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A. Goals and Achievements

... The original proposal for this research project states its goals as

follows: "The object of this research project is to continue a broad

program of research whose aims are: (1) to develop the quantile and

density-quantile function formulation of statistical data analysis and
{(

modeling problems; (2) to develop robust methods of data analysis and

modeling; (3) to develop density estimation methods; and ( to develop

minimum distance methods and approximation theory methods. W6 propose-to

implement our theoretical research in algorithms and computer software

which provide methods useable by researchers concerned with important

scientific and social problems, and to discuss applications which illustrate

the applicability of the methods."

The approach to statistical reasoning that our research program is

attempting to develop has reached a synthesis that warrants its own name;

we propose the name FUN.STAT.!P-The FUN.STAT domain of statistical data

model identification and parameter estimation combines (1) density-quantile

function signatures of distributions, (2) entropy and information measures,

and (3) fnctional statistical inference. , .

The word "functional" is used with several interpretations: (a)

functional = useful; (b) functional = functional analysis, as one applied

techniques of numerical analysis, solutions of linear equations, and

approximation theory; (c) functional = estimation of functions, and fitting

curves and surfaces to a discrete grid of points. Functional inference is

a branch of the field of "abstract inference" formulated by Grenander.

U FUN.STAT is an approach to statistical graphics which argues that a

graph should be a picture of a function (and the function should be a
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signature of a probability model). FUN.STAT connotes the name of a library

of computer programs for statistical data analysis whose output provides

*both graphs of functions and numerical diagnostics of the fit and complexity

of the functions. We currently have available computer packages ONESAM,

TWOSAM, and BISAM.

Some achievements of this research program are described in Section B

which outlines the Quantile Data Analysis approach to one-sample, two-sample,

* and bivariate sample statistical data anlaysis problems. We believe that

we have achieved important clarifications of the role of information and

entropy measures in model identification and parameter estimation (information

I measures can be elegantly expressed in the quantile domain and appear to be

more easily estimated in that domain).

Statistical concepts introduced or emphasized in our research include

density-quantile function, quantile-density function, score function, tail

exponents, mode percentile, sample quantile function, histogram-quantile

function, quantile box plot, cumulative weighted spacings plot, sample

entropy, score deviation, 19 quantile values for universal data summary,

quantile bootstrap, joint density-quantile function, dependence density

function, dependence entropy, regression-quantile function, Bayes theorem

-0 for quantile functions, autoregressive quantile densities, exponential

dependence densities, minimum distance estimation by reproducing kernel

Hilbert space norms, Renyi entropy of order a. These concepts seem to be

* increasingly accepted (and referred to) in the literature.

We believe that we have made excellent progress towards achieving the

goals stated in our original proposal. A framework has been developed for

integrating statistical data analysis and concepts of probability theory.
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B. Summary of some of the most important results of Quantile and FUN.STAT

Data Analysis

I. One Sample: Univariate

The probability law of a random variable X is usually described by

IN its distribution function F(x)=Pr[X<x], -<-x<-, and probability density

function f(x)=F'(x). The quantile approach uses

(1) Q(u) =  F-l(u) =  inf {x:F(x)>u}

(2) q(u) = Q'(u)

(3) fQ(u) = f(Q(u)) {q(u)} -  , and

(4) J(u) = -(fQ)'(u)

A quick measure of location is'the median Q(O.5). A quick index of

scale is the interquartile range Q(0.75) - Q(0.25), formed from the

quartiles Q(0.25) and Q(0.75).

Quick measures of distributional shape are provided by values (as

u tends to 0 and 1) of the informative quantile function [recently

introduced by ParzenJ.

* IQ(u) Q(u) - Q(O.5) O<u<1
SQTO.75) - Q(O.25)1 -u

We cannot emphasize how powerful the IQ function appears to be in

practice as a tool for the diagnosis of distributional shapes.

The IQ function is independent of location and scale parameters.

It is approximately equivalent to normalizing a quantile function to

have the properties Q(O.5) = 0, Q'(0.5) = 1. The IQ graph of the

function provides us at a glance with a vague estimate of tail behavior

as defined by tail exponents.

S"
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A fundamental description of the tail behavior of distributions

is provided by the left tail exponent ao and the right tail exponent

a, defined as follows:

fQ(u) = uaO L(u) as u 00

fQ(u) = (1-u), L (u) as u + 1
L

* where L0 (u) and Ll(u) are slowly varying functions.

A function L(u) is slowly varying as u + 0 if, for every y > 0,

rn .lim L = 1.

u-0 L (u)

Tail behavior is defined in terms of a tail exponent as follows:

a<l: short tail

"t=l: medium tail

c>l: long tail

Medium tail (c=l) distributions are further classified by the value of

nim fU) hl lim f( u
u--O u I u *1 1-u

the letter h is suggested by the notion of hazard function. We define

h = 0: medium-long tail

0 < h < -: medium-medium tail

h =: medium-short tail6

Extensive calculations of informative quantile functions indicate

that the value IQ of IQ(u) for u near 0 is a quick indicator of

,* left tail behavior:

6
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-0.5 < IQ < 0 : short left tail,

-1.0 < IQ < -0.5: medium-short left tail,

IQo < -1.0: medium-medium to long left tail.

