D-A129 818 TOOLS FOR TESTING DENOTRTIONRL SEMANTIC DEFINITIONS OF 11 .
PROGRHHH!NG LANGUA. VERSITY OF S
. ALIFORNIA MARINA DEL REV INFORHRTIO S .
UNCLRSSIFIED V KINI ET AL. MAY 83 ISI/RR-83-112 F/G 9/2 NL

- Y
_———rTvTTw bl

-

D e
. l= e
3 22 o e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU F STAND2RDS 1a62.4

T P -

T — YT ———

LA A A ARLAALA Sa. 1 M R g
’ .'.

e Al AR ananta st oo o
I

ISI/RR-83-1]2
My 1993

ADA 129818

University (@m

of Southern | 5. “t

Vittal Kini Californic j_}iﬁ
David F. Martin
Allen Stoughton

R Tools for Testing Denotational

Semantic Definitions of
Programming Languages

DTIC

= ELECTE
S JUN 2 4 19835
EJJ This document has Been approved » e
| W for public relenae and sale; U8 o
distribution 18 unlimited - .
c? :

88 06 24 035
INFORMATION

/ ig;fjlgés { l ﬂ 203/822-1511
4676 Adnuralty Way/Marina del RevsCaliforma 90291-6695

This research 18 supported by the Detense Advanced Research Projects Agency under Contract No MIASUS A1 COC35 Views and
conclusions containeg in this report are the authors' and should not be interpreted as representing the ctficial coimon or pohicy of DARPA,
the '; S Government, or any person or agency connected with them.

- ‘A._AA‘_AAAA-L_.:-.,_._._~,.~1

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

T — T, W e W w

Unclassified

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

. REPORT NUMBER

ISI/RR-83-112

2. GOVT ACCESSION NO| 3.

RECIPIENT'S CATALOG NUMBER

. TITLE (and Subtitle)

Tools for Testing Denotational Semantic
Definitions of Programming Languages

5. TYPE OF REPORT & PERIOD COVERED

Research Report

8. PERFORMING ORG. REPORT NUMBER

AUTHOR(a)

Vittal Kini, David F. Martin, and Allen Stoughton

8. CONTRACTY OR GRANT NUMBER(s)

MDAS03 81 C 0335

PERFORMING ORGANIZATION NAME AND ADDRESS
USC/Information Sciences Institute

48676 Admiraity Way
Marina del Rey, CA 90291

10. PROGRAM ELEMENT PROJECT, TASK
AREA & w UNIT NUMBERS

. CONTROLLING OFFICE NAME AND ADDRESS

Defense Advanced Research Projects Agency
1400 Wilson Bivd.
Arlington, VA 22209

12. REPORT DATE

May 1983

13. NUMBER OF PAGES

81

14. MONITORING AGENCY NAME & ADDRESS(/f ditfferent from Controlling Olfice) 15. SECURITY CLASS. (of this report)
Unclassified
1Sa. DECL ASSIFICATION/DOWNGRADING
SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)
This document is approved for public release and sale: distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, if different from Report)
;‘_
-_j' 18. SUPPLEMENTARY NOTES
-
-
‘A4
g
:
Pt
b
3 19. KEY WORDS (Continue on reverse aide {l neceseary and identity by block number)
{ Ada, denotational semantics, semantic interpreter, software tools
b o
1
4 20 ABSTRACT (Continue on reverse side If necessary and Identity by block number)
3
;; . (OVER)
-
1 FORM
3 ' .
r DD a7 1473 O O ey e3 1 OBSOLETE Unclassified

! SECURITY CLASSIFICATION OF THIS PAGE (@hen Date Bntered)

L.
| Y

L AR st g a1 it A A0 e v

-

™

BEA e 0 ot o o SR a0 ane g
K v, .
- .

Ol R S 20

— - R P ——e

-3

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(WNen Date Entered)

20. ABSTRACT (continued)

The Department of Defense commissioned the design and implementation of the Ada programming
language with the intention of requiring most future military systems to be programmed in Ada. To
ensure the quality of systems written in Ada, it is necessary that Ada be precisely understood by both
its users and implementers. To this end'g_ denotationa! formal semantic definition (FSD) of Ada was
developed at the Institut National de Recherche en Informatique et en Automatique (INRIA), in
France. Its intent is to provide the precise meaning of the language and its constructs via the
mathematical formalism which underlies the denotational semantic descriptive technique. Due to the
complexity of Ada. however. and despite the power and elegance of the denotational semantics
method. the FSD itself is quite large: both the static (compile-time) and dynamic (run-time) phases of
the definition consist of hundreds of mutually recursive functions. As a result of this inherent
complexity, it is difficult for a person to understand the definition or o attempt symbolic execution of
the definition without machine assistance. This report describes the work of the ISI Formal Semantics
project in developing and constructing tools to aid the understanding and validation of the Ada FSD.
First we briefly describe the INRIA meta-language. AFDL, and the extensions we were forced to make
to it. Next we describe the various tools we have built and their application to the interpreting of the
FSD. Finally, we describe the outcome of the project. The appendices contain an informal
specification of our enhanced version of AFDL (AFDL +), a definition of the toy programming
language TINY in AFDL +, and a transcript of an example use of our tools to process the TINY
definition,

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

T R |

—~ .
@

o d

Dist | Special N
{ e
L }
S
[
\
.
rg)
.
‘o
3
.
- @
. INFORMATION
SCIENCES
INSTITUTE
4676 Admiralty Way/Marina del Rey/California 90291-6695)
; ° This research 1s supported by the Defense Advanced Research Projects Agency under Contract No MDAS03 81 C 0335 Views and
. conclusions contained in this report are the authors’ and should not be interpreted as representing the oticial opinion or pohcy of DARPA,
the US Government. or any person or agency connected with them
L . . e o

Vittal Kini

David F.

Martin

Allen Stoughton

Accession For

| NTIS oRARI X
TIC TAB [
Unannounced]

- :
Justification |

By -
Distribution/

Availahility Codes
"~ Avail and/or

[ERUURSENSS

VEL ama ave e ane aa P

ISI/RR-83-11]
May 1984

University
of Southern
California

Tools for Testing Denotational
Semantic Definitions of|

Programming Languagesd

213/822-1511

CONTENTS

1. Testing the INRIA Ada Formal Definition: The ISI Formal Semantics Project 1
1.1 Introduction 1
1.2 Ada Formal Semantic Definition. 2
1.3 Mechanical Interpretation of the AdaFSD 3
1.4Status as of JuUNE 1982 8

2. A Description of AFDL +: The Ada FSD Metalanguage 10
2.1 OVBIVIBW . . 10
2.2 Lexical Elements 11
2.3 Declarations and TyPeS.o e 12
2.4 EXPreSSIONS . . . 19
2 S FUNCHIONS e 25
2.8 PaCKAgES. . .. o 26
2.7 Program SIrUCIUIE 26

B AFDL + TransCriptS . . o e 27

LISIEXIeNsSions 10 AFDL e 60

Il. Denotational Semantic Definition of TINY in AFDL + 62

L AFDL + AbStract Synmtax o e 66

IV. AFDL + Concrete and Abstract Syntax it 69

R OrON S e 77

1. TESTING THE INRIA ADA FORMAL DEFINITION:
THE ISI FORMAL SEMANTICS PROJECT

X 1.1 INTRODUCTION

‘ The design and implementation of the Ada [1] programming language were commissioned by DoD
m with the intention of requiring most future military systems to be programmed in Ada. It is therefore

necessary that Ada be precisely understood by both its users and implementers, in order to ensure

the quality of systems written in Ada. In particular, since DoD must control Ada compiler
implementations, a precise, well-structured, and validated formal definition of Ada can provide one of
" the principal standards to which these implementations must adhere. Beyond such considerations
pertaining to particular programming languages such as Ada, good generic research toward the
design and implementation of tools and methodologies for supporting the development of precise,
readable, and accurate formal definitions has considerable relevance to the broader goals of
understanding large programs and verifying their correctness.

A denotational formal semantic definition (FSD) of Ada has been developed at INRIA [10]. Due to
the complexity of Ada, and despite the power and elegance of the denotational semantics method,
the FSD itself is quite large: both the static (compile-time) and dynamic (run-time) phases of the
definition consist of hundreds of mutually recursive functions. As a result of this inherent complexity,
it is difficult for a human to understand the definition. One approach to understanding a denotational
definition is to symbolically execute the definition on specific example programs. Attempting to do
this without machine assistance wiil likely result in a great many errors and is, in a practical sense,
impossible. Unaided human application ot this FSD to understanding Ada programs is at best an
arduous task.

it is therefore imperative to construct appropriate tools to aid the understanding and validation of
the Ada FSD. Such tools can be used in two ways. Initially, Ada test cases whose semantics are well
understood can be used to test the correctness of the FSD. Subsequently, after confidence in the
correctness of the Ada FSD has increased, the tools can be used to answer very specific questions
about specific parts of the FSD as they relate to example Ada programs whose semantics are not
readily apparent. This report describes work done at USC-Information Sciences Institute in
constructing tools that may be used in these ways to exercise and validate the INRIA Ada FSD.

‘Y‘:T"_:'..
-

The Ada FSD is written in a typed lambda calculus expressed in an "Ada-like" syntax, we shall
henceforth call this language AFDL, an acronym for Ada Formal Definition Language. We have
written tools to

* translate the functions and data types of the Ada FSD into an equivalent directly
(executable intermediate language (AFDL-IL),

« transform candidate Ada test programs (such as the Softech compiler test cases [8]) into
corresponding abstract syntax trees, and

* apply the translated FSD to the abstract syntax trees to obtain via interpretation the static
and dynamic semantics of the corresponding programs.

—————— v YT v v

The semantics thus obtained can be compared to the expected meaning. In addition we have built
toois to generate useful items such as cross reference listings of the FSD's components.

o P PR N PR

e '

T Q 2 TOOLS FOR TESTING DENOTATIONAL SEMANTIC
3 In this report, we describe in more detail our approach to validating the Ada FSD. First, we briefly
;’ describe the INRIA meta-language and the extensions we were forced to make to it, and give an
a overview of the structure of the INRIA Ada FSD. Next, we describe the various tools we have built and

- |

-

m he e e e ol i I e P SUh Sledine Al i

-

Py

their application to the FSD. And finally, we describe the current state of our project and its expected
outcome.

1.2 ADA FORMAL SEMANTIC DEFINITION

1.2.1 The Meta-Language of the Ada FSD

AFDL, the meta-tanguage in which the FSD is written, is an applicative language with an Ada:like
syntax. The language contains function, block, conditional, and case statements, simple expressions,
and packages (for modularity and information hiding) as in Ada. AFDL’s basic data types are the
integers and the booleans, and its data type constructors are enumerated types and (unlike Ada)
function types. Conspicuously absent from AFDL are the sum (union), product (record), and
sequence (array) types; these types are basic to the denotational semantics method. As a result, the
data types upon which the FSD is based are only defined intormally in plain language, and are not
formally defined in AFDL (or any other language). The absence of formal explication of the entire
base-level of the definition is one of the major impediments to the human reader who wishes to
understand the formal definition (the task is akin to trying to understand a large software system in
which the data type declarations were only cursorily outlined in English). This deficiency must be
remedied before the FSD can be tested.

Our approach to this problem was to extend AFDL, in an upward compatibie way, to include sum,
product and sequence types, along with their associated operations. This approach provides a
meta-language capable of conveying the entire definition in a formal manner, and thus facilitates both
human understanding and machine execution of the definition. We call this extension AFDL +.
Further details of AFDL + are provided in Appendix |. Appendix il of the report contains a definition of
Gordon's example programming language "TINY" [8]. The definition is essentially a transiiteration of
the continuation-style semantic definition of TINY that Gordon provides. In this definition, all of the
static and semantic domains are defined in terms of the basic types INTEGER and BOOLEAN and the
various domain constructors.

1.2.2 Structure of the Ada FSD

The Ada FSD basically consists of a collection of mutually recursive functions together with a
repertoire of intrinsic basic data types. The Ada Reference Manual [1] is divided into a number of
chapters, each devoted to a specific aspect or component of the language. None of the FSD appears
in this manual. The Ada FSD ([10) and later versions), however. is organized by "folding™ it into the
Reference Manual so that each chapter contains the pertinent components of the Ada FSD. The
intrinsic FSD data types and operations on them are intended to be described in Appendices to the
Ada FSD in order to separate these base:level concerns from the rest of the FSD.

From an operational point of view, the Ada FSD is organized into three "phases"”, one of which is
syntactic and the others semantic. The syntactic phase establishes a relationship between the
concrete and abstract syntax of Ada by providing a specification of both the concrete and abstract

.4-",ﬁ,,4rﬁ.,,fﬁﬁ,fr,,,,,.
T - -

aJ

g yre T~
T .
a .

DEFINITIONS OF PROGRAMMING LANGUAGES

syntactic domains together with a (constructive) mapping from the former to the latter. In practice,
this mapping is implemented as a parse-driven construction of Ada abstract syntax trees from
corresponding Ada program strings. There are two semantic phases which process abstract syntax
trees. The first, called static semantics, performs what are generally considered to be "compile-time"
functions such as static type-checking and overloading resolution. This phase produces what we
term an annotated abstract syntax tree which is a modified form of the tree input to the phase. The
annotations consist of error messages and static environment information gathered by the phase
such as the overloading resolutions, visibility calculations, normalizations, etc. The final semantic
phase, called dynamic semantics, determines the "run-time" semantics (the meaning of procedures,
expressions, etc.) of error-free annotated abstract syntax trees output from the static semantics
phase.

1.2.3 Status of the ada FSD -- June 1982

At this time, the Ada FSD is incomplete in that (excluding the semantics of Tasking in Ada) many of
the semantic functions in the chapters of the FSD document are either missing or contain errors (both
type and logical), and the data types and functions in appendices of the document are largely
unspecified. The functions missing from the FSD have been identified, and type errors have been
detected by the use of type-checking tools developed at ISI. The burden of defining these missing
types and functions and of correcting these errors necessarily falls upon INRIA.

In the FSD document, the concrete and abstract syntaxes of Ada are defined, the latter less
explicitly than the former. In fact, there exist two abstract syntaxes: a post-parse abstract syntax
(which is input to the static semantics phase) and a post-static-semantics abstract syntax (which is
input to the dynamic semantics phase). The correspondence between the (post-parse) abstract
syntax and the concrete syntax in the document is implicit; it must be given expiicitly or else the
reader must be given enough information to deduce the exact correspondence, as this is necessary
for a detailed understanding of the FSD. However, INRIA has supplied an LR(1) syntax for a superset
of Ada. together with a correspondence between it and the Ada abstract syntax.

1.3 MECHANICAL INTERPRETATION OF THE ADA FSD

In this section we shall describe the processes whereby the Ada FSD is translated into suitable
intermediate forms that may then be interpreted. The interpretive execution of the FSD will allow the
testing and validation of the FSD and, subsequently, the accurate determination of the semantics of
given example Ada programs. Figures 1, 2, 3, and 4 illustrate these processes.

The boxes in these figures represent abstract machines that accept inputs and produce outputs in
certain forms. Boxes subdivided vertically into two compartments represent abstract machines that
are constructed by loading what is represented by the upper compartment into the abstract machine
represented by the lower compartment. Compartments may themselves be vertically subdivided into
compartments in a hierarchical manner (see Figure 4 for example). Numbers above the top left
corner of a box uniquely identify an abstract machine and two boxes labeled with the same number
therefore represent the same abstract machine.

M

vy

T e e W T T W T W T T wWTwT Y R e e

4 TOOLS FOR TESTING DENOTATIONAL SEMANTIC

Parser Generation

1
P -
|Parser |
AFDL LR(1) Syntax ---> [Generator| =---> AFDL Syntax (To A: fig. 2)
| "LR" | Tables
D +
1
dommmmmnes +
|Parser |
Ada LR(1) Syntax =---> |Generator| ---> Ada Syntax (To B: fig. 3)
| "LR" | Tables
R +

Figure 1
Processing FSD Semantic Functions
A (from Fig. 1)
FSD 2 |
static --) +---|--+ 3 --> {to C; Fig. 3)
Fas. | v | +omeem-- + 4
[Syntax| {Type | #ommmooo- +
AFDL |Tables) |Chk'g.+ | Checked | AFDL
Source -=> +4------ + --> AFDL-AS --> |Overload| --> AFDL-AS --> |[Compiler| --> AFDL-IL
| T.0. | [Resol'n. | i |
FSD |Parser| 4o + | +ommmeem- +
Dynamic =-> +--==-= + | | --> (to D; Fig. 4)
Fns. I I !
v v 5 v
AFDL Syntax AFDL Static 4mmcemean- +
Errors Errors [Cross |
|Reference|
|Program |
R +
Key: T.D. Parser = Table Driven Parser
Figure 2

o > . a4 4 m-m te % m a4 e Aa o i

s Sl

,4-

Lk Al ot] 1-,
a C PR
[\ .

@

R T T . i T e A s o

v vy i—

LT

T

AR R At i SO
A

L SR AR TR A

y

- ——— % yyr T ws T

DEFINITIONS OF PROGRAMMING LANGUAGES

Static Semantics (PASS 1)

B (from Fig. 1) C (from Fig 2)
6 | 7 |
Al R 4ommmm o |=-~-+
lov o [v
|Syntax| |Static |
|Tables| Ada Pgm. |AFDL-IL | Ada Program
Ada =) A + --> Abstract --> +4-----o----- + --> Annotated 4)
Program } 7.0, Syntax |AFDL-IL | Abstract
|Parser| |Interpreter| Syntax
L + tomemmec o +
I
|
A4
AFDL Dynamic
Errors
Key: T.D. Parser = Table Driven Parser
Figure 3
Dynamic Semantics (PASS 2)
E (from Fig. 3)
9 [
$omme e | ------ +
| v |
|Ada Program |
jAnnotated |
|Abstract Syntax|
Ade Program =---) #--c--cc-ccccoo-- + ~---> Ada Program
Input Data | 8 | Qutput Data
| #----=-"---- + |
| |Dynamic (-+-+---+
| [AFDL-IL Fr
| #mmmemmoees 1
| |AFDL-IL | D (from Fig. 2)
| |Interpreter| |
| D + |
L TR +
|
[
v
AFDL Dynamic
Errors

Figure 4

o

EdBan

Yy v Y
A
- .

A s Aln m Al in am B ey 254
-

T Y
-

LAl AiNE Soun aeun SR

6 TOOLS FOR TESTING DENOTATIONAL SEMANTIC

1.3.1 Generation of Parsers

To generate parsers for the Ada and AFDL languages we use the LR program [12] which accepts
an LR(1) syntax for a language and outputs syntax tables. These tables are used to control a table-
driven LR parser. Figure 1 shows this process for Ada and AFDL. Abstract Machine 1 is the LR
program referred to above. The table-driven parser (bottom half. Abstract Machines 2 and 6) was
constructed in interlisp.

1.3.2 Processing of FSD Semantic Functions

The static and dynamic semantic functions of the FSD, written in AFDL, are transiater to a
directly executable intermediate language, AFDL-IL, by the process depicted in Figure 2. - tract
Machine 2 parses the AFDL text of the functions and produces the AFDL abstract syntax (A AS)
torm of those functions (the AFDL text is first extracted from the surrounding prose in the FSC -urce
document, using a SNOBOL program). Errors discovered at this stage include AFDL synte nrg
arising from misspelied or missing keywords or delimiters, or trom improperly constructe .~ o
syntactic forms. The syntax tables generated by the LR program in the process of Figure 1 are . .aJed
into tne table-driven LR(1) parser to yield Abstract Machine 2.

The output of Abstract Machine 2 is then fed to Abstract Machine 3 which checks for incorrect
AFDL data type usage and resolves any overloading of function names. Errors trapped at this stage
consist of improper type usage, unresolvable function name overloading due to ambiguity, missing
declarations, misspelied declaration names leading to the appearance of missing declarations, etc.
The output of Abstract Machine 3 is the AFDL-AS form of the static and dynamic semantic functions
in which such errors have been eliminated. The actual output of the type-checker/overloading-
resolver is a symbol table that relates all symbols in the global scope of the definition to their type-
checked values. Thus, for example, the value of a symbol representing a typename will be the
definition of that type and the value of a symbol representing a function will be the type of that
tunction along with the abstract syntactic form of the function body.

For efficiency, the abstract syntax tree forms of the semantic functions are not directly executed
during the interpretation process. A compiled form is used instead. Abstract Machine 4 compiles the
AFDL-AS functions, producing instruction sequences for the AFDL-IL interpreters depicted in
Abstract Machines 7 and 8. The AFDL-IL interpreter is a virtual stack machine implemented in
Interlisp with a retention strategy for storage to model the static binding of variables which is possible
in AFDL.

