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1. int ', : i:

Ment methowl :- .. . , ::. . '- <2 .i vs ''.'l .'

which c he rprox 2.: ' .-... .- ,: :; :,es ,"'I- Ao7-
DoseU Df 'oiecewse "o'n", L i: ies.:i on1 -- partiticn of tbo

- D f e . .c- e ' 2 n " I' I - cn ',e "

7viV Ov' r . ".. 7' r.a jns. n1P r, c . 1e convernerce

,t b i..e y .. ncreasing the dimension of thes

4 subspaces in some ma....or, one observes that there are ha- ica]],.

two wavs this can ho done. 'The first way is the traditional

approach obtained by :ixing the degree n of the piecewise

polynomials at some value ( 1 ],2,) and decreasing the mcsh

size h in order to achieve convergence; this is known as the

h-version of the finite element method. The second way, re'erred

to as the p-version of the finite element method, is to fix the

mesh and increase the degree p in order to reduce the approxi-

mation error. Clearly, a combination of the two is also pos-

sible. While the h-version has been extensively investigated

in the mathematical literature and has been widely used in enji-

neering applications for many years, the development of the p-

version has taken place only recently. Due largely to the inves-

tigations performed at the Center for Computational Mechanics at

Washington University in St. Louis, it is now recognized (e.r.
Z], [12], [161) that for many problems of engineering and

scientific interest, the p-version offers a number of advaotno

over the h-version both in the Quality of approximation an,: .n

the cost of computation.

In the mathematical analysis of either the h o p



I.

versions, it 15 wll--n wr, t--t , 1 c<u,0, i -

condition -an be est. (lshed for the v n F. 'er,., ,,1 n -

task o' cIbtaining error stmites re..uc _ es 1 ,re ip:ro:

* mation-theoreti2 question (see e.r. [2], [B]). Fur the .-

version, this approxtiation theory :s very we!iL-develcoe :

-,-he other, hand, -he apTroxim.at ion issues arim ini in the a-n.r s:or.

re-uire different techniques and have not heen as thorouThi

m investigated. In [4], some direct energy norm estimates ore

obtained which show that the rate of convergence for the

p-version can be no worse than that of the h-version with a

quasi-uniform sequence of mesh refinements. A combination of

the h and p versions is considered in [3] where it is de-

monstrated that particular couplings of refined meshes and in-

creasing polynomial degree distributions yield arbitrarily high

rates of convergence in the energy norm with respect to the

number of degrees of freedom. However, both of these analyses

fail to predict the improved (by a factor of 2) rate of con-

vergence which is observed in applications of the p-version

to various problems of two-dimensional linear elasticity where

o singularities are commonly present in the solutions. By apply-

ing a separate analysis to the known singularities of such pro-

1blems, the doubled rate of convergence is also proven in [4],

although the techniques are rather specialized and do not seem

to readily extend to the three-dimensional case or to problems

in which the solution is singular at more than lust a finite
S

sa;t of isolated points. Finally, a number of somewhat reLLt,<

approximation results have been obtained in the analyiv of an
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* alterinative to finite elements and -:inite < ces known a-v

the spectral method (see e.g. [7] and the r'ef oencos contc "r-

..iere in)
I.

he purpose of this -two-part paper is to iutempt 'E- :''i.,

the D-version approximation theory by estabIlohing 1 frame,o.K

from which man, oF the above and other result'3 7,av be .iv.

The present article addresses tiie isSue oF piecewise polynomTi al

6 ' approximion on triangulated domains of -1n  The application

of results obtained here to problems of two- and three-dimensional

linear elasticity, including some nume1ical computations, will

be given in the second article.

A key idea in the following development is the introduction

of certain weighted Sobolev spaces, which are identified in sec-

tion 2 as the domains of powers of the Legendre differential

operator. Their connection with polynomial approximation is

obtained by exploiting the fact that the eigenfunctions of the

Legendre operator are themselves polyncmials. This one-

dimensional result is then readily extended via a tensor product

construction to obtain approximation results on any triangulate,-

domain in pn provided that no compatibility conditions are

required across the common boundaries of adjacent simplicec.

In many applications, however, one must use piecewise noiyn-

mials which possess a certain number of continuous ,irivativcs

across the common boundaries of adliacent simplices. Noreo ver.

the approximating functions will often be required to sati 'cFv

a set of boundarv conditions associated with the undeolyino

problem. In the finite e1,7.menL literatune, such piecewise
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2. Approximation by non-confu em-ng .cewi Pnjl Y~omi ! IL;
triangulate] domains

Tn this section, piecewise p.3vnami,! i'proximation isc ,-

sidered on M angulared dumn on' o:rx N.- i:< '-m 'Aa € -

tions are not required to satisfy any ccmpatibiity conditions

across the common boundaries of ad' cerzr m ;pmR >c of -he

triangulation. anj hence rhe centr ! Js ,, !.; hat .of po vvoi.;,-

approximation on an individuo3 simplex.

Let I denote The interval -1 < t < i Ind let C (K) Le

the set of all infiitey 0ifi erentiabl u ncti-;ns "n 1. yn-

garding the Legendre 'ifferential oerator

r, :- - - [(I-z% -- ]
, -ddt

as a symmetric, unbounded ooerator in LIM) with domain of

efinition C0 (T), it is shown in [15, Thecrem 7.4.1] that the

closure L of L is self-adjoint. In fact, since L is non-

negative, U coincides with the Friedrichs extension of L as

constructed, for example, in [?]. It is well-known that L

(and hence L) possesses the eigenvalues

Z M m(m+1), m 0,1i...

wp that the corresponding eigenfunctions are the Levendre poly-
0

nrmiais F . AssuminF that the P have been normalized so
rn m

h PmIL (I) = I for all m, the system PM } forms an

7rthonormal basis for L (I).
i n

qiven any real s 0 0, de~1ne
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zs ) T {u: jju! <SS(T)

. where, if s K an integer,

hIIu -uJ 
d t + k dt).

7 (I) T dt

and ik s k + T3 wi th k an integer and 0 < 8 < 1,

2 /2 dk U 2 S/2 I 1/2

u 2  + dtdT
I]lz (I)' R 1 IxlU t ,]+2
z kM IIt- -

Denoting by (-s/2) the domain of definition of Ls12 in

"?(I) for each s > 0, one has the following result.

