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N OPTIMUM MULTISENSOR, MULTITARGET LOCALIZATION AND TRACKING
;‘ CHAPTER 1
' INTRODUCTION

If you want to hear anything more from me, give and take

reason ... Nothing is surer than reason ... nothing is falser than the
senses. -- ADELARD OF BATH

We are concerned with the general problem of estimating the

target location parameters and the subsequent tracking of these
parameters based on a passive observation of target signal wave-
forms from multiple sensor arrays. The physical situations which
F! motivate our discussions are those arising in underwater sonar
(Sound Navigation and Ranging) signal processing. A target in our
discussion represents simply an acoustic source of interest. A
e sensor array consists of one or more hydrophone elements. By loc-
alization we mean defining the target position vector (range and
bearing) w.r.t. a known reference point; e.g., the acoustic phase
center of an array. By tracking we mean defining the target posi-
tion vector as a function of time. We are interested in the opti-
f mum passive localization and tracking algorithm (or processor)

§ operating in a multiple sensor and multiple target environment. We

\ 1
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assume that each target emits a noise-like signal and that each

sensor observes a noise-corrupted version of the signal waveform.

In all our discussion we emphasize the study on optimum signal
processing from the passive rather than active mode. A major dif-
ference between passive and active signal processing is that in the
passive case the signal processor designer has no direct control
and knowledge of the actual received signal characteristics. Thus,
many advanced design techniques which are based on the optimum
design of signal waveforms (e.g., methods of pulse compression)
used routinely in the active systems are not applicable. This Jack

of precise knowledge of the reference signal waveforms in the pas-

sive case results in a greater uncertainty in the estimated target
9 parameters. Despite the fact that passive processing suffers a
- greater uncertainty in the resulting estimates, many situations do
F!! arise where passive processing is either the only choice or is the
preferred approach. ‘
FJ. Consider the case of locating the epicenter of an earthquake.
; Since we have no prior knowledge of the location and the time of
[ occurrence of an earthquake, one must rely on the passive observa-
E. tion of the signal (pressure wave) as it arrives at each of the
{ seismic stations, Now consider the problem of localization and
tracking of underwater acoustic sources using sonar. If the
: objective of the processor is to detect, localize, and track an
L‘. acoustic source with minimum counterdetection probability, then
C
. 3




e
: 3
:(’ passive processing is mandatory. Furthermore, in the absence of
i noise, the received waveforms contain the true target signature and
’ this could be a valuable aid in target classification. Perhaps a

situation which exemplifies this usage is the simple procedure used
' by a physician in diagnosing a patient's health by listening at
E various locations of the body using a passive receiver; i.e., a
"‘ stethoscope.

A more detailed explanation about the subject matter of our

f' study is given below. As shown in Figure 1-1, there are five major

elements in our investigation.

Multitarget Environment: We assume in our study that

rvvJ‘T‘W"' T
—

there are J targets present within the operating environ-
ment of our sensors. MWe are particularly interested in
the case where J > 1; i.e., more than one target is

present. However, because of the general formulation of

' ‘.‘T'T‘

the problem, the single target case (a subject of intense
study in the literature) can be obtained by letting J = 1

in our general J target solution.

We assume that each target emits a known signal spectrum

P
- [ ]

for the purpose of our study. Of course, in reality, the

} target signal spectrum must be estimated through a priori

knowledge or using on-line spectral estimation techniques.
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The assumption of a multitarget environment is warranted
and justified for the following reasons: (a) improved
sensor sensitivity due to advanced new sensor technology
greatly increases the operating range of a sonar system;
thus by virtue of the expanded coverage, the existence of
a multitarget environment is more likely than ever, and
(b) since sonar operations typically occur near high den-
sity shipping environments, the presence of multiple tar-
gets is a rule rather than an exception. In addition,
conventional optimum processor design based on a single
target assumption suffers considerably when operating in a

multitarget environment,

Multisensor Arrays. We assume that each sensor array con-

sists of multiple sensing elements (hydrophone) whose
received target waveforms are available for processing.
We assume that location of each sensor array is known

w.r.t. a well defined point of reference.

Optimum Estimation of Localization Parameters. We assume

that targets are stationary and we investigate the optimum
processor which yields the best estimate of each target's
range and bearing from a known reference point. We
explore in some detail the differences between a one-step
(direct) localization parameter estimation approach and a

two-step (indirect) time delay followed by localization
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parameter approach. We also investigate various sub-
optimum approaches and evaluate their relative perform-

ances compared to the optimum processor.

Optimum Variable Localization Parameter Estimation and

Tracking. Here we assume that each target is moving with
a well defined trajectory and we seek an optimum localiza-
tion parameter estimation and tracking algorithm operating

in a multisensor, multitarget environment.

Weak Signal in Noise Environment. We assume that improved

sensor technology increases sensor sensitivity, resulting
in an improved capability to respond to a target which has
a weak signal level. Very often targets with very weak
signal levels are the targets of interest. Since signal
level attenuates inversely proportional to the square of
range, long range targets are, therefore, usually weak

signal level targets.

SACKGROUND

The reasons for using sensor arrays to localize and track tar-

of interest are twofold. First, it is to gain spatial diver-

sity, whereby target signals are received simultaneously at dif-

ferent points in space; their spatial separations contain informa-
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tion on target location parameters. Second, it is to improve the
signal-to-noise ratio (SNR) via spatial coherent integration of
sensor outputs. This process is known as array processing or beam-
forming. Subsequent to the array processing, the SNRs are further
enhanced by time domain processing for the purpose of detection,

classification, parameter estimations, and tracking.

The combined array and temporal signal enhancement process is
known as space-time processing. It can be pointed out here that a
fundamental factor which limits the space-time processing gain is
gijven by the triplet BLT, where B is the signal bandwidth, L is the
array effective length, and T is the duration of time domain inte-
gration. Note that the overall processing gain directly limits the
performance bound on detection, classification, parameter estima-

tion, and tracking.

Implicit in any range and bearing estimation is the estimation
of time difference of arrival (TDOA), or simply time delays between
sensor pairs. These time delays contain all the available informa-
tion about the target parameters of interest. Thus the time delay
is the basic unit of information from which all other parameters of

interest are extracted.

The measurement of time delay is mechanized through a General-
ized Cross Correlation (GCC) function. The GCC is derived as a

Maximum Likelihood Estimator (MLE) operating between any two sensor
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arrays. Detailed discussion on the subject of the GCC can be found
in Knapp and Carter,l Carter,2 Hahn and Tretter,3 and Hassab and

Boucher.4

In the above literature, the GCC is optimized under a single
target assumption (or more specifically, a single coherent noise
source). In the presence of multiple targets, or multipath
environment, there are multiple correlation peaks. The existence
of multiple correlation peaks causes performance degradation to the
existing measurement system. The extent of this degradation is a
function of signai spectral characteristics, SNR, signal-to-

interference ratio (SIR), and the relative time delay separation,

In a multisensor, multitarget environment the primary cause of
performance degradation of the existing system is due to the mis-
match between the signal processor design and the environment in
which the signal processor must operate. Therefore, a logical
approach to minimize the loss of performance is to examine the
optimum structure of the signal processor under a multisensor,
multitarget environment. Knowing the form of the optimum
processor, one can then explore various options for a practical

system realization.
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1.2 TECHNICAL OBJECTIVES

The primary objectives of this study are to (1) derive the
optimum time delay estimator under a multisensor, multitarget
environment, (2) evaluate the appropriate performance bound,

(3) investigate suboptimal processor realizations and methods of
improved multitarget parameter resolution, (4) extend the optimum
multisensor, multitarget time delay processor to include variable
time delay estimation, and (5) examine the problem of optimum

variable localization parameter estimation and tracking.

1.3 PREVIOUS WORK

Optimum signal processor design under a stationary multi-
sensor, multitarget environment has been studied by a number of
researchers, i.e., the work by Schweppe5 on sensor array data
processing for multiple signal source, Schultheiss® on passive
sonar detection in the presence of interference, and Anderson and
Rudnick’/ on rejection of coherent signal arrival. In addition,
there are the works by Capon,8 Steinberg,? Cox,10 McGarty,ll

Rockmore and Bershad,12 and Owsley and Swopel3. With the possible

1

&

f exception of the work by Schweppe and Owsley-Swope, the primary
efforts of these studies were on determining the effect of inter-
ference on the existing (single target) processor. Using a Least

b_.
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Mean Square approach, Schweppe derived a decoupled beamformer.
However, his formulation ignored the effect of dependence of the
covariance matrix on the unknown parameter. On the other hand,
Owsley and Swope derived a single frequency multichannel focused
beamformer using a Weighted Least Square approach. However, Owsley

and Swope's formulation did not include the bias correction term.

Optimum signal processor design under a non-stationary multi-
sensor, multitarget environment has not been seen in the open 1it-
erature. However, a few papers have been published in this area
for a single target case. For example, Knapp and Carterld studied
the optimum GCC in the presence of source motion. Schultheiss and
Weinsteinl5 calculated the Tower bounds on the localization error.
Chan, Riley and Plantl6 investigated estimation of non-stationary
delay by modeling the time delay as a finite impulse response (FIR)
process. Finally, Friedlanderl? studied the joint time delay and
signal spectrum estimation using an Auto-Regressive Moving Average

(ARMA) model.

The study of passive estimation and tracking of variable tar-
get parameters has received considerable interest in the litera-
ture. Most of the early studies have been concentrated on single
target and single sensor array. However, the extension to multi-
target, multisensor environments has received increasingly more

attention. The complexity of this problem increases rapidly as the
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number of targets and sensors increases. There are two notably
different approaches in attacking this problem. The first approach
starts from the target dynamic tracking filter (or data processor)

and attempts to model the measurement processes. One approach

which has received considerable attention recently is the Joint
Probability Data Association Filter (JPDAF) discussed by

" Bar-Shalom,18 Bar-Shalom and Tze,l9 and Fortmann, Bar-Shalom, and

T

Scheffe.20 Here the measurements were assumed to have a proba-
bilistic model. An underlying assumption for this approach is that

the signal process which produces the measurements cannot be modi-

LERAEA Jun. o aeet s amcaain

t
fied to account for the multitarget problem. Therefore, one must
3 rely on modeling the measurement process. In fact, using a linear
r! superposition assumption, Ng and Bar-Shalom presented a model of
unresolved measurement for multitarget tracking.2l,22 However, the
s inability to change the signal process is a major limitation in
| obtaining an overall satisfactory solution. This is true because
F! an optimum solution requires the implementation of an optimum sig-
E nal processor.
!
&

The second approach, on the other hand, starts the investiga-
tion from the signal processor. Here one finds that the signal

processing gain increases in proportion to time. However, by

T

increasing the processing time one can no longer assume a

Stationary Parameter Long Observation Time (SPLOT) process, which

L an an o aus an
.

is the basic assumption used in many existing signal processor
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designs. Typically, one finds that under a moving target assump-
tion, a signal processor must estimate both the static and dynamic
parameters. Failure to compensate for the parameter dynamic will
result in a substantial loss in coherent integration. Conse-
quently, it negates the very purpose of long integration time.
Studies in these areas are notably pursued by Carter and Abraham,23

Schultheiss and Weinstein,l5 and Moura and Baggeroer.24

1.4 TECHNICAL APPROACH AND ORGANIZATION

This study provides a fundamental examination of the optimum
signal prccessor design for time delay estimation under the assump-
tion of a multisensor, multitarget environment. Using an MLE pro-
cedure, an optimum multisensor, multitarget time delay estimator is
derived. The resulting signal processor is reduced to its simplesf
form for system realization. In addition, this study derives the
appropriate performance bound for the resulting estimator. Com-
parisons between optimum and suboptimum realizations are also dis-
cussed. The optimum multisensor, multitarget time delay estimator
is then refined to include the moving target environment. Finally,
the variable time delay estimator is applied to the problem of

variable localization parameter estimation and tracking.
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The organization of this report is as follows: Chapter 2 dis-
cusses and formulates the multisensor, multitarget time delay esti-
mation problem. Chapter 3 derives the optimum time delay estimator
and an appropriate performance bound. In addition, the extension
of time delay estimation to localization parameter estimation and
power spectral estimation is considered. Chapter 4 provides some
discussion on suboptimum processor realization. Chapter 5 dis-
cusses alternate approaches for improved multitarget parameter
resolution. Chapter 6 extends the optimum time delay processor to
include variable time delays. Chapter 7 examines the problem of
optimum variable localization parameter estimation and tracking.
Finally, Chapter 8 presents the summary, conclusions, and recom-

mendations of the study.

1.5 STATEMENTS OF CONTRIBUTION AND SUMMARY

Under the assumption of a SPLOT process, the optimum multi-
sensor, multitarget time delay processor was derived from a Maximum
Likelihood (ML) viewpoint. The resu1ting processor was obtained by
reducing the vector likelihood equation via straightforward, but
somewhat tedious, manipulations to the simplest form. The optimum

multisensor, multitarget processor provided the basis for the
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subsequent detailed studies on time delay vector estimation,
localization parameter estimation, power spectral estimation,
suboptimum processor realization, and post GCC multitarget

parameter estimation.

However, under a target or source motion environment, the
SPLOT assumption is no longer valid. Thus the optimum processors
derived for the stationary parameter case need to be refined to
account for the target motion. The approach we have taken was to
segment the observation interval into smaller subintervals. It was
shown that if the signal time bandwidth product satisfies a certain
criterion, one can again represent a time-compressed (or expanded)
waveform in terms of Fourier coefficients. Consequently, under the
approach just described, a variable time delay processor can be
derived from an ML viewpoint. The variable time delay processor
was then used to estimate variable localization parameters and tar-
get motion parameters. We also discussed a sequential fixed inter-
val time delay tracking processor which was proposed to be used in

target state tracking. Major findings of this study are summarized

below.

1. The optimum multisensor, multitarget time delay estimator
is a highly coupled, multi-channel signal processor. The

estimator's performance in terms of the Cramer-Rao Lower
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:C Bound (CRLB) was evaluated for the following cases: one
; target and two sensors, two targets and two sensors, and
‘ one target and M senscors. For the one-target, two-sensor
i! case, the optimum multisensor, multitarget processor
f reduces to the GCC studied by Knapp and Carter.l For the
E two-sensor, two-target case, the resulting processor was
r' studied in detail. A closed-form analytical expression
4 for the two-dimensional matrix CRLB was obtained. To the
q best of our knowledge, this result is original and did not
%' appear in the open literature. The result of the study
r shows that the optimum processor provides a significant
E improvement over a conventional GCC processor. For the
% one-target, M-sensor case, the matrix CRLB for the time

delay vector estimate was obtained. It is also believed

that this result is original and does not appear else-
n where,

The results of this study indicate that for an M sensor

array, the M - 1 inter-sensor time delays can be obtained

[ from M - 1 correlations. This is a significant reduction
from Hahn's approach,25 where a total of M(M - 1)k

! correlations are required. Additionaliy, the results show

X

{

that the variance of the time delay estimate between any

two sensors decreases with M, the total number of sensors.

APEp—
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The localization parameter estimation was examined in
detail using a one-target, three-sensor array as an
example from two perspectives: (a) a one-step focused
beamformer approach where a direct range and bearing esti-
mate is sought, and (b) a two-step time delay to range and
bearing approach where time delay estimates are first
sought and range and bearing estimates are obtained via a
geometric mapping. The study indicates that both
approa;hes yield an identical performance bound. However,
for practical implementation considerations, the two-step
approach is generally preferred because of the symmetrical
property of the GCC function in the time delay variable.
Furthermore, the localization performance based on the
optimum (ML) time delay processor was compared to the con-
ventional approach, where the latter approach used two
GCCs in parallel, one for each time delay. The result of
this study shows that the optimum processor yields a one-
sigma localization error ellipse, which is approximately
one-half smaller than the conventional approach. This
improvement comes directly from a better bearing estima-
tion. The range variance is identical betweenr the optimum

and the conventional approach.

Sl
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A major assumption used in the derivation of the optimum
multisensor, multitarget time delay processor was the
known target and noise spectra. To relax this constraint,
a joint time delay and spectral estimator was derived.

The result of this study shows that the time delay esti-
mate and the spectral estimate are uncorrelated. This
implies that for the unknown target spectrum case, a joint
time delay and spectral estimator can be implemented. The
spectral estimation process does not degrade the perform-
ance of the time delay estimate. Furthermore, it was
found that while the variance of the time delay estimate
decreases as an inverse function of the observation time,
the variance of the spectral estimate decreases as an

inverse square function of the observation time,

The optimum multisensor, multitarget time delay processor
is an order of magnitude more complex than the conven-
tional GCC processor. Therefore, for a practical imple-
mentation, a suboptimum realization should be considered.
One suboptimum procedure is to assume a low target signal-
to-background noise environment. It was found that the
resulting processor is significantly simplified. From the
multitarget viewpoint, the conventional GCC processor can
be considered as a suboptimum processor. The performance
of the GCC processor is compared to the optimum processor

as a function of time delay separation.
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Because of its simplicity, the conventional GCC processor
is implemented in many existing sonar systems. On the
other hand, the application of the optimum multisensor,
multitarget processor requires a major modification of the
conventional GCC approach. Therefore, an alternate
approach is to provide additional multitarget processing
at the GCC output. For this purpose, a post GCC multi-
target estimator (or more appropriately the matched esti-
mator) was investigated. In essence, the matched esti-
mator determines the best estimate of the unknown para-
meter vector from a reference function which matches the
observed noisy GCC output under a Least Mean Square (LMS)
criterion. The matched estimator was simulated. The sim-
ulation results were compared to the theoretical pre-
dictions as well as to the optimum processor. The results
of this study indicate that the matched estimator provides

comparable performance with the optimum processor.

The optimum multisensor, multitarget processor which we
have derived, studied, and discussed thus far was based on
the assumption of a SPLOT process. This assumption is
difficult to satisfy for a more general moving target
environment. Therefore, we further refined our study to

account for the effects of target motion,
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The approach we have taken was to model the time delay
motion by a finite order polynomial in time and partition
the observation interval into N equal subintervals. It
was shown that in order for the time-compressed waveform
to be Fourier-representable, N must satisfy a certain con-
straint. When this assumption is valid, one can again
express the multisensor, multitarget, multi-interval
observations in terms of a multidimensional Fourier
coefficient vector. The result of using an MLE approach
yielded the multisensor, multitarget variable time delay
processor. This processor provided an estimate of the
time delay and its higher order derivatives at any time
within the observation interval. It was shown that for
time delay estimate, the minimum variance always occurs at

the mid-point of the observation interval.

The time delay processors we have discussed thus far are
batch processor; i.e., one must wait until the end of a
T-seccnd observation before one starts any computations.
In many applications, this T-second solution delay is not
acceptable. Therefore, we have investigated and proposed
a sequential fixed-interval time delay processor. This
processor obtains its current estimate by utilizing the
most current subinterval observation and the prior esti-
mates. We obtained an expression for the covariarce cal-

culation.

.
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We next addressed the problem of variable localization
parameter estimation and tracking. Our approach was sim-
ilar to the stationary parameter case. We first estimated
the time delay trajectory using the variable time delay
processor. Localization parameters were then obtained via
a geometric mapping from the time delay estimate. For
target state estimation where we are interested in both
the target position and velocity components, the mapping
function utilized both time delay and time delay rate

estimates.
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CHAPTER 2
PROBLEM FORMULATION

Man cannot inherit the past; he has to recreate Iit.
-- A. KOESTLER, The Act of Creation

2.1 INTRODUCTION

In this chapter we discuss the mathematical description of the
sensor observations and formulate the general multisensor, multi-
target time delay estimation problem. The optimum signal processor
is sought via an MLE procedure. In general, we assume the target-
sensor environment consists of M sensors and J targets (or J arrival
paths). Target waveforms are assumed mutually uncorrelated. As an
introduction to the general multitarget, multisensor problem formula-
tion, we first consider the basic description of observables for a

single target case.

2.2 DESCRIPTION OF OBSERVABLES

Let M sensor arrays be distributed arbitrarily in space. These
M sensor arrays then produce M continuous waveforms which represent
the M spatial samples of a random field generated by the target signal
in additive ambient noise. Let the M waveforms be observed for a

duration of T seconds and let the received waveforms be written as:

21
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y(t,‘&i) = a; s.(t) + ni(t) ; i=1,2, «e., M (2.2-1)
tel(0, T]

m u

where a;, si(t), and ni(t) are the signal attenuation factor, signal
waveform, and the noise waveform, respectively, for the ith sensor.
We note that the observed waveform y(t, &i) is a random function of
space and time, and %. is the location vector of the ith sensor with

respect to a known reference point. See Figure 2-1.

X TARGET

[ WAVE FRONT

L .o ¥

o SENSORS

018.950

Figure 2-1. Description of Passive Sensor QObservation




.,rr-vﬁvv~.

P

e

PPty

23

To simplify the analysis, the following assumptions have been

made :

1. Pure Time Delay Channel - The signal waveforms received at

each sensor are identical except for a pure time delay.
Thus, the signal waveform (for the single target case) of
the ith sensor can be written as si(t) = s(t + Di)’ where D,
is the propagation delay from the signal source to the ith

sensor. Therefore, Equation (2.2-1) can be rewritten as:

From Figure 2-2, we see that the propagation time delay is

given by the relation

Ir - &1] _
0; = —=— (2.2-3)
where
r = position vector of the signal source
%, = Tlocation vector of the ith sensor
¢ = propagation speed of the medium.

2. Noise at each sensor is assumed additive with known spatial

and temporal correlation function.
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SENSOR #i

018.954

Figure 2-2. Target-to-Sensor Geometry

3. The observation time T is much longer than the travel time of

the wavefront across the sensor array.

4. Both the signal process and the noise process are mutually
uncorrelated, zero mean, Gaussian, stationary in time, homo-

26)

genous in space {Yaglom“~), and have a known band-limited

power spectrum.

We note that the set of observations y(t, gi); i=1,2, ..., M;
t €[0, T] contains a complete description of the observables. How-
ever, it has infinite dimensions and is analytically intractable.
Therefore, we wish to represent the time-limited observation of the

waveform by a finite set of discrete random variables. Because of
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the time delays in the signal waveform, a convenient approach is to

represent the observation in terms of a Fourier series expansion as

discussed by MacDonald and Schu]theiss,27 Knapp and Carter,1 and
Rockmore.28 The resulting coefficients are almost uncorrelated for a
large bandwidth time product as demonstrated by Hodgkiss and No]te.29
Therefore, Equation (2.2-2) can be represented by a Fourier coeffi-
cient vector as:
& = By !k s k = #1, £2, ... (2.2-4)
where
= (a )7
X 1k %2k - Ok (2.2-5a)
Y = (ale ae s Aye (2.2-5b)
- T
O = (ng Moy oor Ty (2.2-5¢)

F-O are the vectors of observation, signal steering, and additive noise,
{ respectively, for all sensor outputs at frequency W = (2nk)%.
E Furthermore, the variables W By and Ny are defined as follows:
o 1 ! -lu t
: ay 5T / y(t, &) e dt (2.2-6a)
0
®
b
&
]
]
L . ) e d
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T -jwkt
3 =% f s(t) e dt (2.2-6b)
0
T -jmkt
. =_11'f ni(t) e dt . (2.2-6¢)
0

Note that for real signal and noise waveforms, the Fourier coeffi-
cients are conjugate symmetric; i.e., oy T a?k. Thus, for a band-
limited process one only needs to consider frequency components
k=1, 2, ..., B, where B is the highest cut-off frequency of either

the signal or the noise spectrum. For a low pass power spectrum, B

can be identified as the one-sided handwidth.

Since both the signal and noise are zero mean Gaussian pro-
cesses, it is easily established that % is a zero mean Gaussian ran-

dom vector with covariance matrix:

—

Ry = Eloy o

L
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where gﬁ is the complex conjugate transpose of %3 Sk and Nk are the
discrete signal and noise power spectral density, respectively, at
frequency w3 and Qk is the normalized spatial covariance matrix of

the noise vector such that
tr(Qk) =M (2.2-7b)
where tr( ) defines the trace of a matrix.

Now writing

) T

a = (aT aT aT
= 1—2 .ll4

as an MB dimensional complex column observation vector, we obtain the

first and the second order moments of o as:

E(a) = 0 (2.2-8a)

E(a a*) = diag{Rk} {2.2-8b)

which is a block diagonal since for a large bandwidth-time product,

E(gk gi) =0 fork #2.
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Now let

. T
D_ - (Dl 02 se e DM)
be the propagation delay vector, then the probability density func-
tion (pdf) of % conditioned on D is complex Gaussian (Appendix A)

given by

i
]
=
=
e
—
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p(a (D) = &} (2.2-9)
and since @ and a, are uncorrelated for k # 2, they are also inde-

pendent. Hence, one can write

B
= a ™ TT 1R exptea R o) (2.2-10)
k-1

as the pdf of the complete observation vector a conditioned on the
propagation time delay vector D. Thus Equation (2.2-10) provides a
complete statistical description of the observation conditioned on

the unknown time delay vector.

R
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2.3 STATEMENT OF THE PROBLEM

In this section we formulate the general multisensor, multi-
target time delay estimation problem in terms of the observation
vector described in the previous section. We consider the problem of
optimum time delay estimation from M sensor arrays in the presence of
J possible targets. The final objective of sensor array time delay
estimation is to provide optimum estimates of target localization
parameters (i.e., range and bearing). We assume that interarray sep-
aration is large compared to the size of each sensor array. Such an
arrangement is normally found in large aperture surveillance systems.

30 A

See, for example, the large seismic array described by Capon.
recent study by Carter2 has shown that for passive localization of an
acoustic source, the variance of the b2aring error is inversely pro-
portional to the square of the base length while the variance of the
range error is proportional to the fourth-power of the ratio of the

true range to the base length. Thus, a long base length is desirable

in reducing the variance of the estimates.

Let the M sensor array outputs from J acoustic sources be

written as:

d
Yt g) = DAy sy(t #0050 +nglt) 5 te (0, T (2.3-1)
51
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where i =1, 2, ..., M; aij is the signal attenuation factor for the

jth target to the ith sensor; Dij
J.(t) and ni(t) are the band-limited signal

and noise processes with the usual assumptions of zero mean,

is the propagation time delay from

target j to sensor i; and s

Gaussian, time stationary, and spatially homogeneous. Fourier expan-
sion of Equation (2.3-1) yields the finite dimensional frequency

domain representation as:

% = wkgk +*n s k=12, ..., B (2.3-2a)
where
T
o = (o ogy «ev ay) (2.3-2b)
B, = (B4 B B )T 2.3-2
By k1l Bz o0 Byy (2.3-2¢)
~ T
Q< = (nlk n2k s Wk) (2.3-2d)
and
Juw, D, .
W, = (a1Je ¢ 1J) ; i=1,2, ..., M (2.3-2e)
i=1,2, ..y d

is aMx J complex "propagation delay" matrix, where M is the number
of sensors, J is the number of targets, and W = (an)% is the dis-
crete frequency. Similar to the development in the last section, the

observation vector % is Gaussian with the following statistics:
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€4
k>
=
- E(e) =0 (2.3-3a)
3
*! ‘ 0; if k # 2
L‘ E( *) =
[ * X 1 Rk; if k = 2 (2.3-3b)
¢
" where
; Rk ) wk Sk NE + Nk Qk (2.3-3c)
;‘!
) and

Sk = E(gk §E) . (2.3-3d)

For uncorrelated sources, we have
Sk = diag{skl, skz, s e o SkJ} (2.3-38)

as a J x J diagonal matrix with element Skj as the signal power at
frequency Wy of target j. Thus, the pdf of % conditioned on the

time delay matrix defined by

i=1,2, ...y 4 (2.3-3f)
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is
_ =M -1 % n-1
P(a D) = 7 [R |7 exp{-og* R~ &t - (2.3-4)
Finally, writing
a= (g oo, (2.3-5a)

then the pdf of a, the complete observation vector, conditioned on D,

the multisensor, multitarget time delay matrix, can be written as

B
= n'MBH IRkl'1 exp{-af Rgl %} - (2.3-5b)
k=1

Equation (2.3-5b) constitutes the basis for the derivation of the
multisensor, multitarget optimum time delay processor. An MLE is
obtained by maximizing the conditional pdf with respect to each ele-
ment of the propagation time delay matrix. Thus, symbolically one
can write

-

Dy_ = Max Arg p(alD) . (2.3-6)
1 D -
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CHAPTER 3
OPTIMUM MULTITARGET PARAMETER ESTIMATION

It is demonstrable, that things cannot be otherwise than as they
are, as all things have been created for some end, they must
necessarily have been created for the best end. -- VOLTAIRE

3.1 INTRODUCTION

In principle the optimum estimate of the time delay matrix D
is obtained by solving Equation (2.3-6) numerically. In general, a
direct implementation of Equation (2.3-6) results in a very complex
processor. However, without loss of performance, Equation (2.3-6)
can be reduced to its simplest form by mathematical manipulations.

The resulting processor is usually realizable.

In this chapter we investigate the fine structure of the opti-
mum multitarget time delay signal processor. Since time delays are
modeled as unknown constants, we seek an optimum estimator via an
MLE approach. We provide a performance bound for the resulting
estimator. We study in detail the two-sensor, two-target case.

