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ABSTRACT

6

A mathematical model is given for the definition and analysis of

bulk availability. Bulk availability is achieved by having some specified

percentage of a total set of components operational. The model is

deterministic rather than stochastic. Availability warranties are con-

sidered for the bulk availability model.
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CHAPTER 1. BASIC CONCEPTS AND METHODOLOGY

Section 1.1 Introductionr• =

The concept of availability represents the desire that a piece of

equipment be operational when it is called upon to function. Availability 10

extends the basic notion of reliability which in its pure meaning only

deals with the continuing proper operation of a unit. Availability allows

equipment to undergo repair or replacement either due to breakdown or

as standard maintainance procedures. The concept of availability can

be applied to a small unit, complex systems, or generalized to personnel.

It therefore forms a major part in logistic analyses over a broad area of

applications. A number of mathematical models have been developed for

the analysis and design of availability requirements. An example of

such mathematical approaches to some aspects of availability are given

in (1) and (2) where a definition is developed for component availability

which, unlike component reliability, must be placed within the context

of the system in which a component is operating.

The field of contract structuring is also concerned with availability.

Most contracts for the procurement of complex systems include specifi-

cation of the availability of an operational system for a period following

acceptance of the equipment itself. One approach to this aspect of

contract structuring has been through the Reliability Improvement

Warranty (RIW). By requiring the contractor to assume some form of

responsiblity for equipment failure, the RIW gives a cost measure to

reliability. The usual measurement of reliability in terms of probability

concepts like mean time between failures is difficult to deal with in

contract negotiations, acceptance tests, and disputes over peformance.

F4
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By introducing a cost measure for reliability, the concept becomes more

clearly recognized as a real feature of contract responsibility and its

dimensions can be spelled out in specific terms. Of course what is

really desired is a warranty on availability, which includes both reli-

ability concepts and aspects of the logistic support required for equip- p

ment supplied under contract. In (3) and (4) the ideas of availability

warranties and incentive type contract structures have been given

mathematical representation. That material illustrates the mathematical

model approach to the analysis of availability warranties.

Most of the mathematical models and analyses of availability and

availability (reliability) warranties have considered individual units of

equipment or collections of such units in which the availability of each

unit is desirable and important. One may refer to such considerations

as "unit availability. " The major mathematical tools for such studies are

probability, statistics, and queuing theory. An illustration of this kind

of analysis is given in (5). The advantage of probabilistic models is

that a deterministic analysis of unit failure is in most cases too complex

and the methodology of stochastic processes is well developed and yields

useful results under many conditions. However, stochastic models have

two important disadvantages: they require data for their useful imple-

mentation that are often very difficult or indeed impossible to obtain,

and they are hard to interpret to people untrained in the details of

probabilistic reasoning, for example as part of a contract negotiation.

A Thus it would be desirable to have alternative methodologies for avail-

ability models if they could be developed so as to give meaningful and

useful analysis. This does not seem possible in most cases. However,

for the concept of bulk availability, such an alternative methodology does

6!
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seem possible. This is the primary goal of the work described in the

report: to define a non-probabilistic model for bulk availability. It is

felt that development of such a model will show the feasibility of an

alternative methodology for at least some types of availability analyses.

It also provides a model that is useful directly for the study of bulk

availability. In particular, it gives a basis for the formulation of

availability warranties in contracts that deal with bulk availability.

Bulk availability differs from unit availabiltiy in that the individual

units are not the primary consideration but rather the number of units

that are available at a given time. A bulk availability model applies to

situations in which there are a number of similar units making up the

total system which is defined as the collection of units. Thus the

system itself is unstructured in the model formulation. Availability of

such a bulk system is defined in terms of the units that are available.

Such models apply to a group of workers that are essentially inter-

changeable for functional purposes such as a platoon of army personnel.

The platoon is operational if some specified percent of its composite

personnel is operational. In the same way the model applies to fleets of

trucks or aircraft, highly redundant groups of equipment, or gracefully

degrading complex equipment.

Because of the definition of bulk availability as a fraction of the

total collection of units being operational a deterministic model suggests

itself as an alternative to the usual stochastic models of availability. In

bulk availability the individual units are not important but only the

number that are in a particular state of operation at a particular time.

The model presented in this report employs transfer rates between

states such that the actual number of units changing state depend on

i'"1
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these rates and the number of units in a state. Other model definitions

are also possible and may be more appropriate in some situations.

However, the present model, as defined in the next section, applies to

situations in which the number of transfers from one state to another

depend on the number of units in a state and the transfer rate. For

example in a platoon that is exposed to a sickness, the number of

personnel who become ill in each time period depends on the rate of

contagion and on the number still unaffected who are therefore able to

become ill.

Section 6 employs the bulk availability mode] to describe a method-

ology for the analysis of bulk availability warranties and related logistic

considerations. This material is based on (6) while this report gives

some additional background and extensions of the basic ideas given in

(6).

Section 1.2 Definitions and Terminology

This study considers a model for bulk availability in which there

are a large number of similar units that fail at a constant rate X. Upon

failure, a unit enters a waiting line and from there enters repair service.

The service activity can accomodate up to r units and completes service

at a constant rate p. It is assumed that the number of units departing

from a state is equal to the appropriate rate parameter times the number

of units required or available depending on which state is under con-

sideration. The model is constructed as a system of ordinary differential

equations for the three quantities:

ma(t) = the number of units that are active (available),

mw (t) = the number of units that are waiting for service, and

ms(t) = the number of units in service.

sI
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All three quantities are functions of time as the independent variable.

In this model system, availability can be defined as a lower bound

on ma(t).

It is assumed that the system is conservative in that ma (t) + mw (t)

+ ms(t) is a constant.

The differential equation system is intrinsically non-linear in that

part of the forcing function depends on the values of the unknown

functions for its formulation. Thus the model is formulated in two

regions of the (msmw) plane. Figure 1 shows the relations between

the three states of the system: available, waiting, and in service.

no size limit no size limit at most r
Available Wait Service I ms(t)

Ma(t) mw(t) mslt)

Figure 1
States of the Bulk Availability Model

The system of differential equations governing the flow of units

through the states of the bulk availability model follows directly from

the conservation and flow rate assumptions stated above. This system

has the form:

4dm (t) = 1 m(t) -m A(t)

dmw(t)

dt - n , a(t) K(t)

dms(t)
-~ K(t) - pms(t)

6!
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In this system, the quantity K(t) depends on the relative values

of ms and mw leading to two specific forms for K(t) as given below.

Because of the conservation assumption, the initial values s, = (to),

w= Mw(to), and a, = m(t o ) satisfy the condition s, + w, + a, = ms(t)

+ mw(t) + ma(t) for all values of t. Since the differential equation

system must be followed across different forms the "initial" values

al,wl, and s, are incorporated as parameters into the solutions.

The value of K(t) depends on what is required by the service

state and what is available from the waiting state. This leads to the

following division of an (ms, mw) plane into two major regions.

Region 1 K m (t), defined by m -5  r and mw <r-m s +pm s . p

Region 2 K= r - ms(t) + pms(t), defined by m r and

s s s•m w > r - m s + pm s

These regions are shown in Figure 2.

MS

Region 2
Region I

fit mw= r-ms+/'ms

- % 1 K=r-ms+sums

41 Figure 2 0
Regions Specifying Model Form

Solutions are obtained for Regions 1 and 2 in Sections 3 and 4

4 respectively. Some numerical examples are given in Section 5 to illus-

trate bulk availability analysis using the model described here.
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One procedure for using the model would be to simulate the system

using the differential equations to provide the model structure. This is ,

equivalent to direct numerical solution of the equations. However, the

system of differentiai equations can be solved directly in terms of

explicit functions of time. This is the approach taken here and given

in the following sections. The resulting functions of time are compli-

cated and require computer evaluation as described in Section 5. Even

so, direct explicit solutions are felt to be superior to numerical solu- .

tions of the differential equation system. In particular such explicit

solutions can be studied directly for limiting values and special cases of

the model parameters.

