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PREFACE

The central goal of this project is to demonstrate the existence and
utility of a systematic structure of flight-related concepts of Air Force
fighter pilots. This paper reviews work on defining and measuring
conceptual structures and on assessing the reliability, validity, and
utility of particular structural descriptions. This work is part of 6.1
basic research that is intended to advance the understanding of basic
cognitive dimensions as represented in flying behavior.

Several individuals, in addition to the authors, have made important
contributions to this work. At New Mexico State University, Karen PreUss
has assisted with the project in countless ways, and Don Dearholt provided
valuable advice on properties of networks.

The cooperation of many pilots and other Air Force personnel is grate-
fully acknowledged.
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CONCEPTUAL STRUCTURES IN FIGHTER PILOTS

INTRODUCTION

The central goal of this project is to demonstrate the existence and
utility of a systematic structure of flight-related concepts in the memory
systems of Air Force fighter pilots. This paper constitutes the second
annual report on the project. First, the major findings from the first year
of the project (Schvaneveldt, Goldsmith, Durso, Maxwell, Acosta, & Tucker,
1982) will be summarized, and then an overview of the work accomplished this
year will be presented. Background information relevant to each aspect of
the overall project is presented in the appropriate sections.

The first year of the project was devoted to the task of defining and
measuring conceptual structures and to assessing the reliability, validity,
and utility of particular structural descriptions. The assessment of
conceptual structures required a data base that could be used in our efforts
to develop reliable and valid techniques for describing the psychological
organization of flight-related concepts.

The stimulus material for the project was provided by 30 concepts
relating to split-plane maneuvers and 30 concepts relating to the low angle
strafe maneuver. These concepts were selected with the assistance of senior
instructor pilots (IPs) at Holloman AFB. Ratings of the psychological
similarity of the concepts were obtained from four groups of officers: Air
National Guard Pilots (GPs), Fighter Lead-In Instructor Pilots (IPs),
recent Undergraduate Pilot Training graduates (UPs), and Instructor Weapons
Systems Officers (IWs). Cognitive structures were defined by two analytic
procedures: multidimensional scaling (MDS) and general weighted networks
(GWNs). The GWN algorithm was developed as part of the project. The MDS
solutions represent concepts as points in multidimensional space. The GWN
networks represent concepts as nodes and relations as links connecting the
nodes.

Three dimensions in the MDS solutions were identified: the order in
which concepts are considered in an air-to-air encounter, a contrast between
lead and lag pursuit, and the temporal order of events in a training
sequence. A pattern recognition algorithm was applied to the similarity
ratings and MDS solutions. This analysis showed that group membership can
be predicted from a person's conceptual structure. Reliable predictions
were made when a subset of the members of each group was used to define the
pattern classifier, and the remaining individuals were classified.
Classification was significantly better with MDS results than with raw
similarity ratings.
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The networks produced by the GWN algorithm were analyzed using various
constructs from graph theory. Minimun cycles in the IP network corresponded
to clusters of interrelated concepts. Nine substructures were defined by
thle agreement in the IP and GP networks. Finally, the UP network was
compared to the IP and GP networks, resulting in the identification of
specific points of agreement and disagreement in the conceptual organization
of novice and expert pilots.

On ti-e basis of thle initial year of the project, it was concluded that
pilots do have measurable cognitive structures for organizing flight-
related information . These structures are measurably different for
individuals with differing flight experience. The IPs exhibit more
efficient and economical structures than do UPs. The techniques employed in
the research produce descriptions of conceptual structure that may have
application in the training program of fighter pilots and in assessing
individual differences in the development of appropriate conceptual
structures. The specific differences between novice and expert pilots
should provide assistance in planning training programs for fighter pilots.

In the second year of the project, investigation continued into the
properties of multidimensional scaling and network representations of
conceptual structure. These efforts have included further development of
the GWN algorithm. A procedure to obtain metric information from a network
has been developed, and several options for defining path length- in a
network have been added and related to assumnptions about properties of data
used in constructing the network. The ability to discriminate between
individuals in different groups, given the network structures for
individuals, was also examined. The discrimination possible with networks
was compared to the discrimination obtained with MDS and the original rating
da t a. The relations represented by the links in the IP network have been
identified.

A new procedure for determining the optimum number of dimensions to use
in MDS was developed and used to examine the data collected last year.
Also, a multidimensional representation of individuals was derived that
located each individual from each group as a point in two-dimensional
space. This procedure can be used to determine how well individuals from
different groups are aligned with other members of their group.

Two experiments, comparing the structures derived with I4DS and GWN, were
conducted. One of them suggested that GWN better captures the relationships
between pairs of concepts. This result would be expected on thle basis of
the differences in the two scaling procedures. The other experiment
revealed some methodological problems that accompany the use of "priming"
techniques in investigating the structure of a small set of concepts.
Finally, a new analysis of the individual concepts further defines which
concepts are critical to distinguishing between novices and experts.



NETWORKS

A GWN is a configuration where concepts are depicted by nodes and
relations are depicted by links connecting the nodes. The links are assigned
a value or weight that reflects the strength of the relationship between the
nodes. The value indicates the distance from one node to another along that

link and is an index of the psychological proximity or relatedness of the
concepts represented by the nodes.

During the previous reporting period, an algorithm was developed and

implemented which constructed GWNs from empirical similarity judgments
(Schvaneveldt, et al., 1982). The algorithm, GWN, was applied to judgments
taken from UPs, IPs, and GPs and produced networks for each of these groups.
GWN supplies several important pieces of information. First, like the other
scaling techniques, GWN summarizes the data to a considerable extent. The

results of GWN are often considerably more interpretable than other scaling
techniques, and in addition, GWN offers options (e.g., minimally connected
networks) that allow for even further data reduction. Second, GWN captures
the local relationships among the concepts. Unlike MDS, GWN focuses on the
item-to-item relations in constructing the network. This had both adva 'ges
(e.g., keeping close to the data) and disadvantages (e.g., li was
dependent on a small portion of the data).

During the current reporting period, a metric that was developed J GWN

uses more information from the network to derive weights for the 's

between concepts. The metric, information may be more useful tk. ie

empirical judgments for the purpose of identifying the experience of
pilots. It will also be interesting to compare the network metric to the
MDS metric. The appropriate metric for a network depends on the scale
properties of the original similarity judgments. Most scaling procedures
assume that the original judgments are ordinal (i.e., the numbers contain
information about the ranks of the concepts). The GWN allows the user to
specify different definitions of minimum path length depending on the scale
properties of the data. Finally, GWN produces networks that can be
decomposed into substructures (e.g., cycles, trees, assemblies). The

substructures are useful in gaining a further understanding of the network.
These substructures were used in the last reporting period to determine
which concepts held by the UPs were not well defined relative to the
experts.

Analytic Work on General Weighted Networks

There have been two central thrusts in the development of network
analyses of conceptual structures. First, the definition of path length in
a network has been generalized to take considerations of levels of

measurement into account. Second, a metric that was developed for the
network maximizes the fit of the network model to the empirical proximities.
Each of these efforts is presented in this section.
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Path Length and Levels of Measurement

The definition of the length of a path in a network has been one of the
central problems in developing methods for deriving networks from
psychological proximity data. Recent efforts on this problem have attempted
to relate the definition of path length to the information contained in the
data.

Stevens (1951) proposed a measurement scales taxonomy that has been
widely used over th-e years. His taxonomy includes nominal scales that
simply identify the category appropriate for each element, ordinal sc ales
that have the property of ordering the elements without providing infor-
mation about the distance between elements, interval sc-ales that have both
order and distances information, and ratio scales that have a meaningful
zero point in addition to the order and interval information. One useful
perspective on levels of measurement is found in the class of transform-
ations that can be applied to the data without losing information of various
sorts. Nominal scales permit any-one-to-.one transformation without loss of
nominal information. Ordinal scales permit any (positive) monotonic
transformation without loss of ordinal information. Interval scales permit
only (positive) linear transformations, and ratio scales permit only
multiplication by a (positive) constant.

For, purposes of this study, the ordinal and interval scales hold .he
most interest since it is assumed that data of interest would convey at least
the appropriate order of elements. Whether the data also have interval
properties is open to question. The current version of the algorithm has
three definitions of path length that require different assumptions about
the data . The algorithm also yields a minimal connected network (MCN)
that requires only ordinal properties in the data. Only the elaborated
networks are affected by the presence or absence of interval information in
the data.

The additive definition of path length involves simply adding the values
of the links in the path to arrive at the length of the path. The operation
of addition and the comparison of a sum to another data point require
interval data. In practice, the additive rule prcduces networks with, many
links, which is not necessarily bad, but it represents th-e data as concisely
as do the other rules. Networks resulting from application of the additive
rule are invariant over linear transformations of the data. Thus, if only
ordinal information is provided by the data, the additive rule is not
appropriate.

The maximum definition of path length involves using the value of the
maximum link in a path as the length of the path. This rule uses only
ordinal properties of the data, and the network resulting from applications
of the maximum rule is invariant with any (po., tive) monotonic transform-
ation of the data. The maximum rule also produces the minimal unique
network. The MCN is not necessarily unique when there are ties in the
data. Since thlese ties are included using the maximum rule, the resulting
network is unique.
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Another definition of path length that requires only ordinal properties
of the data is the use of ranks rather than data values. When these ranks
are used with the additive rule, the resulting network is invariant with
(positive) monotonic transformations of the data. Some properties of these
"rank" networks are currently being investigated.

Metric Procedure for Networks

Once the structure of the network is determined by the GUN algorithm,
the link weights can be adjusted by a linear regression procedure. Tis
adjustment produces the best fit between the network and the original data
by regressing the links in the network on the original data. Each pair of
items from the distance matrix has an associated empirical distance as well
as a minimum path in the network that is defined by the GWN algorithm. The
metric procedure essentially allows the value of each link to be determined
by its role in each minimum path of which it is a member. The metric
procedure uses an additive definition of path length where the length of a
path is the sum of the weights for the links constituting the path.

The metric weights are produced by a regression analysis that treats
each pair of terms as a case, the links as independent variables, and the
empirical distances as the dependent variable. The values of the independent
variables (links) are 1 for those links in the minimum path for each pair of
terms and 0 for the links not in the minimum path for the pair. The metri-
cized weights are given by the beta values (the regression coefficients)
that result from the regression analysis.

Networks represent useful structures for analyzing the conceptual
organizations in various domains. An attempt is being made to place the
network algorithms on a firm footing to support the use of them in this
project and to provide an analytical tool that should prove to be generally
useful. During the past year, theoretical efforts have concentrated on
developing the network algorithm. Now comparison can be made between the
performance of networks and MDS using metric information from each method.
The following study reports some initial work on evaluating the network
without using metric information. Studies using the metric are currently
under way.

Classification of Individuals Using Networks

Similarity ratings between pairs of concepts related to a particular
knowledge domain and MDSs of these ratings both are ways of describing
conceptual structures. These conceptual structures provide relational and
organizational information about the concepts within a domain of knowledge.
Networks also provide this type of information. The comparison of
structures across groups of individuals allows for the determination of
qualitative differences between groups. This qualitative comparison is
important for revealing how different groups view a particular set of
concepts.

