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1 . INTRODUCTION 

For several years, A.R.A.P., Inc. has been developing a computer model 

for determining the detailed low-level atmospheric distributions of velocity, 

temperature, moisture, refractive index, and the turbulent variations of these 

quantities for marine environments. The three physical processes most 

critical for determining the atmospheric marine boundary layer are turbulent 

transport, thermal radiation, and change of phase of atmospheric water. 

Reference 1 provides a review of our understanding of these processes and a 

review of some of the sample calculations which successfully illustrate 

features expected in the atmospheric marine boundary layer. The most recent 

status report on this model is given in Reference 2. Details of the 

foundation of the model, yearly developments and a number of exemplary 

simulations are given in References 3-19. 

Our efforts over the past 18 months have again been divided between 

simulations using the existing model and model developments. A major part of 

our model simulations have been associated with the particular scenarios 

chosen by Calspan for use in their fog model study. These simulations, along 

with the model modifications made as a result of these calculations, are 

discussed in Chapter 2. Another important segment of model simulations has 

been devoted to further understanding the process of wave breaking in stably 

stratified regions of the atmosphere. The goal of these simulations discussed 

in Chapter 3 is to provide an adequate representation of this wave-turbulent 

interaction for one-dimensional models of the atmospheric boundary layer. 

The two principal model developments during this time period are improved 

modeling of the cloud microphysics, and the incorporation of the possibility 

of an anisotropic scale into our second-order closure model. These two 

developments are presented in Appendix A and B, which are written for 

submission as separate journal articles. Preliminary explorations of two 

major model developments are presented in Chapters 4 and 5. These are the 

development of a three-dimensional model, and cumulus parameterization. 



2. PARTICIPATION IN THE CALSPAN FOG MODEL EVALUATION STUDY 

Introduction 

As part of an assessment of the Naval Air System Command's Marine Fog 

Investigation program, Calspan organized an evaluation study of fog models 

based on comp?irison of model simulations for six observational cases chosen by 

Calspan. A.R.A.P. participated in this evaluation study by first responding 

with the "blind" model simulations requested by Calspan, and second by a rerun 

of each of these cases after the preliminary results were made public at the 

workshop at NEPRF in May 1982. 

The initial model results were rather disappointing for us, with only 

three of the cases showing reasonable correspondence with data. Our prime 

purpose here is to report on subsequent model developments and the information 

gained from model reruns of these fog scenarios. 

Brief Review of the A.R.A.P. Model Operation for this Fog Study 

We used the one-dimensional version of our Reynolds-stress transport 

closure model, in which differential equations are solved for all first and 

second-order moments of the dynamic and thermodynamic  variables.  The 
1 12 

equations are described in detail by Lewellen , and by Oliver et al., . The 

differential equations are solved numerically using finite-difference 

techniques and a self-adjusting grid system, i.e., the numerical mesh changes 

as the solution changes to maintain good resolution of sharp features such as 

the capping inversion. 

The six Calspan fog cases were simulated by marching forward with time as 

the independent variable, and converting the spatial surface temperature 

variation into a temporal variation using the mean velocity in the boundary 

layer. We recognize that this does not yield a completely consistent 

simulation of the data which represents vertical distributions of temperature 

and humidity at different horizontal positions at different times. However, 

it probably represents as consistent a simulation as is possible using data 

which are insufficient to specify the effects of horizontal advection. Our 

simulation thus necessarily neglects contributions from horizontal advection, 

which are very likely to be a significant source of error. 



The atmospheric radiation scheme treats terrestrial long wave and solar 

shortwave radiation separately. The long wave component is calculated using 

the usual convolution integrals over the emission and transmissivity profiles. 

The transmissivities are parameterized as sums of exponential functions of the 

liquid water, water vapor, and carbon dioxide path integrals. The emission 

functions are taken to be the black body emission at the local absolute 

temperature of the air. 

Shortwave radiation is calculated using the "two-stream" model for upward 

and downward flux components. The scheme includes a direct absorption 

coefficient, and also a scattering effect when liquid water is present. 

Details of the radiation schemes can be found in Lewellen et al.. 
m 

Modifications Arising After the NEPRF Meeting 

As a result of the comparison between initial model results and 

observations shown in Figures 1 to 12 and presented at the meeting at NEPRF in 

May 1982, we made an extensive review of our model. The program was modified 

to correct several possible problems, and all six cases rerun with the 

improved model. In addition to correcting some input conditions, the 

following program changes were made: 

(i) The full temperature profiles through the troposphere and higher have 

been incorporated into the downward long wave radiative flux 

calculation. This eliminates the need to estimate downward fluxes at 

the top of the boundary layer from the profile; the flux is now 

explicitly calculated using the same radiative transfer model as the 

boundary layer program. 

(ii) The reflection of long wave radiative flux at the ground has been set 

to zero. In our original runs, there was a reflection at the surface 

of 10% of the downward radiation. This produced unreasonable heating 

close to the ground in the stable cases 2 and 5, and seems to be due to 

the inconsistency between assuming black body emission properties and 

non-zero reflectivity. 



(iii) A numerical finite-differencing problem at the top of thecloud layer 

was pointed out by Steve Burk where the radiative fluxes are virtually 

discontinuous. Our use of a central difference resulted in part of the 

large cooling being applied to the dry layer immediately above the 

cloud. This produces a spurious entrainment of the dry air into the 

■\ boundary layer. This problem was corrected by using one-sided 

differences, and care was taken to ensure that the total flux budget 

was preserved. 

(iv) The approximate formula for the radiative convolution integral as 

described in Lewellen et. al/'' was replaced by the full integral 

expression; this is more expensive to compute but should be more 

accurate. 
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Model Results 

Case 1 

This case corresponds to observations during a cruise Northwest of San 

Nicolas Island on 22 May 1978. The simulation covers 4 hours from 0500 PDT to 

0900 PDT. Air temperature was colder than the sea surface temperature. This 

case was run with two different initial conditions, first with a thin cloud 

layer, then with no initial cloud. In both cases the cloud base lowers and 

the cloud becomes thicker. After four hours, the results are not very 

dependent on the initial conditions. No fog was observed or predicted. The 

new model results for temperature, Figures 13 and 14, are slightly closer than 

the old results, but both runs were in reasonable agreement with the 

observations. The major difference in our most recent run and the initial run 

was a correction to the input solar radiation which was erroneously set at 

only 4% of its correct value.    < , 

Case 2 -'' "  ;■ /''•"* 

This case calls for the simulation of the shallow advection fog formed 

over the cold sea surface during a 3 hour evening period (1700 to 2000 EOT) 

off the coast of Nova Scotia on 2 August 1975.  The new run for this case, 

Figure 15, is much closer to the observations than our original result. The 

ground reflection of long wave radiation was the cause of the low-level 

heating in our earlier integration and gave temperatures roughly 3°C too warm. 

Without the reflection, our predicted temperatures are   very close to the 

observations below 30 m where the measurements were made.  We still do not 

predict fog, but our maximum relative humidity is now about 96% in the lowest 

few meters.  We believe the relatively large horizontal gradients in sea 

surface temperature observed at this time (Figure 16) play a key role in this 

type fog.  As mentioned previously, the simulation of this as an unsteady, 

horizontally homogeneous flow should not be expected to accurately simulate 

the role of horizontal advection of temperature and humidity. This could only 

be the case if vertical gradients in wind velocity were unimportant. 
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Case 3 

This case is a simulation of 20 hours observed between San Nicolas Island 

and San Diego on 7 October 1976. A 100 m thick stratus cloud, beneath a 250 m 

inversion, dissipates during the day and redevelops during the early evening 

to produce fog under conditions of strong subsidence above the inversion. Our 

original run for this case was grossly in error because the shortwave solar 

radiation was set, inadvertently, at 4% of its correct value. Since this case 

runs throughout the day, solar heating is quite important, and the differences 

in the new run are mainly due to this change. For the three verification 

times, we see that the model predicts a shrinking boundary layer in response 

to the applied subsidence, and also significant heating during the daytime. 

The run is initialized with a cloud about 100 m thick and base at 175 m. 

This cloud actually lowers to form a fog around dawn, but is then evaporated 

by the solar heating over the next 2-3 hours, so that at the first 

verification time of 10 hours. Figure 17, we have no cloud. At this time our 

prediction is somewhat cold in the mixed layer, and the mixed layer depth is 

too shallow. However, at the next verification time of 14 hours. Figure 18, 

the prediction is in almost exact agreement with the observations. It seems 

that the subsidence rate was not uniform over the first 14 hours as assumed in 

the model run. 

The prediction is also in error at the final time of 20 hours. Figure 19, 

where the observations show a fog layer up to 250 m. Our prediction gives a 

70 m boundary layer with a 97.5% relative humidity. There are two possible 

causes of the discrepancy. Firstly, the assumption of constant subsidence 

rate may be incorrect; it may well be reduced in the later part of the run 

since there is no data above the inversion to indicate a continued downward 

trend. Indeed, to entrain over 150 m over 6 hours, i.e., from 100 m to 250 m 

between 14 hours and 20 hours in the face of a 0.3 cm s"^ subsidence at that 

height, seems a formidable entrainment rate. The second possibility is that 

the predicted entrainment rates are too small; this is quite possible also 

since we are aware of deficiencies in the model entrainment in the free 

convection regimes. The discrepancy is most probably a combination of the two 

effects, but without an observational measurement of one of them it is 

impossible to determine their relative importance. 
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Case 4 

This overnight case, 2000 PDT, 14 July to 0530 PDT, 15 July, 1973, 

simulates a cruise 80 km offshore Northwest of Pt. Conception. The coastal 

stratus thickens from 2100 m to - 350 m depth under an inversion at 500 m. 

Although our original integration for this case was quite close to the 

observations, it must be noted that we needed to apply a significant 

subsidence to prevent the mixed layer from growing. This was a result of 

spurious entrainment arising from the finite difference approximation for the 

radiative flux divergence as mentioned earlier. The new run has no 

subsidence, and does not give boundary layer growth. The new run. Figure 20, 

is even closer to the observations; in fact the agreement is almost exact. 

Case 5 

This is another shallow advection fog formed over cold water - 80 km 

offshore Southeast of Nova Scotia on 5 August 1975. A 3 hour time period is 

simulated starting 1 hour after sunrise. The fog shows a dramatic increase in 

depth when it flows over substantially warmer water. As in Case 2, our 

original run for this case was dominated by the reflection of long wave 

radiation at the ground. With the reflection removed, our predictions are now 

much closer to the observations. The predictions are still somewhat too warm. 

Figures 20-22, with the result that our relative humidities are too low, and 

no fog is formed. 

We note that the fog in this case is formed during the first hour, before 

the surface temperature has changed. Inspection of the profiles at t=l hour 

suggests that the water vapor has been brought down from aloft where it was 

initially higher than the surface by some 20%. The model fails to predict 

this transport. We initialize the run with super-equilibrium turbulence in a 

stable layer, which implies very little mixing away from the surface; 

however, the problem is not solved by specifying higher initial turbulence 

levels. The profiles at t=l hour show the curious phenomenon of humidity 

being mixed down from aloft but not temperature. When the model turbulence 

levels are increased, both quantities are transported downward with very 

little change in relative humidity, and no fog formation. In view of the lack 

of fog in this run-, it is not surprising that our predicted temperatures are 
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too high, since we do not nave the fog-top long wave radiation cooling which 
must have been present in the observations. 

Case 6        ,- ,,..»,—.-..^:.. .. -i^  . ;;.* 

This case simulates 3 hours just before sunset during which stratus was 

observed to thicken and produce fog in a marine layer capped at a height of 

200 m in the Farallon Islands on 29 August 1972. Although our earlier runs 

for this case were in good agreement with the observations, the new runs are 

significantly different. The main cause of the difference is the corrected 

value for the solar constant. The sunset is at t=2.5 hours, while the 

verification time is t=3 hours. It appears that our formulation for the 

shortwave scattering produces too much heating in this case, because the 

heating exceeds the long wave cooling in the early stages and quickly 

evaporates the cloud. A possible cause is the failure to account for the low 
solar angle, which reduces the shortwave absorption as the sun approaches the 

horizon, according to Stephens (Ref. 42, Figure 3). The effect depends on the 

state of the atmosphere above the cloud, and has not been examined in any 

detail, but the remedy would clearly involve making the absorption 
coefficients dependent on the solar angle.'*• ^.-' 

The temperature profiles at t=3 hours, Figures 23 and 24, show that the 

prediction is too warm; this is as expected since the cloud has evaporated 

and the cooling mechanism has been lost. A run has been made without the 

shortwave radiation, and this shows the cloud descending but does not reach 

the ground in 3 hours. Examination of the details of the integration reveals 

some sensitivity to the initial development in this case. At t=0, we have a 

region of high humidity in the cloud, and lower humidity below. As the cloud 

top cools (without the sun), the entire boundary layer mixes, and reduces the 

humidity in the cloud. The timing of this mixing event is important, in that 

if it is delayed then there is more cooling of the layer prior to the cloud 

humidity reduction. In our model runs, the turbulence builds up and mixes the 

layer in 30 minutes or less, even if we begin with very low turbulence levels. 

At this stage, the cloud thickness is drastically reduced, and the cloud 

becomes optically thin since it has not cooled sufficiently to maintain its 

opacity. The cooling rate is therefore reduced, the development is set back 

considerably, and the cloud does not manage to reach the ground in 3 hours. 
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Thus, case 6 is not a simple status lowering event dependent only on cloud-top 

cooling rate, but is also strongly affected by the mixing of the initial 
profile. 

Summary and Conclusions     ; 

The conclusions which we are able to draw from these model comparisons 

are limited because we only have temperature and humidity profiles at a few 

isolated stations. Discrepancies between model predictions and verification 

data may be due either to modeling deficiencies or to the neglect of all 

horizontal advective effects. We believe it is possible to make some 

conclusions about the radiation schemes. 

In general, the long wave cooling seems to be reasonably well represented 

by our convolution integral and in most cases even by the approximate 

convolution. Case 4 is the most straightforward nocturnal cooling case, and 

this is the most accurately predicted case using the new finite-differencing 

scheme for the radiative fluxes.  Cases 1, 3, and 6 all involve shortwave 

solar radiation for at least part of the time, so that interpretation is more 

difficult. It appeared that the shortwave heating was too strong in Case 6, 

where the solar angle was low.  However, Case 1 is similar in this respect! 

and also produces large shortwave heating, but still remains colder than the 

observations.  Case 3 shows good agreement with the temperature rise during 

the day, but this may be inconclusive since the cloud continues to absorb 

strongly until it evaporates; thus, if the absorption was smaller, the cloud 

would presumably remain longer but could still absorb the same amount of heat. 

The heating rates in clear air are unaffected by the scattering formulation, 

therefore it is possible that the predictions could be relatively insensitive 

to the details of the radiation scheme.  Comparisons with data cases which 

include direct measurement of radiative fluxes are necessary if we are to 

determine the reliability of the radiation schemes.  -^i,: - 

We cannot really conclude much about the turbulence modeling on the basis 

of these runs. Although it appeared that Case 6 was inaccurately predicted 

partly due to rapid mixing of the initial profile, we do not know whether this 

was a model problem or whether neglected factors such as horizontal advection 

were important. This' remark also applies to Case 5, where the transport of 
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humidity was not predicted during the first hour, yet the transport of 

humidity and temperature are so dissimilar in this case that the presence of 

horizontal advection seems very likely. 

Regarding the modifications made to the model, we can say something about 

their relative importance. The inclusion of the full atmospheric temperature 

profiles did not make a profound difference to the results. Our original 

estimates of the long wave flux from aloft were within 20-30 Wm"^ in most of 

the cases, so that this change resulted in a 1°C temperature change at most. 

The removal of long wave reflection at the surface had a large effect on 

the stable cases, 2 and 5. Although we still do not predict fog formation, 

the spurious heating is absent, and the temperatures are much closer to the 

observations. 

The change in the finite-difference scheme only affected Case 4, where 

the entrainment was reduced to almost zero. It is strange that none of the 

other cases were affected by this numerical problem, but we have no 

explanation for their insensitivity. 

Finally, the full convolution integral only affected Case 6 

significantly, where it contributed to the reduced cooling. This is 

apparently because the approximation for the convolution gives a reasonable 

representation of an optically thick cloud, which most cases are, but gives 

excessive cooling for thin clouds. 
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3. ON THE ONE-DIMENSIONAL PARAMETERIZATION OF WAVE-TURBULENT INTERACTIONS 

Introduction 

One of the principal mechanisms controlling the development of the 

planetary boundary layer under well-mixed conditions is the rate of 

entrainment of heat and momentum from the free atmosphere above the turbulent 

mixing region. This is due to the fact that the boundary layer eddies do 

produce a well-mixed region, and therefore it is possible to describe many of 

the gross features such as boundary-layer depth, mean temperature, and mean 

velocity by use of a 'slab' model which only requires knowledge of fluxes at 

the top and bottom of the slab. The 'slab' model does not predict details of 

the turbulence variations across the layer, of course; but the gross dynamics 

of the actual physical system, and therefore any sophisticated mathematical 

model of it, are also controlled by these surface and entrainment fluxes. 

There are several mechanisms which are responsible for fluxes at the top 

of the boundary layer. The relative importance of the various mechanisms will 

be determined both by the details of the profiles in the atmosphere above the 

boundary layer, and by the boundary-layer turbulence itself which is the 

driving force for the entrainment. The atmosphere above the boundary layer is 

generally stably-stratified and thus inhibits vertical mixing, since the 

turbulence has to expend its kinetic energy in order to provide the increase 

in potential energy required to transport the overlying warm air down into the 

mixed region. 

