

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

.

. •	SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)	
[REPORT DOCUMENTATION PAGE	REAL STRUCTIONS BEFORE COMPLETING FORM
f	1. REPORT NUMBER 2. GOVT ACCESSION NO.	. RECIPIENT'S CATALOS NUMBER
	20 AD-A129890	
•	TITLE (and Sublicle)	S. TYPE OF REPORT & PERIOD COVERED
	Photochemistry and Photophysics of Aqueous	Technical Report, #20,
0	$Cr(NH_3)_5(CN)^2$ and trans- $Cr(NH_3)_4(CN)_2$	6. PERFORMING ORG. REPORT NUMBER
ð		
8	Edoardo Zinato, Arthur W. Adamson, James L. Reed, Jean Pierre Puaux, and Pietro Riccieri	N00014-76-C-0548
	PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
2	University of Southern California	AREA & WORN UNIT NUMBERS
	Department of Chemistry /:	NR 051-509
	CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
ļ	Office of Naval Research (Code 472)	June 1983
AL	Arlington, VA 22217	13. NUMBER OF PAGES
	MONITORING AGENCY NAME & ADDRESS(I dillorent from Controlling Olitco)	15. SECURITY CLASS. (of this report)
·		SCHEDULE
	16. DISTRIBUTION STATEMENT (of this Report)	
	Approved for Public Release; Distribution Unlimited	· .
	; · ·	A()
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differenting	
, I	i and	ELECTER
U v	gu	
N ^v	IN SUPPLEMENTARY NOTES	JUN 3 0 1983
1		
1 1		
\square	13. KEY WORDS (Continue on reverse elde il nacessary and identity by block number,	<u>}</u>
	Chromium (2+) Emi	ssion
/	Complexes (ii) Pho	otophysics
	Cvano	
\geq	Photochemistry	
G	20. ABSTRACT (Continue on reverse file II necessary and identify by block number) The emission lifetime t and its temporature	dependence is negented for
Ö	aqueous $Cr(NH_3)_5(CN)^{2+}$ and trans- $Cr(NH_3)_4(CN)_2^{+}$. T	he τ values at 20 °C are 22 µs
	and 65 us for pH 3 solution, respectively, and the	corresponding activation
	terms of previously suggested emic-ton rules the	INE RESULTS are discussed in emission, presumably from the
	lowest doublet thexi/state is in both cases quenche	d by hydroxide ion at about a
<u>د</u>	diffusion controlled rate. In addition, the emissi	on from $Cr(NH_3)_5(CN)^{2+}$ is
E	in a Kind Inote	(continued)
lend .	DD , JAN 73 1473 EDITION OF INOV 63 IS OBSOLETE	in meat mole
		ASSIFICATION OF THIS PAGE (When Data Entered)
		· · · · · · · · · · · · · · · · · · ·

• •

r

a a series a superior a superior a superior a superior a superior de la superior de la superior de la superior

·

Block 20

quenched by $Cr(CN)_6^{3-}$, the bimolecular quenching rate constant at 20 °C being 6.2x10⁸ M⁻1s⁻¹. In the case of trans- $Cr(NH_3)_4(CN)_2^+$, the emission behavior is complicated by the accrual of thermal aquation product, and an emission lifetime of 205 ns appeared at 20 °C. On complete quenching of $Cr(NH_3)_5(CN)^{2+}$ by both OH- and $Cr(CN)_3^{3-}$, the photochemistry (NH₃ aquation) is only partly quenched, the unquenchable quantum yield being 27% of the yield in acid solution. The apparent activation energy (3 kcal mole⁻¹) and the isomeric distribution of photoproducts are the same for the quenchable and unquenchable photoreaction. Possible excited state mechanisms are discussed.

6.25*

• •

D710 17

12.00

- T 1

w i

٣,

OFFICE OF NAVAL RESEARCH Contract N00014-76-C-0548 Task No. NR 051-609 TECHNICAL REPORT NO. 20

Photochemistry and Photophysics of Aqueous $Cr(NH_3)_5(CN)^{2+}$

and \underline{trans} -Cr(NH₃)₄(CN)₂⁺

by

Edoardo Zinato, Arthur W. Adamson, James L. Reed, Jean Pierre Puaux, and Pietro Riccieri

Prepared for Publication

in

Inorganic Chemistry

University of Southern California Department of Chemistry Los Angeles, California 90089-1062

June 20, 1983

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited Photochemistry and Photophysics of Aqueous $Cr(NH_3)_5(CN)^{2+}$ and <u>trans</u>- $Cr(NH_3)_4(CN)_2^+$

Edoardo Zinato,¹ Arthur W. Adamson,^{*} James L. Reed,² Jean Pierre Puaux,³ Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062,

and Pietro Riccieri,

Dipartimento di Chimica, Università di Peruigia, 06100 Perugia, Italy.

Abstract

The emission lifetime, τ , and its temperature dependence is reported for aqueous $Cr(NH_3)_5(CN)^{2+}$ and <u>trans</u>- $Cr(NH_3)_4(CN)_2^+$. The τ values at 20 °C are 22 μ s and 65 μ s for pH 3 solution, respectively, and the corresponding activation energies are 11.2 kcalmole⁻¹ and 6.6 kcalmole⁻¹. The results are discussed in terms of previously suggested emission rules. The emission, presumably from the lowest doublet thexi state is in both cases quenched by hydroxide ion at about a diffusion controlled rate. In addition, the emission from $Cr(NH_3)_5(CN)^{2+}$ is quenched by $Cr(CN)_6^{3-}$, the bimolecular quenching rate constant at 20 °C being $6.2 \times 10^8 \text{ M}^{-1} \text{s}^{-1}$. In the case of trans- $Cr(NH_3)_4(CN)_2^+$, the emission behavior is complicated by the accrual of thermal aquation product, and an emission lifetime of 205 ns appeared at 20 °C. On complete quenching of $Cr(NH_3)_5(CN)^{2+}$ by both OH^- and $Cr(CN)_6^{3-}$, the photochemistry (NH₃ aquation) is only partly quenched, the unquenchable quantum yield being 27% of the yield in acid solution. The apparent activation energy (3 kcalmole⁻¹) and the isomeric distribution of photoproducts are the same for the quenchable and unquenchable photoreaction. Possible excited state mechanisms are discussed.

Introduction

We report here on the thermally equilibrated doublet excited state (thexi state) emission behavior of two cyanoammine complexes of Cr(III). The thermal substitution kinetics have been reported for these complexes,^{4,5} as well as their photochemistry,^{6,7} so that both systems are well characterized. The present study is a continuation of earlier work on Cr(III) ammine complexes,⁸ work which led to the suggestion that emission lifetimes tend to be governed by certain rules.

These rules are:

1. Emission lifetimes for $\operatorname{CrL}_6^{n\pm}$ type complexes will be longer the greater the ligand field strength of the ligand L.

