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1. TESTING THE INRIA ADA FORMAL DEFINITION:
THE ISI FORMAL SEMANTICS PROJECT

1.1 INTRODUCTION

The design and implementation of the Ada [1) programming language were commissioned by DoD
with the intention of requiring most future military systems to be programmed in Ada. It is therefore
necessary that Ada be precisely understood by both its users and implementers, in order to ensure
the quality of systems written in Ada. In particular, since DoD must control Ada compiler
implementations, a precise, well-structured, and validated formal definition of Ada can provide one of
the principal standards to which these implementations must adhere. Beyond such considerations
pertaining to particular programming languages such as Ada, good generic research toward the
design and implementation of tools and methodologies for supporting the development of precise,
readable, and accurate formal definitions has considerable relevance to the broader goals of
understanding large programs and verifying their correctness.

A denotational formal semantic definition (FSD) of Ada has been developed at INRIA [10]. Due to
the complexity of Ada, and despite the power and elegance of the denotational semantics method,
the FSD itself is quite large: both the static (compile-time) and dynamic (run-time) phases of the
definition consist of hundreds of mutually recursive functions. As a result of this inherent complexity,

it is difficult for a human to understand the definition. One approach to understanding a denotational
definition is to symbolically execute the definition on specific example programs. Attempting to do
this without machine assistance will likely result in a great many errors and is, in a practical sense,
impossible. Unaided human application of this FSD to understanding Ada programs is at best an
arduous task.

It is therefore imperative to construct appropriate tools to aid the understanding and validation of

the Ada FSD. Such tools can be used in two ways. Initially, Ada test cases whose semantics are well
understood can be used to test the correctness of the FSD. Subsequently, after confidence in the
correctness of the Ada FSD has increased, the tools can be used to answer very specific questions
about specific parts of the FSD as they relate to example Ada programs whose semantics are not
readily apparent. This report describes work done at USC-Information Sciences Institute in
constructing tools that may be used in these ways to exercise and validate the INRIA Ada FSD.

The Ada FSD is written in a typed lambda calculus expressed in an "Ada-like" syntax; we shall
henceforth call this language AFDL, an acronym for Ada Formal Definition Language. We have
written tools to

I. * translate the functions and data types of the Ada FSD into an equivalent directly
executable intermediate language (AFDL-IL),

• transform candidate Ada test programs (such as the Softech compiler test cases [8]) into
corresponding abstract syntax trees, and

a apply the translated FSD to the abstract syntax trees to obtain via interpretation the static
and dynamic semantics of the corresponding programs.

The semantics thus obtained can be compared to the expected meaning. In addition we have built
tools to generate useful items such as cross reference listings of the FSD's components.
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In this report, we describe in more detail our approach to validating the Ada FSD. First, we briefly
describe the INRIA meta-language and the extensions we were forced to make to it, and give an
overview of the structure of the INRIA Ada FSD. Next, we describe the various tools we have built and
their application to the FSD. And finally, we describe the current state of our project and its expected
outcome.

1.2 ADA FORMAL SEMANTIC DEFINITION

1.2.1 The Meta-Language of the Ada FSD

AFDL, the meta-language in which the FSD is written, is an applicative language with an Ada.like
syntax. The language contains function, block, conditional, and case statements, simple expressions,
and packages (for modularity and information hiding) as in Ada. AFDL's basic data types are the
integers and the booleans, and its data type constructors are enumerated types and (unlike Ada)
function types. Conspicuously absent from AFDL are the sum (union), product (record), and
sequence (array) types; these types are basic to the denotational semantics method. As a result, the
data types upon which the FSD is based are only defined informally in plain language, and are not

*1 formally defined in AFDL (or any other language). The absence of formal explication of the entire
base-level of the definition is one of the major impediments to the human reader who wishes to
understand the formal definition (the task is akin to trying to understand a large software system in
which the data type declarations were only cursorily outlined in English). This deficiency must be
remedied before the FSD can be tested.

Our approach to this problem was to extend AFDL, in an upward compatible way, to include sum,
product and sequence types, along with their associated operations. This approach provides a
meta-language capable of conveying the entire definition in a formal manner, and thus facilitates both
human understanding and machine execution of the definition. We call this extension AFDL+.
Further details of AFDL + are provided in Appendix I. Appendix il of the report contains a definition of
Gordon's example programming language "TINY" [9]. The definition is essentially a transliteration of
the continuation-style semantic definition of TINY that Gordon provides. In this definition, all of the
static and semantic domains are defined in terms of the basic types INTEGER and BOOLEAN and the
various domain constructors.

1.2.2 Structure of the Ada FSD

The Ada FSD basically consists of a collection of mutually recursive functions together with a
repertoire of intrinsic basic data types. The Ada Reference Manual [1] is divided into a number of
chapters, each devoted to a specific aspect or component of the language. None of the FSD appears

* in this manual. The Ada FSD ( [10] and later versions), however, is organized by "folding" it into the
Reference Manual so that each chapter contains the pertinent components of the Ada FSD. The
intrinsic FSD data types and operations on them are intended to be described in Appendices to the
Ada FSD in order to separate these base-level concerns from the rest of the FSD.

From an operational point of view, the Ada FSD is organized into three "phases", one of which is
syntactic and the others semantic. The syntactic phase establishes a relationship between the
concrete and abstract syntax of Ada by providing a specification of both the concrete and abstract
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syntactic domains together with a (constructive) mapping from the former to the latter. In practice,
this mapping is implemented as a parse-driven construction of Ada abstract syntax trees from
corresponding Ada program strings. There are two semantic phases which process abstract syntax
trees. The first, called static semantics, performs what are generally considered to be "compile-time"
functions such as static type-checking and overloading resolution. This phase produces what we
term an annotated abstract syntax tree which is a modified form of the tree input to the phase. The
annotations consist of error messages and static environment information gathered by the phase
such as the overloading resolutions, visibility calculations, normalizations, etc. The final semantic
phase, called dynamic semantics, determines the "run-time" semantics (the meaning of procedures,
expressions, etc.) of error-free annotated abstract syntax trees output from the static semantics
phase.

1.2.3 Status of the Ada FSD -- June 1982

At this time, the Ada FSD is incomplete in that (excluding the semantics of Tasking in Ada) many of
the semantic functions in the chapters of the FSD document are either missing or contain errors (both
type and logical), and the data types and functions in appendices of the document are largely
unspecified. The functions missing from the FSD have been identified, and type errors have been
detected by the use of type-checking tools developed at ISI. The burden of defining these missing
types and functions and of correcting these errors necessarily falls upon INRIA.

L In the FSD document, the concrete and abstract syntaxes of Ada are defined, the latter less
explicitly than the former. In fact, there exist two abstract syntaxes: a post-parse abstract syntax
(which is input to the static semantics phase) and a post-static-semantics abstract syntax (which is
input to the dynamic semantics phase). The correspondence between the (post-parse) abstract
syntax and the concrete syntax in the document is implicit; it must be given explicitly or else the
reader must be given enough information to deduce the exact correspondence, as this is necessary
for a detailed understanding of the FSD. However, INRIA has supplied an LR(1) syntax for a superset
of Ada. together with a correspondence between it and the Ada abstract syntax.

1.3 MECHANICAL INTERPRETATION OF THE ADA FSD

In this section we shall describe the processes whereby the Ada FSD is translated into suitable
K1 intermediate forms that may then be interpreted. The interpretive execution of the FSD will allow the

testing and validation of the FSD and, subsequently, the accurate determination of the semantics of
given example Ada programs. Figures 1, 2, 3, and 4 illustrate these processes.

The boxes in these figures represent abstract machines that accept inputs and produce outputs in
certain forms. Boxes subdivided vertically into two compartments represent abstract machines that
are constructed by loading what is represented by the upper compartment into the abstract machine
represented by the lower compartment. Compartments may themselves be vertically subdivided into
compartments in a hierarchical manner (see Figure 4 for example). Numbers above the top left
corner of a box uniquely identify an abstract machine and two boxes labeled with the same number

* therefore represent the same abstract machine.
~I,

'!
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Parser Generation

------

-Parser I
AFDL LR(1) Syntax ---> JGeneratorl ---> AFDL Syntax (To A; Fig. 2)

I "LR" I Tables
------

------

.IParser I
Ada LR(1) Syntax ---> IGeneratorl ---> Ada Syntax (To B; Fig. 3)

I LR" I Tables
+-----

* Figure 1

Processing FSD Semantic Functions

A (from Fig. 1)

FSD 2 1

Static -- + ---1--+ 3 -- > (to C; Fig. 3)

Fns. I v I -------- + 4

JSyntaxi IType I +------+

AFDL ITablesl JChk'g.+ I Checked I AFDL I

Source --> .. .-- > AFDL-AS -- > lOverloadl --> AFDL-AS -- > JCompilerJ -- > AFDL-IL

J T.D. I IResol'n.J I I

FSD IParserl + ........-+ I +- -- -+

Dynamic -- > +- + -- (to 0; Fig. 4)

Fns. I I I
V v 5 v

AFDL Syntax AFDL Static ----------- +

Errors Errors JCross I
lReferencel
IProgram I

- - - -- --------.-

Key: T.D. Parser = Table Driven Parser

Figure 2
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- Static Semantics (PASS 1)

B (from Fig. 1) C (from Fig 2)
6 I 7 I

wI v I I V

ISyntaxl IStatic
ITablesl Ada Pgm. lAF D L-IL I Ada Program

L Ada -------- + --) Abstract ------------- + -- > Annotated (to E; Fig. 4)

Program I T.D. I Syntax IAFDL-IL I Abstract
Parser lInterpreterl Syntax

---- ---------

V

AFDL Dynamic
Errors

Key: T.D. Parser = Table Driven Parser

Figure 3

Dynamic Semantics (PASS 2)

E (from Fig. 3)
9l

V

mAda Program I
)Annotated I
Abstract SyntaxJ

Ada Program ---> +------ --- > Ada Program
r Input Data I 8 I Output Data

--------

I IDynamic <-+-+---+
I lAFDL-IL I I I

----------

I IAFDL-IL I I D (from Fig. 2)
I lInterpreterl I

S---- I
------------

V
*1 AFDL Dynamic

Errors

Figure 4
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1.3.1 Generation of Parsers

To generate parsers for the Ada and AFDL languages we use the LR program [12 which accepts
an LR(1) syntax for a language and outputs syntax tables. These tables are used to control a table-
driven LR parser. Figure 1 shows this process for Ada and AFDL. Abstract Machine 1 is the LR
program referred to above. The table-driven parser (bottom half, Abstract Machines 2 and 6) was
constructed in Interlisp.

1.3.2 Processing of FSD Semantic Functions

The static and dynamic .emantic functions of the FSD, written in AFDL, are transiater to a
directly executable intermediate language, AFDL.IL, by the process depicted in Figure 2. tract
Machine 2 parses the AFDL text of the functions and produces the AFDL abstract syntax (A AS)
form of those functions (the AFDL text is first extracted from the surrounding prose in the FSC -'jrce
document, using a SNOBOL program). Errors discovered at this stage include AFDL syntE ,rs
arising from misspelled or missing keywords or delimiters, or from improperly construct(
syntactic forms. The syntax tables generated by the LR program in the process of Figure 1 are .- ,ed
into tne table-driven LR(1) parser to yield Abstract Machine 2.

The output of Abstract Machine 2 is then fed to Abstract Machine 3 which checks for incorrect
AFDL data type usage and resolves any overloading of function names. Errors trapped at this stage
consist of improper type usage, unresolvable function name overloading due to ambiguity, missing
declarations, misspelled declaration names leading to the appearance of missing declarations, etc.
The output of Abstract Machine 3 is the AFDL-AS form of the static and dynamic semantic functions
in which such errors have been eliminated. The actual output of the type-checker/overloading.
resolver is a symbol table that relates all symbols in the global scope of the definition to their type-
checked values. Thus, for example, the value of a symbol representing a typename will be the
definition of that type and the value of a symbol representing a function will be the type of that
function along with the abstract syntactic form of the function body.

For efficiency, the abstract syntax tree forms of the semantic functions are not directly executed
during the interpretation process. A compiled form is used instead. Abstract Machine 4 compiles the
AFDL.AS functions, producing instruction sequences for the AFDL-IL interpreters depicted in
Abstract Machines 7 and 8. The AFDL-IL interpreter is a virtual stack machine implemented in
Interlisp with a retention strategy for storage to model the static binding of variables which is possible
in AFDL.

1.3.3 Cross Reference Facility

Abstract Machine 5 in Figure 2 represents the cross reference facility. This program accepts the
AFDL-AS output from Abstract Machine 3 and produces a listing of attributes for each symbol in the
global scope of the FSD. Thus, for instance, if a symbol represents a semantic function, the attributes
include a list of functions it calls and a list of functions that call it. These cross reference lists are a
useful tool in checking the FSD for irregularities.
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1.3.4 Static Semantics, PASS I

The Ada FSD is constructed to provide the semantics of an Ada program in two passes that
evaluate, respectively, the static and dynamic semantics of the program. The process of Figure
3 depicts the first or static semantics phase. The Ada programs whose semantics are to be evaluated

are first rendered into an abstract syntactic form by an LR(1) Ada parser (Abstract Machine 6). This

abstract machine is constructed by loading the syntax tables for Ada, produced by the LR program,

into the table-driven parser mentioned in Section 1.3.1.

WE: The Ada program abstract syntax is fed into Abstract Machine 7 which does the actual static

semantic evaluation. Abstract Machine 7 is constructed by loading the compiled AFDL-IL form

(symbol table) of the static semantic functions of the FSD (output from Abstract Machine 4, Figure 2)
into an interpreter for AFDL.IL As mentioned earlier, the interpreter is a stack machine programmed
in Interlisp. Abstract Machine 7 is, therefore. the static semantics evaluator and embodies the

. corresponding part of the FSD.

The output of Abstract Machine 7 is an annotated abstract syntactic representation of the Ada

program that was input to the process of Figure 3. The annotations correspond to the error messages

and static environment information that were obtained from the program and checked for correctness

-* by the static semantic functions of the FSD. By using this annotated abstract syntax representation,
the dynamic semantic functions in PASS 2 need not re-analyze the Ada program to obtain static
environment information.

During the running of Abstract Machine 7, AFDL dynamic (run-time) errors may occur (e.g.

selection of a non-existent element of a sequence type (array)). Such" errors are defects in the FSD
and must be corrected. In addition, various errors may also be detected by the FSD itself and

recorded as annotations in the Ada abstract syntax tree it produces. For instance, unresolvable

overloading of Ada function or operator names, ambiguities c.ie to importation of declarations by
means of use clauses, improper data-type usage, etc., are errors that may be statically determined to

exist in a program. The flagging of such errors, however, may signify different things depending on
the intended use of Abstract Machine 7. In initial phases when the FSD is being validated. it is
supposed that the semantics of the test-case input Ada programs are well understood and are known

to conform to program specifications. In such cases, the errors flagged by Abstract Machine 7 will in
all likelihood be caused by errors in the FSD static semantic functions themselves. In latter phases,

subsequent to the validation of the FSD, such errors flagged by Abstract Machine 7 will point to errors
in the Ada programs themselves. In such cases, the FSD static semantic functions will have fulfilled

'• their purpose.

1.3.5 Dynamic Semantics, PASS 2

* The second pass of the Ada FSD, the dynamic semantics phase, is depicted in the process of

Figure 4. It is seen from the figure that Abstract Machine 8 is constructed in a manner similar to that

of Abstract Machine 7. This is done by loading the compiled AFDL-IL (symbol table) form of the FSD

dynamic semantic functions (output of Abstract Machine 4 in Figure 2) into the AFDL-IL interpreter.
The result is an abstract machine with the capability to evaluate Ada program annotated abstract

syntax trees.
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The dynamic semantics interpreter (Abstract Machine 9) is obtained by loading Abstract Machine 8
with the annotated abstract syntax representation of the Ada program that is the output of the static
semantics evaluator (Abstract Machine 7). Machine 9 is an executable object that embodies the
semantics of these Ada programs. It accepts representations of the input data that the Ada programs
would have accepted and through a process of interpretation produces the output data of those
programs (assuming they terminate). In addition to viewing the output data produced by Ada test
programs, it is also possible to view the internal computation states of those programs. Both the
external and internal behavior can be used in judging the correctness of the FSD and Ada programs.

In a manner similar to that described in Section 1.3.4, AFDL dynamic (run-time) errors can occur
during the execution of Abstract Machine 9. These are FSD errors. In addition, the FSD dynamic
semantic functions themselves may detect run-time errors in the Ada test programs. These errors are
indicated as part of the output data of those programs, and may represent errors either in the dynamic
functions of the FSD or in the Ada programs themselves. Furthermore, the program output data
produced by Abstract Machine 9 may be examined to determine whether it is as expected. Again, in
the case of test-case Ada programs with well understood semantics, incorrect output data is
symptomatic of errors in the FSD which will require identification and correction.

1.3.6 Summary

It may be observed from the foregoing description that the processes depicted in Figures 1 and
2 are performed once for each version of the Ada FSD. (Except for the process in Figure 1 which
generates the syntax tables for the LR(1) Ada grammar. This is done precisely once, unless the
grammar for Ada changes, a much less likely event.) Here, a new version of the Ada FSD is created
each time errors detected in the FSD are corrected. Therefore, these processes are "constructor
processes" in that they are used to construct the Ada FSD validation tools. When errors in the FSD
are detected during the running of these constructor processes, they must be terminated
prematurely. a new version of the FSD generated, and these processes restarted.

The processes depicted in Figures 3 and 4, on the other hand, are run for each test-case Ada
program whose semantics is to be evaluated, or whose known semantics is to be used to validate the
FSD. As such, these processes may be viewed as "validation processes".