Lemma 2.1. (i) C"(1) is dense in ZS() for all s > 0,

(ii) PsG) =(L7 ") Ior all s > C sc h that S +

an integer, and
1

(iii) if SlS >_ 0 are such that s. - + an integer,
?' i 2

i 1,2, and if 0 < 0 < 1 is such that s = (1-6)s + Os

1 + an integer, then

s sI  s 2 zS I
(Z (I),Z (I)) M,2.

For 0 < e < I and I q ,, (,)o,q denotes real inter-

polation via t.e K-method (see e.g. [61).

0



Pf: Part (i) lis proved in [131 for integer : and in [ 'o-'

non-integer s. Part (ii) is contiined in [15, Theorem "7'91.

By [15, Theorem I.1".l .l 0], if T i, .,, y nii- . I]-',, ::,--

adjoint operator, then for all sl.S 2 _ Co an' 0 < C < t

4holds that

(i-O)S +6S
(D(T ) ,(T 2)) D(T I)e ,2

Applying this to T (iii) follows from (ii).

Remark. One observes that, except for the values s 2- + ans 2

integer, the spaces ZS(I) form a Hilbert scale. Regarding

tS + an integer, Triebel [15] modifies the spaces
2

zS (I) to identify D(L s / 2 ) in these special cases. More

specifically, it is shown that for s - + k, D(L s 2 ) is the

completion of C (I) in the norm

k 2 (l_t2) s - I dt) / 2Hull (!lull kds
fluI s(I) (I ( I ) I ts

This anomaly is similar to that encountered in attempting to
1
2+ k

identify the Sobolev space H as the domain of definition

of a power of the negative Laplacian with homogeneous boundary

* data.

The following technical lemma will be of use in obtaining

subsequent results,

o
Lemma 2.2. For a 1,

lut_,t-d 

C 
Ia 

du

(2.1) I ju(t)-j2tO- 2 dt C(c)I t dt
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where a u(0) if A < 1. a u(1) if t > I.

Pf: Suppose that a < 1 and let w(,;) = u( -  ) - u(0). 'hcr

since w(O) = 0, one has by [9, Theorem 254] that

J 0w(s)s ds s (f' lw'(s)l'ds + Iw(1)I)

Since w(1) f w'(s)ds, it follows that
f0

I j w(s)j 2s- 2 ds < C J Iw'(s)2ds
o 0

1-a

and (2.1) follows by making the change of variable s t

Now suppose that a > I and let

u(s l) u(1) if 1 s <
W~s)

w 0 if 0 - s ! 1

Then, since w(0) 0, one obtains by [9, Theorem 2531 that

Iw(s)j s ds < C Iw'(s)2 ds
00

which yields (2.1) after again making the change of variable

l-a
s =t

For any non-negative real number s, let HS(IT) denote

* the usual Sobolev space of order s on I which, for interer

values of s, is defined as the completion of CO(O) in the

norm

I



u t ,t +

i-s(I)", 1 :":

or non-integer s rs ,<efine by .ea] rv .' " -

tween the integer-ordered spaces. The next r " r "

relationshir between the unweighte,-i sce, V() C .

weighted spaces Z s (l).

Lemma 2 .3. if s is anv non-negative real n'Tber s2c :
1 s

S + an integer, then ZS(i) is contin o:s-1 : 0'be <.C

0 Hs  (I).

PC: Consider first the case in which s =", k a cositi'e

integer. It suffices to prove that for any u C C (I),

( 2 .2 ) ,,' uII '-)ku l
H (I) Z~ (I)

with C independent of u. Hence, let X E (I) be such

that

H- -- 3
x (t)

0I t < ]1

3-

* and let u 1  uX . By Leibniz' rule together with repeated

application of Lemma 2.2 (with the appropriate scaling) one

obtains that

S



1.

17 foullosta

J +
- t i d t :1 I (i

+ [ .. I -- v -

t _~1  7 it"

ii

!.. " .. .....I iC t +~~:2 -- 7 ((vt) ' . C-

rg it follows that

Kt

f~~~ 11 Ul 121] ik2 k

(2 3t . l ' k

- +Ji dt .-o k ~t) i

.< k!! Ci2k_2

and hence, CIuI

(2.3) iAX1! k (I)!u!

H (I) (T)

. Letting X2 =1 - X1I , one similar~v shows that

Ilu<'Hk < 14ul 2k(
H (I) .> ()

.4

which, together with (2.3) impli>7 (2.?). n.? C" (1) (7)

= L (i), the result for all t, satfvr1] I., hvv;'7h:
2

the lemma follows vii interpolation (c(,o .'. [r]).

For each positive intLeger , con i 7 ,

. < p



de r.ot e, to I de i e ~ e,, ' 111o i:: ( ) 10iT.-

r negadtive imo al. nurnhter, :e ine a n

S + I

q . w,,ere each of -1-1e tcense-r reLts(e1r' _a n [11

re n terms of the -1,_hti-hamd sinE cf (2.il) ,nntains n'-:-

-rors. The fllowing y-es'ilt is_ one nart nf 'i.orollar.' to

'heorem VITI.3] applied to the clcscd, non-negative, s-elf-

ajoinT_ oeratorsL

_e.nrna 2 .4. (M A Sis a non-negative ind sel-F-adlo-it operator

T~ L..JT) wit h domain of definition

V) -s/2
s 2 2

r . . 2 i'I L2(1 2 1D

(ii) A po)ssesses the eigenvalues

P1 m s/ 2m(.i)~

(iii) The eigenifunctions of A are

~(x) TI M In.,

and the svstem { i i n, othn o r ma I - for Y 1-~ (T1)
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integer, ( c line

-'--

The following is a srec*s!I ca1se hf eI, 'h.om TI.]O(h )].

Lemma 2.5. Let H ic a separable Hilbert space. if L (I;H)

Lenotes the Hilbert space of measurable functin,* wt -h

values in H such that

/~ 1lu t :1 (",2 : Iau t) I!H c~t
SIL (I;H)

then there exists a unique isomorphism from L (I) H onto

L 2(I;H) such that u(x) , u(x)p.