For the three-sensor, one-target case we establish the relationship
between optimum localization parameter estimation and optimum time
delay estimation. Finally, we investigate the structure of the
optimum power spectral estimator when the target signal power spec-

trum is not known a priori.

33
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3.2 THE LIKELIHOOD EQUATION

It was shown in Chapter 2, Equation (2.3-5b), that the pdf ¢
the sensor observation vector a conditioned on the time delay

matrix D is given by

B8
p(a)0) = [ [ e 10 (3.2-1a)
k=1
where
pley [0) = 1R ! explogp RT3 . (3.2-1b)

The ij element of the time delay matrix D is given by (see

Equation (2.3-3f))

9 seoey

—
[
u
-
—
[ ]

(3.2-2)

—
v 9
NN

o

9 eeey

where gj and L, denote the vector locations of target j and
sensor i, respectively. The log-likelihood function of Equation

(3.2-1la) is defined by

A(D)

"
[
—
o
Qa
o
—
;L_Q
=)
St

il
[]
=9
(o]
—
o
[fa]
—_
=3
~—
]
~
1} [ov)
p—
-
=~
—_—
Q
~—

(3.2-3a)
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where

A (D) = Tog|R,| + af Rl gy (3.2-3b)

and Ry is the covariance matrix of the zero mean compiex Gaussian

vector g given by (see Equation (2.3-3c))

= 3.2-3c
Re = W Sk We + N Q ( )

where for the uncorrelated source case,

Sk = diag{skl, Skz, ss ey SkJ} (3-2‘3d)

is a J x J diagonal signal power density matrix whose jth diagonal
entry denotes the discrete signal power density of target j at fre-

quency w. N is the discrete noise power density, and Qk is the
normalized covariance matrix. Finally, the ij element of the M x J

"propagation delay matrix", wk, is defined by

jmkDij ]
= s ; 1
wk (aTJe .

where aij denotes the signal attenuation factor from target j to

nn
— .
-
NN

-

=

(3.2-3e)

. »
w

sensor i, Now writing

3 (3.2-4a)

,’E'.<l
i'\_:;‘l
L=t
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" where

Jw, Dy . jw, D, . Jw,0,.\T
jz(aljeklgaek&] ekMJ)

Zj LY an (3'2-4b)

;r<:

is the attenuated signal steering vector of target j at frequency

w . Using the fact that Sk is a diagonal matrix for uncorrelated

sources, we have the obvious identity:

el Ity TN T -, T
- i |

=
,\_
[%]
"
=
Pyt
]
<.
" o
—
w
~
a
7L< [}
[ Y
;L_< ]
*
[ Y

-

=.Zskj ij (3.2-4c)

J
j=1

RAASR AR AL o S Mb ot t arha

where Pk is defined by

J

u
;L< ]
(2%
AR!
<

kJ

&
&

Note that we have chosen to let

o or equivalently (to reference all time delays to the first sensor),
t gne can write
!

Juy 8 5 Joedy_1,5\ T
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where Aij is given by the relation

A;; =D

ij i+l,j 0,

i i=1,2, ..., M-1, (3.2-4f)

Now ij is an M x M Hermitian matrix of rank one and is a func-

tion of the attenuation vector 3 and the time delay vector by-

The vectors 3 and 4y are given by

- T -
éj = (alj a5 «e an) ’ (3.2-4qg)

.
8= (85 85 eee By ) (3.2-4h)

Note that given M sensors, there are M-1 independent time delay
pairs from a possible total of M(M-l)%. The selection of this set
is not unique. However, for time delay estimation, it is reason-
able to assume a set with minimum total delay. This set (for a
line array) is given by the inter-sensor time delay vector:

-
i

lj = (le sz LI} TM‘I,j) ; j=l, 2, LU Y (3.2‘41)

[

where Tij = Di+l,j - Dij .

Note that the Aijls can be expressed in terms of the rij‘s. For

example:

- P P i " s - s S,
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"
A
>
.

(3.2-4j3)

where U. is a column vector whose first i entries are one and the

remainder are zero.

Furthermore, by writing the mn element of the matrix ij as

PEE, and from Equation (3.2-4e), we can identify the relation

Jo (81, 578001,5)

'3

= --sM o=
K3 = Ang nj © . (3.2-5a)

e sy

>S5 3
non
[y —y
- -

NN
-

Now utilizing the relation in Equation (3.2-4j), we obtain

Pt _ Juy (U _1-Yn1) 3 (3.2-5b)

[N s a_a P S P 5 -

e s T
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Thus we have shown that the observation covariance matrix can
be expressed as a function of inter-sensor time delays instead of
the actual propagation delays. Therefore, the direct observable

quantities are time delays instead of the probagation delays.

Using Equation (3.2-4c) in (3.2-3c), one obtains an alternate

expression for the observation covariance matrix:

3
R, = :E: Ses P * M O - (3.2-6)

j=1

Equation (3.2-6) can also be summed in the following way:
k= Skn Pt Mg Qg

= Sz P2 * N2 Qo

* Sk Pha Mo &g (3.2-72)
where
J
N * :E: St N s 31,2, ., (3.2-7b)
i=1
i#]
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and

J

Q; * Zski Pei * M Qe | 7 M - (3.2-7¢)
i=1
i#j

Note that 5kj can be regarded as an equivalent noise process and is
independent of the parameter IJ' For simplicity we shall assume
the propagation attenuation coefficients are known and, for conven-

ience, assume they are equal to unity.

Finally, writing the incremental (intersenser) time delay

vector for all targets as

T

CRNE S O

s (3.2-8)

a p-parameter column vector where p = J(M-1), the vector log-

Tikelihood function (Equations (3.2-3a) and (3.2-3b)) becomes

B
A(e) = -MB log(m) - Z M () (3.2-9)
k=1
where
A(8) = Tog|R | + o R o . (3.2-10)

3 -y i,
’ - .
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”~ The MLE of e is one that maximizes the likelihood function A(e). A
necessary condition for the location of the maximum is given by the

vector likelihood equation

VA(e) = -Z A (e) = 0 (3.2-11)

k=1
L‘! where V is the gradient operator given by the column vector
I
T
a9 3 )
V = PR . (3-2-12)
(ael 39, Bep

3.3 MULTIPLE PARAMETER ESTIMATION

It was shown in the previous section that the optimal estimate

LA of the time delay vector is hinged on solving the vector likelihood

: equation. For the MLE, we have
F B
; f(e) & wale) = - E 7a(8) = 0 (3.3-1)
{ k=1
g
T . . . . .
; where f(e) is a vector function. The lTikelihood function Ak(g) is
[
[ defined as in Equation (3.2-10).
[ o
S I[n this section we examine the solution of the likelihood
{ equation in general and in Section 3.5 we explore in detail the
{ structure of the optimum multitarget, multisensor processor.
s
®
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Let ®; denote the jth element of the time delay vector e, then

Equation (3.3-1) can be written as

B

3 - 3 - . i = -

3—931\(9_)--21'@ Ak(g)-O, i=12, ..., p. (3.3-2)
k=

From Equation (3.2-10) we obtain

! ar-L
) - - P} k
To7 & (8) = R 5= IR+ o 55— o
J J J
.1 3Ry aR.;1
= tr (Rk 533-) + o e % (3.3-3)

where tr( ) denotes the trace of a matrix. Note that the evalua-
tion of the first term is a straightforward application of the
chain rule. The exact procedure can be found in Rockmor‘e.28 The
derivative of Equation (3.3-3) w.r.t. 8; is

82Ak

3R R 3R 3271
o de- (&) T triy X 3 <+t 3 ak ;

o 30,30 ; % - (3.3-4)

Using the linear property of the trace operator and the relation
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Equation (3.3-4) becomes
aZAk(g) ( .1 3R 1 Ry ) ( - aZRk ) 32r-1
e = tr (RS R =] + tr|{ R |+ @ = .
30,36, k 36y 'k o k 30,36 X 30,36 X

(3.3-5)

Equation (3.3-5) is important in evaluating the performance bound
of an estimator. Substituting Equation (3.3-3) in

Equation (3.3-1), one obtains the set of necessary conditions for

the ML estimate:

B .1 3Ry aR,:1
- —_ * =0. 3 = eaey Po
file) = 'Z TR 6, ) T K e, X 0;1=1,2, P

L"( (3.3-6)
b

Equation (3.3-6) is usually non-linear. The structure of the

optimum processor can be found by reducing the required mathema-
p tical operations to simplest form. In principle, Equation (3.3-6)
! can be solved by searching the p-parameter space for a simultaneous

null. A more efficient algorithm, however, is implementing a

closed-loop null tracker. Further discussion on this important

subject is beyond the scope of this study.

We remark that Equation (3.3-6) is the necessary condition for

the existence of a maximum. For sufficiency it requires not only
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the condition given in Equation (3.3-6) but also the following

(Bryson and Ho31):
2
3 fle) = aA(e) g (3.3-7)

2

. . 2 .
By this we mean the square matrix 3 A(e)/ag“ must be negative

definite.
3.4 ESTIMATOR PERFORMANCE EVALUATION

In this section we derive the multi-parameter CRLB and show
that the resulting estimate obtained from solving Equation (3.3-6)
satisfies the bound for a large observation time. Therefore, the

resulting estimate is efficient.

The CRLB for an unbiased estimate of the ith parameter is

given by Van Trees:32

VAR(8 )y > (371, (3.4-1)

where ( )ii denotes the ith diagonal element of a matrix and J is

the Fisher Information Matrix whose ij element is defined by

-

(3.4-2)
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where A(e) is the log-likelihood function. Using Equations (3.3-2)

and (3.3-5) in (3.4-2), we immediately obtain

B
A 3R 3R
. - k -
%ij - 'Z tr (Rkl 30, Rk1 aek.)
i i

q ¥R Rt
S AR e T k) ||, (3.4-3)

J J &
where 8, denotes the true parameter value. Equation (3.4-3) can be

simplified as follows: Taking the derivative of the identity Rgl

Rk=I first w.r.t. ej and then w.r.t. 8, one obtains the relation

3°R 3%r-! sr-l ar arcl AR
ot R S % g | .- B R, R (3.4-4)
195 %1% ®5 i % %9

Substituting Equation (3.4-4) in Equation (3.4-3), the latter can

be simplified to

B
aR 3R
- -1 %% -1 Tk
J'ij -Z tr <Rk To. Rk 39.> ) (3.4-5a)
k=1 J V1 RE 8
:f: < aRT R, >
= tr - —— —
— 5 ®i/|e =0, (3.4-5b)

Note that because tr(AB) = tr(BA), we have Jij =J Equation

Jir
(3.4-5b) agrees with the expression obtained by Bangs.33 However,

the derivation presented here is somewhat simpler and more direct.
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Next we proceed to show that the MLE, éML’ of @ obtained by
simultaneously solving the set of equations in Equation (3.3-6) is

unbiased and achieves the CRLB.

Let f(o) = (f1(0) Fyle)... Fyle))

and write the Taylor series expansion of f(e) about the true para-

meter value 8, as follows:

f(e) = fle,) + Jo ¥ eee (3.4-6)

Since £(§ML) = 0 by definition, we have after neglecting higher

order terms (smal: random error assumption):

f R
tl.) = af(e,)

-‘=Q 32 (GML = 20) N (3.4-7)

Now assume the law of large number applies so that (for a suf-
ficiently long observation time) one can replace the derivative by
its expected value. Taking the expected value on both sides of

Equation (3.4-7), one obtains

~ ‘ aﬁ(go) -1
E(_Q_ML) =8, -IE —_3_2— E[_f_(e )1 . (3.4-8)

-— -~ - SR S SR P, -~ a - [ P
.- JUIPP R
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But from Equation (3.3-6)
8 ( R aR!
E[f;(8,)1 = -E tr \R 38.) *ttrlse— R )
k=1 ! ! 8=e,
B 4 R ar
='Z AR T, tre K o =e
k=1 - =0
(3.4-9)

Therefore, E(éML) = 84 and éML is an unbiased estimator. Post

multiplying Equation (3.4-7) by its conjugate transpose and taking

the expectation yields

3f(s..) - N
Elf(e,)E5(2g)1= E[ Ty ] e [(oy, - 2) (o, - 2
81(90)*]
E [—3‘9__ . (3.4-10)

Now recall that f(e) = VA(e), so one can write

122 {2

%
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82A ) azAgez . azA -]
%1 %1%2 MI%D
=t |32%ne 22A(e) 3°A(e
%2%1 %g MZ“p
(3.4-11)
aZAge! azAgeg azAgez
aepael aep892 aeg
b - 9 = 20
= -J.
Furthermore, we have the relation
E| (o) £2(e,)] = E[7A(e) Mg - (3.4-12)
8 = 8

Therefore, substituting Equations (3.4-11) and (3.4-12) in (3.4-10)

yields

= g1 (3.4-13a)

(3.4-13b)

Thus we have shown that the multi-parameter MLE is an effi-

cient, unbiased estimator for large observation time.
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3.5 MULTISENSOR, MULTITARGET PARAMETER ESTIMATION

In this section we investigate the detailed structure of the
optimum signal processor for multiple parameter estimation. For
the purpose of target localization, the parameter set of interest
is time delays, range, and bearing. There are two possible
approaches in estimacing the localization parameters. The first is
via a geometric transformation from measured time delays; the
second is via a direct range and bearing signal processor. From
the results of this study, we will clarify the relative merits
between these two approaches. In Section 3.5.1, we derive the
optimum multisensor, multitarget time delay processor. In
Section 3.5.2 we discuss the various methodologies of obtaining
range and bearing. Finally, in Section 3.5.23 we briefly discuss
the problem of optimum time delay estimation with unknown target

power spectra.

3.5.1 Time Delay Estimation

It was shown in Section 3.3 that the MLE of the time delay
parameter vector @ required the simultaneous soiution of the vector

likelihood equation:

3
A, (9)
31;9§§2=-Z “—-0; =1, 2y vee, JM - 1)
) kst J

(3.5.1-1a)
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where
-1
an, (8) 1 Ry 3Ry
38 IR ., ) P 39 S - (3.5.1-1b)

We will explore the detailed structure of the optimum signal
processor by simplifying Equation (3.5.1-la). Recall from

Equation (3.2-6) that

Rk = Skj ij + Nkj ij (3.5.1-2a)
where
J
%j * Z Sei P Y M Q] 7 Ny (3.5.1-2p)
i#j
and

kj = (3-5-1'2C)

=21
M
1)
i
W
.
— o
+
=
~

For notational simplicity we shall assume in Equation (3.5.1-1la)

that there are J targets but with two sensors. The e.'s in this

J

case correspond to the time delay for each target. In the case of

more than two sensors, ej must be replaced by each element of the

inter-sensor time delay vector ( o Tyl J.) of target j,

Tij, TZJ, ..
where Tij denotes the time delay between sensors i + 1 and i of

target j.
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¢
r" Applying the well-known matrix inversion Lemma

R IH + m71)=1 o m - T (imuT + R)"2iM to R7L, we obtain
K

- -1 _ ~ 7 .l
ke R = Seg Py * My Oy
| ~_1 =
Q. Sy Ny ~ ~_1
S ki” kd Qk§ s O (3.5.1-3)
N . 1+G, . S ./N .
q kJ kj ki’ kJ
_ ~-1 ) ) ) .
[ where ij = —fj ij !kj is defined as the effective array gain for
[ target j. The derivative of R;l W.r.t. ej can be written as
£ !
a aR; - o1 [3P, . . 3G, . -
3 k.. 2 ~-1 kj _ k j -1 _
o LY (533‘ *J %, ij) Q; (3.5.1-4a)

where we have defined

- S, < /NE
5l = —2L K (3.5.1-4b)
1+ Gy 5 Skj/Nkj
- - _
By = Myl (3.5.1-4c)

h 4

Using tquations (3.5.1-3) and (3.5.1-4a), the first term in Equa-

tion (3.5.1-1b) can be written as follows:

= 2 [z, 5-1 %7k
" S M ”(ij ki % 7, ) ©(3.5.1-54)

e A B ) m e e A A e e &
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But this can be further simplified using the following relations:

~ 1 oP, . - av, . VX,
21 P\ 1 W Y5

J 98 ] ®5 7
~ 1 3V vk, .
= Yk, Q‘];_‘ﬁ+_‘ﬁQ‘lv )
—*j “kj aej aej ki —kJ
3G, .
_ 3Gy (3.5.1-5b)
aej

- kj -
= ij T (3.5.1-5¢)
J
Thus Equation (3.5.1-5a) reduces to
aR S, s 3G, . - 3G, .
el K ) =kl kg n 2, =K
k 3e. N 38 . ki k] kj 3de,
J kj d J
~ aG, .
= —XJ
A 5 aej . (3.5.1-6)

e T e T T B W
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Using Equations (3.5.1-1b), (3.5.1-4a) and (3.5.1-5¢) in

(3.5.1-1a), the likelihood equation becomes

8

P - 6. -
aA(e) = 2 ool (kg ki -1
3. ‘Z g™ & Qg (aej % w3 ki) Wi X

J k=1
~ 3Gy
kJ
-akj aej j=1,1...3
= 0. (3.5.1-7)

Equation (3.5.1-7) reduces to that obtained by Bangs33’34

for the
single target case. It should be pointed out that our development
up to here in many ways parallels Bang's work. However, there are
also major differences. We are interested in a multitarget
environment while Bangs' work dealt exclusively with single target.
We are interested in joint time delay vector estimation while
Bangs' work is primarily concerned with range and bearing
estimation. Thus, our work in this section can be considered as an

extension of Bangs' original work to include the multitarget,

multisensor environment.

For time delay estimation, the likelihood equation

(Equation (3.5.1-7)) can be further simplified as follows.

SN NP S - - P S V)
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Recall from Equations (3.2-4e and (3.2-4j) that the steering

vector for target j is

T

0T . T T
Judit:  Jw Yot ju Uy, 1-)
!kj (l e =L e =233 ceo B m-l J (3.5.1-8a)

where the attenuation coefficients aij were assumed known and for

convenience they were assumed to have unity.

Therefore, the mn element of ij is

T
o (U 1-U 1) T,

R el Sy (3.5.1-8b)
but

P T 33 jmk(um-l'un-l)rij]

g - dalUpy - ) o Lo

1J 13
= ju 80" P‘;"J‘ (3.5.1-8¢)

where ¢ = (gm-l - gﬂ_l)T Id and @Tn is defined as the mn element

of the matrix ¢1 given by

o™ = 30"
i arij
aT.
T =] -
= (U -U. ,) = i=1, 2, , M-1
-m-1 =n-1 arij m=1. 2. M
n=1, 2, , M
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‘ 1 ;ifn<i<ml
=1-1 ; ifm< i <n-l
l 0 ; otherwise . (3.5.1-8d)

Note that for a system of M sensors, ¢1 is an M x M matrix.

For example, let M = 3, then

0 -1 -1 0 -1
% = |1 0 01 ; ¢ = |10 0 -1
1 0 0 1 0

Cefine lM as an M x M square matrix of ones, and ij as a diagonal
“steering matrix", whose diagonal elements correspond to the ele-

ments of the steering vector yki; i.e.,

T T T
Jadity  dudhy o012

ij = diag ( 1, g eens . (3.5.1-9)
Then the following relations can be easily established:

ij = ij 1M ij (3.5.1-10a)
and

arij = Juy, ij P, sz . (3.5.1-10b)
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Furthermore, using Equation (3.5.1-10b), Equation (3.5.1-5b) can be

written as
Gy . -1,

Finally, using Equations (3.5.1-10a), (3.5.1-10b), (3.5.1-10c)

and replacing 8; by Tij»

(Equation (3.5.1-7)) can be simplified to

the likelihood equation

(T) ~ i ~
- . _ pKd .k
I :E: Juy [ [Py s ? o QkJ Vg (o5 - B3 1y) vy ng & - b;

=0 {3.5.1-11a)
where
—kj _ = -1 -
bi = (QkJ VkJ d. V. ) (3.5.1-11b)

is the bias correction term and for i =1, 2, ..., M-l and j = 1,
2, ..., J where M is the number of sensors and J is the number of
targets. Note that the J(M - 1) equations are coupled and must be
solved jointly for the stationary point. For long observation time
such that the frequency samples are dense over the frequency bands
of the signal and the noise, the summation in Equation (3.5.1-1la)

can be replaced by integration as follows:

- — A . A o o ek I I P DN S o
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Note that in obtaining Equation (3.5.1-12a) the relations

2

Tay = a(w) and Iﬁkl2 = T|ﬁ(w)| have been used.

It is recalled that for the jth target

sj<w)/ﬁ§<w)

J J J
5(w) = 35lw) tri85 () V() 95(w) Vi)
. . J
T o) = Ayl | D Silw) Pye) + M) Q(w)
i=1
i

(3.5.1-12a)

(3.5.1-12b)

(3.5.1-12¢)

(3.5.1-12d)

(3.5.1-12e)

P Y W g i
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) J
N (w) = :E: 5, (@) + N(w) (3.5.1-12f)
i=1
A
(3.5.1-12g)
Pj(m) = Vj(w) 1M Vj(w)
and
Gj(w) = yg(w) 631<w> Vj(w) . (3.5.1-12h)

The optimum muititarget, multisensor time delay signal pro-
cessor is shown in Figure 3-1. There is a total of J(M - 1) pro-
cessing channels for the case of M sensors and J targets. For sim-
plicity we show a single processing channel. Note that the pro-
cessing channels are tightly coupled. The signal conditioning
filters depend on the time delay parameters from other processing
channels as well. This is an order of magnitude more complex com-
pared to a single target case. A number of suboptimal realizations
can be found as discussed in Section 4. Finally, we remark that
for convenience, we show the optimum processor (Figure 3-1) in the
continuous frequency domain. For practical considerations, the
discrete counterpart, Equation (3.5.1-1la), is normally used since
the correlation process can be mechanized easily via the Fast

Fourier Transform (FFT) algorithm.
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Using Equations (3.5.1-12b-f), we shall study the specific
| e}

R Y

structure of the optimum time delay processor for a number of

simple but important cases.

bJ 3.5.1.1 Case 1:

For convenience we assume Q(w) = I; i.e., the noise processes are

One_Target and Two Sensors (J =1, M = 2).

equal in power and uncorrelated between sensors. Noise processes
being uncorrelated between sensors is a reasonable assumption since

in practice sensors are separated at least at a half wavelength

RS B S N SRS v aings SED SR

spacing.

.

The steering vector is v = (1 eij)T. The following relations

can be verified easily:

a“""" v

(3.5.1-13a)

Lt
]
—
—
£
~—
u
0O
]
—
—
&
[}
-

(3.5.1-13b)

N Erv )
[
—~
£
~
1}
<
*
o
U
—
<
]
n

b(w) = tr(q Vo, v) = 0 (3.5.1-13¢)
o =2 S(w) /N(w)
w
[h(w) |® = T+ S(w)?N(w) (3.5.1-13d)

and

P T
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0 -1 1 0

& = PRV ' ) (3.5.1-13e)
1 0 0 eJd¥T

Thus from Equation (3.5.1-12a), the likelihood equation is

~
—_

= %? .{ joln|® @ v ¢ V* adw =0 . (3.5.1-14a)

This simple time delay processor is diagrammed in Figure 3-2.
This processor is identical to the one studied by Carter35 and can

be shown as follows. From Equation (3.5.1-14a), we have

~ 0 0o -1 1 0
.O/leh' eut] |1 o] [0 eder]2®

;?f Izalw)c%() 9T du

l:ﬂt—-‘

]
gﬁl —
\.._\8
Cue
€
E
R
™
E
mLa
€
A

(3.5.1-14b)
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where 612 is the estimated cross power spectrum between channels o]
(w) and ay (w), and Ryp (1) is the GCC function studied by Knapp
and Carter.1 A block diagram of this processor is shown in

Figure 3-2(b). Note that the null of Z(t) corresponds to the peak

of Rlz(r). Furthermore, the discrete form of Equation (3.5.1-14b)

is
3] jukT
I(t) = :E: J’wklhkl2 a5 e (3.5.1-14c)
k=-8B
B jwkT
- 3d 2 5.1-14
"a‘?Z“‘k' g B e - (3.5.1-14d)
k=-8

From Equation (3.5.1-14b), we note that the GCC function is
directly proportional to the likelihood function. The optimum
estimate is determined by locating the peak of the GCC function or,
equivalently, the null of its derivative. We have shown in
Section 3.4 that the MLE is efficient for a long observation time.
We have also obtained a general closed form expression for the
CRLB. The CRLB for this case can be determined easily. From Equa-

tions (3.4-1) and (3.4-5) we have

-1

. B R R, -1
VAR(T) > Z tr | - e o . (3.5.1-15a)
k=1

e
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“_;-wi Now combining Equations (3.5.1-4a) and (3.5.1-10b), we obtain
o
- 3R, 3P, (3.5.1-15b)
. — = — =1 *
ﬁiﬂ 5T Sk 3T dw S Ve 0 W
an;l ~ 2
o = -du [y €V 0 VE (3.5.1-15¢)
(]
{ Thus
( R 3Rk) 27 |2 (v, o u)
tr \= —— s—] = - |h S, tr(V, o7 V¥
i at ot AL k 71 7k (3.5.1-15d)
A
{
!
1 _ 5 20 12
-
L
m and the CRLB is
B 2,2 -1
w2 (25 TF IS,
k=1
@ -1
clw) 2
{ > 2n | 2T ‘4‘ T cla) w dw
- (3.5.1-16b)
.
b
t @
E which is identical to the expression derived by Carter.2 Note
[ that T is the observation time and
- @
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c(w) = ( ;5 ol ) ¢ (3.5.1-16¢)

is known as the magnitude square coherence (MSC) function for the

case of two equal-noise power channels.

3.5.1.2 Case 2: Two Targets and Two Sensors (J = 2, M = 2).

Again assuming Q = I for simplicity. The parameter vector con-
sists of two elements; i.e., & = (Tl, TZ)T, the time delays to tar-
get number one and target number two. The optimum estimates can be

obtained by solving simultaneously the two likelihood equations:

M(ty, T,) ~ - - - - -
1 "2 . 2 -1 -1 dw
0

=0
(3.5.1-17a)
Mrp ) s s - * =] - dw
7, J/. Jullhy]® @* Qp" Vp 19y - by Lyl V5 Q7 @ = T 057

0

=9

(3.5.1-17b)
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where for notational simplicity, we have suppressed the frequency

dependency. The two likelihood equations can be further simplified

using the following relations:
2
Sl/(S2 + N)

|'~‘1|2 TF e S TN
1 91/(3

- 51/(Sy + N)
T TFE 5/(5 N

.- - . g 3P
i} -1 %7
by = tr (Ql 5?;)

~

= -3 Cy tr[(VE Vl)* lM (V§ Vl)Ql]

- (L # Sy/N) SN
C2 " 7T +2 S,/

- 2
G =2(1+ S,/N) - ¢ v v, |

and

(3.5.1-17¢)

(3.5.1-17d)

(3.5.1-17e)

(3.5.1-17f)

(3.5.1-17g)

(3.5.1-17h)

PP R IR S APy Bl b ..1
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By exchanging indices between 1 and 2, we obtain a similar set
of equations for the second processor channel. Therefore, a

simpler form of the likelihood equation is:

M(ty, 1,) I jot . -
Rl L A %?.)f jwe T dw [|h1|2 exlxz(w)
0

311
~ o~ -~ ~_ -jwr
* 3y cpll + 3y v 07 affde " 2
=0 (3.5.1-18a)
M(ty, 1,) y, jwT - -
1> 2/ _ 7T . 2 2
- - w2, "dum
=0 (3.5.1-18b)

where
X=0Q; a
Y = 651 a
and
~ Xl(w) Xg(w)

- Yy (w) Y3 (w)
a (w) = 1 2
112 '

are the cross power spectra, respectively, for X and Y.
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Substituting Equations (3.5.1-17g and f) in Equation
(3.5.1-17c) yields the optimum two-target, two-sensor spectral
shaping filters:

2
Sy /(S,+N)
- 17°72 (3.5.1-18¢)

S,/N 2
2 V%V, | ) 5 /N
1+(2- rnm 4Rl

e 2
Ihy |

and similarly,

2
- So/(Sy+N
|h2|2 = /(51 . (3.5.1-18d)
SN Ivs v, |2 ) S,/N
1+ 2 - I—:—Z~SI7N —2 =1 2

Note that the filters lﬁllz and |52|2 are a function of the
steering vectors, and that the target of interest is treated as
part of the signal process and remaining targets are treated as

part of the noise process.

A block diagram of this dual channel processor is shown in
Figure 3-3. It is seen that the dual processor is tightly coupled.
In Chapters 4 and 5 we discuss a number of suboptimum procedures
for simplifying the complex structure of this processor in light of

improved multitarget time delay resolution.

Using tquations (3.4-1) and (3.4-5), the CRLB of the time
delay estimates for the two-target, two-sensor case can “e found as

follows:
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1

VAR(‘;i) > (ﬁ

1 -
T i=1,2 (3.5.1-19a)

ii

LA S L M £ I Al an au o i S it
.

where M;, is the coefficient of mutual dependence given by

J
- 12 -
M, = IRy, (3.5.1-19b)
11 “22

and the quantities J;; are defined by (Equation (3.4-5))

B -1
ar>L 3R
. e Ry )
i ‘E [t‘”(‘ 3T, 3 )] . (3.5.1-19¢)

k=1 !