1.3.3 Cross Reference Facility

Abstract Machine 5 in Figure 2 represents the cross reference facility. This program accepts the
AFDL-AS output from Abstract Machine 3 and produces a listing of attributes for each symbol in the
global scope of the FSD. Thus, for instance, if a symbol represents a semantic function, the attributes
include a list of functions it calls and a list of functions that call it. These cross reference lists are a
useful tool in checking the FSD for irregularities.

e |

,yv~v.i
[N

B SR S I A0 e A0 e, + LN SN BAN Rt M e g

a3

| M 4B 0 s AEn b s s o ek o o 2

—

PP —

DEFINITIONS OF PROGRAMMING LANGUAGES 7

1.3.4 Static Semantics, PASS 1

The Ada FSD is constructed to provide the semantics of an Ada program in two passes that
evaluate, respectively, the static and dynamic semantics of the program. The process of Figure
3 depicts the first or static semantics phase. The Ada programs whose semantics are to be evaluated
are first rendered into an abstract syntactic form by an LR(1) Ada parser (Abstract Machine 6). This
abstract machine is constructed by loading the syntax tables for Ada, produced by the LR program,
into the table-driven parser mentioned in Section 1.3.1.

The Ada program abstract syntax is fed into Abstract Machine 7 which does the actual static
semantic evaluation. Abstract Machine 7 is constructed by loading the compiled AFDL-IL form
(symbol table) of the static semantic functions of the FSD (output from Abstract Machine 4, Figure 2)
into an interpreter for AFDL-IL. As mentioned earlier, the interpreter is a stack machine programmed
in Interlisp. Abstract Machine 7 is, therefore. the static semantics evaluator and embodies the
corresponding part of the FSD.

The output of Abstract Machine 7 is an annotated abstract syntactic representation of the Ada
program that was input to the process of Figure 3. The annotations correspond to the error messages
and static environment information that were obtained from the program and checked for correctness
by the static semantic functions of the FSD. By using this annotatec abstract syntax representation,
the dynamic semantic functions in PASS 2 need not re-analyze the Ada program to obtain static
environment information.

During the running of Abstract Machine 7, AFDL dynamic (run-time) errors may occur (e.g.
selection of a non-existent element of a sequence type (array)). Such errors are defects in the FSD
and must be corrected. In addition, various errors may also be detected by the FSD itse/f and
recorded as annotations in the Ada abstract syntax tree it produces. For instance, unresolvable
overloading of Ada function or operator names, ambiguities ¢.le to importation of declarations by
means of use clauses, improper data-type usage, etc., are errors that may be statically determined to
exist in a program. The flagging of such errors, however, may signify different things depending on
the intended use of Abstract Machine 7. In initial phases when the FSD is being validated. it is
supposed that the semantics of the test-case input Ada programs are well understood and are known
to conform to program specifications. In such cases, the errors flagged by Abstract Machine 7 will in
all likelihood be caused by errors in the FSD static semantic functions themselves. [n latter phases,
subsequent to the validation of the FSD, such errors flagged by Abstract Machine 7 will point to errors
in the Ada programs themselves. In such cases, the FSD static semantic functions will have fulfilled
their purpose.

1.3.5 Dynamic Semantics, PASS 2

The second pass of the Ada FSD, the dynamic semantics phase, is depicted in the process of
Figure 4. It is seen from the figure that Abstract Machine 8 is constructed in a marnner similar to that
of Abstract Machine 7. This is done by loading the compiled AFDL-IL (symbol table) form of the FSD
dynamic semantic functions (output of Abstract Machine 4 in Figure 2) into the AFDL-IL interpreter.
The result is an abstract machine with the capability to evaluate Ada program annotated abstract
syntax trees.

e e e N . P . P . D A N

Dni i dies AaAn Sa AU SIS\ IR

e s —— T ————

8 TOOLS FOR TESTING DENOTATIONAL SEMANTIC

The dynamic semantics interpreter (Abstract Machine 9) is obtained by loading Abstract Machine 8
with the annotated abstract syntax representation of the Ada program that is the output of the static
semantics evaluator {(Abstract Machine 7). Machine 9 is an executable object that embodies the
semantics of these Ada programs. It accepts representations of the input data that the Ada programs
would have accepted and through a process of interpretation produces the output data of those
programs (assuming they terminate). in addition to viewing the output data produced by Ada test
programs, it is also possible to view the internal computation states of those programs. Both the
external and internal behavior can be used in judging the correctness of the FSD and Ada programs.

In a manner similar to that described in Section 1.3.4, AFDL dynamic (run-time) errors can occur
during the execution of Abstract Machine 9. These are FSD errors. In addition, the FSD dynamic
semantic functions themselves may detect run-time errors in the Ada test programs. These errors are
indicated as part of the output data of those programs, and may represent errors either in the dynamic
functions of the FSD or in the Ada programs themselves. Furthermore, the program output data
produced by Abstract Machine 9 may be examined to determine whether it is as expected. Again, in
the case of test-case Ada programs with well understood semantics, incorrect output data is
symptomatic of errors in the FSD which will require identification and correction.

1.3.6 Summary

it may be observed from the foregoing description that the processes depicted in Figures 1 and
2 are performed once for each version of the Ada FSD. (Except for the process in Figure 1 which
generates the syntax tables for the LR(1) Ada grammar. This is done precisely once, unless the
grammar for Ada changes, a much less likely event.) Here, a new version of the Ada FSD is created
each time errors detected in the FSD are corrected. Therefore, these processes are "constructor
processes” in that they are used to construct the Ada FSD validation tools. When errors in the FSD
are detected during the running of these constructor processes, they must be terminated
prematurely. a new version of the FSD generated, and these processes restarted.

The processes depicted in Figures 3 and 4, on the other hand. are run for each test-case Ada
program whose semantics is to be evaluated, or whose known semantics is to be used to validate the
FSD. As such, these processes may be viewed as "validation processes”.

In summary, the processes of Figures 1 and 2 are used to parse, type-check and prepare
intermediate forms of the FSD static and dynamic semantic functions. The checked intermediate
forms are then loaded into the AFDL-IL interpreter to produce the static and dynamic semantics
interpreters. These interpreters are used in the processes of Figures 3 and 4 to evaluate the
semantics of test-case Ada programs and validate the FSD.

1.4 STATUS AS OF JUNE 1982

The software tools we have described in this report have been constructed and are fully operational
at USC-Information Sciences Institute. An exception is the user-interface to the AFDL-IL interpreter
which must perforce remain in a rudimentary state until experience with exercising the complete
INRIA Ada FSD is gained. For the moment we have the capability to set conditional breakpoints upon
entries to and/or exits from semantic functions and also at the level of individua!l instructions in the
compiled forms of the semantic functions. The full power of Interlisp is available at a breakpoint and
thus it is possible to observe the static and dynamic chains. variable bindings and continuations in the

LA S SIS ahe o4

L J S 0 A i NS Sut Jun GuR SuSTNIag JE aeei i 4

v

—

DEFINITIONS OF PROGRAMMING LANGUAGES 9

interpreter. This ability to intervene interactively in the interpretation is a feature that distinguishes
our work from that of Mosses {11].

An extensive list of type errors generated by ‘ne type checker (Abstract Machine 3), and cross
reference listings have been supplied to INRIA for the entire FSD. Unfortunately, because the FSD is
currently incomplete, it has not yet been possible to test the static and dynamic interpreters on the
FSD, or to begin validating the FSD. It is hoped that efforts at INRIA will soon remedy this situation. In
the meantime we are employing the denotational definition of TINY (provided in Appendix !l of this
report) to exercise our tools.

We have succeeded in processing the TINY definition through the parser, type-checker and
compiler. The compiled definition has been run on the interpreter with several examples meant to test
the various paths in the definition. The biggest TINY program we have executed under the AFDL
interpretation of the definition has been one that accepts integers in the input stream and produces
the corresponding factorials in the output stream. Since the TINY language does not have a
multiplication operation, this was implemented via iterative addition! While such a program is quite
small, the work done by the interpreter in terms of semantic function applications and the
corresponding manipulation of static and dynamic chains is not trivial. Thus it has proven to be a
fairly good test of the software.

Since AFDL + contains the necessary idioms for writing denotational semantic definitions, we
expect that our software could also be useful to the scientific community at large.

e

3

b

s
E
'
A
3
q
k.

A

2. A DESCRIPTION OF AFDL +:
THE ADA FSD METALANGUAGE

2.1 OVERVIEW

The purpose of this chapter is to describe the semantic metalanguage in which the formal definition
of Ada [1, 10] is written. This language, called AFDL (Ada Formal Definition Language) is essentially a
typed lambda calculus with Ada syntactic sugaring.

The originai version of AFDL was conceived by the INRIA team that wrote the Ada formal definition
[10]. Certain enhancements of AFDL were found to be desirable by the IS| group whose goal is to
build tools to test the Ada FSD; this enhanced version of AFDL is calied "AFDL + ". AFDL is a proper
subset of AFDL +, and therefore AFDL programs are completely “upward compatible" with AFDL +.
It is this enhanced version of AFDL that will be described in this chapter.

AFDL + and AFDL are purely applicative languages intended for writing denotational semantic
definitions in an Ada-like syntax. AFDL contains functions, blocks, conditional and case
"statements” (which are actually expressions), simple expressions, and packages (for modularity and
information hiding). AFDL's basic data types are the integers and booleans, and its data type
constructors are enumeration of types and (unlike Ada) function types. Conspicuously absent from
AFDL are sum (union), product (record), and sequence (array) types; these types are basic to the
denotational semantics method. As a result. the data types upon which the Ada FSD is based are only
defined informally in plain language, and are not formally defined in AFDL (or in any other language).
This situation is an obstacle to full understanding of the Ada FSD; moreover, it must be remedied
before the FSD can be tested. AFDL + is an upward compatible extension of AFDL designed to
overcome these shortcomings by including sum, product, and sequence types together with their
associated operations. This allows the entire FSD to be formally defined, by writing it in AFDL +. This
will facilitate human undestanding of the FSD, and will also render it machine executable.

2.1.1 Style of this Description

The description of AFDL + presented in this chapter deals with two principal aspects of AFDL +: its
syntax and semantics.

The syntax of AFDL + is given in two forms: (1) an LR(1) concrete syntax, which is used to parse
AFDL + programs and transiate them into equivalent abstract syntactic form, and (2) an abstract
syntax, which is tne target representation of this transiation, and which is used as an intermediate
form for type checking and compiling AFDL + programs into equivalent AFDL machine programs for
execution of semantic descriptions written in AFDL +. The correspondence between concrete and
abstract syntax is in most cases quite straightforward and requires no additional explanation. Those
occasional cases that are not so clear are briefly explained in accompanying comments.

A summary of the AFDL + abstract syntax is given in Appendix Ill. A precise specification of the
correspondence between AFDL + concrete and abstract syntax is given in Appendix IV. The
correspondence consists of a specification input to the grammar analysis program LR this kind of
specification is explained in the documentation of the AFDL/Ada syntax tools [4]. Appendix
IV presents the output from LR.

~———

T
-t

wf.—v<v-v ~ vTT—r e

T TYTYTITITY V3 ¥ T
- <

ey -

DEFINITIONS OF PROGRAMMING LANGUAGES 11

The semantics of AFDL + is given in plain English. A more precise, though complex, operational
semantics of AFDL + is defined by the combination of the AFDL + parser, compiler, and the LISP
code that implements the AFDL virtual machine. These processors are documented in [4, 5, 6],
respectively.

2.1.2 Abstract Syntax Notation

The notation used to describe AFDL + abstract syntax is simitar to BNF, except ":" is used instead
of "::=". Lower case names denote syntactic categories or classes, and upper case names denote
syntactic constants that are used as node names or labels. The suffix "_s" denotes a list of syntactic
objects of the class to which the suffix is appended (e.g., id_s denotes a list of objects of class id).

Most comments appear at the end of lines, and are prefixed by "--".

Abstract syntax constructs are basically trees implemented in a simple list structure of the form
(NAME sonl son2 ... sonN)

where NAME is the root node label and son1, ..., sonN are trees that are the immediate successors
of the root node. When N = 0, the tree is simply represented as NAME rather than (NAME).

Several syntax classes are terminal, in that they represent sets of syntactic constants in AFDL +.
These are

var_id variable identifier; corresponds to ".varname" in concrete syntax.

fun_id function or package identifier; corresponds to ".procname” in concrete syntax.

type_id type identifier; correspondsto ".typemark" in concrete syntax.

const_i1 (enumerated type) constant name; corresponds to ".etconst" in concrete
syntax.

integer integer, corresponds to ".integer" in concrete syntax.

string string; correspondsto ".string" in concrete syntax.

2.2 LEXICAL ELEMENTS

AFDL has a simple set of lexical elements[4]). In addition to the usual delimiters such as
parentheses, operators, etc., AFDL has four major disjoint classes of lexical elements:

* keywords

* names

* (positive) integer constants
* strings

Wu;;;-;---.-.;;_-_._-A---‘-A-‘-A.;_‘,. . . e e e

VWP
A
a

[S dt T8 ok S0 s b S e G Chst e R ety
.

L St SN

- — - < ~T %
c et et mmwm AT T AmNT W WIS T W TS WY YUY S T = T - ~

12 TOOLS FOR TESTING DENOTATIONAL SEMANTIC

Basically, keywords and names are identifiers of various kinds. In order to define their
representations precisely. the following definitions are useful. A word is a nonempty sequence of
letters; an upper (lower) case word is a word in which all the letters are upper (lower) case. An
identifier is a nonempty sequence of letters, decimal digits, and underscore characters that must
begin with a letter and not end with an underscore.

An AFDL keyword is a lower case word prefixed by an underscore; this representation of keywords
causes them to be printed as boldface in the Ada FSD.

An AFDL integer constant is a nonempty sequence of decimal digits.

AFDL names are partitioned into four classes:

* names of packages and main functions

* names of values and auxifiary functions

* names of syntactic constructs and selectors
* type names

AFDL package names and function names are upper case identifers, these constitute the lexical
class ".procname"” in the concrete syntax. AFDL value names and auxiliary function names are lower
case identifiers: these constitute the lexical class ".varname” in the concrete syntax. AFDL syntactic
construct names and selector names are lower case identifiers prefixed with a tilde (~);, these
constitute the lexical class ".etconst” in the concrete syntax. Syntactic construct and selector names
print as lower case italic in the Ada FSD. An AFDL type name is an upper case identifier prefixed by a
tilde (~); these constitute the lexical class ".typemark" in the concrete syntax. In order that type
names be easily distinguishable, the leading tilde of a type name is changed to "# " by the AFDL
parser (during formation of AFDL abstract syntax trees), and therefore in the AFDL abstract syntax,
type names are upper case identifiers prefixed bya " # ".

2.3 DECLARATIONS AND TYPES

A declaration is an entity used to associate a name with an object that it represents. Most AFDL +
declarations have two parts: a required specification part and an optional initialization or body part.
In addition, AFDL has several kinds of type declarations; these are necessary to support the
denotational semantics application for which AFDL is used.

2.3.1 Declarations
In AFDL, four kinds of items are declared: variables ("objects" in Ada), functions (Ada value-

returning subprograms). packages (of data types together with associated functions) to support the
formal definition, and types.

2.3.1.1 Variable declarations

AFDL has a standard kind of variable declaration, consisting of the variable's name, type, and an
optional initial value to be assigned to that variable. A variable's type may be regarded as its

——— N . . o -~ . e A A Amoam s m A oo

- v L TaT—T———n———~r - LR e T e ———— " " p— .T‘l"j

q DEFINITIONS OF PROGRAMMING LANGUAGES 13

“signature"”. Variables declared within functions are generally initialized, whereas those declared
within packages are not. Variable declarations without initializations are called variable
fa) specifications.

CONCRETE SYNTAX
variable_specification :: = .varname : type_id
| 2_var_id_list : type_id
P variable declaration :: = .varname : type_id : = expression
: 2_var_id_list :: = .varname , .varname

| 2_var_id_iist , .varname
1

q ABSTRACT SYNTAX
var_spec: (VSPEC var_id_s type_id)

var_decl: (VDECL var_id type_id expr)

2.3.1.2 Function declarations

]

4

3

<

.

}'

!

b AFDL function declarations consist of at least a function specification, which consists of the
E_ function's name and result type together with the names and types of its formal parameters, plus an
i optional "initialization”, the function's body. Function specifications are used to provide their names
N and "signature"” (i.e., their argument and result types) in packages and also in situations where
specifications are necessary to satisfy the "prior declaration” requirement of Ada when functions are
b declared to be mutually recursive.

CONCRETE SYNTAX
P function_specification :: = function id formal_part return_type
F_ function_declaration :: = function_specification is function_body
r formal_part :: = -- empty
F q | (parameter_declaration_list)

parameter_declaration_list :: = parameter_declaration
| parameter_declaration_list , parameter_declaration

¢ parameter_declaration :: = name_list : type_id
return_type :: = return type_id

function body :: = declaration_list block_body

| block_body
- ¢
P
1 declaration_list :: = declaration ;
: | declaration_list declaration ;
{
¢

L

Y
L]

v

MRl S S0t Jun SEL S 4
A i
N

——TYT Y VY

| T

g——— L aamts _anad Sumth Sl Sen i aett " Al - . = Tn Tt DEM M 1

14 TOOLS FOR TESTING DENOTATIONAL SEMANTIC

declaration :: = variable_declaration
| function_specification
| function_declaration

ABSTRACT SYNTAX

fun_spec: (FSPEC fun_id fun_type)
fun_decl: (FDECL fun_id fun_type fun_def)
fun_type: (MAP type_id_s type_id)
fun_def: (LAM id_s expr)

in the above abstract syntax, the fun_type is a function's "signature”, i.e., the types of its formal
parameters and the type of its result. In addition, a function declaration (in contrast to a function
specification) has a fun_def, which is similar to « lambda calculus abstraction, whose bound variables
are the function's formal parameters and whose body is the function’s body.

Like Ada, but unlike lambda calculus, AFDL functions have their actual parameters transmitted by
value. This causes difficulties when AFDL is used to express certain common denotational semantics
idioms that assume evaluation (or parameter transmission) by name. As a result, “programming”
denotational semantics in AFDL must be done with due recognition of this fundamental difference
between AFDL and lambda calculus.

2.3.1.3 Package declarations

Packages are used in AFDL to encapsulate data types (domains and associated functions) that
serve as "utility support” for the FSD. There are packages that define the Ada abstract syntax
(Appendix G of the Ada FSD [10]). support for the Ada static semantics (Appendix H}, support for the
dynamic semantics (Appendix 1), and basic denotational semantics notions such as environments, a
store, and continuations (Appendices J and K). Packages are made visible to one another by means
of use clauses. As in Ada, package declarations can have only a specification part (called a package
specification) and an optional body part (a package body).

Packages are only syntactic sugar. The package structure cannot be used to resolve ambiguity.
All package declarations should be viewed as being global.

CONCRETE SYNTAX
package_specification :: = package .procname is declarative_item_list end function_name_option
package_body :: = package body .procname is declarative_part end function_name_option

declarative_item_list :: = declarative_item ;
| declarative_item_list declarative_item ;

declarative_part :: = declarative_item ;
| package_body ;
| declarative_part declarative_item ;
| declarative_part package_body ;

Ry

TTw W T T W TR T wTTWwTY W L, wyYywyty s W

fwv-
e

DEFINITIONS OF PROGRAMMING LANGUAGES

declarative_item :: = variable_specification
| variable_declaration
| tunction_specification
| function_declaration
| type_declaration
| function_type_declaration
| sum_type_declaration
| product_type_declaration
| sequence_type_declaration
| package_specification
| use_clause

type_decilaration :: = type type_id is type_definition
use_clause :: = use pkg_id_list

ABSTRACT SYNTAX

pkg_spec: (PSPEC pkg_id decl_item_s)

pkg_body: (PBODY pkg_id decl_item_s)

decl_item: var_spec
| var_decl
| fun_spec
| fun_decl
| type_decl
| fun_type_decl
| prod_type_decl
| sum_type_decl
| seq_type_decl
| Pkg_spec
| pkg_body
| use_clause

type_decl: (TDECL type_id type_def)

use_clause: (USE pkg_id_s)

2.3.1.4 Type declarations

15

AFDL + has several kinds of type declarations: those for enumerated, private, function, sum,
product, and sequence types. In addition, AFDL + provides a type equivalence declaration to permit

certain kinds of type conversions to be expressed.

Enumerated Types

An enumerated type definition is a list of constants. This kind of type is used in the Ada FSD
primarily to denote sets, such as the set of node labels in Ada abstract syntax trees, where these

- .- .. c ae i o~ m & m A A B _a o~ o~

........