As a consequence of Lemma 2.5 and Fubini's theorem,it follows

that the space Z (Tn) may be equivalently defined as

zs(In) : {u: juls ( )}

where, if k an integer, then

22 " ?8w1i : "'c uKl x + n !?_ 7 ×-> ×
T F ) n T~ in  3xk

-nd if s k + 6 with k an integer and 0 < S < 1, then



0+

H-S n

... 5xLk

t-iT1 i+1JX .O . ..) .
Theore 2.1 Ci C ) i dnsei 5 T) fr l

(II;~~~~~~ TI +I ) D( o ll sn0schta

a n nd
. n.

(iii)e ife sp 0ae suc at sniitl C + an intger,-

11

n 2 s n

T (- is des in Z (I fr s.

(if ) Pr s (I n D(i fo l from 0 uc thet desito of +~

(i an f rom L emm s 2.ae and hat or to ianey iiie nteeir

observes~~ ta , fo2i~0

+i n

fun Ptio s oN ) . Th followin fr m eera lies io oefm 2. (I.

andh for m Lemma 2.1 Ca( n  2.4 Iensorer in S(I)ov (44o ) all s r

oservedjiti flos that for , ,u- 0,~d 0

Cs i

( i , i S)= (A ) for s , E s In 0 < 1
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(D(A ),D(A )) (D(A )PD(AI? ),.s ! q ',2 1'

S, (1- ) + s o
D(A)

D(A).

This together with (ii) yields (iii).

q Letting 1 s(I
n ) denote the usual Sobolev space of order

in
on , the following is a consequence of Lemma 2.3 and the

definition of the spaces zs(Tn).

Lemma 2.6. If s is any non-negative real number such that

s i + an integer, then Z S(In) is continuously imbedded in
2

Hs/
2 (In).

From the above results, one observes that if E denotes

the identity in L (I), then (L+E) - I exists in L 2(I) and

(L+E)-  2(I) -) DM = Z (T). By Lemma 2.3, it holds that

Z 2(I) is continuously imbedded in HI(I), which in turn is

compactly imbedded in L (I). Hence, it follows that (L+L)-9 2

is compact as well as self-adjoint in L2(1. Consequently,

the spectrum of L consists only of the eigenvalues Z , and

moreover, for each u . a P E D(L),
4mO m m

Lu - a P.
m=O mmm

4

Since L is self-adjoint and non-negative, one obtains that

for each real s :, 0, if u = [ a P E D(s/), thenm=O m m
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rnrO r m

By Lemma 2.4 ani K'ar'. IL . , th[i viel 1'; t:h, I

u=C. p a ?L' ), Then i o ) r S + :

integer if and onl'

* (2.5)\ m 2[+((s)121</

'w;erce, fo. " ('M .. ) Imr: . m Since X

[.(. )]/2 (2.5) is easily shown to be equivalent to

( ' 2 n 2s l/2z

(2.6) ( + m I < o

in fact, (2.6) definc an equivalent norm in zs(In) -or

s ± + an integer.

For each non-nei-at-ie integer p, let P (I ) denote thep

n
space of all prlynomiial:, n I of degree at most p.

Theorem 2.2. Let and s' be sich that s > s' > 0 and

5s3s i + -n iLteFer. I a E Zs(In) then for each non-

negative Inieger T, thTerexPst p E p(In) such that
0 p

were , ) inde ependent of-d ,i n p.

SL
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Pf: Let a uni for each non-negnti.o Ater:,

let C: a 2 inc P(n) Ir 7.... I ..n
f-. 0

one has that Qp E P (In ) and
P P

!+
7i-p]S(TIn ) C 14 > a-[ + n1 1.

> ~P i -

Z~~~~~ (T ml : -!~

which completes the proof.

The following result is the inverse of Theorem 2.2, up to

an arbitrarily small c > 0.

Theorem 2.3. Let s and s' be such that s > S,' 0 0 and

ss _ + an integer. f u E (Tn) has the property tha

for each positive integer p there exists P E P pOn. satis-

fying

(2.7) Hu-1p '(1n) 5C _s

with V inlependent of p, then u e Zs-(Tn) for arbitrar-

Saily small > 0.

4 Pf: The main part of the proof consists of showing *hat i

satisfies the n pothenis of the theorem , then u belon s to
il mllI>0
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the r'e l irnterr,,!arion, mpane I , ([)) . o !

k > an d al.? r: '- c u n t Lv sm all I-> ". 'le r-,;'jl tt~ r. !o l-

lows fcm p rt (ill) c, - Theorem ?

Let u TI a E 1 0(1n) naifv (2.7). It follows

that for each p > 0

Olmlu C*m: s'+ :
m . Z (I)

Let k > s and for each 1 ,2... set a. a

. o:<:lml<2 1

Since each u. with i > 2 may be written as u. u 1 +

i
I (u j- uj_l) , one obtains that

1=2

iuillk I) lull k n + 2 u -uj -llzk in)

Now,

i 2 n ?k /112
< C i  a [1+ M .

Sk(in )  C0<_< 2  m il /

lv o

< C~f n ,[ + M

0<] _< m i

, (I

and

2 n 2 ' 1/2

c 2 +!u.-u.-1 zk C a [. + m."
\ _ kml2 /

0m



181

<'-')- + ~ 22

I- n.'- n-~

Since

2 -11i (,n) !IL I 1 f) + T-) 1 ( s s

it follows that

HilkI < N~UN l + 2 (-~
-t k z (I'>) 1=2

5C(Ijull z t I + 2 (ks)i)

For t > 0, consi'ler

K(u,t) = inf 11 vl ZSIn) + t ( 11 )
u=v+w zZ(

*Taking v= u -u. and w u., one obtan that

K(u,t) C C*- + tIulI s + t(- i

C(IIr ,ll ?n + C ) (t2 +k~) +2 (SS
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- -- i

7or < t < i, choose 7 3o that 2. t,

-.
_k-s Thr

Therefore, for 0 < t < I,

K(u,t) C( u ? + C)t -

For 1 1, take v u and ; 2 0 to obtain

K(ut) C 7u! n

s-s 7
Suppose that 0 < c < k--- " Then

s-st

K(u,t))2 dt 2C(!fufj , + C j. ,) dt

"Cs (In ) f

0 S-S)22 - ) + 2 g-
+ ClUll zS t(I n )j t dt

-e_ c( )( ul E, + C*') 2

and thus u E (Zs' (In), Z(In)) s-s which completes the

* proof. k-s

Let Q be a domain in 7R n  such that there exists a tiian-

gulation A of Q into open n-simplices Q., 1 i M.