Since the air from just above the boundary layer is rapidly cooled to the 

average mixed-layer temperature, there is usually a significant temperature 

change across a relatively short distance at the top of the layer; this is 

the so-called "capping inversion". The first type of entrainment mechanism is 

due to rapidly-rising thermals which, under convective conditions, have 

sufficient vertical momentum upon reaching the inversion to continue rising 

for some distance. The thermal then spreads out in the horizontal and falls 

back into the boundary layer, entraining some of the free atmosphere as it 

does so. This mechanism is largely controlled by the vertical velocities in 

the thermals, which in turn depend strongly on the surface heat flux.  A 
.  , .    . 20       21 

Simple parameterization, e.g., Carson , Stull , sets the entrained heat flux 
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proportional to the surface heat flux under conditions of strong convection. 

A second entrainment mechanism which will be more important under more 

neutral conditions, i.e., higher wind speeds or smaller surface heat fluxes, 

is stratified shear instability of the inversion itself. Since the inversion 

is continually perturbed by turbulent eddies from below and possibly by wave 

disturbances from above, we have a situation where the inversion can break 

down locally into relatively small scale turbulent patches which entrain the 

free atmospheric air. 

We are interested here in this latter mechanism, which seems more 

difficult to parameterize, in view of the fact that it can be affected by both 

local conditions at the inversion and the perturbations produced by the 

turbulence in the boundary layer. In attempting to gain some insight into the 

physical processes, we have first studied idealized stratified shear 

instabilities and their development through turbulent mixing to a final mixed 

state. The response of the idealized inversion layers to imposed disturbances 

has provided a basis for understanding the more general atmospheric problem. 

In the next section, we present a summary of the numerical experiments 

performed with the two-dimensional, second-order closure model on simple 

stratified shear profiles. Finally, in Sections 3.3 and 3.4, we indicate the 

application of these studies in the development of a simpler model of the 

entrainment process as it occurs at the capping inversion of the atmospheric 

boundary layer. 

Summary of Numerical Results 

2 
In a previous report (Lewellen, et al. ) the application of the 

two-dimensional, A.R.A.P. second-order closure model to the problem of Kelvin- 

Helmholtz billow growth and breakdown into turbulence was described in detail. 

It was demonstrated that the closure model has considerable merit as a means 

of investigating the detailed dynamics of the turbulent breakdown process. 

The results have been extended to investigate the sensitivity of the mixing 

process and final state to changes in the initial profiles and in the imposed 

initial disturbance. We may say here that it appears there is one very simple 

result - namely, that the final state after turbulent mixing is the same for a 

wide range of initial conditions.  This mixed layer has a nearly constant 
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Richardson number roughly between 0.35 and 0.40. We now proceed to discuss 

these numerical results in more detail. 

Previous Results 

2 
The results of Lewellen, et al. indicated that the final Richardson 

number in the mixed layer varied from about 0.3 to 0.4 as the initial 

Richardson number varied from 0.1 to 0.2. Sensitivity tests showed that the 

most sensitive initial parameter was the turbulence length scale, which needed 

to be set at some large fraction of the initial shear layer thickness. The 

initial profile for these studies was taken to be 

u =Au tanhz/<S , T=ATtanhz/<5 (3.1) 

where u is the horizontal velocity, and T is the temperature perturbation 

(which is proportional to density perturbation in the Boussinesq equations 

which are used in the model). The numerical results proved relatively 

insensitive to variations in initial vorticity perturbation amplitude or 

initial turbulence energy level. 

The main gross dynamical quantities presented were the total large-scale 

roll energy 

^^ ^I^ J     ("^ ^ ^) ^^^^- (3.2) 

and the small scale turbulence energy 

EQ =T::ZIT       T dxdz (3.3) A '7&^  j 
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where 

q2 = u'2 + v'2 + w'2 . (3.4) 

The development of these dimensionless energies for the cases with 

Ri = 0.1 and 0.2 are shown in Figure 3.1. Here Ri = (g/IgjATS/Au^, where g is 

the gravitational acceleration, and Tg is the mean temperature of the layer, 

i.e. Ri is the minimum Richardson number in the initial profile. The 

dimensionless time T is defined as x = t (gAT/ToAu). Figure 3.1 shows the 

initial growth of the large-scale roll instability and its subsequent 

breakdown and generation of small scale turbulence energy. At the end of the 

integration, the large-scale perturbation has completely decayed so that we 

have a horizontally homogeneous flow again, and the turbulence is also 

decaying. 

The initial and final Richardson numbers for those two runs are shown in 

Figure 3.2.  This figure shows the mixing effect of the instability. In both 

cases, the Richardson number of the mixed layer is almost constant, although 

.the actual value is somewhat higher for the higher initial Ri. For Ri = 0.2, 

the final value is close to 0.4. , 

Variations in Initial Profile Shape 
\ 

In a real billow turbulence event, the initial profiles will not be 

precisely identical hyperbolic tangents, and we therefore need some 

information about the dependence of the phenomenon on the initial profile 

shapes. One special feature of the previously used profiles was that the 

temperature and velocity both had the same vertical length scale. Hazel^^ 

performed linear, inviscid stability analyses of a wide range of profile 

shapes, and his results seem to show that the most profound changes in 

stability characteristics are caused by making the temperature profile change 

across a thinner layer than the velocity, i.e., u = Au tanh z/6 

T = AT tanh y-   '      ' (3.5) 

with R > 1. As R increases, the initial Richardson number profile changes 
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from a single minimum at z = 0 to a local maximum at z = 0 when R > /2 with 

minima above and below the center! ine. When R > 2, z = 0 becomes a global 

maximum and the Richardson number tends monotonical ly to zero as z -»■ «>. 

Detailed analyses of the particular case R = 5 by Hazel shows that when Ri-R 

(J in his notation) is larger than 0.25, there are two unstable stationary 

modes, and when Ri > 0.37, the unstable modes are no longer stationary. Hazel 

also found that small changes in the profile shape (from hyperbolic tangent to 

error function) or small asymmetries about z = 0 did not materially alter the 

linear stability characteristics. We have therefore concentrated on variation 

in the thickness ratio, R, in our studies here. 

Figure 3.3 shows the initial and final Richardson number profiles for a 

case with R = 1.7. The initial profile has a local maximum at z = 0 as 

mentioned previously, with secondary minima at z = +^ 1.4. The maximum at 

z = 0 is 0.22 and the minimum is roughly 0.15. At a time x = 24, the 

turbulence has largely decayed, and the Richardson number profile shows a 

minimum value of about 0.37 and an average value of about 0.4 across the mixed 

layer. The evolution of the kinetic energies is shown in Figure 3.4. There 

is a primary breaking event at T = 3 which generates most of the turbulent 

energy, but this is followed by a secondary ■ break at T = 6 which gives a 

further increase in EQ. Examination of the temperature contour patterns shows 

that the primary billow is the symmetric mode centered on z = 0, as can be 

seen in Figure 3.5 at T = 2.8 and x = 4.3. This is presumably because the 

inflection point at z = 0 is the major source of instability, and since the 

Richardson number at z = 0 is only 0.22 initially, the fastest growing model 

is centered there. However, after this in.itial system roll-up and turbulent 

breaking, a secondary mode appears. This mode is evident at x = 5.8 and 

X = 7.3, and seems to be associated with the secondary minima in the initial 

Richardson number profile. The secondary mode also rolls up the remaining 

vortex sheet above and below the primary billow, and generates its own 

small scale turbulence. Thus the billow event is more complicated than the 

previously studied cases, but the final result of the mixing process is to 

produce a layer with a Richardson number of about 0.4. 
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When R = 2.5, the Richardson number profile has a maximum at z = 0 as can 

be seen in the initial profile in Figure 3.6. Also shown in this figure are 

the late time profiles from two numerical integrations using the given initial 

profile. In the first run, a short domain of length 126 was used with an 

initial perturbation of vorticity amplitude. In the second, a domain of 

length 246 and an initial perturbation of the isotherms was applied. The 

evolution of the energies from the runs is shown in Figure 3.7. It is obvious 

that very different modes are excited in the two integrations. Temperature 

contours at two times from each run are shown in Figures 3.8 and 3.9. In the 

short domain, only a very weak symmetric disturbance is excited, but there is 

enough turbulent growth in the low Richardson number regions to produce the 

required mixing and stabilize the profile. In the long domain, the initial 

wave does not immediately decay in amplitude, but feeds energy into a 

large-scale mode which does produce a large disturbance and convective 

instabilities in the rolled-up vortex cores. Turbulence levels are much 

higher, although the time scales are also much longer. However, the final 

result is, in both cases, a mixed-layer with a Richardson number of roughly 

0.4. We do not wish to dwell on the details of these integrations, since 

neither are ideal examples; for example, the long domain case is probably 

significantly affected by the upper and lower boundary conditions. However, 

these factors do not seem to affect the overall mixing effect of the 

instability. 

Larger Initial Richardson Numbers 

Finally, and briefly, we show the results from initial Richardson 

numbers closer to the critical value of 0.25. This has relevance to the 

problem of a slowly decreasing Richardson number, as might be produced in the 

atmosphere by some large-scale flow feature. In this case, the shear layers 

would presumably begin to roll up before the Richardson number had time to 

fall much below 0.25. 

Using the simple hyperbolic tangent profiles, and Ri = 0.23, an 

integration was made with a domain of length 116. The energy evolution is 

shown in Figure 3.10, and the Richardson number at T = 8 is shown in 

Figure 3.11. Although the mixing is not completed, it is clear that there has 

been the usual breaking event, and the final Richardson number will be close 
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to 0.4.  In fact, the temperature contour plots show a breaking billow very 

similar to the Ri = 0.2 case. 

This result raises the question of whether the instability is quenched 

when Ri > 0.25. Thus, a case with Ri = 0.27 was run with all other parameters 

identical to the previous run. The energy evolution and final Richardson 

number profiles are shown in Figures 3.12 and 3.13. Once again, there is a 

vortex roll-up and collapse giving a final Richardson number of about 0.4. 

Clearly, there is a finite amplitude instability of the shear layer profile 

for Ri = 0.27 (linear theory predicts stability), and our initial perturbai^on 

of amplitude 10% of the background vorticity is sufficiently large to trigger" 

it. 

We have not performed extensive studies of the dependence of the flow on 

initial perturbations or length of integration domain, and so we can only say 

that the triggering of atmospheric billow events is likely to occur at 

Ri ==0.25 and will depend on a finite amplitude perturbation, unless the 

Richardson number is reduced very quickly into the linear instability regime. 

One-Dimensional Calculations of the Kelvin-Helmholtz Instability 

Our two-dimensional model of the stratified shear instability has 

demonstrated the mechanism for billow breakdown into small scale turbulence, 

and also the ability of the second-order closure scheme to model this process. 

In these detailed integrations, attention was focussed on the individual 

billow event, and the initial coherent vortex roll-up stage was calculated 

explicitly. In a larger scale problem where individual billows are no longer 

resolved, the closure model has to describe the vortex roll-up stage as well 

as the vortex breakdown. In this section, we discuss the problems involved in 

such a calculation. 

The first point to emphasize is that the initial stage of the instability 

is linear, giving exponential growth of a coherent wave. We immediately 

encountered problems with the A.R.A.P. model because it does not predict any 

linear exponential growth for Richardson number greater than or equal to zero. 

Exponential growth is only achieved when the nonlinear terms, i.e., the 

return-to-isotropy term, is significant, and the growth rate in this regime is 
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almost an order of magnitude slower than the linear stability analysis 

prediction for the hyperbolic tangent profiles. 

The deficiency of the A.R.A.P. model is easily traced to the absence of 

"rapid" pressure terms. If we assume that the turbulence energy, q , is very 

small, so that q/A « dU/dz or N, the Brunt Vaisaila frequency, then only the 

production terms are important. For the shear layer, the turbulence needs to 

develop a considerable degree of anistopy through shear production before the 

Rotta term can provide the positive feedback which we require for exponential 

growth. We should point out here that this discussion does not invalidate the 

two-dimensional integrations, where we required the small scale turbulence in 

the billow to grow exponentially from small levels to model the 

three-dimensional secondary instability. The mechanism for the latter was 

shown to be the convective instability produced by overturning the temperature 

gradient; the A.R.A.P. model does predict exponential growth of this mode, 

because there is a direct feedback from the heat flux, we", into the vertical 

energy component, w^. 

The remedy in the case of the shear layer appears to be the inclusion of 
2 3 

"rapid" pressure terms, as advocated by Hanjalic and Launder , and Lumley and 
21+ 

Khajeh-Nouri . These terms redistribute the production of energy between the 

tensor components instantaneously, and arise from the pressure fluctuations 

driven by the mean velocity gradient and the buoyancy fluctuations. There is, 

however, still a problem in that the model terms suggested by e.g., Gibson and 

Launder  do not give a critical Richardson number of 0.25. 

Briefly, Gibson and Launder write the Reynolds-averaged equation as 

-u^Uj = P^j +Gij +*ij .D^j -e.j 

^ u^-e  = Pi  + Gi  + <t>i  + Di   - UiUj ^ (3.6) 
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where 

— aUj    aU.         3Ui 
P,-^ = - u^ui^ —^ - UiU|. -—- , Pi = - UiO —!- 

^  . ^   Gij = g^ uj-e + gj u^e  , G^- = g^ 02 (3.7) 

where (^,  D, and e represent pressure correlations, triple correlations and 

dissipation, respectively. The A.R.A.P. model sets . 

♦iJ-»S5' = -f (^-^«ij) :   ^^♦I'^-Af^  (3.8) 

2     (1) 
where q = u^jU^, and A is the turbulence length-scale.  <t>ij  is the Rotta 

term. 

25 
Gibson and Launder  recommend the inclusion of extra pressure terms: 

(3)      f    ^kk 
*ij = - S (Sij --f ^ij j (3.9) 

*i = - C2e Pi 

^ = - C3e Gi (3.10) 

where c =0.6, c =0.5, c =c, =0.33. These coefficients also involve a change 
^      ^      ^9  ^6 (1) ^ 

in the coefficient on the Rotta term, (fi^j, from unity to 0.45. Note that the 

production term -UiUj 9e/3xj does not give rise to any rapid pressure term, 

because this term does not come from multiplying the momentum equations, as 
26 ^      . 

discussed by Launder . 
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We have used the above model for the rapid terms (but used 0.375 for the 

Rotta coefficient in line with Launder, Reece, and Rodi^^ since this gave 

better agreement in the neutral surface layer) in the atmospheric surface 

layer, and obtained results comparable with the A.R.A.P. model. (Note that 

these results were obtained without the complicated wall functions of Gibson 

and Launder.) Thus, the rapid terms do not degrade the model performance in 

this regime; although it must be admitted that the inclusion of four extra 

empirical constants does not significantly improve the results, either. 

However, we do have rapid terms which can promote exponential growth in the 

shear layer. 

Unfortunately, the critical Richardson number for this model in the 

linear regime is 0.15, which is significantly smaller than the actual value of 

1/4. Adjusting the constants to move the critical value to 1/4 degraded the 

surface layer performance of the model quite seriously. The remedy we found 

wa^o include a rapid term proportional to the scalar flux production term, 

-u^Uj 30/3Xj. ^ we apply a coefficient of 1/3 to this term, i.e., the entire 

production of u^-e is reduced by 1/3, and set Cg=C2=0.6, then this simple model 

has a critical Richardson number of 0.25, and produces very similar results to 

the A.R.A.P. model in the surface layer. The linear growth rates predicted by 

the model are actually very close to the hyperbolic tangent profile growth 

rates calculated by Hazel  , as can be seen from Figure 3.14. 

A calculation for the tanh profile shows reasonable agreement with the 

two-dimensional calculations, provided we fix the length at a reasonable 

fraction of the shear layer thickness. Figure 3.15 shows the evolution of the 

integrated turbulence energy for a case with Ri = 0.1 initially. The time 

scales and maximum values are close to the two-dimensional values, as is the 

final Richardson number as shown in Figure 3,16. 

The problem cannot be claimed to be entirely solved, however, because in 

the case of a passive scalar, we would not want to include any rapid term 

corresponding to u^-Uj 80/3Xj in the scalar flux equation. Analytical 

solutions for the initial rate of diffusion from a point source show that 

there is no such rapid term. We are therefore unable to present a truly 

invariant model which adequately describes both the initial growth of 

turbulence in a shear layer and the initial rate of diffusion from a scalar 
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Model  Result 
O——O Hyperbolic Tangent  Profile (analytic) 

aS"' 0.1 - 

Figure 3.14; Dimensionless growth rates for stratified shear layer. 
Perturbations are proportional to exp(at), and S is the 
velocity shear. 

.  closure model, homogeneous shear 

linear  analysib  for  byperDoMt 

tangent profile (Hazel, 1972) 
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point source. 

Development of Parameterizations 

The knowledge of the detailed dynamics of the Kelvin-Helmholtz breaking 

process can be used to develop both simple parameterizations of the billow- 

induced mixing itself, and also to study more complex entrainment processes 

when the small scale shear instability is a secondary mechanism. 

In the former case, we are concerned with Kelvin-Helmholtz billows as a 

dominant feature of the inversion. From our detailed studies, we may assert 

that whenever the inversion rolls up and breaks down into turbulence, the 

final mixed state will be a shear layer with a Richardson number of about 0.4. 

