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Lecture 1

PRE-ASYMPTOTIC COMBUSTION REVISITED

L The description of reacting systems can be simplified when the so-called

activation energy is large; the notion is an old one, but its full power is

only released by modern singular perturbation theory. More than forty years

ago, Frank-Kamenetskii introduced approximations based on large activation

e

energy to construct a thermal theory of spontaneous combustion, and we shall
start there. His problem, which neglects the fluid-mechanical effects of

mein concern to us, focuses attention on the reaction and thereby acts as a

P v

precursor for the lectures that follow. The problem and its generalizations
have been the happy hunting grounds of mathematical analysts for many years, i

but it was not until quite recently that a complete description of the

o

ignition and explosion processes was made available by Kapila and Kassoy
(working separately) through actiéation-energy asymptotics, the main theme

of these lectures.

1. TIgnition

Let us suppose that a combustion system has a characteristic temperature
.Tc and that the heat generated by reaction can be expressed as a function of

Tc in the Arrhenius form

TIEE R e iy - Al i A P P Y BT P AP AN T AT 31,

~8/T_ {
qe . , (1) ;
This function has an inflection point at Tc = /2 and its second derivative
is positive for smaller values, where the graph is accordingly concave upwards
(rigure 1). Suppose also that the heat loss by conduction and convection has

the linear form

e A ¢ — A R = -

k(Tc-Tf) | (2)
where Tt is the ambient temperature, i

-l.1- ]
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The system can only be in equilibrium if the heat generated (1) is equal
to the heat lost (2). The parameters q and k do not then play inderendent

rolas but, rather, it is

D =q/k (3)

that is relevant. This ratio, which will be called the DamkShler number (cf.
later lectures), can be altered by changing the parameters of the system.

It is apparent from figure 1 that, for 6 > hTf, there is either one
solution or there are three solutions, depending on the value of 0. If D
is increased, the straight line rotates about its end point in a clockwise
direction; and we can identify the transitions from 1 solution (cold) to 3
solutions to 1 solution (hot). It is this second transition that is our
concern in this lecture. The state of the system, represented by a cold point
such as C, moves towards I as the Damk#hler number is increased, and then must
jump to a hot ©point such as H at the transition. This Juﬁp is called
ignition.

Ignition is ubiquitous in combustion systems; it can generally be
attributed to the nonlinear dependence of heat generation on temperature and
the essentially linear dependence of heat loss. The precise nature of the
phenomencn can only be determined by detailed analysis, though the results
of different calculations carried out by ;ctivation~energy asymptotics often
bear a strong family resemblance. They are characterized by the following

elementary example, introduced by Frank-Kamenetskii.

R Spontaneous Combustion

Consider the boundary-value problem

a°1/ax? = - 0e™'T gor Ix| <1, T =T, at x = ¢1. (4)

Heat conduction in the infinite slab is balanced by heat generation due to the

S T T ey

T PP e
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reaction. Depletion of the reactant has been iznored, so that the reaction

rate 3epends only on temperature,'as in section 1.

Such models have been used for many years to explain spontaneous
combustion, the auto-ignition that occurs, for example, in large volumes
of damp organic material. Nondimensionalization of the heat-conduction
Laplacian makes the Damkohler number 0 proportional to aa, where a 1is

a length characteristic of the volume (here the semi-thickness of the slab).

Thus, an increase in U may be achieved by increasing the volume and, as we
shall see, this can lead to ignition. ;
We seek a solution of the problem (L) that, as 9 + =, deviates only

by 0(9-1) from the uniform state, i.e. ;

ELET

_ -1.2 . _
T =T, + 0 Tgé +... with ¢ = (1/T)1. (5)

This leads to

W s i AT o tE

-e/T
a®o/ax = -ge® with § = Dee /12, (6)

an equation (first obtained by Frank-Kamenetskii, and the boundary conditions

¢ =0 at x =1, (1)

Here &, the scaled DamkShler number,is assumed to be 0(1).

ey —

The perturbation ¢ achieves 1ts maximum (¢m) at the midpoint x =0

and so may be written

R L T

®_/2 é :
¢ =2 tnfe ™ gech(ex)] with c2 a }ée O, (8) :
]
The boundary conditions then imply that 3
-¢_/2 $
fij2 = e B gosh’l(e m/2), (9)

which defines the maximum temperature in terms of the parameter §. The result
]

!
.
3
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is shown in figure 2, Jdisplaying the phenomernon of ignition. Tor § less than

the critical value

8, = 0.8718, (10)

there is a steady solution, in fact there are two solutions; whereas for

§ > & there is no solution of the type (5), and in fact none at all. The
absence of a steady state for supercriticel values of 6 implies that, with
unsteady effects included, the temperature will increase without btound when,
for example, the system is initially in a uniform state T = Tf. In practice,
the increase is limited by depletion of the reactant, an effect that is
ignored here. Of the two solution branches for § < Gc, the upper one is
believed to be unstable, though this has never been proved.