VLet a , v = 1,...,N, denote the vertices of A. Since it

will be convenient to be able to refer to the vertices of a
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pirticular simplex n7, for l I i A let ji ., ... .n

denote the vertices oF p. • enne, 1 i ver "x o of j,'

also a verte;: ut P., tden • .some ] , II

n+l. It will also be useful to define the index set A A~A

{(i,j): 1 5 i P M, i Y - 0 n+l}

Consider a simplex P. E A and one of its vortices .

1 I j 1 n+. Letting . .. e be vectors based at i lj

an! terminating at the other n vertices of Q. define in

Rn the parallelepiped

n
. x E n: x + C em < t < l}.

Clearly, Q. c . or all 1 =.,... ,n+!. For each

(ij) E SA. choose an affine mapping T. in T n which maps

. onto In and ui,, onto the point (1,....1).

iN

Let {n } be a smooth partition of unity on P such
V V=1

that for each v , supp contains the vertex u

and supp n. intersects only those closed simplices Qi whi:n

have V as a vertex. For any u E L 2 (P) and (i,j) E ,

define on A.

Sn in Q. where v is such that a. (--T

*0 (2.8) u. i
r[ in P . .\

By the assumptions on n , one observes that u. . u in a

neighborhood of o. an, u. 0 ontside o a ,. ig'.rboC<

T of c i , _  such that 0 , 9 •

I Ofor . . -- Q + :*"'
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'Ts ( ;A )

-, U u oT-

,or each real s 0, let H'(fli), 1 i i M, lonote !-he

usual Sobolev space of order s on P. and set1

i-s(P ;A) : {u: !!ulI < rn)HS <

H

where

II I 2lull lul2s

Hs(;A) i= H H

For each non-negative integer p, let P (P.), 1 i :1 M,
P1

denote the space of all polynomials on . of degree at most

p. Finally, let

P (Q;A) {u: ul Q E P (i 1 _ < M)
p •1

Theorem 2.4. Let s and s' be suich that , 2 ' 0 and

s,2s' - + an integer. If u E , (; A) then for each non-

negative integer p there exists (p P (L;A) such that

<- -s+ 2s '
(2.9) lu- !ls C Cp + l,!su

. " (PA) :A)

where C = C(s,s') is independent of u and p.



P f: F'or eacr i , ) S , T n rn . v ,= _ , E P I

".. satisfying

(2. 0 - .<- ( ) " 4 A(0

Se Ling

n+li
X T (x) for xE 0" :< i

(2.9) follows from Lemma 2.G, (2.10), and the triangle inecwudi

itv.

For the special case s' 0, the following result is the

inverse of Theorem 2.4, up to an arbitrarily small c > 0.

Theorem 2.5. Let s be any non-negative real number suiCh thit
1

s + an intege.r. if u E L (Q) has the property that, for

each non-negative integer p, there exists p E P (Q;A) satis-
p p

fying

lUiL(p ) < Cp-
,•T

with C independent of p, then u E ZsF (Q A) for, arbitrar-

ily small c > 0.

-ire n i " .r',nt " ' --. + " :: in(-.ef r c :- F,, 1T'Cf, "/-:i re7 't rfuI n " f 1 ,
. e . tact , -1*r- (-<r! - - *i p.: .,-

* )1 * - -p -)' /e r e . . l , ti r , r', a -, , " i :! ,



Lx E~ In:

tx<

Fo~r each 'K 1 1,7 t -eot~an a". ' Mc17rDni

IR" such cha~ FL Q

Fx -In ) Ot V -)C suc inc

.av a sm e -at the no av" Cc~' en-.

-nai 1so tht if2.(O)F jmf 0fo e

((7)C£. iven -an-, s 1c it l I r1 w,- fr om the c h v~

one h ao for e&nnnr ct ' nte -er 0Khr

Ry Theaorem t ,ths L e tha I5C I] ezh -l T n ~

'oirb i it I]- smal i £ > 0. fecne [Z, er~ 0h one

o I-tairi t h t if k is .9uich that T.(O 1) Imnn~ then

(n )o0 E S£(f) Furthermorsi cc a

.(2) H-wp~ V)0 then (un o.o. FFl en t c-

Lin Xk~ --1*'11te a S17ooth p-artiti(on o f U nit y S ulooin 0 no r -

the onen cov er {Q ,it Ls not difficult to show tonat
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£ . Apypoji:oiti -o cv ,on :omo 1 :.

T triangulated omahns

in the oresent and fo!lowing sctior,. Zr!.m- ?" .;, .

are exTende: to ,- Obt i , S- 0 no t Vq f-P :a .:-rr-,t ] on 1v :

forming piecewise polynomials on trianw:citd l:'nj, in D-.

he ,ssenco o these results is that. ur to an aritrCraO]" 1w .

a > 0, one can cbtain nrono mnn rleccwise 7-,r>nomaL,'

the same -egre f a cproximation as the non-conforming p'ecw:,_

oolynomials of Theorem 2.14 o rovided -hat the Function beims

approximated satisfies the same compatibilitv sonditions azross

the common boundaries of adjacent :cmpolices.

let 0 denote a domain of IRn such that thero exi 212 a

triangulation A of 0 into simplices P., i= ...

Recalling the spaces Z (W:A) and PJp(;A) defined in sectiqn

2, for each non-negative integer z and o set

(t.i)A) z s(Q'A) n C R)

P ( 2; ) P (2,A) q C ( )p p

"A where C (Q) denotes the set of all functions which alony witj:

their first Z jeriva-ives are continuous on * It is clea0

that P£,) is precisely the set of all function in (n;,
p

which along with their first k derivatives are continuwus

across the common boundaries of adjacent simplices of A. A5

a consequence of the following lemma, if Z is any inhrccri

satisfying 0 n X < -, then it similarly holds that S (9)

is the subspace of all functions in 7s2(NA) which -lonr wit';

their first i derivatives -ire continuous a:rss the crm-e,->i
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. .-
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I
P each non-nesative i nteger p there exi s ,w .g p , > ,<)

f %1 i' Pl

(3.3) Ju-(p i C-
[2

for some constant C independent o " . tot.

u E Z()CA) for arbitrarily small c -.u ( Z~~min(}, , X .. . ,,

'The basic idea behind the orooC of Theore: 7.1 to .