From the relations

Re = Sk Prr ¥ Ska P T N T (3.5.1-19d)
and
R [P - 6 - |
- 31_-1‘ = lhk‘il Qk‘i Fr'r - aki F pk‘i) Qk‘i : i = 1’ 2

(3.5.1-19e)

one obtains after some straightforward but tedious algebraic mani-

pulations: (See Appendix B)

- (5y/M)° 1+ Sm |°
VT _/r T ST TFZ5,m| M ®
0

(3.5.1-20a)

e i B 8ol B B Din B o dhtn Bt B B D B
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s
.o ® 2
Jym = — ) , Y15 dw
T 12 11_[ 1+ Gy 5,/(S,+ N) 1+25,/N 12
P 0 171742 2
F (3.5.1-20b)
| c F o, (5,/N)2 L+ s/N ]2
o J22=?_/- TG, 5,757 W) TFZsm| 2%
P 0 h -
: (3.5.1-20c)
o
P Therefore, using Equation (3.5.1-19) the CRLB of the optimum two-
sensor two-target time delay estimates is given by

- 2m F 2 (SI/N)Z
R 2 e / W TR STS, )

12 0
1+ 52/N 2 -1

g TFZS5,M| M dw (3.5.1-21a)
@ 2

R ~ S, /N)

o | 2 (S,
VAR(T,) > 2T / w [ ]

2/ = (1 - ;212) ( / 1+ Gy 55/(5)+N)
X
1
' Lo sy )° -1
] 173578 7 Yy dws-
. (3.5.1-21b)
8
&d
3
3
o
!
{
L_. AAAAAA la el A A PO P - PP S SO SR R Sy P P Y e
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where
) [ So/N . 2] ;
Gl = (1 + SZ/N) 2 - m) Il]_ lZI | ( .5.1-226)
[ /N . 12 ] (3.5.1-22b)
Sp = (L*5y/M) |2 - ﬁm)llz Yl 2

and the quantities Y1 Y12 and Y, are given by (Appendix B):

2
=1 - SZ/N z An cos” why 5 (3.5.1-23a)
" T+5,N) %=

S, S./N ‘
= C0S WAy, - 2 172 sin2 wA
Y12 wB12 l TF7G) 5,715, * NI (T + 2 5,/8) 12

(3.5.1-23b)

and

S /N
vy =1 - ( T7570 SN ) :E: B, cos” why 5 (3.5.1-23c)

where Byp =Ty - T is the time delay separation between targets 1

and 2. An’ Bn are defined by the following:

>/ L+ S/ (3.5.1-24a)
Ag = 1+Gls/(s+NT {I—"‘_‘"+252/N -1 Tosinend

- - _—— — P . AP LIPS ST 2%, W O W W WS I PNy S WA P

.
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A = -4 /N Sp/W (3.5.1-24b)

1 1+ 61 51/(52 + N) 1+2 52/N
= (3.5.1-24c)

Az - 1 - AO

Ay = -A (3.5.1-244)
SZ/N 1+ SI/N . (3.5.1-24e)
B, =4 - .5.1-24¢

0 1+ G2 SZ/(Sl + N) 1+2 Sl/N

S, /N S,/N

B. = -4 1/ +2/ . N} (3.5.1-24f)
-1 . (3.5.1-24q)
82 1 BO 9
B, = -B; . (3.5.1-24h)

Note that if both targets have identical power spectra (S1 = 52)

and identical time delays (rl = rz) then it can be shown that

1 + 2 (Sy/N)

YW P (3.5.1-25a)
(1+ S,/N)
1 +2 S/

Y, T ——— (3.5.1-25b)
(1 + Sl/N)

v = 1. (3.5.1-25¢)
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Therefore, using Equations (3.5.1-25a-c) in (3.5.1-20a-c), we obtain
- - 2 _ 42 - .
delay variance is infinite indicating the inherent inappropriateness

of a two-target formulation to a one-target problem.

Another observation is that letting the interference power be
zero (i.e., 52 = 0), Equation (3.5.1-20a) reduces to Equation
(3.5.1-16a), the time delay CRLB for the single target case. Note

that because of the following inequality:

Ji? ) [ (5,/N) 1+ S, ]2
w Y, dw
| T S| | TR |

) , (5/M)?
Sﬁ'— w '1—+—2-—S7N dw , (3.5.1-26)
(1 -¥5) < 1
we conclude that the time delay CRLB of the two-target case (Equation
(3.5.1-21a)) is always larger than the time delay CRLB of a single
target case (Equation (3.5.1-16)). For convenience, let S = S1 be
the target power spectrum and I = 52 be the interference power
spectrum, then one can define a degradation ratio of a two-target

CRBL over a single target CRLB as
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R, = two-target CRLB
d one-target CRLB
r o 1%
2
j‘ o2 SN g
= 1 0
35 ©
(1 - M)

2 (5/N)? 1+ 1N |2y du
w T+6 SAT+N) [T+ 2 I/N J
!

(3.5.1-27)

Note that R, > 1 and that R, is a function of SNR, interference-to-

noise ratio (INR), and relative time delay separation.

For the purpose of illustrating the two-sensor, two-target CRLB
performance behavior, we assume a one-sided power spectrum of 100 Hz
bandwidth centered at 50 Hz. Furthermore, we assume that signal,
interference, and noise processes have identical bandwidths.

Figures 3-4 and 3-5 present the multitarget shaping function

Y1» and Y12 respectively, as a function of frequency for a number of
interference-to-signal ratios (ISRs). Two effects can be seen:

(1) the function Yl(w) reduces the low frequency band contribution to
the CRLB while the function le(w) reduces the high frequency band
contribution to the coefficient of mutual dependence; (2) as ISR
decreases, both Yl(m) and ylz(w) approach unity. Figure 3-6 presents
the two-sensor, two-target degradation ratio (Equation (3.5.1-27)) as
a function of time delay separation for a number of ISR values. Note
that identical signal, interference, and noise power spectra of

100 Hz bandwidth are used. As shown in Figure 3-6, the degradation

ratio is oscillatory as a function of time delay separation, which is
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w e T v~ — @ —a

6 1 (8P 0 = ¥NS) sorjey
[eUDbLS-03-35Uaud44a3uU] JuauaILa 18 (M)A uorgouny syl jo asuodsay Adousnbauy *t-¢ 24nbL 4

3 014020

[ (ZH) ADN3NOINYS
i 00t 08 09 ov 0z 0
.. L 'y L i i 1 1 1 i 1 0
!
3 20
i
v
\ i
I Fvo &2
X >4
9
ﬂ =
2 ]
3 4
oyl
i 3
1
l
:
Y
r
r
:
g

L v
¥ DS S R e e ) 2d B i o et o D




77

21 (gp 0 = ¥NS) soirjey
LeubLS-01-80UBu9 u3U] JUBUBSHLQ e (M)C'A uoLIduny 9yl 40 sasuodsay Aduanba.j

112’020

(ZH) ADN3ND3H4
(1] 08 09 ov o2 0
L L i 1. i i 1 1 1 i 0
-2°0
N
—
Fv'0 &
z
9
ap ¢ = st R o
-4
gp 0 = HS§ ﬁ m
90 €
gpe- = usl
90
ap 9- = uSi

*G-£ aunbl 4

it




78

(8P 0 = UNS) uorjeuedas Aeyag awi|
SNsJ4ap oLjey uoljepeabag punog Jamo] oey-Jswed) 3abuej-om) ©uoSudS-oM]  *9-¢ Bunbi 4

202020

(ma/1) NOILYHY4IS AV13Q FWIL

o 8 9 v 2 0
IS FETUE FETTY INU NI SRR NUN TS SN NN SR T P 0
e [
P essnnmnit "
mlw
[ o
Ly ©
2
>
o
s >
- 2
ZH 001 = M@ - 2
gp9- =usi (p) -9 3
- 4
gpe- = usl (g) [ ©
gro = us1 (2) -
gre = vs1 () :
OlLVH TYNDIS-O1-3ONIHIJHILNI mlo
=
C o1

PP D T

i




79

plotted in terms of the noise inverse bandwidth. The oscillatory
behavior decreases as separation increases. Two major peaks are
observed. The first occurs when time delay separation approaches

zero and the other occurs at 4 times the inverse bandwidth. Note that
the first peak goes to infinity at zero while the second decreases as
ISR decreases. Thus,‘targets with identical spectrum and spatial
location yield the worst estimate since they are not separable in fre-
quency and(or) space. In order to see the effect of different signal
and interference spectra on the resulting estimate, we fix the ISR but
vary the interference spectrum. We choose a noise bandwidth of

5000 Hz (B = 5000). The results are presented in Figures 3-7

and 3-8. Two observations can be made: (1) degradation ratio is no
longer infinite at zero time delay separation with non-identical sig-
nal and interference spectra, and (2) comparison between Figures 3-6
and 3-7 shows that the degradation ratio as a function of time delay

separatinn is bandwidth independent.

3.5.1.3 Case 3: One Target and M Sensors (J =1, M =M). For M

sensors and with Qk = I, the parameter set consists of M-1 inde-
pendent time delays. For convenience we select the intersensor time

delay as the minimum time delay set. If we denote this parameter set

by 8 = (rl, Tos vees TM-I)T’ then the optimum estimate of this time

delay set is given by the M-1 likelihood equation:

v . [ L2 =l - -1 “ 1 dw _
5‘1—1'/3“’““1' a* Q" V(e - by 1) VI Q" @ - Thy| 57 =0
0
(3.5.1-28)
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for i =1, 2, ..., M-1.

[t was derived in Appendix C that the CRLB of time delay estimate for

every inter-sensor time delay is identical and is given by

B /N N 1 1
VAR(T M Z : P21, 2, ve., Me
~ M k/Nk
k_

(3.5.1-29a)

or in continuous form
VAR(T.) > 2 | MT P ) W) 2wl (3.5.1-29b)

Ti/ 2 em T+ M 3w /Nw) 9.
0

Thus, the CRLB of any two adjacent sensors improves with
increased M, the total number of sensors. FUﬁthermore, Appendix C
shows that th~ time delay estimate between any two sensors alsc has
the same CRLB. In addition, the covariance of any two time delay

estimates is

VAR ; if i-j| =
(3.5.1-30a)

o nqra

;o Af [i-3] >

Covir 1,1 ) %

In other words, the correlation coefficient is

T e % VT T T e Y BRY®E T

e T W
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~

COV(Ti, Tj)

1] [VARG].) VAR(?J.)]‘ﬁ

O
[}

J'% AL (3.5.1-30b)
lO ; if |1 -3] >1

Thus far, we have studied only the optimal time delay processing
of a multisensor array system. The objective of a passive sonar sys-
tem, however, is to localize an acoustic source of interest (i.e.,
obtaining its range and bearing). For passive localization, a mini-
mum of three sensors (assuming omni-directional response) is needed.
However, for a far field assumption, two sensors can yield good bear-
ing information. In the following section, we study in some detail
the optimum processor structure for range and bearing estimations

from a three-sensor array.

3.5.2 Localization Parameter Estimation

In this section we examine in detail the optimum processor
structure for estimating localization parameters (i.e., range and
bearing). We compare the performance of the optimum processor to the
conventional approach, where range and bearing are obtained from the
measurement of two time delay pairs. We discuss briefly the optimal-
ity of the direct range and bearing estimation approach and of the

indirect time delay estimation approach.

PR S S PP U P | R P T R - A .m oA ks tm el o~ -




————

84

Consider a general three-sensor array geometry shown in
Figure 3-9, We are interested in obtaining an optimum estimation of
range and bearing using outputs from a three-sensor array. Ffrom
Appendix D, we note that the range and bearing information is con-
tained in the two incremental time delays. Let 7 denote the time
delay between sensor 1 and 2, and let T, denote the time delay between

sensors 2 and 3. Then one can write

r - 1/r2 + L% - 2rL1 cos(m - o)
T = 02 - Dl < (3.5.2-1)

Y.
yr? + 12 - 2rl, cos(e - 0) - v (3.5.2-2)

A
n
i
o
wW
]
o
~nN
n

c

018952

Figure 3-9. A Three-Sensor Array System
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where Di; i =1, 2, and 3 are the propagation delays. The steering

matrix is

-jwy, T Jjuw, T
Y = diag }e %1 1 e k"2 l . (3.5.2-3)

Therefore, Equations (3.5.1-10a) and (3.5.1-10b) become

Pk = vk 1M VE (3.5.2-4a)
aP

K - . 39 3
33? = Juy Vk aei Vg (3.5.2-4b)

where 8; is any time-delay related parameter of interest, and the

matrix & is given by (see Equation 3.5.1-8d)

0 "Tl “(Tl + TZ)
¢d = ‘tl 0 -12 . (3-5'2-4C)
(p+7) 1 0

The likelihood equations for range and bearing can be obtained from

Equation (3.5.1-11a) as




% T

36

B
A(r,e) _ . =2 ~-1 ¥ ~-1 ~
ar ‘ZJ“’k[“‘k' % & Vk(ar'br lM) % & - by

and

B
(r,e) _ . =2 ~.1 3® ~-1 -
3e 'ZJ“’k ['hk' % % vk(ﬁ?'be lM) % % - b
k=1
0

= (3.5.2-5b)
where from Equation (3.5.1-11b) we have
b = a tr(a‘:]' v 3 v;> (3.5.2-5¢)
by = a tr(agl v, % v;(r). (3.5.2-5d)

For a single target in uncorrelated noise, it is easily verified that

the biases are zero, i.e., b= 0. Furthermore, for convenijence

br - Pg
we write lﬁkl = |h, | and 6;1 = [, i.e., assuming spectrally identical
but spatially uncorrelated noise power spectrum for each sensor.

Therefore, the range and bearing likelihood equations reduce to

B

A(r &) _ . 2 3¢ . 3.5.2-6

3 ZJ‘”k I 1% 28 Va7 Ve g = 0 (3.5.2-6a)
k=1
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B
aAL'—l;ee =Z Juy lhklz gV Rypg =0 (3.5.2-6b)
k=1

where from Equation (3.5.1-4b) one obtains

2
2 S /Ny

|h = I'¢'3'3;7N; ] (3.5.2-6¢)

k

Using the definitions of Vk’ ® and the resulting derivatives 3%/9r and
3¢/38, the likelihood equations can be manipulated to yield

(Appendix F)

M(r,e) _T 3 2
gr = 2-7? a— f Ih(LU) ' G(w; Tl

) Ju( T1+TZ)
(3.5.2-7¢)

and Gij(w) = Taiag is the estimated cross-power spectrum between

sensor i and j. Now we define the joint parameter ambiguity function

by
_ 2 . dw




o —“n"

—vvT —vﬁrrﬁrrwl
|

88

= Ry (1)) + Ryp(1p) + Ry (1) + 15)

(3.5.2-8)

Therefore, the optimum (ML) estimate of range and bearing is obtained

by seeking the simultaneous nulls of the likelihood equations:

n(r,e) _ + 3 -

o " T Rlm, ) =0
dAlr,e) _ + 3 =
Wrae) 1 LR(ry, ) =0

Now relate the time delays to range and bearing by

f
[r] [P gy
° falry, ) ’

and its inverse by

atndhetnadheendte ol

(3.5.2-9a)

(3.5.2-9b)

(3.2.5-9c¢)

(3.5.2-9d)
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Then the joint estimation of range and bearing can be realized by an
open loop processor described in Figure 3-10. In the literature,
this is known as a focused beamformer because the optimum estimate of

range and bearing is obtained when the beam is focused on the target.

Note that the optimum estimate of range and bearing (r*, e*) must
correspond to the time delay pair (Tf, 15) which defines the peak of
tne joint time delay ambiguity function R(rl, 12). Therefore, an
equivalent theoretical approach is to first seek the optimum time
delay pair (TT, 15) and then transform it to the corresponding range
and bearing. For practical applications, however, it is sometimes
more convenient and simpler to search and track in the time delay
parameter than the range and bearing parameters since the ambiguity
function is symmetrical and uni-modal (for high SNR) in the time delay
variables. More importantly, for a low SNR environment where a
T-second observation MLE processor fails to be efficient, the
symmetric property of the time delay ambiguity function allows a
simple tracking filter design which could provide optimum estimates
by increasing the effective coherent integration time.

Unfortunately, the resulting non-linear transformation from time
delays to range and bearing for the practical approach renders the

otherwise Gaussian noise process to be non-Gaussian.

Note the focused beamformer implementation shown in Figure 3-10
requires a two-dimensional (2-D) peak detector. However, a time

delay approach using only two 1-D null detectors can be realized

P P SRS PP SO VI S P o - - o
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without any loss of performance. This can be seen as follows. Rewriting

Equations (3.5.2-9a and b) in terms of the time delay variables and

using the chain rule of differentiation yields

M(r,e) .1 3R(Tl’ ) 3y . aR(rl, T,) 3T, -0
ar 9Ty ar Ty ar

(3.5.2-10a)

R(ty, T T R(ty 1,) 3T
BASY‘ZBZ =T 11 2) 1 + ( 1’ 2 2 =0 .
3e 811 a8 812 38
(3.5.2-10b)

Using the simple relations

L1 L% sin 2 e

T] - g C0se - —m— and

L L2 sinl o

2T a — +
Tp TS et T

as shown in Equations (D-2a) and (D-2b), respectively in Appendix D,
we observe that the derivatives of T and T, W.r.t. range are zero
only for infinite range and the derivatives w.r.t. bearing are zero
only at the endfire direction. Therefore, for all other situations,
the necessary and sufficient conditions for Equations (3.5.2-10a) and
(3.5.2-10b) to be true are

BR(rl, rz) -0
3Ty - (3.5.2-10c)
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aR(t1 12)
2 =0. (3.5.2-10d)
812

Thus, using Equation (3.5.2-8) in (3.5.2-10a-d) yields

R(ty, 1) 3
L [Roy (7)) + Ryg (7 + 1)
T 3 2
2 AL
Juty Jool Tl+1'2)
(6, (we” 1+ Gy (we do
(3.5.2-10¢)
and
aR(rl 12)
T, 3, [Rap(Tp) + Ryy(1y + 1)
T 9 2
i flh(w)l
[G3Z(m)e + G3l(w)e dw
(3.5.2-10f)

o
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where we have used the fact that

R3p(15) Ry (1))

= =0. (3.5.2-10g)
311 812

An optimum three-sensar array processor using two correlators is

shown in Figure 3-11.

We next calculate the CRLB for the optimum three-sensor ar vy
processor. First we calculate the CRLB for the optimum time de ,
estimate and compare it to the conventional approach. Then thc -~
for the localization parameters is gbtained by relating it to tne time

delay estimate.

From Appendix C, we obtain the elements of the Fisher Informa-
tion matrix for optimum one-target three-sensor time delay estimation

as:

30 30 c ( Se/N _
Jig = o (ar 3T, ) :E; “ T+3 5./, (3.5.2-11)

i

&

f‘ From Equation (3.5.2-4c) we find

g

- 0 -1 -1 -1

{ e L. 0 ol : . 0 -1 (3.5.2-12a)
3'1’1 3‘1‘2

[ 1 0 0

[

3

[.
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and therefore

3.5.2-12b
tr(&&) - 4 ( )

t
o]
——
Q
©
Q
©
S —
4
{
(AN ]

(3.5.2-12c)

-4 . (3.5.2-12d)

ct
=
—
Q
B
Q
|8
e
u

From Appendix B, the CRLB for a two-parameter joint estimation is:

VAR(%;) > L (3.5.2-13a)
(1-4,) *1
. 1 1
VAR(%,) >

where M12’ the coefficient of mutual dependence, is given by

J
- 12

Now using Equations (3.5.2-11) and (3.5.2-12a-d) or Equation
(3.5.1-29a), we obtain

B /N -1

a :E : K -

VAR(%;) = VAR(%,) 2 [3 wy (1 T3S ) . (3.5.2-14)
k=1
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Note that for the general case of M sensars it was shown in Appendix C

that the CRLB of the incremental time delay estimates is given by

B ¢ -1
S /N
2 . ] = -
VAR(% [M E Wy ( k/Nk>:] : i 1, 2, ceey M-1 .

k=1

Thus, the time delay estimate improves with the increased number of

spatial sensor observations.

We now discuss the conventional approach to estimating range and
bearing. A conventional three-sensor array signal processor is shown
in Figure 3-12. In the conventional approach, only two cross-power
spectra are processed. For this case, the CRLB of the time delay

estimate is given by (see Equation (3.5.1-16a))

B
-1
VAR (%)) = VAR_( [2 :E: wf ( S/ )} . (3.5.2-16a)

~ “\T+z2 5/~ s N

Therefore, the time delay variance ratio of the optimum to the conven-

tional is

MR 2 kel X (3.5.2-16b)
VRT3 C3 B ) P9e67i0
c 2 S /Ny
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and for a flat signal and noise power spectra, Equation (3.5.2-16b) is

simplified to

1+ 3 5/“) (3.5.2-16¢)

VAR(?I) =( 2)(
WREy S \INTFISA

Thus, at low SNR, the CRLB of the optimum processor is improved by a

factor of % (1.8 dB) with respect to the conventional approach.

Because the two time delays are correlated due to common noise
channels, a more meaningful approach is to compare the one sigma error
ellipse area between the optimum and the conventional. From

Appendices C and E, we obtain the two time delay covariance matrices

as

™ l -1

2z (3.5.2-16d)
pO = -1 VAR(?I)

|z

-
. 1 -S/N
F. P = * /N -
i c -S/N ! VAR_(%4) (3.5.2-16e)
: LTFZEA

where Po and PC denote, respectively, the optimum and conventional

E‘ covariance matrices. Therefore, the ratio of their area is
: 5
. Ay Pl
; A~ %
. c n]PCI
- 4
]
3
kL dtatncibinnbnabant: Suntientundionioshinuintuini e
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2 VAR(?%,)
- 3 (1 +2 SAN) 1 .
) ‘/Z (I +3 SAN)(L + S/N) VARC(?J (3.5.2-16f)

Using Equations (3.5.2-16d-e) in Equation (3.5.2-16f) yields the

desired result:

A
>y %'lriiggééﬂ . (3.5.2-16g)

Thus Equation (3.5.2-16g) states that in a low SNR environment

S

(% <<1l), the error ellipse of the optimum approach has an area equal
approximately to one half the conventional approach. This represents
a substantial Tloss in performance by the conventional approach. On
the other hand, in a high SNR environment (% >> 1) the conventional

processor approaches the optimum.

The CRLB on the localization parameters for the focused beam-

former can be obtained as follows. Defining the Fisher Information

matrix by

rr re
Fer Fee

then the CRLB for the range and bearing estimates is:

VAR(r) = .___12_. ?1_
rr

(1 - M) (3.5.2-17a)
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VAR(e) = : 2 Fie
where
F
M = —_ﬁ'_.g .
2k F
rr - ee

B SZ/NZ
= -tr (ﬂ a_Q) Z 2 k k
rr - ar ar W \T+3 §k7Nk
k=1
B 2 2
Fro = -t (228) 3w (il
re r 3e k\1 +3 S,/Nk
k=1 <
and
B8 2 ml
Foo= -tr(ﬁi‘g) Zmz M
280 e 38 k{1 +35S. /N
- kk
k=1
Now

(3.5.2-17b)

(3.5.2-17¢)

(3.5.2-18a)

(3.5.2-18b)

(3.5.2-18¢c)

(3.5.2-19a)
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and using Equations (3.5.2-12a-d), we obtain

3ty 9T aty 3T 3T, 3T at, 3T
3d 3%\ _ 1°°1 1 °°2 2 72 2 1
tr (“F‘S‘) = '4( 5r 36  or 3e 3 38 ' ar 3de )

Q
@

(3.5.2-19b)

and similarly

aty\ 2 9ty 3T 3T, \ 2
30 30 _ ( 1) 1972 ( 2) (3.5.2-19¢)
tr ( ) '4[ ar M T T

9t,\ 2 91, 3T 9T, \ 2
3 30\ | _1) 177 2
tr (ae ae) -4 [(ae "% % ( 36 ) J © (3.5.2-19d)

Using Equations (3.5.2-1) and (3.5.2-2) and evaluating the deriva-

tives at the true range and bearing (R, B), we obtain the following:

. 2
<l L (Ll sin B) (3.5.2-20a)
ar R,B 2¢ R
It L, sin(B - ¢) 2
i =_1(2 )
3 1r,8 H R (3.5.2-20b)
2
0T I U] (sing2 8]
*lrs © c (3.5.2-20¢)
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and
31T, L, Lg sin 2(8 -

For simplicity we assume a special case where the sensor arrays are
co-linear with equal separation (L = L1 = L2) and the target is at
broadside. Thus, substituting Equations (3.5.2-20a-d) in Equations
(3.5.2-9b-d) yields:

30 3¢ - ’ (3.5.2-21a)
tr (—— —-) =0

ar 3e R,B
o(28),,3f

ararjlpg 2 \R (3.5.2-21b)

and

3¢ 3 L 2

tr (—3'53) - = -12 (E) (3.5.2-21c¢)

Therefore, the CRLB of range and bearing evaluated at the true range

and bearing is given by:




Ty
@

v

v-,-
e

T YWY VT T v

r-- - AN

Swow T WL YIS

(3.5.2-22b)

And because of Equation (3.5.2-21a), range and bearing estimates are
uncorrelated. Using Equation (3.5.2-14) these can be expressed in

terms of the variance of the time delay estimate as follows:

A~ 3 VAR(;I)

VAR(r) z-——a;T (3.5.2-23a)
-tr( )

ar

~ 3 VAR (?1)
VAR(8) > — 1

2
30
-tr 37;) (3.5.2-23b)

For the special case of a co-linear array and a broadside target, we

find
VAR(r) > 3c? (%)4 VAR(;l) (3.5.2-24a)
VAR(8) zzlf(%)z VAR(Ql) : (3.5.2-24b)
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Taking the ratio of Equation (3.5.2-24a) to Equation (3.5.2-24b)

yields

~ 4 ~
VAR(r) > 12 2> var(s) , (3.5.2-24c)
L
which relates the range variance to the bearing variance. Thus, we
obtain the well known results that the variance of the range estimate
is proportional to the fourth power ratio of the true range to base
line length, and the variance of the bearing estimate is inversely

proportional to the square of the base length.

Note that the range and bearing variances of the focused beam-
former approach (Equations (3.5.2-24a-b)) agree with Equations (G-15)
and (G-16) of Appendix G, whith were obtained via a geometric mapping
from time delay measurements. Therefore, the one-step focused beam-
former approach and the two-step time delay approach yield identical

statistical performance.

Let S0 and Sc denote the area of the range/bearing one-sigma
localization error ellipse for the optimum and the conventional
approach, respectively. Then from Equations (3.5.2-24a) and

(3.5.2-24b) one obtains

T YVAR(R) VAR(S)

w
H

(3.5.2-25a)

|
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On the other hand, for the conventional approach, it can be shown

(Appendix G) that

2.2\
. [TRECENV( + 3 S/N)(1 + S/N) -
% ° ( L3 ) T+ 2 S/NT VAR.(T1) . (3.5.2-25b)

Therefore, using the relation given in Equation (3.2.5-16d), the

ratio of the error ellipse area is

% ={%(11+_+25%ﬁ) (3.5.2-25¢)

which has the same ratio as in time delay estimation (see Equation
3.5.2-16g). Thus Equation (3.5.2-25¢) implies that the optimum pro-
cessor yields a one-sigma localization error ellipse which is approx-
imately one half (1//3) that of the conventional approach in a low
SNR environment. This improvement comes directly from a better bear-
ing estimation using the optimum approach.* Note, it can be shown
that the ranging performance is identical between the conventional

and the optimum approach. (See Appendix G.)

*1t was pointed out by Dr. J. Iannielo of the Naval Underwater Systems
Center that optimum range and bearing estimation can also be achieved
using the conventional approach. However, one must provide separate
and different spectral shaping filters for range and bearing
estimation.
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3.5.3 Power Spectral Estimation

Our discussion thus far assumes that all target power spectra
are known. This is one of the strongest assumptions we have made in
studying the optimum signal processor. The resulting processors con-
tain spectral shaping filters which are functions of the known target
power spectra. In an actual implementation, the power spectra must be
either known a priori or estimated. In this section we briefly exa-
mine the methodology of spectral estimation in a multisensor, multi-
target environment and the relations between power spectral estima-

tion and time delay estimation.

Thus, we seek the estimate Skj’ the signal power spectral level
of target j at frequency k. Recall from Equation (3.2-6) that the
spectral levels are contained in the observation covariance matrix

R~ Let S be a column vector of all the unknown spectral levels.

Thus, S = (S11 Sop - - - Sg13 S92 Spp - - - Sgos - - - 3
S1J S2J e SBJ)T is a JB dimension vector. Therefore, fraom
Equation (3.2-9) the likelihood equation for Skj is
aA(S) 3Ak(§)
= ° - 5% = 0; i=12,...,4 (3.5.3-1)
KJ kj k =1, 2, ., B

Note that the likelihood equations are decoupled in freguency. This
implies that each equation can be solved separately. Now from Equa-

tion (3.2-10) we obtain

ood
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-1
an, (S) .1 Ry « Ry
—35;3- = tri Ry 33;3 * % 5§;§ % (3.5.3-2)

where R, and Ril are given by Equacions (3.5.1-2a) and (3.5.1-3).

