
" AD-A12g 834 THE CONSENSUS PROBLEM IN UNRELIABLE DISTRIBUTED SYSTEMS 1/
A BRIEF SURVEY(U) YALE UNIV NEW HAVEN CT DEPT OF

COMPUTER SCIENCE Md JFSCHER JUN 83 YALEU/DCS/RN 273

UNeLASSIFED N00014V82-KAS4 F/G9/2

E L. ,31

IflI L2. L232.1 L.0 mA W

MICROLP RESLTO TES CAR
NATIONA BU E U OLS A2RS~ 1 6 -

Q6I

00
ao

V-4

THE CONSENSUS PROBLEM IN UNRELIABLE
DISTRIBUTED SYSTEMS
(A BRIEF SURVEY)

by
Hichael J. Fischer

YALEU/DCS/IRR-273

June, 1983

-)TICELECTE Il

JUN 8 83

in' YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

83 06 27 08 4

fAacesgon
For

',~ DTZC TAR
~g I@Uflbe=Gd 0JuStitioatio-

Distribution/

AvallabilItY Codes
"--'-Ava tlan/or

Dist Special.

THE CONSENSUS PROBLEM IN UNRELIABLE
DISTRIBUTED SYSTEMS

(A BRIEF SURVEY)

by
Michael J. Fischer
YALEU/DCS/RR-273

June, 1983

OTIC
S L ECT E

E

To be presented at the International Conference on Foundations of Computation

Theory, Borgholm, Sweden, August 21-27, 1983.

SECURITY CLASSIFICATION OF THIS PAGE (3l an DalsEntered__l

REPORT DOCUMENTATION PAGE READ ISTRUCTNbSBEFORE COMPLEIG FORM
1. REPORT NUMSER V. OV ACCESSION NO! 3. RECIPIENT'S CATALOG NUMBER

YALEU/DCS/RR-273 thA11 '3 _____________

4. TITLE (n Subtitle) S. TYPE OF REPORT & PERIOD COVEREO

THE CONSENSUS PROBLEM IN UNRELIABLE DISTRIBUTED Technical Report
SYSTEMS (A BRIEF SURVEY)

6. PERFORMING ONG. REPORT NUMBER

7. AUTHOR(e) I. CONTRACT OR GRANT NUMBER(s)

Michael J. Fischer ONR: N00014-82-K-0154 and

NSF: MCS-8116678

g- PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
Department of Computer Science/ Yale University AREA& WORK UNIT NUMBERS

Dunham Lab/ 10 Hillhouse Avenue NR 049-456/11-5-81
New Haven, Connecticut 06520

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

NSF, Washington, D.C. 20550/ Office of Naval June, 1983
Research, 800 N.Quincy, Arlington, VA 22217 Is. NUMBEROFPAGES

17

14. MONITORING AGENCY NAME & ADDRESSI different from Controlling Oflice) IS. SECURITY CLASS. (of this report)

Office of Naval Research Unclassified
800 N. Quincy Unclassified

Arlington, VA 22217 ISO. ECLASSIICATION/DOWNGRADING

ATTN: Dr. R.B.
Grafton

I6. DISTRIBUTION STATEMENT (of thl Repot)

Approved for public release; distributed unlimited

17. DISTRIBUTION STATEMENT (of the absfract entered In Block 20, if different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continuae an reverse side it nceesary and Identify by block numiber)

consensus problem, fault-tolerance, distributed systems

20. ABSTRACT (Contlnue an reverse side If necessary and Identify by block r 0br)

)Agreement problems involve a system of proceses, some of which may be faulty.
A fundamental problem of fault-tolerant dis ibuted computing is for the
reliable processes to reach a consensus. surveysAthe considerable litera-
ture on this problem that has developed over the past few years and give an
informal overview of the major theoretical results in the area.FOR"
,D JAN 1473 EDITION oF I Nov S is OBSOLtTE

SECURITY CLASSIFICATION OF THIS PACE (111hon Date Entered

The Consensus Problem in Unreliable Distributed Systems

(A Brief Survey)t

Michael J. Fischer
Yale University

New Haven, Connecticut

Abstract

Agreement problems involve a system of processes, some of which may be faulty. A fundamental
problem of fault-tolerant distributed computing is for the reliable processes to reach a consensus.
We survey the considerable literature on this problem that has developed over the past few years
and give an informal overview of the major theoretical results in the area.

