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ABSTRACT

A mathematical model is given for the definition and analysis of

bulk availability. Bulk availability is achieved by having some specified

percentage of a total set of components operational. The model is
deterministic rather than stochastic. Availability warranties are con-

sidered for the bulk availability model.
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CHAPTER 1. BASIC CONCEPTS AND METHODOLOGY

Section 1.1 Introduction

The concept of availability represents the desire that a piece of
equipment be operational when it is called upon to function. Availability
extends the basic notion of reliability which in its pure meaning only
deals with the continuing proper operation of a unit. Availability allows
equipment to undergo repair or replacement either due to breakdown or
as standard maintainance procedures. The concept of availability can
be applied to a small unit, complex systems, or generalized to personnel.
It therefore forms a major part in logistic analyses over a broad area of
applications. A number of mathematical models have been developed fer
the analysis and design of availability requirements. An example of
such mathematical approaches to some aspects of availability are given
in (1) and (2) where a definition is developed for component availability
which, unlike component reliability, must be placed within the context
of the system in which a component is operating.

The field of contract structuring is also concerned with availability.
Most contracts for the procurement of complex systems include specifi-
cation of the availability of an operational system for a period following
acceptance of the equipment itself. One approach to this aspect of
contract structuring has been through the Reliability Improvement
Warranty (RIW). By requiring the contractor to assume some form of
responsiblity for equipment failure, the RIW gives a cost measure to
reliability. The usual measurement of reliability in terms of probability
concepts like mean time between failures is difficult to deal with in

contract negotiations, acceptance tests, and disputes over peformance.
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By introducing a cost measure for reliability, the concept becomes more
clearly recognized as a real feature of contract responsibility and its
dimensions can be spelled out in specific terms. Of course what is
really desired is a warranty on availability, which includes both reli-
ability concepts and aspects of the logistic support required for equip-
ment supplied under contract. In (3) and (4) the ideas of availability
warranties and incentive type contract structures have been given
mathematical representation. That material illustrates the mathematical
model approach to the analysis of availability warranties.

Most of the mathematical models and analyses of availability and
availability (reliability) warranties have considered individual units of
equipment or collections of such units in which the availability of each
unit is desirable and important. One may refer to such considerations
as "unit availability." The major mathematical tools for such studies are
probability, statistics, and queuing theory. An illustration of this kind
of analysis is given in (5). The advantage of probabilistic models is
that a deterministic analysis of unit failure is in most cases too complex
and the methodology of stochastic processes is well developed and yields
useful results under many conditions. However, stochastic models have
two important disadvantages: they require data for their useful imple-
mentation that are often very difficult or indeed impossible to obtain,
and they are hard to interpret to people untrained in the details of
probabilistic reasoning, for example as part of a contract negotiation.
Thus it would be desirable to have alternative methodologies for avail-
ability models if they could be developed so as to give meaningful and
useful analysis. This does not seem possible in most cases. However,

for the concept of bulk availability, such an alternative methodology does
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seem possible. This is the primary goal of the work described in the
report: to define a non-probabilistic model for bulk availability. It is
felt that development of such a model will show the feasibility of an
alternative methodology for at least some types of availability analyses.
It also provides a model that is useful directly for the study of bulk
availability. In particular, it gives a basis for the formulation of
availability warranties in contracts that deal with bulk availability.

Bulk availability differs from unit availabiltiy in that the individual
units are not the primary consideration but rather the number of units
that are available at a given time. A bulk availabilityl model applies to
situations in which there are a number of similar units making up the
total system which is defined as the collection of units. Thus the
system itself is unstructured in the model formulation. Availability of
such a bulk system is defined in terms of the units that are available.
Such models apply to a group of workers that are essentialiy inter-
changeable for functional purposes such as a platoon of army personnel.
The platoon is operational if some specified percent of its composite
personnel is operational. In the same way the model applies to fleets of
trucks or aircraft, highly redundant groups of equipment, or gracefully
degrading complex equipment.

Because of the definition of bulk availability as a fraction of the
total collection of units being operational a deterministic model suggests
itself as an alternative to the usual stochastic models of availability. In
bulk availability the individual units are not important but only the
number that are in a particular state of operation at a particular time.
The model presented in this report employs transfer rates between

states such that the actual number of units changing state depend on
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these rates and the number of units in a state. Other model definitions
are also possible and may be more appropriate in some situations.
However, the present model, as defined in the next section, applies to
situations in which the number of transfers from one state to another
depend on the number of units in a state and the transfer rate. For
example in a platoon that is exposed to a sickness, the number of
personnel who become ill in each time period depends on the rate of
contagion and on the number still unaffected who are therefore able to
become ill.

Section 6 employs the bulk availability model to describe a method-
ology for the analysis of bulk availability warranties and related logistic
considerations. This material is based on (6) while this report gives
some additional background and extensions of the basic ideas given in

(6).

Section 1.2 Definitions and Terminology

This study considers a model for bulk availability in which there
are a large number of similar units that fail at a constant rate A. Upon
failure, a unit enters a waiting line and from there enters repair service.
The service activity can accomodate up to r units and completes service
at a constant rate p. It is assumed that the number of units departing
from a state is equal to the appropriate rate parameter times the number
of units required or available depending on which state is under con-
sideration. The model is constructed as a system of ordinary differential

equations for the three quantities:

ma(t) = the number of units that are active (available),
mw(t) = the number of units that are waiting for service, and
mS(t) = the number of units in service.
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All three quantities are functions of time as the independent variable.
In this model system, availability can be defined as a lower bound
on ma(t).

It is assumed that the system is conservative in that ma(t) + mw(t)

+ ms(t) is a constant.
The differential equation system is intrinsically non-linear in that
part of the forcing function depends on the values of the unknown

functions for its formulation. Thus the model is formulated in two
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regions of the (ms,mw) plane. Figure 1 shows the relations between

v

the three states of the system: available, waiting, and in service.

-
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. no size limit no size limit at most r
1 Available [Ama(t) Wait k(t) Service mg(t) -
t ma(t) mw“) ms(t)
Figure 1 )
States of the Bulk Availability Model ]
The system of differential equations governing the flow of units .
through the states of the bulk availability model follows directly from _j
- 1
3 the conservation and flow rate assumptions stated above. This system ]
r has the form:
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In this system, the quantity K(t) depends on the relative values

of mg and m, leading to two specific forms for K(t) as given below.

Because of the conservation assumption, the initial values s; = ms(to),

L ou
e e e T
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w; = mw(to), and a; = ma(to) satisfy the condition s; + w; + a; = ms(t)
+ mw(t) + ma(t) for all values of t. Since the differential equation
system must be followed across different forms the "initial" wvalues
a,,w;, and s; are incorporated as parameters into the solutions.

The wvalue of K(t) depends on what is required by the service
state and what is awvailable from the waiting state. This leads to the

following division of an (ms, mw) plane into two major regions.

Region 1 K = mw(t), defined by mg < r and m, <r -m,+ pm.
Region 2 K= r - ms(t) + pms(t), defined by m, £ r and

z2r - +
m_ 2 mg * um,.

These regions are shown in Figure 2.
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Figure 2 ’1
Regions Specifying Model Form :
o
Solutions are obtained for Regions 1 and 2 in Sections 3 and 4 :
respectively. Some numerical examples are given in Section 5 to illus- ._._1“

trate bulk availability analysis using the model described here.
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One procedure for using the model would be to simulate the system
:G using the differential equations to provide the model structure. This is

equivalent to direct numerical solution of the equations. However, the
system of differential equations can be solved directly in terms of

explicit functions of time. This is the approach taken here and given

in the following sections. The resulting functions of time are compli-
cated and require computer evaluation as described in Section 5. Even

so, direct explicit solutions are felt to be superior to numerical solu-
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tions of the differential equation system. In particular such explicit

ey

R A v vy
. s N I L
R . . CT

solutions can be studied directly for limiting values and special cases of

the model parameters.

Section 1.3 Scope of Model Methodology

The deterministic mathematical model for bulk availability given in
this paper relates the availability of a system to various system para-
meters. Unlike the usual stochastic model it does not depend upon an
underlying probability framework and its results are specific quantities
expressed as functions of time rather than expected values or other
partial descriptions of random events. In this sense, the present bulk

availability model is related to stochastic models in the way thermody-

namics is related to statistical mechanics as a description of certain

physical processes. The goal of thermodynamics is to relate various f":.::'
measurable quantities, e.g. temperature, to physical parameters without .
the necessity of a detailed analysis of the partical dynamics that -_4
produce such relations. This is also true of the bulk availability model
in which the transition rates and initial distribution of units amcng .‘
states are system parameters. The model relates these parameters to h-:
the descriptive functions m .M, and m, . w

E
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The value of the model is in its direct relation between a few
system parameters and clearly identified descriptors of the system,
particularly ma(t) which measures system availability. This direct
relation is useful in contract negotiations, system design, logistic sup-
port design and implementation, and the conducting of acceptance test
procedures. Stochastic models are much harder to interpret for use in
all these aspects of contracting activity. However, this wvaluable
feature of the bulk availability model is obtained at the expense of
rather limited applicability. For the model to be meaningful, the
assumptions required for the model must hold. This restricts model
applicability to the bulk case in which the system description can
indeed be given by a division of units into the three states of the
model. Thus the model takes no account of any interaction between
units or differences in utility between wunits. The conservation
assumption also limits the model. There are only the three specified
étates so that any case in which a unit fails and cannot be repaired or
replaced is not included in the present form of the model. Of course
such additional states can be included in the model. The desirability of
doing so to extend model validity must be balanced against the desire
for relatively simple system descriptors which motivated this kind of
modei from the beginning.