It is a general characteristic of ignition that it is associated with
0(6‘1) perturbations of the frozen solution, i.e. the solution obtained for
D = 0. This is certainly trxue for the diffusion flames treated in lectures
8 and 9 (see section 8.6); the details differ from those presented here,

but the essential ideas do not.

3. Homogeneous Explosion

So far we have inferred ignition from a steady-state theory. The
phencmenon itself is inherently unsteady, and certain aspects of the unsteadi-
ness deserve examination. To that end, it is useful to consider first the

spatially homogeneous initial value problem

dT/dt -ve‘e/'r, T =T, for t = 0. (11)

There is no value of D for which a steady state can be attained; the
problem is always supercritical. The physical reason is that no heat-

loss mechanism, such as conduction to the boundaries (section 2), exists.

R

P

EX =
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In ta2rms of the exponential integral

¥y u
Ei(y) = § %r du, (12)

¥
-0 .

this has the exact solution

Dt = o[ £(T,)-£(T)] with £(y) = Ei(e/y)-(y/e)eely'

(13)
for any value of 6. Since the function f has the symptotic expansion
i
£(y) = (3/0)2e*Y 4. as 8+ =, (14) .:
s
L it follows that :
' i
’ - .  8/T-8/T . i
t = te-(T/Tf) e +e.. with t = &t; (15) ;
1
¥
here H
£ =1, (16) |

-
Deviations from the initial ‘state of the form (5) are therefore described by '

= -ln(ge-g), (17)

so that te is the time to explosion (i.e. the time that T takes to deviate

from its initial value Tf by more than 0(9-1)). The behavior of T in

some small neighborhood of te is called thermal runawvay.

Thermal runaway terminates what is known as the induction phase, the

e o Camprs1 ot " e romey ™

problem with which pre-asymptotic theory was almost exclusively concerned.

To go substantially further, modern asymptotic methods must be used, as will

e ————

be discussed in these lectures. To analyze the so-called explosion phase

that follows induction, we return to the expansion (15), and introduce a

fast time <t given by




32t i s A i o i
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This identifies an exgonentially small neighborhood of t_ within which the

expansion can be written in the form )
/T = 1/T, = -1+20  an(T,/T)+. s (19)
so that, to leading order,
T = To/(1-1T,). (20)

Starting at the value Tf for T = 0, the temperature increases without bound
as t increases to l/Tf. The unboundedness is a consequence of our failure
to account for reactant depletion; if that is remedie=d, T increases towards
a burnt value T, (see equation (25)), entering the so-called relaxation
phase when it is 0(9-1) away. The relaxation phase lasts an exponentially
short time also.

These features are shown in figure 3 and, so long as T - Tb = 0(1),
the problem without depletiqp provides a qualitatively accurate description
of them. In particular, the fast time <t 1is still relevant.

The results can also be obtained directly, without recourse to the

exact solution. Thus, if the expansion (5a) is substituted into the

problem (11), we find

a6/4t

e®, 6=0 for t=o0, (21)

with solution (17); and introducing the fast time <t into equation (1lla)

yields

2 3(1/Tf—1/T-r)
dT/dv = Tge . (22)

with solution (19).

o s
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L. Inhcmogeneous Sxplosion

We now combine unsteadiness with spatial inhomogeneity by considerin

the slab problem

8/T_-8/T
aT/st -32T/3x2 = (T?G/Tfe)(Tb-T)e f , (23)

T=T, for t =0 and at x = tl. (2%)

To account for reactant depletion, D has been replaced by DY/Yf, where Y

is the mass fraction (i.e. concentration) of the reactant and Y its initial

£ :
value. The Shvab-Zzldovich relation g

[ ey

T+Y=T,+Y T,

e P b 25) ;

(cf. section 2.2) is then used to eliminate Y, thereby ensuring conse. -

of total enthalpy (the sum of thermal enthalpy, represented by T, and

chemical enthalpy, represented by Y).

During the induction phase, the 0(6—1) departures of T from T

¢

expressed by the expansion (5) satisfy

¢

36/3t-320/3x2

=8, $=0fort =0 and x = ¢1. (26)

Reactant depletion plays no role during this initial evolution of the

temperature. When the system is subceritical, i.e. for § < Sc, the

T Y TR rer 1 ~f T R

perturbation ¢ tends to the steady state (8) with the smaller ¢, as

t + =, But, for § > Gc, the absence of a steady-state sclution implies

e, o s

that ¢ will increase without limit, and indeed thermal runaway is found

(numerically) to occur after a finite time.