Thus, if we can estimate the initial state before the roll-up we can calculate 

the total entrainment; if we can further estimate the frequency of the 

breaking events, then we have a value for the average entrainment rate at the 
2 8 

interface. In Stull's parameterization of shear-induced mixing at the 

inversion, the entrainment velocity is expressed in terms of inversion 

parameters only, i.e., thickness, 6, velocity jump, AU, and temperature jump, 

AT. This may be an oversimplification, since the breaking events must be 

triggered by external perturbation or there will be one event which produces a 

Richardson number of 0.4 and no further activity. Thus, one aspect of the 

problem which deserves further attention is the form of the perturbations at 

the interface and their dependence on the boundary layer turbulence. For the 

moment, we can give an illustration of the parameterization method by making 

assumptions about the interface perturbations. The temperature equation 

states that 

— = - — (3 11) 
3,t   az ^        ' 

where T is the temperature, and H is the heat flux. Thus, if we define 

H(z,t) dt (3.12) 
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where the integral is carried out over the entire billow event, then 

3F 
dz To (z) - Tf(z). (3.13) 

where TQ and T^ are the initial and final temperature profiles. 

For the sake of simplicity, let us assume piecewise linear profiles so 

that 

/^ 
AT/2 

To,f = (     ^TzAo^f 

-AT/2 

z > i^ ,/2 

z    < z^^^/2 

^  ^ - ^o,f/2 (3.14) 

where i^, l^ are the initial and final shear layer thickness. If we assume 

that the velocity profile has the same shape, then the initial Richardson 

number. Rig = (g/TQ)ATAQ/Au^, and the final value. 

^       T. Au2 
(3.15) 

Now we know Ri^ = 0.4. Thus 

'    Rio ° 
(3.16) 

For definiteness, let us assume that Rio = 0.133, so that if = 3£Q; we can 

now calculate the integrated heat flux. To obtain the maximum value, F(0), we 

have 

00 

F(0) = -/  (To(z) - Tf(z))d2 
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3£,/2 
AT / 

.^n/2 

3£, dz - AT /     t dz 

AT 
3Jl, 

&oAT 
(3.17) 

To obtain the average heat flux, H, at the inversion, we now need to 

estimate the frequency of those breaking events; then 

£oAT F(0) _ 
T       4T 

(3.18) 

where T is the period between events. 

As we have already stated, T will depend on the boundary layer 

turbulence, but a lower limit on T is given by the time scale of the breaking 

event. This is because the layer must recover from the turbulent breakdown, 

otherwise we do not have distinct events. From our detailed calculations, the 

time scale is on the order of lOa/Au, where a is the wavelength of the 

disturbance, which is roughly 10£Q. Thus a minimum value for T is 100£Q/AU. 

Therefore 

_  £„ AT Au 
(3.19) 

To obtain our entrainment velocity, Wg, we divide H by AT giving Wg < 2.5 x 
10-3 ^u. 

,28 
Stull  parameterizes the entrainment velocity as 

'e = iil '" • (3.20) 
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where Rig is the bulk Richardson number of the inversion, and A3 is an 

empirical constant which is derived from experimental results to be 10"^. If 

we take Rig = 0.4 as a typical value of the inversion, we obtain precisely the 

same estimate as our crude upper bound. The exact agreement is obviously 

fortuitous, since we only made rough estimates of the effects of the boundary 

layer turbulence - but is nevertheless encouraging. The experiments used in 

deriving the value for A were explicitly concerned with the shear-induced 

instability, so we would expect the value to be near our upper bound. More 

work is required to determine the dependence of A on the boundary layer 

turbulence. 

The second application of the detailed study is in the parameterization 

of shear instability as a secondary mechanism; for example, in the case of 

entrainment by penetrative convection. These processes may be studied using a 

numerical model of the large scale features in conjunction with a simple model 

of the small scale processes. In this regard, the one-dimensional 

integrations test the ability of the second-order closure model to describe 

the overall mixing event without resolving the detailed billows themselves. 

Our integrations show that this can be achieved with reasonable success 

provided that the length scales can be adequately described. This may require 

more effort in the specification of the length scale, for example, resetting 

the length scale to some specified fraction of the shear layer thickness 

whenever the Richardson number falls below some critical value and the 

turbulence energy is small. It does seem likely that these small scale 

processes can be described as sub-grid mixing using the second-order closure 

model, which will permit the further study of larger scale inversion dynamics. 

As noted earlier, in considering the problem of entrainment at the top of 

the atmospheric boundary layer, the small scale shear instabilities are 

generally a secondary mechanism. Having achieved some understanding of these 

small scale processes, the next problem is to investigate how they are 

triggered by the turbulent boundary layer eddies. This requires consideration 

of the whole mixing layer, and there are two feasible numerical approaches. 

One can choose to model the boundary layer eddies in either two or three 

dimensions. Three dimensions is clearly more realistic but is much more 

expensive and demands a very simple sub-grid closure.  The simple closures 
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have proven very effective in neutral and convectively unstable flows, but 

have not been tested sufficiently in stratified cases. On the other hand, 

two-dimensional calculations have reproduced many of the observed features of 

boundary-layer eddies, and also have some observational justification insofar 

as longitudinal rolls are quite common under certain circumstances. The 

two-dimensional calculations would also permit a more sophisticated sub-grid 

closure, which would give more confidence in the stratified shear layer at the 

inversion. ;"'   '■■"■   ',- ..:-.,!);•:. ■■.:v ..^    ^^ : '' ' ■\> ..-u. 
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4.  COMMENTS ON THE EXTENSION OF OUR INTEGRAL BOUNDARY LAYER MODEL 
FROM ONE-DIMENSIONAL TO THREE-DIMENSIONAL 

As detailed in past reports (References 2 and 17) we have spent some time 

attempting to reduce the grid resolution required to adequately represent the 

atmospheric boundary layer by imposing integral constraints on the finite 

difference algorithms. The goal has been to develop a hybrid 

integral-differential method which can be used with any number of vertical 

layers from 1 to 10. The single layer representation is purely integral but 

should provide (at best) a rough approximation to the boundary-layer dynamics. 

The extent to which we have been able to do this for the homogeneous boundary 

layer in some different dynamical situations is illustrated in Figures 3.2 to 

3.5 of Reference 2. Some effort has been expended on continuing this approach 

during the current contract period. These efforts have convinced us that the 

most promising way to proceed with this approach is to combine it with the 

general problem of sub-grid flux parameterization. This may be elucidated by 

discussing the problems and promises of using this integral approach for a 

fully three-dimensional boundary layer model. 

If the boundary layer can be adequately represented by only a few 

vertical layers, then the three-dimensional, boundary-layer problem in x,y,z, 

and t can be reduced to a quasi-two-dimensional problem in x,y, and t. This 

very attractive possibility has supplied most of the impetus for our integral 

modeling efforts. Single layer representations of the planetary boundary 

layer (PBL) for such a reduced three-dimensional problem have met with mixed 
29 

success in the literature. The simple mixed layer models of Lavoie   and by 
30 

Keyser and Anthes  appear to provide considerable realism for the relatively 

small computing requirements they have in comparison to multi-level, fully 
31 3 2 3 3 

three-dimensional models such as Warner et al. . However, Anthes et al. ' 

have shown that, at least, their version of a mixed layer PBL is not able to 

adequately represent the flow within the PBL when horizontal inhomogeneities 

associated with differential heating over complex terrain or across land-water 

boundaries is a dominant mechanism. 

Anthes, et al., attribute this deficiency of the mixed layer model to 

difficulties in representing the horizontal pressure gradient at the top of 

their mixed layer.  However, in more general terms, it appears to be a 
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reflection of the difficulty of providing a simple parameterization which can 

represent a wide variety of profiles of the mean variables within the PBL. 

The sea breeze example, which they consider, represents a case where the 

boundary layer dynamics impose a circulatory flow pattern in the vicinity of 

the shoreline.  They identified the on-shore flow as occurring within their 

mixed layer PBL and forced the return flow to occur above it.  Their analysis 

then shows that the parameterization of the return flow layer is as important 

as the parameterization of the mixed layer itself.  It is perhaps more 

appropriate to think of the return flow as the outer part of the total PBL. 

When viewed in this way, the sea breeze involves flow with a reversal in 

direction of the velocity within the PBL. The representation of reversed flow 

profiles necessarily complicates any parameterization of a single layer model. 
31+ 

The history of integral boundary layer models in aeronautics (Schlichting ) 

have shown them to have quite limited success under separated flow conditions 

which yield a flow reversal in the boundary layer. This leads us to be rather 

pessimistic about the prospective adequacy of any single layer representation 

of the PBL for general three-dimensional meteorological problems. This still 

leaves the possibility that a model with a few layers can be quite successful. 

The extension of our hybrid integral model to fully three-dimensional 

situations requires extending the complete second-order closure model to 

three-dimensions first. Problems associated with programming algorithms for 

computing the mean flow variables in existing three-dimensional, primitive 
35 

Equation models such as Pielke's  must be tackled along with those required 

for computing the second-order fluxes.  A task that should be simpler, and 

thus of more immediate utility, is to use our turbulent transport model to 

construct algorithms to parameterize the role of sub-grid turbulent fluxes in 

existing mesoscale meteorological models.  Integral constraints generated by 

integrating the second-order flux equations over the resolved grid lengths can 

be very useful in this sub-grid parameterization role without the need to 

construct a completely new three-dimensional model. .   .; ! 

As a simple example to illustrate the latter idea, consider the sub-grid 

flux parameterization of the lowest layer of the flow where the vertical grid 

spacing is such as to completely contain the boundary layer within the lowest 

level. The flux term in the u momentum equation we wish to parameterize is 
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9u'w' 
az 

(4.1) 

The level 1 Equation for u then involves some representation of 

(u'w' - u'w;,)/2Az (4.2) 

If the eddy parameterization is used, then 

u'w' 3U/3Z (4.3) 

and a very poor representation of the surface shear stress is obtained, unless 

a compensating slip velocity is permitted at the surface. A simple useful 

form for u'w' can be obtained for the superequilibrium balance of the 

turbulent correlation equations 

u w 
n ,2 

3z 
9IJ 
3z 

(4.4) 

This mixing length form of the parameterization is quite appropriate in the 

surface layer with A a z, but some integral form of it must be used to relate 

the surface shear stress to the velocity at the first grid point. If the 

first grid point is placed within the surface layer then 

u'w')o 

k U^ U^ 

(^n Z^/ZQ)' 
(4.5) 

where k=0.4 and ZQ is the effective aerodynamic roughness of the surface. A 

combination of Equations 4.4 and 4.5 is quite effective in Equation 4.2, when 

the boundary layer is fairly well-resolved and there is no influence of 

stratification or pressure gradient on the turbulence. However, even in this 

simple case it is clear that Equation 4.5 needs some adjustment if the 

resolution is reduced so that the first grid point lies outside the constant 

flux surface layer. 
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In summary, we believe it is appropriate to change the present emphasis 

of our integral modeling effort from that aimed at developing a fully 

three-dimensional version of our second-order closure model, to that of 

providing support for our future work of parameterizing the role of sub-grid 

turbulent fluxes for mesoscale meteorological models. This simple example 

above is meant to illustrate how we expect our past work on hybrid integral 

models of the PBL to be quite helpful   in this new task.        .^  ,.     ,..   .   ; ". 

-K-. M    ■■■ ■-.■■■'.■ 
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5. PRELIMINARY CONSIDERATIONS OF CUMULUS PARAMETERIZATION 
BASED ON SECOND-ORDER CLOSURE 

' ■ Introduction 

Some of the most important turbulent transport processes in the lower 

troposphere involve cumulus clouds. In global models this calls for the 

introduction of a cumulus parameterizations scheme to represent the turbulent 

transport of humidity, heat, and momentum by these cumulus clouds.  Such 
36       3 7       3 8 

schemes (Arakawa & Schubert , Lord , Kuo ) require a phenomenological 

description of the most important effects of clouds. 

In what follows we take up a preliminary consideration of the application 

of higher-order closure turbulence methodology to such flows. We note that 

such a higher-order closure description should be capable of describing a 

range of atmospheric flows from boundary layers to mesoscale motions in which 

cloudiness and conditional instability are of importance. In addition, with 

appropriate modifications for the large density changes over the turbulent 

macroscale, such a higher-order closure turbulence theory should naturally 

describe the effects of deep cumulus convection and hence provide an 

alternative approach to the problem of cumulus parameterization. 

The presence of both saturated and unsaturated regions within a buoyant 

flow has at least two important influences on the turbulent description of 

such flows. The first is the appearance of new correlations in the turbulence 

equations, which result from the turbulent fluctuations of the clouds. 

Principal among these cloud correlations are the mean cloudiness r, the 

cloud flux w'r', and the cloud turbulence energy 1/2 w'w'r', where r is a 

conditional variable, with the values r=l in cloud and r=0 in clear air. 

Second, flows that contain both saturated and unsaturated regions are \jery 

likely to be conditionally unstable. Thus, most of the large scale field may 

be virtually devoid of turbulence while local isolated regions consisting of 

cloudy and non-cloudy updrafts and downdrafts may be in strong convection. 

This latter effect requires the introduction of the concept of an intermittent 

turbulence field for the large scale flow. 
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In Part 2 we review the partly cloudy correlations which must appear in 

the turbulence equations. In Part 3 we consider second-order closure 

turbulence modeling of an intermittent flow. In Part 4 we consider the 

application of this model and we make some data comparisons and checks with 

the theory of Parts 2 and 3. '   -    : . 

Second-Order Closure Turbulence Equations with Cloud Correlations 

We begin with the instantaneous energy Equation written in terms of the 
12 

Virtual potential temperature Qy.  (Oliver, Lewellen, and Williamson ): 

DOy/Dt = <5 S + Kg rw „ ^,    (5.1) 

where w is the vertical velocity, r the adiabatic lapse, and S the radiant and 

precipitation source term. We may express K^ and <„  as 

. K- = 1 + (3,;-l)r (5.2a) 

<g = SgP (5.2b) 

with .. : , r       . 

65 - \i/\i 3g - a-y2/y 

and p, y, and a are the functions of the saturation mixing as given by 
12 ...     ..,-.. ,  . 

Oliver et al. . t-  ;, ,.  .. ;! ^ ■:, 

The variable r is the instantaneous cloudiness defined as 

r=H (q^) '    y (5.3) 

where H is the Heaviside function and q,^ is the difference mixing ratio 

with q the saturation mixing ratio.  The instantaneous liquid water mixing 
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ratio qj^ is given by -.-  ,•-. ■ 

%   = qx"^ (5.5) 

We note that because of the sensitive dependence of radiative transport 

on the presence of liquid water drops, the radiant flux divergence S will 

depend upon the cloudiness present (as well as the water vapor in both clear 

and cloudy air). We do not take up the procedure of treating the enseinble 

averaging of S here. We merely indicate its presence through the source term 

I  defined as 

E = <^ S     = [l+(3s-l)r]S (5.6) 

We may express Equation (5.1) as 

DSy/Dt = Srr w + 2 .^ , , .: (5.7) 

where for brevity in what follows we let &=^Q. 

The ensemble average equations in the second-order closure system 

involving e^ through Equation (5.7) are those governing e^, uje^, e^, and 

q'e^. These moments derived from Equation (5.7) and the corresponding 

conservation laws for the other variables are 

DOy/Dt = - 3(u!e;)/8xi + er(r'w' + r w) + E  ...     (5.8) 

P(u!0y')/DT = - ujuj (9Gv/3Xj-3rjr)-uJe; 3Ui/3x. 

+ (gi/Tr)6v'^-2eijk"jUkev' + 0.75(q/A)u]e, 

+ 0.3 3(qA9u:e;/axj)/9x- + gr. u'u^r 

83 



^•v^> jr   ,D uifr - 
+ 3rj  Uj  u|r'  + E'ul ■'     "  '^     ■   ^•' (5.9) 

D(e;2)/Dt = -2uje;(8e^/8Xj-35r)-0.45(5/A)e;^ 

+ 0.3 9(qA9e;2/8x.)/9x 
0(,^3'-: 

J^'^'^J 

+ BFj uje;r' + erj Uj 8;r' + z'e; (5.10) 

D(q'e;)/Dt = -  ujq'   {3ey/8xj-3rjr)  - uje; 3q/9xj 

- 0.45(q/A)  q'e; + gr^   ujq'r' 

.. + 0.3 8(qA9q'e;/9xj)/9Xj  + SFj   Uj  q'r'   + L'q' ,       (5.11) 

In the above equations r^ =  r g^./ g , and q and A are characteristic velocity 

and length scales for the turbulence. .,-,.. 

We observe that the effective buoyancy driving the production terms is 

the generalized buoyancy 6,^ defined as 

Qw " ^v - 3rR   .  .       .,  (5.12) 

where R is defined as the cloud depth 

R(z) = J r(z)dz (5.13) 

and z is the coordinate direction aligned with the gravitational body force. 

From Eqs. (5.12) and (5.13) we then have 

84 



3e^^/3xj = ae^/axj-eFj-r  _ (5.14) 

D6^^/Dt = Dey/Dt-errw (5.15) 

Equation (5.7) expressed in terms of the generalized buoyancy thus becomes 

conservative (except for the radiation and precipitation source term E): 

D6^^/Dt = E (5.16) 

The generalized buoyancy e^ is an appropriate conserved variable for 

partly cloudy situations. Although e^^ is conserved, it is important to note 

that 6y (not 6^) remains as the determinant buoyancy for the momentum 
equation. 