The most serious limitation of the model is the assumption that the
number of units that transfer state can be expressed as a product of a
transfer rate and the amount available for transfer. In any particular
case, this may or may not be a valid assumption. Its validity can be
established by theoretical arguments or assumptions or by experimental

data. If it cannot be validated in some way, it is likely that the par-
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ticular bulk availability model presented here does not apply and should
not be used. Other assumptions can .e¢ made in a deterministic model
context, but the ones used here seem to give the most direct example

of the kind of model of interest in this study.

CHAPTER 2. REGION 1 SOLUTIONS

Section 2.1 General Form of Region 1 Solutions

As specified in Section 1.2, the Region 1 form of the bulk avail-
ability model is given by the wvalue K(t) = mw(t). This results in the

following system of differential equations:

m () = pm (t) - Am (1),

m (1) = Am,(t) - m_(t),

my(t) = m (t) - pm (1),
where the dot notation is used to indicated differentiation with respect
to time. The initial conditions for the system are values ma(to), mw(to),
and ms(to) specified at a time t which represents the time at which
this system starts to govern the behavior cf the model. Over time, the
model may change from a Region 1 to a Reygion 2 system or conversely.
Therefore, the initial conditions for a system, including the initial time
may be obtained as specified data or as the final solutions of a previous
solution form. This is described more fully in Section 4 on numerical
solution procedures.

The method of Laplace transforms is used to obtain the Region 1
solutions. If L([g(t)] = G(s) is the Laplace transform of a function g(t),

define: L[ma(t)] = Pa(s), Lm (t)] = F (s), and L[ms(t)] = FS(S).
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Also define the initial values as: ma(to)=a1, mw(to) = w,, and
ms(to) =s,. The transformed equations for the Region 1 system have

the following standard form:

(S+A)Fa - 'JFS = a

')\Fa + (S+1)Fw = w,

—FW + (S+H)PS S1

This transformed system can be solved in the form:

a3

= H -
l:‘a s+,’\F S + St+A
A al Wl
Fo = e s * Gy M ¥ s
where
o= Sa((stl)(std) | wy(std) | ajA
s P(s P(s) P(s)’

and P(s) = sQ(s), where Q(s) = s2 + (1+Atp)s + A + u + pA.

The form of the solution depends on the roots of the quadratic function

Q(s). The descriminant for this quadratic is:

D = (1-A)% - 2u(1+A) + 2
or alternatively:

D = (1-A-p)2 - 4pA.

The curve D = 0 is a rotated parabola symmetric about the line

A = p in the (p,A) plane as shown in Figure 3.
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Figure 3
Areas of (u,A) Plane Defining D Values

A more detailed plot of the curve D = 0 is shown in Figure 4.
The region with D < 0 is inside the parabola as shown. Any combi-
nation of p and A, within this region, gives a Case 1 solution. Values
outside the parabola, where D > 0, correspond to Case 3 solutions. In
the model as presently formulated y and A assume fixed values in an
analysis. However, in generalizing the model or in considering the
kind of results an analysis would yield it is interesting to consider
linear variation of the form p = KA. Straight lines such as these inter-
sect the parabola in two points given by the A values A, = MJK .

K (1-K)
When K =1, there is only one solution, K > 1 gives solutions on the

lower branch and K < 1 gives solutions on the upper branch of the

parabola respectively. A typical intersection is shown in Figure 4 for
the value K = 2 for which A, = 3:2/2 giving values of (.344, .172) and
(11.656, 5.828) as the two points of intersection shown. The behavior
of the solutions changes as p varies along a curve y = KA. For small

values of p, a Case 3 type solution occurs. As u increased the first
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intersection point is reached, where D = 0, giving a Case 2 solution.
Further increase in y moves the solution through a range where D < 0
and a Case 1 type solution governs the model. For K =1, this situ-
ation continues. For all other values of K, increase in p takes the
solution to the second intersection, a Case 2 form, then on to Case 3
form solutions again. The regions specified in Figure 4 can be helpful
in determining the general form of solutions to be expected when using
various (p,A) combinations and to see how the solutions will change as
the (p,A) values change.

The roots of Q(s) are given by: -at -]?1- where a = (1+A+u)/2.
Let 82 = D/4. Then the values of D as a function of p and A yield
three distinct forms of solution as indicated by the three regions of the
(p plane shown in Figure 3. These cases are defined by: D <0
gives Case 1, D = 0 gives Case 2, and D > 0 gives Case 3.

In Case 1l the quadratic Q(s) = (sta)? + B2; in Case 2,
Q(s) = (s+a)2; and in Case 3, Q(s) = (s+a)? - 2. The form of the
roots of Q(s) in terms of B can be treated in various ways and care

must be exercised to get the correct form of the solution in each of the

cases and also in numerical calculations as discussed in Section 4.

Section 2.2 Case 1 Solutions

In this case, D < 0 and Q(s) has complex roots. The quantity g2
is negative. It is useful to represent Q(s) as a quadratic of the form

Q(s) = (s+a)? - p2. Then F, can be expressed as follows:

F = s,;A(s) + w;B(s) + a,C(s), where

AI BIS + Cl
- *

s2 + (1+A)s + A
s[(sta)? - p?]

A(s) =

(s+a)? - p2
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_ A _ _ptAp _ pFApAZ
Ay = AtputAy ! By = Atputapy C, = A+utAp
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In some formulas, it is convenient to express A+uytAp as a? - %

which for Case 1 gives a2 - B2 since B2 = D/4. However, it must be

observed that in this case, o? - p% is in fact the sum of two positive

quantities in order to get the correct inverse Laplace transform expres-

sion. Proceeding, we find

B(s) = s +A S
s[(sta)2 - 2] s (sta)? - B!
where
_ - A - =A _ E-)\2
Bz = A1 = momnn Bz = Tpenn - C2 = Xeprhp
A Aj Bss + Cj
C(s) = = = ——,
s[(s+a)? - B2] s (sta)? - p2
_ _ _ =A(atAa+p)
where A3 = Alr Bs = Bg, C3 = —)\;m}i‘
The inverse transforms are:
_ _ (Cl - Bld)
L 1[A(s)] = A; + Bye at cosBt + 3 e at sinpt,
- - (Cp - Baa) -
L 1[B(s)]= A, + Bge at cosft + ————~B———e at sinpt,
- _ (Cs - Baa) _
L 1[C(s)]= A, + Bse at cosft + —B———e at sinpt,

Thus:  mg(t) = s;L L A(s)] + wiL 1[B(s)] + aiL7t{C(s)].

o
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Next, the quantity ma(t) is developed. Its transform is given by:

a;
= B
I:‘a StA * StA l:‘s

a; S1M Sy + Wy ajAy

Fa = s Y emozpz t s8] ¥ Gs[GraZ-pe) -

After partial fraction expansion and algebraic arrangement, this

quantity becomes:

p(sl+w1+al) 1

a2 - g2 S

[s1u(A+p+2Ap-1) - wip(1+A+p) + a;A(1+p2-A-Ap)]
2(a2-p2)[(s+a)? - 2]

(sta)[-(s1twpp + a;A(1+)]
(a2-B2)[(sta)? - B2]

Inversion of this transform yields ma(t). Continuing, the trans-

form of mw(t) is:

Fy = (stFg - sq,

PA(s twytay) w(sta) Wi(Atp) + a3 - wya
F = + +
Y s[(sta)2-p2]  (sta)? - B2 (sta)? - B2

After some algebraic arrangement, this can be written:

. _ HA(s twitay) 1, S+
S

W Atptip (s+a)? - B2

Wi(Atp) - pA(sitay)
A+tptAp

(Wi (AZ+p2-A=p) + @ A(2A+p*Ap-p2) - s Ap(1+p+A)]
2(a2-82) [(s+a)? - B?] '
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Inversion of this transform yields mw(t). The Case 1 solutions, ob-

m tained by means of Laplace transforms as shown above, are: 2
m,(t) = AA + — (us (1+A) - May+wy)]e ™t cospt o

a“-p n

]

- 1 LD
- + ————— [us(1+A2-p=pA) + w(2p-AZ+A+Ap) "
b 2p(a2-p2) )

1 .=at '\
- Aa;(1+A+p) e sinpt -3

0

of units assumption in the model formulation. This direct though some-

2 m (t) = pA + 21 [-(sy#wyp + a;A(1+p)]e %" cospt s
. as-B 4
*’ Tp—— [s1u(A+p+2Ap-1) - wiu(1+A+p) R
4 2B(a2-2) o
:v' 2 -at . ‘;‘.'
- + a;A(1+p2-A-Ap)]e sinpt
: >y
i |

_at ']

m_(t) = pAA + [wi(A+p) - Au(syta;)]e ~ cosBt oy

w a2_82 :':J

+ L [y (AZHu2-A-p) + 2, A(2AHpA-p2) oy

2p(a2-p2)

S

o

- sl}\p(1+p+)\)]e-at sinpt :'~;j

b

In these equations, A = A;. B

As a check on these rather involved results, it is true that

ma(t) + mw(t) + ms(t) = a; + w,; +s,; as required by the conservation .]