1. Agreement Problems

To achieve reliability in distributed systems, protocols are needed which enable the system as

a whole to continue to function despite the failure of a limited number of components. These

protocols, as well as many other distributed computing problems, requires cooperation among the

processes. Fundamental to such cooperation is the problem of agreeing on a piece of data upon

which the computation depends. For example, the data managers in a distributed database

system need to agree on whether to commit or abort a given transaction [20, 28). In a replicated

file system, the nodes might need to agree on where the file copies are supposed to reside [19, 30].

In a flight control system for an airplane [35], the engine control module and the flight surface

control module need to agree on whether to continue or abort a landing in progress. The key

point here is not what the processes are agreeing on but the fact that they must all come to the

same conclusion.

An obvious approach to achieving agreement is for the processes to vote and agree on the

majority value. In the absence of faults, this works fine, but in a close election, the vote of one

faulty process can swing the outcome. Since distinct reliable processes might receive conflicting

votes from a faulty process, they might also reach conflicting conclusions about the outcome of

the election and hence fail to reach agreement. Davies and Wakerly [21 realized this difficulty

and proposed a multistage voting scheme to overcome the problem.

tThis work was supported in part by the Office of Naval Research under Contract N00014-82-K-0154, and by the

National Science Foundation under Grant MCS-II$678.

-2-

A simple form of the problem is to achieve consensus on a single bit. Assume a fixed number
of processors, some of which are initially faulty or may fail during the execution of the protocol.
Each processor i has an initial bit x1. The consensus problem is for the non-faulty processes to

agree on a bit y, called the consensus value. More precisely, we want a protocol such that each

reliable process i eventually terminates with a bit yi, and y, - y for all i.

y in general will depend in some way on the initial bits xi . In the absence of such a

requirement, the problem becomes trivial, for each process can simply choose yi - 0. Some

dependency requirements that have been studied, in order of increasing strength, are:

1. (non-triviality): For each y E (0, 1), there is some initial vector xi and some
admissible execution of the protocol in which y is the consensus value. (The
qualification "admissible" allows for additional restrictions, such as bounds on the
number of faulty processes, on the kinds of computations we are wlling to consider

2. (weak unanimity): If x. = x E (0, 1) for all i, then y = x, provided that no failures
actually occur during the execution of the protocol.

3. (strong unanimity): If xj = x E (0, 1) for all i, then y x.

Two other closely related problems have been studied extensively in the literature. The

interactive consistency problem is like the consensus problem except that the goal of the protocol

is for the non-faulty processes to agree on a vector y, called the consensus vector. Again, we add

dependency requirements:
1. (weak): for each j, yj = x. if j is non-faulty, provided that no failures actually occur

during the execution of the protocol.

2. (strong): for each j, yj = x. if j is non-faulty.

Finally, in the generals problem or reliable broadcast problem, one assumes a distinguished

processor (the "general" or "transmitter") which is trying to send its initial bit x to all the others.

As before, all the reliable processes have to reach consensus on a bit, and we add dependency

requirements:

1. (weak): y = x if no failures occur during the execution of the protocol.

2. (strong): y = x if the general is non-faulty.

Without further qualification, any reference to one of these problems will refer to the version

with the strong dependency requirement.

-3-

2. Models of Computation

The kinds of solutions that can be obtained to agreement problems depend heavily on the

assumptions made about the model of computation and the kinds of faults to which it is prone.

Throughout this paper, we will assume a fixed number n of processes. A protocol is said to be

t-resilient if it operates correctly as long as no more than t processes fail before or during

execution.

We consider two kinds of processor faults. A crash occurs when a process stops all activity.

Up to the point of the crash, it operates correctly and after that it is completely inactive. A

protocol that can tolerate up to t crashed processes is said to be t-crash resilient. We do not

concern ourselves with the problem of repairing a faulty process and reintegrating it into the

system, although that of course is a crucial problem in the practical implementation of any of

the~. ideas [28].

A more disruptive kind of failure is the so-called Byzantine failure' in which no assumptions

are made about the behavior of a faulty process. In particular, it can send messages when it is

not supposed to, make conflicting claims to other processes, act dead for awhile and then revive

itself, etc. A protocol that can tolerate up to t processes which exhibit Byzantine failures is said

to be t-Byzantine resilient and is sometimes called a Byzantine protocol. The problem of

finding a t-Byzantine resilient protocol for the (weak) generals problem is called the (weak)

Byzantine generals problem.

To show that a protocol is Byzantine resilient, one has to consider all possible fatulty

behaviors, including those in which the failed processes act maliciously against the protocol. This

doesn't mean that Byzantine protocols are only appropriate in adversary situations. The folklore

is full of stories in which systems failed in bizarre and unexpected ways, and in the absence of

good ways of characterizing the kinds of failures that occur in practice, protecting again-it

Byzantine failures is a conservative approach to reliable systems design.