It will be observed that new second and third order correlations 

involving r are introduced into the system. After the mean cloudiness 7, the 

most important second order correlation is the cloud flux w'r'. The cloud 

flux appears directly as a heating source term in the mean virtual potential 

temperature Equation and carries the essence of cumulus heating in partly 

cloudy situations. A third order correlation, particularly important in 

conditionally unstable flows, is the cloud vertical turbulence energy 1/2 

w'w'r' which represents the vertical turbulence energy which is correlated 

with the cloud fluctuations. Similarly important are the 

cloud heat and moisture fluxes w'Gy'r', w'q'r' which represent the fluxes of 

heat and moisture which are embedded in the fluctuating clouds. (Note that 

all these correlations vanish in uniformly saturated stratus for which r = 1, 
r' B  0.) 

The ensemble mean liquid water qj^ and variance a (which do not appear 

directly in Eqs. (5.8)-(5.11) but control the radiative transport and 

precipitation microphysics) are, assuming liquid-vapor equilibrium, 

^st, = % ^  + ql^ (5.17a) 

85 



2    -—-  -^ 
% = ^A^JI = %  ^'^ -^ 2 q^ r q^r' + r q^^ 

+ 2 (q, q^r'2 + r ^^) 

'^i''"  -qx^' (5.17b) 

It can be seen that the liquid water variance (a second-order correlation) 

Involves third and fourth order correlations of the basic variable q.=q-q 

Since r itself can be directly expressed in terms of q^, it is not a new 

dependent variable of the flow; rather it is a function of the basic set (u^-, 

9v» q)« Thus, the above moments can be expressed in terms of moments 

involving only the basic set. If the distribution function of the variables 

over the ensemble were known, this would then be a simple matter of formal 

calculation. We shall show how the partly cloudy correlations can be reduced 

to expressions involving only the fundamental set and certain coefficients 

which relate cross-correlations and variances of the partial cloudiness r with 

the fundamental variables. To proceed further to explicit forms for these 

coefficients, further information about the distribution functions must be 

specified. We have carried through the complete explicit evaluations of the 

coefficients and all correlations for the case of Gaussian distributions; we 
shall quote the results of the evaluations below. 

We now consider the reduction of the new correlations involving r 

appearing in Eqs. (5.8)-(5.11) to expressions in terms of the fundamental set 

of variables (u^-, e^, q). For equilibrium systems, the quantity q;^ E q-q^ is 

central to these partly cloudy correlations. From Oliver, Lewellen, and 

Williamson , the fluctuation q^ may be expressed in terms of the fundamental 
set as 

q{ =  aq'-be; (5.18) 

where 
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a = 1 - YqBjqs (5.19a) 

b = Teejqs/Tr    '   .^     ", (5.19b) 

and \'"' 

Y = - 0.61 + (y-^0.61)r (5.20a) 

Ye = 1 + {y"^-l)r ., .    (5.20b) 

The correlations Oq and ^'q^  can now be expressed in terms of the fundamental 

variables as 

^qx " "^A^X = 3' q'^ - 2ab q'e; + b2 9^2  ;  •     (5.21) 

<j.'q; = a q'4,' - b e;<t,' (5.22) 

Let us define the coefficients C^*^ by the statement 

7V = C(*) (ap/aq^)7^ (5.23) 

where a^ = (rV) /2 is the cloudiness variance. Equation (5.23) is, in 

effect, the defining Equation for the coefficient C^*). For variables <^, q, 

which are Gaussian, the coefficients c(*) are unity. 

We may then express the partly cloudy second-order correlations in terms 

of the fundamental variables (using Eqs. (5.22)-(5.23)) as 

■^ = C("i) («r/%) (a ^ - b ^)   ■ 10 •: (5.24a) 

6^= C(^) (a,/aqj (a?^-b e^) (5.24b) 
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q'r' = C(q) (op/oq ) (a q'2 - b q'e;) (5.24c) 

The correlation Oq is given by Equation (5.21) in terms of the 

fundamental set. The representation of Op and the coefficients C^*) require 

further information about the distribution function. We summarize the results 

for Gaussian variables here. The cloudiness state Q is defined as 

Q = qx/% (5.25) 

and represents the ratio of the mean saturation difference to the rms 

saturation difference. For Q-x» the state must approach one of full cloudiness 

(r+l) and vanishing fluctuations (op+O). For Q->-*o the state must be fully 

clear air (r^O) with similarly vanishing fluctuations (op^O). When Q=0 the 

mean flow is just at the saturation point and the fluctuations should be at a 

maximum i^r'^'^rmax.'i' ^^"^ Gaussian distributions of any variable 41 and the 

difference mixing ratio q^, it can be shown that 

7 = "I [1 + Erf (Q//2)] (5.26) 

r =4= exp (-Q2/2) (5.27) 
'  •2] 

^ -■  -''r ■ ? ■ c(*) = 1   ' "^-      (5.28) 

Hence the cloud state Q is determined by the fundamental mean and second-order 

variables; and this single parameter in turn determines a^,, r, and c'*'. The 

cloudiness variables are thus closed in terms of the fundamental variables. 

From Equation (5.24a) the cloud flux is represented in terms of the total 

moisture flux and heat flux as 

wV" = c(w) (a^/oq ) (a wV" - b vTe;) (5.29) 

88 



The cloud flux represents the net flux resulting from partly cloudy updrafts 

and down drafts. When w'q' and w'9y have the same sense the cloud flux is 

diminished by the presence of heat flux due to warming which is positively 

pprrelated with moistening. When w'e^ is opposite sense to w'q' the cloud 

flux is enhanced by the positive correlation of cooling with moistening. 

Third-order correlations appearing in Eqs. (5.9)-(5.11) present more 

tasks in modeling. Following Donaldson (1973), we may possibly model these 

term§ as gradient-driven diffusion of second-order correlations: 

u'w'r' - - Vp (qA) 3u!r'/3z (5.30a) 

e'w'r' «= - V (qA) 9 9'r'/3z (5.30b) 

q'w'r' = - Vp (qA) 3 q'r'/3z (5.30c) 

The diffusion coefficient Vp may be taken as equal to v^. the general diffusion 

coefficient in the Siecond-orfler closure system. However, we also recognize 

that this simple approach may not be adequate for intermittent turbulent 

flows. • 

Turbulence Closure Theory on an Intermittent Turbulence Field 

The modeling procedure and modeling coefficients developed for 

second-order closure theory rest on the assumption that the smallest 

resolvable regions of the flow field under consideration are fully turbulent 

(or fully laminar). In large scale meteorological models, a conditionally 

unstfible atmospheric flow is often in a quite different state. It may be 

composed mostly of stable regions of vanishingly small turbulence which 

co-exist with a small fraction of highly turbulent zones. We believe that 

second-opder modeling can quite accurately describe the kinds of turbulent 

features present in these turbulent zones such as plumes and jets, penetrating 

downdrafts, and gust fronts if the detailed structure of these features is 

resolved. On the other hand, if we choose to resolve only the large scale 

flow which consists at any Instant of a small fraction of turbulent zones 
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embedded in fluid which is otherwise weakly turbulent, we must describe such a 

field by introducing an intermittency function oj^. There are a variety of 

ways of defining the intermittency; however, we shall use a simple partition 

definition. Let n denote a volume of flow which is small compared to the 

large scale gradients of interest yet contains a number of disturbed zones 

within it. Let fi^j denote the fraction of n which contains the disturbed 

regions, while i^-^^) denotes the undisturbed portion. The intermittency- u^ 

is then defined as <:'«u:: = '->■ r.;-.: -^!f "*.   »':;K. L = ■:    .■■.. 

:^\ o2 = ii./"   '■■■ : ' (5.31) 

In this preliminary investigation we shall temporarily set aside the mean 

velocity field effects and illustrate what amounts to the free convection 

limit. The mean velocity and corresponding shearing production effects can 

later be incorporated with the same methodology. 
■ . ■"'". "; .,{-:'■     ... • .-"v:/_ 

The governing equations of the large scale variables are the equations 

for the virtual potential temperature and water mixing ratio with the partly 

cloudy correlations presented in Part 5. ...;-,, 

Diy/Dt = - 9w'e;/3z + er(rw+r'w')+i: (5.32) 

Dq/Dt = - 9w'q79z-C (5.33) 
. f: 

In the above C is the mean precipitation rate and Z   contains the effects of 

radiative transport as well as precipitation. 

Because of intermittency, the second-order closure system described in 

Part 2 must be modified to describe the large scale correlations w'Q^, w'r', 

w'q'. We assume, however, that in the disturbed regions of fraction u^, 

turbulent correlations may be defined which are governed by the usual 

second-order closure equations. Let ( )d denote an average for the 

disturbed regions. The usual second-order equations, assumed descriptive of 

these disturbed regions, are then of the typical form 

90 



D(w'e;)j/Dt = - (w'w')d (9ew/3z)d + g/Tr(e;^)d - 0.75(qH/A)(w'6')^ 

+ 0.3 3qHA9(w'e')^/9z+3r(w'w'r'+w w'r' )^+(i:'w') ^ (5.34) 

Since we assume the turbulence is negligible in the fraction (1-w^) of 

the flow field, the large scale higher-order correlations ( ) may be 

related to the disturbed region correlations (   )(j as 

{   ) = <^2(   )d (5.35) 

and for the rms quantities. 

A A 

a 

q = wq^j (5.36a) 

r = <^(«Jr)d (5.36b) 

%  = '^(^q^^d (5.36c) 

The large scale mean cloudiness is given by 

, , .   ,  r = a)2(7)^+(l-a)2)(7)g ,, (5.37) 

where (r)^ is the environmental region cloudiness of fraction (l-w^). 

Let us now summarize the developments required to apply the second-order 

closure system to partly cloudy and possibly intermittent flows. The first 

development concerns the dissipation and conventional triple correlation 

(diffusion) terms which are indicated by a single underline in 

Equation (5.34). We expect that the characteristic velocity q in these 

modeled terms should be based on the average turbulent velocity in the 

turbulent region rather than on the average over the larger scale region. 

Consistent with Equation (5.36a), it therefore appears that one of the 

principal modifications required in the system of equations to make them 
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applicable to an intermittent flow is to divide the single underlined terms by 

0) so that these modeled terms are now based on the appropriate characteristic 

velocity. Thus, the large scale second-order correlation equations in 

intermittent flow may be expected to be modeled as 

Dq /Dt = g/Tr^ w'e; - a)-i(q/4A)q +a)"l0.33qA3q /82)/3Z     (5.38) 

iO^" 

D(e;2)/Dt = - w'e; (3ev/3z-3rr)+ 0.3u-l 3qA8e;2/3z 

•^0.45q/A)(e;2)+Br(w e;r'+w'9;r' ) + (£'9;) (5.39) 

Dw'q'/Dt = - w'w'3q/8z+(g/Tp) q'9;+0.3a)-l 3qA3w'q73z) 

0.75a)"l(q/A)w'q' (5.40) 

Dw'e;/Dt = - w'w* 3e^/3z + (g/T^)e;2 - 0.75 l-i(q/A)w'e; 

+ 0.3 oj-i 3(qA3w'e'/3z)3z + er(w'w'r' + w w'r') + E'w'  (5.41) 

D(q'e;)/Dt = - (w'q')((3ey/3z)-grr) - (w'e;)(3q/3z) 

+ 0.3a)-l3qA3q'e;/3z)/3z 

0.45a)~i(q/A)q'e;, + grw q'r'+w'q'r' + Z'q'  ■ •     (5.42) 

D(q'2)/Dt = -(w'w')d(3q/3z)d-0.45a)-i(q/A)q'2 
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+ 0.3oj"l3{qA8q'2/9z)/8z (5.43) 

New modeling may be required for the doubly underlined terms which are 

triple correlations involving cloud fluctuations. In strongly intermittent 

flow, the gradient-driven modeling previously given may well be inadequate for 

these terms.     It is possible that  in such flows a model   of the form 

w'(|)'r'  = apOi'io^ w'<f>' ^ .< (5.44) 

(where a^ is an order unity modeling constant) may be appropriate. Such a 

form has the correct limiting behavior in that it vanishes in clear air or 

stratus situations when ap>0 and in strongly intermittent flow it has the 

property 

w'(|)' r' ~ w'(j)' 

since {a^)^~l and thus co'^Op ~ 1 in strongly intermittent flow, as indicated 

by Equation (5.36b). Another possibility is that some more global integral 

type model may be more appropriate for these terms. 

The third development required is a theory of closure for the 

intermittency u^ itself. In our discussion up to this point we have utilized 

the intermittency u^ simply to distinguish the disturbed regions from the 
2 

undisturbed regions. We now present the conditions which determine w . For 

absolutely unstable flows in which 

ai^/az < 0 ■ (5.45) 

the flow is non-intermittent and we set OJEI for such flows. 

For flows which are conditionally stable, we have 

;- 0 < 89^^/9z  <  (l-7)Br (5.46a) 

7 < 1 ^       ,       ^    (5.46b) 
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For conditionally unstable flow we offer the following tentative closure for 

the intermittency. Convection is induced by the condensation of moisture. 

Thus, the convectively active zones are necessarily the cloudy zones. As the 

mean cloudiness declines, a point is reached in which the partly cloudy 

updrafts and downdrafts cannot fill the whole space and a bifurcation into 

disturbed and undisturbed regions occurs. 

In the conditionally unstable regime, the flow will be unstable to 

vanishingly small disturbances for all q^ > 0. At q";^ = 0, the stability is 

neutral. We postulate that this neutral stability point is also the point of 

bifurcation into disturbed and undisturbed regions. For q;^ < 0 and 9e^/3z 

satisfying Equation (5.46a) the flow is intermittent with (q';^)g < 0 in the 

undisturbed regions. We postulate that in this intermittent regime (q^;^^)^^ 

remains at the level of the flow at the bifurcation point; thus 

(■q^)jj = 0, when ^^ < 0 (5.47) 

That is, the disturbed or cloudy region should be characterized by a mean 

moisture level which is approximately equal to the local saturation level. 

From Equation 5.26 it then follows that 

consistent with identifying the cloudy regions with the disturbed regions we 

must take the undisturbed zones as cloud free. Then from Eqs. (5.36), (5.37) 

and (5.48) 

r = (0^2,  a. =^ (5.49) 
/2 

Closure may now be completed by recognizing that some fraction of the 

humidity fluctuations in the disturbed region must be of sufficient magnitude 

to exceed the amount by which the environmental humidity departs from the 

saturated area. Thus 
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(%)d = - Co i%)^ (5.50) 

where CQ now becomes a modeling coefficient determined by what fraction of the 

fluctuations are assumed to exceed -(qx) • If this is set at the 5% level 

then our assumption of a Gaussian distribution in the disturbed region would 

give CQ = 0.6. As long as CQ is assumed, Eqs. (5.36c) and (5.50) then 

determine the intermittency .. 

—     —     2 
where we have used (q^) = qx/(l-'^ )• 

e 

The system of equations is now complete with the mean variables 

determined by Eqs. (5.32) and (5.33). The second-order correlations of the 

mean variables are determined by Eqs. 5.38 to 5.43; the cloud flux term w'r' 

by Equation 5.29; r and a^ by Equation 5.49; a by Equation 5.21 and 

finally m  by Equation 5.51. 

For application to the problem of sub-grid cumulus description (cumulus 

parameterization), we would expect to develop simplified approximate solutions 

to this set. Some of the simplifications which may be possible include the 

approximations of quasi-equilibrium, super-equilibrium, or self-similarity. 

The most appropriate approximations for cumulus parameterization remain to be 

determined. It is important to note that the only inputs to the turbulence 

equations are the large scale mean fields and the input fluxes at the cloud 

base (or the full boundary layer may be solved concurrently). From these 

inputs the cloud flux w'r' should emerge naturally yielding the heating rate 

distribution. 
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Data Comparisons 

To examine the consistency of this modeling procedure, we make some order 

of magnitude analyses with an actual data set. The data set chosen is that 
39 

for the Gate B Scale Array (Thompson etal. ).  Selected observations from 

this data set are tabulated in Table 1.   ;,■■ 

TABLE 1. SELECTED DATA FROM THE GATE B SCALE ARRAY 
(Thompson et al.^^) 

(w'q')o (from precipitation) 1.4 X lO"'* m/s 

region of conditional stability 
(950 mb to 185 mb) 

10"^ 

3q/3z (characteristic moisture 
gradient in mid portion 
of layer (~h/2)) '\t 

•1.8 X 10-6 m-l     v: 

96/82 

.." I.. 

(characteristic buoyancy 
gradient  in mid portion 
of layer  (~h/2)) 

+ 0.0035 °C/m 

■K>f ' '; ^i ;"1- 

Low Level Convergence 
and Evaporation Rate 7.5 X 10"'' s -6 ^-1 

er (in mid portion of 
layer ~h/2) 

'ri 

0.0040 °C/m 

qi ■0.002 

Average observed heating rate 
by cumulus convection 5°C/day 

Although the cloudiness r is not measured, it is observed to be small. 

From Table 1 it can therefore be seen that the system is conditionally stable, 

since er > se^/az > 0. Since the latent heat release is important in 

conditionally stable systems, the buoyancy flux is determined principally by 

moisture flux. Let (w'q')Q be the characteristic moisture flux. The 

characteristic buoyancy is then (w'e^jp ~ (L/Cp)(w'q')Q. From the turbulence 
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kinetic energy Equation (5,38), we have in super-equilibrium 

a>-lq3/A ~ (g/Tp) w'e;; (5.52) 

hence we may construct a characteristic velocity scale w+ as 

w3 = (g/Tp)(L/Cp)(w'q')o oih (5.53) 

where h is the thickness of the conditionally stable region. 