~

what tedious calculation is omitted from this report. Some additional

checks on the calculations will be discussed at the end of the chapter.
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Section 2.3 Case 2 Solutions

In Case 2, D = 0 so that Q(s) has two real roots both equal to -a.

Thus Q(s) = (sta)? so that the transform of ms(t) can be written as:

5182 + [5,(1+A) + wy]s + (Sy*wyita;)A

F = .
S s(s+a)?
= A(s) + (s twy+a;)AB(s),
$1S + 51(1+A) + w, 1
where A(s) = , B(s) = ————

(sta)? s(s+a)?

Partial fraction expansion yields:

w; + 51(1+A-q) Sy
A(s) = + ,
B(s) = 1. 1 - 1 , so that:
a?s a(s+a)? a2(s+a)
(s1twyta;)A (s1twyitadA
poo= orWiEOR g 1
s o2 S 1 o2 st+a
(sytwyta)A 1
+ [wy + 5,(1+A-a) - p
(s+a)?

The transform of mw(t) is given by Fw = (s+p)Fs - s,. From the

above expression for FS, we can write

1

= 1 1
F = + Ry sta + Rja v’

(sytwitag)A

a?

[+}]
3
(o3
o)
w
1

wi + s;(1+h-u) - aR;.
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Then Fw can be written
F = R, ) 4 g, M) L5 () o
w S Ss+a (S+(X)2
Partial fraction expansion and simplification yields:
F = Ryp &+ [Ro(u-0)+Rs] o + Ry(p-0)res
W M g 2(u algrg * Ralu-odrgiyz -
The transform of ma(t) is given by:
ay
Fa = st MR;A(s) + pRaB(s) + uR3C(s), where
AGS) = o, B(S) = 7o and C(s) = —L1
S(s*A (stA)(s%a) - (s*+A)(s+a)?

Partial fraction expansion vyields:

1 1 . 1 1
AS) = %5 “iemy - BO) * oy T (e (sray

1 i 1 i 1 .
(a=A)2(s+A)  (a=A)(sta)2  (a-A)2(s+a)

and C(s) =

These quantities give Fa in the following form:

_ MRy MR;  pR, HR3 1
Fa® 75 " -5 Y53 ozl e
HR2 HR3 1 HR3 1
+ [- - - —

a=-A o=-A

N (s+a)?

The cdefficient of s.-lr_)\ is equal to zero as can be established by

direct algebraic calculation.
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Inversion of the transforms developed above yields the Case 2
solutions. To simplify the notation in these solutions, let B =

(s;*w; *a;)/a2, and C = w;+s;(1+A-a) - AaB. Then the Case 2 solutions

are:
- -at -at

ms(t) = AB + [s;-AB]Je + Cte

m_(t) = yB + —E— [-s,-w,;+A(20-A)B]e " - £ cte™t

a 2 o=y

(A-a)

m (t) = pAB + [w; - amBle ™ + (p-a)Cte @t

By direct calculation, it can be shown that the conservation
assumption is satisfied for these solution functions, i.e., that

ma(t)+mw(t)+ms(t) = a;+w,+s; for all values of t.

Section 2.4 Case 3 Solution

In this case, D >0 and Q(s) has two distinct real roots:
6, = -a + 3%-, 8, = -a - er)‘ It is convenient to sometimes express 1/-1-)2—
as B in the solution forms for Case 3. In this notation, the roots of
Q(s) are -a+B, and -a-B.

The transform of ms(t) in Case 3 has the form:

S,(st1)(s+A) w;(stA) a;A
s = "s(s-6,)(s-6,) * s(s-0;)(s=62) * s(s-01)(s-85)

A(s) + (ay*w;+s1)AB(s),

$1S + s1(1+A) + wy
(s-81)(s-82) '

1
s(s5-61)(s-82)

where A(s) = B(s) =

..®

PO l o a.a_a_a_a
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Expansion gives:
Ay By
AS)= 557 * 58,
$10; + s1(1+A) + w,
where A, = 8,-6, ,
$182 + s1(1+A) + w,
and B, = - 5.9,
_ A B, C ) 1
B(s) = < + 576, + 5-0, where A, = 5,6,
B, = 1 and C = -1 .
8,(6,-62) 62(61-62)
These expressions result in the value:
- 1 1 1
Fg = Hig+ H $-6, +H?'s-ez, ’
where
(aytwitsA $18,1ts; (1+A)+w, (a1twyts A
Hy = A+U+Ap Hy = 2B * 286, ’

=518, - 51(1+A) - w, (aptwytsy A

and Hy = 7B - 250,

The transform of mw(t) has the form:
FW = (S"’H)Fs - 5.

Direct calculation shows that H;+H,tH; = S; giving the following

form for Fw:
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_ 1 1 1
F, = Hiw 5+ H2(61+“)s-61 t+ Hs(%ﬂ’m .

The transform of ma(t) has the form:

;
= M i i .
Fa st *osen FS, which can be put into the form:
t-.‘ Hyu 1 Hap 1 Hap 1
- Fa = % s¢ A+8, 5-6, A+8, s-6,

Hiju  Hpp Hap
tlan - x - 58, " e, s

It can be shown that the coefficient of 51—}\ is equal to zero.

Inversion of the transforms given above yields the Case 3 solutions

in the following form.

ms(t) = H,; + Hzealt + H3e62t

my, (1) = pHy + Hy(0v)e®t’ + Hy(0ptu)e®"

Hip Hap Hap

- . - 61t o 62t ‘f‘,

A S s < =

The results given in this Chapter are rather complicated, and it is .:

=

desirable to check their correctness before using them in numerical
analyses such as those given in Chapter 4. Two types of tests on

solution correctness have been made. For each case it has been shown L;':J

‘@

- by direct calculation that ma(t)+mw(p)+ms(t) = a;+tw;+s; as required by -ﬁ

'j the conservation assumption. A more sophisticated test of solution J

correctness is obtained by noting that both Case 1 and Case 3 solutions L:;:j

9

should tend to the Case 2 solutions as B»0). By allowing B to approach g

]

zero in the Case 1 and Case 3 solutions, it is found that the Case 2 :

B
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solutions are indeed obtained. Though the limit calculations are detailed

to carry out, they are direct calculations and are omitted from this

report.
It should be noted that the initial value of time ts has been taken

as t =0 in deriving the above forms of solution. This means that in 2‘.“

model analyses, the time variable must be redefined each time the model

Adaind i boa

ft'i changes region form. This is discussed more fully in Chapter 4.
9

. ,....,
. e
» 1" 4 ' .
Semand i

-
e

- - CHAPTER 3. REGION 2 SOLUTIONS

;" As specified in Section 1.2, the Region 2 form of the bulk availa-
bility model is given by the value K(t) =r + (p-l)ms(t). This results

in the following system of differential equations:
h A (1) = pmg(t) - Am (1),

= m (t) = Am_(t) - r - (p-1m(1),

x

ms(t) = r - ms(t). o

Initial conditions are specified for some value of time, to at which jij.]

the model behavior becomes governed by the Region 2 form. As in :!4

P Chapter 2, the initial values are defined to be ma(to) = ay, ms(to) = s,, o
E:Zj and mw(to) = w;. Because of the conservation assumption, the Region 2 _:",
. -
- solutions also satisfy the condition: .
r. .-"-4
J

ma(t) + ms(t) + mw(t) = a; +s; +w, for all t. _f:i

o

The equation for ms(t) is not coupled to the quantities ma(t) and J

, . ' , . R

mw(t) so that it can be solved directly for ms(t). It is a first order -

linear differential equation whose solution is: : ~l]

@-
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-
K

m(t) = sle"t + r(l-e-t).

This value can be put into the equation for ma(t) to obtain the

verevy R
o d. " "'_4'41'

equation:

m_(t) = pr+ u(s -r)e’t - Am, (1),

This equation is solved directly to obtain:

- p(si-r) _ . -
ma(t) = )\EE (1-e )‘t) A v (e t. e M) + ae M.

I

'y \am am )
4

L
e

LOLrR AL St A

’

0~ ERECRRNE" {5
[N

Now using the values already obtained for m S(t) and ma(t), the
equation for mw(t) becomes:

Hr=Aps At (sy-r)

m () = [Sop— +Aale™t + ——— (wp-1) e

Direct integration of this differential equation yields:

l [“r-)‘psl -At
A A-1

r
mw(t) = al+W1*sl = g_ -r -

(sy-r)(M+p-1)
- e
A-1 '

3 As a check on these results, direct calculation shows that the
i conservation condition holds for the Region 2 solutions given above.
E It should be noted that the initial value of time t, has been taken
E‘- as to=0 in deriving the above forms of solution. This means that in
r model analyses, the time variable must be redefined each time the model
é‘" changes region form. This is discussed more fully in Chapter 4.