Section 1.3 Scope of Model Methodology

The deterministic mathematical model for bulk availability given in

this paper relates the availability of a system to various system para-

meters. Unlike the usual stochastic model it does not depend upon an

underlying probability framework and its results are specific quantities

expressed as functions of time rather than expected values or other

partial descriptions of random events. In this sense, the present bulk

availability model is related to stochastic models in the way thermody-

namics is related to statistical mechanics as a description of certain

physical processes. The goal of thermodynamics is to relate various

measurable quantities, e.g. temperature, to physical parameters without
40 0

the necessity of a detailed analysis of the partical dynamics that

produce such relations. This is also true of the bulk availability model

in which the transition rates and initial distribution of units among

states are system parameters. The model relates these parameters to

the descriptive functions ma ,mw , and ms.

a.S
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The value of the model is in its direct relation between a few

system parameters and clearly identified descriptors of the system,

particularly ma (t) which measures system availability. This direct

relation is useful in contract negotiations, system design, logistic sup-

port design and implementation, and the conducting of acceptance test

procedures. Stochastic models are much harder to interpret for use in

all these aspects of contracting activity. However, this valuable

feature of the bulk availability model is obtained at the expense of

rather limited applicability. For the model to be meaningful, the

assumptions required for the model must hold. This restricts model

applicability to the bulk case in which the system description can

indeed be given by a division of units into the three states of the

model. Thus the model takes no account of any interaction betwcen

units or differences in utility between units. The conservation

assumption also limits the model. There are only the three specified

states so that any case in which a unit fails and cannot be repaired or

replaced is not included in the present form of the model. Of course

such additional states can be included in the model. The desirability of

doing so to extend model validity must be balanced against the desire

for relatively simple system descriptors which motivated this kind of

model from the beginning.

The most serious limitation of the model is the assumption that the

number of units that transfer state can be expressed as a product of a
4

transfer rate and the amount available for transfer. In any particular

case, this may or may not be a valid assumption. Its validity can be

established by theoretical arguments or assumptions or by experimental

data. If it cannot be validated in some way, it is likely that the par-

--6'"
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ticular bulk availability model presented here does not apply and should

not be used. Other assumptions can , e made in a deterministic model

context, but the ones used here seem to give the most direct example

of the kind of model of interest in this study.

CHAPTER 2. REGION 1 SOLUTIONS

Section 2.1 General Form of Region 1 Solutions

As specified in Section 1.2, the Region 1 form of the bulk avail-

ability model is given by the value K(t) = mw(t). This results in the

following system of differential equations:

ma(t)= Pms(t) -'ma(t),

o(t) 'k Maat m ro(t),1

s t M Mow(t) -M Mia~)

where the dot notation is used to indicated differentiation with respect

to time. The initial conditions for the system are values ma(t 0 ), mw (t 0 ),

and ms(t 0 ) specified at a time to which represents the time at which

this system starts to govern the behavior of the model. Over time, the

mudel may change from a Region 1 to a Region 2 system or conversely.

Therefore, the initial conditions for a system, including the initial time

may be obtained as specified data or as the final solutions of a previous

solution form. This is described more fully in Section 4 on numerical

solution procedures.

The method of Laplace transforms is used to obtain the Region 1

solutions. If L[g(t)] =- G(s) is the Laplace transform of a function g(t),

define: L[ma (t)] = a(s), L[mw(t)] = Fw(s), and L[ms(t)] = Fs(s).

a6



A Page 10

Also define the initial values as: m a(t 0 a, a wt0 wl n

m s(to) sj. The transformed equations for the Region 1 system have

the following standard form:

(s+X)F -PF =a,a s

-XF a (s+1)Fw W1

-F + (s+p)F S1
w s

This transformed system can be solved in the form:

a 1
Fa P -F + -a s+,\ s sTxA

a,1 W
(s-i1)(-(sA s+

where

F5 Sl(s+1)(si-) +w 1 (s+A\) + a
P(S) P(s) P(s)'

and P(s) =sQ(s), where Q(s) S2+ (1+X-ip)S X p +pA.

The form of the solution depends on the roots of the quadratic f unction

Q(s). The descriminant for this quadratic is:

D = (1-X) 2 
-2p(1-i-A) +p

2

or alternatively:

D =(1-A-p) 2 
-4pA.

4 .0

The curve D =0 is a rotated parabola symmetric about the line

AX p in the (p,A) plane as shown in Figure 3.
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1:: /- -

O D<O / I

D-O

Ij,.

Figure 3
Areas of (p,A) Plane Defining D Values

A more detailed plot of the curve D = 0 is shown in Figure 4.

The region with D < 0 is inside the parabola as shown. Any combi-

nation of p and A, within this region, gives a Case 1 solution. Values

outside the parabola, where D > 0, correspond to Case 3 solutions. In

the model as presently formulated p and A assume fixed values in an

analysis. However, in generalizing the model or in considering the

kind of results an analysis would yield it is interesting to consider

linear variation of the form p - KA. Straight lines such as these inter-

sect the parabola in two points given by the X values X - (1+K)+2 KAK (1-K) z

When K = 1, there is only one solution, K > I gives solutions on the

lower branch and K < 1 gives solutions on the upper branch of the

parabola respectively. A typical intersection is shown in Figure 4 for

the value K = 2 for which XK = 3±2.2" giving values of (.344, .172) and

(11.656, 5.828) as the two points of intersection shown. The behavior

of the solutions changes as p varies along a curve p = KA. For small

values of p, a Case 3 type solution occurs. As p increased the first

II
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18

16- D= on
the curve

14 D>0 outside
the curve

12-

10

8k k1 line

D<0 inside

6-

4-

2 >

0-t
0 2 4 6 8 10 12 14

Figure 4 -

Regions of the (p,X) Plane
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intersection point is reached, where D = 0, giving a Case 2 solution.

Further increase in p moves the solution through a range where D < 0 "

and a Case 1 type solution governs the model. For K = 1, this situ-

ation continues. For all other values of K, increase in p takes the

solution to the second intersection, a Case 2 form, then on to Case 3 "

form solutions again. The regions specified in Figure 4 can be helpful

in determining the general form of solutions to be expected when using

various (p,X) combinations and to see how the solutions will change as

the (p,X) values change.

The roots of Q(s) are given by: -o±Tt where a = (1+X+p)/2.

Let p2 = D/4. Then the values of D as a function of p and X yield

three distinct forms of solution as indicated by the three regions of the

( plane shown in Figure 3. These cases are defined by: D < 0

gives Case 1, D =0 gives Case 2, and D > 0 gives Case 3.

In Case 1 the quadratic Q(s) = (s+a) 2 + p2; in Case 2,

Q(s) = (s+ot) 2 ; and in Case 3, Q(s) = (s+a) 2 - 2. The form of the

roots of Q(s) in terms of p can be treated in various ways and care

must be exercised to get the correct form of the solution in each of the

cases and also in numerical calculations as discussed in Section 4

Section 2.2 Case 1 Solutions

In this case, D < 0 and Q(s) has complex roots. The quantity p2

is negative. It is useful to represent Q(s) as a quadratic of the form

Q(s) = (s+c) 2 - p2 . Then F can be expressed as follows:

Fs  = sjA(s) + wjB(s) + ajC(s), where

A(s)= + (I+s + A_ - +
S [(S+(p)

2] S (S+-a) 2 _ p2
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Direct calculation yields:

A% BX = %p+p p+xp+A2p
A, B+,++A

D
In some formulas, it is convenient to express X+p+Ap as a 2 -

which for Case 1 gives a2 - p2 since p2 = D/4. However, it must be

observed that in this case, a 2 - p2 is in fact the sum of two positive

quantities in order to get the correct inverse Laplace transform expres-

sion. Proceeding, we find

S+A A2  B2 s + C2
B(s) = - + ,",_-.

s[(s ) 
2] s (s+U) 2

- pl

where

X -X _-x
2

A+p+Xp B2 - k+u+kp 2= +p+p

C))==A 3  B 3s + C 3

C(s) X + ,"
s[(s+-)2 p2 ] s (s+a) 2  p 2

where A3 = A1, B3 = B2 , C3 -X(a++p

The inverse transforms are:

0
-at (C - Bla) -at

L-I[A(s)]= A1 + B e cosot + e sinpt,

L- 1[B(s)]= A, + B2 e- a t cospt + (C2  B2 U) e -t sinpt,

at (C 3 - B2 0) -ait
L [C(s)]= A1 + B2 e cospt + e sinpt,

IT
Thus: ms(t) = s1 L-l[A(s)] + w1 L-l[B(s)] + a1 L-l[c(s)].
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Next, the quantity m a (t) is developed. Its transform is given by:

a,
F --a si+X s+X s

Fa I asip sip p + a 1~p

After partial fraction expansion and algebraic arrangement, this

quantity becomes:

p(sl+wl+al)1
Fa 2 p2___ S

fslp(X+p+2Xp-1) -wlp(1+A+p) + a1X(1+p 2-XAp)]

2(ct2-p2)[(S+t)2 -p
2]

(s~)[-sl~l~p+ a1A(1+p)]

(C(2p2)(S+r)2- p2]

Inversion of this transform yields ma (t). Continuing, the trans-.7

form of m (t) is:

F = (s+p)F - 1

pX(sl+wl+al) w1(s+t) w,(Xk+p) + a1A -w 1c*
F -+ +

W s[(S+Cy) 2-p2] (S+ct) 2  p2 (S+ot)2  p2

After some algebraic arrangement, this can be written:

pk(sl+wl+al) 1+O w1(X+p) - pX(sj+aj)
Fw XI-p+kp S (s+ct) 2 -lXp+\

[W1(X2+p2-A-p) + aX(2X4-p+Xp-p 2) -SXp(l+p+A\)]

2(U2_2)[(+Ct - p2]
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Inversion of this transform yields m(t). The Case 1 solutions, ob-

tained by means of Laplace transforms as shown above, are: .0

1_ .kawzl-at. .-.

ms(t) = AA + 1 [ps 1(l+X) -(al+wl)]e cospt
a 2_P2'-

+ 1 {ps 1(l+A2-p-pA) + wl(2p-k2+Ak+Ap)
2p(a2-p 2 )

-at
Xal(l++p)]e sinpt

m (t) - pA + [-(sl+wl)p + ajX(1+p)]e- t cospt

+ 1 [sjp(A+p+2Xp-1) - wlp(l+X+p)
2p3(a2-_p2)

-ata

+ aA(l~p2-X,p) ]e~a sin~t -

m(t) = pA + 1 [w1(A+p) - Ap(sl+aj)]e -at cospt

+ 1 [W1(.2+p2__p) + aX(2X+p+Ap-p
2)

:-21p((2-p2) ..