A



The purpose of this phase of the project is to determine the quanti-
tative differences between the representations of concepts in the networks
of individuals as well as groups. The previous accomplishment of developing
pattern recognition programs for determining quantitative differences has
allowed for groups of subjects to be classified based on similarity ratings
and distances in IIDS. The success of pattern recognition techniques in
classifying individuals into groups pro.. 'ed validation for the data and the
derived r4DS representations. Using the pattern classification technique
with network representations provides a test of the validity of networks for
representing the structure of flight-related concepts.

Pattern recognition analysis provides information about the degree to
which individuals are associated with each group. The analysis reveals how
close an individual is to the prototype of the individual's group. Also, the
distance from an individual to the decision surface separating two groups
reveals how close that person is to being classified as a member of another
group of individuals. Both indices provide information about the strength
of the association of each individual with various groups.

Method

A pattern was formed for each individual tested by taking the presence
or absence of links in the network for each pair of concepts. All the
concepts have potential links to all other concepts. The network solution
for each subject yields links between concepts which were represented as
being present or absent in the network by a 1 or a 0, respectively. An MDS
solution yields a metric formed by taking the distance between each pair of
concepts in a multidimensional space. Thus, an MDS pattern may be created
by viewing the attributes of the pattern as values of the metric. This
allows the pattern for the MDS solution to preserve the structural proper-
ties inherent in the MDS solution. While the pattern for the network
solution does not contain a metric for the length of a link, the attributes
of the pattern do retain some of the structural properties of the network
through the presence or absence of links.

A third type of pattern may be generated by considering the similarity
rating for each pair of concepts as a feature of a pattern. This pattern,
containing the individual similarity ratings, lacks the structural
properties imposed by the network and MDS scaling techniques. However, the
pattern for similarity ratings would possess more scaling information about
the degree of relatedness of any two concepts than would the network
pattern. This sets up an interesting comparison to determine if there are
beneficial aspects in having a structural representation of knowledge over a
non-structural one, even when the latter contains scaling information and
the former does not. All three methods resulted in patterns with 435
features corresponding to all the possible pairs of 30 concepts.

-6-



The first analysis consisted of applying a minimum-distance classifier
to all pairs of groups of pilots for both the split-plane and low angle
strafe maneuvers. Prototype points for all groups and decision surfaces for
separating all pairs of groups were generated. In each application of tie
mininumz-distance classifier, all members of t1he two groups were used. Thi s
provided information about both group and individual differences. The
distances from each individual to a decision surface and from e ac h
individual to th-e group prototypes were computed along with the distances
between group prototypes.

The second analysis involved computing a decision surface that separated
a training set consisting of a limited number of members from two groups and
then applying the decision surface to the remaining members of the groups.
Decision surfaces were computed with a training algorithm if a minimum-
distance Classifier did not separate the training sets. Weight vectors were
initialized to the weights produced by a min imum-di stance classification of
the individuals in the limited training set. This minimized thle number of
iterations needed to produce a solution when the minimum distance classifier
failed and also kept the final weight vector as close to the minimum-
distance decision surface as possible. The first analysis showed that the
classes clustered tightly, indicating that when the minimum-distance weights
failed to separate the classes, a solution Close to these weights was
likely. A small correction increment (c =.01) was also used to produce
minimal change from the minimum-distance weights.

For each pair of pilot groups, a training set of a particular size was
randomly chosen, and a decision surface was computed to separate the members
of th-.e training set into their respective classes. In the case where a
minimum-distance classifier correctly separated the members of the training
sets, the resulting discriminant function was then applied to the remaining
members of the two groups. If no solution was found with the minimum-
distance classifier, the training algorithm was applied to the subset of
selected group members to generate a decision surface. This discriminant
function was then applied to the remaining members. This procedure was
repeated 100 times for each training set size. The training sets consisted
of equal numbers of individuals from each group. The size of the training
sets was increased until the size of the smaller group was reached.

Result.% and Discussion

The results of the pattern recognition analyses performed indicate that
it is possible to discriminate classes of flying personnel based on their
network representations of critical flight information for both split-plane
and low angle strafe maneuvers. Also significant was the result that
patterns represented by the networks produced better group separation than
did patterns based upon similarity ratings.

Table 1 shows that a minimum-distance classifier applied to each pair of
groups resulted in well separated groups with no erroneous classifications
for the network patterns. The same results occurred for the patterns
representing distances in an MDS solution, whereas the decision surface
generated for separating groups on the basis of similarity ratings misclass-
ified some individuals. Even with the simplicity of the decision surface



generated by the minimum-distance classifier, the results indicate very
distinct classes, especially in the case of IPs and UPs where no IPs were
classified as UPs and no UPs were classified as IPs for either maneuver with
any of the three pattern types.

Table 1

Classifications Based on Group Separation

with a Minimum-Distance Classifier

Split-Plane Maneuvers

Ratings MDS Distances Networks

IP GP IW UP IP GP IW UP IP GP IW UP

IPs classified as 3 2 2 0 7 0 0 0 7 0 0 0

GPs classified as 0 9 0 0 0 9 0 0 0 9 0 0

IWs classified as 0 0 4 0 0 0 4 0 0 0 4 0

UPs classified as 0 4 1 12 0 0 0 17 0 0 0 17

Low Angle Strafe

Ratings MDS Distances Networks

IP IW UP IP IW UP IP IW UP

IPs classified as 6 0 0 6 0 0 6 0 0

IWs classified as 0 6 1 0 7 0 0 7 0

UPs classified as 0 3 13 0 0 16 0 0 16

It Is important to note that there was perfect separation of groups
using both the patterns from MDS and the network solutions. The structural
information supplied by both these patterns appears to maximize the class
differences. This information provides support to the claim that both the
MDS and network solutions extract important structural information from
similarity ratings.

Similarity between groups may be measured by the distance between group
prototypes, as shorter distances would suggest greater similarity between
the conceptual structures of the groups. Table 2 contains the distances for
all pairs of groups and a ranking of these distances. The relatively
smaller distances between prototypes for the networks is due to the fact
that they are determined from patterns of ones and zeros, whereas distances
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between group prototypes for ratings and MDS distances are each on a
different scale. Direct comparison across the three pattern types of the
distance between prototypes would, therefore, not be very useful. The
rankings of the distances between prototypes, however, does provide infor-
mation about the similarity of group conceptual structures. As it turns
out, the distances between prototypes for the MDS distances and networks are
assumed to be most valid, because the only miclassifications occurred for
patterns using the ratings information. Table 2 shows that the most similar
groups are IPs and GPs for the split-plane maneuvers, and IPs and IWs for
the low angle strafe. Consistent with the finding that no misclassifications
occurred between IPs and UPs, it can be seen that these two groups form
dissimilar classes.

Table 2 - Distances Between Group Prototypes

Split-Plane Maneuvers

Ratings Rank Distances in MDS Rank Networks Rank

IP-GP 33.36 2 81.30 1 4.24 1
IP-I 4 38.02 4 82.96 2 5.13 4
GP-UP 37.90 3 91.31 3 4.35 2
GP-IW 30.72 1 92.56 4 5.51 5

IP-UP 39.14 5 106.29 5 4.98 3
IW-UP 49.41 6 111.96 6 5.72 6

Low Angle Strafe

Ratings Rank Distances in MDS Rank Networks Rank

IP-Id 25.95 1 76.32 1 4.41 1
IW-UP 36.10 2 95.87 2 4.94 2

IP-UP 38.97 3 120.83 3 5.15 3
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In addition to providing information about differences between groups,
pattern classification analyses also make available information on Indiv-
idual members Of the groups that have been classified. Each individual is
represented as a point in the pattern space. Th-is makes it Possible to
provide thle distance of individuals from both thne group prototype points and
the decision surface separating groups. The distance between an individual
and the decision surface separating that person's group from another
reflects the degree to which that individual belongs to the group. Large
distances from tlhe decision surface would reflect strong identification of
the individual with the group. The closer the individual is to tthe decision
surface, the more similar that person is to the other group. Negative
distances from the decision surface indicate that the individual is on the
wrong side of the decision surface and therefore, misclassified. Th e
distance between an individual and the class prototype indicates the degree
to which that person represents the average features of that class.

The distances from an individual to both th~e decision surface and the
group prototypes for the network solutions of all individuals are given in
Tables 3 through 7. Information based on classification of ratings and MDS
patterns is available in an earlier report (Schvaneveldt et al., 1982). It
should be noted that there are no negative distances from any individual to
the decision surfaces for each of the network classifications; consequently,
there were no Miscla3sifications of individuals from any of the groups.

It appears that, even without a metric for link length, the network
solutions still provide enough structural information to separate groups
with a great deal of accuracy. This is indicated by the 100 percent correct
classification of all individuals in their respective groups. On the
average, individuals also were closest to their own group prototypes
compared to the prototypes of the other groups. The average distance from
the class prototype to each class member given in Tables 3 through 7
provides a measure for the degree of class clustering. Shorter distances
suggest more homogeneous classes with greater consistency in the individual
conceptual structures. For each group this measure is found in the table
corresponding to that group's individual distances. It is the average
distance from the individuals to their own group prototype and is the val ue
underlined in the tables. For both manuevers it was found that U~s cluster
most tightly while UPs are the most variable. This seems logical
considering that IPs follow standardized procedures for presenting the
maneuvers and have probably developed similar ways of thinking about them.
The UPs , on the other hand , are still learning the material and have
various ways of thinking about the relationships among these concepts.

-10-



Table 3

Separation of IPs from Other Groups
Based on a Minimum-Distance Classifier

of Network Solutions

Split-Plane Maneuvers

II through 17 are individual IPs

Distances from Distances from
Decision Surface Group Prototypes

GP IW UP IP GP IW UP
I1 1.71 2.48 1.86 6.86 7.84 8.51 8.09
12 2.42 2.75 2.80 7.26 8.56 9.00 8.98
13 2.28 2.94 2.80 7.16 8.40 9.03 8.90
14 1.72 2.69 1.97 7.45 8.37 9.11 8.67
15 1.89 2.30 1.80 7.27 8.30 8.75 8.41
16 2.40 2.32 3.28 6.54 7.94 8.15 8.68
17 2.44 2.48 2.92 8.00 9.20 9.46 9.65

Average from group prototypes: 7.22 8.37 8.86 8.77

Low Angle Strafe

I through 16 are individual IPs

Distances from Distances from
Decision Surface Group Prototypes

IW UP IP IW UP
1i 2.3 2.82 6.56 8.1 8.49
12 2.83 2.47 7.19 8.75 8.78
13 1.65 2.31 6.24 7.32 7.93
14 2.53 2.44 6.53 8.06 8.24
15 1.73 2.20 7.37 8.34 8.77
16 1.85 3.22 7.66 8.66 9.58

Average from group prototype: 6.92 8.21 8.63

* Each row of the table represents one IP. Decision surfaces were
computed for separating IPs from the three remaining groups. The
distance from each IP to a decision surface is shown along with the
distance from each IP to each group prototype. Misclassifications
would be indicated by negative distances to the decision surface;
however, there were no misclassifications in this case.