2. If two or more kinds of ligands are present, the emission lifetime will be relatively short if the pseudo-octahedral axis of smallest average ligand field strength contains the thermally labile ligand.

With only rare exceptions, emission from Cr(III) complexes is from the lowest state of doublet multiplicity, which we designate as D_1° to avoid symmetry-specific notations. The superscript zero indicates that the state is thermally equilibrated, or is a thexi state. The radiative lifetime of a D_1° state is typically in the millisecond range, as estimated from low temperature studies.⁹ The above rules however, apply to emission from fluid solution in the vicinity of room temperature. Emission lifetimes are now typically in the ns to μ s range. If we make the usual assumption that k_r , the radiative rate constant, is essentially temperature independent, then the decrease in emission lifetime, τ , at higher temperatures must be due to the intervention of one or more of the other processes whereby D_1° can disappear. These other processes comprise nonradiative relaxation to the ground quartet state, Q_0° , chemical reaction, and back intersystem crossing

-2-

to the first excited quartet state, Q_1° . The respective rate constants for these processes are designated as k_{nr}° , k_{cr}° , and k_{bisc}° . We thus assume that under room temperature conditions,

 $1/\tau = k_{nr} + k_{cr} + k_{bisc}$ (1)

The systems whose behavior orginally suggested rule 2 above were mostly of the types $\operatorname{CrL}_5 X^{n+}$ and $\operatorname{CrL}_4 X^{n+}_2$, where X is of weaker ligand field strength than L, and is also the thermally labile ligand. Our interest here is in the behavior of complexes where X, while still the thermally labile ligand, is of greater ligand field strength than L. A more general interest, of course, was in the study of the photophysics of mixed cyanoammine complexes of Cr(III), a class not previously investigated.

Finally, there has been a continuing preoccupation with the question of whether D_1° states may be chemically reactive (see refs. 10-18 and citations therein). There was the possibility that studies of quenching of emission and of photochemistry of cyanoammine complexes might add some new insights.

Experimental

<u>Materials</u>.- $[Cr(NH_3)_5(CN)](ClO_4)_2$ and <u>trans</u>- $[Cr(NH_3)_4(CN)_2](ClO_4)$ were prepared by published methods,^{4,5} and their purity was checked spectrophotometrically. That is, their uv-visible absorption spectra agreed within a percent or two with the published positions of the absorption maxima and the corresponding extinction coefficients, ε . $K_3[Cr(CN)_6]$ was prepared by a standard procedure,¹⁹ and was recrystallized before use.

Buffer solutions were prepared from reagent grade chemicals. Dimethylformamide (DMF) was dried with 4 $\stackrel{\circ}{A}$ molecular sieve, and distilled at reduced pressure, under nitrogen atmosphere, before use.

-3-

Equipment and procedures. - Emission lifetimes measurements were made with the use of essentially the same equipment as that described earlier.²⁰ All solutions were filtered through 0.22 µm Millipore cellulose filters just before use, to eliminate artifacts due to dust. Emission spectra were obtained by means of a Perkin-Elmer 650-10S spectrofluorimeter. Emission yields were estimated by comparison of the corrected emission spectra with that of an optically matched solution of $Ru(2,2'-bipyridine)_3^{2+}$, taking the yield of the latter to be 0.042 at 20 °C, with 436 nm excitation.²¹ Light intensities for quantum yield determinations were measured by means of either a thermopile or reineckate actinometry.²² Absorption spectra were obtained by means of either a Cary model 14 or a Hewlett-Packard model 8450 spectrophotometer.

Quantum yields for the photolysis of $Cr(NH_2)_5(CN)^{2+}$ were determined with 465 \pm 4 nm excitation and using ca. 0.005 M solutions of complex, at an ionic strength of 0.10 M, adjusted with $NaClO_A$. In the pH 6-10 range, $H_2PO_4^-$ / HPO_4^{2-} , $B(OH)_3$ / $B(OH)_4^-$, or NH_4^+ / NH_3 buffers were used, the concentrations of which varied between 5×10^{-3} and 5×10^{-2} M, and were such that the buffer index was the same ($\beta = 5 \times 10^{-3}$) in all cases, allowing a ApH of less than 0.05, during photoreaction. Samples of lower and higher pH's were prepared by use of HClO₄ or NaOH. Solutions with $Cr(CN)_6^{3-}$ as quencher, were also 5×10^{-4} M in HClO₄. The irradiation cells, of 1-cm path length, were stoppered, to avoid reaction of atmospheric CO_2 with the basic samples. The temperature was maintained constant to within \pm 0.1 °C, and photoconversion never exceeded 5%. Solutions photolyzed for the purpose of determining the product isomer distribution were simply adjusted to either pH 3 (HClO₄) of pH 12 (NaOH), and irradiated with 370 - 570 nm broad band light (CS 4-96 filter). The light source was a 250 W mercury arc lamp.

-4-

Emission lifetime measurements for $Cr(NH_3)_5(CN)^{2+}$ were carried out with 0.005-0.01 M solutions adjusted to pH 3.0 but not ionic strength buffered. Hydroxide ion quenching of the emission from this complex was determined in the presence of appropriately added NaOH solution. In the case of quenching by $Cr(CN)_6^{3-}$, pH 3.0 solutions were used, again without ionic strength buffering. Excitations were at 530 nm in the above experiments, and the emission was monitored at 680 nm. Emission intensities and intensity quenching were determined spectrofluorimetrically using solutions made up similarly to those for the lifetime studies, except that excitation was at 470 nm, where $Cr(CN)_6^{3-}$ does not absorb. Occasional duplication with Ar-purged samples showed no significant difference in the emission behavior of air-equilibrated and deaerated aqueous solutions.

Several pulse and steady-state irradiations were carried out in DMF solutions. Samples were 0.01 M and 0.005 M in complex respectively, with or without added $Cr(CN)_6^{3-}$. Excitation was again at 530 nm (pulsed) and 470 nm (continuous), with monitoring at both 680 nm and 800 nm.

Emission lifetimes for $\underline{\text{trans}}$ -Cr(NH₃)₄(CN)₂⁺ were obtained with 353 nm excitation and 698 nm monitoring. Unbuffered water solutions were used for the temperature dependence studies. For the effect of pH on the acid and basic sides, 0.1 M potassium phthalate and 0.01 M B(OH)₃ / B(OH)₄ buffer mixtures were used respectively.

<u>Analyses</u>. - The photoreaction of $Cr(NH_3)_5(CN)^{2+}$ is one of ammonia aquation, and the rate of product formation was determined in one of several alternative ways, with good agreement. In the case of photolyses at initial pH's in the range 2.7 - 4.0, the irradiation was interrupted periodically and the pH measured to obtain the amount of ammonia release. In the case of irradiations at natural or basic pH's, an aliquot of standarized perchloric acid solution was added, sufficient to bring an

-5-

unirradiated solution to pH 3.00. For an irradiated solution, the pH was higher and, from its value, the amounts of ammonia release could be determined.