Because of the simple form in which the Region 2 solutions depend

on t, the limit values as t increases are easily obtained. They are:
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limit ms(t) =r,

1>

imi = ].£
limit ma(t) X

>

limit m_(t) = a;+w;+s; - LA
w A
>
It should be observed however that as t increases, the model may
not remain in Region 2. If it does not, then the limit values are unde-

fined. The condition for the model to be in Region 2 is that mw(t) 2

o]

+ (p-l)ms(t). The limit form of this condition requires that a;+w;+s;

v

ur + 1‘)\—1‘ +r.

This is a condition that relates all six parameters of the model to
give a set of values that result in the Region 2 limit forms for the
model descriptors m,, mg, and m,.

Though numerical evaluation is required for typical model analyses
in either Region 1 or Region 2, some special cases can be considered
directly. As an illustration of such a consideration, the following
special case has been studied.

Consider the Region 2 solution in which s; = r so that the service
facility starts fully utilized. Then ms(t) = r and the facility continues
to be fully utilized. In this case, the remaining units are distributed

between the available and waiting states according to the functions:

m () = KX+ (a; - HE)eM,

= r r ~At
n, (1) = a +wy - Ap—-(al-l;:—)e .

SN e T
a Mid

.,
s .’l,[
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The condition for this to govern the distribution of units is that
mw(t) 2 pr; if this condition is not satisfied, the system will move into
the Region 1 solution. In particular, for a steady state limit solution to
exist in this form, it is required that a;+w; 2 pr(1+%). It is an indi-
cation of the intrinsic non-linearity of the model that the steady state
depends on initial values. An example illustrating the situation when

the condition is satisfied is given in Section 4.2.

CHAPTER 4. NUMERICAL EXAMPLES OF SOLUTIONS

The bulk availability model has been formulated so that its des-
criptive functions ma(t), ms(t), and mw(t) have different forms in the
solution Regions 1 and 2. As the system moves from one region of
solution to another, time must be reinitialized and the initial distribution
of units among the three states of the model must be specified by the
values obtained in the previous region. The solutions themselves have
been obtained in explicit form but are rather complicated. Certainly
they are too involved for hand calculation. In this chapter, a computer
implementation is described, and it is used to obtain some example
results. These examples illustrate the use of the model for bulk avail-
ability analyses and show the kind of results obtained from the mathe-
matical solutions. A major feature of interest in model analysis is the
relation of the system descriptors ma(t), ms(t), and mw(t) to the

system parameters A, p, r, and model parameters a,, s;, and wy.

Section 4.1 Computerized Solution Calculation

As pointed out in each Region solution section, the solution forms

given are based on an assumption that the initial time value is zero. In

o

i,
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a real solution where the model form may pass from one solution form to

another, it is necessary to use two time values. One value of time Ni
represents the actual time while the other time value is the time within ]
a particular region solution. Each change from one region form to ;_-Z_:
another requires an initialization of the "local" time variable to zero. f

When this is done, the actual time variable is incremented by a value

NPy WraY % O

equal to the local time wvalue just prior to its initialization and the

change to a new region form solution. Depending on the six parameters

that define the model, three types of solutions can arise:

(i) the solution can start in one region and remain in that region
for the duration of the analysis;

(ii) the solution can start in one region and move to the other
which then determines its value for the duration of the analysis;

(iii) the solution can move from one region to another then back

again, continuing to change regions.

A combination of (ii) and (iii) can also occur, but the major types

<
v ‘4

of behavior are given by these forms of solution. Thus a computerized

o
"
i

model analysis must be formulated in such a way that it can represent
each of these distinct kinds of system behavior.

In addition to keeping track of actual time, it is necessary to

match the wvalues of ma(t), ms(t), and mw(t) at the end of one model
form situation with the initial values of these quantities at the next
model form when a change of form is required. .._.1

Figure 5 shows a flow chart of how the computerized model -

analysis is carried out. To keep track of time, three different "time E

like" wvariables are used. The variable T measures time from the start Y

of one Region form. It changes in increments of specified amount DT.
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The value of DT must be selected rather carefully because it governs
the time values at which the solution forms are evaluated. If the
solution remains in a single Region, DT can be relatively large, its
value subject only to the detail of solution form required in a particular
analysis. However, when the solution changes Regions, it should do so
as near to the critical values of the solution as possible. If DT is too

large, the solution from one Region will continue into the other Region

on transition and the "initial values" will be incorrect being based on
the previous solution form which has ceased to be appropriate at some
previous time. This effect can introduce significant errors in a model
analysis. The most appropriate values for DT in a specific analysis can .ﬁ
be determined by a try-and-test procedure. Fortunately, a computer
run of the model does not require extensive time or storage so it is

feasible to try several values of DT to insure a realistic set of results.

R/ PSR L SO S T

The variable TOTT records each of the times spent by the system in

each solution Region. Each time there is a change of region, the value

of TOTT up to the start of that Region solution is increased by the
final value of T for that solution. Actual time is given by the variable
TLOC which is the sum of the present value of TOTT and the value of
T obtained so far in the present Region solution at the termination of
the analysis. An analysis is terminated when TLOC reaches a value TF
specified by the program. The quantities DT and TF are input values

that govern the detailed calculation of the solutions, they are program-

ming parameters rather than system parameters.
The solution Region that should be used is determined by the

condition mw(t) < r-ms(t)+pms(t) as discussed in Section 1.2

(Figure 2). The proper Region is designated by a flag variable KR
which takes the values 1 and 2 to denote Regions 1 and 2 respectively.
@
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At each iteration of the solution evaluation procedure, the con- J
dition on mw(t) is checked to see if a change of Region should take ii
place. When a change of Region takes place TOTT is updated, the
values of ma(T), mS(T), and mw(T) are used as the intial values for :
the next Region solution form, and T is initialized to DT as a starting ;‘%
value for the new Region solution. This procedure is indicated in ]
Figure 5. In the detailed program, a listing of which is given in the
:“ Appendix, care must be taken in evaluating the Region 1 solutions. In :.“;
that region, the three Cases give different forms of solutions as des- i
L cribed in Chapter 2. However, the notation defining the quantity B l
must be properly interpreted in each case. This is particularly true in "“;
Case 3 where D < 0 so that B2 is in fact negative making o2-p2 a
positive quantity for all values of @ and B. The detailed program must
test for each case and interpret the numerical signs so as to give the 'Pj
correct results. It must also determine how often solution values are to \
be given as output and what detail of output information is required.
These features are indicated by additional program parameters as

described in the Appendix.

In the next section, computerized analyses of several examples are
given. They were obtained using the program given in the Appendix
which follows the flow diagram of Figure 5. Examples such as these

require very short running times and little storage for their execution.

Section 4.2 Examples
To illustrate the kinds of solutions that can be obtained from the
model, some examples are given in this section. First, a simple example

is given for which the solution form can be expressed explicitly. Then
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Input:
) DT.TF
- Al, W1, sl
- . v, A, R
0 y
- T=0
D TOTT =0
5 TLOC = 0
) Region 1 Regi
KR = 1 egion egion 2 KR = 2
S Use Region 2
" solutions for
- m,(t), m (1),
A ms(t)
Use Region 1
Case 2 solutions
- for m (1), m_ (1), ‘ﬁ
m(t)
> T = DT
‘ tr et
- Use Region 1 Al = m(T),
N Case 3 solutions S1 = my(T),
- D<0 Case 3 9] for m,(t). m (1), wl = m (T),
A KR =2
. Y m (1)
| TOTT = TOTT + T_]
Initial values for
- Case 1 new region
a Use Region 1
B Case 1 solutions
for m, (1), m_(t), = o
. ms(t)
. l TLOC = TOTT + T I
'-.
- Output:
m (U, m, (1),
my(t), KR, T,
TLOC, TOTT
- ) ALl = ma(T)' Sl = ms(T),
«| Wl = mw(T), KR =1, T = T+DT
X ﬂ - T = DT | «|_TOTT = _TOTT + T. v Final h
. «| Initial vaiues for new STOP time for Change
- region TLOC Region
Change N
-l N] Region N
T = T+DT m KR =1 Y m,, < R-m_*ug N KR = 23 . A
Figure 5
. «.4
= Flow Diagram of Computational Program -y
- - \
. Y
: =
_
(] 3
ﬂ
o e L SO Tra RPN “.-.-.‘_1




some numerical examples are given that employ the computer evaluation
procedure described above in Section 4.1.

Example 1. Let A =1, p=2, r =10, and assume initial values
a; =70, s; =10, and w; = 20. The constant value of total population
of units is therefore 100. The condition: w; < r-s;+ps; becomes
20 < 10-10+20 which is not satisfied so a Region 2 type of solution is
obtained. In Chapter 3, the limit behavior of the model when s; = r
was discussed and it was found that the solution would remain in
Region 2 provided the condition a;+w; 2 pr(1+%) was satisfied. In the
present example, this condition has the wvalues 70+20 2 10(1+1) and is
satisfied. Therefore, the solution starts in Region 2 and remains in

Region 2. The explicit solution is:

m_(t) = 20 + 50t

_ -t
mw(t) = 70 - 50e
ms(t) = 10

The total number of units is maintained at 100 and, in the steady state,
20 are available, 10 are in service, and 70 are waiting for service.