- siXp(l+p+X)]e-at sinpt

In these equations, A = A,.

As a check on these rather involved results, it is true that -'-

Sma(t) + mw(t) + ms(t) = a, + w, + s, as required by the conservation

of units assumption in the model formulation. This direct though some-

what tedious calculation is omitted from this report. Some additional

checks on the calculations will be discussed at the end of the chapter.

4 4:

4. .



Page 17

Section 2.3 Case 2 Solutions

In Case 2, D = 0 so that Q(s) has two real roots both equal to -a.

Thus Q(s) = (sia)2 so that the transform of m (t) can be written as:
5

sis 2 + [s1 (l+) + wl]s + (sl+wl+a 1 )X

F - s(s+a) 2

= A(s) + (s,+wl+a,)XB(s),

sls + s1(l+A) + w,
where A(s) = B(s) -

(s+a)2  s(s+a) 2

Partial fraction expansion yields:

w1 + s1(1+X-a) Si
A(s) = +(s+U)2 sa Of

B(s) = 1 1 1 so that:
a2s a(s+a) 2  a2(s+a)

(s1-wl+a 1)X 1 (sl+wi+a1 )A

F (s _ w__a_) i + [s, - a 1Fs = U2 s 0(2 S+Of

(si+wl+a 1)A 1
+ [w, + s1 (1+-a) - a (sia)2

The transform of m (t) is given by Fw = (s+p)F - s. From the

above expression for FS we can write

4 01R1

F _ + R21 + R3  1Fs s s+a s()

(si-a)2

(S l+wl+al)A

where R, = ,sr2 = sa- R),
a

2

and R3 = w, + sl(l+X-u) - aR,.

I
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Then Fw can be written
w0

F = R (s+p) + R 2 (s+11) + R. (s+p) -s,
w  s s+a (s+) 2

Partial fraction expansion and simplification yields:

1  1 +Fw  =RIp + [R2(P-a)+R3]-! + R3(p-a)(a).

The transform of ma(t) is given by:

a,
F a si- + pRIA(s) + pR 2 B(s) + pR3C(s), where

1 ~ =1 1
A(s) =s(s+A) B(s) (s+A)(s+a) , and C(s) =

(s+A)(s+a) 2

Partial fraction expansion yields:

A1 B(s)- 1 1As A(s+-A) (ct-A)(s+A) ( -')(S+a)

and C(s) 1 . 1 1
(a-A) 2 (s+X) (a-k)(s+a)2  (a-A)2 (s+a)

These quantities give F in the following form:a

pR 1 1 pR, pR 2  pR 3  1F- + [a1  J +l+_Fa s (a Ff-)T sTX

pR 2  pR 3  pR 3[a-X (a-X) 2  ]+C 1 (- ISo
s~a a-k(si-a) 2

The coefficient of - is equal to zero as can be established by

rtX
direct algebraic calculation.
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Inversion of the transforms developed above yields the Case 2

solutions. To simplify the notation in these solutions, let B S

* (s1 +wl+al)/* 2 , and C =wl+s 1 (1+X-oi) - acB. Then the Case 2 solutions

are:

-t act

m s(t) =XB +[s 1 -AB]ea + Cte-

m (t) =pB + P-- [-sj-w1 +X(2a-X)B~e' - -s- Ctea
a(X-ct)2  of- P

m(t) =p.NB + [w, - pB]e -ct+ (p-ct)Ctect

By direct calculation, it can be shown that the conservation

assumption is satisfied for these solution f unctions, i .e., that

ma (t)+m~ (t)+m5 (t) =al+wl+sl for all values of t.

Section 2.4 Case 3 Solution

In this case, D > 0 and Q(s) has two distinct real roots:

E) -O + 2D 0 2 = -aci E It is convenient to sometimes express

as in the solution forms for Case 3. In this notation, the roots of

Q(s) are -ci+P, and -ci-P.

The transform of m (t) in Case 3 has the form:

s1(s+1)(S+X) w 1 (s+Ak) a1A

F - s(S-e1)(S-E2) S(S-e1)(S-6 2) ssO)s0)~

* = A(s) + (al+wl+s 1 )XB(s), *

= 5s + sJ1 +X\) + BW) 1
where A(s) s81(-0)s sO)(-2

6S6M-2 (-1(-2
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Expansion gives:

A, B,
A(s)- s-er +s2

s181 + sl(l+X) +w
where A, = 01-()2

S102 + s1(l+X) + W1
and B, = -

A2 B2 CIB(s) + , where A2

s s-el s-02 0102

B1 and C
B2

= 01(01-02) C 02 (0 1-E2 )

These expressions result in the value:

1 1 _ _

Fs  = H, + H2  + H3  -S-0 1  s-8 2

where

(al+wl+s1 ), slel+sl(l+X)+wl (al+wl+sl)k

H1  X+P+XP H2  = 21 + 2101

-sI02 - s1 (l+X) - w, (al+wl+s1 )X
and H3  2p 2P2

The transform of m M(t) has the form:

Fw = (s+p)F - s1.

Direct calculation shows that H1 +H2+H3 = S giving the following

form for Fw:
6w
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Fw  = HlIp + H2(01+I) + H.3(62 --/

The transform of m (t) has the form:

aa

F s- + _u- F which can be put into the form: Fa s+X 5+X S'

Hlp 1 H2 P 1 H3 p 1
F -_ _______

a x s + 1 s-el X+62 S-02

Hp H2p H3P 1

X x+0 1  A+02 ]s+x

It can be shown that the coefficient of is equal to zero.

Inversion of the transforms given above yields the Case 3 solutions

in the following form.

ms(t) = H, + H2e0 it + H3e0 2t

Smw (t) = pH1 + H2 (1+lp)eOlt + H3 (6 2+P)e 8 2t

Hlp H2PH3p e02 t

Htp H 2 2
ma(t) -x + e0 e

The results given in this Chapter are rather complicated, and it is

desirable to check their correctness before using them in numerical

analyses such as those given in Chapter 4. Two types of tests on

solution correctness have been made. For each case it has been shown

by direct calculation that ma (t)+mw(.t)+ms(t) = al+wl+sl as required by

the conservation assumption. A more sophisticated test of solution

correctness is obtained by noting that both Case 1 and Case 3 solutions

should tend to the Case 2 solutions as P-0. By allowing P to approach

zero in the Case 1 and Case 3 solutions, it is found that the Case 2

" - -I , - - , .. . " " . . . . : I - ' d
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solutions are indeed obtained. Though the limit calculations are detailed

to carry out, they are direct calculations and are omitted from this 0

report.

It should be noted that the initial value of time to has been taken

as to=O in deriving the above forms of solution. This means that in

model analyses, the time variable must be redefined each time the model

changes region form. This is discussed more fully in Chapter 4.

CHAPTER 3. REGION 2 SOLUTIONS

As specified in Section 1.2, the Region 2 form of the bulk availa-

bility model is given by the value K(t) r + (p-1)ms(t). This results

in the following system of differential equations:

ma(t) = Pms(t) - na(t),

mw(t) = ,a(t) - r - (p-1)ms(t),

m (t) = r - ms(t).
s -

Initial conditions are specified for some value of time, to, at which

the model behavior becomes governed by the Region 2 form. As in ,0.

Chapter 2, the initial values are defined to be ma(to) a, ms(t o) s , .

and mw(t o ) : wl. Because of the conservation assumption, the Region 2

solutions also satisfy the condition:

ma(t) + ms(t) + mw(t) = a1 + s, + w, for all t.