The characteristic scale of the moisture fluctuation, q+, is defined as 

q+ = (w'q')o/w+ '   ^^     (5.54) 

Then from Equation 5.51  „. 

(I) = - ——■ 

0.6q;^    0.6q;^ 

2/3 

For the data values given in Table 1, we find 

■ a)"^/3 w+ = 4.9 m/s 

0) ̂ /3 q^ = 0.29x10"'* m/s 

0) = 0.06 

w^. = 1.9 m/s 
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(5.55) 

V3     (w'q')o 
"   = -/ TTTTTI (5-5^) 



q+ = 0.7x10" 

r = 1.9xl0"3 

Oj. =  0.024 

The value of mean cloudiness for this data set seems a bit low;  however, the 

cloudiness variance is of the order of 2%. 

If the cumulus flux is  approximated from  the leading  term of 

Equation (5.29) as 

w'r' ~ a{a^/a^   ) 
(w'q')o 

With a - 1 and the above values, we obtain w'r' = 0.02 and the cumulus heating 

rate is then 

erw'r' = 8°C/day 

which is as close to the observed heating rate as we should expect for the 

current rough approximations. 

As an independent check of the intermittency, we may calculate the 

moisture-flux in mid layer from super equilibrium using the observed moisture 

gradient and compare it with the precipitation derived value (w'q')Q. In 

super-equilibrium 

w q' ~ -toqA 3q/3z 

with A=103m, q ~ w+ ~ 1.9, and 8q/az ~2xl0~^ m"i we find 

vy'q' ~ 1.8x10"'+ m/s 

98 



which corresponds with the observed 1.4x10"'* m/s surface value. 

Although we have not yet used this set in a predictive model, this 

exercise does indicate, at least, an order of magnitude consistency for this 

new set of equations.  ,, \-: .'^^^ .:AW t.   K." .  '  ■> ;:.- 

We believe that this is a promising approach to the problem of cumulus 

parameterization. This is particularly true for mesoscale models, for which 

the Arakawa and Schubert scheme, most favored for global models, would have 
difficulty in regions where the intermittency is not much less than one. 

'^j ■_•' 

-'W- 

■-<■ ■ ■ '..w , 
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6. CONCLUDING REMARKS 

We believe that the results of the Calspan fog simulations are as 

accurate as should be expected for a one-dimensional simulation of what may 

generally be expected to be a three-dimensional phenomenon. Further, 

substantial improvements in modeling the atmospheric boundary layer in the 

marine environment appear to require addressing directly the problem of three 

dimensionality. This is particularly true of the coastal regions which are 

vital to the Navy's interests. We have the choice of either developing a 

complete unsteady, three-dimensional version of our second-order closure 

model, or using the existing one- and two-dimensional versions of our model to 

develop appropriate turbulent flux parameterization schemes which may be used 

to adequately specify the sub-grid processes in three-dimensional, regional 

meteorological models developed by others. As discussed in Chapter IV, we 

believe the latter approach is preferable at the present time, because it 

should permit our model developments to have an earlier impact on operational 

models. 

The grid resolution in any mesoscale meteorological model will never be 

adequate to completely resolve the turbulent transport processes of importance 

in the troposphere. Thus, accuracy of the physical mechanisms which are 

controlled by turbulence will depend on how faithfully the sub-grid 

parameterization can simulate these processes. Our second-order closure model 

of turbulent transport in the atmosphere provides two ways of developing this 

parameterization. First, there are the dynamic equations for the second-order 

flux quantities of interest, which may be approximated in some fashion. 

Second, our existing one- and two-dimensional models of the atmospheric 

boundary layer may be run with relatively fine resolution to test the accuracy 

of any tentative parameterization schemes. 

In order to investigate how well a candidate parameterization scheme may 

be integrated into a mesoscale model, we expect to use the three-dimensional 

Navier-Stokes model which Dr. Sykes has currently running on A.R.A.P.'s 

computer.  This model currently exists in two forms: as a model of the full 
40 

Navier-Stokes equations in cartesian coordinates as used by Mason and Sykes 

and as a hydrostatic model  in a terrain-following coordinate system as 

proposed by Clark'*^- This model should serve as a test vehicle to determine 
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the relative merits of increasingly complex parameterization schemes. 

Some of the most important turbulent transport processes in the lower 

troposphere involve clouds. Therefore, in order for any sub-grid flux 

parameterization scheme to be very successful on the mesoscale level, it must 

incorporate some of the essential elements of cloud dynamics. As discussed in 

Chapter V, we have reviewed the cumulus parameterization schemes proposed by 

Arakawa and Schubert and Kuo . It appears that the Arakawa and Schubert 

model which has found some success in global models would require extensive 

modifications to be used at the mesoscale level. On the other hand, we 

believe our second-order closure approach can provide a more realistic 

representation than the Kuo model which is much simpler than that of Arakawa 

and Schubert. '  ■ 
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APPENDIX A 

MODELING THE ROLE OF TURBULENCE IN CLOUD MICROPHYSICS 

INTRODUCTION 

In this work we present a model of cloud and warm precipitation which is 

naturally coupled to the turbulence of the atmosphere in which clouds reside. 

Models of precipitation previously developed have been constructed for 

specific cloud and storm systems (Kessler, 1969; Wilhelmson and Klemp, 1981; 

Orville and Chen, 1982) and take no mechanistic account of the effects of 

turbulence. In the present work we explicitly describe certain of the actions 

of turbulence upon the growth processes of cloud droplets. These include the 

effects of turbulence-induced shear and acceleration fields on the droplet 

coagulation. 

In Part 2 we review the stages of condensation, cloud droplet spectrum 

evolution, and precipitation; and we point out the role of turbulence in the 

various microphysical processes. In Part 3 we present a microphysical closure 

model which reduces the integro-differential kinetic equation describing the 

droplet population to a tractable form which explicitly incorporates the 

effects of turbulence described in Part 2. In Part 4 we develop the turbulent 

ensemble average forms of the cloud and precipitation equations and the 

second-order correlation variables according to the methodology of higher 

order closure theory. A particular development of the ensemble average is 

required for description of the turbulent motion of the cloud and 

precipitation drops in the turbulent cascade and the corresponding ensemble 

average of droplet functions. In Part 5 we illustrate some of the properties 

of the model for homogeneous clouds. 
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CLOUD FORMATION, EVOLUTION, AND PRECIPITATION 

To set the stage for the microphysical closure we shall develop, we first 

review the various processes which take place from the onset of a water mixing 

ratio in excess of the saturation value to the final stage (if it occurs in 

the time scale of a particular macro-event) in which drops precipitate to the 

surface. We are particularly interested in the role of turbulence in these 

various stages of development. The stages of drop evolution may be defined in 

the scheme of Table Al. ' 

Once the water mixing ratio exceeds the local saturation value, nuclei 

must be activated before water may condense in realistic time scales. 

Following nuclei activation, drops grow by the direct condensation of vapor 

and are collisionally coupled only through Brownian motion. In most 

atmospheric situations the liquid water formed by the overall amount of excess 

mixing ratio over the saturation value and the number of nuclei available and 

activated results in a cloud with drop number densities ranging from 

10^-109 m"3 and radii ranging from 1 to 10 ym. 

A particular feature of the growth of cloud droplets and the evolution of 

the spectrum is the creation of a small number of drops much larger than the 

average. This tail effect in the distribution function is intensified by the 

large collision cross-section of large drops, the mechanism by which droplets 

grow significantly beyond the range of radii < lOum up to precipitation sizes 

in excess of 100 urn is still an outstanding unresolved problem. One class of 

mechanism is collisional. Since Brownian collisional rates are much too small 

for significant collisions over characteristic macro time scales for this size 

range of droplet, gravitational sedimentation has long been identified as a 

collisional coalescence mechanism of atmospheric clouds, (Berry, 1967; 

Warshaw, 1967; Twomey, 1966). There seems little doubt that the collisional 

coalescence of droplets of different size by gravitational sedimentation is an 

important droplet growth mechanism at some stage of cloud evolution. 
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TABLE Al. STAGES OF CLOUD DROPLET SPECTRUM FORMATION AND EVOLUTION 

(1) The Nuclei Activation Stage 

drop (nucleus) size 10"^ Mm - 1 ym 

response time scale 1-10 sec 

(2) The Condensation Growth Stage 

drop size -^      1 pm - 20 ym 

response time scale        '      10 sec 

(3) The Collisional Growth Stage 

drop size 10 ym - 10"^ ym 

time scale 10 - 10 sec 

(4) The Sedimentation Stage 

drop size 50 ym-10"3 ym 

time scale 0.1 - 1 hr 

On the other hand, in the early stages of growth (radii from 5-30 ym) this 

mechanism possesses certain limitations. Two of these limitations are the 

inherent requirement of differential size for a non-zero collision rate and 

the sharply diminished collision efficiencies which result for the low 

Reynolds numbers of droplet sedimentation in the range of sizes from 5 to 

30 ym (Mason, 1971). These two limitations when viewed in the light of a 

further result from classical condensation theory - namely the narrowing of 

the droplet spectrum during condensation growth (Sedunov, 1974; Levin and 

Sedunov, 1966) - suggest that growth mechanisms other than gravitational 

sedimentation may play an important role in the growth of cloud droplets into 

precipitation size drops. 

It would appear that atmospheric turbulence can play an important and 

direct role in the evolution of the cloud droplet spectrum through both 

collisional and non-coilisional processes. The collisional processes include 
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the coagulation induced by turbulent shearing and acceleration fields (Saffman 

and Turner, 1955). The non-coilisional processes involve modification of the 

droplet spectrum by either fluctuations or turbulent mixing of the humidity 

and temperature during condensation and evaporation. This latter effect has 

been studied in a statistical manner (Levin and Sedunov, 1966; Sedunov, 1974; 

Jeou Jong, 1966) and in simplified homogeneous cloud models (Bartlett and 

Jonas, 1971; Mason and Jonas, 1974; Baker, et al., 1980; Jonas and 

Mason, 1982). These studies, which are not without contradiction of one 

another, indicate that turbulent fluctuations of supersaturation in absence of 

mixing do not necessarily broaden the cloud droplet spectrum. On the other 

hand, turbulent entrainment of environmental air into cloud coupled with large 

scale growth and decay fluctuations on the scale of the lifetime of individual 

clouds do appear to appreciably broaden the droplet spectrum. Such 

non-coilisional "turbulent" broadening of the spectrum would clearly augment 

the collisional processes which ultimately complete the evolution of cloud 

into precipitation size drops. 

The final stages of drop evolution occur when drops have grown large 

enough to develop a significant sedimentation velocity. These precipi table 

drops then leave the cloud and progress to the surface where they leave the 

atmosphere. Turbulence may often play a significant role at this stage. We 

shall show that under most atmospheric conditions, drops as large as 1000 urn 

are still strongly correlated with the largest turbulent eddies. Turbulent 

contributions to the sedimentation flux of precipitation must therefore be 

included in the construction of the total flux of water drops which reach the 

surface. In general, the turbulent flux can either oppose or augment the 

sedimentation flux and lead to a diminishment or enhancement of the net flux. 

On the basis of the time scales presented in Table Al, we may regard the 

small size spectrum dynamics (nuclei activation and condensation - evaporation 

rates in the elementary spectrum) as occurring instantaneously on the time 

scale of turbulence. Correspondingly, the collisional growth and 

precipitation evaporation time constants are often much greater than the 

turbulence time scale. We shall use this difference in time scales in the 

construction of an approximate description of the microphysical processes and 

in simplifying the turbulent ensemble equations. ^'■ 
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DESCRIPTION OF CLOUD AND PRECIPITATION 

Cloud and Precipitation Moment Equations 

Instead of considering the detail of the entire droplet spectrum, we 

divide the spectrum into two groups: cloud, consisting of small droplets 

which do not precipitate, and precipitation, consisting of large droplets 

which possess a sedimentation flux. 

The choice of the spectrum dividing volume V^Q which separates cloud 

drops from precipitation must be made on the basis of two principal 

constraints. The first is that VpQ lie in the tail region of the elementary 

spectrum (i.e., the spectrum before collisional processes become active) thus 

we require Vpo>a^VQ, where VQ is the average elementary volume and a^ is the 

dispersion of the cloud elementary spectrum. Second, since the small droplets 

have negligible sedimentation velocities (over macro time scales) we do not 

specify the precipitation flux as an average over the entire liquid water 

distribution. Rather, it is more appropriate to define the precipitation 

group as those droplets with sedimentation velocities greater than a certain 

minimum value. This minimum value is determined by the overall 

macro-dynamics. This sedimentation velocity is selected so that a drop will 

fall over a characteristic macro-length in some characteristic macro-time. 

For example, for cloud with a length scale of the order of 1 km or less and 

precipitation on a time scale of the order of 1 hour or less, the minimum 

precipitation velocity, VpQ should be of the order of 10-100 m/hr which 

corresponds to the sedimentation velocity of a droplet of approximately 

20-30 ym radius. 

Since the elementary drop size lies in the range of 4-10 ym for most 

clouds, it appears that the rule of thumb V^Q/VQ ~ 10-20 may be adequate for 

most situations yielding a spectrum dividing volume outside the bulk of the 

elementary cloud distribution, yet not being so great that a significant 

portion of the smallest precipitation drops are inadequately represented nor 

that the bulk of the cloud spectrum becomes included in the precipitation 

portion of the spectrum. 
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The number, mass, and size relationships within the cloud and 

precipitation are then as follows. Let VQ be the smallest droplet volume of 

interest. Let m=(v/vQ) be a size specification parameter based upon droplet 

volume and hence proportional to liquid mass. The spectrum dividing size 

parameter is mpo=(Vpo/Vo)' We denote the number density of cloud drops of 

size m as n^-Cm) and of precipitation drops as n (m). The cloud and 

precipitation distribution functions f(.(m), fp(m) are then defined as 

fj.(m) = rij,(m)/n(.   l<"i"^nipo • (A.l) 

fp(m) = np(m)/n^   mpQ<m  . (A.2) 

where n^ and n are the total number densities of cloud and precipitation, 

respectively  (Figure Al).  The distribution functions thus satisfy the 

normalization conditions                >       , ■;• ■ :., 

:i' 

"bo-l 

m=l 
fr  (m) = 1     V   ...    (A. 3a) 

I fp (m) = 1  . , : , (A.3b) 

m=mpo 

The mixing ratio of cloud q^ and precipitation qp are given by 

'i'C 

^c "  (Po/'^»)^o"c'^c ' (A.4a) 
■I3."' 

qp = (Po/P«)Vo"p"ip ••■ (A.4b) 

where the liquid water density is PQ, the density of the air-cloud mixture is 

p„ and m^, mp are the average sizes of cloud and precipitation: 
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Figure  A.l Schematic of  liquid 
precipitation groups. 
cloud group spans the range 1 < m < m 

drop  distribution  and  cloud  and 
Source droplets exist at size m=l. The 

• pov Bi-modality, when it 
occurs, occurs with the second mode in the precipitation group. 
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\ = 
m=l 

m f (m) (A.5a) 

nir 

00 

2_^       m fp (m) : 
m=m po 

(A.5b) 

The cloud and precipitation dispersion are defined as 

m. 

m„„-l 

m=l 
(m -m^,) f^  (m) (A.6a) 

oo 

1 
m=m po 

2  2 
(m -mp) fp (m) (A.6b) 

Let q be the total water mixing ratio and q^ the mixing ratio of vapor. 

The mixing ratios satisfy the conservation condition 

qv + ^c + ^t (A.7) 

Utilizing the fact that the nuclei activation and condensation growth rates of 

droplets of sizes less than 50 ym are so rapid and that cloud will generally 

fall well within this range, we assume that cloud is in liquid-vapor 

equilibrium over the macro-time scale. Since precipitation may involve large 

drops with slow evaporation time scales in cloud-free air, we shall not 

require the precipitation to be in equilibrium. The presence of cloud will 

thus turn on the level of the saturation mixing ratio q^ relative to the total 

mixing ratio q. We introduce the cloudiness r(qx) which is a conditional 

variable indicating the presence or absence of cloud. It is defined as the 

Heaviside function of the difference mixing ratio qx=q-qs 3s 
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. ,^. -       . ,. "^ = ^W     • . . (A.8) 

The equilibrium liquid water mixing ratio q^ is then given by 

.   .    '-.  n^  ■;■ .K^n.-' '^^ = ^^X  •    .^.-,; ■ .  ., '     : . (A.9) 

The cloud and vapor mixing ratios q^,  q^  are given in terms of q, qp, q^ as 

■  :' ■   qc = '^ (qx-qp)   .    • ^^ ''■ ■ ^ (A.IO) 

^ ^-   .    •  . ^. :     qy = q-rq;^-(l-r)qp . -,■  -    K -       (A.11) 

We shall take as the dynamical equations governing cloud and precipitation the 

first two moments of the droplet kinetic equation for each group: the number 

density and mixing ratio moments. (We use the dynamical equation for q rather 

than q^. since either serves as an appropriate dependent variable). The 

results are 

Dq/Dt + 8(qpVpi)/8Xi = 0 . (A.12) 

Dn^/Dt = -Ncc-Npc-Ncp+N^v . (A.13) 

Dqp/Dt + 8(qpVpi)/9xT = M^p+Mp^-Mp, , (A.14) 

Dnp/Dt + 3(npVp^.)/3Xi = %-%p    ' (A.15) 

In the above N(-j.+Nj.p represents the loss of cloud droplets due to 

self-collisions among cloud droplets; N^-p and M^.- are the production of 

precipitation number and mixing ratio by self-collisions within cloud 

(auto-conversion of cloud). Np^. and Mp^. are the rate of loss of cloud number 

and the rate of production of precipitation mixing ratio by collisions of 

precipitation   drops   with   cloud   drops  (cloud collection).    Npp is the rate of 
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loss of precipitation number density by self collision of precipitation. For 

heavy precipitation with drops in excess of 2 mm, collisional de-coalescence 

and droplet instability break-up terms must be included in Equations A.13 

through  A.15. N cv and Mpy are droplet-vapor interaction terms. N cv 
represents the net production of cloud number due to condensation and 

evaporation. M represents the evaporative rate of precipitation in 

cloud-free air. ,' 

The variables q, n^, qp, np and Eqs. A.12 through A.15 represent the 

basic dynamical variables and conservation laws for cloud and precipitation in 

our simplified description. The cloud and vapor mixing ratios are determined 

from Equations A.10 and A.11 and the sizes m^, and m from Equation A.4. The 

precipitation speed then follows from the sedimentation velocity function 

Vi(m) as 

Vpi = Vi (mp) (A.16) 

and the precipitation flux as qpVp^. 