)
. < 16 TOOLS FOR TESTING DENOTATIONAL SEMANTIC
b
4

labels control the selection of aiternatives in an AFDL case statement contained in a semantic
i function of the Ada FSD.

CONCRETE SYNTAX
type_definition :: = enumerated_type definition

enumerated_type definition :: = { const_id_list)
| (var_id_list)

ABSTRACT SYNTAX
type_def: enum_type

enum_type: const_id_s
| var_id_s

Private Type

The private type is present in AFDL packages to indicate those data types whose detailed
structure has been left unspecified. in order "not to portray superfluous or extraneous detaiis".

CONCRETE SYNTAX
type_definition :: = private
ABSTRACT SYNTAX

type_def: PRIVATE

Function Types

] Function types are present in AFDL, but not in Ada. Unlike Ada. AFDL can have function-valued
1 parameters and return function-valued results. and function types are necessary to indicate this. In
particular, denotational semantics notions that are intrinsically function-typed, such as continuations,
. are declared to have function typesin AFDL.
E" CONCRETE SYNTAX
t ' function_type_declaration :: = function type type_id (parameter_declaration_list) return_type
3
E ABSTRACT SYNTAX
4
s fun_type_dect: (FNTDECL type_id tun_type)
{ fun_type: (MAP type_id_s type_id)
!
-
- 4
>
b
)
¢
}.

DEFINITIONS OF PROGRAMMING LANGUAGES 17

A function type declaration specifies the signature of a functional type; its abstract syntactic
structure is similar to that of a function specification.

Sum, Product, and Sequence Types

These types, present in AFDL + but not in AFDL, were added to permit the complete specification
of the Ada FSD to be done in AFDL + itself. The inclusion of sum, product, and sequence types in
AFDL + make it possible to express in the semantic metalanguage essential details currently
concealed in private types. A sum (product) type is declared as the sum (product) of a finite number
of other types; a sequence type is declared as a finite sequence of another type. In addition to these
type-formation operations, other operations are provided. For sum types, projection, injection, and
domain query operations are provided. For product types, selection and tupling operations are
provided. For sequence types, "head", "tail”, concatenation, and sequence construction operations
are provided.
CONCRETE SYNTAX
sum_type_declaration :: = sum type type_id (2_type_id_list)
product_type_declaration :: = product type type_id (2_type_id_list)
sequence_type_declaration :: = sequence type type_id type_id

2_type_id_list :: = type_id , type_id
| 2_type_id_list , type_id

ABSTRACT SYNTAX

sum_type_decl: (SMTDECL type_id type_id_s)
prod_type_decl: (PRTDECL type_id type_id_s)
seq_type_decl: (SQTDECL type_id type_id)

Sum and product types T with component types T1, Tn, where n > 2, are declared via
sumtype T (T1, Tn)

product type T (T1, Tn)
where the type identifiers T, are all distinct.

A sequence type T with components of type S is declared via
sequence type 7 S

Type Equivalence Declarations

A type T may be declared equivalent to a type S by the declaration
typeTis S.

See Section 2.4.3 for a discussion of the application of type equivalence declarations.

S

2
a

LAR ARG I o o Iae S0 des i AR JAR SN dhyt At

b 2 2ha e A S g

18 TOOLS FOR TESTING DENOTATIONAL SEMANTIC

CONCRETE SYNTAX
type_definition :: = type_id
ABSTRACT SYNTAX

type_det: type_id

2.3.1.5 Order of declarations

At the global level, the order of declarations is irrelevant, except that specifications for variables or
functions may not occur after the definitions of those objects. Thus "forward declarations™ are legal,
but unnecessary at this level.

At the local level (i.e., inside functions and variables), the order is relevant. Names are only visible
once they are declared. The name of a variable is NOT visible within its own declaration, but the
name of a function is. Forward declarations for functions (i.e.. occurrences of function specifications
(FSPECs)) are legal and necessary to effect mutual recursion at a local level. Forward declarations
for variables (VSPECs) are not legal. A name may not be declared (with the same type) twice within
the same block.

At the giobal level. variables must not be mutually recursive. i.e., there must be some partial
ordering on which variables require the values of other variables in order to produce their own value.
This is allowed to be value dependent -- it is as liberal as possible, and is not (and could not be)
checked statically. (At present. infinite recursion would result if the value of a variable that was
recursively defined in terms of other variables were requested (unless shielded properly with function
bodies).)

At the local level, functions musi be defined (FDECLed) before they are "used”. This is only a
problem when variabie declarations and function specifications/declarations are intermixed. The
actual restriction here is conservative in that it outiaws some programs that could be legal at runtime.
A tunction is considered “"used"” at the point when a reference to it (not necessarily a call) is
contained in the body of a variable declaration (even if shielded within a function declaration that
occurs within that variable declaration). or if it occurs within another function that itself has been
"used” by this definition. Note the recursion in this definition. f the initialization for a variable x
contains a reference to a function f, and f contains a reference to g. and g contains a reference to h,
and h is not defined before the declaration of x. then the program is illegal. These rules allow
mutually recursive functions to be declared. Note the distinction between visibility of tunction names
(forward declarations make a function name visible) and the definition of the corresponding functions
(only FDECLs do that).

The general idea is that order is not required at the global level, and it is not checked statically that
variables do not depend. in a mutually recursive manner, on one another, where at the local level,
proper order is required, and some (necessarily conservative) static checking is performed. These
choices are largely pragmatic: we found that the global level of the Ada FSD was NOT properly
ordered, and performing static checking appeared to be expensive. The checking at the local level
catches some errors and allows the linear elaboration of declarations in the compiled code.

Ty —wT v ——— -

e DEFINITIONS OF PROGRAMMING LANGUAGES 19

2.4 EXPRESSIONS

N AFDL + is purely applicative, and thus expressions are the principal computational mechanism in
- the language. AFDL has two kinds of expressions: "simple" expressions, which are an extended
F : subset of Ada expressions, and "compound" expressions, most of which correspond to certain Ada
: compound statements. Thus blocks, case "statements”, conditional "statements", etc., all yield
values. Requiring the return expression to be used to return a value from a function as in AFDL is
excessively verbose. and thus return expressions are treated as comments in AFDL +. Finally,
b semicolons are made optional in AFDL + where they were formerly required as statement terminators
P in blocks, case expressions, and conditional expressions in AFDL. These changes are "upward
compatible” in the sense that syntactically legal AFDL programs are still syntactically legal in AFDL +.

{] CONCRETE SYNTAX

b expression ;. = return_expr

[| relation

| and_expression

| or_expression

| xor_expression

| andthen_expression
| orelse_expression

and_expression :: = relation and relation
| and_expression and relation

or_expression :: = relation or relation
| or_expression or relation

xor_expression . = relation xor relation
| xor_expression xor relation

andthen_expression :: = relation and then relation
| andthen_expression and then reiation

2R AN o o g
v »

@ orelse_expression :: = relation or else relation
| orelse_expression or else relation

relation :: = simple_expression
| simple_expression reiop simple_expression
| simple_expression eit type_id

vy
a

simple_expression ;. = sum
_ | simple_expression seq_op sum
! | simple_expression dom_op type_id

L

. v v

T

ﬁ

a2 s aal I un e aa B 8

L 2000000 |

e e L aan e rhg
a

w—— L el Meum Bael st Setteab-uhemer et Megh 4

sum = term
| un_op term
| sum add_op term

term :: = primary
|term * primary

primary : = id
| integer
| .string
| (expression)
| (2_expression_list)
| { 2_expression_list]
I[]
| type_coercion
| if_expr
| case_expr
| type_case_expr
] block
| function_call

ABSTRACT SYNTAX

expr: simple_expr
| (CAST type_id expr)
| (IF expr expr expr)
| (CASE expr alt_s)
| (TCASE expr t_alt_s)
| (LET decl_s expr)
| (APPLY expr expr_s)
| (WARNING expr msg)

simple_expr: (binop expr expr)
! (unop expr)
| (ELT expr type_id)
| (INJ expr type_id)

-- type coercion
- - conditional

- - type case
-~ block

- - function call
-- from static type checker

| (INJ expr type_id (FROM type_id))

| (PRO expr type_id)

|id

| integer

] string

| (PRDEN expr_s)
| (SQDEN expr_s)

TOOLS FOR TESTING DENOTATIONAL SEMANTIC

Return, type coercion, conditional, case, type case, block, and function call expressions are
considered to be "compound" expressions; their concrete syntax is given in Section 2.4 .4.

-vi-. -

v v —y

T

Y

MBI S an an e an o o

[

DEFINITIONS OF PROGRAMMING LANGUAGES 21

2.4.1 Names
CONCRETE SYNTAX

name :: = .varname

| .procname
id = name
| const_id
function_name_option :: = -- empty

|id
const_id :: = .etconst
type_id :: = .typemark
ABSTRACT SYNTAX

id: var_id
| fun_id
| const_id
| type_id

2.4.2 Operators

The equality comparison of "infinite" values, i.e., values that include closure objects, is illegal.1 All
other values may be compared for equality (this currently is a run-time check in the AFDL virtual
machine, although it could be done statically).

CONCRETE SYNTAX

un_op = -
| not
| length

add_op = +
| -

1Closwe objects are representations of function objects. A ciosure object is a pair of pointers; the first pointer points 1o a
corpus to be executed within an environment pointed to by the second pointer (see [6)). Closure objects can result in circular
list structures in their Lisp representations.

v

Y
-

CRAEME A o AR Al Sk D et A 48

22 TOOLS FOR TESTING DENOTATIONAL SEMANTIC

dom_op : = inj

{pro
seq_op = :

| ::

| &
ABSTRACT SYNTAX

binop: AND | OR | XOR | ANDTHEN | ORELSE
|EQ|NE|GT|GE|LT|LE
| HEAD | TAIL | CAT
| PLUS | MINUS | TIMES

unop: UMINUS
| NOT
| LENGTH

2.4.3 Simple Expressions

Simple expressions in AFDL + are used to indicate the application of basic operations to
appropriate operands. The standard basic operations in AFDL are

integer arithmetic binary addition. subtraction. and multiplication; unary negation

boolean operations
conjunction, disjunction, exclusive or, complement, andthen, orelse

integer relations equal (=), not equal (/ =), greater than (>), greater than or equal (> =), less than
(<), less than or equal (K =)

Additional domain operations added in AFDL + for sum, product, and sequence types are
sum types domain injection (inj), projection (pro}, membership test (elt)
product types domain element selection, tupling
sequence types "head" (:), "tail” {::), concatenation (&), length (length), sequence formation

AFDL + provides several sum domain operations. If T is declared via
sumtype T (T1. Tn),

then x inj T injects an element of component type T, into the sum type T; x elt T, tests whether an
element x of sum type 7 was injected from component type Ti; x pro T, projects an element x of sum
type T into component type 7. if x elt T, is true, and otherwise causes a fatal error in the AFDL + virtual
machine.

N

YT Y

v

v

L anaeg e an o

g A < DA A A S St Al

DEFINITIONS OF PROGRAMMING LANGUAGES 23

If the product type T is declared via
product type 7 (T1, Tn),

then an element of T is constructed from elements X of type T by the tupling operation (x1, xn).
The i-th component of a value x of product type 7 is selected by the operation x:i, where i must be a
constant (iiteral).

A sequence type T with components of type S is declared via
sequence type. T S.

An element of sequence type T is constructed from elements X of type S by the operation [x1. xn]. n
> 0. [] denotes the empty element of any sequence type. The i-th component (head) of an element x
of sequence type T is selected by the operation x:i, where i may be any integer expression. The i-th
tail of x = [x,, ... x] is selected by the operation x:i, and is equat to [x x J(ifi = nthen x:iis
equalto[]). Ifiis "out of range” (< 0 or > n) for : or :, then a fatal error occurs in the AFDL + virtual
machine.

A type T may be declared equivalent to a type S by the declaration
type Tis S.

This permits an element x of type T to be converted to type S by applying the cast S(x); conversely, an
element y of type S can be converted to type T via the cast T(v). Type conversions must be explicit
and have no run-time significance. Equivalent types provide a way of declaring a sum type T with
multiple components T, that are equivalent to some type S. If x elt Ta’ then S(x pro Ti) is type S, and if
y is an element of type S. then (Ty) inj Tis an element of type 7.

2.4.4 Compound Expressions

Compound expressions in AFDL provide return expressions, conditional (if-then-else)
expressions, 'case" expressions, blocks and local declaration of variables (similar to the "let variable
= expression in expression’ capability in lambda calculus), and function application. An additional
compound expression in AFDL + is a "type case" expression, in which the case selection expression
must evaluate to a value in a sum domain, and a case alternative is selected on the basis of which
particular constituent type the case expression possesses.

CONCRETE SYNTAX

return_expr :: = return expression
it_expr : = if expression then expression semi if_expr_tail
if_expr_tail :: = else expression semi end if

| elsif expression then expression semiif_expr_tail
case_expr . = case expression is alternative_list end case

alternative_list :: = alternative
| alternative_list alternative

T:g“ g

o\

Madl s Sa R SE BA a0 S

L am an an o

VT

Dt et el ae

Ty - LaaE-a it SLa

24 TOOLS FOR TESTING DENOTATIONAL SEMANTIC

alternative :: = when choice_list = > expression semi

choice_list ;i = choice
| choice_list | choice

choice :: = const_id
| .varname
| others

type_case_expr ;i = tcase expression is type_alt_list end tcase

type_alt_list :: = type_alt
| type_alt_list type_ait

type_alt :: = when .varname : type_id => expression semi
| when_others .varname : type_id => expression semi

when_others :: = when others

block :: = declare declaration_list block_body
| block_body

block_body :: = begin expression semi end function_name_option

type_coercion :: = type_id (expression)

semi: = ~- empty
[
ABSTRACT SYNTAX
expr: (IF expr expr expr) - - conditional
| (CASE expr alt_s) -- case
| (TCASE expr t_alt_s) -- type case
i (LET decl_s expr) - - block
| (CAST type_id expr) - - type coercion
| (WARNING expr msg) - - constructed by static type checker

ait: (choice_s expr)

choice: id
| OTHERS

t_alt: (ALT var_id type_id expr)
| (OTHERS var_id type_id expr)

The AFDL - type case expression is a variant of the usual case construct and is provided to
simplify the manipulation of sum types. The tcase (type case) expression

-
4
h
3
b
b
k.

Ty
A

S e e e e e aon SEM R oo o g s o

DEFINITIONS OF PROGRAMMING LANGUAGES 25

tcase expris
whent: T, =) expr, |

when t Tn =D expr, ;
when others t: T = default
end tcase

evaluates expr. in a new scope in which t. is bound to expr pro T, if expr elt T, and yields the
resuiting value as the value of the type case expression. If a when clause for the appropriate T is not
provided, then if the others clause is present, "defauit” is evaluated in a scope in which t is bound to
expr, and the resulting value is yielded as the value of the type case expression; otherwise, a fatal
error occurs.

2.5 FUNCTIONS

Functions in AFDL + are like those in Ada, except that AFDL + functions can take function-valued
parameters and return function-valued results. This enhancement enables AFDL + to be used for
programming denotational semantic definitions. Actual parameters of AFDL + functions are bound to
corresponding formal parameters by value; consequently, programming denotational semantic
definitions in AFDL + must be done carefully, in order to avoid using lambda calculus idioms whose
correctness depends upon parameter binding by name.

A common situation in which transmission of actual parameters by value would lead to
nontermination whereas transmission by name would not, is the evaiuation of the semantics of a
recursively defined construct such as a white loop, using continuation semantics. The evaluation of
the semantics of a while loop requires evaluation of the value of the test expression followed by the
semantic evaluation of the loop body if the test value is true. This latter semantic evaluation invokes a
function that takes as an actual parameter the continuation (a function) that continues the
computation after the traversal of the body. This continuation {recursively) computes the semantics
of the entire while loop (given a new state). If an attempt is made to first evaluate this continuation
(which represents the entire possible future behavior of the while loop), then an infinite semantic
computation will result. The usual way to avoid this phenomenon is to simulate parameter
transmission by name by "encapsulating” the offending actual parameter inside a function literal
(sometimes called a "thunk"), producing a closure object as an actual parameter value and thereby
"suspending” further evaluation involving this parameter until it is later applied to a state.

A detailed illustration of this situation, in the context of the formal semantic definition of Gordon's
pedagogical programming language TINY [9], is given in [2].

CONCRETE SYNTAX

function_call :: = id ()
}id (expression_list)
| curried_function_call ()
| curried_function_call { expression_list)

{ P
et et v "

e

PR s aan aa

|

B e et . A A S e S A S - v

26 TOOLS FOR TESTING DENOTATIONAL SEMANTIC

curried_function_call :: = id ()
| id (expression_list)
| curried_function_call {)
| curried_function_call (expression_list)

ABSTRACT SYNTAX
expr: (APPLY expr expr_s)

AFDL + functions have their actual parameters bound by value, as previously mentioned. To
facilitate the programming of denotational semantics, AFDL + functions are curried.

2.6 PACKAGES

AFDL + packages, like those in Ada, are used to specify collections of logically related entities. In
the Ada FSD, packages are used to define abstract data types that support the functions that
comprise the main portion of the FSD. In particular, the Ada FSD contains packages that define the
Ada abstract syntax, the static and dynamic environments, and continuations and an abstract store.

The syntax of packages is described in Section 2.3.1.3.

2.7 PROGRAM STRUCTURE

AFDL + program stri'cture reflects that of the Ada FSD. The main corpus of the FSD consists of a
nonempty sequence of (mutually recursive) function declarations. The "support" for the FSD,
contained in appendices, consists of nonempty sequences of package declarations and package
bodies. An AFDL + "compilation unit”, therefore, is a function declaration, a package declaration, or
a package body; an AFDL + program is a nonempty sequence of compilation units.

CONCRETE SYNTAX
afdl_program :: = compilation_unit_list

compilation_unit_list :: = compilation_unit ;
| compilation_unit_list compilation_unit ;

compilation_unit :: = function_declaration
| package_specification
| package_body

ABSTRACT SYNTAX
program: comp_unit_s

comp_unit: fun_decl
| fun_spec
| pkg_spec
| pkg_body

ﬁ.,,w-.v,-.‘.
L

3. AFDL+ TRANSCRIPTS

This chapter consists of several AFDL + [3] transcripts in which a definition of Gordon's example
programming language "TINY" ([9]. pp. 57-61) is "debugged.” Three versions of the Tiny definition
are used for illustration as follows:

* Version 1 of the Tiny definition contains a type error that is detected statically by the
AFDL + Typechecker.

* Version 2 of the definition, in which this type error has been corrected, contains no type
errors, but resuits in infinite recursion due to AFDL +'s call-by-value parameter passing
rule.

* Version 3, the final version of the definition, in which an expression that yields a
functional value has been “"shielded” by a function definition, executes correctly on a
sample Tiny program.

We have made efforts to include enough comments in the transcripts so that this chapter stands on its
own. However, if more than a superficial understanding of the contents is desired, we expect the
reader to be familiar with the Interlisp language. the AFDL + Typechecker [7], Compiler [5], and
Virtual-Machine [6] documentation.