.filly modify the piecewise polvnom.ials proLced Ly 7he, r -'

in such a way as to achieve the required amount von ':lar<'.'

across the common boundaries of adjacent simplices of A W,*.-

out degrading the degree of approximation by more than a. arC-

trarily small amount c. The technique is most clearly observ, :

in the case n = 1 which is treated separately in section '4.

The proofs for the cases n > 1 involve some additional techi-

nicalities, the nature of which is exemplified by the proof for

n = 2 in section 5. Although the procf for n > 2 are not

given here, it will be clear from the cases considered that these

may be obtained by similar arguments.

In order to help simplifyi the exposition, the important

issue of boundary conditions has been neglected. However, it

will be easily seen that the same techniques which allow one to

constru t piecewise polynomials with 9 continuous derivatives

across the common boundaries of adjacent si-mplices may also be

used to enforce any homogeneous boundary conditions s-t-s:ed dv

the approximated function and its first k derivat:ve .; KM*is



4

"P / ,.-,. iso" 3obaW< . syna; o( ( ,)

" * :0ow 'ow siuch resalts are obtained. The

any asAv- real nm.ber such tat

i + v ':,, r. "f 5' i su':: that s > 2s aii4

Z is .in 2nvulp that S < z < p- then
.- .C, '

0W() .ont iii sv imbeds inU (9 ).

PV: it is a simple consequence of the Sobclev trace theory

[iCI that it u E H{s (Q;,) and if u E C (0). then u E H" (q)

provided that > S The result then follows from

Lemma 3.i.

Theorem 3.1 together with Lemma 3.2 yields the following:

Theorem 3.3. Let s and s' be such that s > 2s' t 0 and

s,2s' - + an integer. Let Z* be the largest integer strictly
41M s-

less than 2 Tf u E ZM(OA) for some integer k satis-

fying s' < k < Z,, then For each nnn-negative inteer p

there exists .p E pZ(Q;A) such that for Arbitraaily smail

- > 3,

( .' ) Cu- p , :1 o 2+2 '+
P H (Rq) z S(Qi;A)

where C = (s,s' ,) is indenen lent of u anl n . rero',u p

if u E Z. (W;A) then for anv intener 9 > z' - - , ,  ,
,.
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.. AD-sroximation by conf ormln,, pie-c:ewise polvnom-rpials cuntlnjk,-
the case n =1

The proofs of Theorems -,.1 and .2in thc, case n 1 ,,i --l

follow a Csno, -fich~aLlom

zemma 4.1. Let s be a non -eative rea nori c. ho

2 20

(~~4.l)1 T iI Csp

wh-Pere C is independ'ent of p. and ' p

Ff: By Schmidt's inequality (see e.c7. [5]), it -olds tho t

f or any D- E P (I),

r [Y,(K)]2 dx (x(p1)

and (L.1) follows by induction for s an intec7er. A standaru

Intrplatonargument yield - (4.1) for non-inteaer ZZ.

As n scin2le {P denote the svstem of Legen(dre

polynomials on 1 normalized so that IIPnK CI orall n.
2

Lemmjia 4 .2. F'or each non-r.27atlv e integer n,

d1 P,(1 (+ 1 )fln(n±I)TT (n+ii, k 0,...!,
* k n +

Cx+

V This folo)ws, lmmc< 9ti roim equa tions 22. 2. 1. 1

2 2 .7, a nd 22. .- 7 1, ak in-I i n to -i rc t r t he( n o rmal, Io



Le mua r -. 3. Let k be a non-ne ative lnte-er in, 1et:

any non-necative real number such that 7 ?l + an '2

ro), each in i = ) T k + 1 there exi -t; 4 E p (1) ;' V. -.

1 i f i : k

( 2)(in)
.2)(1)

-, 3 7 0 < m

and

([.3) + ,

where C is independent of p.

.ix p > k + 1 and consider the ,1 lv inc 0Dtimizat~o:
S 2

problem: Minimize the quadratic objective function 'a
n~k

over all (D-k+l)-tuples (ak,... a ) satisfvinz the linear

constraints

pp

a k

0 , 0 _ < k.

AIf it can be shown that there exists a solution (a, .... a)

such that

2 - 2(21-+l)
n kn

,:here C is independent of T, then b- setting a n
t tan

it follows that

. ..
I-



T T

+~ +

i- 7: ( -) nn : r-k

- I .4-a )+).,-

and stiSfies (4.2) and (4.?).
p

Applvin- the method of La Tran~ e mflt ',1i :, cn,:;ceek

stationary point of the function

f,(a, , . , , , . )

S k-I (M) a- - [ a P (1)] - 1k L a L (1()-li.
nmk n am. m n ak n n nrk n n

Setting 0 for n = k,.. ,D, applying Lemma 4.2, and
n

solving for an , it follows that

kL 41- m
(4?:) - 2n~+' '/2 ~.... .,, -- [ m (n+11 , k :E n _ .

2 m -Ij 2 -n I :-m+!

Furthermore, setting 0. - C for = ,... ,k and again

aDplvin Lemma 4.2, one obtains

1/2
n n+l) fl (n+i) 0, 0 Z < k,*n~kn =-s

(4. . a ]a1 / T(+i
k k+-

nP, n=-k+l

Te 'ub-)it ,tn_ t, n of (f . 5) into (,.,) then yields

L



0

17 n + 1= + 9 .n

Z. + - + +i

', ( ) -2 kT +

_;n I~ th

n. S k o-E+ ]. . -D(

-23K+- + polynomial in ,

J r e ) t 1 a, ~s t

(. [ 7 (~. ( +1 ! (n:) te

P'(?,) Pk+!  + a plynmia ino pa i

- ofdi2e aesrs th ss P~f l ) (Qmi1

. -+I L. - e tem inant of toe ( +l) principal

M at r x . n e obs.r-4 th at if ( .7

k+I 1v -c uniquely srolrved for the X co f2iM provided thtt p is

-ientei than the lir,est oot of D p) (which dJe-oends oniy on

k,;. A:,~iyi 7ramei]"s rule , it ollows hat for m = 0 . . k

mt- 9 )) "+ a,-o l y n o i a l sn p

• 9

cd.8 ) In+ ] t h a n ? (kb-L n-)