We assume the message system to be completely reliable and that only processes are subject

to failure. We also assume that any process can reliably determine the sender of any message it

receives, and any message so delivered arrives intact and without errors. Unless stated otherwise,

we assume the network is a completely connected graph.

'The terminology comes from 1251, in which a fable is recounted concerning a problem of military communicationq
in times of old.

____ ____ ___ ____ __,

-4-

Of course, in real systems, communication links as well as processors are subject to failure.

However, a link failure can be identified with the failure of one of the processors at its two ends.

so a t-resilient protocol automatically tolerates up to t process and link failures. Neverthele.%,

this may give an overly pessimistic view of the reliability of the system. Reischuk 132] greatly

refines the fault assumptions, enabling him to obtain more informative results on the actual

behaviors of the systems.

A crucial assumption concerns whether or not the failure of a process to send an expected

message can be detected. !f so, then the expectant receiver gains the valuable knowledge that the

sender is faulty. In a model with accurate clocks and bounds on message transit times, such

detection is possible through the use of timeouts. (Cf. [211.) Also, detection is automatic in a

synchronous model in which the processes run in lock step and messages sent at one step are

received at the next. However, detection is impossible in a fully asynchronous model in which no

assumptions are made about relative step times or message delays, for there is no way to tell

whether the sender has failed or is just running very slowly. This turns out to have a profound

erfect on the solvability of agreement problems.

We use the terms s7/nchronous and asynchronous to distinguish between these two extreme

cases, while remaining fully cognizant of the fact that synchronous message behavior can be

achieved in systems with weaker assumptions than full synchrony. For our purposes, we will

assume that a synchronous computation proceeds in a sequence of rounds. In each round, every

process first sends as many messages as it wishes to other processes, and then it receives the

messages sent to it by other processes. Thus, messages received during a round cannot affect the

messages sent during the same round.

One further significant assumption is whether or not the model supports signatures. We

assume that the author of a signed message can be reliably determined by anyone holding the

message, regardless of where the message came from and regardless of anything that the faulty

processes might have done. In other words, signatures cannot be forged by faulty processes, so if

C receives a message from B signed by A, then C knows that A really sent the message and that

it was not fabricated by B. Signatures, too, have a profound effect on the solvability of

agreement problems. We sometimes use authenticated to refer to a protocol using signed

messages.

Digital signatures can be implemented using cryptographic techniques (3, 4, 27, 331, or if one

is willing to assume that faulty processes are not malevolent, simple signature schemes which are

not cryptographically secure can be used instead. All that we require is that it be unlikely for a

.I

~-6-

faulty process to generate a valid signature of some other process. Note that no special

techniques are needed to implement signatures if only crashes (and not Byzantine failures) are

considered, for then no incorrect messages are ever sent.

The practicality of agreement protocols depends heavily on their computational complexity.

Some factors that might be important are the amount of time needed to complete the protocol,

the amount of message traffic generated, or the amount of memory needed by the participants.

All of these quantities are in general dependent on which faults actually occur and when. A

reasonable assumption in many situations is that faults happen rarely, so it is acceptable to spend

considerable resources handling them, but one wants the normal case to be handled quite

efficiently. Note however that in a very large system, the probability of at least one fault is high,

and the expected number of faults grows linearly with the size of the system.

We measure time in terms of the number of rounds of message exchange that take place.

Thus, we assume every process can potentially exchange messages with every other in a single

unit of time. Just how realistic this notion of time is depends highly on the structure of the

message system and on the reasonableness of the assumption that a process can really send or

receive n messages in a single time step. We measure message traffic variously as the total

number of messages sent, the total number of bits in those messages, or the number of signatures

(in the case of an authenticated protocol).

3. Relations Among Agreement Problems

The three agreement problems are closely related. The generals problem is a special case of

the interactive consistency problem in which only one process's initial value is of interest, so a

protocol achieving interactive consistency also solves the generals problem. Conversely, n copies

of a protocol for the generals problem can be run in parallel to solve the interactive consistency

problem.

The consensus problem appears to be slightly weaker than the other two. An interactive

consistency algorithm can be modified to solve the consensus problem by just having each process

choose as its consensus value the majority value in the consensus vector. This works as long as

fewer than 1/2 of the processes are faulty.

Using a consensus algorithm to solve either of the other two problems, however, seems to

require an additional round of information exchange. For example, the general's problem can be

solved as follows:

Algorithm I
1. The general sends its value to each of the other processes.