We first present the third and fina/ version of the AFDL + definition of Tiny. This is the version
without errors. The differences between the correct Version 3 and the incorrect Versions 1 and 2 will
be discussed subsequently.

package TINY is
-- Syntactic Domains
sum type EXPR (INTEGER, BOOLEAN, IDENT, READ, NOT, EQUAL, PLUS);

type IDENT is STRING;

type READ is private;

type NOT is EXPR,;

product type EQUAL (EXPR, EXPR),
product type PLUS (EXPR, EXPR);

sum type COM (ASSIGN, QUTPUT, IF, WHILE, SEQ);
product type ASS/GN (IDENT, EXPR);

type OUTPUT is EXPR;

product type IF (EXPR, COM, COM);

product type WHILE (EXPR, COM);

product type SEQ (COM, COM);

-- Semantic Domains

product type STATE (MEMORY, INPUT):

e Lo e i
.dh

et e r

o
-

-~ Yy v T T T

T Y

28

- = - S S . Lo 2 w b Zaiae Sun st SR SRR S

TOOLS FOR TESTING DENOTATIONAL SEMANTIC

function type MEMORY (id: IDENT) return VALUE_OR_UNBOUND,;
sum type VALUE_OR_UNBOUND (VALUE, UNBOUND_VALUE),
type UNBOUND_VALUE is (unbound);

sequence type INPUT VALUE;
sum type VALUE (INTEGER, BOOLEAN);

function type CONT (state: STATE) return ANS;
function type ECONT (value: VALUE) return CONT;

sum type ANS (FINAL_ANSWER, PARTIAL_ANSWER);
type FINAL_ANSWER is (error, stop):
product type PARTIAL_ANSWER (VALUE, ANS);

-- Auxiliary Functions

function update (memory: MEMORY ; value: VALUE; id: IDENT)
return MEMORY is
function new_memory (ident: IDENT) return VALUE_OR_UNBOUND is
begin
itident = id
then value inj VALUE_OR_UNBOUND
else memory(ident)
end if
end new_memory;
begin
new_memory
end update;

tfunction value_of (memory: MEMORY . id: IDENT) return VALUE_OR_UNBOUND is
begin

memory(id)
end value_of;

function error (state: STATE) return ANS is
begin

errorinj ANS
end error;

function final (state: STATE) return ANS is
begin

stop inj ANS
end final;

function initial_memory (id: /DENT) return VALUE_OR_UNBQUND is
begin

unbound inj VALUE_OR_UNBOUND
end intitial_memory;

M I Ol JI SUL GIN NN JER RS M0 e b UEN San s SN amn 4

v Ty T v

DEFINITIONS OF PROGRAMMING LANGUAGES

.- Semantic Functions

function EVAL_EXPR (expr: EXPR; econt: ECONT) return CONT is
begin
tcase expris
when integer: INTEGER =) econt(integer inj VALUE);
when boolean: BOOLEAN =D econt(boolean inj VALUE);
when ident; IDENT =5
declare
function cont (state: STATE) return ANS is
value: VALUE_OR_UNBOUND : = value_of(state:1, ident);
begin
if value elt UNBOUND_VALUE
then errorinj ANS
else econt(value pro VAL UE)(state)
end if
end cont;
begin
cont
end;
when read: READ =>
declare
function cont (state: STATE) return ANS is
begin
if state:2 = []
then error inj ANS
else econt(state:2:1)((state:1, state:2::1})
end if
end cont;
begin
cont
end;
when not: NOT =)
EVAL_EXPR
(EXPR(not),
declare
function new_econt (value: VALUE)
return CONT is
begin
if value elt BOOLEAN
then econt((not (value pro BOOLEAN))
inj VALUE)
else error
end it
end new_econt;
begin
new_econt
end);

AJ‘J

LA
-

aAYYTTwE

YT

b G M
LI

L aut . o

v———y
3

v—r— v ~>~——

v v

TOOLS FOR TESTING DENOTATIONAL SEMANTIC

when equal: EQUAL =>
EVAL_EXPR
(equal:1,
declare
function econt1 (valuel: VALUE) return CONT is
begin
EVAL_EXPR
(equal:2,
declare
function econt2 (value2: VALUE)
return CONT is
begin
econt((valuel = value2) inj VALUE)
end econt?;
begin
econt2
end)
end econt1;
begin
econtl
end);
when plus: PLUS =>
EVAL_EXPR
(plus:1,
declare
function econt1 (valuet: VALUE) return CONT is
begin
EVAL_EXPR
(plus:2,
declare
function econt2 (value2: VALUE)
return CONT is
begin
if value1 elt INTEGER and
value2 elt INTEGER
then econt(((valuel pro INTEGER) +
(value2 pro INTEGER))
inj VALUE)
else error
end if
end econtz;
begin
econt2
end)
end econti;
begin
econtl
end)
end tcase
end EVAL_EXPR;

T W e T TR TR e TR T g T e e R, . T T e T e T e T R W e o % R -W

1
|

&
!
.
-

!

A A Il i B - 8 B A A e

DEFINITIONS OF PROGRAMMING LANGUAGES

function EVAL_COM (com: COM; cont: CONT) return CONT is
begin
tcase com is
when ass: ASSIGN =)
EVAL_EXPR
(ass:2,
declare
function econt (value: VALUE) return CONT is
function new_cont (state: STATE) return ANS is
begin
cont((update(state:1, value, ass:1), state:2))
end new_cont;
begin
new_cont
end econt;
begin
econt
end);
when out: QOUTPUT =>
EVAL_EXPR
(EXPR(out),
declare
function econt (value: VALUE) return CONT is
begin
declare
function new_cont (state: STATE)
return ANS is
begin
(value, cont(state)) inj ANS
end new_cont;
begin
new_cont
end
end econt;
begin
econt
end);
when if: IF =D
EVAL_EXPR
(if:1,
declare
tunction econt (value: VALUE) return CONT is
begin
if value elt BOOLEAN
then
it value pro BOOLEAN
then EVAL_COM(if:2, cont)
else EVAL_COM(if.3. cont)
end if

.

e W W

31

[St st s e e e e S T s i e A S S S S AR A e ARG AR

' o 32 TOOLS FOR TESTING DENOTATIONAL SEMANTIC

! else error
. end if
! end econt;
T begin
econt
+ end);
. when while: WHILE =>
- declare
EVAL_EXPR
- (while:1,
- declare
function econt (value: VALUE) return CONT is
begin
] if value elt BOOLEAN
_T. then
if value pro BOOLEAN
then EVAL_COM
(while:2,
L declare
%. function while_cont
) * (state: STATE) return ANS is
begin
EVAL_COM(com, cont)(state)
end while_cont;

FH begin
while_cont

4 end

-

I

)

¥ else cont

[end if

b else error
end if

b end econt;

! ‘ begin

3 econt

- end

@)

when seq: SEQ =>

{ EVAL_COM(seq:1, EVAL_COM(seq:2, cont))
} end tcase

end EVAL_COM;

4
& end TINY;
¥

Version 1 of the definition differs from Version 3, shown above, in two respects. First, the "/DENT"
alternative of the "tcase" of "EVAL_EXPR" consists of the following, in which the curried application
of a continuation to "state” in the 8th line has been omitted (i.e., commented out). This results in a
Y type mismatch since a vaiue of type "CONT" is yielded where "ANS" is required.

when ident. IDENT =>

Ll i 2 aenn o

vy

ha - B.Anc e St Ak M o) ~ LRt R TR 2 - ﬁww‘_r'_..‘j

DEFINITIONS OF PROGRAMMING LANGUAGES 33

declare
function cont (state: STATE) return ANS is
value: VALUE_OR_UNBOUND : = value_of(state:1, ident);
begin
if value elt UNBOUND_VALUE
then error inj ANS
else econt(value pro VALUE) -- (state)
end if
end cont;
begin
cont
end;

Second, the "WHILE" alternative of the "tcase" in "EVAL_COM" consists of the following, in
which the continuation-valued actual parameter "EVAL_COM{com, cont)" (passed by value to the
invocation of "EVAL_COM" that evaluates the effect of traversing the body of a "while" loop) is not
"shielded" by the function “while_cont". This will result in infinite recursion when the Tiny detinition
is applied to Tiny programs that contain "while" loops in which the boolean expression parts do not
reference or modify the state (i.e., contain no variable references or "read" expressions). The
introduction of "while_cont" simulates passing "EVAL_COM(com, cont)"” by name.

when while: WHILE =>
EVAL_EXPR
(while:1,
declare
function econt (value: VALUE) return CONT is
begin
if value elt BOOLEAN
then
if value pro BOOLEAN
then EVAL_COM
(while:2, 1
|

EVAL_COM(com, cont)
)
else cont
end if
else error
end it
end econt;
begin
econt
end)

Version 2 of the Tiny definition contains only the "WHILE" alternative error (i.e., it was obtained
from Version 1 by correcting the "/IDENT" error).

The Tiny program that was used to test the Tiny definition appears next. This program reads
integers from the input stream, and outputs the corresponding factorials to the output stream. Since
Tiny does not contain a multiplication operation, iterative addition is used instead. The program halts
with an error when the input stream is exhausted.

‘V‘vw*w—v "-'“.‘-'"'"&"."rjw v eme e s
O
i : : []

Y YT Y Y T YT
h

I S

B B e e e A aaas S S S
Sy .

_Zaiaeids aathes an S S S S Sl 2h SRt

— ~ T - LA Snatt ataiE Rl LEbalk BE Al By ~ —wr T TV AT T T - s

34 TOOLS FOR TESTING DENOTATIONAL SEMANTIC

while true
do
num:= read; res:= 1; i:= 2;

while not (i = (num + 1))
do

while not (j = i)
do
res:=res + x;j:i=j+1
od;

it= i+ 1
od;

output res
od

In the foliowing we present five transcripts of operations on the TINY definition and the above
program in the TINY language. In Transcript | we present the parsing of the TINY definition. For
illustrative purposes, two syntax errors were introduced into Version 3 of the TINY definition. These
are detected during the parse. In Transcript |l the static semantic error in Version 1 of the TINY
definition is detected. In Transcript Ili Version 2 of the TINY definition passes the static semantic
check and is compiled and run on the virtual-machine. During the run an error is detected in the
definition. Transcript IV, shows the interpretation of Version 3 the TINY definition after this "infinite
recursion” error has been corrected. In this transcript the TINY definition is made to interpret the
TINY program shown above. In the final transcript, Transcript V, we illustrate the capability of the
virtual-machine to optimize tail recursion. This capability can be turned on or off by the user at run
time by setting or resetting a flag and is expected to be useful in improving efficiency during
interpretation of large sem. 1tic definitions. The correct version of the TINY definition, Version 3, is
used for Transcript V.

NOTE: Comments appear in italics in all of the transcripts.

Transcript I: Parsing and Storage of Abstract Syntax Trees

In this transcript we show the process of parsirg Version 3 of the TINY definition into which two
minor syntax errors were deliberately introduced.

We first try 10 parse the text of the TINY definition without generating the abstract
syntax trees. This is done by making the second parameter to the parse® command be
NIL ie., by omitting it. The parsing is faster as a result. The first error found is a
semicolon where a colon should appear.

1_parse® TINY-DEFINITION.TXT
Parsing file <AU-ADAD>TINY-DEFINITION.TXT.1

_function new_memory (ident:; ~IDENT) _return ~VALUE_OR_UNBOUND _is

PSRRI PR RN EEREE RN R RS EER &

e]

e DEFINITIONS OF PROGRAMMING LANGUAGES 35

:“ ***ERROR*** LINE 47: Syntax error in state 39

help!
. ” elp
a (HELP broken)

2:quit

NIL
' The parse error puts us in a Lisp break. We exit Lisp, fix up the parse error just found,
l‘ and return to Lisp. We exit the break by typing a t and then redo the parse® command.
1 The next error found is a misspelled type identitier; all type identifiers in AFDL are upper-
{ case identifiers prefixed with a tilde.

3:t

3_redo parse*
Parsing file <AU-ADA>TINY-DEFINITION.TXT.2

_function error (state: ~STaTt) _return ~ANS _is
CEBEREENREEEL R R R EE TR R RS

9

ERROR LINE 63: Syntax error in state 112
s help!
3
. (HELP broken)
3 4:quit

NIL

Again exit, tix up the error and return. The next redo of the parse®* command finds no
errors.

5:1

5_redo parse*

Parsing file <AU-ADADTINY-DEFINITION.TXT.3
o End of file <AU-ADA>TINY-DEFINITION.TXT.3
- Done.

We do the parse again, this time providing T as the second parameter to the parse*

; command. This causes the abstract syntax trees to be generated. As each program unitis
& parsed {in this case only one, the package TINY), its name is printed out by the semantic
’ action appended to the topmost concrete syntax production of the AFDL + language.
. During parsing the Control-L character is defined as an interrupt character. Typing a tL
1 prints out the index of the line in the file on which the lexer is currently working, along with
! the load average.
1 6_parse* TINY-DEFINITION.TXT T
r. Parsing file <AU-ADA>TINY-DEFINITION.TXT.3
. PARSING AT LINE 98, LOAD 10.9

PARSING AT LINE 126, LOAD 9.9

PARSING AT LINE 137. LOAD 10.0

PARSING AT LINE 194, LOAD 10.2

TINY
o End of file <AU-ADA>TINY-DEFINITION.TXT.3
4 Done.
[
1 @

rs—

M A s

36 TOOLS FOR TESTING DENOTATIONAL SEMANTIC

Nex! we use the saveafd!®* command to save the generated abstract syntax trees in a
structuredfile. The property list (CHAPTER SMALL) is given to each unit being stored.
This is used by the Typechecker in reporting the full name of contexts in which errors
exist (see Transcript 1I). The CHAPTER property is particularly useful in processing the
Ada FSD; it enables each semantic function to be located to within a Chapter of the FSD.
The third parameter T ensures that a new version of the output file is created. If it had
been omitted or NIL, the abstract syntax trees being saved would have been added to the
contents of the latest version of the output file.

7_saveafdl* TINY-DEFINITION.AS (CHAPTER SMALL)
|

CAU-ADA>TINY-DEFINITION.AS 1

8

Transcript II: Static Semantic Error
Tiny Definition, Version 1

The transcript of the application of the AFDL + tools to Version 1 of the Tiny definition appears
next. Not shown are the stages in which Version 1 of the AFDL + Tiny definition and the Tiny program
are parsed and output to structuredfiles (see Transcript | abnve). (A parser for Tiny was generated in
the same way that AFDL + and Ada parsers have been generated.) Since a type-error is uncovered,
the Compiler and Virtual-machine are not run in this example.

1_(TCTypeCheck 'TINY-DEFINITION.AS 'TINY-DEFINITION-SYMTAB]
?TC: "[Typelf:]" "[in:]" SMALL.TINY.EVAL_EXPR.ident.cont Incompatible then
and else expressions
?TC: "[3Fun:]" "[in:]" SMALL.TINY Invalid function declaration "[name:]"
EVAL_EXPR "[type:]" (FUN (#EXPR #ECONT)
#CONT)
?TC: "[Pass3:]" Error during Pass 3
?TC: "[TypeCheck:]" Fatal error
NIL

Run the Typechecker on the structuredfile "TINY-DEFINITION.AS" produced by the
parser, producing a symboltable “"TINY-DEFINITION-SYMTAB". An error is detected: the
“then” and "else” parts of a conditional, in "ident.cont”, in function "EVAL_EXPR", in
package "TINY", and in chapter "SMALL", yield incompatible types.

2_(NILL (symtab _ (SYMOpenTable 'TINY-DEFINITION-SYMTAB]
NIL

Open the symbolitable produced by the Typechecker. The function “NILL" is used to
prevent values yielded by expressions from being printed.

3_(NILL (evalexpr _ (SYMGetValue symtab NIL T 'EVAL_EXPR):1]
NIL
Extract the body of "EVAL_EXPR" from the symboltable.
4_(EV evalexpr]
edit
Edit the function body. Travelto the "IDENT ™ alternative.

4

N

P
F

:
5
X
!

|

|
-
'
b

MGER e BEn San Ban. 4

— - B gat IS L ol i e BN e AN AR LA S

DEFINITIONS OF PROGRAMMING LANGUAGES 37

1*p
(LAM (expr econt) (TCASE expr &))

2*-1 p
(TCASE expr (& & & & & & &))

4*-1 p
((ALT integer #INTEGER &) (ALT boolean #BOOLEAN &) (ALT ident #IDENT &)
(ALT read #READ &) (ALT not #NOT &) (ALT equal #EQUAL &) (ALT plus #PLUS &))

6*F ident
7*pp
(ident
#IDENT
(LET
[(FDECL
cont
(MAP (#STATE)
#ANS)
(LAM
(state)
(TYPE
NIL
(LET
((VDECL value #VALUE_OR_UNBOUND
(APPLY value_of
((HEAD state 1)
ident))))
(TYPE
NIL
(ERROR [IF (TYPE (#BOOLEAN)
(ELT (TYPE (#VALUE_OR_UNBOUND)
value)
#UNBOUND_VALUE))
(TYPE (#ANS)
(INJ (TYPE (#FINAL_ANSWER)
~error)
#ANS))
(TYPE (#CONT)
(APPLY (TYPE (#ECONT)
econt)
((TYPE (#VALUE)
(PRO (TYPE (#VALUE_OR_UNBOUND)
value)
#VALUE]
("[TypelIf:]" "[in:]" SMALL.TINY.EVAL_EXPR.ident.cont
Incompatible then and else expressions]
cont))

Print the "IDENT" alternative. It can be seen that a conditional is annotated with the
error message that was printed above, and that the "then" part of that conditional yields
a value ot type "ANS" whereas the "else” part yields "CONT". Since a value of type
"ANS" is required, the "else” part must be in error.

e

—wrot o=t

T

gy er e
r

-v_—rvw-wv*v-rv — v;ﬁr‘v_r;vjv —

ERRES B b o R ol an]

- vy v ovmw v -

P—— —— g—— R > hadiat LI AL A Sl B

38 TOOLS FOR TESTING DENOTATIONAL SEMANTIC

8*0K
evalexpr

Exit the editor.

5_(SYMCloseTable symtab]
T

Close the symboltable.

Transcript [II: Dynamic Semantic Error
Tiny Definition, Version 2

The transcript of the application of the AFDL + tools to the second version of the Tiny definition, in
which the above error had been corrected. appears next. Again, the parsing stages are not shown.

In this transcript, as well as in Transcript IV (following), certain compiler-generated unique
compound names appear. The AFDL compiler [5] generates these names to uniquely identify
contexts and declared objects within AFDL programs. For example, these unique names are useful in
specifying which of several continuations, declared with the same name "continue1” (as is done in
the Ada FSD), is being designated in a discussion or program trace. These unique names consist of
several sections separated by periods, where each section is either an AFDL identifier or a non-
negative decimal integer, e.g., EVAL_COM.4.1.econt.1.while_cont. These names are formed in
the following way. The scope that is the entire body of a top-level AFDL function is named with the
name of that top-level function itself. This scope is the one in which (conceptually) only formal
parameters of the function are declared. Each subsequent nesting of a block within a scope
introduces an additional period and section in the unique name. Bliocks at the same nesting level are
named by numbering them in order of occurrence, beginning with 1. The compiler produces code
that introduces a new block (and hence nesting level) for

1. each LET (AFDL declare-begin-end construct), and
2. each alternative of a TCASE

in the AFDL abstract syntax.

Thus the compound name EVAL_COM.4.1.econt.1.while_cont is the fully-qualified name of a
unique object that is possibly one of many objects declared with the same name while_cont. The
fully-qualified name of an object provides a way of unambiguously locating it within an AFDL program.
Thus in the above name, while_cont is located by going into the body of the top-level function
EVAL_COM, then proceeding to the fourth block within it and to the first block within that block. A
function econt will be found to be declared at this point. The designated object while_cont is
located (declared) in the first block within econt.

The compiler-generated fully-qualified names are particularly useful for locating the body
(program) part of a closure object. Internally, a typical closure object is of the form

(INT#ClosureObject (EVAL_COM 142) (INT#Frame ...))

where the body part (EVAL_COM 142) points to a location within EVAL_COM via an offset 142. This
particular example corresponds to a closure object formed from a continuation declared within the
body of the function EVAL_COM. Since there may be several such continuations the offset is a poor
indication of which particular continuation is being pointed to. Therefore, a more readable form of

R L

I
|
L S S Y T D R APy VP G TP S - s P S S P L Y S S P U S ,A..-;

| i

,,..-
% |

E
:

Ty Y VY Y VT VY Y

LA gk St Sub SuA b g gh Aeh ol GERSND

" B ane ane au: oo o - Bk B dia 4 oy

DEFINITIONS OF PROGRAMMING LANGUAGES 39

this pointer is the corresponding fully-qualified name. Accordingly, closure objects are displayed
together with the fully-qualified name that designates their body part. Thus the above closure object
would be displayed as (see step 12 of Transcript Ill below)

("EVAL_COM.4.1.econt" : (INT#ClosureObject (...) (...))).

Transcript Ul now follows.

1_(TCTypeCheck 'TINY-DEFINITION.AS 'TINY-DEFINITION-SYMTAB]
T

Type-check the structuredfile "TINY-DEFINITION.AS”, producing the symboitable
"TINY-DEFINITION-SYMTAB". No errors.

2_compile® TINY-DEFINITION-SYMTAB

update 21 (FUN (#MEMORY #VALUE #IDENT) #MEMORY)
value_of 7 (FUN (#MEMORY #IDENT) #VALUE_OR_UNBOUND)
error 6 (FUN (#STATE) #ANS)
final 6 (FUN (#STATE) #ANS)
initial_memory 6 (FUN (#IDENT) #VALUE_OR_UNBOUND)
EVAL_EXPR 242 (FUN (#EXPR #ECONT) #CONT)
EVAL_COM 200 (FUN (#COM #CONT) #CONT)

0 Warnings

0 Fatal Errors

TINY-DEFINITION-SYMTAB -- Compilation complete.
NIL

Compile the symboltable. The compile®* Lispxmacro calls the function
COM # CompileSymbolTable and it given a second argument of T would produce a
compiler listing file. The integers in the second column are the number of instructions
compiled for the corresponding symbol.