Hence, the derivative of R, and Ril w.r.t. Skj is given by

aR .
K o =p =y, .V
EEP S I S S (3.5.3-3a)
ar:1 . o~
o = 3= (S Mes Q)™
3 k] ) k3 ki "k kj “kJ
3 §£i S5/Mes =1 1
= - —X K g -
3oL\ = < ki kj QkJ
K\ M 1+ Gy Sy
~ ~3
] 1My S SkiMig ~ R |
e s, Gre.somof| % k%
ki “ki’Tkj ki ki’ kJ
“1, o172
QL P, . Qoi/NC.
SR S HRl B K. (3.5.3-3b)

Therefore, the first term in Equation (3.5.3-2) can be written as

-1 *
aR Uiy, v,
tr (R.1 k ) R P S R

k 3S,
kJ Nkj
=2
S, s /NC - -
LGRS 5 E o TRV e S
1 +6G. S, /N ki =kJ =kJ "k —kJ =]
ki ki’ ki

Sniathasumthnath e i . P —
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S SN o2

= = K
Nkj 1+ ij S

ki Nkj

B Mg
L+ Gy S5y

(3.5.3-4)

Substituting Equations (3.5.3-3b) and (3.5.3-4) into (3.5.3-2), one

obtains
aA(S) G, . /N . ot o |
— e S KR g
kJ 1+ ij Skj/Nkj (1 + ij Skj/Nkj) Nkj
(3.5.3-5)
Solving Equation (3.5.3-5) yields
* =1 2 =
A~ V : Q S l N 3
S, . = g K] * = =1, 2 ...,8
; B3 kJ i=1,2, ..., 3.
© (3.5.3-6)

Thus, in order to estimate the J target power spectra, a total of JB

*

equations must be solved if the optimum steering vector lkj is known.

[f it is not known, then the J(M - 1) time delay equations must be
solved simultanecusly with the JB spectral equations. However, in
practice the target spectrum can be modeled with a considerably

smaller set of unknown parameters. Therefore, sampling the spectrum
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at appropriate frequencies should provide sufficient information to

estimate the unknown spectral parameters.

Note that Equation (3.5.3-6) is an unbiased spectral estimator. This

can be shown easily as follows.

Taking the expected value of Equation (3.5.3-6) yields

N
2 1 * =1 .2 %
E(Skj) EE— El!kj QkJ g‘{ -‘G_,:j.-
j
= L v (e o) QY N (3.5.3-7)
IS I X X i =«j T G e
kJ

But from Equations (2.3-3a) and (3.2-7a):

* * -~

E(gk gk) = Skj !kj !kj + Nkj ij . (3.5.3-8)
Substituting Equation (3.5.3-8) into (3.5.3-7) yields

x =1 =] ~
ki N B %y Qg by Mg
’ ]
6

N

KJ

= Skj (3.5.3-9)

fext we briefly examine the optimum spectral estimator for the one-

target and two-target cases.
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3.5.3.1 Case l: One Target, M Sensors (J=1, M=M). For a

. " - =l _ VLSO |
single target, we have N = Nk’ ij Qk’ and ij = Gk = yk Qk yk.

kJ
Equation (3.5.3-6) becomes

* 12
AL L
-l ol

6 k

(3.5.3-10)

Furthermore, by letting Qk = 1 (i.e., noises are uncorrelated from

sensor to sensor), then Equation (3.5.3-10) can be simplified to

o egld™ N
N (3.5.3-11)

Figure 3-13 shows the optimum one-target multisensor spectral

estimator.

3.5.3.2 Case 2: Two Targets, M Sensors {(J=2, M=M). For the

two-target case, Egquation (3.5.3-6) becomes

s Gial® S,
5., = . : (3.5.3-12a)
k1 2 o
k1
* =12 02
: e %ol Sath
k2 62 B2 (3.5.2-12b)

k2

PR S —a s A a . A_m._ s _a_s s
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Recall that

-- ~ * -
%1 = (Sez * M) (Spp Yo Yo + M )7

n S, N
. -1 kMo a1, o+ 1
=L+ SN Q7 - O Yo Yy O
1+ MS M,

(3.5.3-13a)
Similarly,

Sy 1My

o — Q,Il Ve vy, oot
—«1 —«1 “k
1+M Skl/Nk

Gz = (1 + Sm) [ ot -

(3.5.3-13b)
Also
- y* A-1
Gep = Y1 Qep g
. S, N .
= * -1 k2’ 'k * .1 ]
=1+ SoM) | Yy O Yeq - (M1 O Yeyp)
1 +MS, /N
2Ny
(3.5.3-13c)
and
. S, /N
- * ‘1 ] kl k * —l 2
Go = (1 SeyM) [ Yep Q7 Yo = ———— (%, Q7 Y
1 +M Skl/Nk
(3.5.3-13d)

P Iy o o a a . P
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For simplicity assume Q, = I, then v Q"1 V. =V Q'1 V,, = M. Now
K —*1 “k —kl kZ2 "k —k2

the following relations can be obtained:

ML+ Spa,)

Gy = (3.5.3-14a)
1+ M SNy
o oM E SN (3.5.3-14b)
k2 = =
1+ MSeMy
- . S, /N
+ -1 2 2[ k2N
Y1 Qep 1™ = (1 + SioM) Vg gy - ——5——
1+MS, N
x2/Ny
2
* x*
(Y1 %) ez &)
(3.5.3-14c)
. . S, /N
» =1 2 2| * k1M
ez Qo o™ = (0 SyMd e & = 7 -
k1M
* * 2

(3.5.3-144)

Substituting the above into Equation (3.5.3-12a-b) and simplifying

yields
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. * * 2 (3.5.3-15a)
Se1 ™ Azl 1y & - B Yy 1 - |

W)

. * * 2
k2 Akl[Akl Y2 % - B Vg & 1” - Nk) (3.5.3-15b)

where Aki and Bki are defined by

1+MS, . N
A = ._____F#l__li ; i=1, 2 (3.5.3-15¢)
and
S N
ki’"k * .
8, = VLV s i=1,2. (3.5.3-15d)
K1 e s my K2

The optimum two-target M sensor spectral estimator is shown in

Figure 3-14.

We have already shown that the optimum spectral estimatar is an
unbiased estimator. In the remainder of this section we briefly dis-
cuss the estimator performance bound. There are two cases of particu-
lar interest: (1) power spectral estimation with known time delay,

and (2) joint time delay and spectral estimation,

3.5.3.3 Case 1: Power Spectral Estimation with Known Time

Delay. Consider the two-target M sensor problem. The optimum power
spectral estimator is given in Figure 3-14. The spectral CRLB can be

derived as follows.

P S
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L For each frequency W, we have the relation
r
N
~ -l .
) = R = 3.5.3-16
VAR(SkJ) [F ]JJ ; j=1,2 ( )
3
B where F is the 2x2 Fisher information matrix whose ji element is given
by
{ i E[ a?A(S) ]
;‘ J2 aSkJ. aSkz
h
aR
. 1 R 1 Ry )
, =tr{ R R
4 ( A
aa;l R
= -tr aS as (3.5.3'17)
, kj "7k
it
[ where Equations (3.5.3-2) and (3.4-4) have been used. Using Equa-
tions (3.5.3-3a) and (3.5.3-3b), Equation (3.5.3-17) reduces to
# ~-1,=2
s R TENEN WGy g
' I (1 +6,.5,./N )2 <&x2
; ki “ki’ Kk
&
L
{ | Q [ /N .
= k’ ’kJ k] (3.5.3-18a)
. 1+ G kJ J/Nkl)
¢
3
g
- e
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Note for j = &, Equation (3.5.3-18a) further reduces to

_ ij/Nkj 2

F. (3.5.3-18b)
Wol1+6

TR AT

Thus, the spectral CRLB is

VAR(S, )
kJ (1 - M%z) JJ

~ \ 2
= __1____ S, . + ﬁ. ; i=1,2 (3.5.3-19a)
)\

where

M =
12 = T Rtk

- 2
Y52 Q1 Yl (3.5.3-19b)
(G Gyo)

A% o

is the spectral coefficient of mutual dependence. Note that for a

M i
L

single target case, the spectral CRLB is
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. ?acs) || 2
VAR(S,) = - {E | ——
SSk

BREI R, \] -1
tr
3S, 'aTk

(3.5.3-20)

"
wn
~
+
m'z
= |~
| N |
~n

where Gk = y; Qk yk is known as the array gain.

3.5.3.4 Case 2: Joint Time Delay and Spectral Estimation. For

simplicity, we assume a single target and two sensors. Therefore, the
unknowns are 1, the time delay, and Sk, the spectral Tlevel at
frequency W - Note that because the spectral likelihood equation is
independent for each frequency W, We only need to consider the joint
estimate between 1 and Sk. Now let 81 = T, and 8, = Sk, then the

joint time delay spectral CRLB evaluated at the true parameter vailues

i=1,2 (3.5.3-21a)

where the ij element of the Fisher information matrix is given by

a2A(S,7)
fij T F\e e ) (3.5.3-21b)

J
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Now
(a‘A(;r))
Fip = -E 312
B R aR,
(e
aT aT
k=1
B
] 2, 2
=2 WEin (%, (3.5.3-21c)
k=1

where Equatior (3.5.1-15c) has been used. Also

2 _ 2
I 17 = (S /ML + 2 S/N ).

k
From Equation (3.5.3-18b) we obtain

<BZA(§,T))
| —=
352

k

Fa2

( G /N, )2
= ' 3.5.3-21d
L+ 6 S /M ( )

Finally, the cross term is
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(32A<§,r))
F12 = -E\ 5735

1]
]
o
-
——
Q
w X
A|x
@l @
X
Iz
SN ——

. 2
Juy [ |© tr(v, o VE v 1y vE)

T Ty

(3.5.3-21e)

where relations in Equations (3.4-2) and (3.4-5b) have been used.

But from Equation (3.5.1-13e), we obtain

0

. frro
trVy o Vg Vi 1y VgD = tr | Lo evdor

o] |

[-1 ~e~JuT
tr ejwf 1

1 0
0 edut

0 :‘j“T} §

(3.5.3-21f)

Thus, F12 = 0, indicating that spectral estimates and time delay

estimate are uncorrelated. Hence, using Equation (3.5.3-2la) the

CRLB is given by
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) B
VAR(T) = ZZ o fh 12 s ) (3.5.3-22a)
k=1
and
2
. N
VAR(S, ) = (Sk +€-) (3.5.3-22b)
K

which is identical to the time delay estimate with a known spectrum

and to the spectral estimate with a known time delay, respectively.
é

Thus, we conclude that joint time delay spectral estimation does not

degrade the time delay estimates nor the spectral estimates.

It is interesting and revealing to show the explicit dependence
of the time delay spectral performance on the observation time T. Let
S{(w) and N(w) be the true continuous signal and noise power spectra.
Now recall from Equations (2-13d) and (3.5.1-13d) that Sk = E(BkBQ)
and [hk[2 = SK/Ni/(l + 2 Sk/Nk)’ where 8, is the Fourier coefficient
of the signal waveform from T seconds of observation. Also recall the
relation that for sufficiently large T, we have TSk = S(wk),

TNk = N(mk), and |hk|2 = Tlh(wk)lz. Consequently, Equations
(3.5.1-22a) and (3.5.1-22b) can ue manipulated as follows to yield

v, 8 e
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B -1
e 2 2
VAR(T) = T E Wy Ih(wk)l S(wy ) 2n

? 2 5% (w) /N (w) N
L. = T
: T -{ ¢ ( I+ 2wS(w)/l§(wT) du (3.5.3-23a)

VAR(S, )

"
-
N
—
._-‘
w
L
S
+
——
e 2
X
S
| S |
n

(3.5.3-23b)

1 'N(mk) 2
». =?- S(mk) +m

~——

where S(mk) denotes S(w) evaluated at frequency w = !27mk)

Thus, Equations (3.5.3-23a) and (3.5.3-23b) indicate that while
the time delay variance is inversely proportional to T, the spectral
variance is inversely portional to the square of T. In other words,
the spectral variance is more effectively reduced by increasing the

observation time than the time delay variance.
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SUBOPTIMUM REALIZATION OF MULTISENSOR, MULTITARGET
TIME DELAY PROCESSOR
One must learn by doing the thing: for though you think

you know it, you have no certainty until you
try. -- SOPHOCLES

4.1 INTRODUCTION

In Chapter 3 we derived the optimum (MLE) multisensor, multi-
target time delay estimator. The result yields a highly coupled
multi-chanrel processor. For practical applications, it is desired
to seek suboptimum realizations which can substantially simplify the
required implementation. In this section we examine the suboptimum
processor based on a weak signal in noise assumption. This is the
case of considerable interest since in passive signal processing, a
weak signal in noise represents the usual environment at which a

signal processor must operate.

. 4.2 WEAK SIGNAL IN NOISE SUBOPTIMUM PROCESSOR REALIZATION

{‘ Assuming that

: S(w)j/N(w) <<l forj=1,2, ..., Jd (4.2-1a)
4

3

: 123
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and using Equations (3.5.1-17¢c-g), Equation (3.5.1-12) becomes

e - S, (w) /NS (w) S, (w) /N (w)
T GJ( w) sj(w)/ﬁj(w) TS A (82
- e e SN
aj(m) = Nj(w)lhj(m)l a sj(w)/N(wT (4.2-1c)
~ ~ J -1
0} (w) = N (w) Z {w) Py(w) *+ N(w) Qla) (4.2-1d)
f
= 07 w) N0) /N(w) (4.2-1e)
J
Bij(w) - S.(w) + N(w) (4.2-1F)
i=1
i#j
PJ(w) = J(u)) 1, V*(w) (4.2-1q)
- (w) /N (w)
bg(w) ={1 - % T wg/N(*T}tr[ - Vj(w) 9, Vg(w)] (4.2-1h)

and the simplified likelihood Equation (3.5.1-12) of estimating time

delay between sensors i and i + 1 due to target j becomes:

(1)
Zijld) = 53

iJ

o
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. f }jm bt P @) 0w (e - btw) 1,
0
Vi) 0 (w) alw) - T Bd(w) | G0 (4.2-2)
.j w (1] gw - i w ‘ 2? o

Note that Equation (4.2-2) results in a substantial simplification of
Equation (3.5.1-12). For the two-target and two-sensor case studied
in Section 3.5.1, the resulting two likelihood equations (3.5.1-17a)

and (3.5.1-17b) become:

Mty Tp) f . 2 .
—_—_31'1 = / Jw : |hp 1™ a* Q77 Vy(9 - by 1)
-1 | duw
Qe a-T bl‘ Vol
= 0 (4.2-3a)
3ty 1)) o 2 -1
T, »{ Ju % Ihpi™ a* Q@7 Vp(@ - by 1y
-1 ) dw
CRRERREAE
= 0 (4.2-3b)

-----
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where
) /(55 + W)?
’hll = T + 2 S-],/N— (4.2-3c)
2 S5y + WP
1% = T 7w i (4.2-3d)
Q‘l = 1 (4.2-3e)
0 -1
0 = (4.2-3f)
1 0
1~ "\T+2 SI/N 1+72 52/N ]
(4.2-39q)
b2t \TF TSN \TF IS ¢ - e :

(4.2-3h)

Using Equations (4.2-3c) through (4.2-3h), Equations (4.2-3a) and
(4.2-3b) can be further simplified to

© 2
M, ) T Wl 2 i s S5/

3Ty 7n Jwy 1y xixy ~ TUF 2 S7/N) (L * 2 S,/N)
-1 2) e‘jwfz IejmTl ]

(l + % lhy 1 Q7" @ ‘ w

=0 (4.2-43)
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- ™ 2
OA(TI, 12) - T jw lh l2 a N Sl Sz/N
3T, Zn ) 2 X1 X5 (T +Z735/N) T+2535,/N)
- -jwTt JjwT
(1 + % [h, ¥5 Q 1212) e 12 gy
= 0 (4.2-4b)
where x = (x1 x2)T = Q'1 a, é is the estimated cross power spec-

X1Xy

trum, and Vis Yo are the time delay steering vectors. A block
diagram of this processor is shown in Figure 4-1. Note that given
two sensors, a single channel GCC under a multiple target environ-
ment is known to be biased. The coupling shown in Figure 4-1
provides the required bias correction. Note that the bias cor-
rection term is a function of SNR and INR. When the power spectra
are not known, the quantities SNR and INR must be substituted by
their estimated values. Thus, the optimum power spectral estimator
discussed in Section 3.5.3 is applicable. Finally, if the signal
spectrum and interference spectrum are separable (i.e., no over-

Tapped region), the two channels become uncoupled.

4.3 A SINGLE TARGET ASSUMPTION SUBOPTIMUM PROCESSOR

For completeness we now include a study on the suboptimum multi-

target processor using a single target formulation. The resulting

Y e i e a s m JE VU
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processor performance has been studied widely in the context of the
7,10,11,12,34,36)

However, a direct study on the time delay variable has not been seen

localization variables (i.e., range and bearing

in the open literature.

A single target processor can be obtained from the multitarget
processor by setting the interference power spectra to zera. For the
two-sensor case, the resulting processor reduces to the GCC processor
discussed in Section 3.5.1. The time delay is obtained from the GCC
by locating the peak of the GCC function (assuming that SNR is suffi-
ciently high so that a dominant peak can be detected). In the
presence of interference the resulting estimates are known to be
biased. In addition, they affect the time delay variance perform-

ance. Here we shall quantify the performance in more detail.

Consider a general iwo-sensor, J target problem. Let the true

time delay to target j be T5 for j =1, 2, ..., J. Then the fre-

quency domain representation from T seconds of observation time

can be written as

B % Vg Bt N (4.3-1a)

K = le Bk + n2k 5 k=1,2, ..., B (4.3-1b)

where the ccmplex vectors Vi Yor and Bk are defined by
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( Jw Dy Jw Dy Juy DiJ)
e e eee B

Yik T ; i=1, 2 (4.3-2a)
and
= (8,18 8, 1) T (4.3-2b)
) ( k1 Bk2 *+* Byy :

where Dij is the propagation time delay from target j to sensor i and

peak of the GCC is obtained by locating the null of the function (see

is the Fourier component of the signal spectrum of target j. The

Equation 3.5.1-14c¢)

: . 2 Juy T
f(r) = :E: Jo [ ]” agy o3y e (4.3-3a)
k=-B

where Ihklz, the spectral shaping filter, is given by

2
Sk 1My

T+Z2S,N,

2
[h, |© =
k k1 Nk

(4.3-3b)

Note that without loss of generality we have let j = 1 be the target

of interest and let the remaining J - 1 targets be interferences. An
alternate selection of the frequency shaping filter is the multi-

target spectral shaping filter (see Equation (3.5.1-4b)):

. S, . /N
g2 e aMa (4.3-02)
L+ 6y SN
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where from Equations (3.5.1-2c) and (3.5.1-3)

J

Nkl’E S5 + N

and

(4.3-4b)

k1 T %1 % Ya

=5 Nfl (4.3-4c)

for the two sensors with Qk = I,

Therefore, a simpler form of Equation (4.3-4a) i3
~2
S 1My
T+ TS50y

(4.3-44)

For example, for the two-target case, Equation (4.3-4d) reduces to

2

(4.3-4¢)
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The basic derivation of the bias and variance is shown in Appendix H

(Equations (H-8e) and (H-17b)). The expressions for the bias and the

variance for the two-target case with identically flat signal, inter-

ference, and noise power spectra are given by Equations (H-12) and

(H-21a) as

and

(4.3-5a)

1 - (a o(28)) + a5 p(28,) + 22 a, o(8; + 8,))

T 2(ay p(4y) *+ a5 0(8,))" R(0)
where % is the signal-to-interference ratio and

a, = SN
1 T+SN+IN

[
N
[
A
—
[}
~
ny

(4.3-5b)

(4.3-6a)

(4.3-6b)

(4.3-6¢)

(4.3-6d)

WY
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0)2 2

R(t) = f W2 cos wt du (4.3-6e)
W,

p(t) = R(T)/R(0) . (4.3-6F)

Note that in the limit as A1 + 0, A2 + =, we have p(Az) + 0,

D(Al) + 1 and the steady state variance is

VARaxrl) = Jim VAR(TI)
Al*O
Az-bcn
2
l1-a
= 2m 1] 1_ | (4.3-7)
T "2_;%_ R(OY

Therefore, one can define a normalized variance as

VAR(T)) a?
MR () \1- a5

1 - (312. D(Al) + 231 32 Q(Al + Az) + ag D(Az))

2ay o(8y) + a5 p(8y))°
(4.3-8)

Note that Equation (4.3-7) does not reduce to the single target
case because of the presence of spectral interference. This is cer-
tainly true for the case of two omni-directional sensor arrays since
interference power is not spatially attenuated as a function of time

delay separation. However, for sensor arrays with large base length
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separation, this condition is again satisfied since a small spatial
separation could produce a large time delay separation and insignifi-

cant spatial attenuation.

4.4 GCC PERFORMANCE IN THE PRESENCE OF INTERFERENCE

Performance of the GCC in the presence of interference is com-
pared to the optimum processor in the remainder of this section.
Figure 4-2 shows the interference of the expected value of the .GCC
due to signal only by the GCC from a second target with an identical
spectrum shape but a 3 dB smaller signal power. It can be seen
that (1) the two GCCs are merged to one (i.e., it fails to resolve
the target from the interference), and (2) the peak of the com-
bined GCC is biased. Figure 4-3 shows the same GCC in the form of
a 3-D interference pattern as a function of target-interference
time delay separation. (Note the combined GCC in Figure 4-2
corresponds to the curve with unity separation in Figure 4-3.)
Since the MLE is asymptotically an unbiased estimator, the optimum
processor has no bias for sufficient integration time. Therefore,
it resolves the multitarget ambiguity. This is the primary advant-
age of the optimum multitarget processor. Figure 4-4 shows the
bias characteristics of the GCC. Note that when the time delay
separation is small, the bias is proportional to the separation,
indicated by Equation (4.3-5a). Figure 4-5 presents the resulting

GCC variance. The GCC variance about the estimated mean is
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normalized by the corresponding variance with no interference
(Equaticn (3.5.1-16b)). Also shown in Figure 4-5 is the CRLB of

the optimum two-target processor. This optimum processor not only
resolves the bias but also has a smaller steady state variance.

Note that even with nc time delay interference, the variance of the
GCC does not approach the bound because of the presence of inter-
ference in the frequency domain. Also note that with no time delay
separation between target and interference, the CRLB is singular,
reflecting the inherent inappropriateness of a two-target formulation

to a one-target estimation problem.

Also shown in Figure 4-5 is the total Root Mean Square (RMS)
error of the conventional GCC processor in the presence of inter-
ference. Note that the CRLB of the optimum two-target processor
results in a significantly reduced total RMS error. Finally, we
remark that identical sigral and interference power spectra are the
worst conditions. For different signal and interference spectra, the
optimum processor is well behaved even at zero time delay separation

(see Figure 3-7).
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CHAPTER 5
IMPROVED MULTITARGET PARAMETER RESOLUTION

Ideas must work through the brains and the arms of good and
brave men, or they are no better than dreams. -- EMERSON

5.1 INTRODUCTION

In Chapter 3 we studied the optimum multitarget multisensor
parameter estimator using the MLE procedure. In Chapter 4 we studied
a number of suboptimum realizations. We pointed out that the GCC
processor can be considered as a suboptimum processor in a multi-
target environment. The use of GCC in a multitarget environment
results in a poor multitarget parameter resolution; i.e., it yields a
single biased estimate when separation between targets is small. The
use of an Optimum Multitarget Processor (OMP) can provide a signifi-
cant improvement in resolution (as shown in Figure 4-5). Unfortu-
nately, the OMP also requires a major modification of many existing
systems where GCC processors have already been implemented. There-
fore in this chapter we investigate alternate procedures for improved

multitarget parameter resolution.
The particular approach to be studied is the post GCC multi-

target processor. In this approach, additional multitarget process-

ing capability is provided at the GCC outputs. Thus with this

140
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approach, the GCC processor needs no modification. In effect, the
existing GCC processor can serve conveniently as a pre-processor cof a

multitarget estimator.

This chapter is organized as follows. Section 5.2 derives the
post GCC multitarget processor. Section 5.3 presents the estimator
performance bound. Section 5.4 discusses the simulation procedure
and results. Specifically, we compare the performance of the conven-
tional GCC processor, the post GCC multitarget processor, and the

optimum multitarget processor.

5.2 POST GCC MULTITARGET PROCESSOR

From Equation (3.5.1-14b), the GCC output can be written as

B .
Jun, T
R(1) = Z I 1% oy, o8, e * (5.2-1)
k=-B

where {h, |, ay, and of, are defined as shown in Appendix H. Now
Equation (5.2-1) can be written as

R(t) = R(t) + W(1) (5.2-2a)

where R(t) denotes the deterministic component and W(t) the random
component of the noisy GCC ouput. For practical application, Equa-

tion (5.2-1) is usually realized via a Fast Fourier Transform (FFT).
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L( Thus the GCC output consists of a discrete set of observations.
Therefore, let At be the sampling time, then the discrete GCC output

can be written as

R(nat) = R(nat) + W(nat) ; n=20, %1, £2, ..., tN/2 . (5.2-2b)

Using Equation (5.2-1), the deterministic and the random components

of R{nat) can be obtained. For example, taking the expected value on

¢ both sides of Equation (5.2-1), the deterministic component is
: B .

— I kanAt
_ Rinat) = D I |2 g oy e : (5.2-3a)
;‘ k=-8
3
s But from Appendix I, we have the relation

-j T.
n Nk By =Z Syi @ A (5.2-30)
i=1

3
[' where T, is the true time delay between two sensors for target i and
3
: S, . is the corresponding target discrete power spectral density.
F»q ki
{ Substituting Equation (5.2-3b) into Equation (5.2-3a) yields
r 8
, _ J o, du(nat-ty)

R(nat) =Z Z Si Ihl” e

L izl k=-8B

1 J
;‘ =ZS1. pi(nAt-ti)
i=1 (5.2-3c)

o v . . e . A
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where the ith target power Si and the normalized auto-correlation are

given by
8
k=-B

B .
juy, (nat-v.)
oi(nAt - Ti) = :E: (Ski/si) lhk|2 e * L (5.2-3e)

k=-8

The covariance of the random component is given by (see

Appendix I)

Ay = EM(nat) W(mat) - W(nat] W(mat]]

-ju, mAL jumAt | juw, nat
- Z [ [Gll(k) 6y (k) @ S 63,(k) e R P
k=-B

(5.2-4a)

where Gll(k)’ Gzz(k), and Glz(k) are the discrete auto-spectra and

discrete cross spectrum, respectively, given by:

J

Gy (k) = oy ofy = Z:, it Nk (5.2-4b)
i=
J

(k) = T T = D Syq * Ny (5.2-4c)
i=1
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and

J .
-Ju, T4
Gip(k) = o B = Z 1 Seie
i=

Now define the 2J unknown ~arameter vector by

- . T
2- (51, 52, se g SJ, Tl, Tz, s e ey TJ)
and the assumed matching function by

J
ny(e) = Zsi oj(nat - ;) ,
=1

then the observation Equation (5.2-2b) can be written as

R(nat) = hn(g) + W(nat) ; n=20, £, £, ..., #N/2 .

In matrix notation, this can be written as

where

Z= (R(-N&t/2), ..., R(NAt/2)]T

(5.2-4d)

(5.2-5a)

(5.2-5b)

(5.2-5¢c)

(5.2-6a)

(5.2-6b)
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n(e) = [h_y/a(8)s «eny h_y/n(e)|T (5.2-6c)
W= [W(-NAt/2), ..., W(NAt/2)]T (5.2-64)

are N+1 dimensional vectors.

Note that the noise vector is zero mean with matrix covariance

EQWW) = A (5.2-6e)

where the mn element of A is given by Equation (5.2-4a). Using an

LMS error criteria, the best estimate of the unknown parameter

vector & is obtained by minimizing the function
[Z-h(e)]. (5.2-7)

Thus the best estimate of 8 is given by

jo »

= Min Arg J(e) (5.2-8a)
)

or equivalently the vector null equation

12 - hie)]

"
o
L

L) ~ | oe (5.2-8b)

T
3d(e) i [an(g)]

|®»

o I Sy . - = e - o i - Atnedmtn.
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Note that because we are trying to find a best match of the observed
GCC output to an assumed reference function, the resulting estimator

is appropriately called the Matched Estimator.

5.3 ESTIMATOR PERFORMANCE EVALUATION

In this section we present the multi-parameter covariance matrix
bound for the post GCC multitarget processor. Rewriting the vector
null equation (5.2-8b) as

an(e) ]’
ye) = |5—| [2-h@)] =0, (5.3-1)

the Taylor series expansion of x(g) about 8g> the true parameter vec-
tor yields (ignoring the higher order terms)
dy(e)
y(e) = y(og) + —5 (8 - 8p) - (5.3-2a)
8 =9

-

Since by definition y(e)=0, we must have

3y(e) |

= - Alsp) de (5.3-2b)
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where Gé - (é - go) and
dy(e)
Aleg) = —5—
® lo=s,

3h(e) (o)) 3h(e)

= 3_9_ [Z - h(eo)] - 39_ [ 3_9_
a=e | e = o e =8

~ 4T
* -H(8g) Hlgg) (5.3-2c)

In deriving Equation (5.3-2c), it was assumed that the first term is

negligible for sufficiently high SNR.