2. All of the processes together run a consensus algorithm using as initial values the
bits received from the general at the first step. (The general of course uses its own
bit.)

This solves the generals problem since if the general is reliable, then all of the processes

receive the same value in step 1. By the strong unanimity condition, this value will be chosen as

the consensus value. In any case, agreement is reached. The extra cost is one additional round

of 1-bit messages in step 1. Thus, we have proved:

Theorem 1. Given a t-resilient solution to the consensus problem, there is a t-resilient
solution to the generals problem which uses one more "round" of message exchange and
sends n-i additional messages of 1-bit each.

Many solutions to the generals problem have the general structure of Algorithm I and thus

appear to have embedded within them solutions to the consensus problem, seemingly obviating

the need for Algorithm I and the extra round of messages. However, the embedded consensus

algorithm does not necessarily solve the full consensus problem, for the case in which the general

is reliable yet the xi's are not all the same can never arise when the xi's are obtained from the

general on the first step.

Similar remarks apply to the corresponding weak versions of these problems. In fact, a weak

Byzantine generals algorithm solves the weak consistency problem directly (without first using it

to solve the interactive consistency problem), for if all the initial values are the same and no

process is faulty, then it suffices to simply agree on the general's value. There is not, however,

any readily apparent way to use a solution to any of the weak versions of the agreement problem

to solve any of the strong ones. In fact, for a slightly different "approximate" agreement

problem, Lamport [22] shows that the weak version has a solution whereas the strong one does

not.

4. Solvability of Agreement Problems

Perhaps the most basic question to ask of a proposed agreement problem is whether or not it

has a solution at all. By the previous discussion and Theorem 1 the consensus problem and the

interactive consistency problem have t-resilient solutions iff the generals problem does, so we will

restrict attention to the latter problem in this section.

Consider first the synchronous case. With signatures, Pease, Shostak, and Lamport [25, 291

give a t-resilient solution for any t.

-7,

Theorem 2. There is a t-resilient authenticated synchronous protocol which solves the
strong (weak) Byzantine generals problem.

Briefly, the protocol consists of t+1 rounds. In the first round, the general sends a signed

message with its value to each other process. At each round thereafter, each process adds its

signature to each valid message received from the previous round and sends it to all proces~es

whose signature does not already appear on the message. A message received during round k i%

valid if it bears exactly k distinct signatures, the first of which is the general's. Let Vi be the set

of values contained in all the valid messages received by i through the end of round t+1. If V. is

a singleton, then that value is chosen as the consensus value. Otherwise, a fixed constant NIL is

chosen.

To prove agreement, we argue that if i and j are both reliable, then Vi == V. There are two

cases to consider. If the general is reliable, then both V and V. consist solely of the general's

value, since no other value ever appears in a valid message. Otherwise, consider the message M

from which i first learned of v. M consists of v followed by a list of distinct signatures m,.

Ink, the first of which is the general's, and k < t+1. If k < t+1 and process j does not already

know about v, then j learns of v from i on the next round. If k - t+1, then m, ..., m t are all

faulty or else i would have learned of v earlier. But then mr+1 is reliable, so j learns of v at the
t+1-

same round as i. Correctness of the protocol easily follows.

Without signatures, there is a solution if and only if the fraction of faulty processes is not too

large.

Theorem 3. There is a t-resilient synchronous protocol without authentication which
solves the strong (weak) Byzantine generals problem iff t/n < 1/3.

The impossibility argument for t/n > 1/3 appears in [25, 29] for the strong case and in [221

for the weak case of the problem. Protocols demonstrating the solvability of both problems for

t/n < 1/3 appear in [25, 291. Various protocols have since appeared with additional desirable

properties, some of which will be discussed later in this paper.

In the fully asynchronous case, there is no solution. In fact, Fischer, Lynch, and Paterson [181

show that the problem remains unsolvable even with much weaker requirements:

Theorem 4. In a fully asynchronous environment, there is no i-crash resilient solution
to the consensus problem, even when only the non-triviality condition is required.

The proof is by contradiction. In general outline, one assumes the existence of such a

protocol. The protocol is committed to the eventual consensus value at a certain point in time if

thereafter only the one value is a possible outcome, no matter how processes are scheduled or

how messages are delivered. One shows that at least for some initial configuration, the outcome
is not already committed. Starting from there, one constructs an infinite computation such that

the system forever stays uncommitted, contradicting the assumed correctness of the protocol.

The details get somewhat involved since it is necessary to insure that the infinite computation

results from a "fair" schedule. The interested reader is referred to 1181.