3_(tinystf _ (STFOpenfile 'TINY-TEST-AS.TXT]
Loading directory of TINY-TEST-AS.TXT

Last updated 10-Jun-82 11:50:18
TINY-TEST-AS.TXT#STFDIR

Open the structured file that contains the abstract syntax form of the Tiny program.

A_(NILL (tinyprogram _ (STFGetObject tinystf 'TinyProgram):1:1]
NIL

Extract the tiny program from the structuredfile. The ":1:1" CLISP selection on the
value returned by STFGetObject reflects the structure of the abstract syntax of the TINY
language. The first :1is necessary because STFGetObject reiurns a list of items that are
stored in the structuredtile on the key given as an argument to the function. An item is of
the form (object prop! valuel prop2 value2 ...) Therefore, the following :1 selects the
body of the tiny program as pretty printed below.

e e w e T, T T — w3y T T3 w e @ = = -

r
L
2
]
I;.
;

CONALIA S0 Sae B e 4
[

P————

40 TOOLS FOR TEST!NG DENOTATIONAL SEMANTIC

5_(PP tinyprogram]

[#WHILE
((#BOOLEAN true)
(#SEQ
([#SEQ
((#SEQ ((#SEQ ((#ASSIGN ("num" (#READ NIL)))
(#ASSIGN ("res" (#INTEGER 1)))))
(#ASSIGN ("i" (#INTEGER 2)))))
(#WHILE
([#NOT (#EQUAL ((#IDENT "i")
(#PLUS ((#IDENT "num")
(#INTEGER 1]
(#SEQ
([#SEQ
((#SEQ ((#ASSIGN ("x" (#IDENT "res")))
(#ASSIGN ("j" (#INTEGER 1)))))
(#WHILE ((#NOT (#EQUAL ((#IDENT "j")
(FIDENT "i"))))
(#SEQ ((#ASSIGN ("res" (#PLUS ((#IDENT "res")
(#IDENT "x")))))
(#ASSIGN ("j" (#PLUS ((#IDENT "j")
(#INTEGER 1]
(#ASSIGN ("i" (#PLUS ((#IDENT "i")
(#INTEGER 1]
(#OUTPUT (#IDENT "res"
(tinyprogram)

Pretty-print the Tiny program. The program has AFDL + type "COM". Note the sum-
type tags such as " # SEQ"

6_(NILL (ms _ (INT#CreateMachineState (SYMOpenTable 'TINY-DEFINITION-SYMTAB]
NIL

Create a Virtual-machine machine-state that contains a compiled-code pointer to the
open symboltable "TINY-DEFINITION-SYMTAB".

7_(INT#LoadApply ms
(INT#TopLevelClosureObject 'EVAL_COM)
< tinyprogram
(INT#ToplLevelClosureObject 'final) >]

Prepare the machine to apply "EVAL_COM” to the command 'tinyprogram" and
continuation "final".

8_(INT#Break ms (INT#ApplyBreak 'EVAL_COM) (INT#AppliyBreak 'EVAL_EXPR)
(INT#ApplyBreak 'cont) (INT#ApplyBreak 'econt]

T
Set breakpoints on calls to and returns from "EVAL_COM", "EVAL_EXPR", "cont" and
"econt”.
9_Run ms

Broken after *BINDF* in EVAL_COM
(Broken before EVAL_COM)
NIL

P RPN WP S P G I W G P 1 ey e

DEFINITIONS OF PROGRAMMING LANGUAGES 41

Begin running the initialized machine. Machine breaks upon entryto "EVAL_COM".

10_CF
EVAL_COM

com (MWHILE ((#BOOLEAN true) (#SEQ ((#SEQ ((#SEQ ((#SEQ (& &))
(#ASSIGN ("i" &)))) (#WHILE ((#NOT (#EQUAL &)) (#SEQ (& &)))))) (#OUTPUT
(#IDENT “res”))))))

cont ("final" : (INT#ClosureObject (final 1) NIL))
Dynamic chain: NIL
NIL
View the current frame of the machine. The values of the command “com" and
continuation “"cont" are displayed. “com" is a "while" loop. and is the entire tiny
rrogram.
11_Run

Broken after *BINDF* in EVAL_EXPR
{Broken before EVAL_EXPR)

T
Begin running again. Machine breaks upon entryto "EVAL_EX R",
12_CF
EVAL_EXPR
expr (#BOOLEAN true)
econt ("EVAL_COM.4.1 . econt” : (INT#ClosureObject (EVAL_COM 142)

(INT#Frame EVAL_COM.4.1 & & &)))
Dynamic chain: EVAL_COM.4
NIL

The expression being evaluated is the boolean expression “true”, which is the boolean
expression of the outer "while"” loop. The state is not required to evaluate it.

13_Run

Broken after *BINDF* in EVAL_COM.4.1.econt
(Broken before econt)

T

The value "true" is supplied to the expression continuation "econt" of step 12.
"econt”" was passed by the "WHILE" "tcase"” alternative of "EVAL_COM" to
"EVAL_EXPR".

14 _CF
EVAL_COM.4.1.econt

value (#BOOLEAN true)
Dynamic chain: EVAL_EXPR.2
NIL

15_Run

Broken after *BINDF* in EVAL_COM
(Broken before EVAL_COM)

T

Since "value" was “true”, "EVAL_COM" should now be called with the statement part
of the "while” statement and a continuation that will evaluate the loop again. Since

A e .o e—aa 4 _: s a a - - A am e e a m a- om- - e

e T ——

42 TOOLS FOR TESTING DENOTATIONAL SEMANTIC

AFDL + has call-by-value semantics, these arguments are first computed. The statement
part is evaluated and pushed on the stack, and then "EVAL_COM" is called to produce
the continuation. Unfortunately, this process repeats forever, as the following steps show.

16_CF
EVAL_COM

com (#WHILE ((#BOOLEAN true) (#SEQ ((#SEQ ((#SEQ ((#SEQ (& &))
(#ASSIGN ("i" &)))) (#WHILE ((#NOT (#EQUAL &)) (#SEQ (& &)))))) (#0OUTPUT
(#IDENT "res”))))))

cont ("final"™ : (INT#ClosureObject (final 1) NIL))
Dynamic chain: EVAL_COM.4.1.econt
NIL

The invocation of "EVAL_COM" that must produce the continuation is entered.

17_Stk

1 (#SEQ ((#SEQ ((#SEQ ((#SEQ ((#ASSIGN ("num" &)) (#ASSIGN
("res" &)))) (#ASSIGN ("i" (#INTEGER 2))))) (#WHILE ((#NOT (#EQUAL
((#IDENT "i") (#PLUS &)))) (#SEQ ((#SEQ (& &)) (#ASSIGN (*i" &))))))))
(#OUTPUT (#IDENT "res"))))

NIL

The stack now contains the statement part of the "while"” loop.

18_Run
Broken after *BINDF®™ in EVAL_EXPR
(Broken before EVAL_EXPR)

T
"EVAL_EXPR" is called again on the loop's boolean expression "true".
19_CF
EVAL_EXPR
expr (#BOOLEAN true)
econt ("EVAL_COM.4.1.econt” : (INT#ClosureObject (EVAL_COM 142)

(INT#Frame EVAL_COM.4.1 & & &)))
Dynamic chain: EVAL_COM. 4
NIL

20_Run
Broken after *BINDF* in EVAL_COM.4.1.econt
(broken before econt)

T
The expression continuation in "EVAL_COM" is called again with "true ",

21_CF
EVAL_COM.4.1.econt

value (#BOOLEAN true)
Dynamic chain: EVAL_EXPR.2
NIL
22_Run

Broken after *BINDF* in EVAL_COM

m i M afa M taiatl mamtatitenaa- o]

t
'
>
x
W
h
)

LA AT S0 At A Al iR o A ABICIR AT
] g

PEL 2000 o St am S a2 A0 a4 4

DEFINITIONS OF PROGRAMMING LANGUAGES 43 |

(Broken before EVAL_COM)

And yet another attempt is made to produce a continuation 1o the evaluation of the
statement part.

23_CF
EVAL_COM

com (#WHILE ((#BOOLEAN true) (#SEQ ((#SEQ ((#SEQ ((#SEQ (& &))
(#ASSIGN ("i" &)))) (#WHILE ((#NOT (#EQUAL &)) (#SEQ (& &)))))) (#OUTPUT
(#IDENT “"res"))))))

cont ("final" : (INT#ClosureObject (final 1) NIL))
Dynamic chain: EVAL_COM.4.1.econt
NIL
24_Stk

1 (#SEQ ((#SEQ ((#SEQ ((#SEQ ((#ASSIGN ("num" &)) (#ASSIGN
("res" &)))) (#ASSIGN ("i" (#INTEGER 2))))) (#WHILE ((#NOT (#EQUAL
((#IDENT "i") (#PLUS &)))) (#SEQ ((#SEQ (& &)) (#ASSIGN ("i" &))))))))
(#OUTPUT (#IDENT "res"))))

2 (#SEQ ((#SEQ ((#SEQ ((#SEQ ((#ASSIGN ("num" &)) (#ASSIGN
("res” &)))) (#ASSIGN ("i" (#INTEGER 2))))) (#WHILE ((#NOT (#EQUAL
((#IDENT "i") (#PLUS &)))) (#SEQ ((#SEQ (& &)) (#ASSIGN ("i" &))))))))
(#OUTPUT (#IDENT "res"))))

NIL
The statement part of the "while" loop has now been pushed onto the stack twice.

25_DC

+ EVAL_COM

+ EVAL_COM.4.1.econt
EVAL_EXPR.2

+ EVAL_EXPR
EVAL_COM. 4

+ EVAL_COM

+ EVAL_COM.4.1.econt
EVAL_EXPR.2

+ EVAL_EXPR
EVAL_COM. 4

+ EVAL_COM

NIL

Display the dynamic chain. An obvious pattern can be seen, and would continue
forever. The statement part of the "while” loop will never be evaluated, because its
continuation can never be produced. Note that the "+" signs mark frames that have
explicit dynamic chain pointers, i.e., were created by "call" instructions.

Transcript IV: Successful Interpretation
Tiny Definition, Version 3

The transcript of the application of the AFDL + tools to Version 3. the final version of the Tiny
definition. appears next. In this version the recursive continuation "EVAL_COM(com. cont)” of the
"WHILE" alternative of "EVAL_COM" has been "shielded” by the function "new_cont", in order to
simulate passing the continuation to "EVAL_COM" by name.

;;‘ '

L

¥]

7

--,—,
a

PP

-

44 TOOLS FOR TESTING DENOTATIONAL SEMANTIC

1_tc® TINY-DEFINITION.AS TINY-DEFINITION-SYMTAB
T

We use the tc* command here which is exactly equivalent to calling the function
TCTypeCheck as in Transcripts Il and . This command is provided as a user
convenience.

2_compile* TINY-DEFINITION-SYMTAB

update 21 (FUN (#MEMORY #VALUE #IDENT) #MEMORY)
value_of 7 (FUN (#MEMORY H#IDENT) #VALUE_OR_UNBOUND)
error 6 (FUN (#STATE) #ANS)
final 6 (FUN (#STATE) #ANS)
initial_memory 6 (FUN (#IDENT) #VALUE_OR_UNBOUND)
EVAL_EXPR 242 (FUN (#EXPR #ECONT) #CONT)
EVAL_COM 210 (FUN (#COM #CONT) #CONT)

0 Warnings

0 Fatal Errors

TINY-DEFINITION-SYMTAB -- Compilation complete.
NIL

The definition is compiled. The integers in the second column are the number of
virtual-machine instructions compiled for the corresponding AFDL object.

3_(NILL (tinystf _ (STFOpenfFile 'TINY-TEST-AS.TXT]
Loading directory of TINY-TEST-AS.TXT

Last updated 10-Jun-82 11:50:18
NIL

4_(NILL (tinyprogram _ (STFGetObject tinystf 'TinyProgram):1:1]
NIL

5_(NILL (ms _ (INT#CreateMachineState (SYMOpenTable 'TINY-DEFINITION-SYMTAB]
(ms reset)
NIL

6_(INT#LoadApply ms
(INT#TopLevelClosureObject 'EVAL_COM)
< tinyprogram
(INT#TopLevelClosureObject 'final) >]
T

7_Run ms
Halted
NIL

Since no break points were set, the machine halts with a continuation on the top of the
stack.

8_Stk

1 ("EVAL_EXPR.4.1.cont" : (INT#ClosureObject (EVAL_EXPR 75)
(INT#Frame EVAL_EXPR.4.1 & NIL & &)))

NIL

"EVAL_EXPR.4.1.cont” represents the return of the continuation "cont” by the "READ"
tcase of "EVAL_EXPR", which corresponds to the factorial program’s attempt to read
the first datum from the input stream. Interpretation of the factorial program cannot

o - - e e

~—v—vr
o

DEFINITIONS OF PROGRAMMING LANGUAGES 45

proceed until this continuation, suspended in a closure object, is applied to a machine
state. This is done in the following steps.

9_(INT#LoadApply ms
(INT#POpVMSTACK ms)
< < (INT#TopLevelClosureObject 'initial_memory)
< '(#INTEGER 1) '(¥INTEGER 2) '(#INTEGER 3) '(#INTEGER 4) > > >]

T
Prepare the machine to apply the continuation closure object that is on the top of the

stack to an initial state. The "MEMORY" component of that state is the closure object
“initial_memory". The "INPUT" componentis a sequence of elements of type "VALUE",
each of which was injected from type "INTEGER".

10_Stk

1 ("EVAL_EXPR.4.1.cont" : (INT#ClosureObject (EVAL_EXPR 75)

(INT#Frame EVAL_EXPR.4.1 & NIL & &)))

2 ((("initial_memory : (INT#ClosureObject (initial_memory 1) NIL))

((#INTEGER 1) (#INTEGER 2) (#INTEGER 3) (#INTEGER 4))))

NIL

View the stack before the continuation is applied to the initial state.

11_(INT#Break ms (INT#ApplyBreak 'update)(INT#ApplyBreak 'value_of))
T

Break the memory manipulation functions "update” and "value_of".

12_Run
Broken after *BINDF* in update
(Broken before update)

T
13_CF
update
memory ("initial_memory" : (INT#ClosureObject (initial_memory 1) NIL))
value (#INTEGER 1)
.id 'vnumn
Dynamic chain: EVAL_COM.1.1.econt.1.new_cont
NIL
"update" is called to yield a new memory function that associates "id" with "value” (in
this case ‘"num"’ with "(#INTEGER 1)") and otherwise calls "memory”. "memory" is
the "initial_memory" closure object.
Run

Broken before *RETURN* in update
(Broken after update)

T
Broken before the return from "update”.

15_Stk

1 ("update.l.new_memory" : (INT#ClosureObject (update 5)

(INT#Frame update.l & NIL & &))})

NIL

vt

New memory function closure object is now on the stack; "num”' has been assigned
the value "(#INTEGER 1)", which is the datum read from the input stream.

- -y

T

45 TOOLS FOR TESTING DENOTATIONAL SEMANTIC

16_Run
Broken after *BINDF* in update
(Broken before update)

T
17_CF
update
memory ("update.l.new_memory" : (INT#ClosureObject (update 5)
(INT#Frame update.1 & NIL & &)))
value (#INTEGER 1)
id "res"
Dynamic chain: EVAL_COM.1.1.econt.1l.new_cont
NIL

The "memory" argument of this invocation of "update” is now the closure object that
was computed by the previous invocation of "update”.

18_Run

Broken before *RETURN* in update
(Broken after update)

T

‘“"res"’ has been assigned the (constant) value "(# INTEGER 1)".

19_Run

Broken after *BINDF* in update
(Broken before update)

T

20_Run

Broken before *RETURN* in update
(Broken after update)

T

""" has been assigned the (constant) value "(# INTEGER 2)".

21_Run

Broken after *BINDF* in value_of
(Broken before value_of)

T

The first memory access occurs.

22_CF
value_of

memory ("update.l.new_memory" : (INT#ClosureObject (update 5)
(INT#Frame update.1 & NIL & &)))

id l'.in
Dynamic chain: EVAL_EXPR.3.1.cont.1
NIL
The value of '"i""is requested.
23_Run

Broken before *RETURN* in value_of
(Broken after value_of)
T

24_Stk
1 (#VALUE (#INTEGER 2))
NIL

————

DEFINITIONS OF PROGRAMMING LANGUAGES 47

The value of “"'i""was "(# VALUE (# INTEGER 2))", of type “VALUE_OR_UNBOUND".

25_(INT#UnBreak ms (INT#ApplyBreak 'update]
T

Unbreak "update”.

26_(INT#Break ms (INT#ApplyBreak ‘'new_memory]
T

Break "new_memory"”, which is the function of type "MEMORY" yielded by "update”.

27_Run
Broken after *BINDF* ip value_of

(Broken before value_of)
T

28_CF
value_of
memory ("update.l.new_memory" : (INT#ClosureObject (update 5)
(INT#Frame update.l & NIL & &)))
id "num"
Dynamic chain: EVAL_EXPR.3.1.cont.1
NIL

"o "

The value of "num"' is requested. The last value associated with ‘"num"’ is

"(#INTEGER 1)" (see steps 12 and 13).

29_Run
Broken after *BINDF* in update.l.new_memory

(Broken before new_memory)
T

“value_of" calls its argument "memory”, which is an instance of "new_memory"
yielded by “"update".

30_SC
update.l.new_memory
ident "num"

update.1
new_memory
("update.l.new_memory"” : (INT#ClosureObject (update 5)
(INT#Frame update.1 & NIL & &)))

update
memory ("update.l.new_memory" : (INT#ClosureObject (update 5)
(INT#Frame update.l & NIL & &)))

value (#INTEGER 2)
id " .l "
NIL
View the static chain of “new_memory"”. “ident" is bound to '"num"’, the identifier

whose value is needed. This instance of the closure object "new_memory" is itself
visible. The arguments to the invocation of “update” that created this instance of

“new_memory"” are also visible. '"i"' is associated with the value "(#INTEGER 2)".
“memory” is the remainder of the memory that was supplied to that invocation of
“update”.

i

-

.
P
r,
_[,
>
X
Y
b
E
i
|

48 TOOLS FOR TESTING DENOTATIONAL SEMANTIC

31_Run

Broken after *BINDF* in update.l.new_memory
(Broken before new_memory)

T
Since "i""is not “"num’’, "new_memory" calls "memory”
32_5C
update.l.new_memory
ident "num"
update.1l

new_memory

("update.l.new_memory" : (INT#ClosureObject (update 5)
(INT#Frame update.1 & NIL & &)))

update
memory ("update.l.new_memory" : (INT#ClosureObject (update 5)
(INT#Frame update.1 & NIL & &)))
value (#INTEGER 1)
id "res"
NIL

This instance of "new_memory" knows about the value of ""res™".

33_Run
Broken after *BINDF* in update.l.new_memory
(Broken before new_memory)

T
The next "deeper” instance of "new_memory" is called.
34_SC
update.l.new_memory
ident "num"
update.1l

new_memory

("update.l.new_memory" : (INT#ClosureObject (update 5)
(INT#Frame update.l & NIL & &)))

update
memory ("initial_memory" : (INT#ClosureObject (initial_memory 1) NIL))
value (#INTEGER 1)
id "num”

NIL

This instance does "know about” the most recent binding of *"num”’, and was yielded
by the invocation of "update " that began ir step 12.

35_Run
Broken before *RETURN* in update.l.new_memory
(Broken after new_memory)

T
The value of ""num"' will now be yieided by each of the instances of "new_memory"
that are active, and finally by "value_of" itself.
36_Stk
1 (#VALUE (#INTEGER 1))

3

CHN g ach e & o 2

M A 2En o0

MR
-

DEFINITIONS OF PROGRAMMING LANGUAGES 49

NIL

37_Run
Broken before *RETURN* in update.l.new_memory

(Broken after new_memory)
T

38_Stk
1 (#VALUE (#INTEGER 1))
NIL

39_Run

Broken before *RETURN* ip update.l.new_memory
(Broken after new_memory)

T

40_Stk
1 (#VALUE (#INTEGER 1))
NIL

41_Run

Broken before *RETURN* in value_of
(Broken after value_of)

T

42_Stk
1 (#VALUE (#INTEGER 1))
NIL

The value cf *"num"’ is finally yielded by "value_ot".

43_UBA
T

Remove all break points.

44_(INT#Break ms (INT#ApplyBreak 'EVA!_EXPR.4.1.cont]
1

Break the function "cont” of the "tcase" of "EVAL_EXPR". This function will be called
with the "current” state each time a "read"” expression is evaluated, which will occur on
each successive traversal of the outer "while true" /oop.