Further progress depends on a description of this runaway, which by

symmetry must take place in the neighborhood of x = 0. Since the spatial

derivatives must play a role, they have to be increasingly large in order

to be comparable to the ever-increasing time derivative. It follows that
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tne region ia which runaway occurs, called a hot-spot, must continually

shrink; this self-focusing is an essential feature of the process.

The arcropriate variables for the runaway are t arnd

n= x/(te-t)12 (27) |

fsee figure 4), where te(s) is the runaway time, to be determined numerically.

“ne use of n 1is suggested by the form of equetion (26) and by the focusing

discussed above, though Kassoy's achievement in identifying it is in no way

diminished by such a posteriori observations. Now we have

B e e et

3¢/3t - (Ee-i)'1[3§93n2—5n3¢/an] = e

and we seek an asymptotic expansion

6 = -zn(te-t)+¢(n)+... as ttt_ with n fixed,

finding

o" = dnp' + ¥ = 1 with ¢'(0) = 0 (30)

(as a symmetry condition). Another boundary condition is needed to c-mplete

the problem for ¢, and this comes from matching with the solution outside

the shrinking hot spot, i.e. as n + o with x fixed. Thus, since ¢

cannot become exponentially large, it has the asymptotic form

Y = -24nn + A+... as n > 4=, (31)

corresponding to

¢ = -2inx-in§+A+... as £ 4 Ee with x fixed, (32) %

Numerical solutions of the supercritical problem (26) exhibit the tehavior (32),

and hence determine the constant A(S) that is needed for the second boundary

condition

1im (¢+22nn) = A(S). (33)

=D
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The problam (30), (33) uniquely determines the functica , which can be
readily calculated numerically.

Following the initiaticn of thermal runaway, the temperature rises at
an increasirg (exponential) rate, so that self-focusing continues. The
variable n still plays a role during this process but now the appropriate

time variable is the fast one (18); in terms of n,tr equation (23) becomes

3T/ 3t+ a(inaT/en-azT/anz) = (T?/Yf)(Tb-T)exp(S/Tf-B/T-er). (3%)

1
Note that x = 6°zne-er/2 with n = 0(1) provides a measure of rapid

focusing.

The homogeneous result (20) is, to leading order, the solution here

also; otherwise the reaction plays no role. The perturbation is found to be
T, = To0u(n)=2al (1-T o) (Y ~T.T, £) /¥, 1}/(1-T,1)2 (35)
1 by f f £ f £ ?

where ¢ satisfies the equation (30a). It must, in fact, be identical to
the runaway function just constructed, since otherwise there would be a

mismatch as t + 0.

The hot-spot evolves so rapidly that the temperature outside has no

time to change, i.e.

T= Tf + e-lTi(-Zlnx-lnG + A)+... as x + 0, (36)

and this does not match the hot-spot expansion, even to leading order. The
reason is clear: the expansion (36) breaks down at points inside the hot-
spot when it is thickest (t small), and such points can be well outside
once the focusing is under way (t moderate). The shrinking hot spot leaves
behind an intermediate structure, which turns out to be stationary (i.e.

independent of 7t); to leading order it is described by

T = Tf/(I-fo) with ¥ = -2e-lln X
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For the homogeneous problem of section 2, with ro reactant depletion,
the temperature increases indefinitely as <t + l/Tf; but, with depletion,
figure 3 shows that T 1is limited by tne value Tb. which is approached
within o(e'l) as 1 + ‘!f/TfTb (an earlier time). The latter is true here
also, but there can no longer be the single relaxaticn phase shown in

figure 3 as being described on the scale

2)e-er/TfTb (38)

T = (t-t )/e with ¢ = (Y 0/T} ,

since now the temperature is close to Tb only in the vicinity of x = 0.
Instead, there is a transition phase at the hot-spot, describved in terms of

T and the spatial variable
- _ 3,3
x = 8°x/e*, (39)

followed by propagation and, finally, relaxation phases. TFigure 5 is the

result of numerically integrating the limit problem for the transition phase,

during which the focusing of the hot-spot is opposed by reactant depletion,

thereby forming an incipient deflagration wave (section 2.4). Once formed

the wave propagates rapidly through the right side of the slab burning up the
-

reactant, after which the relaxation phase takes over. (Of coursé, similar

remarks apply to the left side of the slab too.) Buckmaster & Ludford (1982,

p. 236) give the details, following Kapila.