The equation for m (t) is not coupled to the quantities m (t) ands a

mw(t) so that it can be solved directly for ms(t). It is a first order

linear differential equation whose solution is:

=4
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K- t -t
ms(t) = sle + r(1-et).

This value can be put into the equation for ma (t) to obtain the

equation:

m a(t) = pr + P(s 1-r)e t - Am a(t). P

This equation is solved directly to obtain:

t At p(sl-r) et -xt At.Imat M _r (1-e-xt + (e-t  + aie-
a Ax A-i

Now using the values already obtained for m (t) and m (t), thes a

equation for mw (t) becomes:

pr-Aps1  (s 1 -r) "

' nw(t) = [ A-i + Aaj]e' + A-i (A+p-i) e

Direct integration of this differential equation yields:

mw(t) = al+wl+sl 1 -r + -I

(s1 -r)(X+-1) e

ee

As a check on these results, direct calculation shows that the

conservation condition holds for the Region 2 solutions given above.

It should be noted that the initial value of time to has been taken

as to=O in deriving the above forms of solution. This means that in

model analyses, the time variable must be' redefined each time the model

changes region form. This is discussed more fully in Chapter 4.

Because of the simple form in which the Region 2 solutions depend

on t, the limit values as t increases are easily obtained. They are:

I*
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limit ms(t) = r,

limit ma(t) Pr
a

limit M(t) = al+w1 +s - P- r.
t->0

It should be observed however that as t increases, the model may

not remain in Region 2. If it does not, then the limit values are unde-

fined. The condition for the model to be in Region 2 is that mro(t) 

r + (p-1)m (t). The limit form of this condition requires that al+wl+s"

> pr + - + r.

This is a condition that relates all six parameters of the model to

give a set of values that result in the Region 2 limit forms for the

model descriptors ma , Ms , and mw .

Though numerical evaluation is required for typical model analyses

in either Region 1 or Region 2, some special cases can be considered

directly. As an illustration of such a consideration, the following

special case has been studied.

Consider the Region 2 solution in which s, = r so that the service

facility starts fully utilized. Then ms(t) = r and the facility continues

to be fully utilized. In this case, the remaining units are distributed

between the available and waiting states according to the functions:

Ar +(a ~~Er t
m(t) = +e t ,

al
pr ~ At

M(t) a + w - ( a IL6 ~~w - w ( 1
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The condition for this to govern the distribution of units is that

mw(t) >I pr; if this condition is not satisfied, the system will move into 0

the Region 1 solution. In particular, for a steady state limit solution to

exist in this form, it is required that al+wl > pr(l+I). It is an indi-

cation of the intrinsic non-linearity of the model that the steady state

depends on initial values. An example illustrating the situation when

Lhe condition is satisfied is given in Section 4.2.

CHAPTER 4. NUMERICAL EXAMPLES OF SOLUTIONS

The bulk availability model has been formulated so that its des-

criptive functions ma(t), ms(t), and mw(t) have different forms in the

solution Regions 1 and 2. As the system moves from one region of

solution to another, time must be reinitialized and the initial distribution

of units among the three states of the model must be specified by the

values obtained in the previous region. The solutions themselves have

been obtained in explicit form but are rather complicated. Certainly

they are too involved for hand calculation. In this chapter, a computer

implementation is described, and it is used to obtain some example

results. These examples illustrate the use of the model for bulk avail-

ability analyses and show the kind of results obtained from the mathe-

matical solutions. A major feature of interest in model analysis is the

relation of the system descriptors ma(t), ms(t), and mw(t) to the

system parameters X, p, r, and model parameters a,, sl, and wl.

Section 4.1 Computerized Solution Calculation

As pointed out in each Region solution section, the solution forms

given are based on an assumption that the initial time value is zero. In
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a real solution where the model form may pass from one solution form to

another, it is necessary to use two time values. One value of time

represents the actual time while the other time value is the time within

a particular region solution. Each change from one region form to

another requires an initialization of the "local" time variable to zero.

When this is done, the actual time variable is incremented by a value

equal to the local time value just prior to its initialization and the

change to a new region form solution. Depending on the six pacameters

that define the model, three types of solutions can arise:

(i) the solution can start in one region and remain in that region

for the duration of the analysis;

(ii) the solution can start in one region and move to the other
which then determines its value for the duration of the analysis;

(iii) the solution can move from one region to another then back

again, continuing to change regions.

A combination of (ii) and (iii) can also occur, but the major types

of behavior are given by these forms of solution. Thus a computerized

model analysis must be formulated in such a way that it can represent

each of these distinct kinds of system behavior.

In addition to keeping track of actual time, it is necessary to

match the values of ma(t), ms(t), and mw(t) at the end of one model

form situation with the initial values of these quantities at the next

model form when a change of form is required.

Figure 5 shows a flow chart of how the computerized model

analysis is carried out. To keep track of time, three different "time

* like" variables are used. The variable T measures time from the start

of one Region form. It changes in increments of specified amount DT.
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The value of DT must be selected rather carefully because it governs

the time values at which the solution forms are evaluated. If the

solution remains in a single Region, DT can be relatively large, its

*value subject only to the detail of solution form required in a particular

analysis. However, when the solution changes Regions, it should do so

as near to the critical values of the solution as possible. If DT is too

large, the solution from one Region will continue into the other Region

on transition and the "initial values" will be incorrect being based on

the previous solution form which has ceased to be appropriate at some

previous time. This effect can introduce significant errors in a model

analysis. The most appropriate values for DT in a specific analysis can

be determined by a try-and-test procedure. Fortunately, a computer

run of the model does not require extensive time or storage so it is

feasible to try several values of DT to insure a realistic set of results.

The variable TOTT records each of the times spent by the system in

each solution Region. Each time there is a change of region, the value

of TOTT up to the start of that Region solution is increased by the

final value of T for that solution. Actual time is given by the variable

TLOC which is the sum of the present value of TOTT and the value of

T obtained so far in the present Region solution at the termination of

the analysis. An analysis is terminated when TLOC reaches a value TF

specified by the program. The quantities DT and TF are input values

that govern the detailed calculation of the solutions, they are program-

ming parameters rather than system parameters.

The solution Region that should be used is determined by the

condition mw(t) < r-ms(t)+pms(t) as discussed in Section 1.2

(Figure 2). The proper Region is designated by a flag variable KR

which takes the values 1 and 2 to denote Regions 1 and 2 respectively.
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At each iteration of the solution evaluation procedure, the con-

dition on mw (t) is checked to see if a change of Region should take

place. When a change of Region takes place TOTT is updated, the

values of ma(T), ms(T), and mw(T) are used as the intial values for

the next Region solution form, and T is initialized to DT as a starting

value for the new Region solution. This procedure is indicated in

Figure 5. In the detailed program, a listing of which is given in the

Appendix, care must be taken in evaluating the Region 1 solutions. In

that region, the three Cases give different forms of solutions as des-

cribed in Chapter 2. However, the notation defining the quantity 1

must be properly interpreted in each case. This is particularly true in

Case 3 where D < 0 so that p2 is in fact negative making a2 - 2 a

positive quantity for all values of a and p. The detailed program must

test for each case and interpret the numerical signs so as to give the

correct results. It must also determine how often solution values are to
be given as output and what detail of output information is required.

These features are indicated by additional program parameters as

described in the Appendix.

In the next section, computerized analyses of several examples are

given. They were obtained using the program given in the Appendix

which follows the flow diagram of Figure 5. Examples such as these

require very short running times and little storage for their execution.

* 0
Section 4.2 Examples

To illustrate the kinds of solutions that can be obtained from the

model, some examples are given in this section. First, a simple example

is given for which the solution form can be expressed explicitly. Then

.-
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some numerical examples are given that employ the computer evaluation

procedure described above in Section 4.1.

Example 1. Let A = 1, p = 2, r = 10, and assume initial values

a, = 70, s, = 10, and w, = 20. The constant value of total population

of units is therefore 100. The condition: w, < r-s 1 +ps, becomes

20 < 10-10+20 which is not satisfied so a Region 2 type of solution is

obtained. In Chapter 3, the limit behavior of the model when s, = r

was discussed and it was found that the solution would remain in

Region 2 provided the condition a1+w > pr(l+!) was satisfied. In the

present example, this condition has the values 70+20 2! 10(1+1) and is

satisfied. Therefore, the solution starts in Region 2 and remains in

Region 2. The explicit solution is:

ma (t) = 20 + 50et

mw (t) 70 - 50et

ms(t) = 10

The total number of units is maintained at 100 and, in the steady state,

20 are available, 10 are in ser,,ice, and 70 are waiting for service.