IiI
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Table 4

Separation of GPs from Other Groups
Based on a Minimum-Distance Classifier

of Network Solutions

Split-Plane Maneuvers

G1 through G9 are individual GPs

Distances from Distances from
Decision Surface Group Prototypes

IP IW UP IP GP IW UP
Gl 2.02 2.03 1.98 8.56 7.49 8.86 8.57
G2 1.86 2.73 2.29 8.43 7.44 9.25 8.68
G3 1.15 1.96 1.58 7.82 7.17 8.54 8.07
G4 2.21 3.59 1.84 8.87 7.74 9.97 8.72
G5 2.50 3.08 1.75 9.32 8.10 9.97 8.99
G6 3.37 3.83 2.51 9.58 7.95 10.27 9.23
G7 1.90 3.12 2.79 8.11 7.04 9.17 8.60
G8 2.86 2.57 2.29 9.56 8.20 9.77 9.33
G9 1.24 1.86 2.55 8.69 8.07 9.25 9.34

Average from group prototypes: 8.77 7.69 9.45 8.84

' Each row of the table represents one GP. Decision surfaces were
computed for separating GPs from the three remaining groups. The
distance from each GP to a decision surface is shown along with the
distance from each GP to each group prototype. MisclaSSificationa
would be indicated by negative distances to the decision surface;
however, there were no misclassifications in this case.
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Table 5

Separation of IWs from Other Groups
Based on a Minimum-Distance Classifier

of Network Solutions

Split-Plane Maneuvers

WI through W4 are individual IWs

Distances from Distances from
Decision Surface Group Prototypes
IP GP UP IP GP 1W UP

Wi 2.91 3.02 3.20 9.16 9.34 7.35 9.52
W2 4.17 3.74 3.36 10.36 10.28 8.03 10.14
W3 1.75 2.45 2.23 7.94 8.48 6.71 8.40
W4 1.44 1.81 2.66 7.83 8.15 6.82 8.77

Average from group prototypes: 8.82 9.06 7.23 9.21

Low Angle Strafe

WI through W7 are individual INs

Distances from Distances from
Decision Surface Group Prototypes
IP UP IP IW UP

WI 3.01 3.34 8.94 7.31 9.30
W2 2.00 2.63 7.91 6.71 8.42
W3 1.19 2.18 7.79 7.08 8.47
W4 1.30 1.52 8.12 7.39 8.34
W5 3.82 2.41 10.58 8.85 10.10
W6 1.74 1.83 8.14 7.14 8.31
W7 2.36 3.40 8.46 7.13 9.19

Average from group prototypes: 8.56 7.37 8.88

* Each row of the table represents one IW. Decision surfaces were
computed for separating IWs from the three remaining groups. The
distance from each IW to a decision surface is shown along with the
distance from each IW to each group prototype. Misclassifications
would be indicated by negative distances to the decision surface;
however, there were no misclassifications in this case.
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Table 6

Separation of UPs from Other Groups

Based on a Minimum-Distance Classifier
of Network Solutions

Split-Plane Maneuvers

U1 through U17 are individual UPs

Distances from Distances from
Decision Surface Group Prototypes
IP GP IW IP GP IW UP

Ul 3.09 2.63 2.25 9.52 9.09 9.25 7.73
U2 2.59 1.95 3.41 10.13 9.69 10.77 8.77
U3 2.10 1.89 3.28 11.33 11.13 12.04 10.37
U4 2.75 2.20 2.94 9.17 8.71 9.51 7.54
U5 2.27 1.83 3.37 8.69 8.30 9.57 7.27
U6 2.95 2.63 2.99 10.96 10.66 11.18 9.53
U7 2.70 2.15 2.02 9.52 9.09 9.33 7.99
U8 2.18 1.77 2.59 8.75 8.38 9.19 7.41
U9 2.54 2.09 3.21 8.60 8.18 9.25 6.98
U1O 2.27 2.13 2.98 9.41 9.19 10.00 8.12
Ull 2.71 2.51 3.45 9.03 8.74 9.70 7.39
U12 2.31 2.08 2.78 8.95 8.68 9.43 7.56
U13 2.65 1.84 2.36 9.53 8.97 9.57 8.03
U14 1.31 2.15 2.03 7.86 8.22 8.49 6.99
U15 2.84 2.06 3.06 9.99 9.45 10.32 8.45
U16 1.52 2.25 2.59 9.33 9.57 10.07 8.48
U17 3.56 2.84 3.33 11.19 10.71 11.31 9.48

Average from group prototypes: 9.53 9.22 9.94 8.12

* Each row of the table represents one UP. Decision surfaces were
computed for separating UPs from the three remaining groups. The
distance from each UP to a decision surface is shown along with the
distance from each UP to each group prototype. Misclassifications
would be indicated by negative distances to the decision surface;
however, there were no misclassifications in this case.
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Table 7

Separation of UPs from Other Groups
Based on a Minimum-Distance Classifier

of Network Solutions

Low Angle Strafe

Ul through U16 are individual UPs

Distances from Distances from
Decision Surface Group Prototypes
IP IW IP IW UP

Ul 4.06 3.90 12.50 12.37 10.70
U2 2.88 3.60 10.68 10.95 9.18
U3 2.92 2.43 9.49 9.16 7.73
U4 1.74 1.74 8.79 8.75 7.70
U5 3.39 3.36 12.35 12.08 10.61
J6 1.68 1.26 9.16 8.90 8.17
U7 2.00 1.84 8.77 8.63 7.51
U8 3.01 2.86 10.13 9.99 8.46
U9 1.72 2.19 8.96 9.18 7.91
UIO 2.96 3.23 10.47 10.53 8.89
Utl 2.94 2.79 9.64 9.50 7.92
U12 1.87 1.59 9.02 8.82 7.88
U13 1.71 1.69 8.74 8.68 7.66
U14 1.70 1.91 8.85 8.93 7.80
U15 2.17 1.97 9.56 9.40 8.30
U16 4.00 3.21 11.57 11.15 9.63

Average from group prototypes: 9.92 9.81 8.50

* Each row of the table represents one UP. Decision surfaces were
computed for separating UPs from the three remaining groups. The
distance from each UP to a decision surface is shown along with the
distance from each UP to each group prototype. Miclassifications
would be indicated by negative distances to the decision surface;
however, there were no misclassifications in this case.
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The classification data discussed so far have resulted from applying
discriminant functions to members of classes from which the discriminant
functions were originally derived. Although this provides useful inform-
ation about class and individual differences, it is not a direct test of the
ability of discriminant functions to categorize members of unknown classes.
The second analysis involved generating a discriminant function on the basis
of a limited training set from two classes and then using the function to
place new and unknown members into one of the two classes.

The results of this analysis are given in Tables 8 and 9 for the split-
plane maneuvers and Table 10 for the low angle strafe maneuver. The tables
give the total number of individuals for which classification was attempted,
followed by the percentage of those correctly classified for the ratings,
MDS, and network patterns. Since 100 different randomly chosen training
sets were used for each training set size, the number of classifications
attempted is always 100 times the number of remaining members in the two
classes. The probability of randomly classifying correctly at least the
obtained number of correct classifications for each training set size was
less than .01 for all but two instances for the split-plane maneuver. The
two exceptions had a probability less than .05 and occurred when the train-
ing set size was 1 and 1. This probability is associated with the comparison
of IPs and GPs and the comparison of IPs and IWs. For the low angle strafe
maneuver the probabilities were less than .01 for the comparison of IPs
and UPs and the comparison of IWs and UPs. For the comparison of IPs and
IWs, probabilities were less than .05 for all training set sizes, except
when the training set size was 1 and 1, in which case the probability was
less than .10.

Pattern classification with networks was successful. Table 8 shows that
with only one member each from the IPs and GPs on which to base a decision
surface, 742 out of 1400 remaining IPs were classified correctly. With only
three members each from the IPs and UPs it is possible to classify correctly
the remaining 18 members with an 88 percent accuracy rate. Table 10 shows
that the classification was poorest for IPs and IWs with the low angle
strafe maneuver. Table 2 shows that the distance between group prototypes
is shortest for IPs and IWs, indicating that they are the most similar pair
of groups in viewing this maneuver. This points out that, in general, class-
ification improves as the distance between classes in the pattern space
increases.

Classification generally improves also as the size of the training set
increases. With larger training sets, the discriminant function is derived
from a larger, more representative sample. Exceptions to this sometimes
occur when a few members in one class strongly resemble members of the other
class. In this case, the decrease in percent correct is probably due to
the difficulty in classifying these outliers.
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Table 8

Classification of Group Members Using Limited Training Sets

Split-Plane Maneuver Concepts

-Percent Correct of Classifications

Training Number Distance
Set Size Classified Ratings ,.n MDS Network
IPs GPs
1 1 1400 57 68 53
2 2 1200 67 77 56
3 3 1000 67 82 60
4 4 800 68 84 62
5 5 600 62 87 64
6 6 400 52 87 64
7 7 200 51 84 66

Average: 63 79 61

Percent Correct of Classifications
Training Number Distance
Set Size Classified Ratings in MDS Network
IPs IWs
1 1 900 53 56 53
2 2 700 57 60 61
3 3 500 61 63 64
4 4 300 71 67 72

Average: 58 60 63

Percent Correct of Classifications
Training Number Distance
Set Size Classified Ratings in MDS Network
IPs UPs
1 1 2200 65 79 70
2 2 2000 77 95 80
3 3 1800 78 98 88
4 4 1600 83 100 89

5 5 1400 89 100 91
6 6 1200 91 100 94
7 7 1000 96 100 94

Average: 80 94 87
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Table 9

Classification of Group Members Using Limited Training Sets

Split-Plane Maneuver Concepts

Percent Correct of Classifications
Training Number Distance
Set Size Classified Ratings in MDS Network
GPs IWs
1 1 1100 58 62 62
2 2 900 64 71 70
3 3 700 65 76 74

4 4 500 70 76 74
Average: 63 70 70

Percent Correct of Classifications
Training Number Distance
Set Size Classified Ratings in MDS Network

GPs UPs
1 1 2400 62 79 67
2 2 2200 70 89 76
3 3 2000 74 93 82
4 4 1800 76 95 89
5 5 1600 76 95 90
6 6 1400 76 95 94
7 7 1200 73 95 95

8 8 1000 73 96 96
9 9 800 72 98 97

Average: 72 92 87

Percent Correct of Classifications

Training Number Distance
Set Size Classified Ratings in MDS Network
UPs IWs
1 1 1900 68 76 65

2 2 1700 81 93 84
3 3 1500 81 94 90
4 4 1300 78 95 94

Average: 76 89 83
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Table 10

Classification of Group Members Using Limited Training Sets

Low Angle Strafe

Percent Correct of Classifications
Training Number Distance
Set Size Classified Ratings in MDS Network

IPs IWs
1 1 1100 49 56 48

2 2 900 43 54 51
3 3 700 45 53 55
4 4 500 47 55 55

5 5 300 43 53 57
6 6 100 56 56 60

Average: 46 55 54

Percent Correct of Classifications
Training Number Distance
Set Size Classified Ratings in MDS Network
IPs UPS

1 1 2000 59 84 59

2 2 1 800 72 96 67

3 3 1600 73 96 73
4 4 1400 81 97 76

5 5 1200 79 97 79

6 6 1000 30 95 86
Average: 73 94 73

Percent Correct of Classifications
Training Number Distance
Set Size Classified Ratings in MDS Network
UPs IWs
1 1 2100 58 69 53

2 2 1900 62 88 71
3 3 1700 65 91 74
4 4 1500 67 92 80
5 5 1300 67 93 78

6 6 1100 60 93 86
7 7 900 54 87 85

Average: 62 87 77
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The discriminant functions based on the network patterns resulted in
better classification of unknown members rompared to the rating patterns.
The average percentage of correct classifications for the network patterns
was significantly greater than the average for the ratings (p<.01, sign-
test, based on the binomial distribution). Apparently, the structural
information captured by the networks is superior to the information in the
rating data despite the simplicity of the network representation. Only the
presence or absence of links was used in the patterns. The MDS patterns
resulted in better classification of unknown members compared with the
network patterns. The average percentage of correct classifications for the
MDS pattern was significantly greater than the average for the network
patterns (p<.01, sign-test). The superiority of MDS may be due to the
metrir information it provides. Further work is required to determine
whether adding metric: information to the networks will improve their ability
to classify individuals.