Most of the results were rechecked with the use of an Orion Model 95-10 ammonia sensing electrode, connected to a Radiometer Model PHM 84 research pH meter. The sample pH was adjusted to <u>ca</u>. 12 by the addition of sodium hydroxide solution prior to measurement. Calibration was performed in parallel with each determination, by use of fresh ammonia ($NH_4C1-NaOH$) standards.

An alternative spectrophotometric procedure was as follows. The changes in absorption spectrum that occur on irradiation of acidic solutions are not large enough to permit accurate monitoring of the amount of photolysis. The procedure was to add pH 9 NH_4^+ / NH_3 buffer to a photolyzed solution to convert the product to $\text{Cr}(\text{NH}_3)_4(\text{OH})(\text{CN})^+$. The optical density at 390 nm is now near a maximum for the product, and at a minimum for the starting complex, thus permitting relatively easy determination of the amount of photolysis.

It should be noted that irradiations in the more basic media yielded solutions that were not stable, but became cloudy after 10 - 20 min. in the dark, with increase in pH. Eventually, a blue-grey solid would precipitate out. The spectrophotometric analysis of such solutions had therefore to be carred out expeditiously. If, however, the solutions were acidified immediately after photolysis, the sequence of absorption spectra for successive photolyses showed good isosbestic points and essentially the same ones as previously reported.⁶

Isolation of the photoaquation products, <u>cis</u> and <u>trans</u>- $Cr(NH_3)_4(H_2O)(CN)^{2+}$, was accomplicated by ion-exchange chromatography with 4xl cm columns of

-6-

Sephadex SP-C25 cationic resin in the sodium form, as previously reported.^b Photolyzed alkaline solutions were loaded onto the columns, whereas acidic samples were brought to pH 11.7 with sodium hydroxide solution before being processed. Elution by 0.10 M NaClO₄ at pH 11.7 (NaOH) separated the deprotonated plus one charged products from the dipositive starting complex. The eluates were acidified to pH <u>ca</u>. 0 with HClO₄, and allowed to stand in the dark at room temperature for one hour, so as to allow complete conversion of the aquo-cyano isomers to the corresponding $Cr(NH_3)_4(H_2O)_2^{3+}$ species. Thermal aquation of coordinated cyanide is entirely stereoretentive.⁵ The ligand field absorption spectra of these mixtures were then recorded, and the chromium content was determined spectrophotometrically at 374 nm ($\varepsilon = 4760 \text{ M}^{-1} \text{ cm}^{-1}$) after oxidation to chromate by means of alkaline hydrogen peroxide.

The isomeric distribution of the diaquotetraammine complexes, and hence that of the photoproducts was found by fitting the above absorption spectra with linear combinations of those for <u>trans</u>- and <u>cis</u>-Cr(NH₃)₄(H₂O)₂³⁺. A least-squares minimization procedure was applied, by use of an HP 9825 B desk computer connected with a plotter, which allowed direct reading from the spectrophotometer charts, including base-line corrections, if needed. This analysis could be extended routinely to over 120 wavelengths. A control of the quality of the result was provided by comparison of the chromium concentration given by the fitting with that determined by chemical analysis. The two independent results generally agreed to within ± 3%.

Results

Emission and emission quenching of $Cr(NH_3)_5(CN)^{2+}$. - The D₁° emission from aqueous $Cr(NH_3)_5(CN)^{2+}$ is relatively long, $\tau = 22.4 \pm 0.8 \ \mu s$ at 20 °C. Two independent series of determinations of the temperature dependence were

-7-

made, involving three or four separate measurements at each temperature, with the results shown in Figure 1. We find $1/\tau = 1.1 \times 10^{13} \exp(-5650/T) \text{ s}^{-1}$, corresponding to an apparent activation energy of 11.2 ± 0.3 kcal mole⁻¹. The emission yield at 20 °C is 0.0020 for 436 ± 3 nm excitation.²³

Both the absorption and the emission spectra of $Cr(NH_3)_5(CN)^{2+}$ exhibit vibrational fine structure in the 640-720 nm region, as shown in Figure 2. The absorption fine structure is found on the tail of the first quartetquartet absorption band, presumably corresponding to the $Q_0^0-D_1$ transition, while that for the emission is found on a broad band which has its maximum at 680 nm. The separations between features in the two spectra are somewhat similar, suggesting a common type of origin. Also, however, the considerable overlap in the 650-680 nm region suggests that hot bands may be involved. It is possible that different components of the D_1° state are involved.

The emission is quenched by hydroxide ion, and the relevant Stern-Volmer type plot is shown in Figure 3.²⁴ The data, for 20 °C, give a bimolecular quenching rate constant, k_q , of 6.2x10⁹ M⁻¹s⁻¹, as defined by the equation

$$I^{o}/I = \tau^{o}/\tau = 1 + k_{SV}[Q], k_{SV} = \tau^{o}k_{Q}$$
 (2)

Here, I denotes emission yield and superscript zero denotes value for quencher concentration [Q] equal to zero. This value of k_q is at about the diffusion limited value. There was also quenching by $Cr(CN)_6^{3-}$. Here again, emission intensity and emission lifetime quenching were determined and, as shown in Figure 4, the results of the two types of measurements are in agreement. The calculated bimolecular quenching rate constant is $6.2x10^8 \text{ M}^{-1}\text{s}^{-1}$ for 20 °C.

Although oppositely charged ions are involved in the case of quenching by $Cr(CN)_6^{3-}$, it is unlikely that static quenching through ion

-8-

pair formation was important because of the agreement between the I°/I and τ°/τ plots. Also, the highest $Cr(CN)_6^{3-}$ concentration used (able to quench 94% of the emission) was only 13% of the $Cr(NH_3)_5(CN)^{2+}$ concentration, which puts this limit on the maximum possible degree of ion pairing of the latter species.