A modification of the initial conditions for this example yields quite
different results. Let a; = 80, s; = 10, and w,; = 10. Then the con-
dition w, < r-s,+us,; is satisfied in the form 10 < 20 and the solution is
in Region 1 with D = -4, B2 = -1, and a« = 2. Thus Case 1 type solu-
tions must be used to represent the descriptive functions, which have

the explicit form:

m(t) = 20 - 10e~2 cost - 30e~2t sint
m (t) = 40 + 40e”%t cost + 20e"2t sint.
m (t) = 40 - 302t cost + 10e”2t sint.
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The conservation condition ma(t)+ms(t)+mw(t) = 100 holds, as it

‘ should, for tnese solutions.
The Case 1 examples are interesting because the D < 0 condition
permits oscillations to occur causing the level of availability, for
. example, to move up and down about a steady state value. This is
illustrated by putting the availability function ma(t) into the following

form:
- -2t .
ma(t) =40 + 20 J5 e sin(t+8)

where sin 6 = L. In numerical terms, the function is expressed as
5

-2t

ma(t) = 40 + 44.72e sin(t+1.1).

The limit value is 40 and the values of ma(t) undergo damped

oscillation about this value as shown in Figure 6. The limit values of

ms(t) and mw(t) are seen to be equal to 20 and 40 respectively.

The remaining examples of this section are given in graphical form

where the function values are obtained by using the computer proce- _--;!_-!!
dure indicated in Figure 5. Numerical values for each example are
given in the Appendix.

A
: 2
Example 2. To illustrate a Region 1 solution, let y = .4, A = .01, 214

‘;f‘.»n LA B
Y i N » . . .

r = 10, and set the initial values equal to a; = 89, s; =5, w; =6 so
Uey
that the total number of units is 100. For this example, D = .33 > 0 so ol

-4 it has a Case 3 solution. The values of ma(t), ms(t), and mw(t) are ]

shown in Figure 7 for 20 time units. Because the solution does not
change regions, the time increment used in the evaluation program can

be large. A value of DT = 1 was used for the numerical values shown -

in Figure 7.
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Bulk availability of the kind shown in this example can be charac-
terized as a rather pure or classical type of availability behavior as
distinct from a classical reliability or mixed forms illustrated in other
examples. The service rate is greater than the failure rate by a large
enough amount that the availability function is able to reach a steady
state value of approximately 97 units. Of the remaining three units,
two are in service and one is waiting for service, in the steady state.

Example 3. A Region 2 solution is illustrated in this example.
The parameter values are: up = .2, A = .2, and r = 10. Initial values
are taken to be a; = 70, s; =10, and w,; = 20 giving a total of 100
units. Here, the initial number in service, s;, is equal to the capacity
of the service facility. Under these conditions with equal values for
service and failure rates, the larger number of units initially available
forces the size of the population of units waiting for service to increase.
This continues until a steady state is reached with ma(t) = ms(t) =10
uﬁits and with 80 units in the waiting state. The values are shown in
Figure 8. Since the solution remains in Region 2, a relatively large
value of DT can be used. In this example DT = 1. The model acts
like a classical reliability type model in that the failure rate is strong

enough, relative to the capability for service, that the lack of available

units falls until a relatively low steady state level is reached.
Example 4. This example illustrates an extremely rapid transition

from a Region 1 to a Region 2 type of solution. The parameter values 1

@
-
are: p=.4, A= .4, and r = 10. The initial values are: a; = 89,
sy =5, and w; =6 for a total of 100 units. Because of the rapid
transition between regions a small value of DT is required so as to not .4

!

e b e

miss or greatly distort the transition affect. A value of DT = .001 time

15
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units was used for this example. The values shown in Figure 9 give
the Region 1, Case 1 (D = -.6<0) solution which shifts to a Region 2
solution at T = .035 time units. The values of the descriptive functions
ma(t), ms(t), and mw(t) do not change much over this short time
interval. Though the example is given to illustrate how fast the model
can shift from one solution form to another, it should be noted that in

applications, the time units may be such as to give practical interest to

relatively short time periods. This is discussed more fully in Chapter 5.

The most important aspect of this example is the need for using a very
small DT vaiue. OCtherwise the true nature of the solution is lost and a
numerical solution is obtained that does not properly represent the
nature of the model solution for this set of parameters and initial
conditions.

Example 5. A less rapid transition from a Region 1 to a Region 2
solution is illustrated by this example. The parameter values are
p=.4, A= .2, and r = 10. Initial conditions are a, = 100, s; = 0, and
w; = 0 so that at the start of the analysis all units are available.
Though the transition between regions is not as rapid as for Example 4
it is sufficiently fast that care is required in the selection of the evalu-
ation time interval if correct Region 2 solutions are to be obtained.
The value used is DT = .05 time units. Transition from Region 1 to
Region 2 takes place at T = .5 time units and by 2 time units, the
service facility has almost reached its capacity of 10 units. Though the
example does not go completely to a steady state in 2 time units, the
model descriptors have come close to steady state values by this time.

Figure 10 shows the results and indicates extrapolated steady state

values of ma(t) = 68, mg = 10, and m, = 22.
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CHAPTER 5. BULK AVAILABILITY WARRANTIES

Over the past several years, customers, such as the U.S.
Government, have become increasingly concerned with the satisfactory
operation of equipment after it has been delivered. Acceptance test R
procedures insure that equipment meets contractual requirements at the
time of delivery but provide little indication of successful subsequent
operation. Reliability tests that form part of many such procedures .,.'.._
have minimal predictive value due to such factors as lack of statistically
significant data, intrinsic wvariability in operational conditions, and
limited periods for observation of equipment before completion of accep-
tance procedures. This situation has led to increased interest in
warranty policies that may be included as part of contract specification.
In particular, the concept of the Reliability Improvement Warranty
(RIW) provides a means for the contractor to assume some of the risk

associated with the customer's acceptance of equipment which subse-

. oL,
ol aiat .

quently fails to operate properly. The development of RIW models, .’
their analysis, and their application to contract definition has brought
about a well-defined field of study blending classical warranty concepts
with stochastic and other mathematical techniques from the field of '!f
Reliability (7). .

Such warranties may be considered from several points of view.

e

A.,,
S e ]
PRSPPI Y U

. They may be considered as motivation for a contractor to strive for
high reliability products. They can be a means for clearly specifying
the division of risk assumption between contractor and customer due to

product failure. They can aslo provide a range of design cost trade-

»

L !..‘.".'. RN

offs in which a contractor can choose between spending money on

Loy '.'I

producing a more reliable product or on paying warranty costs (4).

-
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%

An immediate extension of the RIW concept is to consider war-

ranties from the point of view of availability rather than reliability. ’;.
This places the focus on the availability of a product for use when :
needed which can be achieved by improving its reliability and/or 1
providing improved repair/replace options. Availability warranties seem ;;
particularly attractive to the customer. However, they may be viewed J
as undesirable contract obligations by a contractor. By combining the
concepts of incentive contracts and availability warranties a wide range 5:

of contract structures can be formulated in which a combination of risk

assumption and profitability can be achieved (8).

Much of the study of availability warranties has considered the
availability of a single item or system which is subject to failure and
repair/replace service over the duration of the warranty period (9),
(3). This represents a classical viewpoint in the study of availability. !4‘
The present paper deals with another kind of availability consideration

which considers a large number of units rather than a single item.

Each of the single units is relatively minor in its required function and
availability is specified by having a minimum number of units available.

In this study, the availability concepts are those of bulk avail-
ability rather than individual item availability. Therefore a determi-
nistic model for bulk availability, as defined in Chapter 1, has been
used as a basis for anlaysis rather than the more common approach
based on stochastic models. This procedure seems analogous to the role
of thermodynamics in describing gross characteristics of matter that
require statistical mechanics for their detailed investigation. This
analogy provided the guidelines for development of the present bulk

availability model.
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Bulk availability deals with such things as a large work force
(manpower availability), fleets of equipment, or graceful degradation of
complex systems. An example is a military electronic communications
device which may be supplied in several thousand units. A particular
group may have 100 such devices assigned to it and require 80 for
completely satisfactory operation. This would allow 20 of the devices to
be either undergoing service or waiting for service. If more than 20
were out of order, the bulk system would be, to some degree, unavail-
able. If an availability warranty is in effect in such a situation, the
contractor would have to pay penalty costs specified by the warranty
contract. Such costs can be viewed in various ways: as out-and-out
payment of penalty dollars, as a requirement to spend money on

improved repair/replace facilities, or as the free (or reduced cost)

supply of one or more additional units by the contractor.