The goal of this phase of the project has been to test the ability of
network representations to discriminate between individuals in different
groups. In general, the pattern classification techniques appear to provide
a sensitive method for detecting differences between the networks of both
groups and individuals. The finding that the distance between concepts in
an MDS solution allow for more accurate classification than does the network
pattern illustrates the need for deriving a metric: which describes the
length of network links. It would be of interest to examine the results of
the classification of a pattern containing the metric for the length of
links in a network relative to the classification of the MDS distances.
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Identification of Links between Concepts

As seen in several applications of the network algorithm, networks
provide useful and interpretable structures. The algorithm itself. however.
only indicates where thle links are in a set of concepts. The task of
identifying the nature of tlhe links is the purpose of the present study. An
expert fighter pilot assisted in identifying the nature of the relation
represented by the links in the networks of IPs for split plane maneuvers
and the low angle strafe (Schvaneveldt et al., 1982). The results Of this
analysis are presented in Tables 11 and 12. It should be noted that there
were many fewer types of links than there were links.

For the split-plane maneuvers, there were seven types of links: AFFECTS
(15 links), IS A (11 links), LEADS To (5 links), DESIRABLE (4 links),
ACCEPTABLE (2 links), SELECTS (2 links), and INSTRUMENT OF (1 link). In
sone cases, a more general relation is used where more specific relations
could be specified. In particular, the general relation AFFECTS can be made
more specific. for some of the links. For example, while quarter plane
affects angle off, the specific purpose of the quarter plane is to INCREASE
angle off . As an initial classification attempt, however, the fewest
possible types of relations were used. The general meaning of the relations
is as follows. Let "first" represent the first element of a linked pair of
concepts and "second" represent the second element. AFFECTS means that
first leads to some change in second. IS A means that first is one member of
the category designated by second. LEADS TO means that first produces the
result designated by second. DESIRABLE means that first is an optimal or
desirable condition for second.* ACCEPTABLE means that first is an
acceptable (but not optimal) condition for second. SELECTS means that first
is involved in choosing or selecting second. INSTRUMENT OF means th-at first
is the instrument of the action designated by second.

For the low angle strafe, there were also seven types of links: AFFECTS
(12 links) , DETERMINES (11 links), IS POINT OF REFERENCE FOR (5 links),
DESIRABLE (5 links), IS (3 links), AVOIDS (2 links), and INSTRUMENT OF (1
link) .Not surprisingly, some of the relations occur in both sets of
concepts. The relations AFFECTS, DESIRABLE, and INSTRUMENT OF seem to be

*natural relations in the domain of fighter maneuvers. There are also
*various ways of describing categorical relationships. These appear as IS A
* in the split-plane concepts and as IS POINT OF REFERENCE FOR and IS in the

low angle strafe concepts. The relation DETERMINES represents a stronger
*version of the relation AFFECTS. DETERMINES means that the first element

leads to the second, regardless of other factors. AFFECTS means that th-e
first element can lead to the second depending on other factors.

With the addition of information about the identity of the relations
represented by links in the network, the network representation becomes a
more complete representation of the conceptual structure of IPs. As such,
it may be useful in communicating some of the important conceptual relations
to trainees. The network with labelled links should also prove useful in
further attempts to define conceptual structure and to relate these
structures to actual performance in the aircraft.
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Table 11 - Concept LINKS - Split Plane Maneuvers

AFFECTS
low yo yo-acceleration

quarter plane-angle off
lag roll-relative energy
lag roll-aspect angle

barrel roll-aspect angle
weapons parameters-guns
weapons parameters-heat

airspeed-vertical maneuvering
airspeed-corner velocity

acceleration-G loading
radial G-G loading

power setting-smash

power setting-extension
lift vector-radial G
lift vector-vertical maneuvering

IS A
quarter plane-vertical maneuvering

barrel roll-vertical maneuvering

c uto ff-ov er take
smash-over take

airspeed-acceleration
smash-air speed

G loading-weapons parameters
smash-relative energy

3-9 line-aspect angle
aspect angle-weapons parameters

high yo yo-quarter plane
LEADS TO

quarter plane-lag pursuit

lag roll-lag pursuit
angle off-snapshot

lead pursuit-cutoff
acceleration-ex tension

DESIRABLE
lead pursuit-guns

airspeed-pure pursuit
6 O'Clock-heat
3-9 line-quarter plane

ACCEPTABLE
lag pursult-heat

pure pursuit-heat
SELECTS

switchology-guns
switchology-heat

INSTRUMENT OF
guns-snapshot
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Table 12 - Concept LINKS - Low Angle Strafe

AFFECTS

drift-bullet impact
dive angle-recovery

bunt-glide path
airspeed-closure
closure-foul

bank-tracking

pipper fixation-foul
pull up-walking

yaw-tr ac king
range-bullet impact

pipper placement-bullet impact
pipper placement-aim point

DETERMINES

bank-dri ft
aim off point-glide path
aim off point-pipper placement

dive angle-glide path
foul line-foul
altitude-foul

walking-bullet impact
trigger-fire

pipper placement-tracking
bunt-pi pper placement

pull up-recovery
IS POINT OF REFERENCE FOR

foul line-recovery
foul line-fire

run in line-final

aim point-pipper fixation
final-tracking

DESIRABLE

stabilize-airspeed
stabil i ze-tr im
stabili ze-trac king
tracking-fire

Is
glide path-final

burst-fire
foul line-range

AVOIDS

pull up-ricochet
pull up-foul

INSTRUMENT OF
guns-fire
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MULTIDIMENSIONAL SCALING

Multidimensional scaling is a powerful technique for producing struct-
ural descriptions of empirical similarity judgments. The technique arranges
the judged concepts in an N-dimensional space where the Euclidean distances
between points reflect the psychological proximity of the concepts. The MDS
supplies several important pieces of information. First, it summarizes the
data into a spatial configuration, which though at times complex, is
considerably more informative than are the empirical similarity judgments.
Second.* MDS captures the global relations among the concepts. That is, MDS
considers the relationship of each concept to all other concepts and places
the concepts along the dimensions of the space in a way that reflects these
relations. Although such a procedure can distort local relationships, the
procedure is unsurpassed at revealing global structure. While identifying
the dimensions of the space may, at times. prove problematic, successful
identification supplies information about conceptual structure that cannot
be gleaned from the original ratings nor from other scal ing techniques.I
Finally, MDS supplies a metric (distance between concepts in multidimen-
sional space) that has some useful applications.

Optimal Dimensionality in Representing Concepts

Most MDS programs require the user to specify the number of dimensions
to be used in scaling the input data. In representing a specific, conceptual
structure, determining the number of dimensions that best describes the
conceptual space may be somewhat problematic. The use of too few dimensions
will result in the loss of potentially important information about the
interrelationships among concepts. In contrast, uncovering the relation-
ships between concepts becomes increasingly complex as th-e number of
dimensions Used to describe the conceptual structure increases. Thus, using

too many dimensions will result in an unnecessarily complex representation
of thle conceptual structure. The goal then is to use the minimum number of
dimensions that will preserve meaningful relationships between concepts in
representations of a conceptual space.

The earlier approach (Schvaneveldt et al., 1982) to determining th-e
appropriate number of dimensions was to increase systematically the number
of dimensions in the scaling program and to plot the amount of variance in
the IPs data which was accounted for by MDS solutions. The point at which
the function began to level off was selected as the appropriate dimension-
ality for that set of concepts. For the split plane maneuvers, a five-
dimensional solution accounted for 80 percent of the variance in the input
data (similarity ratings) and was selected as the appropriate dimensionality
for the split-plane data. Two of these dimensions were associated with
temporal factors, and a third dimension with distinguishing maneuvers
appropriate with lead pursuit as opposed to lag pursuit. The other two
dimensions have not yet been identified.
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It was discovered that the distances recovered from MDS scaling
solutions were better at discriminating between individuals in different
groups (IPs, GPs, UPs, and IWs) than were the rating data on which the MDS
solutions were based. This result led to reexamination of the issue of
optimal dimensionality from a different perspective. If MDS distances are
superior to ratings and the two correlate highly, perhaps the superiority of
MDS was constrained by using as many as five dimensions. Since the
correlations between MDS distances and ratings necessarily increase as the
number of dimensions increases, possibly MDS distances were been
artificially constrained to correspond to the ratings. To verify that the
conceptual space for split plane maneuvers is best represented with a
minimum of five dimensions, conceptual structures derived from multi-
dimensional scaling output using two, three, and four dimensions were
compared with the five-dimensional structures.

Table 13 shows the average correlations between the MDS distances for
pairs of individual subjects. The distances were derived from multi-
dimensional scaling using two, three, four, and five dimensions. Notice that
the correlations obtained using four dimensions are comparable to those
obtained using five dimensions, and even slightly higher in some cases. The
correlations within and between the IP and GP groups using three dimensions
are also quite similar to the four- and five-dimensional correlations.
Apparently, little information about the conceptual structure of these
concepts is lost when dropping one and possibly two dimensions from the
conceptual space. The two-dimensional correlations are somewhat lower, and
in fact, are comparable to those obtained using the raw data, or rating
scores.