45_Run

Broken after *BINDF* in EVAL_EXPR.4.1.cont
(Broken before EVAL_EXPR.4.1.cont)

T

46_SC
EVAL_EXPR.4.1.cont

state (("update.l.new_memory" : (INT#ClosureObject (update 5)
(INT#Frame update.1 & NIL & &))) ((#INTEGER 2) (#INTEGER 3) (#INTEGER 4)))

EVAL_EXPR.4.1
cont ("EVAL_EXPR.4.1.cont" : (INT#ClosureObject (EVAL_EXPR 75)
(INT#Frame EVAL_EXPR.4.1 & NIL & &)))

EVAL_EXPR .4
read NIL

| B})

v’“'““ﬁr. ~r vy '"T""‘"'— Bt Ain Rl i e i

o s B e A A R s 2 e on

hadii L I Ll S B A . 2 e

50 TOOLS FOR TESTING DENOTATIONAL SEMANTIC
EVAL_EXPR
expr (#READ NIL)
econt ("EVAL_COM.1.1.econt" : (INT#ClosureObject (EVAL_COM 14)
(INT#Frame EVAL_COM.1.1 & NIL & &)))
NIL

A "read” expression is evaluated (see the value of "expr") and the second element of
the original input stream is about to be read. "econt” is the expression continuation that
will be called with the value read, resulting in a continuation that will be called with the
new state.

47_DC

+ EVAL_EXPR.4.1.cont

+ EVAL_COM.4.1.econt.1.while_cont
+ EVAL_COM.2.1.econt.1.new_cont

EVAL_EXPR.3.1.cont.1
+ EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.1
+ EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.1
+ EVAL_EXPR.3.1.cont
+ EVAL_COM.1.1.econt.1.new_cont
+ EVAL_COM.1.1.econt.1l.new_cont
+ EVAL_COM.1.1 . econt.1.new_cont
+ EVAL_EXPR.4.1.cont
NIL

The "+" signs mark those frames that have explicit dynamic chain pointers, i.e., were
created by “call” instructions. “while_cont” is the continuation that continues the
computation after this traversal of the "while true’ Joop.

48_Run

Broken after *BINDF* in EVAL_EXPR.4.1.cont
(Broken before EVAL_EXPR.4.1,.cont)

T

49_CF
EVAL_EXPR.4.1.cont
state (("update.1.new_memory" : (INT#ClosureObject (update 5)
(INT#Frame update.l & NIL & &))) ((#INTEGER 3) (#INTEGER 4)))
Dynamic chain: EVAL_COM.4.1.econt.1.while_cont

NIL

The third "read"” occurs.
50_Stk
1 (#INTEGER 2)
2 (#INTEGER 1)
NIL

The results of computing the first two factorials are now on the stack These values were
pushed onto the stack by the "OUTPUT" alternative of "EVAL_COM" and, together with
the third and fourth factorials, will be combined into a value of type "ANS", working from
the top of the stack downward, when the input stream is exhausted and "error” is
produced as the value of type "FINAL_ANSWER".

PRI ST St .

DEFINITIONS OF PROGRAMMING LANGUAGES 51

51_Run

Broken after *BINDF* in EVAL_EXPR.4.1.cont
(Broken before EVAL_EXPR.4.1.cont)
T

52_CF
EVAL_EXPR.4.1.cont
state (("update.1.new_memory” : (INT#ClosureObject (update 5)
(INT#Frame update.l & NIL & &))) ((#INTECER 4)))
Dynamic chain: EVAL_COM.4.1.econt.l.while_cont

NIL
] The fourth “read” occurs. The final integer will now be removed from the input stream.
i 53_Stk
) 1 (#INTEGER 6)
' 2 (#INTEGER 2)
: 3 (#INTEGER 1)
i NIL

The third factorial has now been output, and is on the stack.

i 54_Run
& Broken after *BINDF* in EVAL_EXPR.4.1.cont
- (Broken before EVAL_EXPR.4.1.cont)

T

55_CF

EVAL_EXPR.4.1.cont

state (("update.l.new_memory" : (INT#ClosureObject (update 5)
(INT#Frame update.l & NIL & &))) NIL)
Dynamic chain: EVAL_COM.4.1.econt.l.while_cont

NIL
The final “read" occurs. An attempt to read past the end of the input stream will now
occur.
r 56_Stk
. 1 (#INTEGER 24)
| 2 (#INTEGER 6)
. 3 (#INTEGER 2)
- 4 (#INTEGER 1)
9 NIL
’ The fourth and final factorial has now been output.
1 57_Run
5 Broken before *RETURN* in EVAL_EXPR.4.1.cont
- (Broken after EVAL_EXPR.4.1.cont)
1
o
{ Since no input data remains, "cont" yields the “error” value of type "FINAL_ANSWER",
’ which is then injected into type "ANS".
[58_Stk
1 (#FINAL_ANSWER ~error)
3 2 (#INTEGER 24)
| ® 3 (#INTEGER 6)
4 (#INTEGER 2)
5 (#INTEGER 1)
NIL
| ©
t , o T

' poooe
4 |

S Zai 40n Jmn

52 TOOLS FOR TESTING DENOTATIONAL SEMANTIC

59_UBA
T

Unbreak all functions
60_(INT#Break ms (INT#InstrBreak '*PRDEN* 'After]

T
Set a break point after all product denotation ("*PRDEN®") machine instructions. A

break will thus occur each an instance of the "OUTPUT" alternative of "EVAL_COM"
combines the second element of the stack (of type "VALUE") with the top element of the
stack f{of type "ANS") to form the new top element of the stack (of type
"PARTIAL_ANSWER"; this value is then injected into type "ANS” and the process
repeats).

61_Run

Broken after *PRDEN* in EVAL_COM.2.1.econt.l.new_cont

T

62_Stk

1 ((#INTEGER 24) (#FINAL_ANSWER ~error))

2 (#INTEGER 6)

3 (#INTEGER 2)

4 (#INTEGER 1)

NIL

63_Run

Broken after *PRDEN* in EVAL_COM.2.1.econt.1.new_cont

T

64_Stk

1 ((#INTEGER ©) (#PARTIAL_ANSWER ((#INTEGER 24)

(#FINAL_ANSWER ~error))))

2 (#¥INTEGER 2)

3 (#INTEGLR 1)

NIL

65_Run

Broken after *PRDEN* in EVAL_COM.2.1.econt.l.new_cont

T

66_Stk

1 ((#INTEGER 2) (#PARTIAL_ANSWER ((#INTEGER 6)

(#PARTIAL_ANSWER ((#INTEGER 24) (#FINAL_ANSWER ~error))))))

2 (#INTEGER 1)

NIL

67_Run

Broken after *PRDEN* in EVAL_COM.2.1.econt.1.new_cont

1

68_Stk

1 ((#INTEGER 1) (#PARTIAL_ANSWER ((#INTEGER 2)

(#PARTIAL_ANSWER ((#INTEGER 6) (#PARTIAL_ANSWER ((#INTEGER 24)
(#FINAL_ANSWER ~error))))))))
NIL

T

S)
. .

I ame

@

LA AR AN AT A S8 e 2 a4

ST, T e T T e W T

DEFINITIONS OF PROGRAMMING LANGUAGES 53
69_0DC
+ EVAL_COM.2.1.econt.1l.new_cont
EVAL_EXPR.3.1.cont.1
+ EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.1
+ EVAL_EXPR.3.1.cont !
EVAL_EXPR.3.1.cont.1
+ EVAL_EXPR.3.1.cont 1
+ EVAL_COM.1.1.econt.l.new_cont
+ EVAL_COM.1.1.econt.l.new_cont
+ EVAL_COM.1.1.econt.i.new_cont
+ EVAL_EXPR.4.1.cont
NIL
70_Run
Halted
T
The computation terminates.
71_Stk
1 (#PARTIAL_ANSWER ((#INTEGER 1) (#PARTIAL_ANSWER ((#INTEGER 2)

(#PARTIAL_ANSWER ((#INTEGER 6) (#PARTIAL_ANSWER ((#INTEGER 24)
(#FINAL_ANSWER ~error)))))))))
NIL

The resulting element of type "ANS " is on the top of the stack.

Transcript V: Optimization of Tail Recursion
Tiny Definition, Version 3

This transcript shows the effect of turning on the capability of the virtual machine to optimize tail
recursion. This may be turned on or off at run time by setting the Lisp atom
INT#OptimizeTailRecursionto T or NIL respectively. The optimization is expected to be useful
in improving efficiency during interpretation of large semantic definitions.

We define a call to function X in context Y to be tail recursive if the value returned from the call to X
is not modified before control returns from Y. Thus the return from X may as well return directly to Y's
caller. The AFDL compiler detects all tail recursive calis in AFDL functions and emits special *CALL*
instructions that behave like other *CALL* instructions until the flag INT#OptimizeTailRecursion
is set at run time.

When tail recursion is being optimized it is possible for execution to continue, after a *RETURN*
instruction, in a context that is not the normal target of the return. This may be somewhat confusing
during "debugging.” Hence by setting the INT#0ptimizeTailRecursion flag the user is trading
off clarity for debugging against increased execution speed.

In this transcript the machine state has already been initialized with the TINY semantic
definition and the same test program written in TINY that was used in Transcript IV (see
Steps 1through 5 of Transcript V). We first reset the machine state.

28 Reset ms
T

We prepare for the execution of the machine which is to apply EVAL_COM to the entire
Tiny program and the continuation final.

T Y

L

LN ZEn SN Aun Sn 4
. R .

~ — — " o - DAt Sl 3 - .

54 TOOLS FOR TESTING DENOTATIONAL SEMANTIC

29_(INT#LoadApply ms
(INT#TopLevelClosureObject ‘EVAL_COM)
< tinyprogram (INT#TopLevelCiosureObject 'final) >]

We request optimization of tail recursion by setting the atom
INT#OptimizeTailRecursion to a non-NIL value.

30_(SETQ INT#OptimizeTailRecursion T)
(INT#OptimizeTailRecursion reset)

T
As a consequence of the call to INT#LoadApply we have a closure object embodying
the semantic tunction EVAL_COM on top of the stack. Just below it on the stack is the pair
of arguments to which it will be applied, namely the Tiny program and the closure object
that embodies the semantic function final,
31_Stk
1 ("EVAL_COM"™ : (INT#ClosureObject (EVAL_COM 1) NIL))
2 ((#WHILE ((#BOOLEAN true) (#SEQ ((#SEQ ((#SEQ ((#SEQ &) (#ASSIGN &)))

(#WHILE ((#NOT &) (#SEQ &))))) (#OUTPUT (#IDENT "res"))))))
("final" : (INT#ClosureObject (final 1) NIL)))
NIL

We set a break Around the semantic function EVAL_EXPR in order to view the dynamic
chain and its behavior when tail recursion is being optimized.

32_(INT#Break ms (INT#ApplyBreak 'EVAL_EXPR))
T

We run the machine through several breaks on EVAL _EXPR.

33_Run

Broken after *BINDF* in EVAL_EXPR
(Broken before EVAL_EXPR)

T

34_Run

Broken after *BINDF* in EVAL_EXPR
(Broken before EVAL_EXPR)

T

35_Run

Broken before *"RETURN* in EVAL_EXPR
(Broken after EVAL_EXPR)

T

36_Run

Broken after *BINDF* in EVAL_EXPR
(Broken before EVAL_EXPR)

T

37_Run

Broken after *BINDF* in EVAL_EXPR
(Broken before EVAL_EXPR)

T

38_Run

Broken after *BINDF* in EVAL_EXPR
(Broken before EVAL_EXPR)

T

39_Run

Broken before *RETURN* in EVAL_EXPR

(Broken after EVAL_EXPR)
T

Al A

o

ve—rrr

-~

40_

b +®
+ .

+

+*

+8
+ .

[e

h .
] NIL

a1_
-4
(EV
T
4
{ 4z_
4+
: +*
L
3
¢

¢ DEFINITIONS OF PROGRAMMING LANGUAGES 55

We are now in a break just before an incarnation of the semantic function EVAL_EXPR
is due to execute its *RETURN® instruction. We observe the dynamic chain with the DC
command. As before we have "+" signs that identify those frames that have explicit
dynamic chain pointers. However, due to setting of the flag
INT#OptimizeTailRecursion, we now also have "*"s marking those frames that were
created by tail-recursive function calls. Executing a return from such a tail-recursive
frame (i.e., one marked with a "*") causes control to return from the first frame “up* the
dynamic chain that has an explicit dynamic chain pointer but is not tail-recursive (i.e., has
a "+" but no "*"). Hence in the dynamic chain below, returning from the tail-recursive
topmost frame EVAL_EXPR, as we are about to do, will cause execution to continue in the
topmost frame named EVAL_COM. 5.

0oC
EVAL_EXPR
EVAL_EXPR.6
EVAL_EXPF
EVAL_EXPR.Z
EVAL_EXPR
EVAL_COM. 4
EVAL_COM
EVAL_COM.5
EVAL_COM
EVAL_COM.5
EVAL_COM
EVAL_COM. 4.1 econt
EVAL_EXPR.2
EVAL_EXPR
EVAL_COM. 4
EVAL_COM

We step the machine now through one instruction that causes it to execute the
*RETURN® instruc tion it had broken before. The Step command (which may aiso be used
with a positive integer argument) causes the machine to “single-step” through
instructions. As each instruction is execuled the instruction is printed out and, indented
underneath it, is printed the value that is on top of the virtual-machine stack after the
instruction execution. In this case we use the Step command without an argument
implying that the current default machinestate is 1o be stepped and the lack of an integer
argument is taken to imply one step.

Step)
(*RETURN* EVAL_EXPR) v

("EVAL_EXPR.3.1.cont" : (INT#ClosureObject
AL_EXPR 35) (INT#Frame EVAL_EXPR.3.1 & NIL & &)))

As predicted above, the return from the tail-recursive EVAL_EXPR frame causes
execution to return to the fram EVAL_COM. 5.

DC
EVAL_COM.5
EVAL_COM
EVAL_COM.5
EVAL_COM

wg_‘_‘%;-_L_A_,_A o

‘@ 56 TOOLS FOR TESTING DENOTATIONAL SEMANTIC

+* EVAL_COM.4.1 econt
EVAL_EXPR.2
+* EVAL_EXPR
Lad EVAL_COM. 4
S + EVAL_COM
NIL

We remove all breaks on the machine and let it run until it halts.
43_UBA

m T

’ * 44_Run
4 Halted

3 T

) As a result of applying EVAL_COM to the Tiny program and the continuation final we
get a continuation deposited on top of the virtual-machine stack. This continuation (see

TINY definition) expects an object of type STATE as argument and will provide an object
of type ANS as result.

45_Stk

1 ("EVAL_EXPR.4.1.cont” : (INT#ClosureObject (EVAL_EXPR 75)
(INT#Frame EVAL_EXPR.4.1 & NIL & &)))

NIL

We get ready to apply the just-computed continuation to a Tiny program state that is the
initial memory and an input sequence consisting of the integer 4. We expect the factorial
of 4 as the result of the next machine execution.

46_(INT#LoadApply ms
(INT#PopVMSTACK ms)
< < {INT#TopLevelClosureObject 'initial_memory)
< '"(#INTEGER 4) > > »>]

L T
We introduce a break to allow us to see the dynamic chain at a convenient point for
purposes of illustration. '
F 47_(INT#Break ms (INT#ApplyBreak 'new_cont 'After]
T
48_Run

Broken before *RETURN* in EVAL_COM.2.1.econt.1.new_cont
(Broken after new_cont)

o

We are now poised to execute a *RETURN®™ instruction from the tail-recursive frame
EVAL_COM.2.1.econt.1.new_cont but note that all frames further "up" the dynamic
chain (except the one at the bottom of the list below) are tail-recursive as well. Thus
execution ot this return should leave the dynamic chain empty.

1
o 49_DC
S +* EVAL_COM.2.1.econt.1.new_cont
{ EVAL_EXPR.3.1.cont.1
3 +* EVAL_EXPR.3.1.cont
- EVAL_EXPR.3.1.cont.1
3 +* EVAL_EXPR.3.1.cont
3 EVAL_EXPR.3.1.cont.1
¢ +* EVAL_EXPR.3.1.cont

Cnam o,

+* EVAL_COM.4.1.econt.1.while_cont

i MR A A
@

g

———

DEFINITIONS OF PROGRAMMING LANGUAGES

+®

+e

+*

+ @

+*

+*

+ .
+®

+®

+*

+®
+&
+®

+®
+ .

+ &

+®

+®

+*

+*

+*

+*
+*

+*

+®

+*

+ .

+*

+®

+®
+®

EVAL_COM.1.1.econt.

EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont

EVAL_COM.4.1 econt.
EVAL_COM.1.1.econt.
EVAL_EXPR.3.1.cont.

EVAL_EXPR.3.1.cont

EVAL_COM.1.1.econt.

EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont

EVAL_COM.4.1.econt.
EVAL_COM.1.1.econt.
EVAL_EXPR.3.1.cont.

EVAL_EXPR.3.1.cont

EVAL_COM.1.1.econt.

EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont

EVAL_COM.4.1.econt.
EVAL_COM 1.1.econt.
EVAL_EXPR.3.1.cont.

EVAL_EXPR.3.1.cont

EVAL_COM.1.1.econt.

EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont

EVAL_COM.1.1.econt.

EVAL_COM.1.1.econt.
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_COM.4.1 econt.

.new_cont

.while_cont
.new_cont

.new_cont

.while_cont
.new_cont

.new_cont

.while_cont
.new_cont

.new_cont

.new_cont
.new_cont

.while_cont

57

-

R |

haman s an 40 dll Shrasir S ot SR SR 2 6
Te s

AGARAARA e 1 At AR A S aragh
A .
- .

Ty v

M SR 2s N S 4
-

7

+*

+ %

+ ¥

+*

+*

+*

+ ¥
+*

+*

+ ¥

+*

+ ¥

+

+

o+ *
+ "

+*

+®

+*

+*

+*

+*

4+ &

+

+*

+e

+ 8

+*

+®

+®

+®

+®

+®
+

EVAL_COM.1.1.econt.
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_COM.4.1.econt.

EVAL_COM.1.1.econt.
EVAL_EXPR.3.1.cont.

EVAL_EXPR.3.1.cont
EVAL_COM.1.1.econt.
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont

EVAL_COM.4.1.econt.
EVAL_COM.1.1.econt.
EVAL_EXPR.3.1.cont.

EVAL_EXPR.3.1.cont
EVAL_COM.1.1.econt.
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_COM.1.1.econt.
EVAL_COM 1.1.econt.
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont

EVAL_COM.4.1 .econt.
EVAL_COM.1.1.econt.
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.
EVAL_EXPR.3.1.cont

EVAL_COM.4.1 . econt.
EVAL_COM.1.1 . econt.
EVAL_EXPR.3.1.cont.

EVAL_EXPR.3.1.cont

EVAL_COM.1.1 econt.
EVAL_EXPR.3.1.cont.

.new_cont

.while_cont
.new_cont

.new_cont

.while_cont
.new_cont

.new_cont

.hew_cont
.new_cont

.while_cont
.new_cont

.while_cont
.new_cont

.new_cont

e A e A A o

TOOLS FOR TESTING DENOTATIONAL SEMANTIC

~ 1
-~

- T T

3
3
!
@e-
t_

FUE T CTWE T W W W W e T, T, TR YT W W WY T kT m W e e = T

DEFINITIONS OF PROGRAMMING LANGUAGES 89

+* EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.1
+* EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.1
+* EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont .1
+* EVAL_EXPR.3.1.cont

+* EVAL_COM.1.1.econt.1.new_cont

+* EVAL_COM.1.1.econt.1.new_cont
EVAL_EXPR.3.1.cont.1

+* EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.1

+* EVAL_EXPR.3.1.cont
EVAL_EXPR.3.1.cont.1

+* EVAL_EXPR.3.1.cont

+* EVAL_COM.1.1.econt.1.new_cont

+* EVAL_COM.1.1.econt.1.new_cont

+* EVAL_COM.1.1.econt.1.new_cont

+ EVAL_EXPR.4.1.cont

NIL

We execute the *RETURN®* with a Step command and note that the stack now contains
the appropriate result.

50_Step
(*RETURN* EVAL_COM.2.1.econt.1.new_cont)
(#PARTIAL_ANSWER ((#INTEGER 24) (#FINAL_ANSWER ~error)))
1
51_DC
NIL

As expected, the dynamic chain is now completely clear and the next Run command
will simply cause the machine to halt.

52_Run
Halted
T

The expected object of type ANS is lett on top of the virtual-machine stack.

