba-

tion of the flame radius grows like e t /Y f, which corresponds to a collapsing

or growing hot spot depending on whether the flame is displaced inwards or

outwards initially. The result suggests that the radius (46) is critical:

larger hot-spots will grow and smaller ones will collapse.

j
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Figure Captions

1.1 Heat-generation and heat-loss curves.

1.2 Steady-state response for slab with surface maintained at initial
uniform temperature, as determined by equation (9).

1.3 Temperature history for homogeneous explosion with reactant depletion.

1.4 Parabolas n - const.

1.5 Temperature profiles during transition phase. (Courtesy A.K. Kapila.)
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