Some luminescence measurements were carried out in DMF solution, where $Cr(CN)_6^{3-}$ is known to emit, 25,26 in contrast to its behavior in aqueous media. The lifetime of the cyanopentaammine complex is, in this solvent, 18.9 ± 0.7 µs at 20 °C. As shown in Figure 5, the decrease in the emission intensity of $Cr(NH_3)_5(CN)^{2+}$ is accompanied by a progressive rise in that of the $Cr(CN)_6^{3-}$ phosphorescence at 800 nm. Both phenomena obey Stern-Volmer kinetics, $k_{SV} \approx 3x10^4 \text{ M}^{-1}$ at 20 °C. Sensitized emission of $Cr(CN)_6^{3-}$ was also observed following pulse excitation at 530 nm, where only $Cr(NH_3)_5(CN)^{2+}$ absorbs. A $4x10^{-3}$ M solution of the former complex completely quenches the emission of the latter one, and the induced 800 nm emission from $Cr(CN)_6^{3-}$ decays exponentially with a lifetime of 80 µsec. This τ value is much smaller than the 540 µs reported for the complex alone in air-equilibrated DMF.²⁵ Evidently, reverse energy transfer takes place, as has been demonstrated for other sensitizer Cr(III) complexes.²⁷

Quenching of photochemistry of $Cr(NH_3)_5(CN)^{2+}$. - The photochemistry has been reported previously.⁶ It consists entirely of ammonia aquation, in aqueous acidic solution, and with a wavelength-independent quantum yield of 0.37 ± 0.01 at 20 °C.²⁸ The yield, ϕ , is partially quenched on quenching the emission, dropping to a limiting value, ϕ_{lim} , of 0.10 ± 0.01 at pH's above 11, that is, under conditions of complete emission quenching. The results are summarized in Table I. For pH's between 8 and 10, the

-9-

plot of $\phi^{\circ}/\phi^{\circ}$ <u>vs</u>. τ/τ° is essentially linear, as would be expected if quenching and photochemistry were in partial competition. From the intercept,²⁹ see Figure 6, 27% of the yield is unquenchable.

The plot of Figure 6 has an upper right intercept which is not unity. This reflects the fact that, initially, the luminescence appears to be quenched more efficiently (by 10-15%) than the photoreaction. That is, while the quenching of emission intensity and of τ begins around pH 6.5, the decrease in ϕ begins only around pH 7.5. Above this pH, the changes in the two quantities become parallel.

Temperature dependence data are included in Table I. The ϕ values shown an apparent activation energy of 3.3 ± 0.3 kcal mole⁻¹ under pH 3.3 conditions, and one of 3.0 ± 0.3 kcal mole⁻¹ at pH 11.7, as illustrated in Figure 1. These two values are the same within experimental error, indicating that there is no significant change in temperature behavior under quenching conditions.

There was also quantum yield quenching by $Cr(CN)_6^{3-}$. The data are given in Table I and are plotted in Figures 4 and 6. The latter gives, within experimental error, the same fraction of unquenchable yield as was found for OH⁻ quenching. Virtually none of the 465 nm incident radiation was absorbed by $Cr(CN)_6^{3-}$.

Finally, it was of interest to determine to what extent the distribution of photoproduct isomers was sensitive to quenching. Four independent determinations were carried out in both acid and basic medium. Photolysis in 1×10^{-3} M HClO₄ solution yielded 28 ± 5% <u>trans</u>-Cr(NH₃)₄(H₂O)(CN)²⁺ (and 72% <u>cis</u> isomer).³⁰ Under conditions of complete quenching of emission, 0.01 M NaOH solution, we found 29 ± 3% <u>trans</u> isomer, or essentially no change.

-10-

ICNIC 1	Ta	bl	e	1
---------	----	----	---	---

temp, °	С рН	[0H]]	[Cr(CN) ³⁻]	^ф NH ₃	
25	3.3			0.410 ± 0.020 (4)	
20	3.3			0.371 ± 0.014 (7)	
14	3.3			0.325 ± 0.020 (5)	
4	3.3	· _		0.270 ± 0.010 (5)	
20	6.49	2.8x10 ⁻⁸		0.370 ± 0.010 (3)	
20	6.82	6.0x10 ⁻⁸		0.372 ± 0.010 (2)	
20	7.35	2.0x10 ⁻⁷		0.373 ± 0.010 (3)	
20	7.79	5.6x10 ⁻⁷		0.358 ± 0.010 (3)	
20	8.44	2.5x10 ⁻⁶		0.340 ± 0.010 (4)	
20	8.79	5.6x10 ⁻⁶		0.290 ± 0.010 (4)	
20	8.92	7.5x10 ⁻⁶		0.276 (1)	
20	9.39	2.2x10 ⁻⁵		0.216 ± 0.010 (3)	
20	9.44	2.5x10 ⁻⁵		0.214 (1)	
20	9.62	3.8x10 ⁻⁵		0.175 (1)	
20	10.04	9.9x10 ⁻⁵	~	0.131 ± 0.010 (2)	
20	10.67	4.2×10^{-4}		0.110 ± 0.010 (2)	
20	11.67	4.2×10^{-3}		$0.104 \pm 0.005 (4)$	
25	11.67		•	0.117 ± 0.003 (2)	
14	11.67			$0.094 \pm 0.005 (4)$	
4	11.67			0.081 ± 0.001 (2)	
20	13.0			0.100 (1)	
20	3.3		9.1x10 ⁻⁵	0.250 (1)	
20	3.3		1.7x10 ⁻⁴	0.219 (1)	
20	3.3		3.5x10 ⁻⁴	0.179 (1)	
20	3.3		2.3x10 ⁻³	0.114 (1)	
20	3.3		8.0x10 ⁻³	$0.111 \pm 0.004 (4)$	

Quantum Yields for NH₃ Photoaquation of $Cr(NH_3)_5(CN)^{2+}$ in Aqueous Solution.^a

^aConditions: irradiation at 465 nm; μ = 0.10; f_{OH}^{-} = 0.755; $K_{\mu} = 6.77 \times 10^{-15}$ at 20.0 °C. ^bNumber of determinations in parentheses.

-11-

Emission and emission quenching of trans- $Cr(NH_3)_4(CN)_2^+$. - We find the emission lifetime in pH 5 aqueous solution to be 44 ± 4 µs at 20 °C. The temperature dependence is included in Figure 1, and leads to an apparent activation energy of 6.6 ± 0.5 kcal mole⁻¹ and a pre-exponential factor of $1.9x10^9 \text{ s}^{-1}$. Both values, and especially the latter one, are much smaller than for $Cr(NH_3)_5(CN)^{2+}$.

A complication developed with acidic solutions. The complex undergoes a moderately rapid, acid catalyzed aquation,⁵ and in emission studies around pH 3, it was difficult to avoid the presence of some of the thermal aquation product, \underline{trans} -Cr(NH₃)₄(H₂0)(CN)²⁺ (species B). Thus at pH 3.10, the emission decay was biphasic, and the appearance of the decay traces changed with the time of standing of the solution. For a 3.7×10^{-3} M solution having undergone 4% thermal aquation, there was a weak fast component to the decay, and a slow component showing a lifetime of 60 µs. At about 50% thermal aquation, the fast component, now quite apparent, showed a lifetime of 205 ns, while the lifetime of the slow component has dropped to $35 \ \mu s$. At yet higher degrees of thermal reaction, the fast component remained at 205 ns lifetime, while the slow component lifetime continued to decrease in value. Thus at 82% aquation, τ for the slow component had dropped to 28 μ s. The behavior of this component obeyed the equation $1/\tau = 0.71 \times 10^7$ [b] + 1.53x10⁴, with τ in s and [B] in M units. Extrapolation to zero content of thermal aquation product gives the lifetime of pure \underline{trans} -Cr(NH₃)₄(CN)₂⁺ as 65 µs at 20 °C, for pH 3.10 (phthalate buffering).