53_Stk
1 (#PARTIAL_ANSWER ((#INTEGER 24) (#FINAL_ANSWER ~error)))
NIL

,,Tvr. L. ZAhL A e i e Ay +7
S a J v

AN I Ll aat ot b SEE g MR gL A A AN sut vl 443
A

LGB an o an oo
-

I. ISI EXTENSIONS TO AFDL

We briefly describe here the differences between AFDL and our upward compatible extension.
AFDL +. ltis assumed that the reader is reasonably familiar with AFDL and the Ada FSD.

AFDL is a purely applicative language composed of a few Ada constructs such as if-then-else.
case, blocks, variable declarations, function subprograms, etc. but no assignment. The major
difterence between the use of these constructs in Ada and in AFDL is that in AFDL functions may be
passed as arguments to other functions. This is necessary for writing denotational style semantic
definitions. Accordingly, the types of functional objects may be defined with function type
declarations. Furthermore, in AFDL the only possible mode of function arguments is similar to the
Ada in mode (i.e., parameter passing by value). This is a fundamental divergence from the lambda
calculus and must be duly recognized when writing semantic definitions in AFDL.

In extending AFDL to produce AFDL + we introduced three further type declarations, ten domain
operations and one compound expression construct. In addition, we have made AFDL + a pure
expression language thereby rendering the return keyword and construct optional. In order to
facilitate programming denotational semantics, AFDL + function calls may be curried.

It the sum type T is declared via
sumtype T (T, ... T),

where n>2 and all T.are unique names, then x inj T injects an element of component type T, into the
sumtype T; x elt T tests whether an element x of sum type T was injected from component type Ti; X
pro Ti projects an element x of sum type T into component type T, if x elt T, is true, and causes a fatal
error in the AFDL + virtual machine otherwise.

If the product type T is declared via
product type T (T1, Tn).

where n2>2, then an element of T is constructed from elements x, of type T, by the tupling operation
(x1. e xn). The i-th component of a value x of product type T is selected by the operation x:i, where i
must be a constant (literal).

A sequence type T with components of type S is declared via
sequencetype T S.

An element of sequence type T is constructed from elements X, of type S by the operation [x1, xn], n
> 0. [] denotes the empty element of any sequence type. The i-th component (head) of an element x
of sequence type T is selected by the operation x:i, where i may be any integer expression. The i-th
tail of x = [x1, ., X,] i selected by the operation x:i, and is equal to {x. ., ... x J(ifi = nthen x:iis
equalto[]). Ifiis "out of range” (< 0 or > n) for : or ::, then a fatal error occurs in the AFDL + virtual
machine. Two elements of a given sequence type may be concatenated using the binary
concatenation operation &. The length of an element of a sequence type may be obtained via the
unary operation length.

A type T may be declared equivalent to a type S by the declaration
type Tis S.

vy~
-

DEFINITIONS OF PROGRAMMING LANGUAGES 61

This permits an element x of type T to be converted to type S by applying the cast S(x); conversely, an
element y of type S can be converted to type T via the cast T(y). Type conversions must be explicit
and have no run-time significance. Equivalent types provide a way of declaring a sum type T with
multiple components T that are equivalent to some type S. If x elt T, then S(x pro Ti) is of type S, and
if y is an element of type S, then (Ti(y)) inj T is an element of type T.

The AFDL + type case expression is a variant of the usual case construct and is provided to
simplify the manipulation of sum types. The tcase expression

tcase expris
when t1: T1 =D expr, .

when tn: Tn => expr_ .
when others t: T =) default
end tcase

evaluates expr, in a new scope in which t is bound to expr pro T, if expr elt T and yields the resulting
value as the value of the type case expression. !f a when clause for the appropriate T, is not
provided, then if the others clause is present, "default” is evaluated in a scope in which t is bound to
expr, and the resulting value is yielded as the value of the type case expression; otherwise, a fatal
error occurs in the AFDL + virtual machine.

TNy Y,

- T WY

T

r—
b

[I. DENOTATIONAL SEMANTIC DEFINITION
OF TINY IN AFDL +

package TINY is
-- Syntactic Domains
sum type EXPR (INTEGER, BOOLEAN, IDENT, READ, NOT, EQUAL, PLUS);

type IDENT is private;

type READ is private,

type NOT is EXPR;

product type EQUAL (EXPR, EXPR);
product type PLUS (EXPR, EXPR),

sum type COM (ASSIGN, OUTPUT, IF, WHILE, SEQ),

product type ASSI/GN (IDENT, EXPR);
type OUTPUT is EXPR;

product type /F (EXPR, COM, COM);
product type WHILE (EXPR, COM);
product type SEQ (COM, COM);

-- Semantic Domains

product type STATE (MEMORY, INPUT);

function type MEMORY (id: IDENT) return VALUE_OR_UNBOUND;
sum type VALUE_OR_UNBOUND (VALUE, UNBOUND_VALUE);
type UNBOUND_VALUE is (unbound);

sequence type INPUT VALUE,

sum type VALUE (INTEGER, BOOLEAN);

function type CONT (state: STATE) return ANS;
function type ECONT (value: VALUE) return CONT;

sum type ANS (FINAL_ANSWER, PARTIAL_ANSWERY);
type FINAL_ANSWER is (error, stop),
product type PARTIAL_ANSWER (VALUE, ANS),

-- Auxiliary Functions

function update (memory: MEMORY ; value: VALUE; id: IDENT) return MEMORY is
function new_memory (ident: IDENT) return VALUE_OR_UNBOUND is
begin
if ident = id then value inj VALUE_OR_UNBOUND

At e et ata md e Am A om s md e M Ao = .) A AW o ke a A o e o m o m e o . o =

r = sy %

s

L.

ﬁc

] else memory(ident) end if
end new_memory;

~py begin new_memory end update;

‘ ‘.

LAl S S M i S Sh o S N CHR S T T . T = e T T e T T v*v-w*:-vvw—”"wrﬁfv—.'—r'—”v-'—-v:‘"——-ﬁr—‘——"

DEFINITIONS OF PROGRAMMING LANGUAGES 63

function value_of (memory: MEMORY ; id: IDENT) return VALUE_OR_UNBOQUND is
begin memory(id) end value_of;

function error (state: STATE) return ANS is I
beginerror inj ANS end error;

function final (state: STATE) return ANS is
begin stop inj ANS end final;

function initial_memory (id: IDENT) return VALUE_OR_UNBOUND is
begin unbound inj VALUE_OR_UNBOUND end intitial_memory;

-- Semantic Functions

function EVAL_EXPR (expr: EXPR; econt. ECONT) return CONT is
begin
tcase expris
when integer: INTEGER =) econt(integer inj VALUE),
when boolean. BOOLEAN =) econt(boolean inj VALUE);
when ident: IDENT =>
declare function cont (state: STATE) return ANS is
value: VALUE_OR_UNBOUND = value_ot(state:1, ident);
begin if value elt UNBOUND_VALUE then error inj ANS
else econt(value pro VAL UE)(state) end if end cont;
begin cont end;
when read: READ =>
declare function cont (state: STATE) return ANS is
begin if state:2 = [] then error inj ANS
else econt(state:2:1)((state:1, state:2::1)) end if end cont;
begin cont end,;
when not: NOT =>
EVAL_EXPR(EXPR(not),
declare function new_econt (value: VALUE) return CONT is
begin
if value elt BOOLEAN then econt((not (value pro BOOLEAN)) inj VALUE)
else error end if
end new_econt;
begin new_econt end);
when equal: EQUAL =>
EVAL_EXPR
(equal:1,
declare function econtl (valuel: VALUE) return CONT is
begin
EVAL_EXPR
(equal:2,
declare function econt2 (value2: VALUE) return CONT is

R
-®» '

-y ¥

T T‘l 1] T ™ ‘71 '!'."'.
) e T

T

'R

una 2ns s et o

2

64 TOOLS FOR TESTING DENOTATIONAL SEMANTIC

begin econt((valuel = value2) inj VALUE) end econt2;
begin econt2 end)
end econtt,
hegin econt1 end);
when plus: PLUS =>

EVAL_EXPR
(plus:t,
declare function econt1 (value1: VALUE) return CONT is
begin
EVAL_EXPR
(plus:2,
declare function econt2 (value2: VALUE) return CONT is
begin
if value1 elt INTEGER and value2 elt INTEGER
then econt(((valuel pro INTEGER) + (value2 pro INTEGER)) inj VALUE)
else error end if
end econt2;
begin econt2 end)
end econt1;
begin econt1 end)
end tcase

end EVAL_EXPR;

function EVAL_COM (com: COM; cont: CONT) return CONT is
begin
tcase comis
when ass: ASSIGN =>
EVAL_EXFR
(ass:2,
declare function econt (value: VALUE) return CONT is
function new_cont (state: STATE) return ANS is
begin cont{ (update(state:1, value, ass:1), state:2)) end new_cont;
begin new_cont end econt;
begin econt end);
when out: OUTPUT =>
EVAL_EXPR
{ EXPR(out),
declare function econt (value: VALUE) return CONT is
function new_cont (state: STATE) return ANS is
begin (value, cont(state)) inj ANS end new_cont;
begin new_cont end econt;
begin econt end);
when if: IF =D
EVAL_EXPR
{ if:1,
decliare function econt (value: VALUE) return CONT is
begin
if vaiue elt BOOLEAN then
if value pro BOOLEAN then EVAL_COM(it:2, cont)
else EVAL_COM(it:3, cont) end if

Tv,T W MY TA TETY AT .o ae 8 e | e e -~

DEFINITIONS OF PROGRAMMING LANGUAGES

else error end if
end econt;
begin econt end);
when while: WHILE =>
declare function new_cont (state: STATE) return ANS is
begin
EVAL_EXPR
(while:1,
declare function econt (value: VALUE) return CONT is
begin
if value elt BOOLEAN then
if value pro BOOLEAN
then EVAL_COM(while:2, EVAL_COM(com, cont))
else contend if
else errorend if
end econt;
begin econt end)
(state); -- Curried call
end new_cont;
begin new_cont end;
when seq: SEQ =>
EVAL_COM(seq:1, EVAL_COM(seq:2, cont))
end tcase
end EVAL_COM,;

end TINY;

A4 e . A Al 'm m s e M A A Mae Mo dt_roe m. o = m s .m h o o o . 4 o e m o moam A Moo mauaa

65

ey

III. AFDL + ABSTRACT SYNTAX

AFDL Abstract Syntax (List Representation)
D. Martin and A. Stoughton

17 Feb. 1982

program: comp_unit_s

comp_unit: fun_dec]
| fun_spec
| pkg_spec
| pkg_body

o . = = = e e = e = A T e e e e s e = = e e - e o =

pkg_spec: (PSPEC pkg_id decl_item_s)
pkg_body: (PBODY pkg_id decl_item_s)

decl_item: var_spec
var_decl
fun_spec
fun_dec]
type_decl
fun_type_dec]
prod_type_decl
sum_type_dec]
seq_type_decl
pkg_spec
pkg_body
use_clause

—— ———— — — — — - ——— —

var_spec: (VSPEC var_id_s type_id)

type_dec]: (TDECL type_id type_def)

type_def: PRIVATE ~- private type
| enum_type -- enumerated type
| type_id -- type equivalence

enum_type: const_id_s
| var_id_s

fun_type_decl: (FNTDECL type_id fun_type)
prod_type_decl: (PRTDECL type_id type_id_s)

sum_type_decl: (SMTDECL type_id type_id_s)

LA,L-,LA>_-,AL,- - . - N el . ™~

T Y
;'!
-3

Y
ﬂ‘

T

vaﬁﬁ e

DEFINITIONS OF PROGRAMMING LANGUAGES

seq_type_decl: (SQTDECL type_id type_id)

use_clause: (USE pkg_id_s)
fun_decl: (FDECL fun_id fun_type fun_def)
fun_spec: (FSPEC fun_id fun_type)
fun_type: (MAP type_id_s type_id)
fun_def: (LAM id_s expr)
expr: (LET decl_s expr)

| (APPLY expr expr_s)

| (IF expr expr expr)

| (CASE expr alt_s)

| (TCASE expr t_alt_s)

| (WARNING expr msg)

| simple_expr
decl: var_dec]

} fun_spec

| fun_decl
var_dect: (VDECL var_id type_id expr)
alt: {choice_s expr)
choice: id

| OTHERS
t_alt: (ALT var_id type_id expr)

| (OTHERS var_id type_id expr)

(binop expr expr)
(unop expr)

(ELT expr type_id)
(INJ expr type_id)
(INJ expr type_id (FROM type_id))
(PRO expr type_id)
(PRDEN expr_s)
(SQDEN expr_s)
(CAST type_id expr)
id

integer

string

simple_expr:

id: var_id
| fun_id
| const_id
| type_id

67

L & o A i o

,1.
M

-ﬂ.‘ — ﬁ"'-g": -

Ty WO W T
A .
] :

——T Y
a

—

binop:

unop :

P e T

AND

OR

XOR
ANDTHEN
ORELSE
EQ

NE

GT

GE

LT

LE

CAT
HEAD
TAIL
PLUS
MINUS
TIMES

NOT
UMINUS
LENGTH

-

culns b RS i AnEae . dhY o o-

TOOLS FOR TESTING DENOTATIONAL SEMANTIC

, ﬁm..v-w.
a C

MRS i A AP A
@ ..

et pe A "‘f‘g"?-'—v‘vf—r rva -
P, f)

)
v
4
»
.
)
’
y
y
’
4
»
»
)

A

OO WA -

IV. AFDL+ CONCRETE AND ABSTRACT SYNTAX

#** QUIPUT IROM GRAMMAR ANALYSIS PROGRAM LR

Ft RMINAILS

® o~ 0

.[.

.etconst
.integer
.procname
.string

. lypemark
.varname
/=

TR T
"

v
v

>=
AND
BEGIN
BODY
CASE
DECLARE
FLSE
ELSIF
(AN

END
FUNCT ION
IF

INJ

IS
tENGTH
NOI

OR
OTHERS
PACKAGE
PRIVATE
PRO
PRODUCT
Rt TURN
SEQUENCH
SUM
TCASF
TN
TYPE
ust
WHI N
XOR

!

|

|

59
60
61
62
63
64
65
66
67
68
69
70
7t
72
73

75
76
71

79
80
81
82
a3
84
85
86
87
88
89
90
91
92
¥3
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
m
112
13
14
115
116

PRSP

for the AIDL+ GRAMMAR s=**

NON TERMINALS

<2 EXPRESSION LIS1>

<2 _1YPE_ID LISD>
<2_VAR_ID i 1S1>

<ADD _OP>

<AIDI _PROGRAM>

<Al TERNAT IVI >
CALIERNATIVE LISI)>
<ANDIHEN | XPRESSTON>
<AND_EXPRESSION>

<B1 OCK>

<BLOCK_BODY>

<CASE _[XPR>

<CHOICO>

<CHOICK _LIST>
CCOMPILAILION UNII>
CCOMPILATION UNLIT LISI>
<CONDITION>

CCONST 11
CCONST _ID 11SI>

<CURRILD fUNCIION CAlLL>
<DECL ARAT TON>
CDECLARATION LIST>
<DECIARATIVE T1EM>
<DECIARATIVE LILM 1ISI>
<DICLARATIVE PARD>

<HOM 0P>
CENUMERATED 1YPI DITINITIOND
<EXPRESSION>

<EXPRESSION LIS
<TORMAL PART>

<FfUNCI1 10N BODY>
<TUNCIION_CALI>
<FUNCTION DECIARATIONY
<IUNC!ION NAML OPIION>
CTUNCIION SPECIT ICATIONY
<FUNCTION TYPE DECLARATION>
<1D>

<TE BEXPR>

<IF_FXPR 1AI1>

CNAML >

<NAME LIST>

<NULI BLOCK BODY>
CORFLSEt_EXPRISSIOND

<OR EXPRESSION>

<PACKAGE BODY>

CPACKAGE _SPFCIFICATTION>
<PARAMETER DICILARATION>
<PARAMETER DICIARATION 1 ISI>
<PKG ID t1S)>

<PRIMARY >

<PRODUCT _1YP1 DICIARATIONS
<RELATION>

CRELOP>

<RETURN EXPRR>

<RUIURN 1YPI >

<SEMI1>

<STQUENCE TYPE DECILARATION>
<StQ o>

e M A M % e e e A A M AR XA atm m o o J

3
3
»
S

Adiian L am L Mn A vt

T wr]!l T]=i[MM

AR AR A- Sl s an dan

70

17
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

TOOLS FOR TESTING DENOTATIONAL SEMANTIC

<SEMPEL | XPRESSIONS
<SUM>

<SUM TYPL OICLARATION>
<SYSTIM GOAl SYMRBOI >
<11 RM>

<lypy A1

<STYPE ALT VIS

<CLYPE CASE EXPR>

<1YPE COlRCION>

<CTYPEL DECLARAIION>
CTYPE DETINLVION>
CTYPE 1)

<UN OP>

<USt _ClAUSH>

<VARIABLE DICIARATION>
CVARIABIE SPICIIICAIION>
VAR 1D 1 1St

<CWHEN OTHERS>

<XOR £ XPRISSION>

A e e i e e =Y e A x m e oam i 3m m e e A . PO

T Yy

L

S LA MLV AE A~

MO 40 4 e AN SEA NE AD GEL GEA b Aaf
A

DEFINITIONS OF PROGRAMMING LANGUAGES Al

-,

10
1"

12
13
14
15

16
17
18
19
20
21
22
23
24
25
26

27
28

29

30
31
32

33
34

35
36

37
a8

1t PRODUCT IONS

<SYSTEM GOAL SYMBOL > ::= *E®* CAFDL_PROGRAM> **
-- LR(1) Grammar for Ada tormal Definition |anguage (AIDI)
-- This version includes Appendices G, H, I, J, and K of the Ada ISD
~- as well as the static and dynamic functions of Chapters 3, 4, 65, 6,
~- 7,8, 9, 10, 11, and 12.
CAFOL PROGRAM> ::= <COMPILATION_UNIV LISH> S> [StI0 AbstractSyntaxlrees SIAR:1])
<COMPILATION UNIT LIST> ::= <COMPILATION UNIT 1 IST> <COMPJLAYION UNIT> ;
S> [PRINIDEF STAR:1:2] IFRPRI[] <
| <COMPILATION UNIT> ; S> [PRINIDSI STAR:1:2] TERPRI{) O

CCOMPILATION UNIT> ::= <IUNCTION_DECLARATION>

| <PACKAGE_SPECIf ICATION>

| <PACKAGE_BOQDY>

.- ®SSSsdseeeR A P p ' ” D I C t S G through K EELERSEEEN

CPACKAGE SPECITICATION> ::= PACKAGE .procname IS <DICLARATIVE [TEM (1S1> TND <FUNCTTON NAMI OP1ION>
$> - :PSPIC!2 '
CPACKAGE BODY> ::= PACKAGE BODY .procname IS <DECIARATIVE PARI> END CFUNCTION NAME OPTION> r
$> - :PBODY!2 }
CDUCLARATIVE [TEM 11SI> ::= <DECLARATIVE ITEM> ; S> <> |
| CDECLARATIVE_TTTM_LEST> <DICIARAVIVE TTIM> ;]
$> « |
<DECLARATIVE PART> CDECLARATIVE ITEM> ; $> O

| <PACKAGE_BODY> ; S> ¢

| <DECLARATIVE _PART> <DECIARATIVE 1TFM> ; §> <<

| <DECLARATIVE PART> <PACKAGE BODY> ; S> <<

CDECLARATIVE ITEM> ::= (VARIABLE SPECIF ICATION>

| <VARIABLE DECLARATION>

| <CHUNCTION SPECLFICAIION> S> SWAP[1 2] - :ISPEC!2
| <FUNCTJON_DECLARATION>

| <TYPE_DECLARATION>

| <FUNCTION_TYPE_DECLARAT ION>
| <PRODUCT_TYPE_DFCLARA!ION>
] <SUM_1YPE_DECLARATION>

| <SEQUENCE_TYPE_DECLARATION>
| <PACKAGE_SPECIT ICATION>

{ <USF_CLAUSE>

CVARTABLE _SPICIFICATION> ::= .varname : CIYPF ID> S> SWAP[1 2] <> SWAP[1 2] :VSPIC!2
| <2_VAR 1D LISI> : <IYpPL ID> S> :VSPIC!2
CIYPE DECLARAVION> ::= IYPE <1YPE (D> IS CTYPE DULINLITIONY S> 1DICI 12
CTYPE DEFINDVION> < := <ENUMERATED 1YPE DETINEIION
| PRIVAITE S> 1OAD{ PRIVATLE]
| <IYPE 1D -- Lype "equivalence”

CENUMFRATED TYPE DEFINTTION> (<CONST_ID t1S1>)

I (<VAR 1D 1iS1>)