A modification of the initial conditions for this example yields quite

different results. Let a, = 80, s, = 10, and w, 10. Then the con-

dition w, < r-s 1 +ps, is satisfied in the form 10 < 20 and the solution is

in Region 1 with D -4, 2 = -1, and a = 2. Thus Case 1 type solu-

tions must be used to represent the descriptive functions, which have

the explicit form:
ms(t) = 20 - 10e -2t cost - 30e "2t sint

ma (t) = 40 + 40e -2t cost + 20e-2t sint.

m (t) = 40 - 30e -2t cost + 10e 2t sint.

4-w
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The conservation condition ma (t)+m (t)+mw(t)= 100 holds, as it

should, for these solutions. 0

The Case 1 examples are interesting because the D < 0 condition

permits oscillations to occur causing the level of availability, for

example, to move up and down about a steady state value. This is

illustrated by putting the availability function ma (t) into the following

form:

m (t) = 40 + 20 45 e "  sin(t+e)

where sin e - In numerical terms, the function is expressed as
45

ma(t) = 40 + 44.72e 2 t sin(t+1.1).

The limit value is 40 and the values of ma (t) undergo damped

oscillation about this value as shown in Figure 6. The limit values of

m (t) and m (t) are seen to be equal to 20 and 40 respectively.s w
The remaining examples of this section are given in graphical form

where the function values are obtained by using the computer proce-

dure indicated in Figure 5. Numerical values for each example are

given in the Appendix.

Example 2. To illustrate a Region 1 solution, let p = .4, X .01,

r = 10, and set the initial values equal to a, - 89, s, 5, w, = 6 so

that the total number of units is 100. For this example, D = .33 > 0 so

it has a Case 3 solution. The values of ma(t), ms(t), and mw (t) are

shown in Figure 7 for 20 time units. Because the solution does not

change regions, the time increment used in the evaluation program can

be large. A value of DT = 1 was used for the numerical values shown

in Figure 7.

* *
"
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Bulk availability of the kind shown in this example can be charac-

terized as a rather pure or classical type of availability behavior as

distinct from a classical reliability or mixed forms illustrated in other

examples. The service rate is greater than the failure rate by a large

enough amount that the availability function is able to reach a steady

state value of approximately 97 units. Of the remaining three units,

two are in service and one is waiting for service, in the steady state.

Example 3. A Region 2 solution is illustrated in this example.

The parameter values are: p = .2, X = .2, and r = 10. Initial values

are taken to be a, = 70, s, = 10, and w, = 20 giving a total of 100

units. Here, the initial number in service, sj, is equal to the capacity

of the service facility. Under these conditions with equal values for

service and failure rates, the larger number of units initially available

forces the size of the population of units waiting for service to increase.

This continues until a steady state is reached with m (t) = m (t) = 10a s
units and with 80 units in the waiting state. The values are shown in

Figure 8. Since the solution remains in Region 2, a relatively large

value of DT can be used. In this example DT 1. The model acts

like a classical reliability type model in that the failure rate is strong

enough, relative to the capability for service, that the lack of available

units falls until a relatively low steady state level is reached.

Example 4. This example illustrates an extremely rapid transition

from a Region 1 to a Region 2 type of solution. The parameter values

are: p = .4, X = .4, and r = 10. The initial values are: a, = 89,

s= 5, and w, = 6 for a total of 100 units. Because of the rapid

transition between regions a small value of DT is required so as to not

miss or greatly distort the transition affect. A value of DT = .001 time

6q ,'
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units was used for this example. The values shown in Figure 9 give

the Region 1, Case 1 (D = -. 6<0) solution which shifts to a Region 2

solution at T = .035 time units. The values of the descriptive functions

ma(t), ms(t), and mw(t) do not change much over this short time

interval. Though the example is given to illustrate how fast the model

can shift from one solution form to another, it should be noted that in

applications, the time units may be such as to give practical interest to

relatively short time periods. This is discussed more fully in Chapter 5.

The most important aspect of this example is the need for using a very

small DT vaiue. Otherwise the true nature of the solution is lost and a

numerical solution is obtained that does not properly represent the

nature of the model solution for this set of parameters and initial

conditions.

Example 5. A less rapid transition from a Region 1 to a Region 2

solution is illustrated by this example. The parameter values are

p = .4, X = .2, and r = 10. Initial conditions are a, = 100, s, 0, and

w= 0 so that at the start of the analysis all units are available.

Though the transition between regions is not as rapid as for Example 4

it is sufficiently fast that care is required in the selection of the evalu-

ation time interval if correct Region 2 solutions are to be obtained.

The value used is DT = .05 time units. Transition from Region 1 to

Region 2 takes place at T = .5 time units and by 2 time units, the

service facility has almost reached its capacity of 10 units. Though the

example does not go completely to a steady state in 2 time units, the

model descriptors have come close to steady state values by this time.

Figure 10 shows the results and indicates extrapolated steady state

values of ma (t) = 68, ms = 10, and mw = 22.
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CHAPTER 5. BULK AVAILABILITY WARRANTIES

Over the past several years, customers, such as the U. S.

Government, have become increasingly concerned with the satisfactory

operation of equipment after it has been delivered. Acceptance test

procedures insure that equipment meets contractual requirements at the

time of delivery but provide little indication of successful subsequent

operation. Reliability tests that form part of many such procedures

have minimal predictive value due to such factors as lack of statistically

significant data, intrinsic variability in operational conditions, and

limited periods for observation of equipment before completion of accep-

tance procedures. This situation has led to increased interest in

warranty policies that may be included as part of contract specification.

In particular, the concept of the Reliability Improvement Warranty

(RIW) provides a means for the contractor to assume some of the risk

associated with the customer's acceptance of equipment which subse-

quently fails to operate properly. The development of RIW models,

their analysis, and their application to contract definition has brought

about a well-defined field of study blending classical warranty concepts

with stochastic and other mathematical techniques from the field of

Reliability (7).

Such warranties may be considered from several points of view.

They may be considered as motivation for a contractor to strive for

high reliability products. They can be a means for clearly specifying

the division of risk assumption between contractor and customer due to

product failure. They can aslo provide a range of design cost trade-

offs in which a contractor can choose between spending money on

producing a more reliable product or on paying warranty costs (4).
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An immediate extension of the RIW concept is to consider war-

ranties from the point of view of availability rather than reliability.

This places the focus on the availability of a product for use when

needed which can be achieved by improving its reliability and/or

providing improved repair/replace options. Availability warranties seem

particularly attractive to the customer. However, they may be viewed

as undesirable contract obligations by a contractor. By combining the

concepts of incentive contracts and availability warranties a wide range

of contract structures can be formulated in which a combination of risk

assumption and profitability can be achieved (8).

Much of the study of availability warranties has considered the

availability of a single item or system which is subject to failure and

repair/replace service over the duration of the warranty period (9),

(3). This represents a classical viewpoint in the study of availability.

The present paper deals with another kind of availability consideration

which considers a large number of units rather than a single item.

Each of the single units is relatively minor in its required function and

availability is specified by having a minimum number of units available.

In this study, the availability concepts are those of bulk avail-

ability rather than individual item availability. Therefore a determi-

nistic model for bulk availability, as defined in Chapter 1, has been

used as a basis for anlaysis rather than the more common approach

based on stochastic models. This procedure seems analogous to the role

of thermodynamics in describing gross characteristics of matter that

require statistical mechanics for their detailed investigation. This

analogy provided the guidelines for development of the present bulk

availability model.

*n -
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Bulk availability deals with such things as a large work force

(manpower availability), fleets of equipment, or graceful degradation of .

complex systems. An example is a military electronic communications

device which may be supplied in several thousand units. A particular

group may have 100 such devices assigned to it and require 80 for

completely satisfactory operation. This would allow 20 of the devices to

be either undergoing service or waiting for service. If more than 20

were out of order, the bulk system would be, to some degree, unavail- P

able. If an availability warranty is in effect in such a situation, the

contractor would have to pay penalty costs specified by the warranty

contract. Such costs can be viewed in various ways: as out-and-out

payment of penalty dollars, as a requirement to spend money on

improved repair/replace facilities, or as the free (or reduced cost)

supply of one or more additional units by the contractor.

This report has described the deterministic bulk availability model

and how analyses can be carried out using the model. It gave some

examples of the behavior of the bulk availability models. How they

specify availability as a particular level of available units will be

described in this chapter.

Bulk availability warranties are defined as costs incurred by the

contractor when the number of available units falls below contractually

specified levels. The cost trade-offs available to a contractor are

illustrated by the examples. Conclusions about the utilization and

applicability of the bulk availability warranty concept are discussed in

the final chapter of the report.

The most immediate application of the model to a bulk availability 4
4

warranty analysis is when a penalty fee is charged to the contractor

4
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whenever the number of available units falls below a specified level.