(5.3-2b), one obtains the matrix covariance equation
COVIy(eg)] = Algg) COVIce] Algg) -

But from Equation (5.3-1)

COV(y(eg)] = H'(eg) A H(gg) -

Therefore, the estimator's matrix covariance is

COV[SS] = A‘l(go) HT(QO) A H(gg) A’l(go) .

Therefore, from Equation

(5.3-2d)

(5.3-2e)

(5.3-3)




e |

3
P
'
T

vy vy
-

- ey Tv T T v~ vw YT

r“*.
4
4

148

5.4 SIMULATION

A computer program was developed on the VAX-11/780 at NUSC to
simulate the multitarget GCC output. For simplicity, a two-sensor,
two-target environment was chosen. The GCC output observation window
was set at ten times the reciprocal signal bandwidth. Both targets
are assumed to have a broadband fiat spectra. One thousand Monte
Carlo iterations were used for each time delay separation. Simula-
tion results are plotted along with the theoretical performance pre-

dictions.

5.4.1 Simulation Procedure

Figure 5-1 diagrams the simulation procedure. The multitarget
GCC output observation vector (Equation (5.2-6a)) was generated by
adding observation noise sequence with prescribed covariance to the
noise-free GCC component. The noise vector was generated using the
following procedure: (1) calculating the multitarget GCC covariance
matrix from Equation (5.2-4a), (2) factoring the matrix into lower
and upper triangular matrices using the Gramm-Schmidt orthogonaliz a-
tion procedure, and (3) multiplying the lower triangular matrix by a
white noise vector to produce the desired correlated observation
noise vector. Finally, the GCC observation vector was processed by

the matched estimator.
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5.4.2 Discussion of Results

Since a detailed investigation of the matched estimator will be

shown e]sewhere,37’38

only a brief discussion of the simulation
results will be presented here. Figure 5-2 shows the bias character-
istics of a conventional GCC estimator; the target assumed a broad-
band, one-sided spectrum between O and B Hz while the interference
assumed a broadband, one-side spectrum between % and B Hz, the target
strength is at O dB and the interference is at -1 dB. Note the large
bias when targets are separated just below the reciprocal signal
bandwidth. In this region, targets are not resolved with the conven-
tional GCC estimator. Figures 5-3 and 5-4 show the normalized rms
(normalized by the time delay standard deviation of target only) per-
formance of a conventional GCC estimator, the post GCC matched esti-
mator, and the optimum multitarget estimator as a function of time
delay separation. While Figure 5-3 assumed identical broadband sig-
nal and interference spectra, Figure 5-4 assumed the interference
occupied the upper half frequency band but maintained the same inter-
ference power. Note that the conventional GCC rms was clipped at a
degradation ratio of 20 for time delay separation less than the
reciprocal signal bandwidth. Both Figures 5-3 and 5-4 show the
marked improvement of the matched estimator over the GCC estimator.
Note the close performance between the matched estimator and the

optimum processor.
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tm CHAPTER 6
S
OPTIMUM VARIABLE TIME DELAY ESTIMATION AND TRACKING

the obloquy of newness may fall Dbitterly on you.

t'] And remember men will scorn it, 'tis original and true, and
-= SARAH WILLIAMS

6.1 INTRODUCTION

Our study on the optimum multisensor, multitarget parameter
estimation thus far has assumed that all targets are stationary in
space. The resulting set of observed signal waveforms yields a well-
known Stationary Parameter Long Observation Time (SPLOT) process.

The optimum multitarget estimator under this assumption was derived
and presented in Chapter 3. Note that for a stationary parameter
process, the resulting estimator (MLE) is asymtotically efficient.
Thus an optimum estimator can always be found for the stationary

parameter case by selecting an arbitrarily long observation window.

' This, however, is not necessarily true for the variable parameter
case where, by increasing the observation window, it may also be
#‘.' necessary to increase the order of the dynamic model. In addition,

the variable time delay dynamic causes an incoherent signal integra-

E" tion which results in a reduced signal processing gain when the sta-
'Y tionary optimum processor is used.

3
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In reality, targets are more likely moving than stationary; we
therefore devote this and the next chapter to addressing this impor-
tant problem. In our discussion we shall differentiate the estima-
tion process from the tracking process as follows. The estimation
process is an open loop, batch process whereby the best estimate of
the unknown parameter is derived from T seconds of observation. On
the other hand, the tracking process is a sequential process whereby
the best estimate of the unknown parameter is given continuously as a

function of time.

The variable time delay estimation of a single target environ-
ment has been studied by a number of researchers. For example, Knapp
and Car‘ter14 studied the optimum GCC in the presence of source motion
and concluded that the optimum processor requires a time compression

15

and expansion operation. Schultheiss and Weinstein™ studied the

lower bounds on the localization errors of a moving source observed by

a passive array. Chan, Riley and P]ant16

investigated the estimation
of nonstationary delay by modeling the time delay as a finite impulse
response (FIR) process. Fried]ander‘17 studied the joint time delay
and signal spectrum estimation using an ARMA modeling approach. In
this chapter we study the problem of variable time delay estimation
and tracking with a strong emphasis on practical estimator

realization. In addition, our formulation includes the general

multisensor, multitarget environment.
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;( This chapter is organized as follows. Section 6.2 develops
the likelihood equation. Section 6.3 presents the variable time

delay estimator. Section 6.4 derives the estimator performance

bounds. Finally, Section 6.5 discusses the problem of variable

time delay tracking.

6.2 THE LIKELIHOOD EQUATION

Let the M sensor array outputs from J moving acoustic sources

be written as (see Equation (2.3-1)

J
y(t, 20) = D ags s; (£ +D5(0) +ny(t);  tel0, T (6.2-1)
j=1

where i =1, 1, ..., M; a.. is the known signal attentuation factor

ij
and for convenience assumed unity; Dij(t) is the variable propagation

time delay from target j to sensor i; and sj(t) and ni(t) are the

band-limited signal and noise processes with the usual assumptions of

zero mean, Gaussian, time stationary, mutually uncorrelated, and

spatially homogeneous. Note that it is the time dependence of the
{ propagation delays that renders the observed waveforms non-
; stationary.
&
4

Now let the time delay variation over a T-second observation

be modeled by a Pth order Taylor polynomial:
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: (P)
D(t) =D +Dt + ... + 5;— t

.

(6.2-2)

where D(P) denotes the Pth order derivative of D(t) evaluated at

t =0.

We segment the T-second observation into N equal subintervals
(Figure 6-1) and let At = T/N. Furthermore, let DMAX be the maximum
time delay rate and B be the signal bandwidth. Then from the develop-

ment shown in Appendix J, we can select At to satisfy the relation.

%‘i At ﬁ-———L———
4 BDyay

(6.2-3a)

so that the resulting loss in coherence is neligible. Furthermore,
the time delay variation within the At-second interval will be
essentially Tinear. Therefore, using the results from Appendix J,
the frequency domain representation of the observed waveform from

the ith sensor and the nth interval is

1 "jwkt
%ikn T A y(t, 2;) e dt
(n-1)at
. nAt J ' -ju, t
=—A—t-f Zsj(t+Dij(t)) +n1.\t) ) dt
(n-1)at | j=1
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J .
‘]kai (t))
- J'n
- Z Bkjn e * Nikn
j=1
. = Mlkn Ban * Mikn (6.2-3b)
:
L where W, = 2nk /at, tn = (n ~ 1/2) At and
'. . .
X kaD..(t ) Jw, D, (ty)
Ween = (e RN (6.2~3c)
. B, = (8 8, . )T (6.2-3d)
e =kn kIn * * * *kdn et
D(t)
4
>
< [
o TIME DELAY
Q TRAJECTORY |
u L
= I !
| ! |
: : [ I [ I |
I I | I I I |
} _ | | ] L 5 .
0 l<ats T

TIME —

02161,

Figure 6-1. Polynomial Model of Variable Time Delay
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In addition, Bkjn and Mign are defined by the relations

A nAt ~ju, t
A1 k .
Bkjn =i f sj(t) e dt (6.2-3e)
(n-1)At
nat .
A -Jw, t
Mip o %f n(the K dt. (6.2-3f)
(n-1)at
Note that Dij(tn) is Dij(t) evaluated time t . When Dij(t) is

modeled by a Pth order polynomial, Dij(tn) contains P + 1 unknown
coefficients. Furthermore, Bkjn and Nikp are zero mean, comp Tex

Gaussian variables whose covariances are given by

Skjn; if k=k', j=j', and n=n'

E(BkJn Bﬁljlnl) =
0; otherwise (6.2-3g)
and
Nikn; if i=i', k=k', and n=n'
E(Mikn Myrkrne) =
0; otherwise . (6.2-3h)

Thus we have utilized the assumption that target waveform and noise
waveform Fourier coefficients are uncorrelated for different targets,

different frequencies, and at different observation intervals.

PR OV S PR DR WA NE U SR W G- W PO




160

Now define the M sensor observation vector, en? at the nth

observation interval as

% = (Bqgn Bppn - - - aMkn)T; k=l, . . ., B. (6.2-4a)
Then one can write
%n = Yen Bkn ¥ Mp (6.2-4b)
where
Hkn
L‘-’5kn
Wep = (6.2-4c)
Lﬂﬁkn_
- T
%n = (Mign M2kn -+ + -+ Tmkn) (6.2-4d)

Note that %en is a zero mean, complex Gaussian vector whose covariance

matrix is
Ren = Eloyn o)
= wkn Sk wﬁn + Nka (6.2-4¢)

o St 5 N y P — PR - et e a s
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where it is defined as in Chapter 2 that

Sk = E(§kn §En) = diag {Sk1 o« .. SkJ}
Nka = E(_r_1_kn Dﬁn) . (6.2-4f)

Note that Sk, Nk and Qk are independent of the observation intervals

for known signal and noise spectra.

Furthermore, writing

= * * * *
o = (ot 95p - - - s o) (6.2-5a)

and denoting the set of M sensors, J target, and P order polynomial

unknown parameter vector as g, then the pdf of %, is given by

{ B
! _ _-BM -1 -1
olayle) = 1B [T 1Ry 1 ™! exntat, Reh eyt - (6.2-5b)

- k=1
Finally, writing
’A
4 N
& a= (o, ok, . . ., ak) , (6.2-5¢)
f & = 127, 25 o
: we have the pdf of the complete observation vector as
&l
{ N
p(ale) =Hp(g_nlg) (6.2-5d)
b n=1
’,
1
[l
S
s

(
A
4
k. . N . B} R .
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since observations are independent between intervals.

Substituting Equation (6.2-5b) into (6.2-5d) yields

N B
p(ale) = n BMN | I | | IRan'1 exp{-of - R;}\ ot (6.2-6a)
n=1 k=1

The corresponding log-likelihood function is

Me) = log p(a|e)
N B
= BN log (1) - D D A (8) (6.2-6b)
n=1 k=1
where
Ao(e) = Tog|R | + ot AL o (6.2-6c)

Note that Equation (6.2-6c) is a direct generalization of the devel-
opment shown in Chapter 3 from a single observation interval to a mul-

tiple observation interval. The likelihood equation is given by
N B
o) = - DD I (e) = 0. (6.2-6d)
n=1 k=1

Note that for n = 1, Equation (6.2-6d) reduces to Equation (3.2-11)

in Chapter 3.
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6.3 VARIABLE TIME DELAY ESTIMATION

We noted in the previous section that the multi-interval, multi-
sensor and multitarget likelihood equation is simply a generalization
of a single observation interval case. Therefore, many of the results
developed in Chapter 3 are either applicable or can be generalized.

In this section we examine in some detail the variable time delay

estimator.

We can write

kn = (!kln’ Yeons = = - s !kJn) (6.3-1a)

in Equation (6.2-4c) where the complex column steering vector at

interval n is given in accordance with Equation (3.5.1-8a) by

. T . T _—
Jupzs(ty)  JwUors(t) Juely115(t,)
v le e e
kjn >t
(6.3-1b)
where
Tj(te) = (rylta) Tp5(tn) + - Ty, 5(tn) (6.3-1¢)
and T]-J-(tn) D1+1,j(tn) - Di,1(tn)
=Tt T t, + (ng)/P!) tﬁ (6.3-1d)
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Note that Ti-(t ) is the variable time delay difference between

jton

sensors i and i + 1 of target j, and Tij’ Tij’ Tij . . . are the time

delay, deiay rate, and delay acceleration, etc evaluated at t = 0.

Now define the ith order polynomial coefficient vector for the

M -1 variable time delay of the jth target by

T, /= (T{}) Té;) . .. (1) .)T-

and the complete q = 1 (M-1)(P+1) parameter vector for M sensors, J

targets, and P order polynomial by

gT = (lio) . e . Iip); Iéo) .. .'I(P); ... ;.I(O) . .. TSP)).
(6.3-2b)

Using Equations (6.2-4f) and (6.3-1a) in (6.2-4e), one can

rewrite the covariance matrix Rkn as

J

Ren = Z S Pgn M Q% (6.3-3a)
j=1

where we have defined as in Chapter 3 the relation

P Vx .o (6.3-3b)

kin = Yiin Ynj
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Note the close similarity between Equations (6.3-3a) and (3.2-3c).
In fact, with minor modification, the developments presented in
Chapter 3 are directly applicable. Cirrying out the mathematical
manipulation as shown in Section 3.5.1, the optimum estimate of the
parameter vector e is given by (see Equation (3.5.1-7)' the simul-

taneous solution of

N B
an(e) =ZZ TN (apkjn cr Bgn, Vet
28 . kjn' =kn “kjn aei =% Jjn aei "kjn| “kjn =kn

' on=l k=l
-3 Z)ijn
kjn aei
= 0; for every 8; € Qj and j =1, . .., d (6.3-4a)

where Qj is the parameter set associated with target j defined by

relation Qj = (lg]); i=0,...,P). Furthermore, the various

quantities appearing in Equatiorn (6.3-4) are defined as follows:

=2
. s, . /R2.
“‘kjn=2 = LK) (6.3-4b)
L+ 6 5n S/
-~ _ -~ - 2 .
2in ™ Mg IMign (6.3-4c)
Bsn = YEin Gin ¥ (6.3-4d)
kjn  —kjn “kjn —kjn .
, J
Ain = }E: St Pin * M O /R (6.3-4e)
i1
i#J
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and

J
Nkj = Ski + Nk . (6.3-4f)
i=1
2]
Now combining Equations (6.3-1b) and (6.3-3b), one obtains the gm

element of the matrix ijn as

. T
plm ka(gl-l - gm-l) Ij(tn)

kjn - & (6.3-5a)

Therefore, for any parameter 8, belonging to the target j parameter

set Q., we have

J
m
aijn - jw, (U U )T alj(tn) pam
N Jo (291 = Zpa1 BECRLN
m
ad
o N oam i
o 38, Pin (6.3-5b)
where
m _ T
d)n = (!g‘-l - !m_l) lj(tn) . (6.3-5c)

Recall the definition of the vector U., a column vector whose

first i entries are one and the remainder are zero. Hence the deriva-

tive ¢&m w.r.t. 8. can be evaluated as follows.
Let o € ng) (i.e., the constant delay terms), then we have

o , N .. A a e M PO S G Ty .
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a¢£m 1; ifm<i<g-l
e VL5 if g <i<m-l
! 0; otherwise
=9, . (6.3-5d)

This is identical to that obtained in Equation (3.5.1-8d). Further-

more, if we let 8; € T(P) (i.e., the pth derivative terms), we

1
obtain
P, .. . .
t /p!; ifmei < g-1
n — -—
m
8qbn p
- ! i i -
%, t,/pl; if 2 <i<m-1
0; otherwise. (6.3-5e)

Now let °n be the matrix whose Zm element is ¢£m, then we have the

following relations

p Y
a“’(ny _tn a‘:gj _ f?. 0, (6.3-5F)
aeip p: 391 p:
where egp) = rgg). Note the above relation is independent of j.

Now combining Equations (6.3-5b) and (6.3-5f), one can write

BPkJ-n 3¢n
= j . * ) e 3~
0T 7 34 Y 37 Y (3-8
1 Al

o *“ . s oy 2 e ™ " " = M A 3 o
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where ijn denotes a diagonal matrix and is related to the vector !kjn

by the simple relation

ijn =1 !kjn (6.3-6b)

where I is an M x M identity matrix.

In addition, one can write

a6
(p)
aei

3 ~-1
=) in U Legn)

1

P, .
~-1 kjn
-t .
’ <Qk3n 39(p) )
1
1 %

= i *

Ja tr{ Qin Vin MOJ vkjn) .

1'

(6.3-6¢)

Finally, using Equations (6.3-5f), (6.3-6a), and (6.3-6c) in (6.3-4a)

yields the desired form of the likelihood equation
o) g~ T . - Kk
Ol DIDIEM T | Ihiinl™ Zn Qgn Vign (95 - B3 1)

~.] ~kj
Sin Un %n - binJ

= 0; i=1, , M-1 (6.3-7a)
p =0, ,
=1, ,
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.

4

€ where the bias term is given by

'

= .

| Bd =3 . tr (3L V.. 6. vE.) (6.3-7b)
’ in kjn kjn "kjn i “kjn’° '

Note that by setting N =1, P = 0, it can be readily shown that Equa-
tion (6.3-6a) reduces to Equatien (3.5.1-11a), the stationary time
delay, single interval case that we have studied in Chapter 3. In
general, simultaneously solving the set of equations as shown in
Equation (6.3-6a) yields the optimum estimate of the unknown param-
eter set. Optimality here assumes that our Fourier representation of
the time-compressed waveform as shown in Appendix J is valid. In the
following section we will examine the performance bound and the

processor structure of this estimator.

6.4 PERFORMANCE BOUND AND ESTIMATOR REALIZATION

In this section we investigate the appropriate performance bound
of the multisensor, multitarget variable time delay estimator. We
then study the structure of the estimator for a few simple but impor-
tant cases. Performance comparison is made between the variable time

delay estimation and the stationary time delay estimation.
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6.4.1 Variable Time Delay Performance Bound

For a sufficiently long observation time or sufficiently high
SNR, an appropriate bound for the variable time delay estimator is the

CRLB. The CRLB is given by

vAR(e,) > (371, (6.4.1-1a)

where ( ).. denotes the ith diagonal element of a matrix and J is the

ii

Fisher Information Matrix whose ij element is given by

s [ #ne) .
J'IJ = E 38—1-8-9—3 5 1 1, ceey Q (6.4.1‘1b)

i=1 ..., q

where A(e) is the log-Tikelihood function given by Equation (6.2-6b).

Using Equation (6.2-6b) and carrying out the same mathematical

manipulations shown in Section 3.4, one obtains

NS aRQ}‘ Ry
Jis = tr | - K0 _Kkn (6.4.1-2a)
i ZZ %, 5 )lo-o
n=1 k=1 - 8

where the observation covariance matrix is given in Equation (6.3-3a)
and the partial derivatives are given by
aRkn =5 aijn

= . (6.4.1-2b)
aej kJj aej
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Ren 221 [Pgn = Cyn =1

n 3o, - Manl” Y%gn| ey " %in ey Tkin | %gn - (6-4:1-20)
. 6.4.2 Estimator Realization

F‘

? In this section we study the structure of the variable time delay

: estimator for a number of simple but important cases. We are working

primarily with Equations (6.3-6a) and (6.4.1-2).

6.4.2.1 Case l: One Target and Two Sensors with Delay Rate

(J=1,M=2,p=1, N>2). For convenience we assume Q = I;

i.e., the noise processes are equal in power and uncorrelated between
sensors. The unknown parameter vector is & = (1, %)T. The variable

time delay is given by

T(tn) =T+ % tn (6.4.2-1a)
where
%'. tn = (n - %) At n=1, ..., N. (6.4.2-1b)

jwkr(tn) '
The steering vector at t, is ykn =l1le . In addition, the
followino relation. can be verified ea~ily using Equations (6.3-4b)

to (6.3-4f) (suppressing the j index for simplicity).

B S A N S I b Sl RL G St aat g alag)
3 . ' .
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~-] -
Qn = le =1 (6.4.2-1c)
- ~-] _
Gen = Yen Qun Yp = 2 (6.4.2-1d)
2
S, /N
=2 K’k A 2
Ihknl S s;jﬁ; = !hk‘ (6.4.2-1e)
~ _ ~ 2 é -
3, = N lhknl = a (6.4.2-1F)
0 -1 1 0
Ql = M an jwkT(tn) (6.4.2'19)
1 0 0 e
and the bias term is zero since
B =3, tr(@l v, 0, vx )
n kn kn "kn "1 “kn
= 0. (6.4.2-1h)

Hence, letting e£0) = T, e%l) = t in Equation (6.3-6a) and using the
relations shown from Equation (6.4.2-1c) to (6.4.2-1h) yields the
likelihood equation for the optimum estimate of Tt and t. They are

given as follows:

o) Ju &8 ,
= ] * * = -
3T EZ Juy I 1% gy Vien @1 Vi 2 = O (6.4.2-2a)
n=1 k=1
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= 3 * * = _
at EZ Juy b, lhk| %n an ¢, an %en 0. (6.4.2-2b)

n=1 k=1

The above equations can be further simplified by noting that

1 0 ] 0 -1 1 0
v o, V¥ = R .
kn *1 "kn Juw,t(t) =juw, t(t )
0 e M1 ollo e KM
=juw, t(t )
0 -e k n
= . 6.4.2-2c)
jupT(t ) (
e k=n 0
and writing .
®1kn
en = (6.4.2-2d)
®2kn
so that
. . . jwkT(tn) . —jwkT(tn)
%n Ykn ®1 Ykn %n © %kn %kn © = %kn %2kn ©
(6.4.2-2¢)

Using Equation (6.4.2-2e), the likelihood equation can be rewritten

as

R
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BN . ,
. t)

an(t,1) _ Z 2 . 2 Juy (T+tt

5t Ju Il aqen @fyq @

=-B n=1

~

3 e 2 Juy (T+tt))
3 o
ot k 1kn “2kn

k=-B n=1

=0. (6.4.2-3a)

where R(t, t) is generally called the broadband ambiguity function

and is given by

B N 5 jwk(1+%tn)
R(T’ +) = Z Z lhkl O.lkn G',ékn e . (6.4.2-3b)
k=-8 n=1

Similarly, we have

Ma; 1) . g_ R(t,%) = O . (6.4.2-3c)

Thus the optimum estimate of T, ¥ is given by the pair (t, %) which
peaks the ambiguity function R(t, t). If the frequency samples are

sufficiently dense, then the broadband ambiguity function can be

written as

e aadl
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5 Jw(T+Tt )

N
Z aqp(w) a2 ) |h(w)] dw .

Figure 6-2 diagrams one possible implementation of this processor.

R(T,1) = 3= (6.4.2-4)

Note that frequency samples from each subinterval are phase-
compensated and then summed. Note the similarity between Figures 6-2

and 3-2.

We next examine the performance bound of this estimator. The
parameters of interest are 8 = 7 and 8, = t. The covariance matrix
can be evaluated using Equation (6.4.2-2). The detail of the deriva-

tion is given in Appendix K. The main results are given below:

T 2
VAR(7) = 2"(42 - 1 ] %T (6.4.2-5a)
N -1
VAR(t) = ‘ 24"“1 1 (6.4.2-5b)
! A3
and

2
12nN 1
cov(t,t) = - (6.4.2-5¢)
[N - 1} \T2
where
B 2 il
Sy /N
A 2_"2: Wl KK (6.4.2-5d)
A k T+ 2 Sk7Nk
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B
/N
‘/B'wl “’%(w)ﬁNm . (6.4.2-5¢)

Note that the above equations indicate that the number of observation
subintervals, N, must be equal to or greater than two for the result-
ing estimate to be meaningful. Note that the estimates, ; andV%,
allow the time delay to be estimated at any point within the observa-
tion interval [0, T]. Thus at any time t ¢ (0, T], the estimated time
delay is given by

-~ - -~

t) =1+ 1 t; tef[o, 1] . (6.4.2-6)

-~ -~

Since t, t are unbiased, T(t) is also unbiased. Furthermore, the

variance of the resulting estimate is

VAR(T) + t& VAR{Z) + 2t COV(t,t)

1]

VAR((t))

2
8nN 1 t t.2
1 - -3 3(= 6.4.2-7
[(N2 - 1)xr] [( 4N2) ) = 3(7) ] ( )

where Equations (6.4.2-5a) to (6.4.2-5c) have been used.
Note that VAR(t(t)) is quadratic in t. It is easy to verify that
the variance is minimym at t = %; i.e., the midpoint of the obser-

vation interval. Finally, if N is substantially greater than one,

then Equation (6.4.2-7) can be approximated by

P - i LS V. P Ly SURP T W P W 4 D e i P S s
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o ) .
- VAR(2(t)) = [%’.Ml -3+ 3(.})2J (6.4.2-8a)

P
»
i
13
»
b

Ty YT e

and when evaluated at the midpoint of the interval, Equation (6.4.2-7)

yields the minimum variance

VAR(1(

Zw

) = (6.4.2-8b)
This is equal exactly to the CRLS for the stationary target case (see

Equation (3.5.1-16a)).

Thus one can conclude that the presence of time delay rate (or
doppler) degrades the performance of time delay estimate w.r.t. the
stationary time delay case. Therefore, defining the Doppler
Degradation Ratio (DDR) as the ratio of the time delay variance of the
variable time delay case to that of the stationary time case, one
obtains, by using Equations (6.4.2-7) and (6.4.2-8b), the following:

DDR = VAR(T(t))

——r—

VAR (< (3))

2
=( 24N )[(1 _ _2_) _ 3(%) + 3(.%)2:) . (6.4.2-93)

For N >> 1, we have the following approximation:

ODR = 4 [1 - 3(,}.) + 3(,})2] i (6.4.2-9h)
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On the other hand, if the stationary processor is used directly
over T seconds of observation in the presence of time delay doppler,
the question is what would be the resulting performance of the time
delay estimate, We note in Appendix J that time delay doppler causes
an effective additional phase shift and signal attenuation on the
resuiting Fourier coefficient representation. In the development
presented in Section 6.2, we accounted for the additional time delay
but not the signal attenuation. The reason was that by subdividing
the T-second observation into smaller subintervals, the resulting
loss in signal coherence is negligible. However, if we attempt to
process the T-second observation without subdivision, the loss in
signal coherence must be accounted for. This can be accomplished as

follows and the resulting performance bound is easily obtained.

Let D1 and 62 be the propagation time delay rates as observed by
sensors 1 and 2, respectively. Then the Fourier representation of
the observation is given by

ju Dy ()
Bk al e + nlk (6.4.2-106)

%k

. T
~ kaDz(?)
a2k = Bk 32 e + n2k, k =1, «eey B (6.4.2-10b)

where 3 and a, are the signal attenuation coefficients given,

respectively, by a; = sinc(u, bl %) and a, = sinc(w 52 %),

G
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where sinc{ ) = 31%171 (see Appendix J). Hence writing Equations

(6.4.2-10a) and (6.4.2-10b) in vector notation yields
gk = B, zk + k=1, ..., B (6.4.2-11a)
where the steering vector yk is given by

. T . T
- Juy Dy () Ju Dy (=)) T
V=<alewk1?aewk2?) .

Y ) (6.4.2-11b)

The observation covariance matrix is

R = Eloy of)
= S Pt N Q (6.4.2-12a)
where
Pe = Ny Tr= W1, Uy (6.4.2-12b)

Note that 12 is a 2 x 2 matrix of one and the diagonal matrix Vk is

defined by the relation Vk =1 Ek. The parameter of interest is the
time delay 1 defined by the relation t = D,(3) - D;(3).

variance o7 the stationary time delay estimate is given by (see

The

Equation (3.5.1-15a)).




‘.'." T e
...::

.'fri T LA B A B g+ S0 A auian a8 Sk e epy | ﬁ,‘,v-,.,-Tw'.*
éii e a X

LS e Shat i

- @

IR s i ke e aed e

181

. B ( aﬁ;l aﬁk) -1
o) 2| e (-
k=1

Following the procedure shown in Section 3.5.1, we obtain

..._1 -~
3RC* 3R )
k K} 2 2 v 2 5
tr(- 3t ot / "% IhkI Sk tr(Vk 2] VQ)

2 2

= 2 2 «

since it can be verified that

Substituting Equation (6.4.2-13b) in (6.4.2-13a) yields

-1

v

B 2

VAR (1) > :E: (a8 + a2) of s

k=1 k' "k

‘o

AT
where

x =

B /2, 2 2,2
(al * a2) 2 SN on
2 R THZS/N T
k=-8

(6.4.2-13a)

(6.4.2-13b)

(6.4.2-13c)

(6.4.2-14a)
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(7 R
=fa N N I YT (6.4.2-14b)
B

and

— . 1[_. d . .

a2 A5 [S1nc2(w D1 %) + s1nc2(w 02 %)] . (6.4.2-14c)
Hence the DDR (i.e., the ratio of Equation (6.4.2-14a) to (6.4.2-8b))
is

VARS(T)
DDR = —

1
> >

jv
—t

(6.4.2-15)
since X < A. Assuming D = 61 = 62, Figure 6-3 shows the DDR for the

variable delay approach and the stationary time delay processor

approach.