This report has described the deterministic bulk availability model -j
and how analyses can be carried out using the model. It gave some “
examples of the behavior of the bulk availability models. How they i;
specify availability as a particular level of available units will be .‘
described in this chapter. :

Bulk availability warranties are defined as costs incurred by the @j
contractor when the number of available units falls below contractually
specified levels. The cost trade-offs available to a contractor are -
illustrated by the examples. Conclusions about the utilization and -L.«
applicability of the bulk availability warranty concept are discussed in 3
the final chapter of the report. '

The most immediate application of the model to a bulk availability ;._11
warranty analysis is when a penalty fee is charged to the contractor o

o
-]
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whenever the number of available units falls below a specified level.
This kind of response to a lowered level of availability has no effect on
the time functions of the model. When necessary, the fee is paid and
the model continues to represent the bulk availability situation. Pay-
ments of this kind can be as a single penalty or can be tied to the
length of time over which the availability is too low. In situations such
as those shown in Figures 8 and 10, the availability function decreases
monotonically. In such a case if the function falls below the specified
availability level before the warranty time has expired, a penalty will be
incurred by the contractor. 1If it is of the time duration type it is
clearly desirable for the low level of availability to be reached as near
to the end of the warranty period as possible. This shows the value of
a time dependent penalty to the customer. It can also be used tc help
the contractor in both product design and contract structure decisions.
In a situation like that shown in Figure 7 the availability is increasing.
In such a case, the contractor might incur a warranty penalty initially
but would subsequently be free of warranty payments. This indicates
the importance of design considerations. A high enough initial state for
availability would prevent any warranty costs. However, the cost to
achieve such an initial level could exceed the initial warranty cost and
therefore be undesirable. Another consideration is the increasing
availabil.ty function. This kind of product performance may be better
than required, at a cost to the contractor. An alternative design, with
lower cost and lower availability might serve both parties better, giving
satisfactory performance to the customer and higher profit to the con-
tractor. Figure 6 shows a variation in the availability function. In a

case such as this, the proper level for availability may be in effect at
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some periods of time and not during other periods. This is an inter-

@y
. Lt "
el POV

esting case from the warranty point of view. It allows a wide range of
contract stipulations that might not be considered without a knowledge
of expected behavior of this kind. Thus, in this type of bulk availa-
bility model, it is particularly important to have some kind of qualitative ;:
guidelines for the behavior of the availability function, as provided by _'
the model analysis. 1
A more realistic type of warranty obligation is to provide some i;
form of correction for the occurrence of low value of the availability ‘
function. When the availability function falls below a specified value
the contractor may be required to bring the number of available units ﬂ

up to a level that will yield a satisfactory value. This will require

replacement and/or repair of units. An action of this kind interrupts

Lok o g l'r.vg‘,,. e ek,
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the time functions of the model analysis. When it is desired to employ

o e e W
AR e s, .

e, S .
denddinle :

this kind of response to a warranty obligation, the mathematical model

must be interrupted. A new set of initial conditions are defined as a

combination of what was being specified by the model upon interruption
and actions taken by the contractor before resumption of the model
analysis. Some way to measure time must also be selected so as to
represent time in a useful way. Most likely the time should be con-
tinued to be measured from the beginning of the warranty period. In
this case, the time between model interruption and the new start should
be included in the total time description. This time measures the time
required to bring the availability up to the desired level. It is seen
that the repair/replace procedure for .satisfying warranty obligations
can be studied within the framework of the bulk availability model of
this paper by making the kinds of modifications to the analysis

described above.
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CHAPTER 6. CONCLUSIONS AND EXTENSIONS

A deterministic model for bulk availability has been described in
this report. It has a fixed total population and what may be called an
r-server type repair queue system. In some ways the model appears
similar to a stochastic queuing model with these characteristics. How-
ever, the bulk model has gross state transition values rather than
individual transition effects. This makes it more like a closed system
dam type process than a particle queue process. Though the availa-
bility level curve as a function of time looks much like a mean
availability curve for various queue processes, it does not seem to
follow in any direct way from such processes. This is most likely due
to the bulk transition effect which prevents the application of the basic
non-cascade assumption necessary for the formulation of most particle
queue models. Research in a dam type process expressing properties
similar to the present model might be of theoretical interest but is
considered outside the scope of the research described here.

The model description and analysis described in this report shows
that:

+  The bulk availability model can be employed as a useful tool in
trade-off analyses between manufacturing, logistic, and warranty costs.
By using several versions of a proposed model, with different parameter
values, a set of possible availability functions can be generated. This
kind of study can give guidelines for determining the best values or
ranges of valués to aim for in designing a product to meet selected cost
trade-off values.

+  The deterministic model is simpler to formulate, interpret, and

explain than corresponding stochastic models. This is particularly true
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in the present case where the appropriate stochastic model seems to be

;G of the finite dam type in which the mathematics is more involved than

for queue type models. Ease in application and in intuitive relevence

. between parameter values and results, such as availability levels, is
i particularly useful in contract negotiations where one party may be
E required to explain or justify its analyses as part of its justification for :
; cost trade-off decisions. ":
[' - The closed form of direct solution for this kind of model allows :‘;
the consideration of numerical results over any desirable time period, -
subject only to considerations of transition between solution regions.  _
h The examples given in Chapter 4 illustrate the ease with which numer- "?
! ical solutions can be obtained using readily available computing e
h‘ resources. %
n Though the calculations required are sufficiently involved that the pi
[ model could not be used without computer implementation, the computer

time and storage requirements are small. For example, 20 steps of the
model run in what appear to be no time to an interactive terminal user
on a standard computer installation.

- The bulk availability model can be given broader interpretations.
For example, if it is to be used as a model for manpower availability the

quantity A does not represent manufacturing effort, it relates to the

. o : . . [ N "v ‘ B
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profile of people recruited into the manpower pool. Thus A can be
related to recruitment effort costs such as extent of physical and mental

examination of candidates. It can also be related to the level of

LR 1 A T
A R
) il

physical or mental condition that will be used in accepting or rejecting

candidates.
The bulk availability model given in this report could be made

more widely applicable if it was extended to allow time variation in some
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or all of the model parameters A, p, and r. In the present model, the
most usual form of solution is to move to Region 2 and remain there
tending toward, and usually reaching rather soon, a steady state condi-
tion with the service facility full. If the parameters change with time a
more dynamic model would result which would allow transitions back to
Region 1. Such a dynamic model is felt to be a reasonable one in
modeling situations in which a contractor can change parameter values
or operating conditions cause them to change during the warranty

period.
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APPENDIX X

f '."
Computer Program -’

A listing of the FORTRAN computer program used to carry out the lji_:

-y

numerical evaluation of the model is given below. It is one particular 9$

realization of the flow diagram shown in Figure 5. The main reason for ’

giving this listing is to illustrate the simple programming required to L

-4

implement the model in terms of numerical calculations. 4

»’Af
s

~ WRITE(6,*) 'INPUT DT AND TF' _ =
READ(5,*) DT,TF :
WRITE(9,3909) DT,TF
WRITE(6,*) 'INPUT Al,Wl, AND S1°
READ(5,*) Al,W1,S1
WRITE(9,319) Al,V1,S1
WRITE(6,*) 'INPUT XMU,XLM,AND R’
READ(5,*) XMU,XLM,R
WRITE(9,328) XMU,XLM,R
WRITE(6,*) 'INPUT K'
READ(5,*) K
WRITE(9,360) K
T=0.
TQTT=4.
TLOC=g.
KTR=g
AA=R-S1+XHU*S]
IF(W1.GT.AA) GO TO 20 -
KR=1
60 CONTINUE
D=(1.=XLM)I*(1.-XLM)=2,*XMUR( 1, +XLM)+XMU*XMU
ALP=(1.+XLM+XMU)/2.
AB=ABS(D/4.)
BTA=SQRT(AB)
c WRITE(9,358) D,ALP,AB,BTA
IF(D.EQ.8.) GO TO 74
IF(D.GT.2.) GO TO 84
COi1=(ALP*ALP }+(BTA*BTA)
A=(S1+W1+A1)/COM
Cl=(XMU*STI*(1,+XLM)=XLM*(ALl+W1))*EXP(-ALP*T)
C22XMURS1®( 1, +XLM*XLM=XMU=-XMU*XLM)+W1*( 2. *XMU=-XLM*XLM
1+XLM+XLM*XMU )
C3==XLM*AL1*( 1. +XLM+XMU)
XMS=XLM*A+(C1*COS(BTA*T)/COM)+((C2+C3I*EXP(~ALP*T)*SIN(BTA*T)
1/(2.*BTA*COM) ) .
CA=(=(S1+WI )*XMU+AT*XLM*( 1. +XMU) I*EXP ( =ALP*T) e
CE=S1*XMU*{ XLM+XMU+2 . *XLM*XMU=1. ) =W1*XMU*( 1. +XLM+XMU) ey
CE=AT*XLM*( 1. +XMU*XMU-XLM=-XLM*XMU ) @
XMA=XMU*A+{C4*COS{BTA*T)/COM)+{(C5+CEI*EXP(-ALP*T)*SIN(BTA*T) —
1/(2.*BTA*COM) ) iy
C7#(WIN(XLM+XMU)-XLM*XMU*(S1+A1) )*EXP(-ALP*T) nd
:

t . . i o [N
y FRVPPRTITAN . -4 TR

’
Y

CB=WI*( XLM*XLM+XMU*XMU-XLM-XMU ) +A1*XLM*( 2. *XLM+XMU+XLM*XMU
1-XMU*XMU )

C9==SI*XLM*XMU{ 1. +XHU+XLM)