Returning to the Byzantine generals problem in a synchronous environment, we consider

weaker connectivity assumptions on the network which nonetheless permit a solution. With

signatures, Lamport et al. 125] show that the Byzantine Generals problem can 1- solved in any

network in which the reliable processes are connected. Without signatures, I. show that a

solution is possible in a 3t-"regular" graph. Dolev [5, 6] extends this latter res ; completely

characterize the networks in which the problem is solvable:

Theorem 5. Consider a synchronous network with connectivity k having n zssors, t
of which may be faulty. Then the Byzantine generals problem is solvable without
authentication iff t/n < 1/3 and t/k < 1/2.

Three recent unpublished results deserve brief mention, all of which extend the asynchronous

model slightly in order to avoid the assumptions of Theorem 4. Ben-Or [1] allows randomized

algorithms and shows that crash-resilient consensus is achievable with probability 1 when t/n <

1/2, and Byzantine-resilient consensus is achievable with probability 1 when t/n < 1/5. Rabin

[31] uses randomized algorithms with an initial random "deal" and signatures to achieve certain

agreement with an expected number of rounds that is only 4, independent of n and t, so long as

t/n < 1/4. Finally, Dolev, Dwork, and Stockmeyer [7] distinguish among the different kinds of

asynchrony in the model of [181 to get tighter conditions on when consensus protocols are and are

not possible.

5. Complexity Results

5.1. Upper Bounds

The t-resilient Byzantine generals algorithms of [25, 29] take time t+1 and send a number of

message bits that is exponential in t. The first algorithm to use only a polynomial number of

message bits was found by Dolev and Strong [12] and subsequently improved by Fischer, Fowler,

and Lynch (16]. The still stronger result below is from [8].

-9-

Theorem 8. Let t/n < 1/3. There is a t-resilient solution without authentication to
the Byzantine generals problem which uses 2t + 3 rounds of information exchange and
O(nt + t 3 log t) message bits.

It remains an open problem if there is any unauthenticated algorithm which simultaneously

achieves fewer than 2t -4- 3 rounds and uses only polynomially many message bits.

With authentication, and counting number of messages instead of message bits, we get:

Theorem 7.

(a) rhere is a t-resilient authenticated solution to the Byzantine generals problem
which uses t+1 rounds and sends O(nt) messages;

(b) There is a t-resilient authenticated solution to the Byzantir~e generals problem
which uses O(t) rounds and sends only O(n+t 2) messages.

Part (a) was shown by Dolev and Strong [15], and part (b) was shown by Dolev and Reischuk

[10].

For practical applications, these bounds are not very encouraging, especially the t+I bound

on the number of rounds. As we shall see, this bound cannot be improved in the worst case that

t faults actually occur. However, Dolev, Reischuk and Strong (11, 141 have looked at the question

of whether Byzantine generals solutions exist which stop early when fewer faults occur. The

answer depends on whether synchronization upon termination is aiso required.

For definiteness, we say that a process halts within r rounds if it is non-fault, and it chooses

its consensus value and enters a stopping state before sending or receiving any round r+I

messages. It halts in round r if it halts within r rounds but does not halt within r-1 rounds. An

agreement protocol terminates when all reliable processes have halted. If it terminates, we say it

reaches immediate agreement if all reliable processes halt in the same round, and it reaches

eventual agreement otherwise. Thus, immediate agreement serves to synchronize the processes as

well as enabling them to agree on a value. Note that all of the protocols discussed previously

achieve immediate agreement since all processes choose tl:'-ir consensus value in the last round.

The following theorem is from 111]:

Theorem 8. Let t/n < 1/3. There is a t-resilient protocol without authentication
which solves the Byzantine generals problem and reaches eventual agreement within
min(2t + 3, 2f + 5) rounds, where f < t is the actual number of faults.

The same paper also contains a more refined protocol which stops even earlier when t is only

about V'D

-10-

If one assumes processes can fail only by crashing, then Lamport and Fischer show that the-e

bounds can be improved [23].

Theorem 9. There is a t-crash resilient protocol (without authentication) which solves
the generals problem and reaches eventual agreement by the end of round f+2, where f
< t is the actual number of crashes.

We give the protocol and sketch its proof. There are only four possible messages - 0. 1,

NIL, and 0. 0, 1 are the two possible initial values of the general, 0 means "I don't know". and

NIL is a default consensus value which is chosen when crashes prevent the reliable processes from

discovering the general's value.

Algorithm II

A. Round 1: Process 1 (the general) sends its value to every process.

B. Round r, I < r < t+1: Each process does the following:

1. If it received a value v E (0, 1, NIL) from any process in round r-1, then it:

* takes v as its consensus value;

* sends v to every process;

* halts.