6.4.2.2 Case 2: One Target and Two Sensors with Variable Time

Delay (J =1, M=2,p =P, N>2). In Section 6.4.2.1 we studied the

one-target, two-sensor case with linear time delay rate. The studies
on the performance bound showed that the variance of the estimates

improve with T for time delay and T3 for time delay rate. Therefore,

P S DY WU W W ¢ ~ PEPE PP
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increasing the observation time improves the estimates. However,

increasing the observation time will also be likely to increase the
order of the model. In this section, we extend the study to a more
general case where the variable time delay is modeled by a Pth order

polynomial in time.

Let the variable time delay function be modeled as

T(t) = 1+ it + * TF(,I:) t"
=h'(t) e (6.4.2-16a)
where
n(t) = (1t td2 ... tP )T (6.4.2-16b)

and ¢ is the parameter vector given by

(P)T

(ttt...n1

|®
i

(6.4.2-16c)

Using Equation (6.3-7a), the likelihood equations consist of
solving P + 1 simultaneous equations given by (the subscript j has

been suppressed for notational simplicity since j = 1)

() Ju "1 = -
3t 2 k p! |hkI gﬁn an | Vzn Xen 0 (6.4.2-17)

A B
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Using Equation (6.4.2-2e), Equation (6.4.2-17) can be simplified to

P

ME) o~ g (tn) 2 , Ju(tn)
st (P Z Z Jo \ 5T ) Inl™ agen By @
T k=-8 n=1

(6.4.2-18)

forp=0,1, ..., P and tn = (n - %) At.

Note that although t(t) is Pth order over the observation
interval T, At was chosen so that the variation of time delay is
nearly linear over At. Hence, results derived in Appendix J are
applicable. A signal processor which realizes Equation (6.4.2-18) is
given in Figure 6-4. Note the close similarity between Figures 6-4

and 6-2.
We next examine the performance bound of this estimator.

Using the results from Section 6.4.1, the ij element of the

Fisher Infcrmation Matrix is




405S3304d Ae|ag awr| 3| qeiuep 336ue)-aug ¢ A0SUBS-OM]

£€9°420

SH313WVYHYd

—=(a?
AV13Q id/ gt *ooot
3iavisnray v iYL+ Mie + 2= ()2

"p-9 aunby 4

e d _ amrom

2 hom ol o

(“1)270f®
™ [ —
© Sl e
= A
e | 0 L=
@ HOLVAIIS3 | | 2 o
- : m u
DR - N | OLAONK
m [
(@)X REA e
NOILYSNIdWO0D
AV130 3N TodvHS suosnas
378VidY
4
4
4
i
‘Flv.}‘ ._.»...\n,f.h...Mr;‘lhf»...l.lbrrm-thLr.L.ﬂt.h»n..nr. K P.b»rk«lginfn.h.,?bf»f?.b»»




-1-1._
-@

.ﬁdwn'vv'v

t’a"?,'y‘

LERUSRLL o Jnt s S g 00 SISy s Sach a ub an ea g

™y Y

Y

La S Sih s dan o

187
NGB aRl:}1 aRkn
- ZZ trl- % —ty ) - (6.4.2-19a)

Now utilizing Equations (6.3-5f), (6.3-6a), and the relation

Rkn = Sk Pen * Ny Q> (6.4.2-19b)

one obtains

3R . t]

kn n
a—(TT = Sk ——(—7 ka( —') an Ql V’ﬁn (6.4.2-19¢)
T

-1
aRkn - ‘Ih |2 Q Pkn Q
ariis k k - (3) “k

t'l

where Qk = [, i.e., noise processes, are uncorrelated and
TF oSN (6.4.2-19e)
+ 2 Sk/Nk

0 e

Substituting Equations (6.4.2-19¢) and (6.4.2-19d) in (6.4.2-19a)

yields
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N B [ t1+j_2 J
- 2 n 2 2
JiJ‘"}:Z‘”k (T - 1)1 (3 - 177 b 17 S tr(v, 07 Vi)
n=1 k=l
=~ SN
= Gy }E: " T+ 257N,
k=-B
- At
"G (6.4.2-20a)

where X is as given in Equation (6.4.2-5d) and Cij is defined by

N i+i-2
= n
C1'J' -Z o-nOr{iG-nr - (6.4.2-20b)

n=1

Let C be a matrix whose ij element is Cij’ then it can be shown

that

C =H'H (6.4.2-21a)

p— ——

2 p
Loty t{/2 ... ty/p
2 P
1 t2 t2/2 o e tZ/P!
W=l . : : (6.4.2-21b)
2 P
Loty G2 P
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Note that the matrix H relates the N subinterval midpoint time delay

to the parameter vector of interest. Namely,

T1=He (6.4.2-21c)
where the vector 1 is defined by

1= (nlty) Tty ...y )T ( .2-21d)

Therefore, using Equation (6.4.2-20a) the covariance matrix of the
parameter vector @ is bounded below by

-1

COV(e) > J

|v

T -1
gﬂﬂigf—l—- ) (6.4.2-22)

v

For p = 1, Equation (6.4.2-22) reduces to Equations (6.4.2-5a),
(6.4.2-5b), and (6.4.2-5c).

Furthermore, if e is the estimated parameter vector, then the
estimated time delay at any time within the interval [0, T] is (see

Equation (6.4.2-16a)).

t) e . (6.4.2-23)
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Hence, the variance of the resulting time delay estimate is

VAR(T(t)) = h'(t) COV(e) h(t)

2aN hT(t) (HTH)™ n(t)
) T

(6.4.2-24)

6.4.2.3 Case 3: One Target and Three Sensors with Variable Time

Delay (J =1, M=3,p =P, N>2). We studied the problem of esti-

mating localization parameters of a stationary target in Sec-

tion 3.5.2. We discussed at length the rationale for the two-step
approach; i.e., first estimate the time del: between sensor arrays
and ther, map the estimated time delays to the localization parameters
via the target array geometry. We studied the optimum multisensor
time delay processor and examined the resulting estimator performanrce
bound. In this section we extend our investigation to the moving
target case. Our immediate concern, however, is on the two-variable

time delay estimation from a three-sensor array.

Let the two variable time delays (see Section 3.5.2) be modeled

by a Pth order polynomial as

Tl(t)

t) o (6.4.2-25a)
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=h'(t) o
where
h(t) = (1t t%/2 tPp)T
o, = (t. t; %, t{PhT; i=1, 2

Note that, o;, the ith element of e is given by

$T§i-l); if i<P+1
8, =
(T("P‘Z); ifi>P 41
2
for i =1, 2, 2(P + 1).

From Equation (6.3-6a) the likelihood equations

()  aA(e)
36 ; - 81{1°1)

are

(6.4.2-25b)

(6.4.2-25¢)

(6.4.2-25d)

(6.4.2-25¢)

(6.4.2-25f)
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N B (i-.)
DIPIE r—[t” h [ ax v, o v
o T o170 M X%n Ykn ®1 Ykn Zn
n=1 k=1
=0. (6.4.2-26a)

for i <P +1; and

an(e) aA(e)
3 aTéi-P-ZT
N B (i-P-2)
- . n 2
'ZZJ“’k T =27 ™™ 2%n Vkn 2 VEn %n
n=1 k=1
= 0 (6.4.2-26b)

for i > P + 1.

Now using Equations (3.5.1-8d), (3.5.2-3) and (3.5.7-6c), the

matrices an, ®1 and ¢2 are given by

| =dwery(tn) . Jwetp(to)y
e |

an = diag (e (6.4.2-26¢)
0 -1 -1

¢1 =11 0 0 (6.4.2-26d)
1 0
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0o 0 -1
9, = 0 0 -1 (6.4.2-26e)
1 1 0
and
2 S /Ny
!hkl = 1—771;1;:7N; . (6.4.2-26f)

Therefore, the following relations can be shown:

gﬁn an | vkn n T Akn - Aﬁn’ (6.4.2-27a)
where
jwle(tn) jwk(Tl(tn)+T2(tn))
Acn = @1kn %Bkn © * e Byp ©
(6.4.2-27b)
and
gﬁn an ? Vﬁn Sn T Bkn - Bﬁn (6.4.2-27¢)
where
jwk(Tl(tn)+T2(tn)) jwsz(tn)
Ben = %1kn *kn © * ok Hyn © :

(6.4.2-27d)
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P.
:( Thus substituting Equations (6.4.2-27a) to (6.4.2-27d) in Equations
(6.4.2-26a) and (6.4.2-26b) yields the set of simplified likelihood

equations

*! 3A(e)

B N .
3 2 Juw Ty (tp)
-0 D) Z Z I | (“1kn %Bn ©
T T k=-B n=1

AARLAS AP AC A

Juy (ry(tg)+15(t )
T‘ * Ogn ®Bgn € " " )

=0; fori=1, ... ,P+1 (6.4.2-28a)

and

o) - < 2 . oty
1 P2) T S Ti-P-2) :E: :E: Iyl (“2kn *3kn ©
T2 T2 k=-B n=1

jwk(Tl(tn)"'Tz(tn)) ) ’
* %n %kn ©

{ =Q0; fori=P+2, ..., 2P, (6.4.2-28b)
g
&
The above two sets of equations can be combined into one as
Juta(ty) .
follows. We note that %k n “§kn 3 is not a function of
(1-1) for i =1 P+ 1 and that * jwle(tn) is not
& B trose e : %kn *kn €
' a function of 151'p'2) for i =P+ 2, ..., 2P. Therefore, we can

add these two terms, respectively, to Equations (6.4.2-28a) and

Y

F‘r
|
s
9
]
b
|
P
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(6.4.2-28b). Now we can define the 2(P + 1) parameter ambiguity
function by

< 2 Ju Ty (tp)
R(e) = Z Z L (°‘1kn aSyn €

k=-B n=1

jwsz(tn)
* agn %Bkn ©

Juw, (T4 (t_)+1,(t )))
k'"1'*n’ "2'"n
* ®1kn °§kn ¢

(6.4.2-29)

Therefore, combining Equations (6.4.2-28a), (6.4.2-28b) and
(6.4.2-29), we find that the optimum estimate of ¢ is given by é which
peaks the ambiguity function R(e), or equivalently the corresponding

null of 3R(e)/3e; or more specifically one can write

aR(e)

895

=0; fori=1,2, ..., 2P (6.4.2-30)
where 8, is as given in Equation (6.4.2-25f).
We next derive the performance bound of this estimator. From

Equation (6.4.1-2), the ij element of the Fisher Information Matrix

is

...... PPy T S P ey

LA

it

-
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n=1 k=1
Jgﬁl) Cif i <P 41
M e cp e,
Jg?l) s ifis>P+1,
JS?Z) CAf P> P+,

Thus the Fisher Information

matrices as

5(11) : 5

Jel-——+-—-

s | y22)

12)

Using Equations (6.4.2-25f)
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-3§2->; i=1,...,2(P+1)
I =1, . L, 2 (P 1)
(6.4.2-31a)
jJ<P+1
i>P+1
(6.4.2-31b)
j<P+1
j>P+1

Matrix can be partitioned into four sub-

(6.4.2-31c)

and (6.4.2-31b), and the procedures shown

in Section (6.4.2.2), elements of each submatrix can be evaluated as

follows:

N

n:

) 8 aRkn
’Ekztr( ReE oy (J’-l))
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N B 143-2
=‘ZZZ T Ih 1S, tr(v, 02 vr )
% - o T Il S iV, o Vg,
n=1 k=1
8 2,02
1 S 2 SNy
1J Y T+3 §k7Nk
k=-B
C§§1) - (6.4.2-32a)
where
tr(Vy, o VE,) = -4 (6.4.2-32b)
. b
11 n
Cij =Z T -10)T (7 - 1)1 (6.4.2-32c)
n=1
B 2 2
S /N
3 A U T+3 S /N,
k=-B
8 2 2
: S(w) /N(w)
“2 T+ 3 S(w) /Nw) * (6.4.2-32d)
-8

1
Furthermore, let C(ll) be a square matrix whose ij element is Cg§‘),

then it can be shown that

11)

(1) . HT Hy (6.4.2-32¢)
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where H1 is an N x (P + 1) matrix given by

- -

2 P
1 tl t1/2 .« v tl/P!
2 P
1 t2 t2/2 e e . tZ/P!
H =
2 P
L.]. tN tN/2 . e e tN/P!

Hence, one can write
(11) _ (Twy o At
J (H'H) A3 T

Similarly, one obtains

(22)

[
M-
M-

'5s

=3

1

o8]
-y @
] P
=
(=)
ol @
] p el
P
=)

i+j-2(P+1
tr(11 j-2(P+1))

(6.4.2-32f)

(6.4.2-32g)

N B
] 2 2 2
DI [(1-p-2)1 (j-IfZ)!] I 17 Sy eV 95 Vi)

n=1 k=1
(22) . at
Ci57 " M5

(6.4.2-33a)
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where

(22) ¢+ 143-2(P+1)
22) _
¢ 'Z(1-P-2)'G’-P-2)'

= ¢li1) (6.4.2-33b)
1]
where i* =1 - P -1and j' =j -P -1,
Thus if C(ZZ) is a matrix whose ij element is given by C(22),
then one can write
c(22) | (11)
ol
=HH. (6.4.2-33c)

Therefore, one can also write

)(22) o ,a1) (6.4.2-33d)

Finally, we note that since J must be symmetric, we have

J(21) (12))T .

= (J (6.4.2-34)

(12)

The submatrix J can be evaluated as follows:

st snandie e o e Bl A i k. PP

T L Te T TR TN e T T T T O TR TR T s TTY Ty T Y TTRE TR TR T e T Y T
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N B -1
3R 3R
P23 (o
o) - tr {-—73 - (6.4.2-35a)
N (i-17 5 (5-P-2) -4
n=1 k=1 Y 315
where
-1
Ren_ Ih |2 —kn
8T11- k aTIIT-l]
[ t1-1
_ n 2
= o =] M Ven 1 ViR (6.4.2-35b)
aRkn . aPkn
(3-P-2) = >k __{3-P-2)
[ ¢ 3-P-2 ]
_ n
=y (5= r T Ykn %2 Vin - (6.4.2-35¢)
Hence one can write
(12) N B p1+3-P-3
12) _ 2 n 2
n=1 k=1
- (12) At
CGi M7 (6.4.2-35d)

since tr(V, = & 0, V¥ ) = -2

n 2 'kn

Now

(12) _ ~(11)
ci3° = oy

TN
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where j' = j - P - 1. We can also write C(lz), the matrix whose ij
element is C(%Z), as
1J

c(12) < yTy, (6.4.2-35¢)

. .oo.(12) . .
Finally, the submatrix J is given by

(12) _ 7 At .
J (H'H) x3 . (6.4.2-35f)

Thus combining Equations (6.4.2-32g), (6.4.2-33a), and (6.4.2-35f),
the Fisher Information matrix is
J=A A, o (6.4.2-36a)
3 29N Ut

where the relation T = NAt has been used and the matrix A is given by

A= ——4+——|. (6.4.2-36b)

Therefore, the covariance bound is

) > a7

|® >

cov (

>(@.¥)A’1 (6.4.2-37a)
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B 2 ,n2 -1
> A 2 Z 2 /% (6.4.2-37b)
= Y T+ 3 Sk/Nk ) T
k=1
Note for a fixed time delay with one observation interval, we
have H = 1, and Equation (6.4.2-37b) is easily shown to be identical

to Equation (C-24a) for the three-sensor array case.

-~

Note that if o = (g; gZ)T is the estimate obtained from solving

TPTTTYYYY

Equation (6.4.2-30), then the time delay estimates at any point

within the interval [0, T] are given by

Y
b

@ »

n)| |n

|
!
S S S (6.4.2-38a)

r?"g g
- )
~n
—
—+
~
o
—
—
——
ct
A
j@ »

aw| {afw oo n(t) | 0
cov == == —— cov (&) -___:____
;2('5) of } nT(t) 0 | h(t)

(6.4.2-38b)
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6.5 VARIABLE TIME DELAY TRACKING

In the previous sections, we studied the problem of variable

time delay estimation using the following procedure:

1. modeling the time delay variation over a T-second observa-

o LA e e o g

' tion interval by a Pth order polynomial,

}

t» 2. partitioning the observation interval into N equal sub-
1 intervals,

4

]

1

[

3. obtaining the Fourier representation of the observed wave-

forms for each subinterval, and

4. estimating the polynomial coefficients from the combined

observation vector of each subinterval.

A criterion in selecting N was presented. It was shown in Appendix J
. that when N satisfies this constraint, the resulting loss of signal
&
>. coherence due to time delay rate i5 minimal. Furthermore, when this
constraint is satisfied, the time delay variation over each sub-
> interval is essentially linear.
o
b
If targets are to be tracked over a time interval which is con-
siderably longer than T seconds, then the above mentioned procedure
o
]
b
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need modification. There are two possible approaches: (1) increase

T to accommodate the total observation interval by increasing the
order of the polynomial, or (2) select a suitable choice of a fixed
observation window and the order of the polynomial; as time

increases, the fixed-length observation window and the assumed poly-
nomial model will also move in time. A major drawback of the first
approach is the solution delay. One must wait until the end of the
observation interval before one can start the estimation procedure.
For many real-time applications, this kind of solution delay is
unacceptable. Therefore, our major emphasis in tnis section is on the
second approach where observations from a T-second sliding window

will be used for parameter estimation. Furthermore, we will study the
recursive sequentiai nature of the algorithm which incorporates

estimates from the previous cycle.

6.5.1 Sequential Fixed-Interval Time Delay Tracking

Consider a simple two-sensor case with observed variable time
delay. Note that the general multisensor, multitarget case can be
similarly treated with more complicated notation. Figure 6-5
illustrates the problem of our interest. Suppose that time delay
variation over an observation interval {0, T] can be modeled by a Pth

order polynomial. Thus one can write the time delay as
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. 2 T(()P)tP
ro(t) =19t rot ts—t .t =

= hn'(t) e, (6.5-1a)

where
)=t t22 ... e (6.5-1b)
D N N R (6.5-1c)

Note that the subscripts denote the time at which the polynomial

coefficients are evaluated.

()
A

VARIABLE TIME DELAY

021 650

Figure 6-5. Sequential Fixed-Interval Time Delay Tracking
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Assume that there are N subintervals and let 9, N = 1, 2, . .
be the observation vector of Fourier coefficients for each sub-
interval. Then the best estimate of & is obtained by maximizing the
density function p(gN Gy v e 95190) as discussed in the previous
sections. Now suppose a new observation vector (Y] is available.
Again we wish to estimate 8, over the interval [At, T + At]. Now
suppose the best estimate of & is found and a new observation vector
42 is available, what is the best procedure in estimating 6, over
the interval [2At, T + 2At]. Here we study this fixed-interval

recursive time delay tracking algorithm in some detail.
First we write the parameter vector 8, as

(6.5-2a)

so that the time delay variation over the interval [nAt, T + nAt] can

oe written as

T (t) =t o+ g (t-nst) ...+ Tr(]")u - nat)’ /et (6.5-2b)

, (6.5-2¢)

then from Equation (6.5-2b) one obtains the state propagation

equation
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gn(t) = H(t - nAt)gn (6.5-3a)
where
= .

1t t2 . . . tP/p1

01 ot . . . tPYpay

0 0 1 . . . tTpan
H(t) = (6.5-3b)

0 0 0 e . 1
L -

Assume that the best estimate of 8 is éO obtained using methods
discussed in Sections 6.3 and 6.4. In addition, let M0 = COV(éO) be
the covariance matrix. Now consider the problem of estimating e, from
the observation set (éo, Ay, Q35 « + ¢, °N+1)' We shall consider a
Maximum A Posterior {MAP) estimate obtained by maximizing the a
posteriori density function p(ﬂllé > Opy Ogy « o+ s gN+1). But one

can write

(e |‘ ) = Plags « -« » ayi1181s 8g) Plefeg)
p _1 209 9_29 e s e EN"'], (; ) )
p 80s Qo5 = ¢ ¢ s Ony

(6.5-4a)

However, maximizing the left-hand side of Equation (6.5-4a) w.r.t.
81 1s the same as maximizing the numerator on the right-hand side

of Equation (6.5-4a) since the denominator is not a function of g,.

- P P R G TR S R TV W IITITTIT TSRS WIS USTSWS VT TS TS ewSS .
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Furthermore, the set of observations (92’ Q3s » -+ - s 9N+1) does

not depend on 85+ Hence the quantity one wants to maximize is

L(gy) = log{play, - - - » apepleg) p(glléo)}. (6.5-4b)

Now from Equation (6.2-6a), we obtain

N+l B
_ _-2BN -1 -1
p(EZ’ R 9N+1|31) =T I I I I lenI exD{'gﬁn Rkn c—"kn} :
n=2 k=1

(6.5-4c)

But from Equation (6.5-3a), the best estimate of 8 in the absence of

new observation is

(At) = H éo (6.5-4d)

gn »

where H = H(At). Since the change of the state over one subinterval

will be small, we model 8; by the relation

-

8; =Heyt e (6.5-4e)

where & is a random Gaussian error vector with mean E(gl) = 0, and

covariance E(g1 gI) = El' Thus using Equation (6.5-4e), one can

write.

T ,-1

Pr1)/2 lpll-l/z exp{- %(21 - _5_1) Pl (9.1 - 8

ploylag) = (2m)¢

|®@
~—
—

(6.5-4f)
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where
él = E(Glléo) = H éO
Py = El(ey - 8;) (85 - 8))
= H MO HT + El .

(6.5-4qg)

(6.5-4h)

Substituting Equations (6.5-4c) and (6.5-4f) in (6.5-4b) and simpli-

fying, then the maximum of L(gl) is obtained by solving the set of

necessary and sufficient conditions

3'—(21) 3/\(_21)

-1 ~
= -P (8 -8) =0
38, 39, 1 1 1
azL(gl)
>— < 0
28]
where
N+l B
AMey) = —ZZ M, (87)
n=2 k=1
and

_ -1
Akn(gl) = log IRkn, * o Rkn Xen

as was defined in Equation (6.2-6c¢).

(6.5-5a)

(6.5-5b)

(6.5-5c¢)

(6.5-5d)
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By repeated application of steps from Cquations (6.5-4a) to

(6.5-5d), one obtains the necessary conditions for the estimate of

the state vector 8; at t =1 At as
aL(_e_l) (ey) -1 .
% % P.m (g -8;) =0 (6.5-6a)
32L(g1.) : )
—_— =<0 6.5-6b
q %05
for i =0, 1, 2,
F
:. where
f N+i-1 B
Meg) = - ) Z A, (85) (6.5-6c)
n=i+l k
- -1
Men(84) = Tog len, * %0 Rkn o (6.5-6d)
8, =He,  +e, (6.5-6e)
8; = E(s; le1 l) H 81 (6.5-6F)
i ~ ~ T
P1 ‘E[(_e_i '9_1') (_1 '21)']
=HM, o H g (6.5-6g)
i-1 i +9-99

and furthermore

a
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m
[}
m
—
2]
[13]
~—

cov (gi) .

=<
-
1]
»

about éi to yield

22 e i g

- -1~ =~
=i - 21 -d (_9_]) i (21)
where
af (8.)
o e 1
J(gi) T T e, T Ui
—i
- (e;)
» 2i 7 &
f1(8:) ANy
38 2

which is known as the Hessian.39

Note that in Equation (6.5-6a), since o. =

Q
-
—
@
—
o
i
{—h
o2
-
+
——.
Q
()
—
—
@
—
~—
)
O
—
—
S
—

(6.5-6h)

(6.5-61)

t
@

=i’ =i

[+ ]
1
@1
—e
~—
]
o

(6.5-7a)

(6.5-7b)

(6.5-7¢)

(6.5-7d)

(6.5-7e)

A(e.) can be linearized
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Finally, using Equation (6.5-5¢c) and results from Section 3.3,
we obtain the following explicit expressions for the first and second

vector derijvative of A(gi) w.r.t. e..

) N+i-1 B

al;(fi Z Z aAkn(e

! n=i+1 k

N+i-1 B -1

aR 3R
-1 7k kn
DIPML (Rknsa)*ﬁin‘aTiEkn (6.5-7f)

Qo
2]
=
Q
(0]
|
[}
A\
Q
Q
| >
- <
3
i
| @
——d

Niil 8 L Ry q 3Ry . asz
kn 3. kn 3e kn 3. 38
n=i+l k=1 J
“Ren
" %n e, 39 Zkn (6.5-79)
1 J

where 8., ej are the i, j element of the vector 8-

Lastly, if e, is the estimate at the instant t = naAt, then from
Equation {6.5-3a), the best estimate of 8, at any time inside the

interval [nAt, (n+N) At] is
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- -

8, (t) = H(t - nat) 8, (6.5-8a)
and the covariance is

COV(e (t)) = H (t - nat) cov(én) HI(t - nat) . (6.5-8b)

$®)
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CHAPTER 7
OPTIMUM VARIABLE LOCALIZATION PARAMETER ESTIMATION AND TRACKING

Render unto man the things which are man's and unto the

computer the things which are the computer’'s.
-- NORBERT WEINER

7.1 INTRODUCTION

We have studied in some detail in Chapter 6 the problem of multi-
sensor, multitarget variable time delay estimation and tracking.
Since the ultimate objective is to estimate and track the localiza-
tion parameters (e.g., target range and bearing), we therefore devote
this chapter to addressing this important issue. The approach that we
are undertaking is very similar to the stationary parameter case we
have studied in Section 3.5.2, where for a multisensor array, the
stationary target range and bearing are obtained by a geometric
mapping from estimated time delays. Thus for the variable localiza-
tion parameter case, our approach is to estimate the variable param-
eters by a geometric mapping from estimated time delays and time delay
rates, where the latter are obtained using techniques presented in
Chapter 6. The choice of a two-step (or indirect) approach to the
variable localization parameter case is determined by the same set of
arguments presented for the stationary parameter case. The pertinent

arguments have been discussed in Section 3.5.2.
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The study on passive estimation and tracking of variable target
parameters has received considerable interest in the literature.
Most of the early studies have been concentrated on the single target
and single sensor array. However, the extension to a multitarget,
multisensor environment has received increasing attention. The com-
plexity of this problem increases rapidly as the number of targets and
sensors increases. There are two notably different approaches in
attacking this problem. The first approach starts from the target
dynamic tracking filter (or data processor) and attempts to model the
measurement processes. One theory which has received considerable
attention recently is the Joint Probability Data Association Filter

(JPDAF) discussed by Bar-Shalom, 8 Bar-Shalom and Tse,:?

20

and
Fortmann, Bar-Shalom and Scheffe. Here the measurements assume a
probabilistic model. An underlying assumption for this approach is
that the signal processor which produces the measurements cannot be

modified to account for the multitarget problem. Thus one must rely

on modeling the measurements. In fact, using a linear superposition
t assumption, Ng and Bar-Shalom presented a model of unresolved

measurement for multitarget tracking.ﬂ’22

However, for this

approach the inability to change the signal processor is a major limi-
{ tation in obtaining a satisfactory solution to the actual problem. Ir
] fact, the intimate relation between the signal processor and the data
E processor designs was pointed out by Fortmann, Bar-Shalom and

Scheffe.20

They showed that the selected parameter in the signal
1 processor directly affects the performance of the tracking filter.

¢ Or more generally, given a particular target-sensor environment, the
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structure of the signal processor and its relationship with the data
processor will ultimately determine the overall performance of the

system.

The second approach, on the other hand, starts the investigation
from the signal processor. Here one finds that the signal processing
gain increases in proportion to time. However, by increasing the
processing time, one can no longer assume a SPLOT process, which is
the basic assumption used in many existing signal processor designs.
Typically, one finds that under a target motion assumption, a signal
processor must estimate both the static and motion parameters. Fail-
ure to compensate for the parameter dynamic will result in a substan-
tial loss in coherent integration. Consequently, it negates the very
purpose of Tong-time integration. Studies in this approach are nota-

bly pursued by Carter and Abraham23

in estimating source motion from
time delay and time comprassion measurement. Also, Schultheiss and
Weinstein evaluated the CRLB of estimating the differential Doppler

15

shift. Moura and Baggeroer investigated the problem of space-time

24

tracking by a passive observer. These studies, however, deal only

with the single target (or source) problem.

The approach being undertaken in this chapter can be considered
as an extension of the second approach. However, we address a more
general problem and we do not limit the parameter dynamic to a simple
rate variation. In addition, we also discuss the tracking methodo-

logy. In short, it is strongly believed that the two approaches




PP

|

B Jamth Sadh Shesh Shegh Shodh gnoie B SR i Mt ShEE i e A RS v i

217

mentioned above will ultimately converge and result in an integrated
signal-data processor. The integrated processor will combine the
signal processor and the data processor in such a manner as to achieve
the best possible processor structure., It should be pointed out

that the study on the relationship between digital signal processing
(used in signal processor design) and control and estimation theory

(used in data processor design) was first discussed by w111sky.40

It
is hoped that our study in this chapter will help advance the concept

of integrated signal-data processor design.