: Tht- rm ) tn o1

!fnc ,io : 8 matri ,. "-ne 0:] 'e 3 t~ , (,-o 7)(

-t:- I (: .q k +]
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-al r ,(jn+._)i!? - k i -.n m

.= . p --- n+

~+

Lemma, U.4 Letr 2 hc a non-negaie integer and let a, 'W

0'G...,Z, be vea nunibers. let s be any non-negativo read-

S2Z + 2-there exists -- P (I) such that

1 0 k

(4~.9)

I(k) (-1) k', 0 k - -S

and for arbitrarily small e > 0,

+ C (Cz11 Kkak )p-(klsc
2 k= k

;.,'rc C1  ind C, are independent of p. If Z=0 the

11

c-n'i term in the ri ht-hand side of (. 10) is omitted.

It -u.fices to prove the result for n 0, 0 S k ,
k.

ksin the , enera result may then be obtained ia superpositio.

uBy Lemma .3,for each k, 0 S k a n, an each inteer

-, > Z + n here exists 9- E P- I) such that

,I;R PA (i k 0P k _

: (k)( l) : k , p k

an o r "4tarI ml _>O



F, k

;. @ - (-)

p,k I< f O m<k

:w eu a,.v real S' > C such that s' 2 2 + an integer. Set

p + Z + 1 and de-ne

9( (2 
x e I

If 9. > D then for k = i,. recursively define

(X) :(k - (k) (i))o- (X)(j), +  + (X), x E T

- ( t,k-i p k k

mfttCin , ' one checks that satisfies (4.9), and
p

2 0 , (.1) implies that

< 0 - l +s  J+S

which escahllcho (4tin) for 0 0. If 9, > 0, then he

Sobolev Lem-ca [10] together with Lemma 4.1 yields that for

t ,(r-!k) - > C

(K) ( i < C (E)!) k 1
-- : n ,k-i 1

* Ck+ 1+"r(C 2 ) + -+ 
"

- I p,k -l'L 0( ) .

SL



0+

+ (+
kv + . +2 +

o+Q

I.k- 2 M

- .. , then success-

0 wi. ' fc C, I- 1.. (4.10) f-,ollows.

7of Theorem 3.1 Realli*nro the_ notation of section 2, fix

(i)E£ and consac-er U.. E fj{). Exp-and u. in its

K-egendre series 2a P and set a P 1 for each
nr, n n=C

non-ne-ative inteiper 7. B ,Thorem 22

3v Lemrma 3 .1 to, nher wi th (4 .13) it fo.lows -that , f or

n, < < s- and arbitr-,riiy small a_ > 0* 2

((k)

k5. then Lem Tma 3.1 implies that again for

3rbitrarilv smalla K -)



2s -2s+4k+2+2E 1/2

s F:D+ 2 k + ±I +

3rl- C, 1, meoains ":roln lemima 4.14 that there

L~i~tS P (T) uch tha-

(k(k) -

(±1 2

and such that for arbitrarily small C > Q,

<t1S CC ,M 11 (k) (- )- ( 2k-~l)4-27 '+E

( I ) .2 s ' D p

< C(F- s+2sl+ '-f

:~et~ r~,~E + p Then by (11.13), (4.15), and Lemma 2.3,p p,

C,(Il1,] ~i) 's

< -SS+

and



I

5( (,, the P

0 -4 .,-- -

.-

_,.. 1 i M

ha t u E (h)(AWh for arbitrarily small c > 0,

so it only remains to check the regularitv of u at the nodal

points of the ,ttivis-o( A.

To this enl let 0 and Q2 be adjacent intervals of

A with comm en oint 0, and let u . UK, i= 1,2.

an fo 0 ! k "

I..

itince a,, , £.2 t follows a 1,P, int ll from Theoe 2.5iPa

I. tnon-negatie(,) inee p,- th-re exso. Ptrr~ (mal) suc that

M (-1)

-htTins 1 i& (1). t o ro hn-

rht j) 2) (() (' o

! cti nlt°IadI2b daetitraso



0s
"3

'F, (L4.j8) Ii.- .I p1

13y the Sobolev Lemma together with Leua 4.1, (i .1) and ( ,

one obtains that for any k, i = 1, , and c > 0 arbitrarily

small,

) (k)

2k+il+2 i -

(k)
uui L 2 (P

{:iP' L 2~ ~ ~

-s + )2k + i +2 +-(

Hence, (U.17), (.), and the fact that p() )

• i " ol= that, for 0 < k < min(, 9n9,*

Wk (k) Wk Wklu1  2u- (U)j j I (a)- (oJ)I
i:2:P p,

u 2 (uk(0 )-Ij(k) a+ W a W(T

which completes the proof.

0



5.Aoaiox~mat ion byv con*.trrninq 7pece-wisc, polynomials atxie2
tne casco n 2

As in th- p)re,14ioUS section, a number of technical leIa

preed te rotsorTheorems .3.1 and 32.? '1r2 the case n 2

Lema5.1. et s be a nion-negative realronh.

any triane71e, then 'for each EP (S),

U(5.1) <(S(A),I

where C is independent of a an d

7:For each-1 x I, it follows from(1.)ha

(5.2) (x p~ & (x

Siialfor xE21,

(5.?) ,x2 ' 0

Integirating (5.2) and (5.2-) with respTect to X a j

0resp~ectively, one obtains that Cor 1

7, i n;' a n affin e map p n (D n fu rt h er o 1 Ia:' iu ui (1 '4) h Cl's

2 nor any -Dara llelogram Q. Since? u !'or s ome, collect4ron

* of' parallelogran 0 (.') implies that
Ik

-



02

P ~ ~ ~ 1 s~)k1 ~ r2k

wiich comple-nes the prcof.

- a - .2. Let S h a t,.ian~ie with sideIs * Le

i'\ ,i

. and be ,-n r 2 s ani § or,'2

c (l) be ruch tha7n z vanishe at tici
oL fL and T be unit vectors normoea

(k )

of k for 0 < k 2 o 9 u

an:J tangent to Y , respectively. Then there eit

p (S) suIch that, f or 0 < k ¢

kIk 2 'p z on ¥
k In 2 P p,k I  1

W2) 0 on y and y3

and

'0 1

-(2l) < l 9,+

+k I2c +_ z

2 k=0 P'"L 2 (y1)

where C. and ,qare independent of p. T Z = 0 the

second tern in the riT ht-hand side of (5.F) is omitted.