2. Otherwise, if it received 0 during round r-1 from every process not known to have
crashed before the beginning of that round, then it:

" takes NIL as its consensus value;

" sends NIL to every process;

* halts.

(It knows a process has crashed if it failed to receive an expected message from it
during the previous round.)

3. Otherwise, it sends 0 to every process.

C. End of Round t+l: Each process that has not halted does the following:

1. If it received a value v E (0, 1, NIL) from any process during round t+I, then it
takes v as its consensus value and halts.

2. Otherwise, it chooses NIL as its consensus value and halts.

Correctness of the algorithm follows readily from the following facts. Recall that a crashed

process is not considered to be halted.
1. If some process halts at step BI or B2 during round r and chooses value v, then

every other process which halts at step BI or B2 during round r also chooses v.

2. If some process halts at step BI or B2 during round r and chooses value v, then
every reliable process which has not already halted will choose v and halt at step BI
in round r+I (if r < t+1) or at step CI in round t+I (if r - t+l).

- 11-

3. If no process crashes or halts during round r > 1, then 0 is the only message sent

during that round.

4. If any process terminates at step C2 in rr "'xd t+I, then all reliable processes do.

Moreover, if fewer than k processes crash in ;he first k rounds, then the protocol terminates

within k+l rounds; hence if there are at most f crashes, then the protocol terminates within f+2

rounds.

A more elaborate protocol with similar abstract properties but which is quite possibly more

efficient in practice appears in [34].

5.2. Lower Bounds

All of the protocols above use t+1 rounds in the worst case. Fischer and Lynch (17] present a

proof that t+1 rounds are necessary for achieving interactive consistency without signatures and

hence also for solving the unauthenticated Byzantine generals problem. Several people have

extended this result in one way or another. DeMillo, Lynch, and Merritt f3, 27] and

independently Dolev and Strong (12, 151 show that the t+1 lower bound holds for authenticated

solutions to the Byzantine generals problem. Lamport and Fischer [231, by a similar proof, show

that the same bound holds assuming that the protocol is only crash resilient and solves the weak

consensus problem, but they did not consider the authenticated case. We summarize these

results below.

Theorem 10. Assume t < n-2.

(a) Every t-resilient protocol without signatures for the weak consensus problem
uses at least t+1 rounds of message exchange in the worst case.

(b) Every t-resilient authenticated protocol for the Byzantine generals problem uses
at least t+1 rounds of message exchange in the worst case.

We note that the weak consensus problem has not been explicitly studied with signed

messages, but we conjecture that the same bound will still hold.

We sketch the basic structure underlying these proofs, although much more is involved in

really making them go through. For two distinct computations S and T, define S - T if S and

T "look" the same to some reliable process p, that is, p receives the same messages and behaves

exactly the same in both S and T. Hence, p chooses the same consensus value in each, which

must be the consensus value for both S and T. Now, the proof proceeds by assuming at most t

rounds and then constructing a sequence of t-round computations SO, SI, ..., Sk such that So has

consensus value 0, Sk has consensus value 1, and Si.I -- Si for 1 < i < k. This results in a

contradiction. The constructions need one faulty process per round; hence, they cannot be used

i

- 12-

to find computations of more than t rounds.

Dolev and Strong [14] show that t+l rounds are needed in a t-resilient immediate Byzantine

generals protocol even when the actual number of failures is less. These theorems also appear

without proofs in [11].

Theorem 11. Let t < n-2, and let P be a t-resilient (authenticated) protocol solving
the Byzantine generals problem which always reaches immediate agreement. Then it is
possible for P to run for at least t+l rounds even when there are no faults.

In the case of eventual agreement, they prove the following:

Theorem 12. Let P be a t-resilient (authenticated) protocol solving the Byzantine
generals problem which reaches eventual agreement, and let f < t. Then it is possible
for P to run for at least f+2 rounds with only f faults.

We conjecture that this can be extended to t-crash resiliant generals protocols, which would ihen

show the optimality of 9.

Finally, we look at lower bounds on the number of messages and signatures needed. Dolev

and Reischuk [10] show:

Theorem 13. The total number of messages and signatures in any t-resilient
(authenticated) Byzantine generals solution is fl(nt).

Theorem 0 shows that this bound is tight when n is large relative to t. If one counts only

messages, then they show

Theorem 14. The total number of messages in any t-resilient (authenticated)
Byzantine generals solutions is f2(n + t2)).

Theorem 7, part (b) shows this bound "best possible" for authenticated algorithms.