XMV =XMUAXLM*A+(C7*COS(BTAXT)/COM)+( (CB+CII*EXP(-ALP*T)*SIN(BTA*T) L
1/(2.*BTA%COM) ) @
GO TO 199 =~
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79 B=(S1+W1+Al1)/(ALP*ALP) @
‘. CaW1+S1*(1.+XLM-ALP )-XLM*ALP*B &
: Cl=C*T=EXP(-ALP*T)
C2=({S1-XLM=*B)*EXP(-ALP*T) 5
KS=2XLM*B+C1+C2 LS
C33(-S1-W1+XLM*(2.*ALP-XLM)*B} .
NHA=XHUXB+( ( XMUXCI*EXP( -ALP*T)}/( (XLM-ALP)I*(XLM=-ALP}}} :
1-(XMU*C1/(ALP-XMU)) O

Ca=(W1-XLM*XMU*B)I*EXP(~ALP*T) e
XI=XMU*XLM*B+C4+( XMU-ALP)}*C1 7
GO TO 199 L

87 TH1=BTA-ALP
TH2=-BTA-ALP
H1=(A1+1+ST)I*XLM/ (XLM+XMU+XLM*XMU)
Cl=81*(1.+XLM}+Wl

C2=(A1+W1+S1)*XLM/(2.*BTA)

H2={(S1*TH1+C1)/(2.*BTA)}+(C2/TH1) '@
k H3=((-S1*TH2-C1)/(2.*BTA}))-(C2/TH2} Lo
5 XMS=H1+HZ*EXP(THI*T)+HI*EXP(TH2*T) s
. KN EXMUTHTI+H2*(TH1+XMU D *EXP(TH1*T ) +H3*( TH2+XMU )Y *EXP(TH2*T}

k" XUA=(HT SXMU/XLM) +( (H2*XMU*EXP(THL1*T) ) /{XLM+TH1)) e
o 1+((H3*XMU*EXP(TH2*T})/(XLM+TH2)) -
. GO TO 19# -
- 20 KR=2 L
: 5S4 CONTINUE e
Py AMS=(S1~RI*EXP(=T)+R =i
- C1=XMU*(SI1-R}/(XLM-1.} T
. KMA= (XIHURR* (1. ~EXP(=XLMAT ) )/XLM)+CI*(EXP(-T)I-EXP(-XLM*T)} w
s 1+AT*EXP( =XLM*T) .
K C2=A1+\1+S1-R-(XMU*R/XLM? ;
.- C3=(XMU*{R=-XLM*S1)/(XLM=1.)+{XLM*A1)}/XLM N
5 C4=(S1-R)I*(XLM+XMU-1.)/(XLM-1.) %
. KHW=C2-CI*EXP( ~XLM*T)=C4*EXP(-T)
{ GO TO 199
199 TLOC=TUTT+T
KTR=KTR+1 o
. IF(KTR.LE.K) GO TO 118 S
T WRITE(9,330) TLOC,XMA,XMS, XMW -
WRITE(9,348) KR,T,TOTT S
KTR=g o
119 CONTINUE Ca
IF{TLOC.GE.TF) GO TO 999 e
o IF(XMW.LT.R-XMS+XMU*XMS) GO TO 288 o
- IF(KR.EQ.2) GO TO 158 -
- Al=XMA -
- S1=XMS oo
- W1=XMW ity
- TOTT=T+TOTT
g T=DT
KR=2
- GO TO 59
: 158 T=T+0T
GO TO 540
249 IF(KR.EQ.1) GO TO 25@
Al=XMA
S1=XMS
W1=XMW
TOTT=T+TOTT
= T=DT
B KR=1
- GO TO 62
- 258 T=T+DT
- G0 TO 64
- 999 STOP
. 399 FORMAT(SX,'DT=',F18.5,5X,'TF=',F14.5)
4 319 FORMAT(5X,'Al=',F18.5,5X,'Wl=' F19.5,5%X,'Sl=",F108.5)
328 FORMAT(5X,'XMU=',Fi#.5,6X, 'XLM=',F10.5,5X,'R="',F18.5)
339 FORMAT(5X,'TLOC=',F12.5,5X, 'XMA=' ,F19.5,5X, 'XMS=',F12.5,
15X, 'XMW="' F194.5)
349 FORMAT(5X,'KRe',13,5X,'T=',F19.5,5X, 'TOTT=',F108.5)
. C 358 FORMAT(SX,'TEST ', 4F14.5)
362 FORMAT(SX,'K= ',15)
N END
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N Numerical Data for Examples J
» . +
:ﬂ The numerical data, produced by the computer program listed -.4
-7 4
e above, are given below for the examples given in Chapter 4 of the
report. They are listed by Example. o
9]
Example shown in Figure 7: o
- 3
b. 1
b ST= 1.5RgnH TF= 20.22797 . 1
f Als  83.22800 Wls  6.2.939 Sl=  5.0052% =4
*. Vs  §.48C38 XLM=  £.812990 R=  17.052¢6 b
 \ TZST 5.33218  §.7850%  ©£.55393 7.28814 -~
. TLOC*  3.82938 XtA=  89.83591 XMS=  5.QUEYY XMW= 6.80930 .
KR= 1 T=  7.55320 TOTT=  2.83957
TEST g.332: 7.7652 %.08353 F.28814
TLCS=  1.053%3 Kitas 98.56213 XilS=  6§.65261 Xiw=  2.77530
K=, 1 T= 1.80052 TOTT=  9.B3596
TEST 2.33212 £.73509 9.658323  9.28814
TLCCs  2.259%3 KMA=  92.24225 XMS=  §.15721 XMW= 1.55875
KR= 1 T=  2.02227 TOTT=  £.98857
FEST #£.22210 2.79523 ©.78393  §.28814
TLCC=  3.30509 AtA= 93.55267 XMS=  5.,22856 XMW= 1.17677
KR= 1 T=  2.57320 TOTT=  @.85333 .
TEST £.33217  3.73573 - 9.99303  §.28814
TLGC=  4.828%0 XMA=  94.57158 XMS=  4.40021 XMW= 1.5283%
KR= 1 T=  4.£2300 TOTT=  ©.233%
TEST $.3321% £.70323 ©.53353  5.28814
TLOC=  5.37383 XitA= 9§, 24°76 XMS=  3.77152 XMW=  §.97873
KRs 1 T=  5.0£3¢5 TGTT=  0.808CH
TEST 2.33213 £.79529 ©.03393  ¥.28314
TLOCs  6.20558 X-A=  §5.72933 %i1S=  3.326989 XMW= §.95393
KR= 1 T=  5.235:% TOTT=  0.80259
TEST £.32213 £.785¢8  5.08303  9.29814 .
TLaC 7.2535¢ XA 56.91637 Xi4S=  3.%2283 XMW=  §.9698% o1
KR= 1 T=  7.80023 TOTT=  9.92090 ~3
TEST ©.23218 9.74507 9.03323 Z.28314 .
TLOC=  8.25¢39 WHMA=  96.22064 XMS=  2.81822 XMW=  Z.96119 .
KR= 1 T=  8.02230 TOTT=  2.22550 S
TEST 4.33219 £.78529 9.08323 0.288l4 o
TLOC=  9.32024 XiiA=  96.35582 Xtis=  2.58183 XMW=  9.96236 N
KRa 1 T=  9.82333 TOTT=  9.26073 a
TEST 9.33219 §.7052% $.733g3  0.28814 @
TLOC= 12.55¢¢2 XMA= 96.44513 ¥MS=  2.55135 XMW= Z.96346 =
KR= 1 T= 12.09220 TOTT=  2.33320 R
TIsT §.332:3 0.785¢7 5.98303  5.28814 RO
TLCC=  11.£279¢ XMA=  96.50417 XM3=  2.53152 XMW=  §.56432 S
KR= 1 T= :1.202%3 TGTT=  2.39993 Y
TEST ©.33218 0.79509 9.95333  7.28814 .
TLCS=®  12.07857 XMA= 96.54398 XMS=  2.4922% XMW= £.85493 o
KR= 1 T= 12.82850 TOTT=  0.08030 Py
TEST £.332i17 9.795¢3 0.03393 0.28814 —
TLCCs  13.€03% NMA=  36.53273 XMS=  2.46593 XMW= @.9€535 :
€a 1 T=  13.22523 TOTT=  £.050:%
TEST 5.33212  7.75505 0.33233 9.20814
TLOCE  14.87737 KAz ea.sases #t1S= 2.44873 XMW=  g.895563
KR= 1 T=  14.00557 TOTT=  3.00230
TEST £.232:13 0.77800 9.03333 ¥.28814
TLOC® 15.Q£CE2 XMA=  96.59579 XiSs  2.43739 XMW=  3.56582 Py
KR= 1 T=  15.23007 TOTT=  0.£33:0 2
TEST 333218  §.735%  3.06373  £.28814
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TLOZs . 18.300%8 X1A=  §5.63413 17
K= 1 T=  1§.68005 TOTT=  H.%21.4
TI5T 2.33213  3.7I525  ©.083J3 .2
TLOC=  17.00367 %A= 93.83359 Xi1s=
KR= 1 T=  17.22221 TOTT=  2.8C5355
TEST ©.33210 £.79588 $.08383 5.2
TLOC=  18,300%F XMA= 96.61219 XiiS=
KR= 1 T=  12.5085% TCTT: B.05020
TIST £.32215 £.72383  #.85383 .2
TLOT=  13.30038 XI'A=  §5.5143J K4S
KR= 1 Ta  19.52369 TOTT=  £.90253
Example shown in Figure 8:
oY= 5o
A.= S . Sl= 17
K= 28028 ! :
TLCC= 22223 : ofs KMS=
KR = T= 3.83232 TCTT=  9.390.0
TLLC 1.22228 X''A®  55.12334 Xii3=
KR= T=  1,027%% TOTT=  £.20639
TLIC 2.9:222 XiiA=  §g.21928 XiiS=
KR= T= 2.8228% TOTT=  2.2273
TLCC 3.85028 XMAs  42.92870 XiS=
XR= = 3.998¢ TOTT=  2.82228
TLOC 4.£5008 XitA= 36.95974 Xi4S=
KR= = 4.80309 TOTT=  0.93348
TLGC= .3222 XMa=  32.57277 XiS=
KR= T=  5.0230% TOTT=  £.35379
TLOC .22388 Xi‘A= 28.07185 XiiS=
KR= = 6.88502 TOTT=  2.80253
TLOC=  7.3260% XMA=  24.79582 XiiS=
KR= Y= 7.32278 TOTT=  2.232%
TLCC= EELET Yiids  22.11378 ¥HS=
KR= T= 3.ovin TOT7=  £.3706Y
TLCC=  9.¢0288 RMA=  19.21793 XiiS=
KR= 2 T=  9.8320% TOTT=  £.02220
LOZ=  12.87292 XMi=  18.12012 ¥MS =
KR= 2 T= 16.3035% TOTT=  8.22339
TLOC= 1i.2580€ YMA=  16.64819 KMS=
K= 2 T= 11.83328 TOTT=  3.42003
TLOC=  12.07332 MilAs 15,4438 ¥MS=
KR= 2 T 12.20%.3 TOTT=  9.82393
TLSC=  13.£27200 XMA=  14.45641 X1S=
KR= 2 T= 13.00322 TOTT=  £.36097
TLOC= 14.22300 XMA= 13.64662 Xpis=
KR= 2 T= 14.22553 TOTT=  B.02238
TLOC=  15.37237 XilA=  12.38722 XiiS=
K2= 2 T=  15.23323 TOTT=  7.29537
TLCC=  16.20049 KliA=  12.44573 %11 =
KR= 2 T= 16.82227 TOTT=  2.42038
TLCC=  17.3000€ XMA=  12.92240 yuS=
KR= 2 T= 17.08030 TOTT=  £.30839
TLCC=  18.6968 Xias  11.63942 Xi1S=
KR= 2 T=  18.2225% TOTT=  2.255¢%
TLCCs  15.20520 XA=  11.3422 KMS =
k= 2 T= 13.352304 TOTT=  §.848%%
TLCC= 29.8522C XMA= 11,9894 XS
KRz 2 T= 20.2222% TOTT=  2.05650