Note that there appears to be a pH dependence of the emission lifetime in acidic solutions. In water at pH 5.5 and with phthalate buffering at pH 5.0, the previously quoted value of 44 μ s was observed,

-12-

with no indication of biphasic behavior. With buffered solutions of pH 4.0 and 3.5, the τ values observed were 58 and 61 μ s, respectively.

There was also some concentration dependence of the longer lifetime component in pH 4.0 phthalate buffered solution. For fresh samples, the lifetime dropped from 67 μ s for 0.5×10^{-3} M solution to 56 μ s for 3.8×10^{-3} M solution, the progression in τ values being a steady one for a series of intermediate concentrations.

In basic solution, no biphasic emission behavior was observed, but there was lifetime quenching. The data are included in Figure 3, and lead to a k_q value of $2.0 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ at 20 °C; a plot of $1/\tau$ vs. [OH⁻] gives τ° as 41.6 µs, as compared to the value of 44 µs for the measurements at pH 5.0, but within the error range of the latter. No study was made of possible quenching of photochemistry.

Discussion

<u>Emission rules</u>. - Our immediate interest was in whether the emission rules cited in the Introduction were indeed predictive for new systems. The weak field axis is the ammonia-ammonia one for both $Cr(NH_3)_5(CN)^{2+}$ and <u>trans</u>- $Cr(NH_3)_4(CN)_2^+$. This axis does not contain the thermally labile ligand, which is cyanide in both cases,^{4,5} and rule 2 therefore predicts that the emission lifetimes in room temperature solution should be relatively long. This is indeed the case. The lifetimes of 22 and 65 µs at 20 °C are among the longer ones known for Cr(III) complexes.

<u>Emission quenching</u>.- The kinetic data for the various quenching experiments with $Cr(NH_3)_5(CN)^{2+}$ are summarized in Table II. It is by now not surprising that OH⁻ ion quenches the emission from both of the above complexes. Hydroxide quenching has been reported in the case of $Cr(NH_3)_6^{3+}$, ³¹ $Cr(en)_3^{3+}$ (en = ethylenediamine), ^{32,33} $Cr(phen)_3^{3+}$

-13-

in Aqueous
f cr(NH ₃) ₅ (cN) ²⁺
Luminescence of
and the
Photolysis
for the
Parameters 1
Quenchi ng
Table II.

[•] Solution at 20 ^dC.

	auench	
parametér	-HO	$cr(cN)_6^{3-}$
$(SV from \frac{\phi_0 - \phi_1 tm}{\phi - \phi_1 tm} (M^{-1}))$	(7 ± 1)×10 ⁴	(8.3 ± 0.5)×T0 ³
k _S V from I _o /I (M ⁻¹)	(1.2 ± 0.1)×10 ⁵	(1.1 ± 0.1)×10 ⁴
k _S V from τ _o /τ (M ⁻¹)	(1.3 ± 0.1)×10 ⁵	(1.2 ± 0.1)×10 ⁴
k _q from τ _o /τ (M ⁻¹ s ⁻¹)	(6.2 ± 0.3)x10 ⁹	(6.2 ± 0.5)×10 ⁸

(phen = 1,10-phenanthroline), ³⁴ $\frac{\text{trans}-\text{Cr(en)}_2(\text{NCS})_2^{+,35}}{2}$ as well as for $\text{Rh}(\text{NH}_3)_5 x^{2+}$ (X = C1, Br). ^{36,37} As has been noted, ^{31,36} the quenching mechanism may be one of excited state proton transfer since neither excitation energy nor electron transfer quenching seems likely for OH⁻ ion. The process in our case seems specific for hydroxide ion, since the same degree of quenching was observed for $\text{Cr}(\text{NH}_3)_5(\text{CN})^{2+}$ for unbuffered and for variously buffered solutions of a given pH. This could simply be a matter of kinetics, a Grotthus-type mechanism allowing encounters to occur much more frequently with OH⁻ ion than with basic solutes at the same concentration. We did not, however, test CO_3^{2-} ion, which was a quencher for $\text{Rh}(\text{NH}_3)_5(\text{Cl}^{2+}$ emission. ³⁶

The quenching by $Cr(CN)_6^{3-}$ is undoubtedly due to excitation energy transfer. This mechanism is directly evidenced by the experiments in DMF solution in that induced 800 nm emission, characteristic of $Cr(CN)_6^{3-}$, is observed. Such emission would not be expected to be observable in aqueous media because of the short lifetime of $D_1^{\circ} Cr(CN)_6^{3-}$ in this solvent.³⁸ Quite similar excitation energy transfer between Cr(III) ammines and $Cr(CN)_6^{3-}$ has been reported previously.²⁷ Such systems can be analyzed by means of a set of coupled first order rate equations.

The biphasic nature of the emission decay in the case of acidic solutions of $\underline{\text{trans}}$ -Cr(NH₃)₄(CN)₂⁺, A, containing various concentrations of thermal aquation product, B, is likely also due to excitation energy transfer. We could assign the 205 ns decay time to the D₁° state of B.³⁹ Coupling due to reversible excitation energy transfer²⁷ is expected to decrease the lifetime for A* with increasing concentration of B, as observed. This is because the rate constants for forward and reverse excitation energy transfer would depend on the B and A concentrations, respectively. Similarly, given some B in the system, an increase in the

-15-

initial concentration of A would again lead to a decrease in the observed A* lifetime, as is found.

It remains to consider why the emission lifetime of A showed as 44 μ s in pH 5 solution, but rose to 65 μ s at pH 3. The effect was not investigated in any detail. However, one possibility is that protonation of A occurs in this pH region, AH* having the 65 μ s lifetime. A perhaps more likely possibility is that some of the thermal aquation product B was present in A as an initial impurity. The pK_a of B is 5.5,⁵ so that at the higher pH's, B would be present at least partly in the deprotonated form, trans-Cr(NH₃)₄(OH)(CN)⁺, and we have observed that this species has a short emission lifetime. Excitation energy transfer lifetime mixing would then have the effect of reducing the apparent τ for A.

Excited state kinetic scheme. - Our simple excited state scheme for a d^3 system is shown in Ref. 15. We take Q_1° to be more distorted than D_1° because of the presence of an antibonding electron in the former case, in O_h symmetry. (Such a presence could lead to considerable departure from even pseudo octahedral symmetry and Q_1° could alternatively be regarded as an energetic isomer of Q_0° .) The scheme considers only the lowest doublet and quartet thexi states, thus ignoring possible splitting of states due to reduction in symmetry.