Perhaps a more salient indication of the importance in the way this
conceptual space 4s represented is the ability of pattern recognition
techniques to discriminate between groups of flying personnel based on
conceptual structures represented in two, three, four, and five dimensions.
Four groups were examined: GPs, IPs, IWs and UPs. Each individual is
represented as a distance vector consisting of the 435 distances between
roncepts (30 concepts taken two at-a-time) in the MDS spatial structure. The
classification of individuals into groups will be more successful when the
groups are more highly separable. Further, assuming that the number of
dimensions used to represent a conceptual space has some effect on the
degree of group differentiation, the optimal number of dimensions used to
represent the conceptual space is the number at which groups of flying
personnel are most highly separable.
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Table 13

Average Correlations Within Groups and Between Groups
for Split-Plane Maneuvers

Two Dimensions Three Dimensions

IP GP IP GP

IP .42 .34 IP .45 .39

GP .34 .36 GP .39 .42

Four Dimensions

IP GP IW UP Average

IP .46 .38 .41 .22 .37

GP .38 .40 .34 .24 .34

IW .41 .34 .37 .20 .33

UP .22 .24 .20 .30 .24

Five Dimensions

IP GP IW UP Average

IP .45 .37 .40 .22 .36

GP .37 .39 .34 .24 .34

IW .40 .34 .38 .20 .33

UP .22 .24 .20 .29 .24
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Table 14 compaires the performance of a training algorithm in discrim-
inating between IPs and GPs. The training algorithm takes some number of
individuals (shown in the left-most columns) from each of two groups,
develops a classifier that sucesafully discriminates between those
individuals in the two groups, and then applies the classifier to the other
members of the groups. The percent correct assignments are shown for 100
iterations for each size of initial group. Each iteration randomly selects
the initial individuals. Classification performance using distances derived
from four-dimensional solutions compared well with performance using
distances derived from five-dimensional solutions. Slightly poorer perform-
ance occurred witkh two- and three-dimensional distances.

Table 14

Training Algorithm Classification Performance of IPs and GPs
Using Distances Derived From Two, Three, Four, and Five Dimensions

Training
Set Size Percent Correct

IP GP 2D 3D 4D 5D

2 2 68 70 75 77
3 3 69 76 80 82
4 4 72 79 83 84
5 5 73 82 85 87
6 6 80 84 84 87
7 7 85 80 81 84

Mean 69 73 78 79

Further comparisons involving all other groups of pilots (Table 15)
revealed tihat, in general, the training algorithm can discriminate between
groups equally well with HIS solutions with four or five dimensions. These
comparisons suggest that little is gained from increasing the conceptual
space from four to five dimensions and that some information is lost by
confining the space to less than four dimensions.
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Table 15 - Training Algorithm Cla33ification Performance

Training Percent Training Percent
Set Size Correct Set Size Correct

IP 1W 4D 5D GP IW 4D 5D
77 5456 ii 6 5632
2 2 61 60 2 2 72 71
3 3 64 63 3 3 79 76
4 4 71 67 4 4 80 76
Mean 60 60 Mean 72 70

IP UP 4D 5D GP UP 4D 5D
7TT 8079- T- 7679
2 2 94 95 2 2 89 89
3 3 96 98 3 3 93 93
4 4 98 100 4 4 94 95
5 5 99 100 5 5 94 95
6 6 99 100 6 6 95 95
7 7 100 100 7 7 95 95
Mean 94 94 8 8 94 96

9 9 95 98
Mean 90 92

1W UP 4D 5D

2 2 91 93 4D 5D
3 3 93 94 Grand Mean 87.3 86.8
4 4 93 95
Mean 39 89
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Still another way of comparing representations of concepts using various
numbers of dimensions can be obtained from a minimum-distance classifier.
The minimum-distance classifier is a pattern recognition technique that
calculates a prototype for each group by averaging feature values (distances
between concepts in this case) and calculates the distance between each
prototype and each pattern. Patterns are placed into the group that is
represented by the closest prototype. Given the distances between patterns
of a group and their prototype, and the distances between those same
patterns and the prototypes of other groups, a measure of group differ-
entiation can be obtained. For example, let Dw be the sum of the distances
of patterns within a group to the group prototype, and Db be the sum of the
distances between those patterns and the prototypes of contrasting groups.
The ratio Dw/Db is essentially the degree to which patterns of a group
cluster around their own prototype, divided by the degree to which those
patterns are separated from prototypes of contrasting groups. Lower ratios
would mean that patterns of the same group are close to their prototype
relative to prototypes of other groups. Consequently, the group would be
highly differentiated from other groups. Higher ratios would mean either
ti-at patterns within a group are far away from their group prototype, or
that patterns within a group are relatively close to prototypes of
contrasting groups, or both. The average ratio for a set of groups would
give an indication of overall group differentiation.

Table 16 shows that overall, groups were most differentiated (had lower
structural ratios) when represented as distances derived from four-
dimensional scaling solutions. This suggests that pattern recognition
techniques should be able to classify different groups of pilots more
accurately when their conceptual structures are represented as distances
derived from MDS solutions using four dimensions.

Table 16

Structural Ratios (Dw/Db) of Classes of Pilots Using

Two, Three, Four, and Five Dimensions

Class 2D 3D 4D 5D

IP .803 .815 .769 .772

GP .836 .836 .802 .810

1W .761 .759

UP .783 .797

Mean .820 .825 .779 .785
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In summary, the minimum number of dimensions that would optimally
describe a conceptual space representing split-plane concepts was invest-
igated . Within and between group correlations suggested th-at four and
possibly three dimensions were adequate to describe the conceptual space .
Other measures, however, proved to be more highly predictive of classif-
ication performance using pattern recognition techniques. Structural ratios,
which measure the amount of group differentiation, suggested that pattern
recognition techniques would perform optimally when conceptual structures
were represented as distances derived from MDS solutions using a minimum of
four dimensions. This was verified by comparing the classification
performance of a training algorithm using two, three, four, and five
dimensions.

Spatial Representations of Individuals and Groups

Previously in this project, MDS techniques have been used to derive
spatial representations of various flight-related concepts. These MDS
representations are useful in that they (a) illustrate conceptual relations
in a concrete manner, (b) depict global relations and dimensions among the
concepts, and (c) produce measures of spatial distance which are useful in
comparing different representations. While these MDS solutions illustrate
relations among concepts in an individual's cognitive organization,
information about the relations among individuals can also be derived. For
instance, within and between group correlations of these solutions
indicate degree of agreement between and within groups of individuals.
Pattern classification techniques use the MDS solution to compare an
individual to that person's group in terms of distance from decision
surfaces and prototypes. The information from these techniques, however ,
lacks th-e concrete spatial representation and the relational and dimensional
information of the MDS solution. Thus, it would be useful to use scaling
techniques to produce a spatial representation of individuals, just as was
done with flight-related concepts.

The purpose of this phase of the project is to derive MDS represent-
ations of individuals. Not only should these representations illustrate
differences between and within groups of individuals, but they should also
provide an indication of global dimensions that separate individuals into
these groups. This dimensional information has practical applications in
terms of training and selection. For instance, if undergraduate pilots that
were closer to a particular end of a dimension were also more likely to
succeed as fighter pilots, then separation of individuals along this
dimension could be used as a predictor for future success. Also, thle closer
th-at an individual is in the MDS solution to one particular group of pilots,
the more similar that person's cognitive representation of flight-related
information is to other pilots Of this experience level.

There are several ways of generating MDS solutions for individuals.
McKeitthen, Reitman, Rueter, and Hirtle (1981) investigated the differences
among computer programmers of differing levels of expertise. Subjects
recalled a list of A~LGOL W reserved words, and based on the order that each
subject recalled the words, a tree structure was generated. The number of
chunks in conmmon within these tree structures was used as a measure of
similarity between individuals. These similarity values were then arranged
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in a matrix and scaled using MDS techniques. In this way, individuals were
plotted in multidimensional space. Adelson (1981), in a similar experiment
with computer programmers, derived an MDS solution for individuals by
correlating distance matrices for each subject. From these correlations, ar
intersubject correlation matrix was constructed, to which the 14DS technique
was applied.

An additional technique that seems to capture t,;e distance information
inherent in MDS involves the calculation of distances between each person
using the distances derived from their individual MDS solutions. In this
case, the individual can be thought of as a point in "n-dimensional" space
(n = 435 dimensions based on the 435 distances for all pairs of 30 terms).
The distance between two individuals would take into account the difference
in distance for each of the 435 pairs of points for the two individuals.
This "distance" technique will be used in this project to derive a measure
of intersubject similarity, since distance measures have proven useful in
pattern recognition analyses of individual and group differences.

Method

Distance vectors produced from four-dimensional MDS solutions of both
Split and Strafe concepts were used to compare individual pilots. Four
dimensions were chosen since this number of dimensions has been found to be
optimal, as mentioned in the preceding section of this report. Results from
split-plane and low angle strafe concepts were analyzed separately. The
distance vectors for each subject consisted of 435 distances between pairs
of 30 concepts. Thus, each individual pilot can be thought of as a point in
435-dimensional space.

Distances between individuals were taken as the Euclidean distance
between the points representing the individuals in the 435-dimensional
space. These distances resulted in a matrix of distances with individuals
as rows and columns. These distance values were then scaled in multidimen-
sional space using one and two dimensions for both the split-plane and
strafe concepts. Also, in order to focus on differences among experts, two-
dimensional representations were derived, excluding UPs.

Results and Conclusions

The two-dimensional solutions for all subjects can be seen in Figures 1
and 2. In both representations, the undergraduate pilot trainees are
linearly separab.Le from the more experienced subjects (IPs, GPs, and IWs).
In the split-plane representation, the GPs tend to be separated from the
other experienced subjects (IWs and IPs) on the vertical dimension. Data
from GPs were not available for the strafe concepts, but in that represent-
ation, a slight separation of IPs and IWs is evident. Therefore, the two-
dimensional MDS solutions of individuals provide excellent illustrations of
organization of individuals along an "expertise" dimension. For both
representations, this is the horizontal dimension which plots less
experienced subjects to the left and more experienced pilots to the right.
The vertical dimension is not as clearly defined, although it does tend to
separate the different groups of experts.
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In an attempt to further delineate the different groups of experts in an
MDS representation, an inter-subject distance matrix was derived using data
from only the expert pilots. The two-dimensional MDS solutions for the
expert subset are presented in Figures 3 and 4. In the split-plane
representation, IPs and IWs are nearly linearly separable from GPs. This
might be expected, based on the fact that IPs and IWs are involved in
teaching, whereas GPs are not. Therefore, this dimension could be labeled
"teaching experience." with the GPs being located on the lower end of the
continuum and the IPs and IWs on the upper end. The second dimension is not
as clear in this case. In the strafe representation, the horizontal
dimension tends to separate the IWs from IPs, with a few exceptions.
Apparently, the IWs and IPs are not as easily separated as other groups.

Table 17 shows the one-dimensional 14DS solutions. A one-dimensional
solution should extract the one dimension that accounts for the most
variance. In Table 17, subjects are presented in order of occurrence in the
MDS solution. Values assigned to each pilot are transformed coordinate
values and are an indication of the relative distance from one individual to
another. In both split-plane and strafe solutions, the largest distance
interval occurs between the group of UPs and experienced subjects. There is
one exception in each case, however. In the split-plane solution, UP-16 is
in the expert group and in the strafe solution, UP-12 is in the expert
group. This is not surprising because these two individuals also appear
closer to the expert groups in the two-dimensional solutions. Thus, it
seems that the one-dimensional solutions ordered individuals along the
expertise dimension.