In summary, the processes of Figures 1 and 2 are used to parse, type-check and prepare
intermediate forms of the FSD static and dynamic semantic functions. The checked intermediate
forms are then loaded into the AFDL.IL interpreter to produce the static and dynamic semantics
interpreters. These interpreters are used in the processes of Figures 3 and 4 to evaluate the
semantics of test-case Ada programs and validate the FSD.

4 1.4 STATUS AS OF JUNE 1982

The software tools we have described in this report have been constructed and are fully operational
at USC-Information Sciences Institute. An exception is the user.interface to the AFDL.IL interpreter
which must perforce remain in a rudimentary state until experience with exercising the complete
INRIA Ada FSD is gained. For the moment we have the capability to set conditional breakpoints upon
entries to and/or exits from semantic functions and also at the level of individual instructions in the
compiled forms of the semantic functions. The full power of Interlisp is available at a breakpoint and
thus it is possible to observe the static and dynamic chains, variable bindings and continuations in the

.... I...
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interpreter. This ability to intervene interactively in the interpretation is a feature that distinguishes
our work from that of Mosses [11].

An extensive list of type errors generated by ine type checker (Abstract Machine 3), and cross
reference listings have been supplied to INRIA for the entire FSD. Unfortunately, because the FSD is
currently incomplete, it has not yet been possible to test the static and dynamic interpreters on the
FSD, or to begin validating the FSD. It is hoped that efforts at INRIA will soon remedy this situation. In
the meantime we are employing the denotational definition of TINY (provided in Appendix II of this
report) to exercise our tools.

We have succeeded in processing the TINY definition through the parser, type-checker and
compiler. The compiled definition has been run on the interpreter with several examples meant to test
the various paths in the definition. The biggest TINY program we have executed under the AFDL
interpretation of the definition has been one that accepts integers in the input stream and produces

U the corresponding factorials in the output stream. Since the TINY language does not have a
multiplication operation, this was implemented via iterative addition! While such a program is quite
small, the work done by the interpreter in terms of semantic function applications and the
corresponding manipulation of static and dynamic chains is not trivial. Thus it has proven to be a
fairly good test of the software.

Since AFDL + contains the necessary idioms for writing denotational semantic definitions, we
expect that our software could also be useful to the scientific community at large.

-0



THE ADA FSD METALANGUAGE

2.1 OVERVIEW

The purpose of this chapter is to describe the semantic metalanguage in which the formal definition
of Ada [1, 10] is written. This language, called AFDL (Ada Formal Definition Language) is essentially a
typed lambda calculus with Ada syntactic sugaring.

The originai version of AFDL was conceived by the INRIA team that wrote the Ada formal definition
[10]. Certain enhancements of AFDL were found to be desirable by the ISI group whose goal is to

build tools to test the Ada FSD; this enhanced version of AFDL is called "AFDL + ". AFDL is a proper
subset of AFDL +, and therefore AFDL programs are completely "upward compatible" with AFDL +.
It is this enhanced version of AFDL that will be described in this chapter.

AFDL + and AFDL are purely applicative languages intended for writing denotational semantic
definitions in an Ada-like syntax. AFDL contains functions, blocks, conditional and case
"statements" (which are actually expressions), simple expressions, and packages (for modularity and
information hiding). AFDL's basic data types are the integers and booleans, and its data type
constructors are enumeration of types and (unlike Ada) function types. Conspicuously absent from
AFDL are sum (union), product (record), and sequence (array) types; these types are basic to the
denotational semantics method. As a result, the data types upon which the Ada FSD is based are only
defined informally in plain language, and are not formally defined in AFDL (or in any other language).
This situation is an obstacle to full understanding of the Ada FSD; moreover, it must be remedied
before the FSD can be tested. AFDL + is an upward compatible extension of AFDL designed to
overcome these shortcomings by including sum, product, and sequence types together with their
associated operations. This allows the entire FSD to be formally defined, by writing it in AFDL +. This
will facilitate human undestanding of the FSD, and will also render it machine executable.

2.1.1 Style of this Description

The description of AFDL + presented in this chapter deals with two principal aspects of AFDL + : its
syntax and semantics.

The syntax of AFDL + is given in two forms: (1) an LR(1) concrete syntax, which is used to parse
AFDL + programs and translate them into equivalent abstract syntactic form. and (2) an abstract
syntax, which is Ine target representation of this translation, and which is used as an intermediate
form for type checking and compiling AFDL + programs into equivalent AFDL machine programs for
execution of semantic descriptions written in AFDL +. The correspondence between concrete and
abstract syntax is in most cases quite straightforward and requires no additional explanation. Those
occasional cases that are not so clear are briefly explained in accompanying comments.

A summary of the AFDL + abstract syntax is given in Appendix Ill. A precise specification of the
*I correspondence between AFDL + concrete and abstract syntax is given in Appendix IV. The

correspondence consists of a specification input to the grammar analysis program LR; this kind of
specification is explained in the documentation of the AFDL/Ada syntax tools [4]. Appendix
IV presents the output from LR.
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The semantics of AFDL + is given in plain English. A more precise, though complex, operational
semantics of AFDL + is defined by the combination of the AFDL + parser, compiler, and the LISP
code that implements the AFDL virtual machine. These processors are documented in [4, 5, 6],
respectively.

2.1.2 Abstract Syntax Notation

The notation used to describe AFDL + abstract syntax is similar to BNF, except ":" is used instead
of ":: = ". Lower case names denote syntactic categories or classes, and upper case names denote
syntactic constants that are used as node names or labels. The suffix "-s" denotes a list of syntactic
objects of the class to which the suffix is appended (e.g., ids denotes a list of objects of class id).
Most comments appear at the end of lines, and are prefixed by

Abstract syntax constructs are basically trees implemented in a simple list structure of the form

(NAME sonl son2 ... sonN)

where NAME is the root node label and soni ... , sonN are trees that are the immediate successors
of the root node. When N = 0, the tree is simply represented as NAME rather than (NAME).

Several syntax classes are terminal, in that they represent sets of syntactic constants in AFDL +.
These are

var_ id variable identifier: corresponds to ".va rn ame" in concrete syntax.

fun_ id function or package identifier; corresponds to ".p roc name" in concrete syntax.

type_i d type identifier; corresponds to". typema rk" in concrete syntax.

constil (enumerated type) constant name; corresponds to ".etconst" in concrete
syntax.

" integer integer; corresponds to ". integer" in concrete syntax.

string string; corresponds to ".stri n " in concrete syntax.

2.2 LEXICAL ELEMENTS

AFDL has a simple set of lexical elements [4]. In addition to the usual delimiters such as
parentheses, operators, etc., AFDL has four major disjoint classes of lexical elements:

- keywords

* names

* (positive) integer constants

e strings

K,
L,
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Basically, keywords and names are identifiers of various kinds. In order to define their
representations precisely, the following definitions are useful. A word is a nonempty sequence of
letters; an upper (lower) case word is a word in which all the letters are upper (lower) case. An
identifier is a nonempty sequence of letters, decimal digits, and underscore characters that must
begin with a letter and not end with an underscore.

An AFDL keyword is a lower case word prefixed by an underscore; this representation of keywords
causes them to be printed as boldface in the Ada FSD.

An AFDL integer constant is a nonempty sequence of decimal digits.

AFDL names are partitioned into four classes:

" names of packages and main functions
- names of values and auxiliary functions

" names of syntactic constructs and selectors

" type names

4 AFDL package names and function names are upper case identifers; these constitute the lexical
class ".procname" in the concrete syntax. AFDL value names and auxiliary function names are lower
case identifiers: these constitute the lexical class ".varname" in the concrete syntax. AFDL syntactic
construct names and selector names are lower case identifiers prefixed with a tilde (-); these
constitute the lexical class ".etconst" in the concrete syntax. Syntactic construct and selector names
print as lower case italic in the Ada FSD. An AFDL type name is an upper case identifier prefixed by a
tilde (-); these constitute the lexical class ".typemark" in the concrete syntax. In order that type
names be easily distinguishable, the leading tilde of a type name is changed to "# " by the AFDL
parser (during formation of AFDL abstract syntax trees), and therefore in the AFDL abstract syntax,
type names are upper case identifiers prefixed by a "#

2.3 DECLARATIONS AND TYPES

A declaration is an entity used to associate a name with an object that it represents. Most AFDL +
declarations have two parts: a required specification part and an optional initialization or body part.
In addition, AFDL has several kinds of type declarations; these are necessary to support the
denotational semantics application for which AFDL is used.

2.3.1 Declarations

In AFDL, four kinds of items are declared: variables ("objects" in Ada), functions (Ada value.
returning subprograms), packages (of data types together with associated functions) to support the
formal definition, and types,

2.3.1.1 Variable declarations

AFOL has a standard kind of variable declaration, consisting of the variable's name, type, and an
optional initial value to be assigned to that variable. A variable's type may be regarded as its



DEFINITIONS OF PROGRAMMING LANGUAGES 13

"signature". Variables declared within functions are generally initialized, whereas those declared
within packages are not. Variable declarations without initializations are called variable
specifications.

CONCRETE SYNTAX

variablespecification :: = .varname : typeid
I 2_var id list : type_id

variable declaration = .varname : typeid = expression

2_varidlist :: = varname, varname
I 2_var idlist, varname

ABSTRACT SYNTAX

var spec: (VSPEC var id s typeid)

vardecl: (VDECL var_id type_id expr)

2.3.1.2 Function declarations

AFDL function declarations consist of at least a function specification, which consists of the
function's name and result type together with the names and types of its formal parameters, plus an
optional "initialization", the function's body. Function specifications are used to provide their names
and "signature" (i.e., their argument and result types) in packages and also in situations where
specifications are necessary to satisfy the "prior declaration" requirement of Ada when functions are
declared to be mutually recursive.

CONCRETE SYNTAX

functionspecification :: = function id formalpart returntype

function declaration :: = function specification is function body

formal_part :: = -- empty
I ( parameter_declaration_list)

parameterdeclarationjist :: = parameter_declaration
I parameter declaration_list, parameter_declaration

*l parameter_declaration :: = name_list : typeid

returntype :: = return type_id

function body :: = declaration jist blockbody
I block-body

d
declaration_list :: = declaration ;

I declaration_list declaration ;
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declaration = variable declaration

I functionspecification
I function-declaration

ABSTRACT SYNTAX

fun_spec: (FSPEC fun_id fun_type)

fun_decl: (FDECL funid fun_type fundef)

fun_type: (MAP type_id_s type_id)

fundef: (LAM ids expr)

In the above abstract syntax, the funtype is a function's "signature", i.e., the types of its formal
parameters and the type of its result. In aidition, a function declaration (in contrast to a function

specification) has a fundef, which is similar to d lambda calculus abstraction, whose bound variables
are the function's formal parameters and whose body is the function's body.

Like Ada, but unlike lambda calculus, AFDL functions have their actual parameters transmitted by

value. This causes difficulties when AFDL is used to express certain common denotational semantics
idioms that assume evaluation (or parameter transmission) by name. As a result. "programming"

denotational semantics in AFDL must be done with due recognition of this fundamental difference
between AFDL and lambda calculus.

2.3.1.3 Package declarations

Packages are used in AFDL to encapsulate data types (domains and associated functions) that

serve as "utility support" for the FSD. There are packages that define the Ada abstract syntax
(Appendix G of the Ada FSD [10]), support for the Ada static semantics (Appendix H), support for the

dynamic semantics (Appendix I), and basic denotational semantics notions such as environments, a
store, and continuations (Appendices J and K). Packages are made visible to one another by means

of use clauses. As in Ada, package declarations can have only a specification part (called a package

specification) and an optional body part (a package body).

Packages are only syntactic sugar. The package structure cannot be used to resolve ambiguity.

All package declarations should be viewed as being global.

CONCRETE SYNTAX

0 packagespecification " = package .procname is declarative_item_list end functionnameoption

packagebody :: = package body .procname is declarativepart end functionnameoption

declarative item-list :: = declarativeitem

* I declarative item_list declarativeitem;

declarativepart " = declarative_item;

I packagebody;
I declarativepart declarative_item;
I declarative part packagebody;

•j
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declarative-item =variable_specif ication
I variable declaration
function-specification

-~ I functionjdeclaration
I type..declaration
functionjtype.declaration
sumjype..declaration
Iprod uct~type.declarati on
I sequence-ype..eclaration
I package..specification
Iuse..clause

typedeclaration =type typejid is type def inition

u use-clause :: = use pkgjidjist

ABSTRACT SYNTAX

pkg spec: (PSPEC pkgjid decl~item..s)

* pkgbody: (PBODY pkgjid declitem.s)

decl~item: var_spec
v arded
fun...spec
fun...decl
type...decl

Itun...type_deci
prodjtype_decl
sumjype..decl
Iseq .. type..deci
I pkgspec
I pkg...body
I use..clause

type...decl: (TDECL typejid type..def)

use_clause: (USE pkgjid.s)

2.3.1.4 Type declarations

AFDL + has several kinds of type declarations: those for enumerated, private, function, sum,
*1 product, and sequence types. In addition, AFDL + provides a type equivalence declaration to permit

certain kinds of type conversions to be expressed.

Enumerated Types

* An enumerated type definition is a list of constants. This kind of type is used in the Ada FSD
primarily to denote sets, such as the set of node labels in Ada abstract syntax trees, where these
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labels control the selection of alternatives in an AFDL case statement contained in a semantic
function of the Ada FSD.

I- CONCRETE SYNTAX

type definition :: = enumerated-type definition

enumerated_type definition = (const_id_list)
I (varidlist)

ABSTRACT SYNTAX

typedef: enum_type

* enum_type: constjid_s
I var_id_s

Private Type

The private type is present in AFDL packages to indicate those data types whose detailed
I structure has been left unspecified. in order "not to portray superfluous or extraneous details".

CONCRETE SYNTAX

typedefinition = private

r ABSTRACT SYNTAX

typedef: PRIVATE

Function Types

Function types are present in AFDL, but not in Ada. Unlike Ada. AFDL can have function-valued

parameters and return function-valued results, and function types are necessary to indicate this. In
particular, denotational semantics notions that are intrinsically function-typed, such as continuations,
are declared to have function types in AFDL.

CONCRETE SYNTAX

functiontypedeclaration = function type type_id (parameterdeclaration list) returntype

ABSTRACT SYNTAX

funtypedecl: (FNTDECL type_id funtype)

funtype: (MAP typeid_s type_id)
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A function type declaration specifies the signature of a functional type; its abstract syntactic
structure is similar to that of a function specification.

1Sum. Product. and Seguence Tye

These types, present in AFDL + but not in AFDL, were added to permit the complete specification
of the Ada FSD to be done in AFDL + itself. The inclusion of sum, product, and sequence types in
AFDL + make it possible to express in the semantic metalanguage essential details currently
concealed in private types. A sum (product) type is declared as the sum (product) of a finite number
of other types; a sequence type is declared as a finite sequence of another type. In addition to these
type-formation operations, other operations are provided. For sum types, projection, injection, and
domain query operations are provided. For product types, selection and tupling operations are
provided. For sequence types, "head", "tail", concatenation, and sequence construction operations
are provided.

CONCRETE SYNTAX

sum_typedeclaration = sum type type_id ( 2_type_id_list)

producttype_declaration = product type typeid (2_type_id_list)

sequence_typedeclaration = sequence type typeid type_id

2_type_id_list:: = type_id , type_id

1 2_type_id_ist , type_id

ABSTRACT SYNTAX

sumtypedecl: (SMTDECL type_id type_id_s)

prodtypedecl: (PRTDECL type_id type_id_s)

seqtypedecl: (SQTDECL type_id type_id)

Sum and product types T with component types Ti ..., Tn, where n > 2, are declared via

sum type T (T1 .... T)

product type T (T1, ... , n)

where the type identifiers T, are all distinct.

A sequence type T with components of type S is declared via

sequence type T S

"yDe Equivalence Declarations

A type T may be declared equivalent to a type S by the declaration

type T is S.

See Section 2.4.3 for a discussion of the application of type equivalence declarations.

6
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CONCRETE SYNTAX

type definition := type id

*ABSTRACT SYNTAX

type def: typeid

2.3.1.5 Order of declarations

At the global level, the order of declarations is irrelevant, except that specifications for variables or
functions may not occur after the definitions of those objects. Thus "forward declarations" are legal,
but unnecessary at this level.

At the local level (i.e., inside functions and variables), the order is relevant. Names are only visible
once they are declared. The name of a variable is NOT visible within its own declaration, but the
name of a function is. Forward declarations for functions (i.e., occurrences of function specifications
(FSPECs)) are legal and necessary to effect mutual recursion at a local level. Forward declarations
for variables (VSPECs) are not legal. A name may not be declared (with the same type) twice within
the same block.

At the global level, variables must not be mutually recursive. i.e., there must be some partial
ordering on which variables require the values of other variables in order to produce their own value.
This is allowed to be value dependent -- it is as liberal as possible, and is not (and could not be)
checked statically. (At present, infinite recursion would result if the value of a variable that was
recursively defined in terms of other variables were requested (unless shielded properly with function
bodies).)

At the local level, functions mu-,, be defined (FDECLed) before they are "used". This is only a
problem when variable declarations and function specifications/declarations are intermixed. The
actual restriction here is conservative in that it outlaws some programs that could be legal at runtime.
A function is considered "used" at the point when a reference to it (not necessarily a call) is
contained in the body of a variable declaration (even if shielded within a function declaration that
occurs within that variable declaration), or if it occurs within another function that itself has been
"used" by this definition. Note the recursion in this definition. If the initialization for a variable x
contains a reference to a function f, and f contains a reference to g, and g contains a reference to h,
and h is not defined before the declaration of x, then the program is illegal. These rules allow
mutually recursive functions to be declared. Note the distinction between visibility of function names
(forward declarations make a function name visible) and the definition of the corresponding functions
(only FDECLs do that).