6. Applications of Agreement Protocols

The abstract versions of agreement problems considered in this survey are not general enough

to be directly applicable to many practical situations. We mention here some extensions and

applications of these problems.

First of all, one often wants to reach agreement on a value from a larger domain than just

(0, 1). If the domain has v elements, then one can encode the elements in binary and run

[log 2 v1 copies of the agreement protocol, one for each bit, but more efficient algorithms might, be

possible. In applications such as clock synchronization, the domain of values can be taken to be

- 13-

the real numbers, and only approximate agreement is needed. Lamport and Melliar-Smith [24]

studies the clock synchronization problem, and Dolev, Lynch, and Pinter (9l look at the abstract

approximate agreement problem.

A difficult part of implementing these algorithms is building message systems which actually

have the reliability and synchronization properties that were assumed in the models. Real

distributed systems are quasi-asynchronous, and to avoid the difficulties of Theorem 4 one must

make reasonable timing assumptions and make effective use of clocks and timeouts. Lamport

[21] gives some insights as to how this can be done.

Finally, we should mention the papers by Dolev and Strong [13] and Mohan, Strong, and

Finkelstein (281 that describe serious attempts to apply agreement protocols to real problems of

distributed databases.

7. Acknowledgement

The author is grateful for Ming Kao for help in assembling the bibliography and to Paul

Hudak for many helpful comments on an early draft of this paper.

References

1. Ben-Or, M. "Another Advantage of Free Choice: Completely Asynchronous Agreement
Protocols." Proc. 2nd ACM Symposium on Principles of Distributed Computing, 1983. To
appear.

2. Davies, D. and Wakerly, J. F. "Synchronization and Matching in Redundant Systems."
IEEE Trans. on Computers C-27, 6 (June 1978), 531-539.

3. DeMillo, R. A., Lynch, N. A., and Merritt, M. J. "Cryptographic Protocols." Proc. 14th
ACM Symposium on Theory of Computing, 1982, pp. 383-400.

4. Diffie, W. and Hellman, M. "New Directions in Cryptography." IEEE Trans. on
Information Theory IT-22 (1978), 644-654.

5. Dolev, D. "Unanimity in an Unknown and Unreliable Environment." Proc. 22nd IEEE
Symposium on Foundations of Computer Science, 1981, pp. 159-188.

6. Dolev, D. "The Byzantine Generals Strike Again." J. Algorithms 8, 1 (1982), 14-30.

7. Dolev, D., Dwork, C., and Stockmeyer, L. On the Minimal Synchronism Needed for
Distributed Consensus. Manuscript.

S. Dolev, D., Fischer, M. J., Fower, R., Lynch, N. A., and Strong, H. R. "An Efficient
Byzantine Agreement Without Authentication." Information and Control (to appear). See also
IBM Research Report RJ3428 (1982).

- 14-

9. Dolev, D., Lynch, N. A., and Pinter, S. Reaching Approximate Agreement in the Presence of
Faults. Manuscript.

10. Dolev, D., and Reischuk, R. "Bounds on Information Exchange for Byzantine Agreement."
Proc. AC,%f SIGACT-SIGOPS Symposium on Principles of Distributed Computing, 1982, pp.
132-140.

11. Dolev, D., Reischuk, R., and Strong, H. R. "'Eventual' is Earlier Than 'Immediate'." 23rd
IEEE Symposium on Foundations of Computer Science, 1982, pp. 19-203.

12. Dolev, D., and Strong, H. R. "Polynomial Algorithms for Multiple Processor Agremment."
Proc. 14th ACM Symposium on Theory of Computing, 1982, pp. 401-407.

13. Dolev, D., and Strong, H. R. "Distributed Commit with Bounded Waiting." Proc. Second
Symposium on Reliability in Distributed Software and Database System, Pittsburgh,
July, 1982.

14. Dolev, D., and Strong, H. R. "Requirements for Agreement in a Distributed System." Proc.
Second International Symposium on Distributed Data Bases, Berlin, Sept., 1982.

15. Dolev, D., and Strong, H. R. "Authenticated Algorithms for Byzantine Agreement." SL4I
J. Comput. (to appear). See also IBM Research Report RJ3416 (1982).

1a. Fischer, M. J., Fowler, R. J., and Lynch, N. A. "A Simple and Efficient Byzantine Generals
Algorithm." Proc. Second IEEE Symposium on Reliability in Distributed Software and
Database Systems, Pittsburgh, 1982, pp. 40-52.

17. Fischer, M. J., and Lynch, N. A. "A Lower Bound for the Time to Assure Interactive
Consistency." Inf. Proc. Lett. 14, 4 (1982), 183-186.