This kind of response to a lowered level of availability has no effect on

the time functions of the model. When necessary, the fee is paid and

the model continues to represent the bulk availability situation. Pay-

ments of this kind can be as a single penalty or can be tied to the

length of time over which the availability is too low. In situations such

as those shown in Figures 8 and 10, the availability function decreases

monotonically. In such a case if the function falls below the specified

availability level before the warranty time has expired, a penalty will be

incurred by the contractor. If it is of the time duration type it is

clearly desirable for the low level of availability to be reached as near

to the end of the warranty period as possible. This shows the value of

a time dependent penalty to the customer. It can also be used tc help

the contractor in both product design and contract structure decisions.

In a situation like that shown in Figure 7 the availability is increasing.

In such a case, the contractor might incur a warranty penalty initially

but would subsequently be free of warranty payments. This indicates

the importance of design considerations. A high enough initial state for

availability would prevent any warranty costs. However, the cost to

achieve such an initial level could exceed the initial warranty cost and

therefore be undesirable. Another consideration is the increasing

availabil.Ly function. This kind of product performance may be better

than required, at a cost to the contractor. An alternative design, with

lower cost and lower availability might serve both parties better, giving

satisfactory performance to the customer and higher profit to the con-

tractor. Figure 6 shows a variation in the availability function. In a

case such as this, the proper level for availability may be in effect at
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some periods of time and not during other periods. This is an inter-

esting case from the warranty point of view. It allows a wide range of

contract stipulations that might not be considered without a knowledge

of expected behavior of this kind. Thus, in this type of bulk availa-

bility model, it is particularly important to have some kind of qualitative

guidelines for the behavior of the availability function, as provided by

the model analysis.

A more realistic type of warranty obligation is to provide some

form of correction for the occurrence of low value of the availability

function. When the availability function falls below a specified value

the contractor may be required to bring the number of available units

up to a level that will yield a satisfactory value. This will require

replacement and/or repair of units. An action of this kind interrupts

the time functions of the model analysis. When it is desired to employ

this kind of response to a warranty obligation, the mathematical model

must be interrupted. A new set of initial conditions are defined as a

combination of what was being specified by the model upon interruption

and actions taken by the contractor before resumption of the model

analysis. Some way to measure time must also be selected so as to

represent time in a useful way. Most likely the time should be con-

tinued to be measured from the beginning of the warranty period. In

this case, the time between model interruption and the new start should

be included in the total time description. This time measures the time

required to bring the availability up to the desired level. It is seen

that the repair/replace procedure for satisfying warranty obligations

can be studied within the framework of the bulk availability model of

this paper by making the kinds of modifications to the analysis

described above.

6J
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CHAPTER 6. CONCLUSIONS AND EXTENSIONS
p

A deterministic model for bulk availability has been described in

this report. It has a fixed total population and what may be called an

r-server type repair queue system. In some ways the model appears P.

similar to a stochastic queuing model with these characteristics. How-

ever, the bulk model has gross state transition values rather than

individual transition effects. This makes it more like a closed system

dam type process than a particle queue process. Though the availa-

bility level curve as a function of time looks much like a mean

availability curve for various queue processes, it does not seem to

follow in any direct way from such processes. This is most likely due

to the bulk transition effect which prevents the application of the basic

non-cascade assumption necessary for the formulation of most particle

queue models. Research in a dam type process expressing properties

similar to the present model might be of theoretical interest but is

considered outside the scope of the research described here.

The model description and analysis described in this report shows

that:

The bulk availability model can be employed as a useful tool in

trade-off analyses between manufacturing, logistic, and warranty costs.

By using several versions of a proposed model, with different parameter

values, a set of possible availability functions can be generated. This

kind of study can give guidelines for determining the best values or

ranges of values to aim for in designing a product to meet selected cost

trade-off values.

The deterministic model is simpler to formulate, interpret, and

explain than corresponding stochastic models. This is particularly true

-.*
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in the present case where the appropriate stochastic model seems to be

of the finite dam type in which the mathematics is more involved than

for queue type models. Ease in application and in intuitive relevence

between parameter values and results, such as availability levels, is

particularly useful in contract negotiations where one party may be

required to explain or justify its analyses as part of its justification for

cost trade-off decisions.

The closed form of direct solution for this kind of model allows

the consideration of numerical results over any desirable time period,

subject only to considerations of transition between solution regions.

The examples given in Chapter 4 illustrate the ease with which numer- S

ical solutions can be obtained using readily available computing

resources.

Though the calculations required are sufficiently involved that the

model could not be used without computer implementation, the computer

time and storage requirements are small. For example, 20 steps of the

model run in what appear to be no time to an interactive terminal user

on a standard computer installation.

The bulk availability model can be given broader interpretations.

For example, if it is to be used as a model for manpower availability the

quantity X does not represent manufacturing effort, it relates to the

profile of people recruited into the manpower pool. Thus A can be

related to recruitment effort costs such as extent of physical and mental ,0

examination of candidates. It can also be related to the level of

physical or mental condition that will be used in accepting or rejecting

candidates.

The bulk availability model given in this report could be made

more widely applicable if it was extended to allow time variation in some

~ Va..I~t=Pt
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or all of the model parameters X, p, and r. In the present model, the

most usual form of solution is to move to Region 2 and remain there

tending toward, and usually reaching rather soon, a steady state condi-

tion with the service facility full. If the parameters change with time a

more dynamic model would result which would allow transitions back to

Region 1. Such a dynamic model is felt to be a reasonable one in

modeling situations in which a contractor can change parameter values

or operating conditions cause them to change during the warranty 7

period.
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APPENDIX

Computer Program

A listing of the FORTRAN computer program used to carry out the

numerical evaluation of the model is given below. It is one particular

realization of the flow diagram shown in Figure 5. The main reason for

* giving this listing is to illustrate the simple programming required to

implement the model in terms of numerical calculations.

WRITE(6,*) 'INPUT DT AND TF'
READ(S,*) DT,TF
WRITEC9,39B) DT,TF
WRITE(6,*) 'INPUT A1,W1, AND SI-
READ(5,*) A1.W1,SI

WRITE(6.*) 'INPUT XMU,XLM,AND R'
READ(5,*) XMU,XLM.R
WRITE(g,320) XMU,XLt4.R
WRITE(6,*) 'INPUT K'
READ(5,*) K
WRITE(9,360) K
T-0.
TOTT0.
TLOC-Z.
KTRIZ
AA-R-S+XI.lU*S1
IF(W1.GT.AA) GO TO 2Z

GZ 01oTINUE
D= 1. -XLM)*1. -XLM )-2.*XMU*C1. +XLM4),X4U*XIIU
ALPO(1I.+XLM+XMU)/2.
AB-ABS(D/4. )
B TA*S ORT (AB )

C WRITE(g.350) D.ALP,AB.BTA
IF(D.EQ.N.) GO TO 75
IF(D.GT.O.) GO TO 80
CO;i=(ALP*ALP )+( BTA*'BTA)
A-(Sl+Wl+A1 )/COM
CIw(XMU*Sl*C1.,XLM)-XLM*(A1+W))*EXP(..ALP*T)
C2mXMU*~Sl*( I.eXLM*XLM-XMU-,XMU*XLM).Wl*(2.*XMU-XLM*XLM

1+XILM+XLM*XMU)
c 3x-XLM*A1* 1 .+XLM.XMU)
XMSuXLM*A+(C1*COS(BTA*T)/COM),((C2+C3)*EXP(-ALP*T)*SIN(BTA*T) -

1/( 2*BTA*COM))

C5S1S*XMiU*(XLM+XIU,2.*XLM*XMU-1. )-Wl*XMU*( 1.+XLM.XI4U)4 ~~C6aAl*XL4* 1.,XMU*Xl4U-XLM-XLM*X4U)
XMA.XMU*A,(C4*COS(BTA*T)/COM),((CS+C6)*EXP(-ALP*T)*SIN(BTA*T)
1/(2.*BTA*COM))
C7*(W1*(XL+XMU)-XLM*XMU*(S1,A1 ))*EXP(-ALP*T)
CeoWl* XLM*XLM4Xi1U*XMU-XLM-XMU )+A1*XLM'*( 2.*XLM+XMU.XLM*XMU
1 -)IJ1U*x4U)
C9v-S I*XLMp*XFU*( 1 . ,XM.UXLM)

1/(Z.*BTA*COM))
SGO TO 100
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70 B=(SIeWl.A1)/(ALP*ALP)
C-W1,Sl*( 1.+XLM-ALP)-XLr4*ALP*B
Cl-C*T*EXP( -ALP*T)
C2=(S-XLI tB)*EXP( -ALP*T)
XI IS -X Lt'i.B +C 1 +C 2
C3-( -SI-W1+XLM*( 2.*ALP-XLM)*B)
X"lXA.HU"B+(CXMU*C3*EXP(-ALP*T))/C(XLM-ALP)*(XLM-ALP)))