The general idea is that order is not required at the global level, and it is not checked statically that
variables do not depend, in a mutually recursive manner, on one another; where at the local level,
proper order is required, and some (necessarily conservative) static checking is performed. These
choices are largely pragmatic: we found that the global level of the Ada FSD was NOT properly
ordered, and performing static checking appeared to be expensive. The checking at the local level

4 catches some errors and allows the linear elaboration of declarations in the compiled code.

4
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2.4 EXPRESSIONS

AFDL + is purely applicative, and thus expressions are the principal computational mechanism in
the language. AFDL has two kinds of expressions: "simple" expressions, which are an extended
subset of Ada expressions, and "compound" expressions, most of which correspond to certain Ada
compound statements. Thus blocks, case "statements", conditional "statements", etc., all yield
values. Requiring the return expression to be used to return a value from a function as in AFDL is
excessively verbose, and thus return expressions are treated as comments in AFDL+. Finally,
semicolons are made optional in AFDL + where they were formerly required as statement terminators
in blocks, case expressions, and conditional expressions in AFDL. These changes are "upward
compatible" in the sense that syntactically legal AFDL programs are still syntactically legal in AFDL +.

CONCRETE SYNTAX

expression returnexpr
I relation
I and-expression
J or-expression
Ixor expression
I andthen-expression
orelse-expression

andexpression :: = relation and relation
(and-expression and relation

or expression relation or relation
orexpression or relation

xorexpression :: = relation xor relation
I xor-expression xor relation

andthenexpression = relation and then relation
I andthenexpression and then relation

-• orelseexpression :: = relation or else relation
I orelseexpression or else relation

relation = simpleexpression
I simple expression relop simpleexpression

4I simpleexpression elt typeid

simpleexpression = sum
I simpleexpression seqop sum
I simple-expression dom-op type-id

I

I
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sum = term
un op term

I sum add-op term

term :: = primary
term * primary

primary:= id
integer
.string
( expression)
(2_expression list)
[ 2_expressionjist]

I[
I typecoercion
I if_expr
I case-expr
I type-case-expr
I block
I function_call

ABSTRACT SYNTAX

exor: simpleexpr
(CAST typeid expr) -- type coercion
(IF expr expr expr) -- conditional

I(CASE expr alt_s) -- case
(TCASE expr talts) -- type case
(LET decl_s expr) -- block

* I (APPLY expr exprs) -- function call
(WARNING expr msg) -- from static type checker

simple_expr: (binop expr expr)
(unop expr)

-(ELT expr type_id)
(INJ expr type_id)
(INJ expr typeid (FROM type_id))
(PRO expr type_id)
id
integer
string
(PRDEN exprs)
(SODEN exprs)

Return, type coercion, conditional, case, type case, block, and function call expressions are
considered to be "compound" expressions; their concrete syntax is given in Section 2.4.4.

-
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2.4.1 Names

CONCRETE SYNTAX

name:: = .varname
I .procname

id"= name
I const.id

function.nameoption = -- empty
Ilid

constid = .etconst

type_id = typemark

ABSTRACT SYNTAX

id: varid
I fun_id
I constid
I type id

2.4.2 Operators

The equality comparison of "infinite" values, i.e., values that include closure objects, is illegal.1 All
other values may be compared for equality (this currently is a run-time check in the AFDL virtual
machine, although it could be done statically).

CONCRETE SYNTAX

relop::= =
1/=

I>=

I<
I<=

un_op :: = -
I not
I length

add_op:"= +

'Closure objects are representations of function objects A closure object is a pair of pointers; the first pointer points to a
corpus to be executed within an environment pointed to by the second pointer (see [6)) Closure objects can result in circular
list structures in their Lisp representations.
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dom_op '= inj
(pro

seqop =

L&[ I::

ABSTRACT SYNTAX3

binop: AND I OR I XOR I ANDTHEN I ORELSE
EQ I NE I GT IGE I LT I LE

I HEAD j TAIL I CAT
!q I PLUS I MINUS I TIMES

unop: UMINUS
INOT
I LENGTH

2.4.3 Simple Expressions

Simple expressions in AFDL + are used to indicate the application of basic operations to
appropriate operands. The standard basic operations in AFDL are

integer arithmetic binary addition. subtraction, and multiplication; unary negation

boolean operations
conjunction, disjunction, exclusive or, complement, andthen, orelse

integer relations equal (=), not equal (/=), greater than (>), greater than or equal (>=), less than
(<), less than or equal (<=)

Additional domain operations added in AFDL + for sum, product, and sequence types are

sum types domain injection (inj), projection (pro), membership test (elt)

product types domain element selection, tupling

sequence types "head" (:), "tail" (::), concatenation (&), length (length), sequence formation

AFDL + provides several sum domain operations. If T is declared via

sum type T (Ti ..... Tn),

then x inj T injects an element of component type T, into the sum type T; x elt T tests whether an
element x of sum type T was injected from component type Ti; x pro T, projects an element x of sum
type T into component type T if x elt T, is true, and otherwise causes a fatal error in the AFDL + virtual
machine.
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If the product type T is declared via

product type T (T1 ... Tn).

then an element of T is constructed from elements x, of type T, by the tupling operation (xi, .... xn).
The i-th component of a value x of product type T is selected by the operation x:i, where i must be a
constant (iteral).

A sequence type T with components of type S is declared via

sequence typi T S.

An element of sequence type T is constructed from elements x of type S by the operation [x1 ... Xn ], n
> 0. [ ] denotes the empty element of any sequence type. The i th component (head) of an element x
of sequence type T is selected by the operation x:i, where i may be any integer expression. The i-th
tail of x = [x1 .... Xn] is selected by the operation x::i, and is equal to [x 1 ..... xn] (if i = n then x::i is
equal to[]). If i is "out of range" (< 0 or> n) for or ::, then a fatal error occurs in the AFDL + virtual

I machine.

A type T may be declared equivalent to a type S by the declaration

type T is S.

A This permits an element x of type T to be converted to type S by applying the cast S(x); conversely, an
element y of type S can be converted to type T via the cast T(y). Type conversions must be explicit
and have no run-time significance. Equivalent types provide a way of declaring a sum type T with
multiple components T, that are equivalent to some type S. If x elt T, then S(x pro T,) is type S, and if
y is an element of type S, then (T.(y)) inj T is an element of type T.

2.4.4 Compound Expressions

Compound expressions in AFDL provide return expressions, conditional (if-then-else)
expressions, "case" expressions, blocks and local declaration of variables (similar to the "let variable
= expression in expression" capability in lambda calculus), and function application. An additional

compound expression in AFDL + is a "type case" expression, in which the case selection expression
must evaluate to a value in a sum domain, and a case alternative is selected on the basis of which
particular constituent type the case expression possesses.

CONCRETE SYNTAXI

return expr = return expression

if_expr = if expression then expression semi ifexpr_tail

ifexpr tail = else expression semi end if
I elsif expression then expression semi ifexpr_tail

case-expr = case expression is alternativelist end case

alternative-list = alternative
I alternativelist aternative
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alternative :: = when choice_list = > expression semi

choice-list :: = choice
Ichoice list I choice

choice::= const-id
.varname

I others

type~case.expr :: = tcase expression is type..alt_list end tcase

type alt list :: = type alt
typealtjlist typeji't

type-alt =when .varname: type..id = > expression semi
Iwhen_others varname :type-id = > expression semi

when-others :: = when others

block :: =declare declaration-list block-body
blockbody

blockbody :: = begin expression semi end tunction_name option

type..coercion ::=typejid (expression)

semi:: -empty

ABSTRACT SYNTAX

expr: (IF expr expr expr) -- conditional
(CASE expr alt..s) -- case
(TCASE expr t-.alt-s) -- type case
(LET decL-s expr) - block
(CAST type-id expr) -- type coercion
(WARNING expr msg) -- constructed by static type checker

alt: (choice..s expr)

choice: id
JOTHERS

talt: (ALT var_id type..id expr)
I (OTHERS var-id type~id expr)

The AFOL . type case expression is a variant of the usual case construct and is provided to
*simplify the manipulation of sum types. The tcase (type case) expression



DEFINITIONS OF PROGRAMMING LANGUAGES 25

tcase expr is

whenti: T1 =) expr 1 ;

, / when tn: Tn =>exprn;
when others t: T => default

end tcase

evaluates expri in a new scope in which ti is bound to expr pro Ti if expr elt Ti, and yields the
resulting value as the value of the type case expression. If a when clause for the appropriate T is not

4provided, then if the others clause is present, "default" is evaluated in a scope in which t is bound to
expr, and the resulting value is yielded as the value of the type case expression; otherwise, a fatal
error occurs.

*g 2.5 FUNCTIONS

Functions in AFDL + are like those in Ada, except that AFDL + functions can take function-valued
parameters and return function-valued results. This enhancement enables AFDL + to be used for
programming denotational semantic definitions. Actual parameters of AFDL + functions are bound to
corresponding formal parameters by value; consequently, programming denotational semantic

- definitions in AFDL + must be done carefully, in order to avoid using lambda calculus idioms whose
correctness depends upon parameter binding by name.

A common situation in which transmission of actual parameters by value would lead to
nontermination whereas transmission by name would not, is the evaluation of the semantics of a
recursively defined construct such as a while loop, using continuation semantics. The evaluation of
the semantics of a while loop requires evaluation of the value of the test expression followed by the
semantic evaluation of the loop body if the test value is true. This latter semantic evaluation invokes a
function that takes as an actual parameter the continuation (a function) that continues the
computation after the traversal of the body. This continuation (recursively) computes the semantics
of the entire while loop (given a new state). If an attempt is made to first evaluate this continuation
(which represents the entire possible future behavior of the while loop), then an infinite semantic
computation will result. The usual way to avoid this phenomenon is to simulate parameter
transmission by name by "encapsulating" the offending actual parameter inside a function literal
(sometimes called a "thunk"), producing a closure object as an actual parameter value and thereby
"suspending" further evaluation involving this parameter until it is later applied to a state.

*0

A detailed illustration of this situation, in the context of the formal semantic definition of Gordon's
pedagogical programming language TINY [9], is given in [2].

CONCRETE SYNTAX

function-call = id ()
lid (expression_list)
I curriedfunction-call ()
I curriedfunctioncall ( expression_list)
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curried functioncall = id ()
-id (expression_list)
I curriedfunctioncall C)
I curried_function_call (expression_list)

ABSTRACT SYNTAX

- expr: (APPLY expr exprs)

AFDL+ functions have their actual parameters bound by value, as previously mentioned. To
facilitate the programming of denotational semantics, AFDL + functions are curried.

* 2.6 PACKAGES

AFDL + packages, like those in Ada, are used to specify collections of logically related entities. In
the Ada FSD, packages are used to define abstract data types that support the functions that
comprise the main portion of the FSD. In particular, the Ada FSD contains packages that define the
Ada abstract syntax, the static and dynamic environments, and continuations and an abstract store.

The syntax of packages is described in Section 2.3.1.3.

2.7 PROGRAM STRUCTURE

AFDL + program stricture reflects that of the Ada FSD. The main corpus of the FSD consists of a
nonempty sequence of (mutually recursive) function declarations. The "support" for the FSD,
contained in appendices, consists of nonempty sequences of package declarations and package
bodies. An AFDL + "compilation unit", therefore, is a function declaration, a package declaration, or
a package body; an AFDL + program is a nonempty sequence of compilation units.

CONCRETE SYNTAX

afdlprogram = compilation_unit_list

*0 compilation.unitlist: = compilationunit
I compilation-unit list compilationunit;

compilation unit = function declaration
I packagespecification
_ packagebody

ABSTRACT SYNTAX

program: compunit_s

compunit: fun_decl
I fun.spec
I pkgspec
I pkgbody
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3. AFDL+ TRANSCRIPTS

This chapter consists of several AFDL + [3] transcripts in which a definition of Gordon's example
programming language "TINY" ( [9]. pp. 57.61) is "debugged." Three versions of the Tiny definition
are used for illustration as follows:

- Version 1 of the Tiny definition contains a type error that is detected statically by the
AFDL + Typechecker.

- Version 2 of the definition, in which this type error has been corrected, contains no type
errors, but results in infinite recursion due to AFDL + 's call-by-value parameter passing
rule.

* Version 3, the final version of the definition, in which an expression that yields a
functional value has been "shielded" by a function definition, executes correctly on a

* sample Tiny program.

We have made efforts to include enough comments in the transcripts so that this chapter stands on its

own. However, if more than a superficial understanding of the contents is desired, we expect the
reader to be familiar with the Interlisp language. the AFDL + Typechecker [71, Compiler [5], and
Virtual-Machine [6] documentation.

We first present the third and final version of the AFDL + definition of Tiny. This is the version
without errors. The differences between the correct Version 3 and the incorrect Versions 1 and 2 will

be discussed subsequently.

package TINY is

-- Syntactic Domains

sum type EXPR (INTEGER, BOOLEAN, IDENT, READ, NOT, EQUAL, PLUS);

type IDENT is STRING;

type READ is private;
type NOT is EXPR;
product type EQUAL (EXPR, EXPR);
product type PLUS (EXPR, EXPR);

sum type COM (ASSIGN, OUTPUT, IF, WHILE, SEQ);

product type ASSIGN (IDENT, EXPR);

type OUTPUT is EXPR;
product type IF (EXPR, COM, COM);

* product type WHILE (EXPR, COM);
product type SEQ (COM, COM);

Semantic Domains

product type STATE (MEMORY, INPUT);
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function type MEMORY (id: IDENT) return VALUEORUNBOUND;
sum type VALUEORUNBOUND (VALUE, UNBOUND-VALUE);

I -type UNBOUND-VALUE is (unbound);

sequence type INPUT VALUE;
L

sum type VALUE (INTEGER, BOOLEAN);

function type CONT (state: STATE) return ANS;
function type ECONT (value: VALUE) return CONT;

. sum type ANS (FINAL_ANSWER, PARTIALANSWER);
type FINALANSWER is (error, stop):
product type PARTIALANSWER (VALUE, ANS);

I
Auxiliary Functions

function update (memory: MEMORY; value: VALUE; id: IDENT)
return MEMORY is

function newmemory (ident: IDENT) return VALUE_OR_UNBOUND is
begin

if ident = id
then value inj VALUEORUNBOUND
else memory(ident)
end if

end new memory;
begin

new-memory
end update;

function valueof (memory: MEMORY; id: IDENT) return VALUE_OR_UNBOUND is
begin

memory(id)
end valueof;

I function error (state: STATE) return ANS is
begin

error inj ANS
end error;

function final (state: STATE) return ANS is
begin

stop inj ANS
end final;

function initialmemory (id: IDENT) return VALUEOR_UNBOUND is
begin

unbound inj VALUE_OR_UNBOUND
end intitial-memory;
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-Semantic Functions

function EVALEXPR (expr: EXPR; econt: ECONT) return CONT is
begin

tcase expr is
when integer: INTEGER = > econt(integer inj VALUE);
when boolean: BOOLEAN =)> econt(boolean i VALUE);
when ident: IDENT = >

declare
function cont (state: STATE) return ANS is

value: VA LUE..ORUNBOULND :=value of (state: 1, ident);
begin

if value elt UNBOUNDVALUE
then error i ANS
else econt(value pro VALUE)(state)
end if

end cont;
begin

cont
end;

when read: READ = >
declare

function cont (state: STATE) return ANS is
begin

if state:2 =[
then error i ANS
else econt(state:2: 1 )((state: 1 state:2::1))
end if

end cont;
begin

cont
end;

when not: NOT =>
EVAK..EXPR

-4 ( EXPR(not),
declare

function new..econt (value: VALUE)
return CONT is

begin
if value elt BOOLEAN
then econt((not (value pro BOOLEA N))

i VALUE)
else error
end if

end new-econt;
* begin

new-econt
end);
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when equal: EQUAL =>
EVALEXPR
( equal:1,

declare
r function econti (valuel: VALUE) return CONT is

begin

EVALEXPR

equal:2,
declare

function econt2 (value2: VALUE)
return CONT is

begin
econt((valuel = value2) inj VALUE)

q! end econt2;

begin
econt2

end)
end econtl;

begin

econtl
end);

when plus: PLUS = >
EVALEXPR

plus:1,
declare

function econtl (valuel: VALUE) return CONTis
begin
EVALEXPR

plus:2,
declare

function econt2 (value2: VALUE)

return CONT is
begin

if valuel elt INTEGER and
value2 elt INTEGER

then econt( ((valuel pro INTEGER) +

(value2 pro INTEGER))
inj VALUE)

else error
end if

end econt2;
begin

econt2
end)

end econtl;
begin

econtl
end)

end tcase

end EVAL_EXPR;
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function EVALCOM (corn: COM; cont: CONT) return CONT is
begin

1-71tcase corn is
when ass: ASSIGN =>

EVALEXPR
ass:2,
declare

function econt (value: VALUE) return CONT is
function new-cont (state: STATE) return ANS is
begin

cont( (update(state:1, value, ass:1), state:2))
end new..cont;

begin
new-cont

end econt;
begin

econt
end);

when out: OUTPUT =>
EVAL-EXPR

EXPR(out),
declare

function econt (value: VALUE) return CONTis
begin

declare
function new-cont (state: STATE)

return ANS is
begin

(value, cont(state)) inj ANS
end new-cont;

begin
new-cont

end
end econt;

begin
10 econt
V end);

when if: IF = >
EVALEXPR

if:1 , 'declare
function econt (value: VAL LIE) return CONT is
begin

if value elt BOOLEAN
then

if value pro BOOLEAN
* then EVAL COM(if:2, cont)

else EVAL COM(if:3, cont)
end if
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else error
end if

end econt;
begin

econt
end);

when while: WHILE =>
declare
EVAL EXPR

while:1,
declare

function econt (value: VALUE) return CONT is
begin

if value elt BOOLEAN
* then

if value pro BOOLEAN
then EVALCOM

(while:2,
declare

function while cont
(state: STATE) return ANS is

begin
EVAL_COM(com, cont)(state)

end while_cont;
begin

while-cont
end
)

else cont
end if

else error
end if

end econt;
begin

econt
end

when seq: SEQ =>
EVALCOM(seq:1, EVALCOM(seq:2, cont))

end tcase
end EVALCOM;

* end TINY;

Version 1 of the definition differs from Version 3, shown above, in two respects. First, the "IDENT"
alternative of the "tcase" of "EVALEXPR" consists of the following, in which the curried application
of a continuation to "state" in the 8th line has been omitted (i.e., commented out). This results in a

* type mismatch since a value of type "CONT" is yielded where "ANS" is required.

when ident: IDENT = >
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declare
function cant (state: STATE) return ANS is

value: VALUE OR UNBOUND := value of(state:1, ident):
begin

if value elt UNBOUND-VALUE
then error inj ANS
else econt(value pro VALUE) -- (state)
end if

end cont;
begin

cont
end;

Second, the "WHILE" alternative of the "tcase" in "EVAL-COM" consists of the following, in
which the continuation-valued actual parameter "EVALCOM(com, cont)" (passed by value to the
invocation of "EVALCOM" that evaluates the effect of traversing the body of a "while" loop) is not
"shielded" by the function "while_cont". This will result in infinite recursion when the Tiny definition
is applied to Tiny programs that contain "while" loops in which the boolean expression parts do not
reference or modify the state (i.e., contain no variable references or "read" expressions). The
introduction of "while_cont" simulates passing "EVALCOM(com, cont)" by name.I

when while: WHILE = >
EVALEXPR

while:1,
declare

function econt (value: VALUE) return CONT is
begin

if value elt BOOLEAN
then

if value pro BOOLEAN
then EVALCOM

(while:2,
EVALCOM(com, cant)
)

else cant
end if

A else error
end if

end econt;
begin

econt
end)

Version 2 of the Tiny definition contains only the "WHILE" alternative error (i.e., it was obtained
from Version 1 by correcting the "/DENT" error).