The results from the MDS of individual subjects clearly help to define
the separate groups of subjects and the locations of individuals in relation
to the groups. The previous finding that the more experienced pilots agree
more with each other and have well defined conceptual structures is
supported by Figures 1 and 2, in which expert groups tend to form tighter
clusters than do UPs. From these scaling solutions, two dimensions have
been labeled. The "expertise" dimension separates UPs from all other
groups, and the "teaching experience" dimension separates GPs from IWs and
IPs. Also, if the individuals in the one-dimensional solutions are ordered
along the "expertise" dimension, then this ordering may prove to be a
possible means of predicting success as a pilot or in simply determining a
student's cognitive "status" in relation to other students as training
progresses. For instance, if expertise is the appropriate label for the
single dimension in the one-dimensional solution, individuals that are close
to the expert end of the continuum should have organizations of flight-
related information that are similar to those of experts. In general,
representation of individual pilots in multidimensional space provides a
concrete illustration of relations among individuals and groups, as well as
an indication of possible dimensions which separate these individuals and
groups.
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Table 17 - One-Dimensional MDS Solutions for Individuals

Split-Plane Maneuvers Low Angle Strafe

Position on Position or,
Individual Dimension Individual Dimension
- --------------------------------------------------------------------

IP 8 0 IP 5 0
IW 2 3 IW 5 26
IP 4 29 IP 6 51
IP 6 36 IP 1 52
IP 3 38 IP 4 60
IW 1 40 IP 2 62
GP 9 42 IW 3 88
GP 2 43 UP 12 91
IP 2 46 IP 3 94
IW 4 48 IW 1 96
GP 6 50 IW 7 98
GP 3 59 IW 4 111
IP 1 61 IW 6 119
GP 5 62 IW 2 123
GP 1 66 UP 14 202
GP 7 67 UP 10 218
IP 7 69 UP 8 230
IF 5 75 UP 16 246

UP 16 91 UP 9 249
IW 3 92 UP 1 256
GP 4 103 UP 15 260
UP 2 184 UP 5 267
UP 1 198 UP 13 273
UP 8 198 UP 2 274
UP 9 227 UP 6 278
UP 13 235 UP 3 286

UP 15 236 UP 7 300
UP 10 241 UP 4 310
UP 11 247 UP 11 326
UP 14 251
UP 4 256
UP 17 268
UP 5 271 Note.
UP 6 273 IP-Instructor Pilots
UP 12 278 GP-Air National Guard Pilots

UP 3 281 UP-Undergraduate Pilot Trainees

UP 7 304 IW-Instructor Weapons Systems Officers
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EXPERIMENTAL ANALYSES OF CONCEPTUAL STRUCTURE

Ordered Recall: A Comparison of Networks and MDS

The MDS techniques and the recently developed scaling technique that
produces a GWN have been used extensively throughout this project to
investigate the organization of critical flight-related concepts in memory.
Structural representations of memory have been generated using these
techniques. The MDS techniques produce spatial representations of memory in
various dimensions, whereas the GWN technique produces a structural
representation consisting of nodes and links, representing concepts and
their relationships, respectively.

As previously mentioned, these scaling techniques and their represent-
ations differ in several ways. The MDS techniques involve the "fitting" of
a set of psychological distances, such as those derived from similarity
ratings, into a space consisting of a predetermined number of dimensions.
This .rocess of manipulating the data to fit the dimensionality results in a
loss of some information. In general, the information lost is that
concerning specific or local relationships among concepts. On the other
hand, global information, such as clusters of several concepts, is
augmented through this technique. Also, from a MDS spatial representation,
dimensions in which concepts are organized can be discovered (e.g., temporal
or procedural dimensions). Another advantage of the MDS technique is that
from the solution, a distance metric can be derived. These distances are
useful in comparing organizations across individuals or groups.

The GWN provides local information that the MDS representation lacks.
Schvaneveldt et al. (1982) developed the GWN algorithm, and Schvaneveldt
and Durso (1981) used the algorithm to scale a set of natural concepts such
as plants, animals, and their features. To illustrate the difference
between the network and MDS solutions, they positioned the nodes in the
network according to the two-dimensional MDS solution. The concept,
FEATHERS, illustrates the fact that networks are better able to represent
concepts that are connected to many diverse concepts. In the MDS solution,
FEATHERS is closely related to the concepts CHICKEN, FROG, and ROBIN in
terms of distance in space, while it is distant to concepts such as HAIR and
BIRD. In the network, however, FEATHERS is linked to CHICKEN, as well as
HAIR and BIRD, but not to FROG or ROBIN. Thus the GWN captures these
additional relationships that are absent in the MDS solution. Also, in the
GWN, atypical category members are not connected, whereas they may be close
in an MDS representation.

In general then, the MDS provides global information, while the GWN
provides local information. An important issue, however, involves the
validation of one of these structural descriptions. That is, which scaling
technique produces a representation that is most similar to actual memory
structure? To compare these two techniques, an ordered recall task can be
used in which the order of the list is derived from either MDS or GWN
representations.
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Recall order has been used frequently to generate representations
similar to those produced by relatedness ratings (Adelson, 1981; Chase &
Simon, 1973; McKeithen, et al., 1981). In order to compare memory stuctures
of expert and novice computer programmers, Adelson(1981) presented lines of
Polymorptic Programming Language "(PPL)" code to subjects in a random
fashion. Subjects were asked to recall the lines of code. Psychological
distance, in this case, was defined as the number of intervening items in a
recalled list. Resulting MDS representations showed that novice programmers
organize according to syntax, whereas experts organize according to
procedure or function. In general, it is assumed in these studies that the
order in which a list of randomly presented concepts is remembered
corresponds to the organization of those concepts in memory.

Chase and Simon (1973) investigated the differences between chess
players of different skill levels in a memory task and a perception task.
In the memory task, subjects had to reproduce the pieces and their locations
on a chessboard after viewing the setup for 5 seconds. They found that for
expert chess players, recall of the board was superior when the pieces were
arranged in a meaningful fashion than when the pieces were arranged
randomly. Novices, however, did not benefit from a meaningful organization.
This finding has been replicated in several studies (Engle & Bukstel,
1978; McKeithen, et al., 1981), suggesting that experts benefit from
meaningful organizations as opposed to random arrangements.

According to the findings of these studies, a meaningful organization is
beneficial to recall for expert subjects, and the organization that corr-
esponds most closely to actual memory should produce superior recall. Along
this line of reasoning, a list of words or concepts, organized in a meaning-
ful fashion should facilitate recall over a random or nonmeaningful organ-
ization, when the subject has to recall the words in the order in which they
are presented. Also, the more meaningful the organization is to the subject
(the more similar to actual memory structure), the less time it should take
for perfect ordered recall.

To compare the MDS and GWN representations, recall performance can be
compared using lists of concepts generated from either MDS or GWN represent-
ations. The MDS list would consist of terms ordered in such a way that each
term is spatially close to the following term according to MDS, but is not
linked to the following term in the network. The opposite would be the case
for the GWN lists. Each concept would be linked to the following concept in
the network, but the terms would be distant according to MDS. If one list
is recalled in significantly fewer trials than the other, then it is likely
that the representation from which it was derived should correspond more
closely to the actual organization of those concepts in memory.

An initial study was done using introductory psychology students and
natural oncepts. These concepts were chosen because MDS and GWN solutions
were already available for these concepts (Schvaneveldt & Durso, 1981).
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Method

Subjects. The subjects for the pilot study were 54 undergraduates from
New Mexico State University, enrolled in an introductory psychology class.
The subjects volunteered for the experiment in order to fulfill course
requirements.

Apparatus. The stimulus lists were presented to the subjects on a TERAK
screen. Subjects also typed their responses using the TERAK keyboard,
positioned below the screen.

Materials. Nine stimulus lists (three for each condition) consisting of
12 words each were used in this experiment. Concepts were identical
to those used by Schvaneveldt & Durso (1981). and the GWN and MDS represent-
ations derived in their study were used to order the lists. The nine lists
gre reproduced in Table 18. In the MIS-related condition, lists were derived
by locating chains of concepts that were close to each other in the MDS
solution, but not linked in the network. Network-related lists were
generated by selecting chains of concepts that were linked to each other in
the network, but were distant in the MDS solution. Finally, non-related
lists were chains of concepts that were neither linked to each other nor
closely related in the MID solution. The three lists within each condition
differed in terms of alternate ways of generating the lists (i.e., different
starting concepts in the chain or a choice between two equally distant
concepts).

Procedure. Subjects were randomly assigned to one of three conditions:
(a) GWN-related list, (b) MDS-related list or (c) non-related list. Within
conditions, subjects were randomly assigned to one of three lists. The
purpose of using three different lists in each condition was to determine if
idiosyncracies inherent in specific lists affects time to recall the lists.
The subject was seated in front of a TERAK screen and presented with the
instructions. Then, the ordered list of 12 words was presented, one word at
a time. The words in the list were always presented in the same fixed
order. Each word appeared on the screen for 1.5 seconds.

After all words were presented, the subject was instructed to type as
many words as could be recalled in the same order as they had been
presented. A program was written in PASCAL to control the experiment.
Spelling and typographical errors were scored as correct as long as the
words were sufficiently close to the target words to be recognized by the
scoring program. Interresponse times were also recorded. When the subject
finished the list or could recall no more, the words were checked by the
computer. If all 12 words were not recalled, or if the order of words
was incorrect, another trial would begin, and the words would be presented
again. This procedure continued until all 12 words were recalled in the
correct order. The total number of trials to recall the list was recorded.
The maximum possible number of trials was 12.
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Table 18 - Ordered Lists Derived for Each Condition

Network-related Lists (linked but far apart)

LIST 1 LIST 2 LIST 3
tree color frog
robin hair living thing
bird feathers animal
feathers bird dog
hair robin hair
color tree feathers
green leaves bird
frog green bat
living thing frog blood
bat living thing red
m amm al bat rose
animal mammal flower

MDS-related Lists (Close but not linked)

LIST 1 LIST 2 LIST 3
hoof cottonwood feathers
antler daisy frog
ha ir plant robin

deer leaves chicken
mammal flower blood

dog tree bird
living thing rose animal

rose living thing color
tree mammal rose
flower dog green
leaves bird flower
plant animal tree

Non-related Lists (not linked and far apart)

LIST 1 LIST 2 LIST 3
cottonwood dog chicken
chicken green leaves
antler hoof hoof
leaves feathers bird
blood daisy green
green bat mammal
hair leaves plant
frog mammal feathers
daisy red deer
feathers antler color
deer robin dog
red hair frog
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Results and Discussion

Mean interresponse time was calculated for each subject on the last
trial The mean interresponse times for each condition are shown in Table
19. These differences, however, are not significant. On the other hand,
mean number of trials for each of the main conditions (See Table 19) do
differ significantly, F(2,45) = 10.019, 2<.001. The effect of different
lists within conditions on number of trials was not significant, suggesting
that the idiosyncracies within a particular list were not the cause of
differences found between conditions. Linear contrasts done on mean number
of trials showed that the differences between the GWN and MDS conditions
(F(1,34) 17.772, p<.O01) and between the GWN and non-related conditions
(M(1,34) 24.322, 2<.001) were significant. The differences between the
M-DS and non-related conditions were not significant.