As a general statement, chemical reaction may occur from either Q_1° or from D_1° , and we can write

$$\phi = f_{pisc}\phi_{D_1}^{\circ} + (1 - f_{pisc})\phi_{Q_1}^{\circ}$$
(3)

where f_{pisc} is the fraction of initially produced Franck-Condon quartet excited states which undergo prompt intersystem crossing to D_1° . The quantities $\phi_{D_1}^{\circ}$ and $\phi_{Q_1}^{\circ}$ are the yields of product formation from the two states. We neglect, at this level of discussion, any prompt reaction, that is, reaction occuring before thermal equilibration to Q_1° or D_1° .

-16-

A second general possibility is that the unquenchable portion of the yield is artifactual in the sense that the quenching encounter itself is reactive. This explanation is not implausible in the case of hydroxide quenching since, if the mechanism were one of excited state proton transfer, the product complex, $Cr(NH_3)_4(NH_2)(CN)^+$, might well be quite reactive. The same situation would presumably apply in the case of $trans-Cr(NH_3)_4(CN)_2^+$. However, the unquenchable quantum yield is about the same for both hydroxide ion and $Cr(CN)_6^{3-}$ quenched systems. Since the quenching mechanisms are most likely quite different in the two cases, it is improbable that both types of quenching encounters would lead to the same degree of reaction.

Returning, therefore, to the first category of explanation, it remains to consider whether the actual process is one of direct D_1° reactivity, or one of back intersystem crossing followed by Q_1° reaction. A preliminary point is that the emission from D_1° is activated by 11.2 kcal mole⁻¹ and 6.6 kcal mole⁻¹ for the mono- and dicyano complexes, respectively. Referring to Eq. (1), it seems unlikely that k_{nr} is emission lifetime controlling in view of this appreciable temperature dependence. As has been discussed earlier, it seems likely that at low temperatures, k_{nr} is indeed emission lifetime controlling.²⁰ The temperature dependence of k_{nr} seems generally to be small for Cr(III) ammines with the consequence that the more temperature dependent k or k bisc quantities become the dominant term in Eq. (1) at room temperature. Either process could be activated in the 7-11 kcal mole⁻¹ range. The D₁° lifetimes for our complexes are long enough to permit this degree of activation; alternatively put, the frequency factors are not unreasonably large. Also, either process could be assigned such an activation energy from the molecular point of view. Chemical reaction from D_1° could certainly be activated. In ligand

-17-

field theory, the ${}^{2}E_{g}$ state in 0_{h} symmetry has one unpaired and two paired electrons in the non-bonding set of orbitals. The actual orbital population is uniform, however, due to the linear combination of wave functions that is involved. ⁴⁰ This orbital population could be polarized, however, by an approaching entering ligand, to allow for a seven-coordinated reaction intermediate--a process which should require some activation. Alternatively, if the mechanism were one of ligand dissociation, the process should again require some activation.

The other possibility of back intersystem crossing could show a 6-11 kcal mole⁻¹ activation either because this is the $Q_1^{\circ}-D_1^{\circ}$ energy difference or because of activation energy for a process requiring both a change in molecular geometry and in spin. In the present case, incidentally, it is difficult to estimate the $Q_1^{\circ}-D_1^{\circ}$ energy gap because of the considerable overlap of the vibronic features of the absorption and emission bands.

The fact that the photoreaction mode is one of ammonia aquation for both the quenchable and the unquenchable components is not helpful. This mode would be predicted from rationalization of the emission rules,⁸ if k_{cr} were important, and from the photolysis rules if k_{bisc} followed by reaction from Q_1° were important.^{6,7} The observation that the temperature dependence of ϕ is about the same for both the quenchable and the unquenchable portion, in the case of $Cr(NH_3)_5(CN)^{2+}$, and smaller than for τ , namely 3 kcal mole⁻¹ vs. 11 kcal mole⁻¹, is suggestive although not diagnonostic. One explanation is that f_{pisc} has little temperature dependence, essentially all of D_1° back intersystem crosses to Q_1 ,⁴¹ and that $\phi_{Q_1}^{\circ}$ has a 3 kcal mole⁻¹ temperature dependence. In the other scenario, all quenchable reaction is from D_1° , and $\phi_{D_1}^{\circ}$ is now unity.⁴¹ The temperature dependence of the quenchable ϕ would now be assigned to f_{pisc} and for the unquenchable yield to still have a temperature dependence of 3 kcal mole⁻¹ (and not

-18-

-3 kcal mole⁻¹), the apparent activation energy for $\phi_{Q_1}^{\circ}$ would have to be 6 kcal mole⁻¹. The above considers only the extremes; there is no new insight, however, in postulating mixed situations where k_{cr}° and k_{bisc}° are commensurate in value.

Finally, it is again suggestive although not absolutely diagnostic that the isomer ratio of the photoproduct is the same for both the quenchable and the unquenchable contributions, in the case of $Cr(NH_3)_5(CN)^{2+}$. This implies either that all reaction is from a single reactant, which must then be Q_1° , or that the mechanisms of D_1° and Q_1° reaction involve similar transition states. The former case is the more appealing, being simpler. In the possibly related case of $\frac{trans}{2}$ -Cr(cyclam)(CN)₂⁺ it has likewise been difficult to decide between ²E reactivity and back intersystem crossing.¹⁷

There remain minor aspects suggesting complexity. In the case of $Cr(NH_3)_5(CN)^{2+}$, there is a decrease in emission lifetime in the region of pH 6-8, after which linear Stern-Volmer quenching by hydroxide ion is observed, with the same k_{SV} as for intensity quenching. In acid solution, the lifetime is 22 µs, while that from the extrapolated plot of $1/\tau$ vs. [OH] is 16 µs. Secondly, k_{SV} as found from the plot of $(\phi^\circ - \phi_{lim})/(\phi - \phi_{lim})$ is less than the value determined from lifetime or emission quenching, for both OH⁻ and $Cr(CN)_6^{3-}$ quenchers (see Table II).⁴² Lastly, as shown in Figure 6, the plot of ϕ/ϕ° vs. τ/τ° does not quite intercept at the upper left corner, as it should. Reactive quenching would not explain these effects. There is a possibility of some undetected formation of the linkage isomer $Cr(NH_3)_5(NC)^{2+}$ in the preparation and conceivably this could account for the above observations. One indication of the presence of such isomer is that there is some initial curvature at short times in the first order plot of the thermal aquation reaction in acid solution.⁴³

-19-

Acknowledgments

This investigation was supported in part from a grant from the U.S. National Science Foundation, and by the U.S. Office of Naval Research. In addition, E. Zinato and P. Riccieri wish to thank the National Research Council of Italy (CNR).