The closure of Equations A.12 through A.15 requires specification of the 

various collisional rates N, M and the liquid-vapor rates N^.^, Mp^. The exact 

representation of the collisional rates N^.^., N^-p, and M^.- are 

Ncc = "c 

2 m„„-l-m ""DO-^ "ipQ-l- 1     1 
m=l   k=l 

K(m,k)fc(m)fc(k) (A.17a) 

Ncp = "c 

m_Q-2  "IAQ-I 

m=l  k=mpQ-m 

K(m,k)fc{m)f^(k)  , (A.17b) 

% ^  (V/'^c) (qc/"c) "^cp (A.17c) 

where K{m,k) is the collision kernel between a droplet of size m and a droplet 
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of size k.  We may express these results in terms of a non-dimensional 

collisional effectiveness S „:   ap 

'*'cc " "c'^cc ^cc (A.18a) 

•^cp ~ "c'^cp ^cp (A.18b) 

where K^.^. and K^-p are appropriately defined average collision kernels. The 

collisional effectiveness is a measure of the effectiveness of all sizes 

within cloud in evolving the spectrum to precipitation size drops: 

m^Q-2 m„--l-m 

9  = 1^ ~ •^cc  '"cc 1 
k=l 

K(m,k) fJm)  fM     , (A.19a) 

m„^-2  iTino"-^ 
c   _ 1/ - 
•^cp  "^cp ■ 1 K(m,k) fJm)  f(-(k) .     (A.19b) 

m=l  k=mpQ-m 

We may similarly express the rates N_-, Mr.., and H^^  as 

\c =  "p"c Kpc Spc (A.20a) 

%c =  qc"p Sc S p '^pc ^pc ' (A.20b) 

Npp = "p SP SP ' (A.20c) 

where S  and S  are appropriate collisional effectiveness for the collection 

of cloud by precipitation and for precipitation self-collisions. 
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The collision kernel K(m,k) appearing in the collision rate expressions 

is composed of shearing and differential sedimentation parts. Since we do not 

describe the detailed microphysics of the small size spectrum formation but 

only the collisional growth stage for droplets greater than 1 urn radii, we 

neglect Brownian collisions. The collision kernel is thus expressed as 

K(m.k) = K(^)(m.k) + K(^s)(m,k) , (A.21) 

where K(^)(m,k) is the kernel for droplets in a shear field and K^^^) is the 

kernel for differential sedimentation in a force or acceleration field. These 

kernels have the form 

K(s)(m.k)  = Vo/7r(m^/3+k^/3)3  e e(5)(m,k)   , (A.22) 

K(ds)(ni,k)  = 7T(3VO/4TT)'/3   (m'/3+k'/3 )'(1-P„/PO)    y^{m)-y^{k)    e(ds)(m,k)   , 

(A.23) 

where G is the magnitude of the fluid shear, V^ is the droplet drift velocity, 

and e(^)(m,k) and e(^s)(m,k) are the collisional efficiencies. 

The efficiencies for differential sedimentation e^"^^) are given by 

Mason, 1971.  The collisional efficiencies in shear flow are less well 

established.  For particles of nearly identical size e^^^ :;; 1.  Swift and 

Friedlander, 1964, suggest a value e(^) - 0.4. 

The sedimentation velocity function V^-(m) may be expressed in terms of 

Tp(m) as 

Vi(m) = (l-P<»/Po) ^("1) (^""Sij ' (A.24) 

where Du^/Dt is the fluid acceleration,   g^-   the   acceleration   of   gravity,   and 

Tp(m)  is the droplet relaxation time. 
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For the purposes of the present theory, the droplet relaxation time in 

air at the earth's surface may be adequately approximated as 

T^(m) = aR^      ■     '        (A.25) 

where R^ is the radius of a drop in size class m and a, a  are constants given 

in Table A2 which is constructed from the data of Gunn and Kinzer (1949): 

' ■-  TABLE A2 

Droplet Radius R^ 
vm a a 

1< R^ < 40 
7    2 

1.6x10 s/m 2 

40 < R^ < 600 
2 

6.4x10 s/m -1 ■'■ 

600 < R^ < 1500 20 s/m /2 1/2 

Selected values of T are given in Table A3. 

TABLE A3 

R 
(ym) (ms) 

10 1.6 

50 32 

100 64 

500 320 

1000 632 

Microphysical Closure 

The elementary volume VQ as well as the collisional and liquid-vapor 

rates in Equations A.12 through A.15 involve the full distribution functions 

fc("')» fpCf") consistent with the fact that a reduced description of the full 

spectrum to two groups consisting of cloud and precipitation cannot be a 
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closed representation without additional closure approximation. Three overall 

properties of the full spectrum are critical for the macroscopic cloud and 

precipitation dynamics. These are the elementary volume VQ, the dispersion of 

the cloud spectrum a^, and the structure of the cloud distribution 

tai^ in the vicinity m - mpg. The elementary volume VQ establishes the 

average size of the cloud drop. The cloud dispersion g as well as the 

average size VQ are the determining microphysical properties for the 

collisional evolution of the bulk of the cloud spectrum and hence are critical 

to the rate H^^. The structure of the tail of the cloud distribution function 

determines the population of tail droplets and hence is critical to the rates 

Ncp. M(.p or correspondingly the effectiveness S^-p. 

Rigorous closure of the elementary volume requires a dynamical 

description of both the condensation nuclei and the supersaturation. In lieu 

of such a detailed description, we fix the elementary volume by specifying a 

parameter: the elementary number density n^, which may be thought of as the 

effective population of cloud droplets in the absence of collisions. The 

elementary volume is then determined by n^ as 

VQ =-77-^  ♦ (A. 26) 

Pa 

which from Equation A.4a then determines the cloud size m^ as c 

m c = "o/"c • (A.27) 

The elementary number density may be thought of as primarily an 

environmental and cloud type parameter. Typical values are given in Table A4. 
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_C1oud/Envi ronment 

Continental Cumulus 

Maritime Cumulus 

Maritime Stratus 

TABLE A4 

Elementary Number Density n^ (cm"3) 

200-800 

;:,; ;...,,  .    100-200 

' ■   '^^ -    50-100      .  ■  - 

The presence of collisions which we shall discuss in what follows acts as 
a broadening mechanism for the spectrum and leads to an increasing dispersion 

a^.    The manner in which non-collisional processes increase (or decrease) a^ 
is not presently clearly understood. We shall therefore restrict attention to 
the case where the cloud spectrum in absence of collisions consists of 

droplets concentrated at a single size m^=l  and a negligible dispersion o^z 0. 
Once collisions come into play, we have m^. > 1 and a^ > 0. 

Since the condensation and evaporation rates of the elementary spectrum 

are rapid compared to macroscopic time scales, we assume that the elementary 

drop number appears instantly when the saturation line is crossed. 

Correspondingly, the rate N^y may be represented as 

cv 5(qJ r Dt 
(A.28) 

where ^(q;^) is the Dirac delta function. In cloud free air the rate Mp^ is 

given by 

wi 
-1 

ith the rate Xpy given by 

Mpv = qpA P'   PV 
(A.29) 

•pv 
3n 

^POTMC 
[l+CRe/2s, /3]  (q^-q,) (A.30) 

where n is the kinematic viscosity of air, and R , S are Reynolds number and 

Schmidt number based upon droplet diameter 2Rp and sedimentation velocity Vp. 
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C::i0.28 is a correlation constant. Since qy=qs when r=l it can be seen that 

Mpy=0 except in clear air. ..'!;:;>::'■;!' ' 

We now consider the collisionally generated tail of the distribution 

function which will allow us explicit closure for S^.^-, and S^-p. The 

collisional processes will also determine o^. it can be shown that even for a 

constant collision kernel, the effectiveness S^-p is a sensitive function of 

the tail of the distribution. This can be demonstrated for the special case 

of a Smoluckowski cloud (droplet population initially n^(0) of a single size 

m=l {o^=0) at time t=0 under the action of a constant collision kernel K 

(Smoluckowski, 1917). ,, ^; 

For such a cloud, the distribution function is given by 

f^ (m,T) = f(. (1,T)T"'-I     "^^        (A.31) 

where ,-,   : .. ^ 

f^  (1,T) = (1-T)/(1-T"'P°' ) ..,,,,  (A.32) 

and the function T for the Smoluchowski's problem is given by 

T = (l/2)n^(0)Kt/[l+(l/2)njO)Kt] (A.33) 

Upon substitution of Equation A.26 into the definition of A.19, we find 

^cc = "'c^c^l'"'') (A.34a) 

^cp  = (V'^c^^c^'^po-l^T) (A.34b) 

The effectiveness S^.^. which describes cloud-cloud collisions which do not 

create precipitation and S^-p which describes cloud-cloud collisions which 

create a precipitation drop are shown in Figure A2 as a function of the 

evolution parameter T. It can be seen that at T=0, we have S(-p=0 since no 

droplets which are concentrated at f^(l,0)=l can reach the spectrum dividing 
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size in a single collision. Correspondingly at T=0, we have S^^=l since all 
droplets which exist at f(,(l,0)=l will remain as cloud droplets after their 

first collision. At T=l, we have a flat distribution with f(.(m,l) = l/(m -1) 

and with S(.(-=S(.p=l/2-l/(mpQ-l). For T > 1, the distribution shifts with most 

cloud droplets near the spectrum dividing size where fc(nipo-l) ^ !• I" this 
state we have S^.^. ;; 0 and S^-p - 1. / 

Description of the evolution of the distribution function is thus 

essential for the proper description of cloud evolution and the precipitation 

production rate. As our collision rate closure, we shall assume that the 

cloud distribution function to be used in the determination of S^^ is a power 

law form consistent with the Smoluchowski form of Equations A.31 and A.32. We 

regard the function T as an evolution function which describes the evolution 
of the cloud droplet spectrum from one which is peaked about the elementary 

spectrum size, v=Vo, m=l, T=0 to one which is flat with all sizes equally 

represented: f,.(m) ^ l/(mpQ-l). We fix the value of T through Equation A.27. 
For the form Equation A.31, m(,(T) from Equation A.5a is given by 

mc(T) = Y7^ [l-(mpo-l)f^(l) T>-1] (A.35) 

Thus, the evolution function T is determined implicitly by Equations A.27 and 

A.35. The dispersion for the form Equation A.31 is given by 

2,_,  niJ-(m^^-m^)[l-m^(l-T)] 
^c(T)=-^ ^\,'_r,  '"'^     .. (A.36) 

Under these closure hypotheses the collisional   rates become 

\c - "c^ccScc  (T) „   ■      (A.37a) 

% = "^K^.S^pCT) (A.37b) 

% = "cqcKccScp(T) (A.37C) 

124 



Npc = np^cSc {^.2^d) 

V = "p^cSc   '"      ''  •    (A.37e) 

:  ^ ,    ■'  V,,^ /       ; r Npp =|npKpp' '   '  ,; (A.37f) 

Because of the strongly diminished collision efficiency e'^^ for particles of 
significantly disparate size, we neglect the contributions of shear collisions 

to Kp(.. Because of the large differential sedimentation rate of large drops, 
we similarly neglect shear contributions to Kpp. 

The effectiveness with variable collision kernel is assumed to be 
approximately the same as the effectiveness with a constant collision kernel. 
This closure assumption places some burden upon an appropriate choice for the 
average kernels K^.^., K-^, K . We select as "average" kernels the forms 

K^.^ = K(5)(mJ,m-) + K('^^)(mJ,m-) , ■;    > .  (A.38a) 

Kpc = K(ds)(nip,mJ , (A.38b) 

where the sizes are specified as     •' 

:' m; = m.(l±a_/2)    , (A.39a) 

m* = mp(l±ap/2)    . (A.39b) 
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The precipitation dispersion Op is not a critical parameter of the model 

since it principally controls the rate Npp. The rate Npp is not a critical 

rate since the precipitation flux divergence 9(Vp^qp)/3x^ will dominate over 

Npp for precipitation drops in excess of 50 m in clouds of the order of 

several km or less in depth. We assume o^ is given in terms of the 

precipitation flux by a parameterization (Marshall and Palmer, 1948); it may 

be as satisfactory to take it as a fixed cloud type parameter. We assume that 

the precipitation distribution function shapes are not important for the rates 

Npj., Npp and it is permissible to set Sp(.=l, Spp=l/2. .■>  . . .• 

Since the power law form Equation A.31 is always monotone decreasing with 

size it does not allow bi-modality within cloud. It should be noted, however, 

that the collisional process which induces bi-modality into the spectrum 

(other than specially chosen initial conditions) is the rapid increase of the 

collision kernel (both in collision cross-section and efficiency) with an 

increase in size of the larger collision partner. There is thus a consistency 

between the cut-off of the monotone decrease of the cloud spectrum at m=mpQ 

and the large collision kernel associated with drops for m>mpQ. Hence the 

total droplet spectrum allows for bi-modality with the second mode (when it 

occurs) always occurring in the precipitation part of the spectrum 

(Figure Al). 

Our microphysical theory is thus closed.  The moisture variables in a 

cloudy, precipitating atmosphere are described by the moisture, cloud and 

precipitation variables q, q_, n^, n .  These variables are governed by the 
\j      u      [j 

conservation laws Equations A.12 through A.15. The rates appearing in these 

conservation laws are given by Equations A.37. The evolution function T is 

central to these collisional and liquid-vapor rates and is determined by m^ 

from Equations A.31 and A.35. The model coefficient of the closure is the 

elementary number density n^. 
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TURBULENT ENSEMBLE AVERAGE EQUATIONS 

Mean Equations 

The turbulent ensemble averages of the cloud and precipitation equations. 
Equations A.12 through A.15, are 

Dq/Dt + 3(u!q' + Vp^qp + V^iq^)/8Xi = 0  , (A.40) 

Dn,/Dt + 3(Uin,)/3x^. = -Nec^Ncp-Np^+N^y . (A.41) 

Dqp/Dt + 3 (ulq^+Vpiqp+V^iq^)/3Xi = M,p+Mp,-Mp,  .  .^    (A.42) 

Dnp/Dt + 8(u]n^+Vpinp+V^in^)/3xi = N^p-Npp .     '       (A.43) 

Since Vp^-=V^(mp) and nip is a function of qp and n through Equation A.25, 

the fluctuation Mi^  may be represented as 

Vpi = ^i^p - ^in^ . ' / ,  , (A.44) 

where 

3V • 3m 3V . 3m_ 
^i ' TT- ^ '   ^i = T-^ T-^ • (A.45) 3mp  3qp       1  amp  3np ' 

The correlations involving Vp then reduce to correlations involving the 

fundamental set of variables q, qp, n,-, np and the turbulent precipitation 

fluxes of mixing ratio and number may be expressed as 

Vpi^p = ^i ^ - ^- q?^ V  . (A.46a) 

Vpi^p = ^i qpn^ - b^ n^2 . (^^^455) 
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/3 
For Vp^- - m"/ , it follows from Equations A.46a and A.46b that 

i2 
piqp = c/3 (qp /qp - qpHp/qpOp) Vp^qp , (A.47a) 

Vpi"p = "/^ (qp^p/qpHp - Hp /np) Vpi np .        (A.47b) 

We shall term the flux Vp^qp+Vp^q^ the precipitation flux and the flux 

u|qp the turbulent precipitable water flux. We see that net flux consists of 

both turbulent and precipitation contributions. The term u{qp represents the 

turbulent transport of precipitation drops by turbulent updrafts and down 

draftsj vt can significantly diminish or enhance the pure precipitation flux 

V -a" +V -a' ..•■.'}!    - <   ■-■'■ 

The new non-coilisional correlations introduced which directly involve 

cloud and precipitation are the turbulent precipitable water flux u]qp, the 

turbulent cloud number flux u^n^, and the turbulent precipitation number flux 

u^-Hp. The collisional correlations required are M^,^,, N^^, N , M^ , MZ", and 

Npp. The condensation-evaporation correlations required are N(.y and Mp^^. 

The ensemble averages of the derived moisture variables follow from 

Equations A.10 and A.11 as: 

^c = ^ (qx-%) + ^'^X - ^'^p ' (A.48a) 

qy = r q + (l-r)(q-q ) - r'q;^ - r'q'  , (A.48b) 

q^ = q - qs •  ' (A.48c) 

We see that there are second-order correlation contributions to the mean cloud 

and vapor mixing ratios. 
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First Order Rate Approximation 

On the basis of the slow time scales of the collisional rate terms in 

Eqs. A.13 through A.15, we propose a first order rate approximation in which 

we retain the mean collision rates N^.^-, N(-p, Np(-, M^-p, Mp^, Npp and the 

liquid-vapor rate Mp^ (which must also appear in the virtual potential 
temperature equation), but we neglect their fluctuation contributions to the 

second-order correlation equations for u^-q' ujn^, u]n' etc. 