Table 19 - Performance Data from Ordered Recall Task

Mean Interresponse Time (sec)

Network MDS Non-Related

List 1 1.76 1.84 1.65

List 2 2.91 1.63 2.04
List 3 3.21 1.97 2.87

Mean 2.63 1.81 2.19

Mean Number of Trials to Perfect Recall

Network MDS Non-Related

List 1 3.50 5.67 6.50
List 2 4.17 7.67 7.00
List 3 3.67 5.83 9.16

Mean 3.78 6.39 7.55

In general, the results of this study suggest that GWN better captures
the aspects of memory structure responsible for aiding ordered recall.
Subjects in the GWN condition took an average of 3.78 trials to recall the
lists perfectly, while mean number of trials for the MDS condition (6.39)
did not differ significantly from the mean number of trials for non-related
lists (7.55).
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The lists organized according to the 1DS solution were no easier to

recall than were the nonmeaningful lists. This finding suggests that the
riDS representation did not capture the aspects of memory structure that
facilitate ordered recall. The superiority of the GWN list can be
explained based on the properties inherent in the network. In a task such as
this, in which concepts have to be recalled in a particular order, local
relations should aid recall more than global relations. For instance, three
concepts found in the GWN lists, TREE, ROBIN, and BIRD are concepts that are
linked in the network, but are distant in the MDS solution. On the other
hand, HOOF, ANTLER, and HAIR are three concepts from the MDS lists. These
latter concepts are globally related in that they are mammal body parts, but
are not linked to each other in the network. Intuitively, it appears that
network-related words would be easier to remember in a list that is made up
of a series of chains or links of concepts because this mimics the structure
of a network.

While the GWN structure was superior to the 14DS structure in this
particular task, other tasks that require global information for good
performance may shod different results. Further research would determine
whether MDS structures are superior in other situations.
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Priming: A Comparison of Similarity Ratings and MDS

Previous studies have indicated that visual word recognition is
performed more quickly when a word to be recognized is preceded by the
presentation of an associated word. Meyer, Schvaneveldt, and Ruddy (1975)
performed a series of studies that showed that a target string of letters
can be recognized more quickly as a word when it is preceded by a word
that is associated with it. For instance, the string of letters DOCTOR
could be recognized as a word more quickly if it were preceded by the word
NURSE than if it were preceded by the word BREAD. This contextual effect
in the "lexical-decision" task (in which strings of letters are classified
as words or non-words) was described in terms of a word-processing model
where the stimulus letter string is graphemically encoded and transformed
into a phonemic representation through the "grapheme-phoneme correspondence
rules" of the English language. Following the encoding of the stimulus
string, lexical memory is accessed to check for a match between the phonemic
representation and some item stored there. Based on the result of the
retrieval process, the stimulus is recognized as a word or non-word and a
yes/no response is executed. The influence of the semantic context was
shown to affect the encoding operation as opposed to the retrieval process.
This was indicated when the contextual effect was shown to be larger for
visually degraded letter strings than for letter strings of unimpaired
visual quality.

II

A "spreading activation" theory provides an explanation of the semantic
context effect displayed in a word recognition task. According to this
theory, individual concepts in lexical memory are represented as nodes in a
network structure. The activation of a node in the lexical network leads to
a spread of activation to other nodes that are near the activated node.
The organization of the network ensures that nearby nodes are semantically
(meaningfully) related. In this way, spreading activation may facilitate
the accessing of related concepts once a particular node has been activated.

Studies conducted last year produced a list of concepts relating to
flight maneuvers. These concepts were used to construct various
representations of the organization of the concepts. An MDS analysis of
similarity ratings for pairs of the concepts resulted in a spatial
structure. The present study was undertaken to evaluate th e MDS
representations using a priming procedure. From earlier analyses of the MDS
solutions (Schvaneveldt, et al., 1982), it appears that 14DS solutions
contain more information than do the ratings from which they were
constructed. For both the MDS solutions and the original ratings, some pairs
of concepts are more closely related than are other pairs. Since priming

presumably reflects underlying memory structure, this study was designed to
determine whether pairs derived from MDS solutions would lead to more or
less priming than would pairs derived from the original ratings.

The effect of semantic context has been shown to generalize across
tasks, as subjects were consistently faster at pronouncing words when the
words were preceded by associated words rather than unassociated words (see
Meyer et al., 1974). In this study, subjects performed a similar
pronunciation task
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in which they vocalized target words that followed a word prime. The effect
of the word pair relationship (between the target word and the word prime)
on reaction time was examined. The relationship between words in a pair
varied in two ways. The words could be similar or dissimilar based on
similarity rating averages, or the words could be near to or far from each
other according to distances derived from the MDS scaling solution.

Me t hod

There are 435 word pairs in all possible combinations of words from a
list of 30 split-plane manuever or 30 strafe manuever concepts. The terms
from each pair were rated for similarity on a scale from 0 to 9 by seven
instructor pilots. From the averages of these ratings, an MDS solution was
obtained that produced relative distances between concepts, representing the
strength of the relationship between the concepts as seen by the pilots. In
this way, highly related words were given shorter MDS distance values, while
less strongly related concepts were given larger MDS distance values.

From the similarity rating averages and the MDS distances, concept pairs
that are near or far in MDS distance and high or low in similarity were
determined. Pairs of concepts that had a high similarity rating and were
near to each other in the network solution derived from MDS were selected as
"High-Near" (H-N) pairs. Word pairs that had low similarity ratings on the
average and were most distant from each other made up the set of "Low-Far"
(L-F) pairs. The similarity ratings were based on the average ratings from
the eight IPs. The MDS distance pairs were based on the distances
determined from a MDS solution along five dimensions for the averaged
ratings.

Concept pairs could be one of four types: (a) H-N: high in similarity
and near in 4DS distanc:e, (b) L-F: low in similarity (dissimilar) and far in
MDS distance, c) H-F: high in similarity and far in MDS distance, or (d)
L-N: low in similarity and near in MDS distance.

Procedure. Eight instructor pilots served as subjects (s) and were
presented with two terms, one at a time, on a CRT screen. The terms were
selected from a list of 30 split-plane manuever concepts for five of the
subjects and 30 low-angle strafe concepts for three of the subjects. The
subjects' task was to read aloud the second concept accurately and as
quickly as possible. The vocal response time was measured to the nearest
millisecond from the time the target word was presented until the subjects
read the target word aloud. The subjects were presented with eac~h of the 30
concepts as targets following each of the four types of primes. The targets
were also presented following the prime, NOTHING, to establish a neutral
baseline for assessing priming effects.
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A single trial proceeded 3s follows. A warning tone alerted the
subjects to fix their gaze on the CRT screen for the start of a trial. A
word prime followed the offset of the tone and was displayed for 0.5 second.
The screen was then cleared, and there was a 1.0-second delay prior to the
presentation of the target word. The target word remained on the screen
until a verbal response was made. The subjects spoke into a microphone
situated 7.5 to 10 centimeters from their mouth. A delay of 0. 1 second
prec:eded the warning tone for the next trial.

Each subject was presented with 150 concept pairs presented in a
random ordering. The 150 pairs consisted of all 30 concepts paired
with the five different prime types. The subjects completed two blocks of
trials, with each block having a different random ordering of the 150
concept pairs. Response times were recorded by the computer program that
controlled the experiment.

Results

The mean response times in each condition are shown in Table 20. An
analysis of variance was performed on the pronunciation response times and
revealed no significance for the priming effect, F(4,28)=0.86. Apparently
the subjects were able to improve their performance with practice as they
progressed through the experiment. This practice effect is indicated by the
response times for the second block of trials being significantly lower than
the response times for the first block of trials, F(1,7)=84.9, p<.O01.

Table 20 - Mean Response Times (msec) for Each Priming Condition.

Priming Condition Condition
(Similarity - MDS Distance) Block 1 Block 2 Mean

High-Near 461 439 450

High-Far 465 438 452

Low-Near 460 444  452

Low-Far 455 442 448

Neutral 469 443 456

Block Means 462 441
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Disc ussion

As indicated by the average response times in Table 20. the effect of
semantic context in a word pronunciation task was not replicated in this
study. One explanation for the lack of facilitation with related primes may
be provided by the spreading activation theory. Each subject saw each of
the 30 rconcepts 10 times as a target and several times as a prime. The
resulting spread of activation from activating each of these concepts this
frequently may be so large that all of these concepts are highly activated
in memory, and the primes on individual trials do not lead to any further
activation of the targets. Some support for this interpretation comes from
analysis of the first few trials in the experiment. The expected priming
effects were present, but with so few trials, there were no significant
effects.

The one lesson to be learned from this study appears to be that priming
studies cannot use procedures that require extensive repetition of stimulus
materials. With a limited set of items such as those from an earlier work,
it will be very difficult to evaluate memory structure using priming
methodology. Other tasks, such as the ordered recall task, appear to be
more promising.
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CRITICAL CONCEPTS

An ongoing concern in this projec~t is identifying critical concepts that
distinguish expert pilots (instructors) and novice pilots (undergraduate
trainees). Earlier work on this problem (Schvaneveldt et al. 1982)
used network representations to compare different classes of pilots. In
network representations, concepts are depicted by nodes, and relations are
depicted as links connecting nodes. The links are assigned values which
reflert the strength Cf the relationship between the nodes. Network
representations, as mentioned before, are extremely useful in representing
local relationships among concepts. The networks enabled identification of
pairs of concepts that distinguished experts (instructor and guard pilots)
and novices (undergraduate trainees). Pairs of concepts that were found to
discriminate expert and novice pilots were basically of two types: pairs
between which there existed a critical association for experts but not for
novices (the pair was linked in the network representation for experts but
not in network representation for novices) and pairs between which there
existed a critical association for novices but not for experts.