This chapter is organized as follows. Section 7.2 discusses
the methodolgy in variable localization parameter estimation and
Section 7.3 investigates the problem of localization parameter track-
ing. Finally, in Section 7.4 we present our approach to target state

estimation and tracking.

7.2 VARIABLE LOCALIZATION PARAMETER ESTIMATION

Our approach to variable localization parameter estimation is

the following:

1. Apply the optimum multisensor, multitarget variable time
delay estimator as presented in Chapter 6;
2. Evaluate the time delay estimate at any desired time within

the observation interval [0, T]; and
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3. Map the time delay estimate to the localization parameters

(range and bearing) using the target sensor geometry.

For the purpose of demonstration, consider a single target,
three-sensor array system shown in Figure 7-la and 7-1b. Figure 7-la
shows a target trave]]ing at a constant course and speed. (Note
this assumption is unnecessary for the approach discussed here.)
Figure 7-1b, on the other hand, shows a typical time delay variation
as a function of time over a 10-minute interval. Note that over this
interval the time delay variation can be modeled adequately by a
second order polynomial. For a smaller observation interval (e.g.,

5 minutes), it can éasi]y be modeled by a first order polynomial.

To illustrate our procedure, we assume that the observation in-
terval is [0, T], where T =5 minutes. Thus at the end of the 5-min-
ute interval, we want to know the target range and bearing. Our
procedure is as follows. First, we partition the interval [0, T]
into N equal subintervals, where N is chosen according to Equation
(6.2-3). We next apply the variable time delay estimator as dis-
cussed in Section 6.4.2.3. Let the resulting estimated time delays
at time t ¢ [0, T] be given by (see Equation 6.4.2-38a))

T

wf [air o

hi(t) |
|
S B (7.2-1)
|
]
|

|
—

i

(=x

t)

| @
~
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a. TARGET SENSOR ARRAYS GEOMETRY

Ty (» .01)

0

[lll"llﬁrﬁ‘r"IVVVY‘TV_VI‘VIIVTYWIV‘lllli"!!frv‘v—qwr(x) Vf)
0 1 2 3 4 5

TIME (+ 100)

b. TIME DELAY VARIATION AS A FUNCTION OF TIME

021.612

Figure 7-1. Single Target, Three-Sensor Array Variable
Localization Parameter Estimation
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where h(t), §1, and §2 are defined accordingly in Section 6.4.2.3.
We next map the estimated time delays to range and bearing using

Equations (D-10a) and (D-10b). Hence we obtain

B(t) = -sinL (%E (% (t) + %Z(t))> (7.2-2a)

. 2 25,

R(t) = %5-(-£E!i-§ila--) (7.2-2b)
t,(t) - 7 (t)

where L is the interarray separation and C is the propagation speed

of the medium,

We next evaluate the performance bound of the localization pa-
rameters about the true values. Let R(t), B(t) be the true range

and bearing, then from Equation (G-8) in Appendix G, one obtains

- 2
VAR(B(t)) = %(L—w—g—g—m) [VAR(fl(t)) + COV(%, (1), %Z(t))]

(7.2-3a)
VAR(R(t)) = 2¢% [—R(t) ) VAR(%, (t)) - COV(%,(t), %.(t
) = 20 (atthrgy) [R(,(0) - Va0, ()
(7.2-3b)
@ But from Equations {6.4.2-38a and b), we have
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gl [l o n(® |0
cov =l ——+—-= jovE)|——+-— (7.2-4a)
0] I At o | n

and from Equation (6.4.2-37b) we have

B 2,2 -1
cov(e) = AL |2 2 /% (7.2 ab)
= Wy T‘¢“§"§;7N; .
k=1

where A is given in Equation (6.4.2-36b). Now writing A as
A = __..+——_ (7.2-4C)

where A = HTH, and using the well known relation in matrix algebra

8 : c | 8 - celoy! ! gle(e - pglc)l

ST B b —— , (7.2-4d)
- REREE

D ; £ £ 1o - celp)!

the matrix inverse of A is given by

Al - % . (7.2-4¢)

i B .
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Substituting Equations (7.2-4b) and (7.2-4e) in (7.2-4a) yields

20 |nT(e)atn(e) - 30T
cov =
1) [-%aToatat)  T(t)atace)
B 2,2 -1
Sy /N
2 k' 'k
32‘”k1‘7'3sk—/Nk (7.2-5)
L k=1

Finally, using Equation (7.2-5) in (7.2-3a) and (7.2-3b) yields the

desired expressions

VAR (B(t)) = g (mc—s(ﬂ)z ‘:ﬁT(t)Nln(t)} VAR(%) (7.2-63)

VAR (R(t)) = 3c° (L—ng%m-)z I:QT(t)A'l_ﬁ(t)j' VAR(%,)  (7.2-6b)
where

VAR (%) = %ﬁ X T;E’/_EE/_N;('; . ;o ow =4t (7.2-6c)

is the variance of an optimum time delay estimate from a three-sensor

array (see Equation (C-26), Appendix C).

Now let VARS(B) and VARS(R) denote the bearing and range
variance for the stationary target case. Then from Appendix G Equa-

tions (G-15) and (G-16), we obtain
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VAR(B(t)) _ BN [T, 1o
VA; (8) [gg: Bgt%] [ﬁ (t)a h(t{J N (7.2-7a)
S
VC:RREE)l i [E G Cos g g } [ﬁT(t)A'¥n(t)J N (7.2-7b)
S

where B(0) = B(t=0), R(0) = R(t=0), and N = %f’
Note that if time delays are stationary, then the right-hand sides of
Equation (7.2-73) and (7.2-7b) are unity. Since we have B(t) = B(0),
R(t) = R(0), h(t) =1, H = (11...1], so

W) Aty n= W= (7.2-7¢)

Thus, as expected, the performance of the variable parameter case

reduces to the stationary performance case.

We next examine the localization performance when time delays
can be modeled by a first order polynomial in time. Thus using the

definition shown in Equations (6.4.2-5c) and (6.4.2-32f) we obtain

11 1 1t
A=HH = 1
1ty
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Hence one obtains after some algebraic manipulation

NE2 -ZtZt Zt

N

nT(t) a7ln(t) =

and

(7.2-8a)

(7.2-8b)

(7.2-8¢)

(7.2-8d)

(7.2-8e)
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Note that Equation (7.2-8b) has a minimum at i = t; i.e., at the

midpoint of the observation interval. At t =1, Equation (7.2-8b)

reduces to

h(T) = % . (7.2-8f)

Now substituting Equation (7.2-8b) in (7.2-7a and b) yields

VAR(B(t)) _ [cos B(0 } t2 -2t T+ 42 ( |
n cos B(t 7.2-9a
VAR (B) & - )
VAR R t) cos B{ T+ ;?
e, ﬁ ‘m__(‘g'cos B(t) | (-? 2 (7.2-9b)
t

Thus from Equations {(7.2-9a and b) one concludes in general
that the performance of the localization parameter estimates for the

variable parameter case deqrades w.r.t. the stationary parameter

case. The degradation, however, is minimal at the midpoint of the

{ interval.

f o _ ,

1 In the examples that we have considered thus far, we discussed
only the single target localization parameter estimation. The multi-
target case, in theory, presents no insurmountable difficulties

} . because our approach relies primarily on the time delay processor.
A1l localization parameters are obtained via a geometric mapping from

] time delay measurements.
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7.3 VARIABLE LOCALIZATION PARAMETER TRACKING

Our approach to variable localization parameter tracking is
mechanized via a geometric mapping from time delay estimates obtained
from the variable time delay tracking processor. In particular, we
employ the method of sequential fixed-interval time delay tracking as

presented in Section 6.5.1.

Recall from Section 6.5.1 that the method employs a T-second
sliding window over the incoming signal waveform. Over the T-second
interval an appropriate variable time delay model is used. A state
vector consisting of the time delay and its higher order derivates is
evaluated at the beginning of the T-second window. This parameter
state vector is estimated sequentially at every At = % seconds and
the estimate is obtained based on the current T-secnnd observation
and the previous estimate. Knowledge of the time delay state vector at
any point allows the estimated time delay to be evaluated at any other
point. In particular, one can evaluate at the most current observa-
tion subinterval. Thus let En be the estimated time delay state

vector for the one-target, three-sensor case. Then one can write

"
oy
s

1

(7.3-1a)

17
[pe]
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where
o _ ° (P)\T . .
Eﬂi - (Tni T Tn1 « o . Tn_] ) . 1 1, 2 . (7.3'1b)

Therefore, the time delay estimates at t = T + nAt are

Ly i=1,2. (7.3-2)

Therefore, the estimated range and bearing at the most recent

observation interval are (using Equations (7.2-2a and b))

én(T) = -sin” [%f(fnl(T) + ?nZ(T))} (7.3-3a)

- LZ c052 én(T)

Rn(T) = ?;gTTT‘?"¥;{(T7 (7.3-3b)
forn=1, 2

7.4 TARGET STATE ESTIMATION AND TRACKING

In the previous sections we considered the problem of estima-
tion and tracking target localization parameters. In this section

we briefly study a method of target state estimation and tracking.
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The state of a target is defined by the target's location and
velocity components. Thus the target state vector consists of a
target's location and velocity vectors. Therefore, target state
estimation and tracking is concerned with simultaneocusly estimating

and tracking a target's location and velocity components.

In the Titerature, the problems of target state estimation have
been well treated. The usual approach is to formulate the problem in
such a way as to yield a Kalman filter-type solution. For example,
the target motion is modeled by a dynamic equation of the form

= f(X,) +6 n=0,1, ... (7.4-1a)

2n41 Lo

where X s the target state at time t = (n + 1)aAt, f(gn) is a vector
function of the state, G is a matrix, and !n is a process noise

vector. The best estimate of the state ln is sought subject to a

measurement equation of the form
(7.4-1b)

where L, 1s the measuyrement vector consisting of time delays, range,

bearing or frequency, etc; h( ) is a vector function relating the

X

measurement to the state; and represents the measurement noise

Ya

vector.

Rk
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When f( ) and h{ ) are linear and the noise processes are Gaus-
sian, Equations (7.4-1la and b) are solved optimally by the celebrated
Kalman filter. When either f( ) or h( ) is nonlinear, which is usually
the case for target state estimation and tracking, an Extended Kalman
Filter (EKF) is used where all nonlinearit es are linearized about
the best state estimate. However, the EKF is no longer the optimum
solution and, in fact, convergence can no longer be guaranteed (see

41).

Gelb The general continous time eauivalence of Equations (7.4-la

and b) was studied by Kushner and Stratonovich.42

While assuming only
a Gaussian noise process, Kushner and Stratonovich derived a partial
differential equation governing the time-dependent state's probabil-

ity density function (see McGarty42).

We mentioned earlier that the EKF linearized all nonlinear func-
tions about the best estimate of the state. This linearization is
probably adequate for small process and measurement nojses. However,
we are interested in a low SNR environment where the signal pro-
cessor is required to have a long integration time such that the effect
of target dynamics must be considered. Under this assumption, we
present a method of target state estimation and tracking from the
signal processor viewpoint. Thus our approach is to estimate the
target's localization and motion parameters from the estimated

variable time delay procesor.

L.




r

-——ur

230

7.4.1 Target State Estimation

We are interested in estimating the target state (for example,
range, bearing, range rate, and bearing rate) over a T-second
observation. In this approach, we do not require the target to travel
on a constant course and speed as is usually the model assumed by the
Kalman filter formulation. But instead, we assume that the variable
time delay due to target motion can be modeled by a finite order poly-
nomial in time. Therefore, the variable time delay processor dis-
cussed in Section 6.3 is applicable. Figure 7-2 shows the target

geometry and the appropriate state variables.

TARGET TRACK

- X

021.651

Figure 7-2. Geometry of Target State Estimation
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Let the target state variable in the polar coordinate be repre-

sented by
Y = (r, e, v, 8) (7.4-2a)
-

and in the rectangular coordinate by
Yo = (X, ¥, X, ¥)T (7.4-2b)
—R ] ] ’ M M

Note that there exists a unique mapping between the two state variable

representations. Let the mapping operator T( ) be defined such that

Yo = T(Yp) (7.4-2¢c)
and
-1
Yp =T (¥) . (7.4-2d)

Now from Appendix D, we have the geometric relations between time

delay measurements and the localization parameters;

r = fl(Tl’ T2) (7.4-3&)

where fl( ) and fz( ) are given in Equations (D-8a) and (D-8b).

Therefore, one can write the range rate and bearing rate as
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”\‘. r = if_l 1, + .a_fi t
k 811 1 812 2
f
‘ . of of
2 . 2 .
2 4 —
E s o, ‘17 T, T
;. = fal1ys 55 15 1)) (7.4-3d)
¢
1 We can define the partial time delay vector X by
F q
A

Then the target state vector can be related to the partial time delay

vector X by

Yp = £(1)

where

£() = (F10) Fo0 ) F30) f,( DT

Therefore, the best estimate XP is given by

and the covariance of this estimate is given by

(7.4-3F)

(7.4-3g)

(7.4-4a)
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cov (ip) = F COV(X) Fol (7.4-4b)
where the matrix F is given by
of
F = X (evaluated at some desired X*) . (7.4-4c)

The partial time delay vector X can be obtained using results
from Section 6.4.2.3. Thus from Equations (6.4.2-25a and b), we have

the vector X(t); i.e., the vector X evaluated at any time t e [0, T)

is given by
ﬂT(t) l_ gT
of 1 a'w)| Ty
x(t) =\~ 5~ ~ T T
aiee) 1o 5
St B
o' | nT()
= h(t) e (7.4-5a)

where e = [8; gZ]T is the time delay state vector at time t = 0, and

ﬁ(t) is the derivative of h(t) w.r.t. the time variable.

Hence, the best estimate of X(t) is given by

X(t) = h(t) e (7.4-5b)
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and the covariance of X(t) is given by

COV(X(t)) = h(t) COV(g) h'(t) (7.4-5¢)

where COV(e) is given in Equation (6.4.2-37b).

Thus by estimating the time delays and the delay rates, the
target state vector can also be estimated. Finally, the performance
bound can also be evaluated at any point within the observation

interval.

7.4.2 Target State Tracking

Our approach to target state tracking is to extend the results in
variable localization parameter tracking to include the target motion
parameters. Again we use the sequential fixed-interval time delay

tracking processor discussed in Section 6.5.1.

Here we assume that the time delay tracking processor yields the
time delay state vector 8, at t = nAt. Therefore, from Equation
(7.4-5a), the best estimate of ln(T) at time t = T + nAt is given by

(T) = n(T) o (7.4-6a)

ye
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Therefore, replacing X by ln(T) in Equation (7.4-4a) yields the tar-

7Y

VEP—p—

get state estimate as a function of time, namely

Yp (}) = £(x,(T) (7.4-6b)

where En = T + nAt is the time of the most recent observation

—— '1{,"""

subinterval.
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CHAPTER 8
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Behind an able man there are always other able men. -- (Chinese

Proverb)

We have studied in detail the methodologies of optimum signal
processing for passive time delay estimation in a multisensor, mul-
titarget environment. Our investigations were motivated by (1) the
inherent inability of the existing time delay estimator to resolve
estimation bias in a multitarget environment, and (2) the apparent
lack of research and understanding in this area. In the litera-
ture, the studies of interference were confined to studying the
effect of interference on the existing processor and the methods of
interference suppression. The location or direction of inter-
ference was usually assumed known. Our study as presented here,

however, treats the interference as another target of interest.

We pointed out that the traditional approach is optimum for a
single target only. In the multitarget environment, the existing
approach is biased due to the inherent mismatch between the single
target signal processor design and the multitarget operating envi-

ronment. We argue that for a high performance sonar system, it is

236
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important to have an unbiased processor since measurement bias can-

not be easily removed with further post-estimator processing.

The optimum multisensor, multitarget time delay processor is
derived from a Maximum Likelihood viewpoint. The actual processor
is obtained by reducing the likelihood equation via straightforward
but somewhat tedious manipulations to the simplest form. The gen-
eral multisensor, multitarget processor is applied to a two-sensor,
one-target case. The resulting processor is shown to be identical
to the GCC studied by Knapp and Carter.l We next studied the two-
sensor, two-target problem. We showed the optimum two-sensor, two-
target processor and presented the CRLB. We then extended our
study to address the estimation of localization parameters. Much
of our attention had been spent on the discussion of a basic three-
sensor ranging array. We showed that for passive ranging and
directional finding, an optimum processor is the focus beamformer
which yields a direct estimate of range and bearing. We argued
that an alternate approach is to measure the inter-sensor time
delay and then geometrically map the time delay measurements to the

corresponding ranges and bearings.

The focus beamformer approach can be called the one-step
approach, whereas the alternate time delay approach can be called
the two-step approach. It was shown in Section 3.5.2 that both
approaches yield identical performance in terms of the CRLB. How-

ever, there are major differences between the two approaches:
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(1) the focus beamformer requires searching over a range/ bearing
space of a correlation function which is asymmetric with respect to
the range and bearing variables; on the other hand, any correlation
over the time delay variables is always symmetrical; (2) for track-
ing purposes, the focus beamformer approach requires a two-
dimensional error detector design whereas the time delay approach
~an be implemented using two one-dimensional error detectors; and
(3) arguing from the Law of Large Numbers, both approaches yield
Gaussian measurement noise. However, for the time delay approach,
the resulting range and bearing estimates could be biased and have
non-Gaussian statistics if a direct non-linear geometric mapping
from time delay measurements is usad. For a practical implementa-
tion, the two-step time delay approach is preferred because the
symmetry of the correlation function over the ‘time delay variables
yiela. simple and efficient tracking logic. This is especially
advantageous for a Tow SNR environment where the increased smooth-
ing time required (to make the estimator efficient) can be achieved
via a simple feedback design. Finally, for the three-sensor rang-
ing array, the potential bias and non-Gaussian statistics can be
minimized if mapping to intermediate variables is used instead of
range and bearing; for example, mapping to cosine bearing and
inverse range since they are linearly related to time delay mea-

surements.

We also investigated the general optimum inter-sensor time

delay vector estimator. Our study showed that given M sensors, the
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M-1 time delay can be obtained with M-1 correlators. This is in
marked contrast with Hahn's approach25 where a total M(M-l)% corre-
lations are required. In addition, we presented a simple expres-
sion of the CRLB of time delay vector estimation under a single
target assumption. Finally, in our study of the three-sensor rang-
ing array, we pointed out the improved performance of the optimum

formulation versus the conventional approach.

We stated that one of the strongest assumptions we made in
studying the optimum time delay processor is the assumption of
known target power spectrum. Therefore, we briefly addressed the
problem of power spectral estimation., We studied the optimum spec-
tral estimator for the two-sensor, one-target case and the two-
sensor, two-target case. We briefly studied the problem of joint
time delay and spectral estimation. A somewhat surprising result
is that time delay estimates and spectral estimates are uncorre-
lated. This implies that the joint time delay/spectral estimation
does not degrade the resulting estimator performance when assuming
either is known. Furthermore, we found that while the time delay
CRLB decreases as the inverse of observation time, the power spec-

tral CRLB decreases as the inverse square of observation time.

We next addressed the problem of practical implementation of

the optimum multisensor, multitarget time delay processor. We
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noted that one approach is to assume a weak signal in noise envi-
ronment. Here the intricate structure of the optimum multisensor,
multitarget time delay processor is drastically reduced to a man-
ageable form. We also discussed a single target assumption
approach as a suboptimal processor in a multitarget environment.
We provided a numerical illustration of the single target processor
behavior in the presence of interference. Performance of the
single target processor was compared to the optimum multitarget
processcr. We noted that in the presence of interference, the
single target processor, in general, was biased and had a larger
variance except when the target interference time delay separation
is small; i.e., less than a correlation pulse width. Within this
region, however, the optimum multitarget processor has a variance
which grows without bound as the separation decreases for the case
of identical signal and interference spectrum. This reflected the
inappropriateness of using a multitarget formulation in a single

(merged) target environment.

In a multisensor, multitarget environment, an optimum proces-
sor remains optimum so long as the actual number of sensors and
targets matches the number assumed in the optimum processor design.
A mismatch in either the number of targets (addressed in this
study) or the number of sensors (caused perhaps by element failure)
will automatically degrade the processor performance. Therefore, a
key element in using the optimum multitarget processor is the cor-

rect detection of the number of targets.
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The optimum multisensor, multitarget processors which we have
derived, studied and discussed thus far were based on the assump-
tion of a SPLOT process. This assumption is difficult to satisfy
for a more general moving target environment. Therefore, we
further refined our study to account for the effects of target

motion.

The approach we have taken was to model the time delay motion
by a finite order polynominal in time and partition the observation
interval into N equal subintervals. It was shown that in order for
the time-compressed waveform to be Fourier representable, N must
satisfy a certain constraint. When this assumption is valid, one
can again express the multisensor, multitarget, multi-interval
observation in terms of a multi-dimensional Fourier coefficient
vector. The result of using an MLE approach yielded the multi-
sensor, multitarget variable time delay processor. This processor
provided an estimate of the time delay and its higher order deriva-
tives at any time within the observation interval. It was shown
that for time delay estimate, the minimum variance always occurs at

the midpoint of the observation interval,

The time delay processors we have discussed thus far are
batched processor; i.e., one must wait until the end of a T-second
observation before one starts any computations. In many applica-
tions, this T-second solution delay is not acceptable. Therefore,

we have investigated and proposed a sequential fixed-interval time

o . e PO T Y PO A P
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delay processor. This processor obtains its current estimate by
utilizing the most current subinterval observation and the prior
estimates. We obtained an expression for the covariance calcula-

tion.

We next addressed the problem of variable localization para-
meter estimation and tracking. OQur approach was similar to the
stationary parameter case. We first estimated the time delay tra-
Jjectory using the variable time delay processor. Localization
parameters were then obtained via a geometric mapping from the time
delay estimate. For target state estimation where we are inter-
ested in both the target position and velocity components, the map-
ping function utilized both time delay and time delay rate esti-

mates.

Although we have studied a very broad area covering technical
issues in signal processor design, parameter estimation and target
state estimation and tracking, there are many questions, however,
which remain unanswered. Therefore, we suggest them as topics for

further investigation.

Our study presented here concentrated on the multisensor
multitarget signal processing. However, closely related to the
multitarget situation is the multipath environment encountered in
many underwater sonar signal processing situations. Since multi-

path signals are correlated, one cannot simplify the signal
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processor as we did for the multitarget case, where target signals
are rightfully assumed uncorrelated. Thus, in terms of signal
processor design, the multipath processor is somewhat more complex

w.r.t. the multitarget processor.

The post correlator matched estimator we have studied assumes
a known signal and interference power spectra. However, knowledge
of the target spectrum is seldom exact. Therefore, it is important
to investigate the robustness of the estimator when a mismatch

exists .

Finally, our approach to localization parameter estimation and
tracking, or more generally, target state estimation and tracking,
starts from a signal processing design viewpoint. Traditional
approaches are mostly formulated in terms of a Kalman filter,
Therefore, it will be of utmost interest to compare the performance
of these two approaches in terms of solution accuracy, computation
requirements, effects of maneuvering target handling capability,

and tracking threshold.

oy
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APPENDIX A
DEFINITION OF COMPLEX GAUSSIAN PROBABILITY DENSITY FUNCTION (pdf)

This appendix briefly describes the meaning of a complex
Gaussian probability density function {(pdf). A thorough treatment
of this subject can be found in Goodman.43

Let X(t) be a zero mean wide-sense stationary white Gaussian
random process with correlation function E[X(t) X(T)] = 026(t - 1),
then its Fourier coefficients from a T-second observation are given

by

~
[l

1 - ~Juy T
= T f X(t)e dt
0]

= Ik -J Qk ; k=1,2, ..., 8 (A-1)

where Ik and Qk are known as the in-phase and quadrature phase com-
ponents. It can be easily verified that Ik and Qk are Gaussian
distributed with the following statistics:

E(1) = €(Q,) = E(I, Q) =0 (A-2a)
((12) = £(00) = % (A-2b)
k 3 27 -
Let Zk = (Ik Qk)T, then the bivariate real Gaussian pdf of Zk
is given by
- i -
P(Z) = (2m7h R expt- 20 R 2) (A-3a)

244
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where

2
A Ty - o~ 0
Rk 2 E (Zk Zk ) =1 [0 02] (A-3b)

Now a complex Gaussian uni-variate pdf of Xk is defined by

1

P(x) = 770 fe 17t exptxg ¢t X3 (A-da)
where
¢, = E(X, Xg) = o?/T . (A-4b)
It is straightforward to verify that |Rk|-% = 2|ck|'1 and
XE cil X = gl Rgl Z,/2, hence one can write
2,-1 I + G | .
PR = P(Z) = (109)7" ewp §- St ( (A-5)

Therefore, in general let X be a complex Gaussian B-dimensional
vector such that

X=1-3Q (A-6a)
f-l with
E(117) = €(Q Qp) = V/2 (A-6b)
. T, _ T ]
X E(1Q') = -E(Q 1) = -W/2 (A-6c)
Now define a Z2B-dimensional real vector as
¥ 2= "', (A-7)
| ¢
L e _ o
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Then it can be shown that P(X) is a complex Gaussian pdf defined by

-1

P(X) = P(2) = 18 |c| ™! expt-x* ¢71 x) (A-8)

I's)
"
m
L
]><
*
S
"

V+ W, (A-9)




APPENDIX B

CALCULATION OF CRAMER-RAO LOWER BOUND FOR TWO-SENSOR, TWO-TARGET CASE

This appendix calculates the Cramer-Rao Lower Bound (CRLB) for
the two-sensor, two-target case. Using Equations (3.4-1) and

(3.4-5), the CRLB of the time delay estimates are:
q WR(T) 2 1970y s e, 2 (8-1)
1 Now the symmetric Fisher's Information matrix J can be written as
J 3,1t J -J
-1 11 12 1 22 12
J = o =
Z
(Jy7d,5 = J75)
JZl J22 11Y22 12 -J12 Jll
Therefore
VAR(T;) > 12 Jl ;i=1, 2 (B-2)
| where
[ @ 3,
: Rt r——-
. 2
r (J17 )
o
{ is defined as the coefficient of mutual dependence. The quantities
Jij are defined by Equation (3.4-5) as:
[ o
247
| @
4
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B Rl 2R =1, 2
Iy trlegat ) s (8-3)
e R i=1,2

In what follows, we present a detailed calculation of the quantity
Jij' Using the relations given in Equations (3.2-6) and
(3.5.1-4a); i.e.,

=S Py Sk o PN T (B-4)

and

-1
R B - B -

k 1 ki k i o
TwC I 1° @ (5}1' L o Pki) %i s =12 (8-5)

we obtain

-1
ari 3T J kJ ki k1 ar k1 arJ

i - a-1 B-6
T % 3T tr(Qk1 P iQ; arJ ) ] . (8-6)

The trace of the quantities inside the parentheses can be evaluated
as follows. From Equation {3.2-7c), we find

01 * My (Sep Pez + M 107
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where

. So/M,
TT+25./N
k2 1 +25,/N

and similarly

-y N 1 -ay
Q- S ——
k2 W
"3 ©
where
L
kL = TH 25078,
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SNy

NI -TFz35,m ©
Nk + kZ/Nk k2

1-3,

k ju)k Tz
e

jwle

e . DR

~Ju
-akz e

1l - 35

Lo

L

(8-7)

(B-10)

Note that 6;% is a Hermitian matrix with identical diagonal ele-

ments. Therefore, Tetting
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- pw
‘,"‘\
- i i
r 91 q12.‘
o -
k1 1-.‘, i
912 91
we have
. . =Juwy, T
ol dl] o o
Qk._Ll:ka .
i arj i § Jmkrj
a2 Iy e 0
[ Y . -Jjw, T
_ qiz € Y ‘qil e
T G ey jx T (8-11)
q11 © ~d12 ©

and after some algebraic manipulation, we obtain from Equation

(8-11)
Ald ald
ki 3T, ki 3T, S -
i J pld* ald
12 11
where
. C 2 Gy (TitTs) c2 =dw (Ti-Ty)
Al = (a],) R - (ay) e AR
: . . o Juy (TitTi) . - (r--T-)]
, ij i i i LN
; Az = (agp) [q12 e -0y @
' ®
-
°
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Thus

P . . P, L
A=l ki ~-1 TkjYy_ 2 /,ij ij*
tr ( Wi 7w Ui T ) = -a (A1 + A

= <20 Re (Al]) (8-13)

where Re { } denotes the real part.