Similarly the value IQ1 of IQ(u) for u near 1 is a quick indicator of

right tail behavior:

0 < IQ1 < 0.5: short right tail,

0.5 < IQ, < 1.0: medium-short left tail,

1.0 < IQ : medium-medium to long right tail

An important family of distributions is the Weibull with shape

parameter $ • Its quantile function Q(u) is of the form

Q(u) =ij + a Qo(u)
i0

where
1 1I

Qo(u) = {log (1-u)-

Its density-quantile

foQo (u) = (1-u) {log (l-uy)lB- t
Its right tail exponent is a = 1., and its left tail exponent is

0 I-s. Insight into the interpretation of informative quantile

functions is obtained by computing them for Weibull distributions.

* Given data, we distinguish three types of estimators of population

parameters, which we call: (1) fully non-parametric, (2) fully

parametric, and (3) functional-parametric. Fully non-parametric

* estimators assume no model, and provide quick estimators. Fully

0
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parametric estimators assume a model known up to a finite number of

parameters which must be estimated. Functional-parametric estimators

are based on methods of functional statistical inference.

A fully non-parametric estimator Q(u) of Q(j), given a sample of

n distinct values X X < <X is defined by (for j=l,..,n)
l ;n X2;n' n;n'

( = j-1 Uu Xj;n n n

For a large sample, or for grouped values, we form a histogram before

computing Q(u) by linear interpolation at an equi-spaced grid of values

kh, k=l,2,... ,[I/h] where usually h = 0.01.

A quantile data analysis of the random sample

1. Forms sample distribution function Fx(x), sample quantile

function Qx(u), sample quantile density q(u) at a grid of

values of u in O<u<l.

2. Plots sample version of informative quantile function IQ(u)

whose values as u tends to 0 and 1 indicates the tail

exponents of the probability law of X.

3. Determines standard distribution functions Fo(X) to test

Ho: F(x) = Fo or Q(u) = u + a Q (u)
0 0g 0

for location and scale parameters v and a to be estimated. A

test of H which does not require estimation of pI and a can be
* 0

based on [Parzen (1979)]

d(u) f0Q (u) q(u) f

S
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00 = 4 f0Q0 (t) q(t) dt

which estimate respectively

d(u) f0Q0(u) q(u)

/0

%1o fQ 0(t) q(t) dt.

4. Form successive autoregressive estimators

*~~~ d(u) KI + a() e iu() e2 im-

whose negentropy

i1

m f - log d m(u) du=-log K

is used to determine optimal orders m. Note that K m estimates

the entropy difference

={log a0 - f log fQ 0(u)) f I log fQ(u) du)

5. Estimate fQ(u) by

" dfQ(u) = fQ (u) Q oM dW)

where mn is chosen equal to an optimal order M.

II w Sam p U fnivariate

Let X and Y be continuous random variables with random samples

. m and Ye ... respectively, and with respective distribution

functions F(x) = Pr[X mxi G(x) = Pr[Y+x.. The pooled sample

. , Ys ... to n can be regarded as a random sample from the

distribution function



H(x) = F(x) + (l-x) G(x), x -

To test the hypotheses of equality of distributions, H F(x)=
0

G(x) H(x), it is customary in non-parametric statistics to introduce

D (u) =F H_ (u), D (u) =G H_ (u)

* with densities [equivalent to likelihood ratios]

d (u) f H -1 ()d u) g Hg (u
X f H Cu) h HW1 (u)

Note that h H1 (u) = ~f H-1(u) + (1- ~)gH 1 (u); therefore

dx u) + (1-))gH )L( f H1l(u)

Parzen (1983) shows that all conventional two-samgle nonparametric

test procedures are functionals of the following raw estimator of

Dx (u):

DX(u) = H F- ) Cu)

from which one can form " pseudo- correl ati ons" p(v) and linear rank

statistics A(J) with score function J~u),

-1 2riuv )=f
p~v) = fo e d DX(U) , A(J 0~ J~u) dDx(u)

and autoregressive estimators dxm(u) of dx(u).

*When one observes several variables X~l). X(2),...,xCJ);"- one

estimates functionals of D.(u) F x~j (H- (u)) or D jk~u)

F Fj(Fk)(u)).