In contrast to the network representations, MDS provides a more global
description of conceptual struc:ture. The problem of identifying the
critical concepts that differentiate novices and experts can thus be pursued
on a more global level through representations derived from multidimensional
scaling. With MDS, concepts are depicted as points in a multidimensional
space, where the distance between concepts along a dimension represent
psychological distance (i.e., two concepts that are close along a given
dimension are similar along that dimension) . A measure of distance between
each conc:ept can be derived from the concept coordinates in multidimensional
space. Each concept can then be represented as a vector of distances from
the concept Lo every other c;oncept in the representation. With a pool of 30
concepts each from low angle strafe and split-plane maneuvers, each concept
can be represented as a vector of 29 (n-1) distances. A measure of the
degree to which UPs and IPs agree on these concepts can be calculated by
correlating eac)h concept or distance vector from the UPs with the IPs.
Tables 21 and 22 show these correlations for the split-plane maneuvers and
low angle strafe, respectively. As can be seen from these tables, a wide
range of correlations were found. For example, for split-plane maneuvers,

igh agreement between IPs and UPs was found for the concepts AIRSPEED and
RELATIVE ENERGY, while the negative correlations found for ANGLE OFF and
EXTENSION reflect extremely low agreement. Similar observations can be made
regarding low angle strafe concepts.
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Table 21 - Correlations of UPs with IPs

Split-Plane Maneuvers

UP Familiarity
Rating

Concept r 1 2 3

Airspeed .81 0 0 16
Relative Energy .81 0 4 12
Smash .76 1 1 14
Weapons Parameters .71 4 12 0
Corner Velocity .70 1 8 7
Power Setting .70 0 0 16
Guns .70 1 14 1

Overtake .69 0 0 16
Acceleration .69 0 1 15
Switchology .64 7 5 4
Lift Vector .62 0 4 12
g Loading .60 0 1 15

Barrel Roll .59 0 1 15
Verticle Maneuver .53 0 2 14
Snapshot .52 13 3 0

Lag Roll .47 13 3 0
3-9 Line .43 12 4 0
Aspect Angle .43 13 3 0

6 O'clock .26 0 3 13
Quarter Plane .25 14 2 0
Lag Pursuit .22 10 4 2

Cutoff .20 0 0 16
----------------------------------------
Low Yo Yo .19 10 6 0
Pure Pursuit .16 9 5 2
Lead Pursuit .15 10 4 2
High Yo Yo .13 8 8 0
Radial g .12 12 3 1
Heat .05 13 3 0
Angle off -.04 4 8 4
Extension -.24 13 3 0

Note. Familiarity rating entries are the number of UPs giving each
rating to each concept.
1-Totally unfamiliar
2-Familiar but not used in flying
3-Used in flying
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Table 22 - Correlations of UPs with IPs

Low Angle Strafe

UP Familiarity
Rating

Concept r 1 2 3

Drift .76 0 6 9
Yaw .73 0 2 13
Fire .71 1 114 0
Burst .70 3 12 0
Pipper Placement .69 6 9 0
Trim .67 0 1 14
Guns .65 1 14 0
Trigger .63 2 13 0
Final .61 2 4 9
Aim Point .61 1 7 7
Stabilize .60 2 6 7

Tracking .57 1 10 4
Range .53 1 12 2
Bank .52 0 1 14
Bullet Impact o50 3 12 0

Recovery .49 1 8 6
Glide Path .47 0 3 12

Run In Line .44 14 1 0
Pull Up .44 3 5 7
Closure .42 0 5 10

Airspeed .39 0 2 13
Altitude .37 0 1 14
Pipper Fixation .37 7 8 0
Dive Angle .37 1 9 5
Ricochet .35 6 9 0
Aim Off Point .34 12 2 1

Foul Line .26 114 1 0
Foul .21 14 1 0

Bunt .00 14 1 0

Walking -.07 12 3 0

Note. Familiarity rating entries are the number of UPs giving each
rating to each concept.
1-Totally Unfamiliar

2-Familiar but not used in flying

3-Used in flying
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Concepts that show low correlations are probably those that the UPs have
not learned. At any rate, these concepts are not organized for UPs in the
same way as for- the instructors. The UPs may not have encountered or used
these concepts in training. A comparison of the correlations and UP
familiarity ratings supports this suggestion. Generally, those concepts that
all, or- most, UPs have had experience with during training correlate highly,

while concepts whic.h have not been encountered correlate relatively low.
However, there are exeptions to this rule. For example, all UPs have used
the concept CUTOFF in flying (Table 21), yet they correlate relatively low
with the IPs. Similarly, all UPs have had either flight or classroom
experience with the concept 6 O'CLOCK, and again, they correlate relatively
low with IPs. For low angle strafe, similar examples include DIVE ANGLE,
AIRSPEED, and ALTITUDE. Although UPs have encountered these concepts in
training, their organization of these concepts in memory still greatly
differs from that of the IPs. One possible reason is that UPs have not
learned the relationships between these concepts and other concepts. During
training, they may have encountered these concepts in specific contexts or
situations and not in others.

To verify further the critical concepts that separate novice and expert
pilots, pattern recognition techniques (the training algorithm described
earlier) were applied to subsets of the original distances derived from
multidimensional scaling. To reiterate, the training algorithm operates on
the distances between concepts. Beginning with a set of 30 concepts, each
concept has 29 distances with which it is associated. Distances associated

with groups of concepts were systematically removed, starting with those
concepts that were most highly correlated. By removing those distances, the
remaining subsets contain the information that should be most useful in

discriminating between IPs and UPs. The cutoffs used are shown as the
dotted lines in Tables 21 and 22. The performance of the training algorithm
on subsets of the original distances is shown in Table 23. As can be seen
from Table 23, training algorithm performance did not greatly deteriorate
with the removal of all concepts that correlated at or above .40. This
suggests that those concepts correlating .40 and above did not contribute
significantly to the separation of the IP and UP groups, and the concepts
that most separate the UPs and IPs are those that correlate below .40. One
practical consequence of these findings is that the set of concepts can be
considerably reduced without seriously affecting the discrimination power of
the task. For each concept eliminated, data collection time is reduced by
the number of remaining concepts because of the testing of all pairs of
concepts.

Table 23 - Pattern Classification Performance for Various Cutoffs (r)

Split-Plane Maneuvers Low Angle Strafe

Cutoff (r) % Correct Cutoff (r) % Correct
None .94 None .94
.70 .92 .60 .96
.60 .91 .50 .99
.50 .96 .40 .90
.40 .89 .30 .48
.20 .84
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CONCLUSIONS AND RECO1MENDATIONS

Primary Accanplishments

This project has produced several interesting and potentially useful

findings. The major new theoretical effort being pursued under the contract
conc:erns the development of methods for obtaining and analyzing networks of

concepts from empirical data. Networks have been widely postulated as the
underlying structure of concepts in semantic memory. Now there are methods
for determining the nature of such networks without relying on guesswork and
intuitive judgments. These methods should prove to be important in the
continuing analysis of structures of knowledge.

In the domain of critical flight-related concepts, it has been shown

that systematic methods can yield valid and reliable descriptions of the
strurture of these concepts. Further, these structures can be used to

identify individuals as members of groups with differing training and
experience. Of particular interest are the findings showing more accurate
cl3ssification of individuals into groups using structural representations

of concepts than using the original data from which the structures are
derived. Multidimensional spatial structures lead to the most accurate
classifi-ntion, but network structures also lead to more accurate classifi-
cation than Jo the direct judgments obtained from various groups of flying
personnel. Since the network representations are based only on information
about which concepts are linked to which other concepts, the classification
performance with network structures is particularly noteworthy. Perhaps as
the testing of a metric for the network structure proceeds, classification
with networks will approach the level of performance found using the MDS
structures.

Further specific areas of disagreement have also been identified in the
strur.tures possessed by expert and novice pilots. These specific differ-
ences may deserve special attention in lead-in fighter training. The
structures themselves may also prove to be useful in the academic program
since they provide some graphic examples of the differences in the ways
novices and experts think about critical flight concepts.

One major irea investigated in the past year concerns the experimental
verification of the structures that were identified. An ordered recall task
was developed to compare MDS and network structures. In the preliminary
test, the network representation facilitated recall while the MDS represent-
ation did not. Although this finding is suggestive, it should not be taken
as definitive for two reasons. First, the ordered recall task itself may be
biased in favor of networks because the task requires recalling items in a
designated order. Second. further work with the task using fighter pilots
is underway, and that test may show different results. At the very least,
however, the initial experiment did provide some validation of the network
structure in a memory performance test. This validation serves to reinforce
earlier findings that the structures being discovered do reflect some
important aspects of the underlying organization of flight-related concepts.
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A final major accomplishment this year has been the analysis of larger
units of conceptual structure in the form of scripts. This work is reported
in detail in a separate technical paper (Maxwell & Schvaneveldt, in press).
In brief, this work has shown that pilots do have script-like organizations
for the particular actions that go together to make up various maneuvers.
The experiments showed that expert pilots (fighter lead-in IPs) are able to
integrate actions that constitute parts of scripts, and they also show clear
evidence of elaborating presented actions with other actions that belong to
the sc.ript but were not presented. Novice pilots (UPs) show quite different
effects. They are not able to integrate actions that belong together as
completely as do the experts, and they show no evidence of elaboration of
scripted activities. Naive subjects (undergraduate psychology students)
show still another pattern of results. As would be expected, they show no
integration and no elaboration. Of course, they should have no knowledge of
the scripts and, therefore, should not show script effects.

Directions for Future Work

The next reporting period will be devoted to additional work on the
scaling procedures used and developed throughout the contract period.
Further experimental studies are planned to evaluate the results of the
scaling procedures.

One major new analysis is planned for the next year. The new analysis
will be concerned with a procedural analysis of decision making in fighter

pilots. The intent is to develop a production system model to simulate the
decisions made by fighter pilots in particular combat situations and/or in
executing particular maneuvers. The rationale behind this project is that a
successful simulation of pilot decisions will constitute a model of the
decision-making process as well as the knowledge necessary to make such
decisions.

Recommendations

The work accomplished under this contract has provided a detailed anal-
ysis of the conceptual structure of critical flight information in fighter
pilots as well as correlational and experimental verification of the valid-
ity of the structures. These structures may be useful in training programs
for students attempting to acquire these conceptual structures. Also, the
representations themselves may prove to be useful as training aids. The
network analysis, for example, shows how expert fighter pilots organize the
concepts involved in particular maneuvers. To the extent that the network
representation provides an understandable representation of experts'
knowledge structures, students may find it useful in learning about the
maneuvers.
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From a somewhat different angle, specific differences have been
identified in the conceptual structures of students and expert fighter
pilots. In particular, the differences show, in part, what experts know
that students do not and what misconceptions the students may have acquired
from earlier training or from other life experiences. These areas of
difference should receive special attention in the training program for
fighter pilots.

Finally, work in classifying individuals based on their conceptual
structure suggests further work in attempting to predict the success of
future fighter pilots based on the conceptual structures students
demonstrate early in training. It may be necessary to study the structures
associated with a different set of concepts than those used in the present
investigation. For example, perhaps some concepts relating to attitude and
motivation should be included along with concepts relating to the operation
of aircraft. The classificatiot techniques developed appear to be very
sensitive to differences in cognitive structures, and they may well provide
some predictive power for organizing the training program to produce maximum
benefit for those who are likely to benefit the most from fighter training.

In a more general vein, attempts to define the cognitive structures
involved in successful operation of fighter aircraft should serve to
complement other research concerned with perceptual processes and motor
skills. The investigation of knowledge organization in pilots seems to have
been relatively neglected in attempts to apply psychology to the under-
standing of the pilot and the pilot's task. Recently, psychologists and
workers in the field of artificial intelligence have made some important
strides toward a more complete understanding of knowledge representation and
the process involved in the use of knowledge. It is believed that this work
contributes to the application of these recent developments to the task of
understanding the knowledge of fighter pilots. If cognitive skills are
found to be at least as important as perceptual-motor skills for successful
pilots, it is imperative to continue to advance the understanding of the
nature of these cognitive skills.
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