18. Fischer, M. J., Lynch, N. A., and Paterson, M. S. "Impossibility of Distributed Consensus
with One Faulty Process." Proc. Second ACM Symposium on Principles of Database Systems,
March, l083.

19. Gifford, D. K. Weighted Voting for Replicated Data. Tech. Rept. CSL-79-14, XEROX Palo
Alto Reserach Center, Sept., 1979.

20. Gray, J. A Discussion of Distributed Systems. Research Report RJ2699, IBM, Sept., 1979.

21. I0amport, L. "Using Time Instead of Timeout for Fault-Tolerant Distributed Systems."
ACM Trans. on Programming Lang. and Systems (to appear). See also technical report,
Computer Science Laboratory, SRI International (June 1981).

22. Lamport, L. "The Weak Byzantine Generals Problem." J. ACM 80, 3 (July 1983). To
appear.

23. Lamport, L. and Fischer, M. J. Byzantine Generals and Transaction Commit Protocols.
Manuscript.

24. Lamport, L.. and Melliar-Smith, P.M. Synchronizing Clocks in the Presence of Faults.
Computer Science Laboratory, SRI International, March, 1Q82.

- 15-

25. Lamport, L., Shostak, R.., and Pease, M. "The Byzantine Generals Problem." ACM Trans.
on Programming Lang. and Systems 4, 3 (July 1982), 382-401.

26. Lindsay, B. G., et al. Notes on Distributed Databases. Research Report RJ2571, IBM, July,
1979.

27. Merritt, M. J. Cryptographic Protocols. Tech. Rept. GIT-ICS-83/06, School of Inf. &
Comp. Sci., Georgia Institute of Techonology, Feb., 1983.

28. Mohan, C., Strong, H. R., and Finkelstein, S. Method for Distributed Transaction Commit
and Recovery Using Byzantine Agreement within Clusters of Processors. Research Report
RJ3882, IBM, 1983.

29. Pease, M., Shostak, R., and Lamport, L. "Reaching Agreement in the Presence of Faults."
J. ACM 27, 2 (1980), 228-234.

30. Popek, G., et al. "LOCUS: A Network Transparent, High Reliability Distributed System."
Proc. 8th ACM Symposium on Operating Systems Principles, Dec., 1981, pp. 169-177.

31. Rabin, M. Randomized Byzantine Generals. Manuscript.

32. Reischuk, R. A New Solution for the Byzantine Generals Problem. Research Report
RtJ3673, IBM, Nov., 1982.

33. Rivest, R., Shamir, A., and Adleman, L. "A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems." Comm. ACM 21, 2 (Feb. 1978), 120-126.

34. Schneider, F. B., Gries, D., and Schlichting, R. D. Fast Reliable Broadcasts. Computer
Science Technical Report TR 82-519, Cornell University, Sept., 1982.

35. Wensley, J. H., et al. "SIFT: Design and Analysis of a Fault-Tolerant Computer for
Aircraft Control." Proc. IEEE 66, 10 (Oct. 1978), 1240-1255.

ti

DISTRIBUTION LIST

Office of Naval Research Contract N00014-82-K-0154

Michael J. Fischer, Principal Investigator

Defense Technical Information Center Naval Ocean Systems Center
Building 5, Cameron Station Advanced Software Technology Division
Alexandria, VA 22314 Code 5200
(12 copies) San Diego, CA 92152

(1 copy)

Office of Naval Research Mr. E.H. Gleissner
800 North Quincy Street Naval Ship Research and Development Center
Arlington, VA 22217 Computation and Mathematics Department

Bethesda, MD 20084
Dr. R.B. Grafton, Scientific (1 copy)
Officer (1 copy)

Information Systems Program (437) Captain Grace M. Hopper
(2 copies) Naval Data Automation Command

Code 200 (1 copy) Washington Navy Yard

Code 455 (1 copy) Building 166
Code 458 (1 copy) Washington, D.C. 20374C 4 1() copy)

Office of Naval Research Defense Advancp Research Projects Agency
Branch Office, Pasadena ATTN: Program Management/MIS
1030 East Green Street 1400 Wilson Boulevard
Pasadena, CA 91106 Arlington, VA 22209
(1 copy) (3 copies)

Naval Research Laboratory
Technical Information Division

Code 2627
Washington, D.C. 20375

(6 copies)

Office of Naval Research
Resident Representative
715 Broadway, 5th Floor
New York, NY 10003
(1 copy)

Dr. A.L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
Code RD-I
Washington, D.C. 20380
(1 copy)