CCONST 1D V1S1> ::= <CONSI ID> S> O
| <CONST ID LIST> , <CONSI D> S> <<

(VAR 1D LIST> ::= .varname > O

| <VAR 1D LISI> , .varname $> ««

£y TN . . T ATy STy woyT/y/e R R T T TR Y eEooowoo o, moo - = = -. ¥ . -7. = - - & =

72 TOOLS FOR TESTING DENOTATIONAL SEMANTIC

39 <2 VAR ID 1 IS1> ::- _varname , .varname S> MAKLIUPLE| 2]

40 | <2 VAR D LISI> , .varname S> <<

41 <2 TYPE 1D LIST> ::= CIYPE_ID> , <TYPE I S> MAKETUPLE| 2]

42 | <2 TYPE ID_LIST> , <TYPE 1> S> <«

43 <IUNCTION 1YPE DECIARATION> ::= FUNCTION TYPE <IYPE 10> (<PARAMLIER DECIARATION 11SI>) <RLIURN [YPF .
S> SWAP|1 2] BURST| | SWAP{1 2] - SWAP[1 2] :MAP!2 :INIDICL!2

44 <PRODUCT TYPE DECIARATION> ::= PRODUCT TYPI CIYPE TD> (<2 TYPE 1D LISI>)
S> PRIDECYI 12

45 <SUM TYPE DECLARATION> ::= SUM TYPE CIYPEL ID> (<2 1YPE ID 11ISI>) S> SMIDIECL 2

46 <SHQUENCE TYPE DECILARATION> ::= SEQUENCE TYPE <TYPE ID> <I1YPE ID> S> :SQIDICI!2

47 <USt CLAUSE> ::= USE <PKG ID LISI> S» USt N

48 <PKG_ID_LISI> ::= _procname S> <O

49 | <PKG ID_LIST> , .procname $> «

C -
1 ~n EREERECREERR c ” A "l [[R S 3 "hrough IZ EEEXERRXE R R

b - -

r 50 <HUNCTION DECLARATION> ::= CFUNCTION SPECIFHICAIION> IS <HUNCIION BODY>
r S> SWAP[2 3] :LAM!2 :IDICI!3
p 51 | CFUNCTION SPECIFICATION> IS <NULI BLOCK BOLY>
6. S> SWAP|1 2| - :ISPiC!2
V 52 <FUNCTION SPECILFICATION> ::= FUNCTION <ID> <FORMAL PARI> <RI IURN 1YPI>
S> :MAP!2
53 <FORMAL PARI> ::-= S> {OAD|NIT | -- <EMPIY>
-- addilional NIl for a total of 2
#!! 54 | (<PARAMETER DECLARATION 11S1>) S> BURSI{] -- burst parameter 1list
i 55 <PARAMETER DECILARATION 1 IST> ::= <PARAMETEIR DICLARATION 1I1SI> ; <PARAMIIIR DICI ARATION>
S> <«
56 | <PARAMETER DICIARATION> S> <>
i 57 <PARAMETER DECIARATION> ::= <NAME {ISI> : <TYPE ID> S> MAKETUPIE[2]
5
i 58 ZRETURN TYPE> - RETURN <1YPE 1>
- 59 <NUIt BIOCK BODY> ::= BEGIN END <FUNCTION NAMI OPIION> S> -- for incomplete procedures
t 60 <FUNCIION BODY> ::: <DICLARATION 1 1S1> <BIOCK BODY> S> 11112
X 61 | <BLOCK BODY>
) 62 <DECLARATION LIST> ::= <DECLARATION L ISI> <OtCILARATION> . S> <«
b 63 { <DICIARATION> : Sy O
-
o 64 <DICLARATION> ::= <VARIABLE DECLARATION>
65 | <FUNCTION DECLARATION>
66 | <FUNCTION SPECIFICATION> S> SWAP|1 2] - :iSPEC!2
67 <VARITABIF DFECLARATION> ::= _varname : <IYPt (D> ::= CUXPRESSION> S> -VOICI!'3
68 <NAME L1IST> ::= <NAME | IST> .| <NAME> S> «
9 69 | <NAME> > O
{]
70 <NAME> ::.= .varname
[71 | .procname
s 72 <CONST ID> ::= _etconst S> {RPILACA STAR (PACK* '~ STAR:1)]
3 73 <1YPE 1> ::- _typemark S> [RPLACA STAR (PACK® "4 SIAR: 1) |
}
- @
e
)
L

. DEFINITIONS OF PROGRAMMING LANGUAGES 73
1
74 CEXPRESSION> ::= <RETURN_EXPR>
75 | <RELATION>
76 | <AND EXPRESSION)>
77 | <OR_EXPRESSION>
78] <XOR_EXPRESSION>
- 79 | <ANDIHEN_EXPRESSION>
~(80 | <ORELSE EXPRESSION>
81 <(SEMI> ::= S> - -- <LMP1Y> &C optional semicolon
-- discard stacked NIl
82 | . -- nothing stacked here
83 CRETURN_EXPR> ::= RETURN <EXPRESSION>
u' 84 CIF_EXPR> ::= I1F <CONDITTON> THEN <EXPRESSION> <SEMI> <I1 (XPR 1AlI>
- S> :1F!13
85 CCONDITION> ::= CEXPRESSION>
86 <IF_EXPR _TAIL> ::= FISIt CCONDITION> THEN <EXPRESSION> <SEMi> <11 {XPR 1AI1I>
. S> :1F!3
N 87 | ELSE <EXPRESSION> <SEMI> END If
k‘ 88 <CASE_EXPR> ::= CASE <FXPRESSION> IS <ALTFRNATIVE LISI> IND CASI S> :CASI!2
. -
e 89 <ALTERNATIVE LIST> ::= CALTERNATIVE LIST> <ALIERNAIIVI> S> <<
N 90 | <ALTERNATIVE> $> O
:' g1 <AITERNATIVE> ::= WHEN <CHOICE LIST> => (FXPRESSION> <SIMI> S> MAKFTUPIH|2Z]
b
Fq 92 <CHOECE LIST> ::= <CHOICE 1ISI> | <CNOICE> $> <«
. 93 | <CHOICE> S O
r 94 (CHOICE> ::= <CONST IM
| 95 | .varname
, 96 | OTHERS S> LOAD| OIHERS |
L
: 97 C(TYPE_CASE EXPR> ::= ICASE CEXPRESSION> IS CTYPE _ALT_LIST> END SCASF
P‘ S> :1CASE!2
2
: 98 <IYPT _ALT_VISI> ::= <IYPF AIT> S> O
. 99 | <TYPE ALF_LISE> <CI1¥YPE ALD> S> <«
L 100 <TYPE_ALT> ::= WHEN .varname : <TYPE_ID> => <LXPRISSION> <SIMI> S> :AlLI1!3
o 101 | <WHEN_OTHERS> .varname : <TYPE ID> => <EXPRESSION> <SiMI1)>
) S> MAKETUPIF[4]
u 102 <WHEN_OTHERS> ::= WHEN OTHERS S> LOAD[OINERS)
3
’ 103 <TYPE_COERCION> ::= <TYPF _ID> (<EXPRESSION>) S> :CAST!2
1
b, 104 <BIOCK> ::= DECLARF <DICIARATION_LIST> <BIOCK BODY> S> 11112
b 105 | <BLOCK BODY>
i. 106 <BLOCK_BODY> ::= BEGIN <EXPRESSION> <SEMI> END CFUNCIION NAME OPTION>
Ve $> -
' 107 <CFUNCTION NAMF OPTION> : : = -- CEMPTYD
! 108 | <10>
) 109 <AND_EXPRESSION> ::= <RELATION> AND <RELATION> S> :AND!2
. 110 | <AND EXPRESSION> AND <RELATION> S> :AND!2
- 4 111 COR_EXPRESSION> ::= (RFVATION> OR ¢REC{ATION> S> :QR!'2
? 112 | <COR EXPRESSION> OR <RELAVION> S> :0R!'2
; 13 <XOR EXPRESSION> ::- CREIATION> XOR <RELATION> S> :XOR!2
: 114] <XOR £ XPRESSION> XOR <REIAVION> S> :XOft'2
)
i 115 CANDIHEN EXPRESSION> ::= <RELATION> AND THEN <RELATION> S> aNDIHIN!?2
I 116 | <ANDTHEM EXPRESSION> AND THEN <RELATION> S> :ANDIHEN!2
4
b 117 <ORELSF EXPRESSION> ::= CRELATION> OR EISE <REIAIION> S> :OREISE!12
E 118 | <ORELSE EXPRESSION> OR 10SE <RIILAVION> S> ORIISH!?
q

2 PR PP W Oy W e "~

v

- w -~

~

Tp——

‘e

—

74

119
120
121

122
123
124
125
126
127

128
129
130

131
132
133

134
135

136
137
138
139
140
141
142
143
144
145
146
147
148

149
150
151

152
153
154
155

156
157
158
159
160

161
162

163
164
165
166
167

168
169

170
1

172
173

CRELATION> ::=
|
|
CRELOPY = =
| /=
>
| >=
| <
1 <=
<SIMPLE _EXPRESSTON> =
| <SIMPLE_EXPRESSION> <StQ OP> <SUM> S, 12
| <SIMPI & _FEXPRESSION> <DOM OP> <1YPF 1D> S> 12
<SUMY ::= <TERMD
| <UN_OP> <TERM> s> 1
| <SUM> <ADD OP> <TERM> S> 12
CIERM> ::= <PRIMARY>
| <VTERM> * <(PRIMARY> S> :1IMIS!2
<PRIMARY> = <ID>
| .integer -- inleger
| .string -- stiring
{ <FUNCI1ON _CALL>
| (<EXPRESSION>)
| <IF_EXPR>
| <CASE EXPR>
| <TYPE CASE EXPR>
| <TYPE_COERCION>
| <BLOCK>
| (<2_EXPRESSION tIS¥>) S> :PRDEN'1 -- product denotation
| [<EXPRESSION LIST>] S> :SQDEN'1 -- nonemply sequence denotation
I [1 S> LOAD[NITL | :SQDIN!1
-- empty sequence denolation
<1 = ,varname -- variable identifier
| .procname -- function identifier
| <CONST_ID> -- tree construct identifier
CFUNCTION_CALL> ::= <1D> () S> IOAD|NIL | :APPIY!2

CCURRIED FUNCIION_CAtI1>

<SEQ OP> :::

| ::

| &
<KDOM 0P> ::= INJ

| PRO
<UN_OP> ::= -

| NOT

| LENGTH

CADD OP> ::= +
|-
CEXPRESSION 1 1S1>

<2 EXPRESSION LIST>

<SIMPIE _EXPRESSION>
CSIMPLE EXPRESSION> <RELOP> <SIMPLE EXPRESSION> S> 12
CSIMPLE EXPRESSION> ELT <TYPI ID> S> :£L112

c:= <EXPRESSION LIST> | <EXPRESSION> S> <<

wTw W W W W Wy W W v oy b e R oy e s e e o mee el s e e v._<‘,

TOOLS FOR TESTING DENOTATIONAL SEMANTIC

S> 10
S> NI
S> GI
S> :Gt
S> T
S> it

<SUM>

<ID> (CEXPRESSION LIST>) S> :APPIY!2
CCURRIED FUNCTION CALI> () S> LOAD[NIl] :APPIY!2
CCURRTED FUNCTTON CAI1> (<TXPRESSTON LiSI>) S> :APPIY!2

<> () S> LOAD|NIL | :APPLY!2
<ID> (CEXPRESSION LISI>) S> :APPLY!2
CCURRIED FUNCTION CALI> () S> LOAD[NIt] :APPLY!2
CCURRTED FUNCTION CAI1> (CEXPRESSION 11S1>)
S> :APPIYI2

S> :HEAD - - sequence operators
- product or sequence element selection

S> 1Al - sequence tail selection
S> :CAl -- sequence concatenation
S> :INJ - domain operators
- injection
$> :PRO -- projection
S> :UMINUS
S> :NOI
S> LENGTH
$> :PLUS
S> :MINUS

| <EXPRESSION> $> O

cr= <2 EXPRESSION 1ISI> | <EXPRISSION> S> <«
| <FXPRESSION> . <FXPRISSION> S> MAKITUPII[2]

~n

4
:
[
_[I

1—,f171v-‘~1‘ﬁv~vvva.
' - :

Dl A A e

DEFINITIONS OF PROGRAMMING LANGUAGES

& 162
(33 34 43
) 33 34 43
. 135
hd s 1 1
+ 168
. 36 38 39
- 165 169
.etconst 72
.integer 137
.procname 8
string 138
.typemark 73
.varname 217 37
/= 123
: 27 28 57
: 161
N 67
; 3 4 10
< 126
(= 127
= 122
<> 91 100 101
> 124
>= 125
AND 109 110 115
BEGIN 59 106
RODY 9
CASE 88 88
DECLARE 104
FUSE 87 117
s 86
Ll 121
END 8 9 59
FUNCTION 43 52
113 84 87
INJ 163
1S 8 9 29
PENGIH 167
NOI 166
OR 111 112 117
OTHERS 96 102
PACKAGE 8 9
PRIVATLE 31
PRO 164
PRODUCT 44
RETURN 58 83
SHQUE NCE 46
SUM 45
1CASt 97 97
THEN 84 86
1YPE 29 43
USE 47
WHEN 91 100
XOR 113 114
| 147 148
| 147 148
92

<2 EXPRESSION LISI>

<2 _TYPE 1D VIST>
<2 VAR_ID (LIST>

A

44
44

40

38

67

11

118

87

50

118

115
44

102

-41
28

<ADD_OP> 133 -168 -169

CAFDI PROGRAM>
CALVERNATIVE> 89
CALTERNATIVE LIST>

CANDTHEN_EXPRESSION>

<AND EXPRESSION>

1
90
88

76

vVOCABUIL

45
45

41

48

39

100

12

88

51

116
45

146
42
-39

-2
-91
89
79
-109

54
54

42

49

39

101

13

97

88

46

103
103

49

71

40

160

14

106

97

ARY

140
140

68

160

67

15

172 -172 -173

-42
40

-89
-115
110

44
-40

-90
116
-110

45

-116

CROSS -RLEETRI

146
146

170

70

55

NCI

152 153 154 155 156 157
152 153 164 165 156 157

172 173

95 100 101 149

62 63 82

I G A -

-

158
158

-—

75

159
159

VT Y v Y

N 2B i Lo b Sns aun i g

B Zhn Zme 2mn 2am e amn. om o

76
<BLOCK> -104 -105 145
<BLOCK_BODY> 60 61 104
<CASE [XPR> -88 142
CCHOICE> 92 93 -94 -95
<CHOICE LIST> 91 92 -92

<COMPILATION UNLT> 3 4
CCOMPILATION_UNIT 11ST> 2

<CONDTTION> 84 -85 86
<CONST 1D> s 36 -72
<CONST_ID_LISI> 33 -35
<CURRIED_FUNCTION_CALL> 154
<DECI ARATION> 62 63 -64

<DECLARATION LIST> 60 62
<DECI ARAIIVE TTEM> 10 "
COFCIARATIVE 11EM IS 8
<DECI ARATIVE _PART> 9 -12
<DOM_0P> 130 -163 -164

CENUMERATED _TYPE DEFINITION>

CFXPRFSSION> 67 -74 -75

106 140 170
CEXPRESSION_t IS!> 147 153
<FORMAL _PART> 52 -53 -54
<FUNCTION_BODY> 50 -60
CFUNCTION CALL> 139 -152
CTUNCTION DECLARATION> 5
CHUNCTTON NAME _OPIION> 8

CFUNCYTON_SPECIFICA!VION>
CFUNCTION_TYPE DECLARATION>

10> 52 108 136 -149
CIF_EXPR> -84 141

C1F_EXPR_TAIL> 84 86
CNAME > 68 69 -70 -71
CNAME _LIST> 57 68 -68
<NULI _BLOCK_BODY> 51 -59
CORELSE EXPRESSION> 80
<OR_EXPRESSION> 77 -111
<PACKAGE_BODY> 7 -9

<PACKAGE SPECIF1CATION> 6
CPARAMETER_DECLARATION> 55
CPARAME TER_DECLARATION LIST>

<PKG_ID LIST> 47 -48 a9
<PRIMARY> 134 135 -136
<PRODUCT_TYPE_DECLARATION>
<RELATION> 75 108 109
CRELOP> 120 -122 -123 -124
<RETURN EXPR> 74 -83
<RITURN TYPE> 43 52 -58
<SEMI> -81 -82 84 86

<SEQUENCE TYPE DECLARATION>

<SEQ OP> 129 -160 -161 -162
<SIMPLE fXPRESSION> 19
<SUM> 128 129 -131 -132
<SUM TYPE _DECLARATION> 23
<SYSTiM GOAL SYMBOI > -1
<HIRMD 131 132 133 -134
<TYPY ALD> 98 99 -100
<TYPE AT _LIST> 97 -98
<TYPt CASE _EXPR> -97 143
<TYPI COERCION> -103 144
<TYPE DICLARATION> 20 -29

CTYPE DIFINITION> 29 30

<ryer im» 27 28 29
1217 130

CUN_OP> 132 -165 -166 -167

CUSE_CLAUSE> 26 -47
CVARTABIE DECLARATION> 17
CVARTABIE_SPECIFICATION>

CVAR ID LTISI> 34 -37 38
<WHEN OTHERS> 101 -102
<XOR FXPR}SSI10M> 78 -113

PO S S Y A P

105 -106
-96
-93
-5 -6
3 -3
94 151
36 -36
155 -156
-65 -66
-62 -63
12 14
-10 11
-13 14
30 -33
16 -77
171 172
155 157
-61
153 -154
19 -50
9 59
18 50
21 -43
150 -151
-86 ~-87
-69
117 118
112 -112
13 15
-8 25
56 -57
43 54
-49
137 -138
22 -44
110 111
125 -126
87 91
24 -46
120 120
133 -133
-45
135 -135
101
99 -99
31 -32
32 41
64 -67
16 -27
-38
114 -1184

it Skt Shaie et Shad dhads Jhadh Mhade 2

TOOLS FOR TESTING DENOTATIONAL SEMANTIC

-7
-4
-167 158 -158 159 -159
104
-16 -17 -18 -19 -20
-1
-14 15 -15
-34
-78 -19 -80 83 84
173 173
159 170 -170 -171
-155
-51 65
106 -107 -108
51 -52 66
152 153 156 157
-118
55 -55 -56
-139 -140 -141 -142
111 112 113 113 114
-127
100 101 106
121 -128 129 -129 130

41 42 43 44 a5

-28

-21

85

115

130

46

-22

86

115

46

-23

87

116

57

-24

88

117

658

91

-143 -144 -145 -146 -147 -148

117

67

-26

97 100 101 103

t18 -119 -120 -121

-73 100 101 103

?

b

b
-
o
»

v

b

b

L.

~ Y

v

REFERENCES

1.

10.

1.

12.

Reference Manual for the Ada Programming Language (Proposed Standard Document). United
States Dep=:-tment of Defense. 1980.

Stoughton, A., V. Kini. and D. Martin. AFDL + Transcripts. Transcripts of Interlisp sessions
during which the definition of the TINY language is processed through AFDL + tools.

Kini, V.. D. Martin, and A. Stoughton, A Description of AFDL + : The Ada FSD Metalanguage. An
informal specification of ISI's enhanced version of the Ada FSD Metalanguage.

Martin, D., Documentation for Syntax Analysis Tools. Documentation for algorithms and Interlisp
code for syntax analysis tools.

Kini, V.. Documentation for CAU-ADA>AFDL-COMPILER. Documentation for algorithms and
Interlisp code for the AFDL + compiler.

Kini, V.. and A. Stoughton. Documentation for CAU-ADA>VIRTUAL-MACHINE. Documentation for
structure of and Interlisp code for the AFDL + virtual machine.

Stoughton. A.. Documentation for CAU-ADA>TYPECHECK. Documentation of algorithms and
Interlisp code for AFDL + typechecker.

Goodenough. J. B.. and J. R. Kelly, Ada Compiler Validation Capability: Long Range Plan.
Defense Advanced Research Projects Agency. Waltham. Mass., Technical Report 1067-1.1,
February 1980.

Gordon. M. J. C., The Denotational Description of Programming Languages: An Introduction,
Springer-Verlag, New York, 1979.

Donzeau-Gouge. V.. et al.. Formal Detinition of the Ada Programming Language (Preliminary
Version for Public Review). INRIA, Le Chesnay. France, November 1980.

Mosses. P. D.. SIS: A Compiler-Generator System Using Denotational Semantics (Reference
Manual). Department of Computer Science. Aarhus University. Denmark. Draft Report 78-4-3,
June 1978.

Wetherell. C., and A. Shannon, “L.R -- Automatic parser generator and LR(1) parser." IEEE
Transactions on Software Engineering SE-7, (3). May 1981, 274-278.