The Tiny program that was used to test the Tiny definition appears next. This program reads
integers from the input stream, and outputs the corresponding factorials to the output stream. Since
Tiny does not contain a multiplication operation, iterative addition is used instead. The program halts
with an error when the input stream is exhausted.
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while true

do
num:= read; res:= 1; i:= 2;

. while not (I (num + 1))
do

x:= res; j:= 1;

while not(j = i)
do

res = res + x; j:= j + 1
od;

i:= i + 1
od;

output res
od

In the following we present five transcripts of operations on the TINY definition and the above
program in the TINY language. In Transcript I we present the parsing of the TINY definition. For
illustrative purposes, two syntax errors were introduced into Version 3 of the TINY definition. Theseare detected during the parse. In Transcript 11 the static semantic error in Version 1 of the TINY

definition is detected. In Transcript III Version 2 of the TINY definition passes the static semantic
check and is compiled and run on the virtual-machine. During the run an error is detected in the
definition. Transcript IV, shows the interpretation of Version 3 the TINY definition after this "infinite
recursion" error has been corrected. In this transcript the TINY definition is made to interpret the
TINY program shown above. In the final transcript, Transcript V, we illustrate the capability of the
virtual-machine to optimize tail recursion. This capability can be turned on or off by the user at run
time by setting or resetting a flag and is expected to be useful in improving efficiency during
interpretation of large sem, itic definitions. The correct version of the TINY definition, Version 3, is
used for Transcript V.

NOTE: Comments appear in italics in all of the transcripts.

Transcript I: Parsing and Storage of Abstract Syntax Trees

In this transcript we show the process of parsing Version 3 of the TINY definition into which two
minor syntax errors were deliberately introduced.

We first try to parse the text of the TINY definition without generating the abstract
syntax trees. This is done by making the second parameter to the parse* command be
NIL i.e., by omitting it. The parsing is faster as a result. The first error found is a
semicolon where a colon should appear.

lparse" TINY-DEFINITION.TXT
Parsing file <AU-ADA>TINY-DEFINITION.TXT.1

_function new-memory (ident: -IDENT) _return -VALUEOR UNBOUND _is
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**ERROR*** LINE 47: Syntax error in state 39
PW help!

(HELP broken)
2:quit
NIL

The parse error puts us in a Lisp break. We exit Lisp, fix up the parse error just found,
and return to Lisp. We exit the break by typing a t and then redo the parse* command.
The next error found is a misspelled type identifier; all type identifiers in AFDL are upper-
case identifiers prefixed with a tilde.

3:t

3_redo parse*
Parsing file <AU-ADA>TINY-DEFINITION.TXT.2

_function error (state: -STaTE) _return -ANS _is

***ERROR*** LINE 63: Syntax error in state 112

help!

(HELP broken)
4:quit
NIL

Again exit, fix up the error and return. The next redo of tho parse* command finds no
errors.

5:t

5_redo parse*
Parsing file <AU-ADA>TINY-DEFINITION.TXT.3

, End of file <AU-ADA>TINY-DEFINITION.TXT.3
Done.

We do the parse again, this time providing T as the second parameter to the parse'
command. This causes the abstract syntax trees to be generated. As each program unit is

-* parsed (in this case only one, the package TINY), its name is printed out by the semantic
action appended to the topmost concrete syntax production of the AFDL + language.
During parsing the Control-L character is defined as an interrupt character. Typing a tL
prints out the index of the line in the file on which the lexer is currently working, along with
the load average.

6_parse" TINY-DEFINITION.TXT T
Parsing file <AU-ADA>TINY-DEFINITION.TXT.3
PARSING AT LINE 98, LOAD 10.9
PARSING AT LINE 126, LOAD 9.9
PARSING AT LINE 137. LOAD 10.0
PARSING AT LINE 194, LOAD 10.2
TINY

* End of file <AU-ADA>TINY-DEFINITION.TXT.3
Done.
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Next we use the saveafdl ° command to save the generated abstract syntax trees In a
structuredfile. The property list (CHAPTER SMALL) is given to each unit being stored
This is used by the Typechecker in reporting the full name of contexts in which errors

°F exist (see Transcript II). The CHAPTER property is particularly useful in processing the
Ada FSD; it enables each semantic function to be located to within a Chapter of the FSD.
The third parameter T ensures that a new version of the output file is created. If it had
been omitted or NIL, the abstract syntax trees being saved would have been added to the
contents of the latest version of the output file.

7_saveafdl" TINY-DEFINITION.AS (CHAPTER SMALL)...T

<AU-ADA>TINY-DEFINITION.AS.

8_

Transcript II: Static Semantic Error
Tiny Definition, Version 1

The transcript of the application of the AFDL + tools to Version 1 of the Tiny definition appears
next. Not shown are the stages in which Version 1 of the AFDL + Tiny definition and the Tiny program
are parsed and output to structuredfiles (see Transcript I above), (A parser for Tiny was generated in
the same way that AFDL + and Ada parsers have been generated.) Since a type-error is uncovered,

" the Compiler and Virtual-machine are not run in this example.

1_(TCTypeCheck 'TINY-DEFINITION.AS 'TINY-DEFINITION-SYMTAB]
?TC: "[Typelf:]" "[in:]" SMALL.TINY.EVALEXPR.ident.cont Incompatible then

and else expressions

?TC: "[3Fun:]" "[in:]" SMALL.TINY Invalid function declaration "[name:]"
EVALEXPR "[type:]" (FUN (#EXPR #ECONT)

#CONT)

?TC: "[Pass3:]" Error during Pass 3
?TC: "[TypeCheck:]" Fatal error
NIL

Run the Typechecker on the structuredfile "TINY-DEFINITION.AS" produced by the
parser, producing a symboltable "TINY-DEFINITION-S YMTAB". An error is detected: the
"then" and "else" parts of a conditional, in "ident.cor'", in function "EVAL EXPR", in
package "TINY", and in chapter "SMALL", yield incompatible types.

2_(N.'LL (symtab _ (SYMOpenTable 'TINY-DEFINITION-SYMTAB]

4 NIL

Open the symboltable produced by the Typechecker. The function "NILL" is used to
prevent values yielded by expressions from being printed.

3_(NILL (evalexpr - (SYMGetValue symtab NIL T 'EVALEXPR):l]

NIL

Extract the body of "EVAL_EXPR" from the symboltable.

4_(EV evalexpr]

edit

Edit the function body. Travel to the "IDENT" alternative.

4.
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*p
(LAM (expr econt) (TCASE expr &))

2*-1 p
(TCASE expr (& & & & & & &))

4"-1 p
((ALT integer #INTEGER &) (ALT boolean #BOOLEAN &) (ALT ident #IDENT &)
(ALT read #READ &) (ALT not #NOT &) (ALT equal #EQUAL &) (ALT plus #PLUS &))

6*F ident

7*pp
(ident
#IDENT
(LET

[(FDECL
cont
(MAP (#STATE)

#ANS)
(LAM
(state)

A (TYPE
NIL
(LET

((VDECL value #VALUEORUNBOUND
(APPLY valueof

((HEAD state 1)
ident))))

(TYPE
NIL
(ERROR [IF (TYPE (#BOOLEAN)

(ELT (TYPE (#VALUEORUNBOUND)
value)

#UNBOUNDVALUE))
(TYPE (#ANS)

(INJ (TYPE (#FINALANSWER)
-error)

#ANS))
(TYPE (#CONT)

• °(APPLY (TYPE (#ECONT)
econt)

((TYPE (#VALUE)
(PRO (TYPE (#VALUE OR UNBOUND)

value)
#VALUE]

("[TypeIf:]" "[in:]" SMALL.TINY.EVALEXPR.ident.cont
Incompatible then and else expressions]

cont))

Print the "IDENT" alternative. It can be seen that a conditional is annotated with the
error message that was printed above, and that the "then" part of that conditional yields
a value of type "ANS" whereas the "else" part yields "CONT". Since a value of type
"ANS" is required, the "else" part must be in error.

. ... ...
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80OK
evalexpr

- Exit the editor.

5_(SYMCloseTable symtab]
T

Close the symboltable.

ILI Transcript III: Dynamic Semantic Error
Tiny Definition, Version 2

The transcript of the application of the AFDL + tools to the second version of the Tiny definition, in
which the above error had been corrected. appears next. Again, the parsing stages are not shown.

* In this transcript, as well as in Transcript IV (following), certain compiler-generated unique
; compound names appear. The AFDL compiler [5] generates these names to uniquely identify

contexts and declared objects within AFDL programs. For example, these unique names are useful in
specifying which of several continuations, declared with the same name "continuel" (as is done in
the Ada FSD), is being designated in a discussion or program trace. These unique names consist of
several sections separated by periods, where each section is either an AFDL identifier or a non-
negative decimal integer, e.g., EVALCOM. 4. 1 . econt. 1 .while_cont. These names are formed in

V- the following way. The scope that is the entire body of a top-level AFDL function is named with the
* name of that top-level function itself. This scope is the one in which (conceptually) only formal
*parameters of the function are declared. Each subsequent nesting of a block within a scope

introduces an additional period and section in the unique name. Blocks at the same nesting level are
named by numbering them in order of occurrence, beginning with 1. The compiler produces code
that introduces a new block (and hence nesting level) for

1. each LET (AFDL declare- begin-end construct), and

2. each alternative of a TCASE

in the AFDL abstract syntax.

Thus the compound name EVAL COM. 4. 1 .econt. 1.while cont is the fully-qualified name of a
unique object that is possibly one of many objects declared with the same name wh i I econt. The
fully-qualified name of an object provides a way of unambiguously locating it within an AFDL program.
Thus in the above name, while_cont is located by going into the body of the top-level function
EVALCOM, then proceeding to the fourth block within it and to the first block within that block. A
function econt will be found to be declared at this point. The designated object whilecont is
located (declared) in the first block within econt.

The compiler.generated fully-qualified names are particularly useful for locating the body
(program) part of a closure object. Internally, a typical closure object is of the form

(INT#ClosureObject (EVALCOM 142) (INT#Frame ...

, where the body part (EVALCOM 142) points to a location within EVALCOM via an offset 142. This
II particular example corresponds to a closure object formed from a continuation declared within the

body of the function EVAL_COM. Since there may be several such continuations the offset is a poor
indication of which particular continuation is being pointed to. Therefore, a more readable form of
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this pointer is the corresponding fully-qualified name. Accordingly, closure objects are displayed
together with the fully-qualified name that designates their body part. Thus the above closure object
would be displayed as (see step 12 of Transcript III below)

("EVAL_COM.4.1.econt" : (INT#ClosureObject ( ) ( ..

Transcript III now follows.

1_(TCTypeCheck 'TINY-DEFINITION.AS 'TINY-DEFINITION-SYMTAB]m T

Type-check the structuredfile "TINY-DEFINITION.AS", producing the symboltable
"TINY-DEFINITION-S YMTAB". No errors.

2 compile" TINY-DEFINITION-SYMTAB
update 21 (FUN (#MEMORY #VALUE #IDENT) #MEMORY)
valueof 7 (FUN (#MEMORY #IDENT) #VALUE_ORUNBOUND)
error 6 (FUN (#STATE) #ANS)
final 6 (FUN (#STATE) #ANS)
initialmemory 6 (FUN (#IDENT) #VALUEORUNBOUND)
EVALEXPR 242 (FUN (#EXPR #ECONT) #CONT)
EVALCOM 200 (FUN (#COM #CONT) #CONT)

0 Warnings
0 Fatal Errors

TINY-DEFINITION-SYMTAB -- Compilation complete.
NIL

Compile the symboltable. The compile* Lispxmacro calls the function
COM#CompileSymbolTable and if given a second argument of T would produce a
compiler listing file. The integers in the second column are the number of instructions
compiled for the corresponding symbol.

3_(tinystf - (STFOpenFile 'TINY-TEST-AS.TXT]
Loading directory of TINY-TEST-AS.TXT

Last updated 10-Jun-82 11:50:18
TINY-TEST-AS. TXT#STFDIR

Open the structured file that contains the abstract syntax form of the Tiny program.

4_(NILL (tinyprogram - (STFGetObject tinystf ']inyProgram):1:1]
NIL

Extract the tiny program from the structuredfile. The ":1:1" CLISP selection on the
value returned by STFGetObject reflects the structure of the abstract syntax of the TINY

4 language. The first :1 is necessary because STFGetObject returns a list of items that are
stored in the structuredlile on the key given as an argument to the function. An item is of
the form (object prop 1 value 1 prop2 value2 ..) Therefore, the following :1 selects the
body of the tiny program as pretty printed below.
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5..(PP tinyprogram]

* [#WHILE
((#BOOLEAN true)
(#SEQ

([#SEQ
((#SEQ ((#SEQ ((#ASSIGN ("num" (#READ NIL)))

(#ASSIGN ("res" (#INTEGER 1)))))
(#ASSIGN ("1" (#INTEGER 2)))))

(#WHILE
([#NOT (#EQUAL ((#IDENT "i")

(#PLUS ((#IDENT "num")
(#INTEGER 1]

(#SEQ
([#SEQ

((#SEQ ((#ASSIGN ("x" (#IDENT "res")))
(#ASSIGN ("j" (#INTEGER 1)))))

(#WHILE ((#NOT (#EQUAL ((#IDENT "j")
(#IOENT "))

(#SEQ ((#ASSIGN ("res" (#PLUS ((#IDENT "res")
(#IDENT ""))

(#ASSIGN ("j" (#PLUS ((#IDENT "j")
14 (#INTEGER 1]

(#ASSIGN ("i" (#PLUS ((#IDENT "i")
(#INTEGER 1]

*(#OUTPUT (#IDENT "res")
(tinyprogram)

Pretty-print the Tiny program. The program has AFOL + type "CO M". Note the sum-
type tags such as " # SEQ ".

6_(NILL (ins _ (INT#CreateMachineState (SYMOpenTable 'TINY-DEFINITION-SYMTAB]

NIL

Create a Virtual-machine machine-state that contains a compiled-code pointer to the
open symboltable "TINY-DEFINITION-S YMTAB ".

7..( INT#LoadApply ms
(INT#TopLevelClosureObject 'EVAL..COM)
< tinypr'ogram

-* T (INT#TopLevelClosureObject 'final) >]

Prepare the machine to apply "EVALCOM" to the command "finyprogram" and
continuation ''final''.

8-(INT#Break ms (INT#ApplyBreak 'EVALCOM) (INT#ApplyBreak 'EVALEXPR)
(INT#ApplyBreak 'cont) (INT#ApplyBreak 'econt]

T

Set breakpoints on calls to and returns from "EVALCOM", "EVAL_EXPA", "con?" and
"econt

* gRun ms
Broken after *BINDF* in EVALCOM

(Broken before EVAL-COM)
* NIL
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Begin running the initialized machine. Machine breaks upon entry to "EVAL_COM".

10 CF
EVALCOM

com (#WHILE ((#BOOLEAN true) (#SEQ ((#SEQ ((#SEQ ((#SEQ (& &))
(#ASSIGN ("i" &)))) (#WHILE ((#NOT (#EQUAL &)) (#SEQ (& &)))))) (#OUTPUT
(#IDENT "res"))))))

cont ("final" : (INT#ClosureObject (final 1) NIL))
Dynamic chain: NIL
NIL

View the current frame of the machine. The values of the command "coin" and
continuation "cont" are displayed. "con" is a "while" loop, and is the entire tiny
rrogram.

* 11 Run
Broken after *BINDF* in EVALEXPR

(Broken before EVALEXPR)

T

Begin running again. Machine breaks upon entry to "EVALEX,'R".

12 CF
EVALEXPR

expr (#BOOLEAN true)
econt ("EVAL_COM.4.1.econt" : (INT#ClosureObject (EVAL_COM 142)

(INT#Frame EVALCOM.4.1 & & &)))
Dynamic chain: EVAL COM.4
NIL

The expression being evaluated is the boolean expression "true", which is the boolean
expression of the outer "while" loop. The state is not required to evaluate it.