Se Ignition by External Agencies

So far we have confined the discussion to ignition due to self-heating,
but it can also be caused by an external agency. As an example, suppcse
the half-space x < 0 1is filled with a combustible material subject to a

prescribed heat flux at its surface. The mathematical problem is

3T/at - 3°1/3x° = 0e T,

i (40)
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3T/3Ix =T >3 at x =0, T
<

der 1 ast T' is tnhe dimensionless nd -
Here the constant tg 18 tne ldizensionless heat flux and we shall suppose that

9/'[‘r
D=e with Tr > Tf (42)

The rarameter ’I‘r characterizes the reactivity of the material: for
temperatures below Tr' the reaction is negligibly weak in the limit

9 + », A pre-exponential factor (even depending on 6) can be given to D,
but this is equivalent to changing Tr slightly, provided nothing is added
to the exponential gzrowth of D with o.

During an initiasl {(finite) time interval, the material is colder than
the reactivity temgerature so that the reaction is frozen (i.e. exponentially
weak) and the heat equation governs. 32ecause of the heat flux T; the
temperature rises, its maximum value occurizng at the surface x = 0.
Ignition occurs when the surface temperature reaches Tr' The subsegquent
process of thermal runaway, hot-spot develorment and deflagration-wave
formation has been discussed by XKapila. Here we shall mention only the
mathematical problém involved in the thermal runaway.

The rise in temperature is much more rapid than that for spontaneous

l). If conduction is to

}

combustion, extending only over a period 0(8"
rival the temporal changes, spatial zradients must therefore be 0(8°) so
that, at corresponding distances from the surface, the temperature has
dropped by 0(0-5) and there is no reaction. (In the limit 8 + =, reaction

only occurs at temperatures 0(6-1) away from Tr°) The thermal runaway

is therefore governed by the heat equation
A, /a1 - 3%T,/0%° = 0 (43)

and its cause lies in the nonlinear boundary conditions

T+T

352/3; 2e ° for x =0, 12 =2 5(1) as x ~-w and as t + -=», (L)

Here ; and ; are appropriately transformed space and time variables

T = Tf for t = 0 and ag x + -». (L41)

by ting Y
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-

T2 represents the seconi certurtation in an expansion of the temgerature.

The problem (42,43) should te compared with that for spontaneous

e

combustion, gziven by equations (26). Clearly they have entirely differently

forms.

6. Ignition by 2n Externally Generated Hot-Spot

Suppose some portion of an infinite combustible material is burnt very
rapidly so that thesre is a local rise in temperature and depletion of reactant.
That is,'we create a hot spot (ﬁsing a spark, for example) somewhat like the
one that develops in auto-ignition. The hot-spot can have one of two fates:
either it decays by diffusion, so that after a certain time the temperature
is essentially uniform once again (and constant until a homogeneous explosion
occurs because of self-heating); or it acts as a ignition source, producing
a deflagration wave that sweeps across and consumes the fresh material. If

the hot-spot is very small, temperature gradients will be very large and the

resultant cooling will eliminate it. On the other hand, the results for ?

auto-ignition suggest that a sufficiently large hot-spot will ignite the

material. In general, the initial-value problem that must be solved to determine
the fate of a particular hot-spot is difficult. We shall therefore consider

a very sjecial configuration from which plausible conclusions can be drawm

quite easily.

Consider the spherically symmetric form

T, -T
T _ 1 3 22T b -8/T !
T2 o) 20T e (5) |
r f
of equation (23). This has an exact, stationary solution
Tb
T = for r $r, (46)

Te+Y r,/r
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4
13
[$9)

in the lizit 6 -+ =, provi

8/27T

ry = 2% 90 1/ 12 (57)

Thus, the reaction term is asymptotically zero on either side of the flame at

r = r,, vhere the temperature gradient takes a Jjump

o _y -9/eT,
3T/ 3| = - /'20/‘{f T, 8 e (48)
r 0

(ef. the deflagration-wave solution in section 2.4).

This combustion field is now subjected to spherically symmetric
disturbances. A straightforward stability analysis ;hows that the perturba-
tion of the flame radius grows like et/Y » Wwhich corresponds to a collapsing

or growing hot spot depending on whether the flame is displaced inwards or

outwards initially. The result suggests that the radius (L46) is critical:

larger hot-spots will grow and smaller ones will collapse.

I = prepr ey

e

g g+ g
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Figure Captions

Heat-generation and heat-loss curves.

Steady-state response for slab with surface maintained at initial
uniform temperature, as determined by equation (9).

e

Temperature history for homogeneous explosion with reactant depletion.

Parabolas n = const.

Temperature profiles during transition phase. (Courtesy A.K. Kapila.)
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