In this approximation, the instantaneous rates given by Equations A.37 

become 

,-2 
Ncc = (nc+n'2) K,, S,,_ (T)  , (A.49a) 

-2 
Ncp = ("c-^"c') he  Scp (T) , (A.49b) 

% = ("cV^X) Kcc Scp (T) . , (A.49C) 

V = ("p^c+^p^c) Sc ' (^-"^^^^ 

Mpc = ("pqc+np^c) Kpc ♦     , ('^•'^^^) 

1 ,~^. 
W  2 ("P^"P^) SP • (^-"^^f) 

In the above decomposition we have assumed the droplet loading is never large 

enough to affect the eddy dynamics and thus the collision kernels are 

de-correlated from the droplet concentrations. We have also interpreted S^^ 

as Sj-j, (T), etc. The ensemble average of the collision kernels given by 

Equations A.22 through A.25 require the ensemble average fluid shear G and the 

ensemble average net acceleration g^+Du-j/Dt . For simplicity, but without 
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essential restriction, we shall neglect the contribution of mean fluid shear 

au^/axj and mean acceleration Du^/Dt. Following Saffman and Turner (1955), we 

approximate the ensemble average acceleration as 

-5* 

•  .   ■     ■ gi+Du^/Dt    = /g2+a2 =" ^      • (A.50) 

where a is the rms acceleration 

(A.51) 

Before we can evaluate the quantities a and G as well as all correlations 

involving droplet variables n^., qp, np we must first consider the structure of 

atmospheric turbulence and its influence on the motion of liquid drops. 

Atmospheric turbulence consists of the motion of eddy structures ranging from 

the largest energy containing scale A to the microscale X^ where molecular 

dissipation comes into play.  Correspondingly, the large scale eddies have a 

characteristic time scale -r^=A/q where q  is the rms turbulence velocity. 

The turbulence dissipation rate e=l/4q /A is preserved through this turbulent 

cascade. The smallest eddies of scale Xo=(n3/e) ^"^   possess a characteristic 

microtime  T. =(n/e) ^^,     a characteristic  shear G. =T7^  - e^/2  and a 
0 3/0 ^0 

characteristic acceleration a^ = XQ/T^ - e 't.  The magnitudes of these 

quantities for the range of turbulence dissipation rates encountered in the 

atmosphere are presented in Table A5. 
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TABLE A5. TURBULENCE LENGTH, TIME, ACCELERATION, AND SHEAR SCALES 
IN THE ATMOSPHERE FOR DISSIPATION SCALE EDDIES 

E ^0 ^^0 

(ms) 

\/^ ^0 

(m2/sec3) (ym) - (s-M 
0.001 1510 130 0.009 7.7 

0.01 ■ 846 ' •• 42 0.05 23.8 

0.10 476 13 0.28 76.9 

1.0 268 4.2 1.58 238 

10.0 151 1.3 8.9 769 

Since the dissipation rate is preserved through the cascade, the 

fluctuation  time of  an eddy  of scale x is T:X^'^XO (^/^Q)      • The 

characteristic shear in an eddy of scale X   is G,=G^Q (>^/^Q)" '^    and the 

acceleration in an eddy of scale X is a^'^x    ^^^^ )"  * 

For those conditions where T^/xy^»l the droplet motion de-correlates 

completely from the turbulence of the air and there is no influence of 
turbulence on the collision kernels appearing in Equations A.22 and A.23. The 

ensemble mean shear G and acceleration a experienced by the drops in the 

absence of mean shear and acceleration tends to zero. At the opposite extreme 

for T^f./'^x «1 the droplets are completely correlated with the full turbulent 

cascade. The corresponding ensemble mean shear G which such droplets will 

experience is given by 

G = /2/15 Gx  . (A.52) 
0 

(Taylor, 1935). The rms acceleration which the droplet will experience is 

a = /I.3 a.  . (A.53) 
^0 

(Batchelor, 1950). 
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Let us now examine the droplet relaxation time T^ relative to the eddy 

fluctuation time T^^. From Table A3 it can be seen that over a considerable 

range of importance the droplet relaxation time T^ is much greater than the 

microscale time T^ and the motion of such droplets will not be correlated 

with the motion of dissipation scale eddies. On the other hand, the macrotime 

T^ is rarely less than 10 seconds under atmospheric conditions (except deep in 

the surface layer) so that the droplet motion is correlated (even for 1000 ^m 

drops) with a large part of the turbulent cascade. 

When T;^ <Tp<Ty^ we postulate that the smallest eddy scale X whose motion 

the droplet will follow is determined by the condition T;^ - T^ and thus this 

scale is given by 

^ = ^0  (V^X^)^^^  ;■ ' 'H' ^ ,    ..  (A.54) 

correspondingly the maximum shear Gx and maximum acceleration a^ which such 

drops can experience is        ■ 

h = h^  (VZ-^XQ)"'  . '       (A.55) 

^X = ^AQ (V/^XQ)"'^'  •  / (A.56) 

We now formulate the general ensemble average shear and accelerations as 

T /Tr(m)' k''r 
G(m) = c(s) x-l Min  (  °     )  . (A.57) 

^^0 

/Tj/2/Tj:/2(m)\ 
a(m)  = c(ds)  a^^ Min     I      ° I     . (A.58) 

where we indicate the explicit dependence upon droplet size and c^^^ and c^*^^^ 

are model constants. For droplets which are embedded in an isotropic cascade 

we may take c(s)= /2/15  , c(^s)=/T73. 
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It can be seen that for T (m)^ T, , the ensemble mean shear G(m) becomes 
0 

independent of E; the ensemble mean acceleration, however, continues to 

increase with e as a(m) ~ a^xjxi^ - E /2 whereas "a(m) ~ a^^ - e^/"* for 

Tp(m) i T^  • 
0 '0 ^0 

0 

The ensemble average kernels are thus given by Equations A.38 and 

Equations A.22 through A.24 with G given by ^(m"*") and Du^/Dt by l{m'^) where m"^ 

is the size of the larger collision partner and G(m), a(m) are given by 

Equations A.57 and A.58. 

The relative importance of turbulent shearing collisions compared to 

gravitational sedimentation collisions in evolving the elementary spectrum 

depends upon the magnitudes of the turbulence dissipation level e and the 

droplet spectrum dispersion a^.. In Figure A3 we exhibit the ratio of the 

turbulent shear kernel K^^^ to differential gravitational sedimentation kernel 

Kjds), In Figure A4 we show the ratio of the total collisional kernel 

K^c +'^cc ^^^^ ^^^ turbulence effects included to the turbulence-free 

differential sedimentation rate K^^s), ^ (-an be seen in Figure A3 that for 

cloud droplets dispersed over the range of 5 to 20 ym radius, turbulence 

induced shearing collisions play an important role in cloud evolution for 

dissipation rates in excess of 0.01 m^/s^. For wider dispersions, 

differential sedimentation will be more dominant; for narrower distributions 

turbulence shearing dominates the collisional process. For strong turbulence 

as might exist in cumulus corresponding to £ ~ 1-10 m^/s^, turbulence induced 

shearing collisions may be the principal collisional broadening and spectral 

evaluation mechanism. In Figure A4 it can be seen that when both turbulent 

shearing and acceleration effects are included in the full collision kernel, 

turbulence effects dominate the collision kernel for E i 0.05 m^/sec^. 

...- , Turbulence Equations 

In the first order rate approximation, we neglect the contributions of 

the collisional and liquid vapor rates to the higher-order turbulence 

correlations. The turbulence equations for the cloud and precipitation 

variables u]n^, u^-np, ujqp and their other appropriate second-order 

correlations are those of second-order closure theory for passive scalars. 

(Lewellen, 1978;  Oliver, Lewellen and Williamson, 1978). Since drops up to 
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1000 Mm are still correlated with the large eddies, the turbulence equation 

for the cloud and precipitation will not require any de-correlation of the 

droplet motion in the bulk of the flow. Appropriate turbulence equations with 

droplet de-correlation will only be required deep in the surface layer where 

the time of turbulence approaches the relaxation time of the largest drops. 

Such surface layer forms have been developed by Lewellen (1977). 

Homogeneous Cloud Illustration 

The full properties of the present theoretical model for cloud and 

precipitation can only be revealed when it is integrated with a fully-coupled 

inhomogeneous turbulence model such as that of Oliver, Lewellen, and 

Williamson (1978). We can, however, reveal certain of its features including 

the general behavior of the evolution time and precipitation intensity in 

simple homogeneous cloud illustrations. In this first homogeneous cloud 

illustration, we neglect all transport terms in Equations A.40 through A.43 

except the precipitation flux divergence which we approximate as 

3(Vpiqp+Vp!q^)/aXi = Vpqp/£, (A.59) 

with a similar representation for ^(Vn-jnp+V'^ ni) /9x^ where Jl^ is a 

characteristic cloud depth. We further assume that at time t=0 the total 

liquid water existing is cloud water so that qp(0)=0. We also assume that the 

liquid water existing initially is not replenished by further decreases in 

saturation mixing ratio or by moisture transport into the cloud as water 

precipitates from the cloud. 

The evolution of the cloud and precipitation variables for a range of 

turbulence dissipation rates for the conditions of marine cloud in Table A6 

are shown in Figures A5 through A7. The most basic and general trend in these 

illustrations is in the decrease of the time to reach a maximum precipitation 

water level as well as the time for onset of a significant precipitation flux 

as the turbulence levels rise. This result is a manifestation of the 

increased rates N(.(- and Nj-n (which control the auto-conversion of cloud) as 

the turbulence dissipation level rises. At the very highest turbulence levels 

e ~ 1-10 m^/s^ the cloud droplets are progressively de-correlated with the 

smallest scale eddies in the cascade and the turbulent shearing mechanism 
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becomes limited; the turbulent acceleration a continues to grow, however, as 

TABLE A6. CONDITIONS FOR HOMOGENEOUS CLOUD ILLUSTRATION 

q£(0) 1.0 g/kg 

So 30 tjfn 

h 1 km 

n    (maritime) 200/cm3 

It will be observed for these evolutions at fixed initial cloud water 

content that higher turbulence levels promote higher levels of maximum 

precipitation flux at relatively smaller average precipitation drop sizes, 

this is because at fixed water content, the precipitation drop size is 

controlled by the ratio of auto-conversion rate N^-p to cloud collection rate 

Np(,. At higher turbulence levels, the turbulent shear contribution to N^-p 

enhances this ratio and hence increases the number density of precipitation 

drops which are formed before the cloud is completely collected. The result 

of the enhanced precipitation number density is a relatively smaller 

precipitation drop size since the total water content is fixed. 

In more complex natural cloud evolutions (in contrast to this simplified 

illustration in which a fixed amount of cloud water appears instantaneously 

independent of turbulence level) higher turbulence levels are strongly 

correlated with high updraft levels (or stronger cloud top radiative cooling 

in stratus) and correspondingly higher liquid water content. Since 

precipitation drop size increases directly with liquid water content, larger 

precipitation drop size predicted by the present model will be correlated with 

higher turbulence levels in such natural cloud evolutions. 

It may be noted that at the highest levels of turbulence (e - 1-10 m^/s^) 

a significant precipitation flux is established over several tens of minutes. 

Such turbulence levels may be characteristic of the dynamics within strong 

cumulus cells and it is of interest to examine the evolutions predicted here 
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with those of a popular precipitation model (Kessler, 1969) which is 

parameterized for strong cumulus convection and contains no mechanistic 

description of the role of turbulence. The results of the same case presented 

in Figures A5 through A7 predicted by the Kessler model are shown in 

Figure A8. The time scales and general evolution seem comparable to the 

present model for turbulence levels e i Im^/sec^, save for the smaller 

precipitation sizes predicted. It should be noted, however, that the present 

model has no empirical parameters restricting it to such cumulus clouds. 

Thus, the high turbulence levels of the present model generate precipitation 

of high number density and moderate size (R- ~ 450 um). Thus, while the 

Kessler model by virtue of its parameterization is incapable of describing the 

stratus case in absence of updraft, we believe the present model when 

integrated with fluid dynamic mean motion including an updraft, would predict 

rain drop sizes consistent with the Kessler model and the Marshal-Palmer 

parameterization which is the key part of its model structure. 

Concluding Remarks 

Atmospheric turbulence can play a significant role in the evolution and 

development of cloud and precipitation. Both collisional and non-coilisional 

turbulent processes can be operative; in the present work we have developed 

the turbulent collisional effects in detail, incorporated them in a simplified 

microphysical closure model, and carried out the appropriate turbulent 

ensemble averages with attention to the droplet correlations with the 

turbulent eddy cascade. Further study is required to define the conditions 

under which non-coilisional turbulence mechanisms are important. 

The operational model for cloud and precipitation which has been 

developed exhibits results in terms of time scales and magnitudes of 

precipitation sizes and fluxes which are consistent with those naturally 

occurring in the atmosphere. The turbulence levels which effect these results 

are typical of naturally occurring turbulence levels in the atmosphere. 

The present model provides an extension of Kessler's parameterization by 

providing a direct dependence on turbulence level of his parameter for 

autoconversion from cloud water to rain water. This generalization is 

accomplished at the expense of carrying two more variables; the turbulence 
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dissipation rate and the cloud drop number density. Even if the turbulence 

dissipation rate is not directly carried in a numerical cloud model, it can be 

approximately related to whatever dynamical variables are provided to control 

entrainment. Variations in the cloud drop number density from its 

environmental input value provide the measure of dispersion in the cloud 

droplet spectrum which is essential in describing the evolution from cloud to 
precipitation. -'^     -'  •*'  •' ' 
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;,- o APPENDIX B     ■,,>: 

INCORPORATION OF AN ANISOTROPIC LENGTH SCALE 

INTO SECOND-ORDER CLOSURE MODELING 

OF THE REYNOLDS STRESS EQUATION 

*     ■. ■. ■      '■.■.. 

by R. I. Sykes, C. Cerasoli ^ 
W. S. Lewellen and C. Swanson 

INTRODUCTION 

A critical feature of any second-order closure model is how the 

macroscopic nature of a given turbulent flow field is incorporated into the 

model. A second-order closure model attempts to provide a unique relationship 

between the means, variances and covariances of the primary variables 

independent of specific boundary conditions. Since turbulence is a property 

of the macroscopic flow field rather than a local, single point property of 

the fluid, it is natural to expect that some information from the two point 

averages will be required to uniquely define the relationships between the 

first and second-order moments at a single point. In current models this 

macroscale information is supplied either by a length scale equation, or 

equivalently an equation governing the dissipation of turbulent kinetic 

energy. All other macroscales entering the problem are then assumed to be 

directly proportional to this single macroscale. This assumption is not 

universally valid, particularly in the presence of a wall and/or 

stratification. 

Lewellen and Sandri (1980) made an attempt to introduce a simple two 

scale approach in order to permit the horizontal velocity variance to follow 

completely different scaling than that obeyed by the vertical velocity 

variance in the atmospheric surface layer under unstable, convective 

conditions. The resulting two scale model permitted the horizontal velocity 

variance to scale with the mixed layer height, consistent with available data, 

rather than follow the Monin-Obukhov scaling which governs the vertical 

velocity variance.  The present report describes how this same result can be 

*The contributions of C. Cerasoli and C. Swanson to this work were supported 

by other Navy contracts. 
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obtained in a more natural way which provides a firmer foundation for 

extending the model to more general flows. By considering the turbulent 

energy to be composed of two populations of eddies, one large and one small, 

the two length scales appear naturally. The only empirical information needed 

to complete the model is an algebraic relationship governing the partition of 

the Reynolds stress between the large and the small scales. 

A MODEL FOR THE WALL-EFFECT 

Our conceptual model of the turbulent flow near a wall without shear is 

motivated by the turbulence spectra measured near walls. The spectra of 

Thomas and Hancock (1977), Willis and Deardorff (1974), and Kaimal (1978) all 

show the same general features, namely that the wavelength of the peak in the 

normal velocity component spectrum decreases linearly to zero at the wall, 

while that of the tangential components remains roughly constant. Kaimal's 

spectra are shown in Figure Bl. This is interpreted straightforwardly as 

large eddies being forced to flow tangential to the wall, so that their normal 

velocity component vanishes, and only small local eddies contain any 

significant normal energy. 

Previous second-order closure models only contain one length (or time) 

scale, and this always goes linearly to zero at the wall. Thus we expect such 

models to be able to predict normal component correlations reasonably well, 

but not the horizontal ones. Our remedy for this problem is to consider the 

flow near the wall to be comprised of two populations of eddies. The first is 

the small scale population which is the one currently described by 

second-order closure models. This population has a length scale proportional 

to the distance from the wall, and is fully three-dimensional, i.e., all 

components of the Reynolds stress tensor have the same order of magnitude. 