13 Run
Broken after *BINDF* in EVALCOM.4.1.econt

(Broken before econt)

The value "true" is supplied to the expression continuation "econt" of step 12.
"econt" was passed by the "WHILE" "tcase" alternative of "EVALCOM" to

O "EVALEXPR".

14_CF
EVAL-COM.4.1.econt

value (#BOOLEAN true)
Dynamic chain: EVALEXPR.2

* NIL

15 Run
Broken after "BINDF* in EVALCOM

(Broken before EVAL_COM)
T

Since "value" was "true", "EVALCOM" should now be called with the statement part
of the "while" statement and a continuation that will evaluate the loop again, Since
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AFDL + has call-by-value semantics, these arguments are first computed. The statement
part is evaluated and pushed on the stack, and then 'F VA L_COM" is cal/ed to produce
the continuation. Unfortunately, this process repeats forever, as the following steps show.

* 16C F
EVALCOM

corn (#WHILE ((#BOOLEAN true) (#SEQ ((#SEQ ((#SEQ ((#SEQ (&&)
*(#ASSIGN ("1" &)))) (#WHILE ((#NOT (#EQUAL &)) (#SEQ (& &)))))) (#OUTPUT
* (#IDENT "res"))))))

cont ("final" :(INT#ClosureObject (final 1) NIL))
Dynamic chain: EVALCOM.4.1.econt
NIL

The invocation of "EVALCOM " that must produce the continuation is entered.

17_Stk
I (#SEQ ((#SEQ ((#SEQ ((#SEQ ((#ASSIGN ("num" &)) (#ASSIGN
("res" &)))) (#ASSIGN ("i" (#INTEGER 2))))) (#WHILE ((#NOT (#EQUAL
((#IDENT "i") (#PLUS &)))) (#SEQ ((#SEQ (& &)) (#ASSIGN ("i"&))))
(#OUTPUT (#IDENT "res"))))
NIL

I The stack now contains the st atement part of the "while" loop.

18_Run
Broken after *BINDF* in EVALEXPR

(Broken before EVAL-EXPR)

"EVALEXPR" is called again on the loop's boolean expression "true ".

19_CF
EVALEXPR

expr (#BOOLEAN true)
econt ("EVAL_.CM.4.1.econt" (INT#ClosureObject (EVAL-COM 142)

(INT#Frame EVALCOM.4.1 & & &)
Dynamic chain: EVAL COM.4
NIL

* 2O-Run
-. Broken after *BINDF* in EVALCOM.4.1.econt

(broken before econt)
T

The expression continuation in "EVALCOM" is called again with "true ".

6 21_CF
EVALCOM.4.1.econt

value (#BOOLEAN true)
* Dynamic chain: EVALEXPR.2

NIL

22 Run
Broken after *BINDF* in EVALCOM
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(Broken before EVALCOM)
T

And yet another attempt is made to produce a continuation to the evaluation of the
* statement part.

23_CF
EVALCOM

corn (#WHILE ((#BOOLEAN true) (#SEQ ((#SEQ ((#SEO ((#SEQ (&&)
(#ASSIGN ("i" &)))) (#WHILE ((#NOT (#EQUAL &)) (#SEQ (& &)))))) (#OUTPUT
(#IDENT "res"))))))

cont ("final" : (INT#ClosureObject (final 1) NIL))
Dynamic chain: EVALCOM.4.1.econt
NIL

24_Stk
1 (#SEQ ((#SEQ ((#SEQ ((#SEQ ((#ASSIGN ("nurn" &)) (#ASSIGN
("res" &)))) (#ASSIGN ("i" (#INTEGER 2))))) (#WHILE ((#NOT (#EQUAL

* ~((#IDENT "i") (#PLUS &)))) (#SEQ ((#SEQ (& &)) (#ASSIGN ("1"&))))
(#OUTPUT (#IDENT "res"))))
2 (#SEQ ((#SEQ ((#SEQ ((#SEQ ((#ASSIGN ("nurn" &)) (#ASSIGN

* ("res" &)))) (#ASSIGN ("i" (#INTEGER 2))))) (#WHILE ((#NOT (#EQUAL
((#IDENT "i") (#PLUS &)))) (#SEQ ((#SEQ (& &)) (#ASSIGN ("i"&))))
(#OUTPUT (#IDENT "res"))))
NIL

The statement part of the "while" loop has now been pushed onto the stack twice.

25_DC
+ EVAL.SOM
+ EVAL COM.4.1.econt

EVAL EXPR.2
+ EVAL EXPR

EVAL CQM.4
+ EVAL .CQM
+ EVAL-COM.4.1.econt

EVALEXPR.2
+ EVALEXPR

EVAL-COM.4
+ EVALCOM

0 NIL

Display the dynamnic chain. An obvious pattern can be seen, and would continue
forever. The statement part of the "while" loop will never be evaluated, because its
continuation can never be produced. Note that the "+" signs mark frames that have
explicit dynamic chain pointers, i.e., were created by "callI" instructions.

Transcript IV: Successful Interpretation
Tiny Definition. V'ersion 3

The transcript of the application of the AFIDL + tools to Version 3. the final version of the Tiny

0 ~definition, appears next. In this version the recursive continuation "EVALCOM(com, cont)" of the
"WHILE" alternative of "EVALCOM" has been "shielded" by the function "new-cont", in order to
simulate passing the continuation to "EVAL COM" by name.
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1 tc* TINY-DEFINITION.AS TINY-DEFINITION-SYMTAB
T

We use the tc* command here which is exactly equivalent to calling the function
TCTypeCheck as in Transcripts It and 11l. This command is provided as a user
convenience.

2_compile* TINY-DEFINITION-SYMTAB
update 21 (FUN (#MEMORY #VALUE #IDENT) #MEMORY)

*value -of 7 (FUN (#MEMORY #IOENT) #VALUE _OR_UNBOUND)
error 6 (FUN (#STATE) MANS)
final 6 (FUN (#STATE) MANS)
initial _ memory 6 (FUN (#IDENT) #VALUEORUNBOUND)
EVAL_-EXPR 242 (FUN (#EXPR #ECONT) #CONT)
EVALCOM 210 (FUN (#COM #CONT) #CONT)

ro 0 Warnings
0 Fatal Errors

* TINY-DEFINITION-SYMTAB -- Compilation complete.

* NIL

The definition is compiled. The integers in, the second column are the number of
- I virtual-machine instructions compiled for the corresponding AFDL object.

3_(NILL (tinystf _ (STFOpenFile 'TINY-TEST-AS.TXT]
Loading directory of TINY-TEST-AS.TXT
Last updated 10-Jun-82 11:50:18

* NIL

4...(NILL (tinyprogram - (STFGetObject tinystf 'TinyProgram):1:1]
NIL

5_(NILL (ins _ (INT#CreateMachineState (SYMOpenTable 'TINY-OEFINITION-SyMTAB]
(mns reset)
NIL

6_(INT#LoadApply Ins
(INT#TopLevelClosureObject 'EVAL-COM)
< tinyprogram

(INT#TopLevelClosureObject 'final) >]
T

7_Run ms
Hal ted
NIL

Since no break points were set, the machine halts with a continuation on the top of the
* stack.

8..Stk
1 ('EVAL_EXPR.4.1.cont" : (INT#ClosureObject (EVALEXPR 75)
(INT#Frame EVAL-EXPR.4.1 & NIL & &)
NIL

*"E VA L EXP. 4. 1.cont " represents the return of the continuation "cont "by the "READ"
tcase of "E VAL-EXPR ", which corresponds to the factorial program's attempt to read
the first datum from the input stream. Interpretation of the factorial program cannot
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proceed until this continuation, suspended in a closure object, is applied to a machine
state. This is done in the following steps.

9_(INT#LoadApply ms
(INT#PopVMSTACK ms)
< < (INT#TopLevelClosureObject 'initialmemory)

< '(#INTEGER 1) '(#INTEGER 2) '(#INTEGER 3) '(#INTEGER 4) > > >]
T

Prepare the machine to apply the continuation closure object that is on the top of the
stack to an initial state. The "MEMORY" component of that state is the closure object
"initial-memory". The "INPUT" component is a sequence of elements of type "VALUE",
each of which was injected from type "INTEGER".

10_Stk
1 ("EVALEXPR.4.1.cont" : (INT#ClosureObject (EVALEXPR 75)
(INT#Frame EVALEXPR.4.1 & NIL & &)))
2 ((("initial memory : (INT#ClosureObject (initial_memory 1) NIL))
((#INTEGER 1) (#INTEGER 2) (#INTEGER 3) (#INTEGER 4))))
NIL

View the stack before the continuation is applied to the initial state.

11_(INT#Break ms (INT#ApplyBreak 'update)(INT#ApplyBreak 'valueof))
T

Break the memory manipulation functions "update" and "value-of".

12_Run
Broken after *BINDF* in update

(Broken before update)
T

* 13_CF
update

memory ("initial-memory" : (INT#ClosureObject (initial-memory 1) NIL))
value (#INTEGER 1)
id num"

*Dynamic chain: EVALCOM.1.1.econt.1.new cont
' •NIL

"update" is called to yield a new memory function that associates "id" with "value" (in
this case "'num"' with "(#INTEGER 1)") and otherwise calls "memory". "memory" is

-,40 the "initial-memory" closure object.

Run
Broken before *RETURN* in update

(Broken after update)
T

Broken before the return from "update".

15_Stk
1 ("update.1.new-memory" : (INT#ClosureObject (update 5)
(INT#Frame update.1 & NIL & &)))
NIL

New memory function closure object is now on the stack; "num"' has been assigned
6 the value "(# INTEGER 1)", which is the datum read from the input stream.

-6
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16_Run

Broken after "BINDF* in update
(Broken before update)

17_CF
update

memory ("update.l.newmemory" : (INT#ClosureObject (update 5)

(INT#Frame update.1 & NIL & &)))
value (#INTEGER 1)

id "res"
Dynamic chain: EVALCOM.l.l.econt.l.new-cont
NIL

The "memory" argument of this invocation of "update" is now the closure object that
was computed by the previous invocation of "update"

18Run

Broken before *RETURN* in update
(Broken after update)

T
'res"'has been assigned the (constant) value "(#INTEGER 1)".

19_Run

Broken after *BINDF* in update
(Broken before update)

20_Run
Broken before *RETURN* in update

(Broken after update)
T

"W"'has been assigned the (constant) value "(#INTEGER 2)".

21_Run

Broken after "BINDF" in value-of
(Broken before value-of)

T

The first memory access occurs.

22_CF
0@ value-of

memory ("update.1.new-memory" (INT#ClosureObject (update 5)

(INT#Frame update.1 & NIL & &)))
id i "

Dynamic chain: EVALEXPR.3.1.cont.1

- NIL

The value of 'i"' is requested.

23_Run
Broken before *RETURN* in valueof

(Broken after value of)
T

24_Stk
1 (#VALUE (#INTEGER 2))
NIL
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The value of "'i"' was "(# VALUE (# INTEGER 2))", of type "VALUEORUNBOUND".

25(INT#UnBreak ms (INT#ApplyBreak 'update]
II[ T

Unbreak "update".

26_(INT#Break ms (INT#ApplyBreak 'new-memory]
T

Break "newmemory", which is the function of type "MEMORY" yielded by "update".

27_Run
Broken after *BINDF* in valueof

(Broken before value_of)
T

28_CF
* valueof

memory ("update.l.new_memory" (INT#ClosureObject (update 5)
(INT#Frame update.1 & NIL & &)))

id "num"
Dynamic chain: EVALEXPR.3.1.cont.1
NIL

The value of "'num"' is requested. The last value associated with "'num"' is
"(#INTEGER 1)" (see steps 12 and 13).

29 Run
Broken after *BINDF* in update.l.new-memory

(Broken before newmemory)

"value-of" calls its argument "memory", which is an instance of "new-memory"
yielded by "update"

30_SC
update. I. newmemory

ident "num"

update. 1
newmemory

("update.l.newmemory" (INT#ClosureObject (update 5)
(INT#Frame update.1 & NIL & &)))

update
memory ("update.l.newmemory" (INT#ClosureObject (update 5)

(INT#Frame update.1 & NIL & &)))
value (#INTEGER 2)
id

NIL

View the static chain of "new-memory". "ident" is bound to "'num" the identifier
whose value is needed. This instance of the closure object "newmemory" is itself
visible. The arguments to the invocation of "update" that created this instance of
"new memory" are also visible. 'i"' is associated with the value "(#INTEGER 2)".
"memory" is the remainder of the memory that was supplied to that invocation of

* "update
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31_Run

Broken after "BINDF" in update.l.new memory
(Broken before newmemory)

T

Since 'i" is not "'num"', "new_memory" calls "memory".

32_SC
update.l.newmemory

ident "num"

update.1
newmemory

("update.1.new-memory" (INT#ClosureObject (update 5)

(INT#Frame update.1 & NIL & &)))

update
U memory ("update.1.new-memory" (INT#ClosureObject (update 5)

(INT#Frame update.1 & NIL & &)))
value (#INTEGER 1)
id "res"

NIL

This instance of "new_memory" knows about the value of "'res"'.

33 Run
Broken after *BINDF" in update.l.new_memory

(Broken before new-memory)

T

3 The next "deeper" instance of "newmemory" is called.

34_SC

update.l.newmemory
ident "num"

update.1
newmemory

("update.1.new-memory" : (INT#ClosureObject (update 5)
(INT#Frame update.1 & NIL & &)))

F- update
memory ("initialmemory" : (INT#ClosureObject (initialmemory 1) NIL))

value (#INTEGER 1)
id "num"

NIL

This instance does "know about" the most recent binding of "'num"', and was yielded
by the invocation of "update" that began in step 12.

35_Run
Broken before *RETURN* in update.1.new-memory

(Broken after newmemory)
T

The value of "'num"' will now be yielded by each of the instances of "newmemory"
that are active, and finally by "valueof" itself.

36_Stk
1 (#VALUE (#INTEGER 1))
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NIL

37-Run
r Broken before *RETURN* in update.1.new-memory

(Broken after new-memory)
T

38..Stk
1 (#VALUE (#INTEGER 1))
NIL

39.,Run
Broken before *RETURN* in update.1.new-memory

(Broken after new..memory)
T

40..Stk
1 (#VALUE (#INTEGER 1))
NIL

41-Run
*Broken before *RETURN* in value of

(Broken after value of)
T

42..Stk
I (#VALUE (#INTEGER 1))
NIL

The value of "'num "' is finally yielded by "value-of"

43_UBA
T

Remove all break points.
44(ITBekm (INT#ApplyBreak 'EVA'_-EXPR.4.1.cont]

T

Break the function "cont" of the "tcase' of "EVALEXPR". This function will be called
with the "current" state each time a "read" expression is evaluated, which will occur on
each successive traversal of the outer "while true" loop.

4 45...Run
Broken after OBINDF* in EVAL-EXPR.4.1.cont

(Broken before EVALEXPR.4.1.cont)
T

46.,SC
4 EVALEXPR.4.1.cont

state (("update.1.new_memory" :(INT#ClosureObject (update 5)
(INT#Frame update.1 & NIL & &))) ((#INTEGER 2) (#INTEGER 3) (#INTEGER 4)))

EVALEXPR.4.1
cont ("EVAL_- EXPR.4.1.cont" (INT#ClosureObject (EVALEXPR 75)

(INT#Frame EVAL_EXPR.4.1 & NIL & &))

EVALEXPR.4

read NIL

L
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EVALEXPR
expr (#READ NIL)
econt ("EVALCOM.I.I.econt" (INT#ClosureObject (EVAL_COM 14)

(INT#Frame EVAL_COM.1.1 & NIL & &)))
NIL

A "read" expression is evaluated (see the value of "expr") and the second element of
the original input stream is about to be read. "econt" is the expression continuation that
will be called with the value read, resulting in a continuation that will be called with the
new state.

47_DC
+ EVALEXPR.4.1.cont
+ EVAL_COM.4.1.econt.1.while_cont
+ EVAL_COM.2.1.econt.1.newcont

EVALEXPR.3.1.cont. 1
+ EVAL EXPR.3.1.cont

L EVALEXPR.3.1.cont.1
, + EVALEXPR.3.1.cont

EVAL EXPR.3.1.cont.1
+ EVALEXPR.3.1.cont
+ EVAL-COM.1.1.econt.1.new-cont
+ EVALCOM.I.l.econt.l.new-cont
+ EVALCOM.1.1.econt.l.new cont
+ EVALEXPR.4.1.cont
NIL

The "+" signs mark those frames that have explicit dynamic chain pointers, i.e., were
created by "call" instructions. "whilecont" is the continuation that continues the
computation after this traversal of the "while true" loop.

48_Run
Broken after "BINDF* in EVALEXPR.4.1.cont

(Broken before EVALEXPR.4.1,cont)
T

49_CF
EVALEXPR.4.1.cont

state (("update.l.newmemory" : (INT#ClosureObject (update 5)
(INT#Frame update.1 & NIL & &))) ((#INTEGER 3) (#INTEGER 4)))
Dynamic chain: EVALCOM.4.1.econt.l.whilecont
NIL

The third "read" occurs.

50_Stk
1 (#INTEGER 2)
2 (#INTEGER 1)
NIL

• The results of computing the first two factorials are now on the stack These values were
pushed onto the stack by the "OUTPUT" alternative of "EVALCOM" and, together with
the third and fourth factorials, will be combined into a value of type "ANS", working from
the top of the stack downward, when the input stream is exhausted and "error" is
produced as the value of type "FINAL-ANSWER".
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51 Run

Broken after *BINDF* in EVAL _EXPR.4.1.cont
(Broken before EVALEXPR.4.1.cont)

52_CF
EVAL.EXPR.4. 1 .cont

state (("update.l.new-memory" (INT#Closure~bject (update 5)
(INT#Frame update.1 & NIL & &))) ((#INTELER 4)))
Dynamic chain: EVALCOM.4.1.econt.1.while-cont
NIL

The fourth "read" occurs. The final integer will now be removed from the input stream.