K: Without loss of 7eneralitv, it may be assumed that

S< 3 x - I< X l -l, x: 1l - ) -1 "x 2 -IS x l - ) l

I'



4 2

For some numberq a, 2 anA that

S x X = 1, -ljx2 nl}.

3v Lemma 4.3, for each k 4,...,9 and each inte.er p o , + I,

7!re exists P (I) satisfvi;l (4.11) ..- -

2p,O 1 , p02[ x2+1 -XI2+lJ
-2

and recursively define

(A)S2P,k

(Z A (kO) (1X)q Q -ca(x,-)+x2+1 R(xl-l)-x2 + .
-, k( 2,*~p i x2  aI  21 2

p,k 2 2pk-1 2 )p,k 1  x2 +1 -x 2+1

+ :Jp k l(X)•
'2p,k-1 W

Setting 02p v2p, one checks that 0 2q satisfies (5.5),

-(l- l) 2 +1
and if Z = 0, (4.i!) and the fact that x + 2 and

2
(x - )-x +1

+ 1 are bounded on S imply that

il@2 r'  < Cp-I hz fl
W pI,2(S) pP ,9 IL2(A I

?pT2  2 1h0

which establishes (S.A) for I = 0. if I n 0, then by a

well-known embeldin; result [101 toaether with Lamma 4.1, it

S follows that



p-, k-Ik

-ience, for k z .

,-(L]<+1) ki) + C( ) I 
I

from which (5.6) follows.

Now let

S'  {x= (XlX 2 -<Xl1<l, -x1<x2<2}

and let q , 1 < V 3, and -y 1 v < 3, denote the

vertices and sides of S", respectively.

Lemma 5.3. Tet Q, be a non-negative integer and let

,0 _k l  < , v 1,2,3, be real numbers. Then for any

integer D- 4(.Z+i), there exists E E P (S*) such that
p p

(5.7) (p-(q V a k ' 0 < kl,k 2  - ,, 1 <  v _ 3,

ani for arbitrarily small e > 0,

3

2 l k2 k

0 < I t, 1 Tf

0



where C is inhovendent ot p0!. ,) - I F (h ' 8) and

(5.9) h.old with c 0.

?f: It suffices tc prove the result for (9k 1 ,

2,3, since the qeneral result may then be obtained via a

3.:erosit1on arjument. Moreover, it ma.' also be assumed -chat

1=(1,1).

PI so t Iat 0 < i2 < Q For i 1,2,

it follows fro. Lemma 4.4 that for each int'-cr 2Z + 2

there ex;s-. , P (I) such that.. . p,k. p
"O 1

'1 if m k.

(in)
7 , k 0 i f 0 m Q i

" (m) (1)

P,k i

'nA or arh)itrarily small c > 0 (or c = 0 i~f k.

2'an -C()

-( 2k.lc

SI

-(x) k (-)(x9 x (x x E - ,
k 'k, 1 I k 1'

one obtains that 'I' satisfies (5.7) anJ (5.8). To prove (5.9),

one bejin: by observinc7 that, 1by (5.10) and Lemma 4.1, for any

real s i n and l > ,

Si



+7~ +~.-5 .. 11-)+h
(5.ii) pl ,k. H<(1 )" <_C'ViL -p ._ .)"z7

-ence, for !i 3 ml 2

(1, ) T1,I~I-:
i! -)( ,.)! < a~m k ,]i ,, - -

C L(1s)= K 2 k ) .
t~~~ -''_ +rn2-+_

? • ? 0 1l 2  ,

t is similarly shown that. for 0 <- m

4 2. -2k+ 2m -1+E

p LYjI I C(s) ':;p~ ~ 1 L()-kl0 km 2 ,

Applyin the Sobolev Lemma together with Lemma 4.1 and (5.1I),

it follows that for x E I, c > 0, and 0 < m <- ,

( 1 )n ( x-I(X) -xc 
L. 

Il' k ×1 l ,

2 -2k +2m2 +2 (m+

2 I2 k 2 +2ri 2 -+ , ()

0c k,1 k x p 1

which then vields that

-. 4 k 4L ,, +1k-
( ) 2

- (xl -x)dx 1 -< C =0 a kip , ,k

,'~~ <C k P

L" kl,k 2=0 ,1

kc k =0
12

1 12 p- 12*2 1

0 ,k2 -I

I2



IL

This completes the proof.

Lemma 5.i. Let s and s' de real numbers such that
1

>2s' 0 and s :)s + an intemer. Let Z be a non-

.negative integ.er. f u S 2 then for each integer

p > 4(+il) there exists , E P (S*) such that for v = 1,2,3,
P p

S( t if ,o< Ik I  < i
(g) u 4  if < - 1

p9(5.12) q - ( v

S>I - 1, 0 klk 2  sZ,

I

and for arbitrarily small c > 0

(5.13) Hu- sp u S(12)

Moreover, if s > 1, then for 0 <_ i  1 and 1,2,3,

(5.14) () (m) C -s+ m+l+E

The constants C in (5.13) and (5.14) are independent of uA
HI and p.

Pf: Expand u in the series a and for each non--- I m T : M m m

negative integer p set a (a by Theorem 2.4, one

has that

< -- s +2'(5.15) Us 2 C 2(I )s(1<)



0

K-v Lemma 3.1 an. (5.15) it follows tha, :or v 1,2,3 and

arbitrarilv small c > n, if ( < k! < - - 1, then
- 2

u() )(q
, P V +2+2( ?)