References and Notes

- Permanent address: Dipartimento di Chimica, Universita di Perugia,
 06100 Perugia, Italy.
- (2) Permanent address: Départment of Chemistry, Atlanta University,
 Atlanta, GA 30314.
- (3) Permanent address: LCGC-404, INSA, 20, Ave. A. Einstein, 69621Villeurbanne Cedex, France.
- (4) Riccieri, P.; Zinato, E. <u>Inorg. Chem</u>. <u>1980</u>, 19, 853.
- (5) Riccieri, P.; Zinato, E. <u>Inorg. Chem</u>. <u>1981</u>, 20, 3722; a more detailed study is in progress.
- (6) Riccieri, P.; Zinato, E. Inorg. Chem. 1980, 19, 3279.
- (7) Zinato, E.; Riccieri, P.; Prelati, M. <u>Inorg. Chem</u>. <u>1981</u>, 20, 1432.
- (8) Walters, R. T.; Adamson, A. W. Acta Chem. Scand. 1979, A33, 53.
- (9) Porter, G. B., in "Concepts of Inorganic Photochemistry," Adamson, A. W.;
 Fleischauer, P.D., eds., Wiley, 1975; Chapter 2.
- (10) Zinato, E., in "Concepts of Inorganic Photochemistry," Adamson, A. W.;
 Fleischauer, P. D., eds., Wiley, 1975; Chapter 4.
- (11) Kirk, A. D. Coord. Chem. Rev. 1981, 39, 225.
- (12) Kirk, A. D. J. Phys. Chem. 1981, 85, 3205.
- (13) Adamson, A. W.; Fukuda, R. C.; Walters, R. T. <u>J. Phys. Chem</u>. <u>1981</u>, 85, 3206.
- (14) Yang, X.; Sutton, C. A.; Kutal, C. Inorg. Chem. <u>1982</u>, 21, 2893.
- (15) Fukuda, R.; Walters, R. T.; Mäcke, H.; Adamson, A. W. <u>J. Phys. Chem</u>. <u>1979</u>, 83, 2097.
- (16) Kirk, A. D.; Rampi Scandola, M. A. J. Phys. Chem. 1982, 86, 4141.
- (17) Kane-Maguire, N. A. P.; Crippen, W. S.; Miller, P. K. <u>Inorg. Chem</u>. <u>1983</u>,
 22, 696.

- (18) Linck, N. J.; Berens, S. J.; Magde, D.; Linck, R. G. <u>J. Phys. Chem</u>. <u>1983</u>, 87, 1733.
- (19) Bigelow, J. H. <u>Inorg. Syn</u>. <u>1946</u>, 2, 203.
- (20) Gutierrez, A. R.; Adamson, A. W. J. Phys. Chem. 1978, 82, 902.
- (21) Van Houten, J.; Watts, R. J. J. Am. Chem. Soc. 1976, 98, 4853.
- (22) Wegner, E. E.; Adamson, A. W. J. Am. Chem. Soc. 1966, 88, 394.
- (23) See Kirk, A. D. and Porter G., <u>J. Phys. Chem.</u> <u>1980</u>, 84, 887 for general tabulation of emission yields of Cr(III) complexes.
- (24) The values of $[OH^-]$ are calculated from the pH measurements, using $K_w = 6.77 \times 10^{-15}$; they are presumably more nearly OH⁻ ion activities than concentrations.
- (25) Wasgestian, H. F. J. Phys. Chem. 1972, 76, 1947.
- (26) The emission lifetime for the tetrabutylammonium salt of Cr(CN)³⁻₆
 in degassed DMF solution is 6.0 ms. See Dannhöl-Fickler, R.;
 Kelm, H.; Wasgestian, H. F. <u>J. Luminescence</u> <u>1975</u>, 10, 103.
- (27) Kane-Maguire, N. A. P.; Toney, C. G.; Swiger, B.; Adamson, A. W.;Wright, R. E. Inorg. Chim. Acta, 1977, 22, L11.
- (28) This value, obtained by 7 independent runs, is higher by <u>ca</u>. 10% than the published one, for an ionic strength of 0.5 M (ref. 6). The discrepancy may be partially accounted for by previous experimental difficulties in determing NH₂.
- (29) See, for example, Ballardini, R.; Variani, G.; Wasgestian, H. F.; Moggi, L.; Balzani, V. J. Phys. Chem. 1973, 77, 2947. Note that the equation ϕ/ϕ° = (fraction of unquenchable yield) + (fraction of quenchable yield) τ/τ° still applies if some fraction <u>f</u> of quenching encounters are reactive, that is, lead to product formation.
- (30) The previously reported value of $34 \pm 3\% \frac{\text{trans}}{\text{trans}}$ isomer⁶ agrees within experimental error. Analytical improvements probably make the present result the more accurate one.

- (31) Langford, C. H.; Tipping. L. Can. J. Chem. 1972, 50, 887.
- (32) Kane-Maguire, N. A. P.; Phifer, J. E.; Toney, C. G. <u>Inorg. Chem</u>. <u>1976</u>, 15, 593.
- (33) Kane-Maguire, N. A. P.; Richardson, D. E.; Toney, C. G. J. Am. Chem. Soc. <u>1976</u>, 98, 3996.
- (34) Kane-Maguire, N. A. P.; Langford, C. H. Inorg. Chem. 1976, 15, 464.
- (35) Sandrini, D.; Gandolfi, M. T.; Juris, A.; Balzani, V. <u>J. Am. Chem. Soc</u>. <u>1977</u>, 99, 4523.
- (36) Adamson, A. W.; Fukuda, R. C.; Larson, M.; Macke, H.; Puaux, J. P. <u>Inorg. Chim. Acta</u> <u>1980</u>, 44, L13.
- (37) Larson, M.; Mäcke, H.; Rumfeldt, R. C.; Adamson, A. W. <u>Inorg. Chim</u>. <u>Acta</u> <u>1982</u>, 57, 229.
- (38) Conti, C.; Castelli, F.; Forster, L. S. J. Phys. Chem. 1979, 83, 2371.
- (39) Separate measurements give the emission lifetime of B, <u>trans</u>- $Cr(NH_3)_4(H_2O)(CN)^{2+}$ as 1.1 µs at 20 °C and pH 3.5. The 205 ns lifetime could still be assigned to B, with lifetime shortening resulting from reversible excitation energy transfer with A. Possibly, however, some anation by the phthalate buffer occurred, and B may partially consist of this species.
- (40) Ceulemans, A.; Beyens, D.; Vanquickenborne, L. G. J. Am. Chem. Soc. 1982, 104, 2988.
- (41) Were this not so, then k_{nr} would have to be a competitive exiting process for D_1° (k_{cr}° being neglected in this scenario), that is, competitive both to k_{r}° and to k_{bisc}° . The quenchable yield should then show something like the 11 kcal mole⁻¹ temperature dependence for emission, contrary to observation; also the 11 kcal mole⁻¹ apparent activation energy for emission would have to be assigned to k_{nr}° which seem unreasonable. In the alternative scenario, similar difficulties arise if k_{cr}° is not dominant, that is, if $\phi_{D_1}^{\circ}$ is not essentially unity.

(42) Possibly, the different ionic strength conditions of the two sets of experiments accounts for the difference in k_{SV} values.