53_Stk
1 (#INTEGER 6)
2 (#INTEGER 2)
3 (#INTEGER 1)
NIL

The third factorial has now been output, and is on the stack.

54 Run
*Broken after *BINDF* in EVAL_ EXPR.4.1.cont

(Broken before EVAL-EXPR.4.1.cont)
T

* 55_CF
EVALEXPR.4.1.cont

state (("update.l.new.memory" : (INT#ClosureObject (update 5)
(INT#Frame update.1 & NIL & &))) NIL)
Dynamic chain: EVALCQM.4.1.econt.1.while-cont
NIL

The final "read" occurs. An attempt to read past the end of the input stream will now
occur.

56 Stk
1 (#INTEGER 24)
2 (#INTEGER 6)
3 (#INTEGER 2)
4 (#INTEGER 1)
NIL

The fourth and final factorial has now been output.

57_Run
Broken before *RETURN* in EVAL_ EXPR.4.1.cont

(Broken after EVAL _EXPR.4.1.cont)
T

Since no input data remains, "cont" yields the "error" value of type "FINAL_ANSWER",
which is then injected into type "ANS

58_Stk
1 (#FINAL _ ANSWER -error)
2 (#INTEGER 24)

S3 (#INTEGER 6)
4 (#INTEGER 2)
5 (#INTEGER 1)
NIL
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59 UBA
Zr! T

Unbreak all functions.

60_(INT#Break ms (INT#InstrBreak '*PRDEN* 'After]
T

Set a break point after all product denotation (" *PRDEN'" machine instructions. A
break will thus occur each an instance of the "OUTPUT" alternative of "F VALCOM"
combines the second element of the stack (of type "VALUE") with the top element of the
stack (of type "A NS") to form the new top element of the stack (of type
"PARTIALANSWER"; this value is then injected into type "ANS" and the process
repeats).

61 Run

Broken after *PRDEN* in EVALCOM.2.1.econt.1.new-cont

T

62 Stk
1 ((#INTEGER 24) (#FINALANSWER -error))
2 (#INTEGER 6)

3 (#INTEGER 2)
4 (#INTEGER 1)
NIL

63-,Run
Broken after *PRDEN* in EVALCOM.2.1.econt.1.new-cont
T

64_Stk
1 ((#INTEGER 6) (#PARTIALANSWER ((#INTEGER 24)
(#FINALANSWER -error))))
2 (#INTEGER 2)
3 (#INTEGLR 1)
NIL

65 Run
Broken after *PRDEN* in EVALCOM.2.1.econt.1.new-cont
T
66_Stk
1 ((#INTEGER 2) (#PARTIALANSWER ((#INTEGER 6)
(#PARTIALANSWER ((#INTEGER 24) (#FINAL-ANSWER -error))))))
2 (#INTEGER 1)
NIL

67_Run
Broken after *PRDEN* in EVALCOM.2.1.econt.1.new-cont
T

68_.Stk
1 ((#INTEGER 1) (#PARTIAL -ANSWER ((#INTEGER 2)
(#PARTIAL_ANSWER ((#INTEGER 6) (#PARTIAL_ANSWER ((#INTEGER 24)
(#FINAL_ANSWER -error))))))))

NIL

-



* DEFINITIONS OF PROGRAMMING LANGUAGES 53

69_DC
+ EVALCOM.2.1.econt.1.new-cont

EVALEXPR.3.1.cont.1
, + EVAL-EXPR.3.1.cont

EVALEXPR.3.1.cont.1
+ EVALEXPR.3.1.cont

EVALEXPR.3.1.cont.1
+ EVALEXPR.3.1.cont
+ EVALCOM.1.1.econt.1.newcont
+ EVALCOM.1.1.econt.1.new cont
+ EVALCOM.l.1.econt.1.new-cont
+ EVALEXPR.4.1.cont
NIL

70_Run
Halted
T

The computation terminates.

71 _Stk
I (#PARTIALANSWER ((#INTEGER 1) (#PARTIALANSWER ((#INTEGER 2)

*(#PARTIAL_ANSWER ((#INTEGER 6) (#PARTIALANSWER ((#INTEGER 24)
(#FINALANSWER -error)))))))))

NIL

The resulting element of type "ANS" is on the top of the stack.

Transcript V: Optimization of Tail Recursion
Tiny Definition, Version 3

This transcript shows the effect of turning on the capability of the virtual machine to optimize tail
recursion. This may be turned on or off at run time by setting the Lisp atom
INT#OptimizeTail Recursion to T or NIL respectively. The optimization is expected to be useful
in improving efficiency during interpretation of large semantic definitions.

We define a call to function X in context Y to be tail recursive if the value returned from the call to X
is not modified before control returns from Y. Thus the return from X may as well return directly to Y's
caller. The AFDL compiler detects all tail recursive calls in AFDL functions and emits special *CALL*
instructions that behave like other *CALL* instructions until the flag INT#Opt i mi zeTa i 1Recu rs i on
is set at run time.

When tail recursion is being optimized it is possible for execution to continue, after a *RETURN*
instruction, in a context that is not the normal target of the return. This may be somewhat confusing
during "debugging." Hence by setting the INT#OptimizeTail Recursion flag the user is trading

* off clarity for debugging against increased execution speed.

In this transcript the machine state has already been initialized with the TINY semantic
definition and the same test program written in TINY that was used in Transcript IV (see
Steps 1 through 5 of Transcript IV). We first reset the machine state.

28_Reset ms
T

We prepare for the execution of the machine which is to apply EVALCOM to the entire
Tiny program and the continuation f i nal.

S
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*-i 29_(INT#LoadApply ms
(INT#TopLevelClosureObject 'EVALCOM)
< tinyprogram (INT#TopLevelClosureObject 'final) >]

T

We request optimization of tail recursion by setting the atom
IN T#Opt imizeTai l Recurs ion to a non-NIL value.

* 30_(SETQ INT#OptimizeTailRecursion T)
(INT#OptimizeTailRecursion reset)
T

As a consequence of the call to INT#LoadApply we have a closure object embodying
the semantic function EVALCOM on top of the stack. Just below it on the stack is the pair
of arguments to which it will be applied, namely the Tiny program and the closure object
that embodies the semantic function f i nal.

31_Stk
1 ("EVALCOM" : (INT#ClosureObject (EVALCOM 1) NIL))

2 ((#WHILE ((#BOOLEAN true) (#SEQ ((#SEQ ((#SEQ ((#SEQ &) (#ASSIGN &)))
(#WHILE ((#NOT &) (#SEQ &))))) (#OUTPUT (#IDENT "res"))))))

("final" : (INT#ClosureObject (final 1) NIL)))
NIL

We set a break Around the semantic function EVAL EXPR in order to view the dynamic
chain and its behavior when tail recursion is being optimized.

32_(INT#Break ms (INT#ApplyBreak 'EVALEXPR))

T

We run the machine through several breaks on EVALEXPR.

. 33 Run
Broken after *BINDF" in EVALEXPR

(Broken before EVALEXPR)
T
34 Run
Broken after "BINDF* in EVALEXPR

(Broken before EVALEXPR)
T
35 Run
Broken before *RETURN* in EVALEXPR

(Broken after EVALEXPR)
T
36_Run
Broken after "BINDF" in EVALEXPR

(Broken before EVALEXPR)
T
37_Run
Broken after "BINDF" in EVALEXPR

(Broken before EVALEXPR)
T
38_Run
Broken after "BINOF" in EVALEXPR

(Broken before EVALEXPR)
T
39 Run
Broken before *RETURN* in EVALEXPR

(Broken after EVALEXPR)
T



4 DEFINITIONS OF PROGRAMMING LANGUAGES 55

We are now in a break just before an incarnation of the semantic function EVALEXPR
is due to execute its *RETURN* instruction. We observe the dynamic chain with the DC
command. As before we have "+" signs that identify those frames that have explicit
dynamic chain pointers. However, due to setting of the flag
INT#OptimizeTailRecursion, we now also have "'"s marking those frames that were
created by tail-recursive function calls. Executing a return from such a tail-recursive
frame (i.e., one marked with a " causes control to return from the first frame "up" the
dynamic chain that has an explicit dynamic chain pointer but is not tail-recursive (i.e., has
a "+" but no "'"). Hence in the dynamic chain below, returning from the tail-recursive
topmost frame EVAL_EXPR, as we are about to do, will cause execution to continue in the
topmost frame named EVALCOM. 5.

40 DC
+" EVALEXPR

EVALEXPR.6
+" EVA[_EXPP

EVALEXPR.r-
+ EVALEXPR

EVALCOM.4
+ EVALCOM

EVALCOM.5
+" EVALCOM

,- EVALCOM.5
+* EVALCOM
+" EVALCOM.4.1.econt

EVALEXPR.2
+ EVAL EXPR

EVALCOM.4
+ EVALCOM

NIL

We step the machine now through one instruction that causes it to execute the
*RETURN* instru tion it had broken before. The Step command (which may also be used
with a positive integer argument) causes the machine to "single-step" through
instructions. As each instruction is executed the instruction is printed out and, indented
underneath it, is printed the value that is on top of the virtual-machine stack after the
instruction execution. In this case we use the Step command without an argument
implying that the current default machinestate is to be stepped and the lack of an integer
argument is taken to imply one step.

41_Step
(-RETURN- EVAL_EXPR)

("EVALEXPR.3.1.cont" : (INT#ClosureObject
(EVAL_EXPR 35) (INT#Frame EVALEXPR.3.1 & NIL & &)))
T

As predicted above, the return from the tail-recursive EVALEXPR frame causes
execution to return to the fram EVALCOM. 5.

42_DC
EVALCOM. 5

+0 EVALCOM

EVALCOM.5
+" EVALCOM
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+* EVALCOM.4.1.econt

EVALEXPR.2
+* EVALEXPR

P EVAL_COM.4
+ EVALCOM

NIL

We remove all breaks on the machine and let it run until it halts.

43_UBA

44_Run
Halted
T

As a result of applying EVALCOM to the Tiny program and the continuation final we
get a continuation deposited on top of the virtual-machine stack. This continuation (see

* TINY definition) expects an object of type STATE as argument and will provide an object
of type ANS as result.

45_Stk
1 ("EVALEXPR.4.1.cont" : (INT#ClosureObject (EVAL EXPR 75)
(INT#Frame EVALEXPR.4.1 & NIL & &)))

* NIL

We get ready to apply the just-computed continuation to a Tiny program state that is the
initial memory and an input sequence consisting of the integer 4. We expect the factorial
of 4 as the result of the next machine execution.

46_(INT#LoadApply ms
(INT#PopVMSTACK ms)
< < (INT#TopLevelClosureObject 'initial_memory)

< '(#INTEGER 4) > > >]
T

We introduce a break to allow us to see the dynamic chain at a convenient point for
purposes of illustration.

47_(INT#Break ms (INT#ApplyBreak 'new-cont 'After]
T
48_Run
Broken before *RETURN* in EVALCOM.2.1.econt.l.new-cont

(Broken after new_cont)
T

We are now poised to execute a *RETURN* instruction from the tail-recursive frame
EVAL COM. 2.1. econt.I. newcont but note that all frames further "up" the dynamic
chain (except the one at the bottom of the list below) are tail-recursive as well. Thus
execution of this return should leave the dynamic chain empty.

49_DC

+* EVAL_COM.2.1.econt.l.new-cont

EVALEXPR.3. 1.cont. 1
+* EVALEXPR.3.1.cont

EVALEXPR.3.1.cont.1
+* EVALEXPR.3.1.cont

EVALEXPR.3.1.cont.1
S +* EVALEXPR.3.1.cont

+* EVALCOM.4.1.econt.1.whilecont
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+0 EVALCOM.1.1.eCont.1.new-cont
EVAL EXPR.3.1 .cont.1

* 4 EVAL.EXPR.3.1.Cont
EVAL-EXPR.3. 1.cont. 1

4. EVAL-EXPR.3.1.cont
EVALEXPR.3.1.cont.1

+* EVALEXPR.3.1.cont
+* EVALCOM.4.1.econt.1.while cont
+0 EVALCOM.1.1.econt.1.new-cont

EVALEXPR.3.1.cont.1
+0 EVALEXPR.3.1.cont
4. EVAL-COM.l.1.econt.1.new-cont

EVALEXPR.3.1.cont.1
+* EVALEXPR.3.1.cont

EVALEXPR.3.1.cont.1
+* EVAL-EXPR.3.1.cont

EVALEXPR.3.1.cont.1
4* EVAL-EXPR.3.1.cont

EVAL-EXPR.3. 1.cont.1
+0 EVAL-EXPR.3.1.cont
+0 EVAL..COM.4. 1.econt. 1.whileCont
+0 EVAL-COM...econt..new.cont

EVAL-EXPR.3.1.cont.1
4. EVAL-EXPR.3.1.cont
+04 EVAL-COM.l.l.econt.l.new-cont

EVAL.EXPR.3. 1.cont. 1
4. EVAL EXPR.3.1.cont

EVAL EXPR.3.1.cont.1
+* EVALEXPR.3.1.cont

EVALEXPR.3.1.cont.1
+0 EVAL-EXPR.3.1.cont

EVAL..EXPR.3.1.cont.1
4* EVALEXPR.3.1.cont
4. EVAL -COM.4.1.econt. 1.while-cont
4. EVAL-COM.1.1.econt.1.new-cont

EVAL-EXPR.3. 1.cont. 1
+0 EVAL-EXPR.3.1.cont
+0 EVAL-COM.l.l.econt.1.new-cont

EVAL-EXPR.3. 1.cont. 1
+0 EVAL-EXPR.3.1.cont

4 EVAL-EXPR.3.1.cont.1
+* EVAL-EXPR.3.1.cont

EVALEXPR.3.1.cont.1
+0 EVALEXPR.3.1.cont

EVALEXPR.3.1.cont.1
+* EVALEXPR.3.1.cont
+04 EVAL-COM.1.1.econt.1.new-cont
+0 EVALCOM.1.1.econt.l.new-cont

EVAL-EXPR.3. 1.cont. 1
+0 EVALEXPR.3.1.cont

EVALEXPR.3.1.cont.1
+0 EVAL-EXPR.3.1.cont

* EVAL-EXPR.3.1.cont.1
+0 EVAL-EXPR.3.1.cont
+0 EVAL-COM.4.1.econt.l.while-cont
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+* EVAL COM.l.l.eCant.l.new cont
EVALEXPR.3.1.cant.1

+* EVALEXPR.3.1.cant
EVALEXPR.3.1.cont.I

s* EVAL EXPR.3.1.cont
K EVALEXPR.3.1.cont.1

+* EVAL-EXPR.3.1.cont
V * EVALCOM.4.1.econt.1.while cant

+0 EVALCOM.1.1.econt..new..cant
EVALEXPR.3.1.cont.1

5. +* EVAL-EXPR.3.1.cant
4* EVALCOM.1.1.econt.1.new-cant

EVALEXPR.3.1.cont.1
+EVALEXPR.3.1.cont

EVALEXPR.3.1.cant.1
+ * EVALEXPR.3.1.cant

EVALEXPR.3.1.cont.1
4* EVALEXPR.3.1.cont

EVAL-EXPR.3.1.cont.1
+* EVALEXPR.3.1.cont
+EVALCOM.4.1.econt.1.while-cant

+* EVALCOM.1.1.econt.1.new-cant
EVALEXPR.3.1.cant.1

4* EVALEXPR.3.1.cont
4* EVALCOM.1.1.econt.1.new-cant

* EVAL-EXPR.3.1.cont.1
+04 EVALEXPR.3.1.cont

EVALEXPR.3.1.cont.1
+* EVALEXPR.3.1..cont

4EVALEXPR.3.1.cant.1

+EVALEXPR.3.1.cont
EVALEXPR.3.1.cont.1

4* EVALEXPR.3.1.cont
4* EVALCOM.1.1.econt.1.new-cant
+0 EVALCOM.1.1.econt.1.new-cant

* EVALEXPR.3.1.cant.1
+* EVAL-EXPR.3.1.cant

EVALEXPR.3.1.cant.1
* * EVALEXPR.3.1.cant

EVALEXPR.3.1.cant.1
4* EVALEXPR.3.1.cant
4* EVALCOM.4.1.ecant.I.while cant
+0 EVALCOM.1.1.ecant.1.new-cant

EVALEXPR.3.1.cant.1
4* EVALEXPR.3.1.cant

EVALEXPR.3.1.cant.1
+04 EVALEXPR.3.1.cant

EVALEXPR.3.1.cant.1
4EVALEXPR.3.1.cant

+0 EVAL COM.4.1.econt. 1.while-cant
4* EVALCOM.1.1.ecant.1.new-cant

EVAL _EXPR.3.1.cant.1
+* EVAL EXPR.3.1.cant
+0 EVALCOM.1.1.ecant.1.new cant

EVALEXPR.3.1.cant.1
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+0 EVALEXPR.3.1.Cont
EVALEXPR.3.1.cont.1

+0 EVAL-EXPR.3.1.cont
C EVAL-EXPR.3.1.conL.1

+EVAL-EXPR.3.1.cont

EVALEXPR.3.1.cont.1
+* EVAL-EXPR.3.1.cont
+* EVALCOM.1.1.econt.1.new_cont
+0 EVAL-COM.1.1.econt.l.new-cont

EVAL-EXPR.3. 1.cont. 1
+EVAL-EXPR.3.1.cont

EVAL-EXPR .3. 1 .cont. I
+* EVAL-EXPR.3.1.cont

EVAL.EXPR.3. 1.cont. I
+* EVAL-EXPR.3.1.cont
+: EVAL...COM...econt.l.new-cant

+EVAL-COM.l.l.econt.l.new -cant
+EVAL-COM.1.l.econt.I.new-cont

We xecte he RETRN*with a Step command and note that the stack now containsH the appropriate result.
50_Step

(-RETURN- EVAL_CQM.2.1.econt.l.new-cant)
* (#PARTIAL_ANSWER ((#INTEGER 24) (#FINALANSWER -'error)))

T
51_DC
NIL

As expected, the dynamic chain is now completely clear and the next Run command
will simply cause the machine to halt.