(5 .1)

and if 1k ~--1 then

2 C+ 2+2 cI ('2)

Le .1 2.6 a ( . ) ( mple s ta t i fl 2 s-i then f/r
s 2 L2s 2+ l++a /

< C(E)P_ -1

S 2SFurthermore, a well-known embedding-, result [10] together with

Lemma 2.6 and (5.15) implies that if O < Iml < s-i then for

v 1,2,3 and arbitrarily small c > 0,

(i)n (M) 'l~ -p Ltj() -<C iu 1

ii (i )
(5.18) 2()!u-2

'" ) p + 21ml+l +2( 1 2)

By Lemma 5.3, for each intcw ,r" p ,- ( ,+1.) ther'e exists
22

p E P (12) such thati or f o1i-
p p



," ' (k) - ( ):
, ', u - ( !v - - - (q V if 0 <- Ik 1 <

(5.19) (k) ( )

W (k)( if ik I> -1, 0 < k,k K

and for ar't rari 1,/ E i, > 90

A (k)-2 k - +

v=l k ,k :0

(5.21) <Tf
(n ) ,  C ( ) ( K 2lkl+,2>n-* -

p 2 k!"o 1 2 V 3.

p
0 < M! 1 % < V < 3

Se p T e satisfies S. 12),and (5. 14) follows

from (5.18), (5.19), (5.21). Bv Lemmas 2.6 and 5.1 together with

(5.15)-(5.17), (5.19) and (5.20), it follows that

'1 lu-' p~ HS, (S*) C'H 5 H (1 2() + P' HS' (S")

- C(!u- p ' + 2s
z W) L2(S

-s+2 '~

is 2
b Cp-S+ S'+Sl I (12)

which proves (5.13).

Pf. of Theorem 3.1. It follows from Lemma 5.4 that for each

integer p - 4(9,+1) and each i =,... ,, there exists

E P ( 0.) such that, for j = 1,2,3,

1)



0

an-I for, rbi :rarilv' s::LalI "

( 3 2 3 ) i ) - p i H ,!< _ 2( ) +l

L i

A1](S~~~~~~ ~~~ o4 I~
) (-', (. S2ml +1+-!lull s A.2 .) - -* i b ( i ) -

s-i

0 I m - -

Suppose that 2I nd 2 are adjacent triangles of A, and let

y denote their common side. Let n and T denote unit vectors

normal and tangent to -y, respectively. For 0 _< m I < Z, set

(5.25) z m1Pm I  m1  p,ly -n m1  p,2Y"

G*(.) i 1 12, it follows
Since u E ( ) and ul 2 E C i

1~(in 2 )

from (5.22) that, for 0 ! mi,m 2 < Z, z vanishes at the

endpoints of y. By Lemma 5.2 there exists E2p ( 2p (I)

such that for 0 Iml 9,

i Il (m 2 )
2 on y,

m m2 2 p,m1

F. (5.26)
(m)

a2d0 on \Y,

. and



( ( + ) p,2 + C2(L) /] p-
i2plL 9 (P,,) ii '  I '(y) ~

9pIy 2 =I 0

p,m 3 L,(Y)"

From (S. 24) and the fact that u E C (P), one obtains that for

<i (u-Q 1) + H2---- (u-u-p ),L

- ( y) m( Y ) m 2 (y)
2 n3n 1

-s+2m +1+61
-- c( )p 1 ! ',

Hence,

(5.27) <2p ( 1 ) C()p Z+c 1

P2ep l a c i n g Io n L 2 I b2 ( , 1p 1 - '$ 2 p ' i t f o l l o w s f r o m

(m) (m) < !mI ., on

(5 25) and (F5.26) that 2 - - I -• "2p.)l P.,2

p , - p < , on ,),q \y.

Moreover, (5.23) and (5.27) together with Lemma 5.1 yield that

I ,p,l IIs ] + S,;j'-H ,P ) il- '1H s  (2l) 2 HS (0 )

H 1

+ C2s'2p
1 H :! )  p L2( I

2+

The proof is_ completed by repeating the above procedure for all

remaining pairs of adjacent triangles in 5.
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r '. of Theorem K . -. e m',ool is ,-oP-,0! to that for the case

.%, it holds that u S ( .;A) = s (!- .A)

"-, l I o I:;:v i > , to t onvy o rne is r e t:a is

_ i. rec ularitv of u cr-,s the common side y of two adjacent

c. * , f an11' w

... u. : :!. : : .," ... 7incK a1 75 (9,'9) , it follow,:

,,mnla .0 -,V on-necative integer p there

exists 4 . P ( ) such that for E > n arbitrarily small,

C, i 1,2,i
; (5.28) i.ui-,, ii L2(9.i < C( )p s+LCIul , i : 1,2,

. , zS-E( ,k
7 (QA)

ar.J for C Qj~l I

Let , i 1,2. One obtains from (3.3), (5.28),

an. Lemma F,.1 that for 0 < ki < 9*, i 1,2, and £ > 0

arbitrarily small,

, ~(k)j k)~ < C(s)l!@I !- .
p_ P,1 L2(y) P i- p,i~ +-(k)k

H (.)

+

S--(5.30)

r-tM -s+2ikl+i+ 3-q

[ -I( p-



rncb ( .2) hd (e. c}) cL .cQ. se watl 12 uaCt that

+k) (T) o
- :-' n OZ i completes, D to l w titit p orf

il ? (}' . : (k P)

....da t.it : C has been chosen small enough that

- + 4 , I i 7 CIZ . Thus (1- : 2- on y fo

] ' k < mln(9,2A) which completes the oroof.

0 _

0
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The Laboratory for Numerical Anailyis is an integral part of the
Institute for Physical Science and Technology of the University of
Maryland, under the general administration of the Director, Institute for
Physical Science and Technology. It has the following goals:

*To conduct research in the mathematical theory and computational
implementation of numerical analysis and related topics, with
emphasis on the numerical treatment of linear and nonlinear

- differential equations and problems in linear and nonlinear
U algebra.

*To help bridge gaps between computational directions in engineering,
physics, etc. and those in the mathematical community.

*To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington
Metropolitan area.

To assist with the education of numerical analysts, especially at
the postdoctoral level, in conjunction with the Interdisciplinary
Applied Mathematics Program and the programs of the Mathematics
and Computer Science Departments. This includes active collaboration
with government agencies as the National Bureau of Standards.

*To be an international center of study and research for foreign
students in numerical mathematics who are supported by foreign
governments or exchange agencies (Fuibright, etc.).

Further information may be obtained from Professor I. Babu~ka, Chairman,
Laboratory for Numerical Analysis, Institute for Physical Science and
Technology, Un~iversity of Maryland, College Park, Maryland 20742.
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