0eXj)Xk
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OI. One Sanpe: Bivariate

Let (X], X2 ) be jointly continuous random variables with

distribution function Fx (x1,x2) = Pr[X1<x , X2 _x2] and density

fxx (x 1 ,x 2 ). The joint density quantile function is defined by

fNxIX 2 (u1 'u 2 ) = fx 2 (Qx1 (ul)' Qx2 (u 2 ))

. To estimate fQ we define

DXX 2 (u1,u2 ) Fx ,x2  (ul). Qx (U2))
12 12 1 2

which is the distribution function of U1 = FxI(X 1 ), U2 = Fx (X2); it

has density

d1x 2 I 2 au 2 D(ul ,u2 )

satisfying

SfQx Ix 2 (u1 'u 2 ) = fQx1 (uI ) fQx2(u 2 ) dIx1 2 (ul 'u 2 )
le (xX (j) x2 (,)... ,

To estimate dX 2 from a random sample (XI  , , .

form

D X1x A F x Qx (1UJ), Qx (u2))
12 12 1 2

and a raw estimator d X19x2(u]Su2). We smooth log dxi,x 2 (UIu 2 ) by a_ ,

smooth estimator log dx1 x2 (U1 ,u) minimizing a criterion similar to

1'

U.
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in

SI log d[Ul ,u2 )) - log dm[U I ), u2 (J)112

I--

- where log dm(u1 u2) has the parametric representation (exponential model)

log dm(u 1  u2) - V aVlV 2  exp i (u 1vI + u2V2 ) - (V ,V2) ;

where the summation is over v l , v 2 = 0, + 1,...,+m, and p( 2 ) is an

integrating factor to make dm(U,U 2 ) a probability density. The

foregoing estimators have been implemented in T. J. Woodfield [1982].

The problem of choosing a best value of the order m is approached by
evaluating the entropy of dm.
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C. Li-st of Publications and Technical Reports

The main publications by Professor Parzen on quantile data analysis

and modeling are as follows:

Parzen, E. "Nonparametric Statistical Data Science: A Unified Approach
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Buffalo, January 1977.
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American Statistical Association, (with discussion), 74,
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Robustness in Statistics, ed. R. Launer and G. Wilkinson, New
YorkAcademic Press, 237-258, 1979.

Parzen, E. "Density Quantile Estimation Approach to Statistical Data
*Modeling", Smoothing Techniques for Curve Estimation, ed.

T. Gasser and M. Rosenblatt, Heidlberg: Springer, Lecture in
Mathematics, 757, 155-180, 1979.

Parzen, E. "Comments on Good and Gaskins 'Density Estimation and Bump
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75, 56-59, 1980.

Parzen, E. "Quantile Functions, Convergence in Quantile, and Extreme Value
Distribution Theory," Technical Report B-3, Texas A&M Institute
of Statistics, November 1980.

Parzen, E. Comments on "Nonparametric standard errors and confidence
intervals" by Bradley Efron, Canadian J. Statistics, 9, 164-165,
1981.

Parzen, E. "Data Modeling Using Quantile and Density-Quantile Functions",
Proceedings of 1980 Lisbon Academy of Sciences Symposium on
Recent Advances in Statistics. Academic Press: New York, 1982.

Parzen, E. "Quantiles, Parametric-Select Density Estimation, and
Bi-Information Parameter Estimators," Computer Science and
Statistics: Proceedings of the 14th Smposium on the Interface
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Verlag; New York, 1983, 241-245.
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Technical Reports

Contract DAAG29-80-C-0070

No.; Date Author s) Title

B-I Emanuel Parzen and ONESAM, A Computer Program for Non-
March, 1980 Scott Anderson parametric Data Analysis and Density

Quantile Estimation

B-2
April, 1980 Emanuel Parzen Data Modeling Using Quantile and

Density-quantile functions

UB-3

November 1980 Emanuel Parzen Quantile Functions, Convergence in
quantile, and extreme value
distribution theory

B-4
November 1980 James Michael White A quantile function approach to the

K-sample quantile regression problem

B-5
April 1981 Thomas J. Prihoda A Generalized Approach to the Two

Sample Problem: The Quantile
Approach

B-6
June 1982 Emanuel Parzen Quantiles, Parametric-Select Density

Estimation, and Bi-Information
Parameter Estimators

B-7
August 1982 Terry Joe Woodfield Statistical Modeling of Bivariate

Data

6 B-8
January 1983 Emanuel Parzen Entropy Interpretation of Goodness

of Fit Tests
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D. Ph.D. Theses

Four Ph.D. theses under Professor Parzen's direction have been

completed with support from the Army Research Office in the years of

1979-1982. The theses of R. L. Eubank, J. M. White, T. J. Prihoda, and

T. J. Woodfield focused respectively on the quantile and density-quantile

approach to estimation of location and scale parameters; comparison of k

samples; estimation of location and scale differences of two samples; and

estimation of bivariate joint density-quantile functions. The work of

S. Anderson was unfortunately terminated in 1982 by his accidental death.

Eubank, R. L. "A Density-Quantile Function Approach to Choosing Order
Statistics for the Estimation of Location and Scale
Parameters" Technical Report A-10, Texas A&M, Institute of
Statistics, July 1979.

Prihoda, Thomas J. "A Generalized Approach to the Two Sample Problem:
The Quantile Approach", Technical Report B-5, Texas A&M,
Institute of Statistics, April 1981.

White, James Michael "A Quantile Function Approach to the K-Sample
Quantile Regression Problem", Technical Report B-4, Texas
A&M, Institute of Statistics, November 1980.

Woodfield, Terry J. "Bivariate Modeling of Bivariate Data", Technical
Report B-7, Texas A&M, Institute of Statistics, August 1982.
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