52-Run
Halted
T

The expected object of type ANS is left on top of the virtual-machine stack.

535Stk
1 (#PARTIALANSWER ((#INTEGER 24) (#FINAL ANSWER -error)))

I NIL
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I. ISI EXTENSIONS TO AFDL

*.. We briefly describe here the differences between AFDL and our upward compatible extension.
AFDL +. It is assumed that the reader is reasonably familiar with AFDL and the Ada FSD.

AFDL is a purely applicative language composed of a few Ada constructs such as if-then-else.
case, blocks, variable declarations, function subprograms, etc. but no assignment. The major

Adifference between the use of these constructs in Ada and in AFDL is that in AFDL functions may be
passed as arguments to other functions. This is necessary for writing denotational style semantic
definitions. Accordingly, the types of functional objects may be defined with function type
declarations. Furthermore, in AFDL the only possible mode of function arguments is similar to the
Ada in mode (i.e., parameter passing by value). This is a fundamental divergence from the lambda
calculus and must be duly recognized when writing semantic definitions in AFDL.

In extending AFDL to produce AFDL + we introduced three further type declarations, ten domain
operations and one compound expression construct. In addition, we have made AFDL+ a pure

expression language thereby rendering the return keyword and construct optional. In order to
facilitate programming denotational semantics, AFDL + function calls may be curried.

If the sum type T is declared via

sum type T (T1 ... ,

where n>2 and all Ti are unique names, then x inj T injects an element of component type T into the
sum type T; x elt T, tests whether an element x of sum type T was injected from component type T,; x
pro Ti projects an element x of sum type T into component type Ti if x elt Ti is true, and causes a fatal
error in the AFDL + virtual machine otherwise.

If the product type T is declared via

product type T (T1 . Td,

- where n>2, then an element of T is constructed from elements xi of type Ti by the tupling operation
(x1 .... xn). The i-th component of a value x of product type T is selected by the operation x:i, where i
must be a constant (literal).

A sequence type T with components of type S is declared via

sequence type T S.

An element of sequence type T is constructed from elements xi of type S by the operation [xI .  xn], n
0 0. []denotes the empty element of any sequence type. The i.th component (head) of an element x

of sequence type T is selected by the operation x:i, where i may be any integer expression. The i-th
* tail of x = [x1 . .xn] is selected by the operation x::i, and is equal to [x,. 1 .... xn] (if i = n then x::i is

equal to []). If i is "out of range" (< 0 or > n) for : or ::, then a fatal error occurs in the AFDL + virtual
machine. Two elements of a given sequence type may be concatenated using the binary
concatenation operation &. The length of an element of a sequence type may be obtained via the
unary operation length.

A type T may be declared equivalent to a type S by the declaration

type T is S.
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This permits an element x of type T to be converted to type S by applying the cast S(x), conversely, an
element y of type S can be converted to type T via the cast T(y). Type conversions must be explicit
and have no run-time significance. Equivalent types provide a way of declaring a sum type T with

( multiple components T, that are equivalent to some type S. If x elt Ti, then S(x pro T.) is of type S, and
if y is an element of type S, then (T,(y)) inj T is an element of type T.

The AFDL + type case expression is a variant of the usual case construct and is provided to
simplify the manipulation of sum types. The tcase expression

tcase expr is
when ti: T1 => expr1 ;

when tn: Tn = > exprn •
when others t: T =>default

Iq end tcase

evaluates expr i in a new scope in which ti is bound to expr pro Ti if expr elt Ti, and yields the resulting
value as the value of the type case expression. If a when clause for the appropriate T, is not
provided, then if the others clause is present, "default" is evaluated in a scope in which t is bound to
expr, and the resulting value is yielded as the value of the type case expression; otherwise, a fatal
error occurs in the AFDL + virtual machine.

.4
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II. DENOTATIONAL SEMANTIC DEFINITION

OF TINY IN AFDL +

. package TINY s

Syntactic Domains

sum type EXPR (INTEGER, BOOLEAN, IDENT, READ, NOT, EQUAL, PLUS);

type IDENT is private;
type READ is private;

U type NOT is EXPR;
product type EQUAL (EXPR, EXPR);
product type PLUS (EXPR, EXPR);

sum type COM (ASSIGN, OUTPUT, IF, WHILE, SEQ);

' product type ASSIGN (/DENT, EXPR);
type OUTPUT is EXPR;

* product type IF (EXPR, COM, COM);
product type WHILE (EXPR, COM);
product type SEQ (COM, COM);

Semantic Domains

product type STATE (MEMORY, INPUT);

function type MEMORY (id: IDENT) return VALUEORUNBOUND;
sum type VALUE_ORUNBOUND (VALUE, UNBOUND-VALUE);
type UNBOUNDVALUE is (unbound);

* sequence type INPUT VALUE;

sum type VALUE (INTEGER, BOOLEAN);

function type CONT (state: STATE) return ANS;
function type ECONT (value: VALUE) return CONT;

sum type ANS (FINAL_ANSWER, PARTIAL_ANSWER);
* type FINALANSWER is (error, stop);

product type PARTIALANSWER (VALUE, ANS);

-- Auxiliary Functions

function update (memory: MEMORY; value: VALUE; id: IDENT) return MEMORY is
function new-memory (ident: IDENT) return VALUEOR_UNBOUND is
begin

if ident = id then value inj VALUEOR_UNBOUND

I
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else memory(ident) end if
end newmemory;

begin newmemory end update;

function valueof (memory: MEMORY; id: IDENT) return VALUE ORUNBOUND is
begin memory(id) end valueof;

function error (state: STATE) return ANS is
begin error inj ANS end error;

function final (state: STATE) return ANS is
begin stop inj ANS end final;

function initialmemory (id: IDENT) return VALUEORUNBOUND is
U begin unbound inj VALUEORUNBOUND end intitial_memory;

-- Semantic Functions

function EVALEXPR (expr: EXPR; econt: ECONT) return CONT is
begin

tcase expr is
when integer: INTEGER = > econt(integer inj VALUE);
when boolean: BOOLEAN = > econt(boolean inj VALUE);
when ident: IDENT = >

declare function cont (state: STATE) return ANS is
value: VALUEORUNBOUND : = value_otlstate:1, ident);
begin if value elt UNBOUND-VALUE then error inj ANS

else econt(value pro VALUE)(state) end if end cont;
. begin cont end;

when read: READ = >
declare function cont (state: STATE) return ANS is

begin if state:2 = [] then error inj ANS
else econt(state:2:1 )((state:1, state:2::1)) end if end cont;

begin cont end;
when not: NOT = >

EVALEXPR( EXPR(not),
declare function new econt (value: VALUE) return CONT is

begin
if value elt BOOLEAN then econt((not (value pro BOOLEAN)) inj VALUE)
else error end if

end new econt;
begin new econt end);

when equal: EQUAL = >
EVALEXPR

equal:1,
declare function econtl (valuel: VALUE) return CONT is

begin
0 EVALEXPR

equal:2,
declare function econt2 (value2: VALUE) return CONT is

40
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begin econt((valuel =value2) i VALUE) end econt2:
* begin econt2 end)

end econti;
begin econti end);

when plus: PLUS = >
EVALEXPR

plus:1,
declare function econti (valuel: VALUE) return CONT is

begin
EVALEXPR

plus:2,
declare function econt2 (value2: VALUE) return CONT is

begin
if valuel elt INTEGER and value2 elt INTEGER
then econt( ((valuel pro INTEGER) + (value2 pro INTEGER)) i VALUE)
else error end if

end econt2;
begin econt2 end)

end econti;
begin econti end)

end tcase
end EVAL_EXPR;

* function EVAL COM (corn: COM; cont: CONT) return CONT is
begin

tcase corn is
when ass: ASSIGN = >

EVALEXPR
* ( ass:2,

declare function econt (value: VALUE) return CONT is
function new-cont (state: STATE) return ANS is
begin cont( (update(state:1, value, ass:1), state:2) )end new-cont;

begin new-cont end econt;
begin econt end);

when out: OUTPUT = >
EVALEXPR

.4 ( EXPR(out),
declare function econt (value: VALUE) return CONT is

function new cont (state: STATE) return ANS is
begin (value, cont(state)) inj ANS end new_cont;

begin new_cont end econt;
begin econt end);

when if: IF =>

EVALEXPR
if:1,
declare function econt (value: VALUE) return CONT is

begin
if va~ue elt BOOLEAN then

if value pro BOOLEAN then EVAL COM(if:2, cont)
else EVALCOM(if:3, cont) end if
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else error end if
end econt;

begin econt end);
when while: WHILE = >

declare function newcont (state: STATE) return ANS is
begin
EVALEXPR

while:1,
declare function econt (value: VALUE) return CONT is

begin
if value elt BOOLEAN then
if value pro BOOLEAN
then EVAL_COM(while:2, EVALCOM(com, cont))
else cont end if

* else error end if
end econt;

begin econt end)
(state); -- Curried call

end new.cont;
begin newcont end;

' when seq: SEQ = >
EVAL_COM(seq:1, EVAL_COM(seq:2, cont))

end tcase
end EVALCOM;

end TINY;

.

Se

6



111. AFDL + ABSTRACT SYNTAX

AFDL Abstract Syntax (List Representation)

D. Martin and A. Stoughton

17 Feb. 1982

program: comp units

comp unit: fun -deci
Ifun spec
pkg spec
pkg body

pkg spec: (PSPEC pkg id dec _ item_s)

pkg body: (PBODY pkg id declites)

deci item: var spec
var deci
fun spec
Ifun-deci
Itype deci
Ifun type deci
Iprod type-deci
sum type_deci

Iseq type_deci
Ipkg spec
Ipkg body
use-clause

* var spec: (VSPEC var_ id_s type id)

Ftype decl: (TDECL type id type def)

type def: PRIVATE -- private type
enum type -- enumerated type
Itypeid -- type equivalence

enum_type: const_- id -s
var_ ids

fun type deci: (FNTDECL type id fun type)

prod type deci: (PRTDECL type id type ids)

sumtypedecl: (SMTDECL type id type ids)
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seq type deci: (SQTDECL type id type id)

use clause: (USE pkgids)

fun-deci: (FDECL fun_ id fun type fun def)

fun spec: (FSPEC fun_ id fun type)

fun type: (MAP type ids type id)

fun-def: (LAM id_s expr)

expr: (LET dec _ s expr)
I(APPLY expr exprs)
I(IF expr expr expr)
I(CASE expr alts)

* I(TCASE expr talts)
I(WARNING expr msg)
simple expr

deci: var deci
Ifun spec
Ifun_deci

var-deci: (VDECL var_ id type id expr)

alt: (choice_s expr)

choice: id

OTHERS

t-alt: (ALT var_ id type id expr)
I(OTHERS var_ id type id expr)

'0simple expr: (binop expr expr)
I(unop expr)
I(ELT expr type id)
I(INJ expr type id)
I(INJ expr type id (FROM type id))
I(PRO expr type id)

* I (PRDEN exprs)
I (SQOEN exprs)
I(CAST type id expr)
Iid
Iinteger
Istring

id: var-id
Ifun id
const_ id
Itype id
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binop: AND
OR

IXOR
IANDTHEN
IORELSE
IEQ
INE
IGT
IGE
ILT
ILE
ICAT
IHEAD
ITAIL
IPLUS
IMINUS
ITIMES

unop: NOT
IUMINUS
ILENGTH



IV. AFDL + CONCRETE AND ABSTRACT SYNTAX

* OUTPUT [ROM GRAMMAR ANALYSIS PROGRAM IN for the AID[I+ GRAMMAR

I IR M IN AIS NO0N IIRItN NAI S

I & 59 (2 IXPRIISSION LISI>
2 ~62 (2 I YPE 11) 1IMI>

3) 61 <2 VAR_ i) iISI>

5 *1 63 (AIOI PROGRAM>
6 + 64 <Al IFfiNAIIVI >
7, 65 <AIIIRtNAIIVtII115>
8- 66 <ANIIIIN IXPRISSION>
9 .etconst 67 <AND) EXPRESSION>

10 integer 68 <RI OCK>
11 .procname 69 <BLOCK BODY>
12 string 70 <CASt [XPRl>
13 typemark 71 <CIIOTC[>

14 .va rnaine 72 <CIIOICI LISD>

17 75 <CONITIION>

21<=79<I)FCIARAiIVF ilM

24 > 82 <I)ICI ARAIIV Hvi IM I ISI>
25 >= 83 <DICIARIAIIVI PAIII>
26 AND) 84 <DOM-OP>
27 BEGIN 85 <FNUMIITA1FD)IYPI DIIINIIION>
28 BOD)Y 86 <EXPRFSSION)
29 CASE 87 <EXPRtSSION IISI>
30 IICLARF 88 <FORIMAtL PART>
31 fLSE 89 <IUNCIlON BOIDY>
32 [[-SIF 90 <FUJNCTION CALl>
33 111 91 <I INCI ION O)1Cl ARIATION>
34 t NJ) 92 <IUNCIION NAMI O1NION>
35 FUNCT ION 03 <fUNCIJON SP1CiIICAI ION>

36IF94 <FUNCI ION_ TYPE D)ECLARAT ION>
376N 95 <ID>
38 IS 96<IF X>

L39 1 1NGIII 97 <II EXPR IAII>
40 NOT 98 (NAMI >
41 OR 99 <NAME LIST>
42 OTHERS 100 <NULl _BlOCK _BODY>

*43 PACKAGE 101 (ORIISL TXPRfiSSION>
44 PRIVATE 102 (OR IXPfitSS1ON>

*45 PRO 103 <PACKAGI BOD)Y)
46 PRODUCT 104 <PACKAG! SPtCIFICAIION>
47 RtIURN 105 <PARAME IUO D1CI ARAI ION>
48 SIQUINCI 106 <PARAMFtERD)1Cl ARAlION ITS[1>
49 SLIM4 107 <PKG ID I ISI>

*50 ICASF 108 <(PR IMARY >
51 1111N 109 ( PROITUC I I YIPI D1ClARA lION)
52 TYPE 110 <RIIAT IOh>
53 USE III <RIIOP>
54 WH4IN 112 <111 TURN 1IPR>
55 XON 113 (RI IURN IYPI>

r 5 114 eSIMI)
57 I115 <SIQUtNCI IYI'l l)ICI ARAI ION>

*58I 116 (SfO011P>
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117 ,SIMIIII I XP'IISSION
118 <SUJM>
119 <SUM fYI! DItCIAtAIIO
120 <SYSIIM GOAl SYMIJOI
121 < II HM>
122 < I Y111 AllI
123 < IYII Alt I 1SI)
124 < I Y111 CASf I XI'It>
125 (IYPI COIIICION>
126 <(IYI'l I)I CIAIIA I ION >
127 < I YI'I l)!I tNI I ION>

1w 129 (UN 011>
4 130 <US[ Cl AUSI )

131 (VARIABIf IICIAIWAION>
132 (VARIAHIt SPICIIICAIION>
133 (VAR 11) I tSlI
134 (WIIIN OiIIRPS>

135 <XOlt IXI'IISSION>
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I <SYSTEM GOAL SYMBOl> :: E* (AFDL _PROGRAM> *1*

I- R( I Grammnar f or Ada IFormalI Derfin Iti!on Ilanguage (All01
-- this version includes Appendices G, H. 1, J. and K or the Ada ISO)
-as well as the static and dynamic functions or Chapters 3. 4. 5, 6.
7. B, . 9. 10. 11. and 12.