The second population are the large eddies with a length scale determined by 

the flow scales away from the wall. These eddies are two-dimensional at the 

wall since their normal energy component vanishes. We therefore write our 

modeled Reynolds stress equations as follows: 

n       9Uj    8Ui           
7— u^u-j = - UiUk —-^ - UiUL. -— + g-j UiO + gi u-jO 
Dt ^ J    1 "^ 8X|^   J 1^ 9X|^  ^^J 1   =^1 J 
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where u^-Uj is the total Reynolds stress, and u^-Uj"-, u~u~^ represent the large 

and small contributions, respectively; also q^=u^u-'-, and q|=u^-u-^. A^ is 

the normal or vertical (anticipating the convective application) length scale, 

and A^ is the tangential or horizontal length scale, u^ is the turbulent 

heat flux, g^- is the gravitational vector, and n^ = (0,0,l) is the unit vector 

normal to the wall. Thus our model consists of a three-dimensional "return to 

isotropy" term for the small eddies, and a corresponding two-dimensional term 

for the large eddies. The dissipation term depends only on the small eddies, 

since the large eddies must cascade their energy through the small scale 

eddies before it is ultimately dissipated. The diffusion term contains small 

eddies diffusing isotropically, whilst large eddies only diffuse in the 

tangential plane. Note that if 7^=0, i.e., all the energy is in small 

scales, then we recover the single scale equations of Lewellen (1977) with 

b=l/8, V(.=0.3. 

At this stage we have not specified the partition of u^u,- between large 

and small scales; we shall make this partition algebraically by reference to 

the measured spectra. The horizontal energy spectra from the experiment of 

Thomas and Hancock (1977), show that after the energy peak at a scale 

determined by the free stream turbulence, the spectrum falls off smoothly into 

an inertial range with no irregularity at the smaller scales where the 

vertical energy peaks. This spectral shape is ^ery similar in Kaimal's 

atmospheric measurements--provided the spectra are taken outside the surface 

shear layer, i.e., z/L ~ 5, where z is the height above the ground and L is 

the Monin-Obukhov length. The existence of an inertial range prompts the use 

of a simple scaling law to estimate the small scale horizontal energy, viz. 
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Thus, the horizontal energy at wavelengths of order A^ are simply scaled 

down from the large wavelength total by the ratio of length scales to the 

two-thirds power.    To complete the model, we have 

u^Uj^ = u^-Uj, i=3 or j=3 

and 

Thus all the energy in correlations involving the vertical component is 

contained in small scales, and the large eddy energy is the remainder; hence 

there is no large eddy energy in vertical components. 

To complete the model specification, we write the heat flux equations as 

and temperature variance: 

^02 = - 2^:f^ - 2bs -^02" (B.3) 
Dt        J  9Xj      Ay 

These are the standard equations from Lewellen (1977), and we use the 

same coefficients, i.e., A=0.75, s=1.8, which is tantamount to assuming that 

the temperature fluctuations are all in the small scale part of the spectrum. 

This is justified because the production terms in these equations only involve 

the vertical velocity component which is only present at small scale. 

Finally, length scales are specified by the same scale equation as 

Lewellen (1977) for the vertical scale, but using small scale energies 

appropriately, i.e. 
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Dt 

9UT n A, 
= 0.35 —^ U^UH -~-  + 0.6bq^ + 0.8 -=■  u,-e -^ 

+ 0.3 
3x^- qs\ 

9A^ 

3X, 8q. 3Xi (qs\) 

and A^ = max A^ where the maximum is taken over the domain. 

(B.4) 

Thus, in essence we accept that the original model described by 

Lewellen (1977) does a creditable job of predicting the small scale part of 

the spectrum near the wall, and we therefore maintain the small scale 

dynamics. However, we include a two-dimensional large scale component which 

is dominant near the wall, and use an inertial range scaling law to obtain the 

partition between the two energies. Note that although this conceptual model 

was arrived at through consideration of the turbulence close to the wall, the 

model reverts naturally to the single scale model as one moves out to the 

middle of the flow because A^ - A^ in the central region, and therefore 

"i"j 
L - 0. 

MODEL RESULTS FOR SHEAR-FREE FLOWS 

Convection between Flat Plates at Fixed Temperature 

The first experimental flow we compare with is thermal convection between 

horizontal flat plates held at fixed temperatures. The data for comparison 

are from Deardorff and Willis (1967), and we use their highest Raleigh number 
7 

data of 10 , since we include no low Reynolds number terms in our model 

equations. Equations B.l through B.4 were solved numerically with an imposed 

heat flux at the lower boundary, z=0, and plane of symmetry conditions at 

z=D/2 where D is the distance between the horizontal plates.  At the lower 

boundary we set .-  . • 

3 -o- 
— u^ 
dz 

-L V2 =1-02 
3Z 3Z 

and 0, we HQ. 
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Figure B2 shows the r.m.s. turbulence components from the model scaled by 

w* where 

w* = ^ H„D. 

The experimental values are plotted also as continuous lines with error bars 

indicating the general level of scatter in the data. Note that the 

experimental values had to be rescaled for this plot, and it was necessary to 

use a definite value for the heat flux to achieve this. The value used was 

the Globe and Dropkin (1959) empirical function value since Deardorff and 

Willis regard their direct measurements of turbulent heat flux as less 

reliable; the difference between the values is somewhat less than 10%. There 

is good agreement between the predicted and measured values for both vertical 

and horizontal components. There is a slight increase in horizontal energy 

near the wall in the experiment, and the magnitude of this increase is 

underpredicted but the model does maintain the horizontal energy right up to 

the wall and does actually show a 10% increase from the value in the middle of 

the flow. Below z=0.075D, the measured energy falls off toward zero, which is 

an indication of the viscous boundary layer effect. The vertical energy level 

is also well predicted, with some over prediction for small z, which again is 

probably a viscous effect.        " -. 
■V'^, -lit;. 

Figure 33 shows r.m.s. temperature fluctuations scale by ©*=H /w*, and 

again the predicted values are very accurate except in the region close to the 

surface where molecular diffusion becomes significant. 

Convection from a Heated Plate with an Overlying Stable Layer 

In this flow, a constant heat flux HQ is applied at the base of an 

infinite layer of stably stratified fluid, and a convective mixed layer grows 

in depth with time. The model was run until a self similar solution was 

obtained, and the results were plotted in dimensionless form with z^ as the 

length scale, and wj = gHpZ^-ZT as velocity scale. Here z^- is the depth of the 

mixed layer, measured to the point with maximum temperature variance at the 

top of the layer. The experimental values are from Willis and 

Deardorff (1974). 
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0.5r 

w^ w^ 

Figure B2.    R.m.s. tjrbulent velocity components for convection between 
flat plates. 

Model predictions: -j i — horizontal component 
— vertical component 

Laboratory data from Deardorff and Willis (1967): 
horizontal component 
vertical component 

Error bars indicate the scatter in the data. 
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0.5r 

Figure B3. R.m.s. temperature fluctuations for convection between flat 
plates. Solid line represents the laboratory data, and the 
model predictions are plotted as dots. Error bars indicate the 
scatter in the data. 
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Figure B4 shows velocity variances, and excellent agreement between 

measured and predicted profiles. It is of interest to note that in this case 

the horizontal variance is slightly over predicted at the surface. Figure B5 

shows the temperature variance which is very closely predicted in the lower 

80% of the mixed layer, but the large maximum at the inversion is not 

predicted. This is a failure of the second-order closure model to predict the 

entrainment fluxes, which Zeman and Lumley (1976) have noted, but is not the 

subject of this paper. 

Shear-free Turbulent Boundary Layer 

In this experiment by Thomas and Hancock (1977), a turbulent free stream 

is made to pass a plane boundary moving at the same mean speed. This 

experiment is a rather inconclusive test of the model for two reasons. 

Firstly, the primary effect of the moving wall is the generation of an 

impulsive pressure field which brings the normal velocity to rest at the 

boundary, and distorts the turbulence spectra as described by Hunt and 

Graham (1978). Our second-order closure model cannot predict this 

instantaneous change, and therefore we need to initialize the calculation with 

a field that satisfies the boundary conditions. The experimental section was 

not very long, so the results are dependent on the initial conditions and the 

latter were not measured. Secondly, the experiment is clearly non-ideal in 

the sense that the two tangential components, streamwise and transverse, 

behave quite differently with downstream distance; the two components must be 

identical in the ideal experiment, since there is no mean flow in the frame of 

the moving wall. Furthermore, we found the experimenter's suggestion that 

streamwise pressure gradients were responsible for the differences to be 

unsubstantiated, since these were of much too small a magnitude to effect any 

significant changes when included in the calculation. 

We initialized the model with the theoretical profiles of Hunt and 

Graham, and then integrated forward approximately six turbulence time scales, 

A/q, where A and q refer to free stream values. This integration distance was 

estimated from the measurements of turbulent energy and length scales at the 

downstream portion of x/M=25. In this comparison we have used the relation 

Ly=1.5A to relate the integral length scale of the measurements to the model 

length scale.  This relation was obtained by Sandri (1977) for isotropic 
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0.1    0.2   0.3   0.4   0.5   0.6 

^ * ^ * 

Figure B4. Turbulent velocity variances for inversion-capped convective 
layer. Symbols are as in Figure Bl, and the laboratory data is 
from Willis and Deardorff (1976). 
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z/z 

6^/6^ 

Figure B5. Temperature   variances   for   inversion-capped   convective    layer. 
-,.^.  Symbols as in Figure B2. ;-.->:.,v    , ■=   ;       •- . •■      ....   / 
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turbulence and is valid as we use it only for the free stream values. 

Figure B6 shows measured and predicted profiles of the normal energy, w^", 

and the transverse energy, v^. Velocities are scaled by the free stream 

turbulent velocities, and the normal coordinate is scaled by the free stream 

integral length scale. We note that in the experiment, 'u^ shows a strong peak 

at the wall which increases with downstream distance. Hunt and Graham suggest 

this could be some disturbance close to the wall diffusing outward, and our 

predictions undoubtedly show much better agreement with the transverse 

component, since u2=fv2 in the model. The main features of the prediction are 

that the initial peak of 1.5 at the wall in v^ is rapidly reduced, and has 

fallen to 1.03 at x/M=25. The asymptotic model value is 0.95 far downstream. 

The prediction of v^ is in close agreement with the measurements, which show a 

virtually constant value. However, the model prediction of the development of 

w^ is that the initial profile diffuses outward, while the measurements show 

an Mncfianging profile. Thus at x/M=25, we have the correct shape for the 

profile, but the scaling length appears to be too big by almost a factor of 2. 

In view of the non-ideal nature of the experiment in terms of the behavior of 

u2, it seems unwise to speculate on the discrepancies in the comparisons. All 

we can really conclude is that the model does predict the observed qualitative 
results.       ; ■■-•i- 

■i THE EFFECT OF WALL-LAYER SHEAR 

In the atmospheric boundary layer, we generally have both thermal 

convection and mean shear present at the same time. The relative importance 

of these two effects in the main part of the boundary layer is measured by th^ 
ratio L/z-j, where    • 

uiT 
, the Monin-Obukhov length. <gHo 

and z^ is the inversion height; u* is the surface friction velocity, HQ the 

surface heat flux, and K is von K^rman's constant, taken to be 0.39 here. 
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Figure B6. Turbulent velocity variances for the shear-free wall layer 
compared with the data of Thomas and Hancock (1977). Symbols 
as in Figure Bl. 
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When z < 0(L), shear effects become important and our simple model of the 

partition between large and small eddies is then no longer appropriate. In 

this region, the shear production term in the turbulence energy equation is 

directly producing significant small scale horizontal energy, and our inertial 

range scaling law will fail. This can be seen in the spectra of Kaimal 

(1978), which show a bulge at higher wave numbers in the horizontal spectra 

where z < 0(L). We therefore require a more sophisticated energy partition. 

We have tried to keep the partition as simple as possible, since our principal 

goal in this paper is the development of a model for large eddies near a wall. 

We shall describe an extension of the algebraic partition which allows the 

computation of shear flows, and although we base the model on a crude physical 

model of the energy spectrum, it should be regarded mainly as a simple device 

to extend the range of applicability of the model to cover practical 

calculations of the atmospheric boundary layer. 

The alternative to an algebraic partition would be to carry two sets of 

equations for large and small scales separately, in the manner introduced by 

Hanjalic et al. (1979). Ultimately this may well be the best way to proceed, 

but the interaction terms between the two scales require a good deal of 

modeling effort, because Hanjalic et al.'s assumption of isotropy in the small 

scales is inappropriate here. We therefore prefer to keep the model as simple 

as possible at this stage, and at least determine what conditions a more 

general model needs to satisfy. 

Our assumption will be that the energy in the small scales arises both 

from the cascade from larger scales and also from direct production in the 

small scale part of the spectrum. The small scale production in the case of 

the atmospheric boundary layer is 

  8Ui 
P = -2 u.u,- „  , 
s     1 j 8x. 

i.e. the shear production term, since this is generating small scale energy in 

the horizontal ccmponents near the wall. Since this becomes increasingly 

dominant near the wall where the time scales are \/ery  short, we have 
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2b — -»■ P^     as f ^ 0, 

i.e. the production balances dissipation. In fact, these terms are so 

singular in the logarithmic layer, that it is necessary to allow this exact 

balance very close to the wall. Thus 

-T     (^sW'h    -, z 

Therefore, if i^ P 

^   U^ + V^  '       .V   •' ;y 

then 

(P-A^/2b) /3 - w2     ,        ^  ' 
-. ' .-   ;  f =--5-^^^ -=    asf-vO   , ...  .    (B.5) 

^      q2 - w2 L     ■   ; ■  • ■ 

Before combining this result with the energy cascade result, a further 

complication of the shear production is that it does not necessarily generate 

u| and v| equally. A simple equilibrium argument shows that 

■'   - ^- ^   _ 1 + Psu/Ps   ' : •^■-   ' V 

"1 + v| 

where P^^j is the shear production term in the u^ equation. Thus, defining 

a 1 ^ Psu/Ps 

and 

(P^A^/Zbf/s - w2 ^^  ^^ '"^- 

so ~    ? ^^T   ' q'^ - w^ 
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our final model for the small scale horizontal components is 

"v V' 7J u| = « f,„ (uW) . I ^ I   u2. f3„>0   .      (B.6) 

v| = (1-a) fjo (u2+v2) + (^)^'' »'. fso > ° (B-n 

Otherwise 

U2 ' V2   UH/   : 
(B.8) 

Thus we have a simple algebraic partition which satisfies the 

requirements of allowing an exact small scale balance very close to the wall, 

and going back to our original inertial large scaling when there is negligible 

small scale production. 

RESULTS FOR THE ATMOSPHERIC SURFACE LAYER 

The main point of our large eddy model is that the energy in the 

horizontal components near the surface is "passive", in the sense that it does 

not affect the vertical correlations. This is indeed the case, and all the 

similarity variables in the surface layer are within a few percent of the 

results of Lewellen and Teske (1974) and are therefore not presented again 

here. However, the horizontal components now show a larger energy depending 

on the value of the horizontal scale, A^. In the following comparisons 

A,^=0.235z^; this result is obtained from the scale Equation B.4. 

Figure B7 shows a typical surface layer profile for the three energy 

components with z^/L=50. The velocities are scaled by the surface friction 

velocity, u*. The features to note are that w^ is 1.4 at the wall, in accord 

with the neutral log layer value, and then increases asymptotically like z '^ 

for large z. On the other hand, the horizontal components are larger, and 

remain relatively constant right down to the wall. There are variations of a 
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few percent close to the wall, and this is due to the precise nature of our 

small scale energy partition function. The atmospheric measurements show the 

horizontal energy remaining constant within the scatter of the data which is 

about 10%. We might note that several simpler versions of the partition 

function (i.e., not satisfying all the requirements of Section 4) all gave 

unreasonable profiles in the sense of energy doubling at the wall or 

decreasing by 50%. 

A comparison of the r.m.s. horizontal energy, 

^Ji + V^ 

against the observed values is shown in Figure B8. We have plotted the value 

of a^ from the model at z/L=3, i.e., outside the region of the surface 

variation. The model predictions lie well within the scatter of the 

observations at moderate z^/L; there are only two data points at high values, 

and the model over predicts these by about 10%. 

Finally, we note that with the formulation of small scale energy given by 

Eqs. B.5-B.7, all the energy is contained in the small scales for neutral 

flows, e.g., boundary layer or channel flows, and also in the stable 

atmospheric surface layer. Hence, for these flows the predictions are 

unchanged from the earlier single scale model. 
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CONCLUSION 

A second-order closure model which accounts for the effects of a rigid 

wall on large scale turbulent eddies has been presented. The basis of the 

model is a partitioning of the turbulent kinetic energy between small scale 

three-dimensional eddies and large scale eddies which only have tangential 

energy components near the wall. The relative partitioning of the tangential 

energy has been made using the inertial range spectral distribution. The 

model performs well for a number of flows in which the energy is principally 

in large scale eddies. ! 

A somewhat over-simplified description of the model would be that we 

retain the original single scale equations for the small scale component, and 

then scale up tangential components using the ratio of the two length scales. 

This view has some utility in that it is correct except for the turbulent 

diffusion terms in the Reynolds stresses; it also has some basis in 

observation, since the spectra of tangential velocity components do show an 

apparently undisturbed inertial range fall off from the energy containing 

length scales. However, the diffusion terms are not always negligible in the 

flows we have considered, so that there is some effective coupling between the 

two scales; in fact the diffusion is the dominant mechanism in the surface 

layer profiles of horizontal energy in Section 4. Furthermore, the dynamical 

basis of this model is very useful in developing corresponding two scale 

equations for passive scalars in the atmosphere, where the small scale is no 

longer the controlling scale in the equations; the work on scalar diffusion 

will be presented in a subsequent paper. 

The main conclusion from this study is that several aspects of wall 

turbulence can be accurately described using the very simple conceptual notion 

of passive horizontal energy, so that the active turbulence is calculated with 

the usual closure model, but the active part of the turbulence is derived from 

the total using a simple hypothesis for the spectral shape. 
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