Example shown in Figure

ST= .23z
Als  33.55206
XMUY= F. L0258
K= 2

TLCC= £.05238
m3= 1 T=
TLCC= J.ET383
Ki= 1 T=
T.oC= 885507
L= ] Te

B.23273

£8.93224
TOTT=

23.7222%
TOTT=

36.72153
TUTT=

ol P d
..gbn.".-a.

Rs 18.54258

19.08252
10.28343
13.239649
19.62228
19.22033
16.20656
12.2208%
19.93038
19.23390
i0.98843
i9.29282
19.222c9
16.983%

19.00052
19.92¢63
1G.98602
12.200880

19.25232

Si= 5.28023
R=  17.2323C

5.20225
5.J2624
5.03239

A=

XMW=

KW=

KW=

KW=
XM=
XMW
XMW=
XMW=
XMW=
Xitli=
XMw=
XM=
XMW=
XMW=
XMW=
XMW=
XMW=
XMW=
XMW=
XMW=
KW=
KW=
Ko

KM=

XMW=
XliW=
XMW=
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J.9E554
3.96822
2.96c28

g.86611

22.2333%
30.87615
29.73082
47.87137
53.04026
57.92723

1.92835
65.22419
€7.88821
73.38207
71.87988
73.35181
74.558692
75.54359
76.35138
77.81278
77.55427
77.58763
78.36053
72.8577S
78.39166

6.25811
6.1474€
6.23543
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TLOZ=  B.£1173 XMNA=  58.63132 %€= E,@4858 XMW=
KR= 1 1= 3.01139 TOTT=  2.0°973

TLCC=  2.£i422 Xvas  25.33103 XiiSs  §.55872 XMy =
KR= 1 T=  3.81432 TOTT=  8.53079

TLCCs 3.217Z3 XitA=  38.43003 ¥M3S=  5.87239 XMW=
=1 T=  3.01730 TOTT=  8.40008

TLOC=  §.72788 MA=  88.33182 X13=  5.08552 XMW=
KR= 1 T= £.8202C TOTT=  B.93908

TLOC=  g.2238% XMA=  88.23118 x115s  5.29929 XMW=
KR= 1 T=  £.522%3 TOTT=  §.40545

TioCs  Z.2153€ Xi4=  88.13i51 Xi1S=  5.11339 XM=
Ki= 1 T=  Z.8263% TOTT=  B.55533

TL0C=  £.92007 XilAs 88.02135 ¥ilS=  5.12755 KM=
K= 1 T= g.92902 TOTT=  9.00539

TLCC=  5.923200 XiiA= 87.93254 XMS=  5.14204 AMW=
KR= 1 T= 2.¢32%3 TOTT= z.ﬁezaa

TL3Z=  B.33303 WA= §7.83325 “MS=  5.15859 XM=
R= 2 T=  Z2.55307 TOTT= Z 632~7

TLOC=  §.0383% NuA= 97.73412 X[1S=  5.17i1@ XMW=
K= 2 T=  3.2367 TOTT= 9.2322%

TLCC= 9.24100 XiiAs  87.53511 X11S=  5.18556 XMW=
KR= 2 T=  £.30552 TOTT=  0.2328%

TLOC=  g.84427 XiMA=  87.5352 XiS=  5.19999 XMW=
K= 2 T 0.2123% TOTT=  2.82200

TLCCE  (.8473 XMA=  87,4375% XMS=  5.2143S XMW=
k=2 Te  J.J3182 TOTT= 9.432%3

T.CSs 3.95529 XiA= 87.33391 MS=  5.22872 XMW=
Re 2 T=  §5.21803 TOTT=  9.£3229 .

Example shown in Figure 10.

Di= mLBENIS TF=  2.05008

Al= 1LT LI Wis  3.30503 Si=  2.39803

Aum 5. 4EL28 XM=  0.24243 R=  19.02007

K= 2

TLOC=  BLI0RET MA=  98.02113 XMS=  @.53482 XMW=
XR= 1 T=  £.13550 TOTT=  2.80008

TLOZ=  §.2576% XMAs  95.14156 wMS=  #.54749 AMM=
K= 1 T= o J.2849%% TOTT=  #.26330

TLGC=  Z.4l858 XliA=s  92.3824 XMS=  1.29539 XiW=
R= 1 T=  2.43200 ToTT=  #.23399

TLOC=  5.5532% XMA=  89.7E7i7 ¥MS=  2.26621 XMW=
K= 1 T=  §.£5843 TOTT=  8.849%6

TLOC=  B.7£%87 AMAS  87,27042 Xt1S=  3.32983 XtW=
(= 2 T= £.12939 TOTT=  2.627320

TLOC=  g.853z0 %A= 84.91534 %i15=  4.25833 XMW=
Ka= 2 T=  p.2590%8 TOTT=  2.823¢

TLCC=  1.355%9 Xiil= £2.68272 XtS=  5.05881 Xhw=
KR= 2 T= Z.43320 TOTT=  £.8.339

TLOC=  1.12920 YilA=  80.53544 XMS=  5,746S1 MW
Ki= 2 T=  2.5522% TOTT=  £.67M408

TLCC=  1.36243 Xi'A=  78.53539 ¥i1S=  €.33523 K=
Rz 2 T=  §.73703 T0TT=  £.8035%

TLSC=  1.43I253 Xii=  76.68503 #M5= 6.54923 MW=
Kia 2 T=  §.885%3 TOTT=  £.64730

TLOC=  1.80¢23 dMA® 74.758922 ¥113= 7.28811 XMu=
K= 2 T=  1.3859 TOTT=  £.6000%

TLCC=  1.78362 XiA=  72.392£3 “MS=  7.663&5 AMwW=
K= 2 T= 1.15549 TOTT=  0.6.253

TLCCs  1.800R2 NitAm  71.23783 uMS= 7.59598 KM=
K= 2 T 1,302 0TV £.55239

TLZCs  D.LEZES NMAs  55.67152 ¥M3=  3.27082 AMw=
KR= 2 T=  1.45220 TOTT=  £.685533

€.32371
6.41028
6.43702
6.58346
6.66952
6.78528
6.84958
6.92543
7.91016
7.89479
7.17332
7.26378
7.343814
7.43241

1.83444
4.31094
6.32127
7.97€61
5.283575
13.82477
12.258666
13.654J4
15.12478
16.848573
17.68285
19.3425%9
20.71119
22..57€6
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