2 <AIDL _PROGRAM> ::(COMPIL.ATION__UWli_tISI> S> tStIQ AbstractSyntaxirees S1AR:1I

3 (COMPILATION UNIT LIST5> <COMPILATIONUNIT 1151) <COMPIIAITON UNIT)
S., [PRINIDEF STAR:1:2J IERPRI[J <<

4 <COMPILATION_,UMTI> ;S> jPRIWIDEI SIAR:1:21 lERPRIJ J <>

5 (COMPIFArTON UNIT) <FUNCTIONDECLARATION>
6 I<PACKAGE--SPECIFICATION>
7 I PACKAGE _BODY>

**S*~**** A P P I N D I C k S G through K **S**

8 <PACKAGf SPIC IFIICAI ION> PACKAGE . procname IS <IICIARAI IVI II M I IST) >fND) <1FUNCT ION NAMI OPT ION>
S- :PSIfC!2

q <PACKAGE BODY) :=PACKAGE BODY .procname IS (DECL-ARATIVE _PARF) [NO (FUNCTION NAME OPTION>

S> - :PflOIY!2

10 (IFCIARAT VI ITEM I 151> <DECLARAFIVE IIEM> ;S> <>
11 <DEClARATIVE _ TTMlI1ST> <F)FCIARAIIVI IlM>

S> <<

12 (DFCFARAT EVE PART) (DCLARATIVE _ITEM> S> <>
13 (PACKAGE _BODY> S> <>
14 < DECLARATIVE _PART> (I)ECIARAIIVI ITEM> S> <<
15 I DECLARATIVE _PART> <PACKAGE _BODY> S> <<

16 .<DfCLARATIVI ITEM> (VARIABLE _SPECIFICATION>
17 <~VARIABLE DECLARATION>
18 I <UNCTIONSPECIFICATION> S> SWAPIl 21 -:ISPEC!2

19 (EUNCI IONDECLARATION>
20 < TYPE DECLARATION>
21 I <UNCTIONTYPE _DECLARATION>
22 <PRODUCT TYPE DECLARAIION>
23 I SUMW_T1YPE _D1CiARAlION>
24 I<SEQUENCETYPE DECLARAI ION>
25 I<PACKAGE _SPECIFICATION>
26 I USE _CLAUSE>

27 '<VARTABI _ SPECIFICATION> varname (T0YPE ID> S> SWAP[1 2] <> SWAP[I 21 :VSPIC!2
28 I 2_VAR__ II) LIST> :(IYPI II)> S> :VSPIC!2

*29 <lYPI DICIARAIION> TYPI <TYPE ID> IS <MI1)11 1INtIION> S> :101WT 2

30 ( IYT'I Dll NI IION) <1 NUMI RATFI) MT l 11INII ION>
31 PI1IVATE S >I OAII'l PIVA IFI
32 I (YPE It)> -- type "equivalence"

33 EFNUMfRATED TYPE DEFINITION> (<CONST _ Ill 1ST>
34 ((VAR 11) 1 ISI)

*35 '<CONS1 1 I 11> <CONS[ II) S> <>
36 <CONSI ID LIST> , <CONSI ID)> S> <<

37 (VAR_ ID LIST> varname S> <>
38 I<VAR 11) t151> . varname S> <<
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39 (2 VAR ID IISI1 varnamle varname S MAKI IIjVi'i112
40 I<2 VAR ID) 11Sf> ,varname S> <<

41 <2 TYPE TO [1ST> <TYPE 10I) ,<TYPE ID> S> MAKI IUPIII 21
42 I<2 TYPfE _ ID_[ST> ,<TYPE ID)> S), <<

43 <lUNC ION IYPI I)ICI ARAI ION) : FUNCT ION IYPI ( IYI1I II)> ( Kl'AIIAMI IIHIf)1CI AHAI ION I ISI ) <RI. IURN IYPI,
S> SWAPI I 21 IIURSII I SWAPJ I 2) - SWAP[I 21 :MAP!2 :INfECI !2

44 <PRODUCT fYPF DECIARAT ION> PRODUCTIfYPI <IYI ID>) ( (2 IYPI 11) 11Sf>
S> :PRII)fCl !2

45 (SUM fYPf IICIARAT ION> ::= SUM TYPE <IYPI ID) ( <2 IYI'I 11) 1 IS[> ) S> SMIITICI !2

46 (SIQUf NCE TYPE DECl ARAITION> ::=SFOUFNCE IYPI (fYIPF ID)> < IYI'I ID)> S> :SQIITICI !2

47 'USf CI AUSI> :: USI (PKG ID I 1Sf) S lUSl 1 1

48 <PKG _ID_1151) :: procname S> 0>
49 < PKGID_ LfSI> ,.procnamie S> <<

-- ~C If A P f F R S 3 through 12

50 <FUNCTION OICLARAITON> :: <FUNCTION SPFCII ICAIION> IS <IUNCIION ffOIY>
S> SWAP12 *31 :IAM!2 :II)FCI !3

51 < FUNCTION SPECIIICAIION> IS (NUll BLOCK BODY)
S> SWAPI 1 21 - :ISPIC!2

52 0UNCTION SCIFICATfON) : FUNCTION <1I)) (FOHMAl PART> (RI IUIN IYPI>
S> :MAP!2

*53 <FORMAl PART> : S> IOAI)INII I -- (IMPlY>
-additional Nil For a total of 2

54 < PARAMETER DECI ARAf ION IISI> ) S> BURS1f - burst parameter Ilist

55 <PARAMFIIR l)fCIARAIION I 1ST> :'<PARAMFIIR l)FCIARAI ION IISI> (f'ARAM1IIFT f)FCIARAFION>
S> <<

*56 < PARAM[ l111 IJICIAITAIION> S) <>

57 <PARAMETFR DICIARAIION> ::= <NAME I fSl> :<TYPF ID> S> MAKI fUPII2I

58 <RI TURN fYPI R- RIIIRN (IYPf IO)>

*59 <NUIl I OCK IiOfY> :: EHGIN ITNI) <FUNCTION NAMI O'I ION) S,) -- Ifor incomplete procedures

*60 I UNC IION flOIY', (IICIARAI IONl I 15> (BlOCK IIOIY) S> :11 1!?
61 I(BOCK BODY>

*62 (DFCI ARAT ION 1 1ST> : <I)ICLARAT ION _I 151> (DI CIARAT ION) iS> <<
63 I FCIARATTON> :5> <)

64 <d)ICIARAI ION> 2'<VARIABLE DtCLARAI ION>
65I (fUNCTION DECLARATION>

66 I LUNCTIONSPECIFICATION> S> SWAPJ 1 21 - :ISPFC!2

67 <VAR IABI F IFCIARAI ION> : varname (IYPI II)> <(I KIISSION> S> -VIICI !3

68 <NAME _ IST> <: NAME lIST> ,<NAME> S> <<
* 69 <NAM[3 S> <>

70 <NAME> varname
71 I procname

72 (CONST ID> :: etconst S> (RPIACA STAR (PACK*- SIAR1I)I

73 (IYI'I 11)) : typemark S Il1'1ACA StAl (PACK*f SIAT 1)1
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74 <EXPRESSION> <RETURN_ EXPR>
75 I RELATION>
76 I ANDEXPRESSION>
77 I OR _IXP)RESSION>
78 I<XORIX'RESSION>
79 (ANDTIIINEXPRESSION>

80 1 ORELSE EXPRESSION>

81 (SEMI> S > - IMIIlY> &C optional semicolon
-discard stacked Nil

82 I -nothing stacked here

83 <RETURNEXPR> ::= RETURN (EXPRESSION>

84 <IF _EXPR> :=If <COND)ITION> THEN (EXPRESSION> (SEMI> <11 EXPR IAII>

S> :IE!3

85 (CONDITION> ::= (EXPRESSION>

86 (I _ EXPR _ AIL) := SI <ii CONDITION> TIHEN (EXPRESSION) <SIMI> <11 IXI'AIT Al >
S> :11!3

87 IELSE (EXPRESSION> <~SEMI> END If

LI 88 (CASE _EXPR> ::= CASE (EXPRESSION> IS (AITERNAIIVtI 115> IND) CASI S) :CASI !2

89 (ALTERNATIVELIST> < ALTERNATIVE _LIST> (AE IERNAI IVI > S> <<

90 I ALTERNATIVE> S> 0)

91 (Al TERNATIVE> :WHEN <CHOICE-_LIST> => <EXPRFSSION) (SIMI> S> MAKEFIUP11121

92 (CHOICE _I 151> (CIIOICIIE IISI> I <CHOICE> S> <<
93 < CHOICE> S> <>

94 (CHOICE> <: CONSI ID>

95 varnamie
96 1 OTHERS S> IOAI)IOIIIIIISI

97 (TYPE _CASE _EXPR> [~ CASE (EXPRESSION> IS (TYPE _AlE_ LISI> IND) ICASE
S5 :1CASE!2

98 (TYPE All _ IST) <: (YlIE All> S> <>
99 I (YPf All LISl> (IYPI All> S> <<

1OO (TYPE _ALT)>: WHEN .varname ( TYPE _ID> => (IXPRESSION> (SEMI> 5> :AI 113
101 I WHENOTIIIRS> .varname :(lYPI ID> 0> (EXPRESSION) (SEMI>

S> MAKE IUPIE141

102 (WHENOTHERS> ::= WHEN OTHERS S> I.OAI)OIIIERSI

103 (TYPE _COERCION> (: TYPE _ID> ( <EXPRESSION> ) S> :CASI!2

* 104 (RI OCK) DECLARF (DECI ARATION_ LIST> (Dl OCK HOI)Y> S> :111! 2
105 < BLOCK BODY>

106 (BLOCKBODY> :=BEGIN (EXPRESSION> (SEMI> END <EUNCTION NAME OPTION>

107 (FUNCTION -NAME OPtION> : -- (IMllY>
108 < ID>

109 (AND_ EXPRESSION> <: RELATION> AND <RELATION> 5> :AND'?
110 I ANDEXPRESSION> AND (RFlATION> S> :ANI)!2

II <1 OR EXPRESSION> : <RFlATION) OR (RflATION> S> :OR'?
112 < OR EXPRESSION) OR (RIIAI ION) S> :011!2

113 (ROR EXPRESSION> :y REIAIION> XOR (REIAIION) S> :XOl!2
114 I XOT IXPRESSION> XOI4 (RIIAI ION) S) :XOII'?

115 (ANDIIHEN EXPRESSION> < RtLAlION> AND TI~N (IIIAIION> S> ANI)IIIN!2
116 < ANDIHEN_ EXPRESSION> AND THIN (REIAIION> S> :ANI)TIIFN!2

117 (OREESE EXPRESSION> (RELATION> OR [IS[ (RIIAIION> S> :ORIISI !2
1la I OREIf SIEXPRESSION) Oil II SI (1111AlION) > 5 011ISI'?
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*119 (RILATION> (51MPII EXPRESSION>
* 120 < SIMPLE EXPRESSION> <REI.OP> <SIF4PE EXPRESSION> S> !2

121 < SIMPLE EXPRESSION> ELT (IYPE ID)> S5 El !2

122 <RltOP> S> :) 0
123 S > :N1
124 I> 5> :Gl

*125 I>= 5> :GL
126 < S> :11
127 <= S > At

128 (SIMPLE _EXPRESSION> (SUM>
129 I SIMPlE _ EXPRISSION> <SEQ 01'> (SUM> 5? !2

1 130 I SIMPlE fXPRESSION> <DOM 01)> <lYh'F II)> S> !2

131 (SUN> (TERM>
132 I UN_OP> <TERM> S> !I
133 (SUN> (ADD__OP> <TERM> 5> !2

134 (uIRN> < PRIMARY>
135 <IERM> ( PRIMARY> S> :11F41S'2

136 <PRIMARY> <ID>
137 Iinteger integer
138 Istring -- string
139 I FUNCIION_ CALL>
140 I( <EXPRESSION>
141 I IF _EXPR>
142 I CASEF EXPR>

*143 < TYPE CASE EXPR>
144 I TYPE COERCION>
145 I(BOCK>
146 < 2 EXPRESSION l ist> S > :I'RDtN!1 - product denotation

* 147 I <EXPRESSION_ LIST> S > :SQDFN!1 - nonempty sequence denotation
148 S > lOAh)INII I :SOD[hN! I

-empty sequence denotation

149 (ID> : varname v- ariable identifier
150 I procname -- function identifier
151 I CONSI _ID> - tree construct identifier

152 (FUNCTION CAll <: IL> ( S > lOADjNIt- I :Ai''IY!2
153 <](D> ( (EXPRESSIONLIST> S>5 :APPIY!2
154 1 (CURRIED_- FUNCTION _CALl > S > LOAD[NIIJ IAPPI Y!2
155 1 (CURRIED FUNCTION CAll> ( (XPRISSION I IS)> ) S> :APPlY!?

156 ( CURR I FD F1UNC I I ONCAI I > <(IIW ( ) S> tOADI Nil I :AI'It Y!2
157 < (ID ( (EXPRESSION LIST> S > :APPLY!2
158 < CURRIED_- FUNCTION CAl I > S > LOADINI! ] :APPIY!2
159 I<CURRIED_ FUNCTION CAl I> ( 'IXPRFSSION ITS[>

r ~S> :APIIlY!?

160 (SF0 OP> S > hF1Al) sequence operators
- product or sequence element selection

161 S. > :[All -- sequence tail selection
162 S > :CAlI - sequence concatenation

163 (DON4 OP) [: NJ S) :INJ domain operators
-- iniject ioni

164 IPRO 5> :PRO -- project ion

165 (UNOP> S) - > UMINUS
* 166 I Not S> :NO[

167 1L1 NGIII S> :I ENGII

168 <AlDD OP> + S> :Plus
169 S > :MINUS

*170 (IMPRESSION list> : IXPRFSSION list> * (XI'RE[SSION> S> <(
17 <l EXPRESSION> 5> <>

172 (2 EXPRESSION list> (2 EXPRESSION list> . <XPRiSSION) 5> <<
173 <FXPRFSSION> * (XPRISSLON) S> MAKI IUPIIII
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A V 0 C A B U I A It Y C I 0 S S - I I IR I N C I

& 162
33 34 43 44 45 54 103 140 146 152 153 154 155 156 157 158 159
33 34 43 44 45 54 103 140 146 152 153 154 155 156 157 158 159

135

+ 168
36 38 39 40 41 42 49 68 170 172 173

- 165 169
.etconst 72
integer 137
procname 8 9 4R 49 71 150
string 138
typemark 73
varname 27 37 38 39 39 40 67 70 95 100 101 149
/= 123

27 28 57 67 100 101 160
161
67
3 4 10 11 12 13 14 15 55 62 63 82

< 126
<= 127

122
=> 91 100 101
> 124

>~125

AND 10( 110 115 116
ItGIN 59 106
BODY 9
CASE 88 88
DECLARE 104
IISF 87 117 118

II1 121
(NO 8 9 59 87 88 97 106
FUNCTION 43 52
IF 84 87
INJ 163
Is 8 9 29 50 51 88 97

I INGIt 167
NOl 166
OR 111 112 117 118
OTHERS 96 102
PACKAGF 8 9
PRIVAII 31
PRO 164
PRODUCT 44
RETURN 58 83
SIQUINCI 46
SLIM 45

CASI 9 1 9 7l
'9 llll 84 86 115 116

TYPE 29 43 44 45 46

USE 47
LWHfN 91 100 102
.X014 1l,3 114
L I 147 148
. I 147 148

S 92
f 2 XPRISSION LISI> 146 172 -172 -173

"<2 TYPI ID IIST> -41 42 -42 44 45

,<2-VAR IT) LI ST> 28 -39 40 -40
I <ADD OP) -133 -168 -169
•<AFDl PROGRAM> I -2

<At IIRNAI IV| > 89 90 -91
<AIIIRNATIV tlISl> 88 89 -89 -90
<ANDTIIN EXPRESSION> 79 -115 116 -116
<AND EXPRESSION> 76 -109 110 -110
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<BLOCK> -104 -105 145
<BLOCK BODY> 60 61 104 105 -106
<CAS iXPR> -88 142
<CHOICE> 92 93 -94 -95 -96
<CHOICE LIST> 91 92 -92 -93
<COMPILATION UNIT> 3 4 -5 -6 -7
<COMPILATION UNIT _.ISt> 2 3 -3 -4
<CONI)IION> 84 -85 86
<CONSI ID> 35 36 -72 94 151
<CONSI ID LIST> 33 -35 36 -36
<CURRIED FUNCIION CALL> 154 155 -156 -157 158 -158 159 -159
<DECLARATION> 62 63 -64 -65 -66
<DECLARATION LIST> 60 62 -62 -63 104
<D[CIARAIIVt ITIM> 10 II 12 14 -16 -17 -18 -19 -20 -21 -22 -23 -24 25 -26
<I)CIARAIIV I1M IT S[> 8 -10 11 -11
I)ECIARATIVi PART> 9 -12 -13 14 -14 15 -15
<DON OP> 130 -163 -164
<ENUMERATED TYPE DEFINIIION> 30 -33 -34
<fXPRFSSION3 67 -74 -75 -76 -77 -78 -79 -80 83 84 85 86 87 88 91 97 100 101 103

106 140 170 171 172 173 173
<XPRESSION_ IISI> 147 153 155 157 159 170 -170 -171
<FORMAL PART> 52 -53 -54
<FUNCTION BODY> 50 -60 -61
<FUNCTION CALL> 139 -152 -153 -154 -155
<FUNCTION DECLARATION> 5 19 -50 -51 65
(FUNCIION NAME OPIION> 8 9 59 106 -107 -108
<FUNCIJONSPECIFICAIION> 18 50 51 -52 66
<FUNCTION TYPE DEClARAIION> 21 -43
<Io> 52 108 136 -149 -150 -151 152 153 156 157

S <If IXPR> -84 141
<IF tXPR TAIL> 84 86 -86 -87
<NAME> 68 69 -70 -71
<NAME LIST> 57 68 -68 -69
<NULl BLOCK BODY> 51 -59
<ORFISF EXPRESSION> 80 -117 118 -118
<OR EXPRESSION> 77 -111 112 -112
<PACKAGE _BODY> 7 -9 13 15
<PACKAGE SPECIFICATION> 6 -8 25
<PARAMETER DECLARATION> 55 56 -57
<PARAMETER DECLARATION LIST> 43 54 55 -55 -56
<PKG ID LIS1> 47 -48 49 -49
<PRIMARY> 134 135 -136 -137 -138 -139 -140 -141 -142 -143 -144 -145 -146 -147 -148
<PRODUCT TYPE DECLARATION> 22 -44
<REIATION> - 75 109 109 110 111 111 112 113 113 114 115 115 116 117 117 118 -119 -120 -121
<RELOP> 120 -122 -123 -124 -125 -126 -127
<RFTURN fXPR> 74 -83
<RI IUIIN IYPE> 43 52 -58
<SEMI> -81 -82 84 86 87 91 100 101 106
<SEQUENCE TYPE DECIARATION> 24 -46
<SFQ OP> 129 -160 -161 -162
<SIMPIF fXPRFSSION> Iq 120 120 121 -128 129 -129 130 130
'SUM' 128 129 -131 -132 133 -133
<SUM TYPE DECLARAfION> 23 -45
SYSIIM GOAL SYMBOl> -1

. <IIRM> 131 132 133 -134 135 -135
<IYPI All> 98 99 -100 -101
<IYP All 1ISI> 97 -98 99 -99
<IYPI CASE EXPR> -97 143
<TYPE COERCION> -103 144
<IYPI DCLARATION> 20 -29
<IYPI OIFINlTION> 29 30 -31 -32
,IYPI II> 27 28 29 32 41 41 42 43 44 45 46 46 57 58 67 73 100 101 103

* 121 130
<UN OP> 132 -165 -166 -167
<USE CLAUSE> 26 -47
<VARIABLE DECIARAIION> 17 64 -67
<VARIABIf SPFCIFICATION) 16 -27 -28
<VAR ID IISfI 34 -37 38 -38
<WHEN OTHERS> 101 -102
<XOR 1XPRfSSION, 78 -113 114 -114

S"
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