(43) Huchital, D.; Adamson, A. W., unpublished work.

Legends for the Figures

Figure 1. Temperature dependence of emission and photochemistry. Oemission lifetimes at pH 5.0 for $Cr(NH_3)_5(CN)^{2+}$; \Box - same for $\underline{trans}-Cr(NH_3)_4(CN)_2^+$. Ammonia photoaquation yields for $Cr(NH_3)_5(CN)^{2+}$: Δ - pH 3.3; \blacktriangle - pH 11.7.

Figure 2. Doublet absorption region (left scale) and emission spectrum (right scale) for $Cr(NH_3)_5(CN)^{2+}$ in acidic aqueous solution.

Figure 3. Stern Volmer type plot for hydroxide quenching of emission at 20 °C. $Cr(NH_3)_5(CN)^{2+}: 0 - \tau^{\circ}/\tau$ and $\bullet - I^{\circ}/I.$ <u>Trans</u>- $Cr(NH_3)_4(CN)_2^+:$ $\Box - \tau^{\circ}/\tau.$

Figure 4. Stern-Volmer type plot of quenching of $Cr(NH_3)_5(CN)^{2+}$ by $Cr(CN)_6^{3-}$ in aqueous solutions at pH 3.3 and 20 °C. 0 - emission intensity; • - emission lifetime; \Box - ammonia photoaquation yield. Figure 5. Emission spectra at 20 °C of $Cr(NH_3)_5(CN)^{2+}$, A, and $Cr(CN)_6^{3-}$, B, upon 470 nm excitation of $5.0x10^{-3}$ M A in DMF, in the presence of increasing concentrations of B. The sequence of concentrations of B is : (0), none; (1), $9.8x10^{-6}$; (2) $2.0x10^{-5}$; (3), $4.9x10^{-5}$; (4), $9.8x10^{-5}$; (5), $1.5x10^{-4}$; (6), $2.0x10^{-4}$ M.

Figure 6. Quenching of ammonia photoaquation of $Cr(NH_3)_5(CN)^{2+}$ <u>vs</u>. emission quenching, under the same conditions. Quenchers are: $0-OH^-$; $\bullet-Cr(CN)_6^{3-}$.

Livori

7,96

r. Juni

SP472-3/A1

)

472:GAN:716:enj 78u472-608

TECHNICAL REPORT DISTRIBUTION LIST, GEN

43

, ,	No. Copies		<u>No</u> . Copies
Office of Naval Research '		U.S. Army Research Office	
Attn: Code 472		Attn: CRD-AA-IP	
800 North Quincy Street	•	P.O. Box'1211	
Arlington, Virginia 22217	2	Research Triangle Park, N.C. 27709	1
ONR Western Regional Office		Naval Ocean Systems Center	
Attn: Dr. R. J. Marcus		Attn: Mr. Joe McCartney	
1030 East Green Street		San Diego, California 92152	1
Pasadena, California 91106	1	1.	
		Naval Weapons Center	
ONR Eastern Regional Office	•	Attn: Dr. A. B. Amster,	
Attn: Dr. L. H. Peebles		Chemistry Division	
Building 114, Section D		China Lake, California 93555	1
666 Summer Street		, -	
Boston, Massachusetts 02210	1	Naval Civil Engineering Laboratory	
-		Attn: Dr. R. W. Drisko	
Director, Naval Research Laboratory		Port Hueneme, California 93401	1
Attn: Code 6100			-
Washington, D.C. 20390	1	Department of Physics & Chemistry	
	-	Naval Postgraduate School	
The Assistant Secretary		Monterey, California 93940	3
of the Navy (RE&S)			-
Department of the Navy		Scientific Advisor	
Room 4E736. Pentagon		Commandant of the Marine Corps	
Washington D.C. 20350	1	(Code RD=1)	
"contageon, prot 20000	-	Washington D.C. 20380	1
Commander, Naval Air Systems Command	1		•
Attn: Code 310C (H. Rosenwasser)	•	Nevel Ship Research and Development	
Department of the Norvy		Contot	
Washington D.C. 20360	1	Attn: Dr. C. Bosmaijan Annlied	
Hashington, D.C. 2000	•	Chamietry Division	
Defense Technical Information Center		Appendition Maryland 21/01	1
Building 5 Cameron Station		Amapolis, Maryland 21401	I
Alexandria Virainia 22314	12	Nevel Occar Systems Contor	
Alexandria, virginia 22514	12	Naval Ocean Systems Center	
Dw Fred Seclfold		Actn: Dr. 5. Iamamoto, Marine	
Chemistan Division Code (100		Schences Division	1 -
News 1 Research Laborations		San Diego, Callfornia 91252	L. "
Naval Research Laboratory	1	Ma John Baula	
washington, D.C. 20373	1	Mr. John Boyle Matandala Press	
		Materials Branch	
		Naval Ship Engineering Center	-
		Philadelphia, Pennsylvania 19112	1

SP472-3/A3

;

472:GAN:716:enj 78u472-608

()

)

TECHNICAL REPORT DISTRIBUTION LIST, GEN

No. Copies

1

1

Mr. James Kelley DTNSRDC Code 2803 Annapolis, Maryland 21402

Mr. A. M. Anzalone Administrative Librarian PLASTEC/ARRADCOM Bldg 3401 Dover, New Jersey 07801

SP482-3/A23

,)

)

ł

472:GAN:716:ddc 78u472-608

When we we

TECHNICAL REPORT DISTRIBUTION LIST, 051A

	No. Copies		<u>No</u> . Copies
Dr. M. A. El-Sayed Department of Chemistry University of California, Los Angeles		Dr. M. Rauhut Chemical Research Division American Cyanamid Company Bound Brook, New Jersey 08805	1
Los Angeles, California 90024	1	Dr. J. I. Zink	
Dr. E. R. Bernstein Department of Chemistry Colorado State University		Department of Chemistry University of California, Los Angeles	
Fort Collins, Colorado 80521	1	Los Angeles, California 90024	1
Dr. C. A. Heller Naval Weapons Center Code 6059		Dr. D. Haarer IBM San Jose Research Center	
China Lake, California 93555	1	5600 Cottle Road San Jose, California 95143	1
Dr. J. R. MacDonald Chemistry Division Naval Research Laboratory		Dr. John Cooper Code 6130	
Washington, D.C. 20375	1	Washington, D.C. 20375	1
Dr. G. B. Schuster Chemistry Department University of Illinois		Dr. William M. Jackson Department of Chemistry Howard University	
Urbana, Illinois 61801	1	Washington, DC 20059	1
Dr. A. Adamson Department of Chemistry University of Southern		Dr. George E. Walraffen Department of Chemistry Howard University Usebington DC 20059	
Los Angeles, California 90007	1	washington, DC 20055	*
Dr. M. S. Wrighton Department of Chemistry Massachusetts Institute of Technology			
Cambridge, Massachusetts 02139	1		