C4=(WI-XLM*X4U*B )*EXP( -ALP*T)
XilJXMIU'XLM*'B+C4+( XMU-ALP )*C1
GO TO 100

857 TH1=BTA-ALP
TH2=-BTA-AL P
H1=(AI+Wl+SI )*XLM/(XLM+XMU+XLM*XMU)
CIsS1*'( I.+XLI*1)+W1

C2-(A1+W1+Sl )*XLt./(2.*BTA)
H2s((Sl*THI+C1)/(2.*BTA))+(C2/THI)
H3.((-Sl*THi2-C1)/(2.*BTA))-(C2/TH2)
XiS-H1+H2*EXP( TH1*T)+H3*EXP( TH2*T)
,.'XXXU",Hl+H2*(THIXMU)*EXP(THI*T)+H3*(TH2+XMU)*EXP(TH2*T)

*?; H 1=H- XM U/ XL M +(H2 * XM U* E XP (T H IT)/X L M +T H 1
1+((H3-XflU*EXP(TH2*T))/(XLM+TH2))
GO TO 100

20 KR=2
5Z CONTINUE

X(VS-( S1I-R)*EXP( -T)+R

X IA=( )CiIU*R*( 1.-EXP( -XLM*T) )/XLM),Cl*( EXP(-T)-EXP( -XLM-*T) )
1 +A I*EXP( -XLM'vT)
C2=A1+WJ1+Sl-R-( XMU*R/XLM)
C3=(XIIU*(R-XL4*S)/(XLt4-l.)+(XLM*Al))/XLM

X1RkluC2-C3*EXP( -XLM*T)-C4*EXP( -T)
GO TO 1.0 0

100 TLOC=TUTT.T
KTR=KTR+ I
IF(KTR.LE.K) GO TO 110
WRITE(9,330) TLOC,XMA.XMS,XMW

* WRITE(9,340) KR,TOTT
KTR-0

110 CONTINUE
IF(TLOC.GE.TF) GO TO ggg
IF(XMW.LT.R-XMS.XMU*XMS) GO TO 200
IF(KR.EQ.2) GO TO 156
Al -XMA

WI -XMW
TOTTuT+TOTT
T-DT
KR-2
GO TO 50

*150 TwT+DT
GO TO 5Z

2Z0 IF(KR.EQ.1) GO TO 250
Al-XMA
SI- XMS
WI -XMW
TOTT-T*TOTT0
TwDT
KR-I
GO TO 60

250 T-T+DT
GO TO 60

999 STOP
*300 FORMAT(X'DT',FI.,X,'TFs',F10.5)
S11Z FORMATC5X, Al-. FIB.5,5X, WI. ,FIZ.5,5X, *Sl1' F10.S)

329f FORMAT(SX,.XMU-,.F1I.5,SXXLM-'.FlI.S,5X,'R-',FIS.5)
330 FORMAT(5X.'TLOC-.,F10.S,5X,'XMA=',Fl0.5,5X,IXMS-',FII.5,

I5X, XMII- .F10.S)
345 FORNAT(SX.'KR-,13.SX,'T-,F0.5,5X,'TOTT-',F1Er.5)

C 355 FORKAT(SX,'TEST -.010.5)
365 FORMAT(UX,*Ku '.15)

END
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Numerical Data for Examples

The numerical data, produced by the computer program listed

above, are given below for the examples given in Chapter 4 of the

report. They are listed by Example.

Example shown in Figure 7:

'7= !.0Z TF= 2Z.,7=3O
A,.= 741153Ws .~~J! Sle 5.00000

Z "Yz XLM Z!9 R 13. ZZ00.9
TEST 0.33210 Z.7ZS00 Z.V'S303 Z.28814
TI.ocs o.ZZ~Zo xx:A= ag.00251 MI.S- B.OO0O XMW= 6.00000
KR= I T= 0.ZZZZZ TOTi . Z.0Zlfs

-STET 0.33213 Z.7ZSUI Z.09333 Z.?8814
TLC:% 1.02,003Z VA= 9Z.5621-3 XM1S= 6.65261 XMW- 2.775'.Z

I1 T= I.ZIz TOT Z.Z9.1
TEST Z.33210 Z. 7Zr50 0.ii830 Z.28814
TLC= 2.000 ZZ ZZ X ' 92.24325 XIMS - 6.157Z1 XMW- .59975
KR'= I T= 2.Z00003 TOTT: Z.00030I
CEST '4.2 ?2 :, Z.77500 0.3033 Z.?3814
TLOCz 3.02300 X 1A a 93.S9267 XMS= 5.2ZZ56 XMW= 1.17677
'R = 1 T= 3.00300O T0TT= Z. R033
TEST Z.33210 Z.7050j 2.083Z3 Z.28814
TLOC= 4.ZZ;2'0 Xi;!A= 94.57150 XMS= 4.40021 XMW= l.Z2831
KR- 1 T= 4.ZZZ30 TOTT: O.ZZ300
TEST Z.33210 Z.7ZSZZ 0.093303 0.28814
7LOCx 5.00003 XIMAU 95.24976 XMS= 3.77152 XMW- Z.97873
KR- 1 T= 5.ZZ003 TOTT- 0.00030
7EST 0.33210 Z.7Z500 Z.0*33Z3 Z1.28314
TILOC= 6.02300Z ',(,.;A= 95.7 ' 9Z3 X~: 3.32699 XMW- 0.96393
KRz 1 T- 6.00000z TOTTO 0.00000I
7EST 0.33?i0 Z.70500 0.-8303 Z.23814

TLOC: 7.ZZZZ0 X!IAw 96.Z1637 X;4S= 3.Z2283 XMW= 0.96080S0
KR- 1 T- 7.00003Z TOTTz 0.00000

0E7 .33210 0.7Z500 0.Z330F3 3.28814
TLOcc 8.00000 XMA- 96.22060 XM'S= 2.81822 XMWU 0.96119
KP= 1 T- 8.00000 TOTT= Z.033 0
TEST a.33210 Z.70500 0.9830 Z.2881A
TLOCu 9.ZZIZ30 XIMA- 96.35582 XIIS= 2.68183 XMWU 0.96236
KR- 1 T- 9.00403 TOTT- 0r.z0033
TEST Z.33210 0.70500I Z.38303 Z.28814
TIOC- 10.ZZZZ0 Xr4Aw 96.44513 XMS: 2.59136 XMIJ: Z.96346
KR- 1 T- 10.00000 TOTT= Z. 22330
71EST 0.332:3 Z.7015Z0 Z.08303 z .29914
TLCC 11.ZZJ00 XM.A- 96.50417 XIMSS 2 .53*152 XMWv 0.96432
KR= 1 T- !1.OOOVOa TOTT- Z. 0023
TEST 0.33210 Z.70500 Z.05333 Z.28814
TLCZ= 12.00900 X:.Az 96.54398 NMS= 2.49200 XMXJ= 0.S6493
KR- . T- 12.03000 TOTT- 0.Z0030
7 EST 0.3321Z 0.705Z00 9.93303 Z.28814
TLCCu 13.0~Z0 :c:'A 96.53273 "CIS= 2.46593 XMW- 0.95535

13.Z039,3 TOTT= ZZZ -
TEST Z.2321Z Z.70500 0.03333 Z.23814
7:LOC* 14. Z30 ;'' Xv,,= 6.565 XIdS= 2.44873 XMW= 0.96563
KR: 1 T= 14 .Z ~ TOTT= 3 . C.j zZ
TEST Z.33210 Z.7ZS00 Z.Z83Z3 Z.28814
TLOC= 15.0r,'Z0 X1A- 96.59579 'AlS: 2.43739 XMWM 2.96582

*KRm I T. 15.00000 TOTT= Z. ZL Z
TEST 321210 "Z.735I'Z, ".833 .28814
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7~ Z .J X:A= 9 5 5 Y1 b a 2.42991 xrMiVi Z. S 59 4
K:! = 1 ES i;ZZZ 707TO7= .'. z z j

TZ T z.,7: Z '.1 7 '5Z0 . L 83,J3 ~2 3 814
17;Z0 X;.;A = 9 3. EZ3; 9 X: 1 2.42499 XMW= Z. 9 66Z20

TEST Z.33210 0.7ZS500 0.08303 Z.2831.4
TLr'C= 18.Z2Z X 1A1 96.61219 X;.. 2.42174 XINW= 0.96638
K?: I T= 1Z .Z z T,T h- Z. Z~j 70
TzS7 Z.3321.3 Z.7Z0 Z. S3Z3 E.28814
TLOC- 15.2Z 23ZZ X:'As 95.8142Z N \!S = 2.4196Z XIW 0.96611
K= I T- 19.002ZZ 7077= Z.Z0Z.-j:'

Example shown in Figure 8:

C7= 70.ZL7 22Z~Z3 ~ 1 3Z~Z

2 .u 22Zz0 Z LM= if.2 LJ0 R_ I a ZV40. L
TLCC= Z. zZzz X:;A= j9o 0.Z !3 X .i 12 .Zalv )X'1W 22.00000 0
KR- 2 7= Z. Zz, 3z TelT= 3 Z.rf,70:

7LQ:! zzz VA 59.123z)" XS- 1 Z.Z Z 0 XIIW= S.87615
KP= 2 T- 1 .' T;'7 TorT- 0.ZZ0Th
HLOC- 2. Z000Z XNA - 50.2192Z WiS. 10. 0zz0 XM~u 39.78080

KR= 2 T= 2 .Z2~'00 7077= 00.
T' -CC= 3.30020 X.~ 42.92370 XiVS= 1f'.00000 XM'AJ 47.27130
K P= 2 T= 3.0200r0 T0TT 0 . Z.-1 Z0
TLOC= 4.Z30000 XWA= 35.95974 Mi-S. 10.00000 X14Ws 53.Z4026
K -,= 2 T= 4.Z30202 OTT z07 0. z00 l.
7LGC= 5.00200 X%;"= 32.27277 X;".S= 12.30000z XMW- 57.92723
KR. 2 T= 5.00020z TOTT= Z. Z,Z.y0
TLOC= 6.2zJzIY X.'A=- 28.07165 Xins5 10.z000 XMWc 6!.92835
KR= 2 T= 6.00020 7077= 0.00000
TLOC= 7.02000 XMA = 24.79382 X. "s=- 10,.00003 XMW 5. 2Z41 9
,KR= 2 T= 7.00270Z TOTT= z.zZz0
TLCC- 8 . IF Y 'A- 22.11379 YIHS= 1 8.30000 XM'4- 67.8u'521
K R= 2 T= 13. zz '1*Z 7077= Z. ZIM~
7LCC= 9.21200 -MA= 19.:1793 XM.S= 1z.z0002 XMWo 7,7.Z6207
KRs Z ' T 9.002Z0 TOTT- Z02020
T LO I LT.020 ZZ ,"1 18.12Z12 >MiS= 10.z0000 XM.4i 71.87988
K?- 2 T- 10.Z2000 T07'- 0.33oz
TLOC= 11.200000 Y.M.A= 16.64819 XM~S. 10.02000 XMW= 73.35181
KR= 2 T= I I. Z. "LI 7077= 0.fd02~
TLOC= 12.0ZZZZ X~A 15.443Z8 >XMS= 19.0o000 XMW= 74.55692
KR= 2 T= 12.ZZ27.0j 7077= 0.00000q
%CC:- 13.V2200 X.M-A= 14.45641 Xr4S= 10.00020 XMW= 75.54359
<P.- 2 T= 13.ZZ020 T077 z..3if00.?
TLOC= 14.02000Z XMA= 13.64C60 XMS= 10.00000 XMW- 76.35139
KR- 2 T- 14.0000'3 7077= 0.00200
TLOc= 15 . V002 XNA- 12.98722 Xlks= Iz.zzzz3 XMW= 77.01278

<=2 T= 15.ZZ0020 T077= 0. 20003_
TLCCo 16.22020 X MA- 12.44573 Xt.1S. 10.00000 XMW= 77.55427
KR= 2 T= 16.ZZZZZ T077= 0.zZ000
T'0CC= 17.0 -Z XMA- 12.ZZ240 YX:S= 10.00000Z X:IW= 77.9976Z
KR- 2 T7= 17.00000 7077= Z. z0030
TLCC- 18.Z0Z20 XM-A- 11 .63942 XIS= 10.00000r X.'W 78.36058
KR= 2 T= 18 . ZAI000 7077= Z.0YV
7LO-Cn 19.02222Z X'-!An 11.34225 X S Iz.00"i~i X:,14- 78.55775
K = 2 T- 19.20020 T07T= 0.0-I

4TLCC= 20.ZZZ302 XMA- 11.Z9694 XMSM 10.zzz30 XMW- 78.901Z60
KR- 2 T- 2Z.00000 7077= 0.Ozzz0

Example shown in Figure 9:

..- j .010 "z F= Z.05020Z
a , 5.02 0 WI. 6..00020Z S1- 5.00020 -

Xil1Ja z.4vz000 XLM= 9.4=32 R- 10.00200
2

TL a Z. Z2107 X*,As E8.93224 S'.= 5 SZ3 XMi4 6.Z5911

7rC= 3.zo7320 X2 23.^'220z ;5 5.234 XtMW. 6.1474E

T-. Z.3zz~z z i:!A - 88.72153 m- 5.03 2 a9 XMW. 6.23543
4 z= o. 21 cr TLTr- .,L;;;j0
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TLOC= O.0 I12r X * AM 68.Gc, 32 ~S z 5.Z4568 X14W= 6.323Z1
KR= 1 1= .01100 TOTT= Z.0Z: W7
7..cC. Z.LC;4ZZ >2.A 5.331LV3 X.'.SE= S.05C72 XXW=d 6. 4 1020

I T= 0.14Z2 TOTT= *j3
7: -CC- Z. Z.'7 ZZ X;.:As 88.asE a X1IS- S.Z72Z4 XMW. 5.4 97U2
K,~2 1 T= Z.e'17,Z0 7.07= Z.,Uh.CIZrj
Ti.OC= z.02000z X%:A- 88.331Z2 XXI3= 5.00552 XMW= 6.58346
KR= 1 T= 0.02020 TOTTs 0. 030U0erCI
TLOC- 0.02300 X:-A- 88.23119 %<I!3- S.2ZI929 XMW- 6.66952

1 T= Z .323 TOTT- Z0Zly:0
T2C= .050 xjiz U 8.12151 X i I 5.1133Z XM.W= 6.7S520

K = 1 T= Z.026ZZf TOTT= .L.J
T'zO2= Z.Z2SZI M:A= 88.Z3195 Y.,1S= 5.12755 XrMiX 6.84zs0
K = 1 T= 0.029z0 7077 - .c6~
TLCC- Z.Z3203 MIiA- 87.93254 XXS= 5.142Z4 XMW= 6.92543
! R I. T= 0.Z'320 TOTT= 0.;iY-,Z030
T:60= Z.03503 XMMA= 87.83325 X,,*S= 5.15659 XMWZ 7.01016

.. 2 T= Z.ZZ3aV Z07 0. Z2.2.02
TOC= Z.039.30 :";A- 37.73,112 MIIS= 5.17110 XMW. 7.Z9479
I = 2 '= Z.00500Z TOTT- Z.032Z0

TLCf= 0.04100 X!A- 97.63511 X1S= 5.18556 XMW= 7.17932
KR 2 7= .ZOS00 TOTT- 0.032330
TLOC 0.0440' %X;A- 87.53524 XHS= 5.19999 )MW- 7.26378

; 2 7z 0.212.Jz 7077= Z.03200
7 c- B.Z4721 XXA - 87.4375Z XN1S= 5.71435 XIM'd 7.34814

7 T. 0.31520 7077= 0.23200
_czz 0.25.r30 XiA- 37.33391 X~IS. 5.2267Z XYXW- 7.43241

z<~ 2 = .01800 7377- 0.032ZZ

Example shown in Figure 10.

If 0.EJ F= 2.OrJf J97

21;, 1 ;4;z XLM= 0.20030Z R= 19.9YZ000
K= 2

7t.OCa 0.10003 X,*IA= 98.Z2113 XMS= Z.Z14S2 XMW= 1.83404
K:R = I T= Z.13000 7TOTr= 0.00000
T'-Gz= Z.25ZZZ X:.!A. 95.14155 X.MS= Z.54749 XNEW 4.31094
KR - 1 7= Z.2E'i'i 7077= 0. 00000
TLCC= Z. 4 M;Z X1,A= 9 2 :8 2 03 xrMs 1 .Z9569 XI!W- 6_32127
KR 1 T- Z. 4Z0000 7TT= Z.000009
TLOC= 0.55ZZ2 XNIA= 89.7E717 "'NS= 2.26621 XMW- 7.97661

TLOC= 0.7Z;000 X!I!Au 87.27Z42 Xrl IS= 3.32933 Xt1W= 9.29 75
K'.= 2 T. Z. 17zqZ 'OTT-- 0 Z.620320
7LOC= 0.85tZ0 M'A = at,'91SZO xJ1s= 4.25893 XMW- 13.82477

TLCC= 1.0001,:3 X; !A= 6 2.68272 XXIS 5.Z5861 Xt1:W- 12.25065
KZR- 2 T= - .40000 TOTT= 0. 6.1.310
TLOC= !. 1EZ !iA - 80.559.r4 M 'S 5.746S1 XIWa 13.6 94;4
K= 2 T= 0.55Z000' T077.- Z. 6 W 0
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