Now using Equations (B-7) and (B-8), we obtain
5 .
~q 3P 2
o 7) |- o) 0 g

l- z——z cos 2w 4, (B-14a)

2
a
1 - -——Eg———z cos 2w by, (B-14b)
(1 - akl)
=1 31 =1 Py 2 M\’
tr(le 311 le 312 >= Zwk(-ﬁg-> (1 - Zakz) cos kalz (B-14c)
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where
b2t - T
is the time delay separation.
On the other hand, we have
[ 1-
- 91 912
A Pes °
k1l "ki . .
1 1
912 911
- .
TS I
911 * 928
= % . jmkr.
oz * e
i i
Byy By»
j i*
| 812 Byy
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Jw, T,
e |

T Y

-j T.
o

. =Jun T
qile BTy

- -jwkT-
qize 1

+ )5

+ayy

(B-15)
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Thus combining Equations (B-11) and (B-15) we obtain

By Bp
3P, .
=-1 ~-1 k;) s
tr(Qki Pei Qs 7T, ) T % N’ s i»
B, By
. Juy T ; -ju)kt.
afpe ¥ - qfpe X
s Juy T, .*-y%r.
ORERE I

- s 1 1 1 1 J
: ka[(Bll ap * 8 ayd e

‘w3 ch 3 Juy T
- (B ajy *+ Bjy app) @ Y

. *
J“’k[cij - C'ij]

where

c.. &

i i d 3
jj - (Byy 915 * Byp app) e

L2 -jwa,.
(ai)" e K,

1}

. 2 Jjwo.. . N [ o
(QIz) e * U2 Clh q12 e * J, (B-17)
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Im { } denotes the imaginary part,

and Aijéti"rj; dijéti'*‘tj.

Now from Equations (B-7) and (B-8), the following are

obtained:
~ 2 . 2
N a Juy A
S 2 k2 %12
1 (‘@‘) (1 -3, (1 "Toa,C ) (8-18a)
~ 2 . 2
N a J
N2 2 k1 Jada
and

~ 2 . 2 .
N a Juy A -ju, A
[ k1 2 k2 W12 ' v

Now substituting Equations (B-18a-c) into (B-16) yields

~

=1, =1%a N ¥
% Pea % 3?{‘) = 2a(f > )% (- %)

a
. k2 .
(2 sin kaIZ - I—:—E;E sin Zka12>

(B-19a)
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=1

-1 P k2 ¢
(ka k2 ka 3T, ) ) 2“’k(m_') 3y (1 - ay)

a
; k2 .
(2 sin mkAIZ - T—:—aE sin kaAlz)

(B-19b)
and
N
aP N
~-1 " k2 k1l ) )
(le kl le 312 ) = 2“&(ﬁ;‘> (1 - 2ak2) 2 sin kaIZ . (B-19¢)
In addition, from Equations (3.5.1-5b) and (B-11), we have
a—ij- = Q 1 apk1
811 ki ar
; Juwy, T . “Jw, T
% (qIZ ST gy 1) (8-20)
and for i =1
36 N
kl kl . o1
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Finally, substituting Equations (B~l4a-c),

into (B-6) we find:

Y T T Y T T R T W e Y W

(B-18a-c) and (B-19a-c)

-1 2
aR aP
k k -1 Tkl
tr( 311 arl> Skl Ihkll % [(le arl ) }

Y ap
3G, a1, =19
Tq1 T P (le Pe1 Q1 T ) %
L, 2 2 (M1
= Zwk Skl Ihkll (N;_) (1 - akZ) Y1 (B-22a)

where

— i 2
11 71 - By cos 2udy, - By sinT wdy,

+ E3 (sin mkAIZ) (sin kaAlz)f (B-22b)
with
2
< a
§ E) - k2 > (B-22¢)
E 1-a.)
e -2,
}
3 - (Nkl
: Ey = 4 3y (1 - ay) Wk—) 3 (8-224)
. ~ 3
g_ L YUY ( kl) (B-22¢)
370 -2 VR
k2
t @
g
L A — - - —
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Similarly, we have
”? aRk) 2 2(&2 2
tr(’ T, 7, 2% S el \RT) -2 v (8-23)

where Yp is obtained by exchanging indices between 1 and 2 from v;.
Finally, the cross term is

-1
3R8R) {~aP-aP)
K ) 2 -1 Py =1 k2
t”(' 3 3,/ " S Ikl 1t”(°k1 3, Kl 7,

3G, (- . 9P
- %y (=1 -1 Pz
T %1 tr(le Pr1 Qa1 3?;’) %

- 2
N
2 2 k1
= 2y Sp Ihg 1™ (-2 3p) (N“) Y2 (B-24a)

where

N
- k1) 2 .

Thus, the elements of the Fisher's Information matrix are:
B -2

N
2 2 (Ma 2 o6
2D 6k S Iyl (ﬁ;-) (1-a,%y (8-252)
=1
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° 2 M1\’
] 2 Na\© )
I =2 D0k Sip Iy (Nk ) (1 - 23,) v (B-25b)
=1
; 2 Mez) 2
] 2 N\ ]
Y22 * 22:1‘% k2 Ihyal (Nk ) (1 -ay) Y- (B-25¢)
k=

Using the definition of ihkiiz, Ny; and a,; in Equations
(3.5.1-4b), (3.5.1-2c), (B-8), and (B-10), Equations (B-25a-c) can
be expressed in integral form for a sufficiently long observation
time T as follows:

- sZ/N° 1+ SN |2
1 = Ff NTFES S, T \TFZS,;A) e (B-26a)
0

) . 2
S, S, /N
T 2 12 1
Jip = ?f w (1 eSS, * N))(l T2 SZ/N)le dw (B-26b)
0

ang

c F o, s2/N 1+ 5N 2
J22=Ff°’ T76, 5,705, * W)\ TF 2S5 /n | Yo du (B-26c)
) 2 %2/ 1

where

SZ/N -ijlZ 2
1 = (1 + SZ/N) 2 -<Tm> |1 + e I (B-Zﬁd)
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Sl/N ijlZ 2
GZ = (1 + SI/N) 2 - I—+-2'—S-i—/—N’ ll + e | (B-26¢)

A somewhat simpler expression for Y1s Yip» and Y, can be obtained
as follows. From Equation (B-22a-e) we obtain

5,/N 2
al (I'?‘2‘§'7ﬁ> SN\
k2 2 B 2
£y - 7" 7 “\TF5m (8-272)
TFZ5,/N
£, =42, (1 ) Eﬁl E, =W, E (B-27b)
2 5% %1 W "3 N /17"
where
Sy/N 1+ Sy/N (8-27¢)
= -¢/C
= TR SIS, T | TR S
and
2 3, 332 Ny ~ Ny
(1 - akz) k k
where
S/ SH/N
W, = 2 )
2 T+6 5,/(5, * W || T+ 2 S,/W
(B-27¢e)
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L’, Hence Equation (B-22b) can be written as
L-..’
‘ Yl = 1 - E]. (COS Zkalz + Wl Sinz kalz - N2 sin kalz sin Zkalz)
ke 3

n=0
[

where
L |
t Sq/N 1+ S,/N
‘ Ay =4 T3 sl/ SSF N || T 52 : v|-1
t 1 31/(35; 2/
{ (B-28b)
i S, /N
o A 1/ SZ/N
4 Ap=1l-A
A3 = -A1

: Similarly, one obtains
t-®

4

; 3

[ Y, =1 -E Z B, cos” w15 (B-28¢c)
[ n=0

@

X

M

®
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where
S./N 1+ S, /N

B =4 175 sz/(s TR TF2 é | -
2 3/(5, * N 1

SZ/N Sl/N
B, = -4
1 1+ GZ 52/(51 +N) || T +72 Sl/N

(B-28d)

W
n
[{

=1 -8

3= -8

Finally, from Equation (B-24b)

le = Cos u)kAlz -2 T+ Gl sl/(sz +N) T+ 2 SZ/N sin u.\kAlz

P (B-28e)
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APPENDIX C

CRAMER-RAQ LOWER BOUND OF TIME DELAY ESTIMATION FROM MULTISENSOR ARRAY

In general, the Cramer-Rao Lower Bound (CRLB) is given by
~ -1
VAR (o) > [J771y; (C-1)

where J is the Fisher Information matrix whose ij element is
defined by (Equation (3.4-5)).

B R aR,
Jij =Z tr\- E-%? . (Cc-2)

Under the assumptions of (1) single target, (2) spatially incoher-
ent noise processes and {3) identical sensor array noise power
spectrum, the CRLB can be evaluated easily. :
From Equations (3.5.1-2) and (3.5.1-4) we obtain
Rk = Sk Pk + Nk Qk s (C-3)

where Ny Qk = NkI using assumptions (2) and (3), and the relation

-1
3R 3p
kg2 %
e LY %, ° (C-4)
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where
S /N2
2 _ kK
™ = Sk/Nk (C-5)

and M is the number of available sensors.

From Equations (3.5.1-10b) one obtains

aP
k . *

38, - Ju Yy '3%7 Vi (C-6)
3 1

where V , the steering matrix, is given by

Jay 07 Juw D ju, D
V, = diag se %1 e %2 ce. @ * M}

K l c-7)
and the mn element of the matrix %g— is
i
3¢ =3 - -
(53;) % (Dm Dn) . (C-8)
mn
Now since
aRk aPk
— = § (C-9)
. k .
aeJ aeJ

2 . A .

R

PRI W
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from Equation (C-3) and using Equation (C-4) in Equation (C-2), one
obtains the expression

-1
3R~ 3R P, 3P
k k 2 k "k
tr (-—-—)=S lh I tr‘(———)
ae1 aej k 'k aei aej

2 2 3 ¥, 30 ¥
=S, Ih 1% wg tr (vk %o Ve Yy %; vk) . (c-10)

Now using the relation V: Ve = T and tr(AB) = tr(BA), Equation
(C-10) becomes

-1
3R 3R
k k |_ 2 2 3d 3o
tr (- ‘39—1-39_')— —Sk lhkl W tr (FW) . (C-11)
J 1
Therefore
2 2 ad 3o
Byt 2o S I (5 aeJ)
k=1
B s2 /N2
T \sey ) / % TFWS/N -
k=

Knowing Jij's for all i and j, Equation (C-1) can be used to calcu-

late the CRLB. Using Equations (C-1) and (C-12), we shall estab-
lish the following relation.

Y S
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Given M sensors under a single target, spatially incoherent
and spectrally identically distributed noise environment, the CRLB
for the incremental time delay are identical and equal to

- :E : 2| k" k . 4§ =
VAR(T.i) 3 M mk (1 + M Sk/Nk) Py 1 = 1, 2, “coy M‘l .
k=1 {C-13a)

Furthermore, denote the time delay between any two sensors by D,
then

VAR(DML) = VAR(ri) for all i. (C-13b)
Thus, Equation (C-13a) implies that under optimal signal
processing, the time delay estimation between any two sensors

improves when the number of sensors is increased.

We shall establish Equations (C-13a) and (C-13b) through the
following intermediate steps:

(1) Let Tis rj be any two elements of the incremental time
delay vector, then

b 2 I .
F-® tr <i°_ 22_)=€ 21 (M=3) 5 321 (10
3T 35/ 2 5 (M) 31 > ]
Eo
[ @ 1
®
-
y
§
L o L o o
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(2)
VAR(T.) > [3717..
] 11
5, g I
2 MZ“’k T+WS, /N
k=1 KTk
; for i =1, 2, , M-1
(C-15)
(3) Define Dmn = Dm - Dy and t, = Di+1 'Di; then
VAR(an) - VAR(;i) for all m, n, and i. (C-16)

From Equation (C-8), the mn element of the matrix & is given by

m .
¢ = {0} . C-17)
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Therefore, the matrix ¢ can be written as

Note that ¢ is a skew symmetric matrix (i.e., ¢

0 ‘Tl
T 0
(*1p) 1
1 M2
T1 Ti
|

‘(Tl+T2) s e 8 o o

A A N R .{

(C-18)

-@T); all ele-

ments in the main diagonal are zeros; the incremental time delays
occupy the first diagonal; and that any elements above the first
diagonal can be obtained by summing the elements to the left and

below.
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Now it can be verified that
01x1 : 11x(M-1)
.g_:.r;. = —-———-r ————— C'lg)
i 1 I
(IXT 1O (1) (M)

where 0,,; denotes an i x i matrix of 0's and l(M-i)xi denotes an
(M=i)xi matrix of 1's.

Therefore, for j > i, we have

o 20 Aixj | 'BJ'X(M-J')
® 30 \_ R
tr (FT —3_‘%?)- tr ":
8 | O(M-3)x(M-3)
]
O3x3 | T 3x(M-3)
—--—-t ______
]
Limeg)xg | O(M-g)x(M-3)
{
(C-20a)
where
Q. 1., .
ixi | “Tix(j-i)
P TS A . C-20b
AJXJ : -1 ( )
(3-1)xi , (J-1)x(j-i)

L. . . . . - Y
-t - oA b "~ . . - T P - P S S
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BjX(M‘J) = mF———— e (C’ZOC)
O 5-1)x(M-3)

Thus, using Equations (C-20b) and (C-20c) ii Equation (C-20a) and
carrying out the necessary matrix operation, one finds

3% 3% . . . .
tr (5;;-5;;> = <2i{m-j) HIA P (C-21a)

tr(gr—'a—r—)= 2j(m-i) ;i3 . (C-21b)

This proves Equation (C-14).
Next we want to show Equation (C-15).

Combining Equations (C-2), (C-5), (C-12) and (C-14), we obtain

: 8 :
o Sk/N
-2
x ZZ TFws N /(° (C-22)
) k=
'@
'@
r
K
L . e ) e s

4
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3
h where A is a matrix given by
3 - 7
(M-l) (M—Z) e o o l
b (M-2) 2(M-2) . .. 2
i(M-3) ;3§ >
A = = (C-23)
' HM-3) 5>
S 1 2 e oo (M-1)
- -
Thus the inverse of J is
Fe
-1

Z“’k( S i k/N ) (C-24a)
L
' and therefore the diagonal elements of g-1 are
: 1 1 N o S N

J7 %1 = [A77 1. | 2 W ;
h [ ii ii Z k \T+ M Sk/Nk ’
=1

n 1 = 1, 2, N M-1
:.
3
& (C-24b)
El
1:
]
t
L
l:'
s
b,
L.
g
r.-.
>
P
S
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L?ﬁ By inspection, the matrix A'l is given by the M x M matrix
oA

2 -1 .

a1 117t 2 -1 0

A" = ¥ —12\§\\ (C-25a)
-1

\ -1 2

i

t
"‘.
{
P or the ij element is given by
o
; 2. ..
; giied
‘ -1 1 ..
: ij Ty wos li-al=1. (C-25b)
1
[® 0, |i-j} »1
This can be verified by a direct multiplication to show that A'lA =

[. Therefore, using Equation (C-25b) in Equations (C-24b) and
(C-15) yields the desired result:

- -1
VAR (0;) > 371,
[ -1
c L (g
“ 2 ”Z TSN, - (C-26)
4 =1 kN
H®.
r
This proves Equation (C-15).

]
@
' ®

®

-




T TYTYTTY YTy

P SBN aaatma)

— T T

vadiied b dir AR AN r)

272
It is easy to see that
A A -VAR (ri)/Z 3 if |i-j] =1
cov (ri,r.) = . (C-27)
J 0 s if i-j] > 1
Finally writing
m-1
Dmn = Ty (C-28)
i=n

as the time delay between sensors n and m, the maximum likelihood

estimation (MLE) of Dmn is linearly related to the MLE of Ty

Hence, the variance of Dmn is given by
m-1 m-1

VAR (D, ) =Z Z Elx, Tl . (C-29)

i=n  j=n
Using Equations (C-26) and (C-27) in (C-19) yields
VAR(Dmn) = (m - n) VAR(ri) -(m-n-1) VAR(ri)

= VAR(T;) . (C-30)

Thus the optimum MLE of time delay between any two sensors yields
the same Cramer-Rao Lower Bound.
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APPENDIX D

FUNCTIONAL RELATIONSHIPS BETWEEN TARGET LOCATION VECTOR AND
MEASURED TIME DELAY VECTOR

This appendix develops the two-dimensional mathematical rela-
tionships between target location parameters and time delay para-
meters of a general three-sensor array.

Figure D-1 shows the general array and target geometry. In
principle, measurement of time delays between sensors Ay, A, and
AZ’ A3 provides the necessary set of relations to obtain target

range and bearing. Using the Law of Cosine, these relationships
can be obtained as

X TARGET

018.9523

Figure D-1. A General Three-Sensor Passive Ranging Array System
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7y =0 -0
r -\/_2 + Lf + 2rLl cos o
= C (D-1a)
and
T, =D03-D

r2 + Lg - 2rL2 cos(e - ¢) - r
= c (D-1b)

where Di’ i =1, 2 and 3 are the propagation time delays and ¢ is
the offset angle of one sensor with respect to the baseline formed
by the remaining two sensors.

For the case where r >> Ll’ and r > L,, Equations (D-1a) and
(D-1b) become

- % 11 ‘[1 ¥ (;l)z + 2 (;l> cos e]l/z}

2

2]
Ly v L L |
S I P R L
= E-ll - [1 +t > (F-) + iz ) cos @ - x\~7 cos” o s
Ly 12 sin’ o
= - cos & - ~Zrc (D-2a)
and similarly
L l.2 sin2 8
T, = - Cos @ t—= - (D-2b)

However, the exact expressions for the location parameters as a
function of time delays can be found using Equations (D-la) and
(D-1b) as follows.

PP U PHUNES VU NP W SIS PP SR Y PR SRS S S




" AD-A129 885

UNCLRSSIFIED

OPTINUM MULTISENSOR MULTITARGET LOCALIZATION AND s
TRACKINGCUY NAYAL UNDERMATER SVSTENS CENTER zguiLnnoon 5

CT NEl

W LONDON LAB L C NG 87 JUN 83 NUSC-TI
' 1271

B
B
B
|
k.

pric %




3 e g
””’E m" %

T2 s e

MICROCOPY RESOLUTION TEST CHART
ATONAL BURLAU 0F STANDGARDS [oe: 4




“”
N

275

After rearranging, squaring and simplifying, Equations (D-1a)

and (D~1lb) reduce to

‘ (c-rl)2 - le = 2r(cr1 *+ L, cos 8)

l (CTZ)Z - L21

-2r(et, + L, cos(e - ¢) -
l 2

(D-3a)

(D-38)

We first solve for e, the bearing and then solve for r, the range.

Dividing Equations (D-3a) and (D-3b) yields

cty *+ Ly cos @ . (CTI)Z - L% .
CTy + L, cos (8 - 9¢) (c12)2 i L%

SO one can write
L1 cos o + KL2 cos(e - ¢) = -(crl + KCTZ)

and from which one obtains

-1 cty + Ker,
@ = § + COS (— ————17————-)
where
Asing = KL2 sin ¢
Acos g = L1 + KL2 cos ¢ .

(D-4a)

(D-4b)

(D-5a)

(D-5b)
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Therefore, from Equation (D-5a), one obtains

cos [E + cos'1 (- E:l_:IEE:E.)J

cos e =
i (cr1 + Kcrz) (L1 + KL, cos o)
= ~
JAZ - (c-rl + K<:1'2)2 .
- Az KLy sin ¢ (D-5¢)
where
A2 = (L, + KL, cos 6)% + (KL, sin 6)2
= (L +KL)2 (1 - a) (0-54)
where
.- KL L, (1 - cos ¢) . (050)

2
(L1 + KLZ)

Now substituting Equation (D-5c) into (D-3a), one obtains the range
solution as

[ 2 2

Z __(em) -

! r 2(cty + Ly cos 8)

=

b

' 2 _ 2

' [(cty)™ = L71(Ly + KLy) (1 - @) (D-62)
- - 2{en (L] + KT - o) - Lj{ery + Ker,)(T - B) - EF '
o

3

! where

o E=/] -4 Kylysine

&
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where
KL2(1 - cos ¢)
8 = [ * KL, (D-6b)
crl + KCTZ
Y-W . (D-6c)
From the relation (D-4a)
CTl 2
(Ll)z 1'(q')
K = | — ————————
L2 ( €T, 2 (0-6d)
1 - —£
=)
2

- -1 2
r= 2[ cT ) (crl> N 4 (1 -a) (D-7a)

—) e | —=]) + )

Ly Y
where
c cT CcT 5

F(¢)‘% (a-8)+[(—ii)a-(gg-)8]+V1-a-yz sin ¢
(D-7b)

is a function of the offset angle ¢.
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Now further algebraic manipulation shows that

¢y (- 8) €ty | 2KLjLp(l - cos ¢) KL, (1 - cos ¢)
—— a - = -
(Ll - KL, ;
y W) (1 - cos 9) 7y (0-7¢)

( crl) (cr2 )B cy 2KL2(1 - COs ¢) Ty K(1 - cos ¢)
ey a_ —— = -
L1 L2 (Ll + KL2)2 (Ll + KL2)

= -i———JZ-K 1 = COs ) [2 L2 CTl - CTZ(LI + KLZ)] d

(Ll + KL2)
(D-7d)

Combining Equations (D-7¢) and (D-7d) yields

- _l_:_EEEJQZ [ety(Ly = KLy) + 2KL, €Ty = KeTp(Ly + KLy)]
(L1 + KL2)

- (l - COS ¢ (Ll + KLZ) (cr1 - KCTZ)

L1 + KLZ)

crl - Kcr2

_l.l—+-kT2_ (I’COS ¢).

(D-7e)

= Ny -j
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Thus Equation (D-7b) becomes

ct, - Kct
r(¢) = TiTLf (1-coso) + Vl-a-vy2sing.  (0-7f)

Note for a colinear array system (i.e., ¢ = 0), we have a = 0, T(0)
= (0, and the range and bearing equations are given by

REEIEAEE

L
= (D-8a)
2[(CT2) crl ] :
L/ \
and

Ket

-1 ( CTl * 2) (D-8b)
g = CO0S - —— ],
. Ll + KL2

In addition for L1 = L2 = L and r >> Ll’ using Equations (D-2a) and
(D-2b), it can be shown that

1 C(Tl + 12) ,
8 = COS - T— (D-ga)
2 o:.2
. _L_sin” ® -
r=a S - T . (D-9b)

If & is defined w.r.t. the broadside direction, Equations (D-9a)
and (D-9b) can be written as

A A A A s e m A e -~ - 3 U SO B N
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APPENDIX E

STATISTICAL CORRELATION BETWEEN TIME DELAY ESTIMATES
WITH COMMON INPUT CHANNEL

If time delay estimates are obtained from two Generalized
Cross-Correlators (GCC) whose inputs contain a common noise channel
(Figure E-1), then the resulting time delay estimates are correla-
ted. This appendix calculates the resulting correlation from a
frequency domain approach.

Let the frequency domain (Fourier) representation of a
T-second observation of waveforms from sensor array Al, A2, and A3
with signal propagation delays Dl’ 02 and D3, respectively, be

written as:
i 7 B SO Mk (E-1a)
Ay = Bk ejkaZ * Ny (E-1b)
ay, = By ejka3 *ny ; k=1,2,...,8 (E-1c)

with Sk = E(BkBE) and Nik = E(nikn:k) for all i as the discrete
signal and noise power spectra, respectively, at frequency
W, = 2nk/T. For convenience we assume that interarray noise
processes are uncorrelated. The time delay T T 02 - D1 and T, =
D3 - 02 can be obtained by seeking the null of the GCC functions
(Equation (3.5.1-14c)).

8 .

] * x  JuT
filn) = Z Jwe Py ok g 3y € (E-2a)
=-B
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and

B .
o x T
faltp) = :E: Jwe hog M3y ooy a3, @ (E-2b)
k=-8

where B is the uppermost frequency of either the signal or the
noise and hik is the frequency shaping filter whose frequency
response is

2
2 S/ Nk

il = % 25 Ny (E-2c)

Let ?1 and €2 be the estimated time delay, then the quantity
of interest is the covariance between ?1 and fz; i.e., COV(fl, fz).
The Taylor series expansion of fl(rl) and fz(rz) about the true
time delay rg and Tg yields

af (1)
fl(Tl) = fl(Tg) + ——%;Il— (Tl - Tg) + ... (E-3a)
. .0
kS ]
and
_ 0 °FZ(TZ) 0
fZ(Tz) = fz(rz + T, (12 - TZ) .0 . (E-3b)

ad
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Neglecting the higher order terms (small error assumption) and set-
ting fl(rl) = fz(rz) = 0 in Equations (E-3a) and (E-3b), one
obtains

af, (19)

-fl(tg) = -—%;Il— (rl - r?) (E-4a)
af,(12)

Fy(1D) = —-—-3122 (t, - 1) . (E-4b)

We shall make the following assumptions as a result of a long
observation time process: (1) the expected value of the derivative
is equal to the derivative of the expected value, and (2) the
derivative is uncorrelated with time delay. Then from Equations
(E-4a) and (E-4b), one obtains

0 af? 0
-fl = ﬁl—- (Tl - Tl) . (E'Sa)
S —
o . 2 0
-fz = 312 (Tz - Tz) (E‘Sb)

where for simplicity we denote the expected values of fl(T?) and
fz(rg) by f? and fg. Thus, the product of the means is

— —  aff 3f
o0 _ 172 0 0
fl fz = E‘a—f; (‘l'l - Tl) (TZ - Tz) . (E’6)
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On the other hand, the mean of the product is

prciee;
o0 __1°2 ) _ .0
flfe m w, (ry = 7p) (1 = 73)

Therefore, the covariance is

COV(QI,QZ)

(- R G - (o - (- )

0 .0 0 0
fifo-f1 12

“e0 g0
i
arl arz

From Equations (E-2a) and (E-2b), the guantities in
(E-8) can be evaluated as follows.

3] 2 2 *
T Z (Joy )™ hyy hop S
k=-B
af3 B o .
Fro :E: (Ju )™ oy hay S
2 =8

Equation

(E-9a)

(E-9b)
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_ 8

o . . *

f = Z Jue Py hop S (E-9c¢)
k=-B

— B

0 _ . *

7= D hy hy S, (£-90)
k=-8

and

3 B

O 0 _ - K3 * *

flfy- kZB ZB (Juy ) (3ut) by hay hpg b3y
=a l:-

3 (T vuy )
O Fog g @39 © . (E-10)

But

* *

+* * * *
Mk ok Fg %3 T Mk %k g 39 T Qg %y A O3y

+ x *
Uk %3 %2k %2

@ ileriegm) o du ()
kK ® te )

: 0,0
'ka(TIﬁZ)

+ S + NZk) e Sk-l ’ (E-11)

k(S
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where Sy g 1s the Kronecka delta defined by S g = 1 if k = 2; and
g = 0 if k B 2.

Now substituting Equation (E-11) into Equation (E-10) yields:

B
0 0 : ; * * 2
f1 f2 Z }: (Juy ) (Jwg) hyy hoy hop 3y S
k=-B 1=-8
B
2 * 2 2
* Z We My g Ihgel® S
k=-8
B
2 * 2
- Z we P Mg Ihop 1™ S(Se + Noy )
k=8

B B
- - * S 3 * s
= Z Ja Py oy 3 Z Joy ho P 3
k=-B k=-B

_ B

* 2 * 2

t - we My Mg Mol S Ny
Y k=-B

Lo

q B

: _ £0 (0 2 * 2
. =62 63 2wl n Ing 12 S g (€-12)
- =-B

e

E

L ®

;

‘o

:
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Finally, using Equations (E-9a) through (E-12) in Equation (E-8)
yields

B
2 * 2
Z e My P Thod™ S Ny
~ A _ kz‘B
2 * 2 *
Z we Py hog S Z we g Mg Sy
k=-B k=-B (E-13)

Equation (E-13) can also be expressed in continuous frequency
domain as

B
/ wzhl(w)hé‘(w) |h2(w)l2 S(w)Ny () du
- _ 2n “0
COV(t)1p) = - 3= 75 B
f wzhlhg(w)s(w) dwf wzhz(w)h§(w)5(w) do
0 0

(E-14)

Note that if either the definition of Ty or T, is reversed, the
sign in Equation (E-13) and (E-14) is also reversed.

Finally, it can also be shown similarly that the variances of
the estimates are given by:
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B
2 0 2 p 12
D 6 Il Ingy ? IS+ Np) + gy Mgy
. k=8
: 7
2 *
Z 9 Py Mo S
k=-8

B
f W [hy(@) 12 Thy(w) 2 [S(Ny + Ny) + NiNp] do
2n “0

B 2
f W hl(w) hz(m) S{w) dw
0 (E-15)
Similarly, one obtains
B
2 2 2
f w lhz(m)l lh3(w)| [S(N2 + N3) + N2N3] dw
~y _ 210

*

f u)2 hz(w) h3(w) S(w) dw (E-16)

0

A substantial simplification can be obtained for the case of
bandlimited flat signal and noise power spectra.
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Let
S if wp Sw < W
S(w)=‘ - -
(O otherwise
N if ) <w<w, and for all i
NI(m)=l .
0 otherwise

be the signal and the noise power spectra and assume identical fre-
quency spectral filters for all channels, then the covariance
expression of Equation (E-14) reduces to

N
)
=

: -1
COV(Ty,1,) = - 2% §'/'mzdw
1272 N
0

2@ -] e

and the variances reduce to
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VAR(T, ) VAR(T,)

2 B -1
n gS/Ng
T— + /N/mzdm
0

-1

2
2wl 2 (SN 33
T 3 + 2 S/N)'(“z - @) . (£-18)

Comparison between Equations (E-18) and (E-17) shows that

ot S/N -
COV(ty,1y) = - T+ 35 VAR(Ty) . (E-19)
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APPENDIX F
DERIVATION OF EQUATION (3.5.2-7a)

From Equation (3.5.2-7a) we have
3d
ID NI T
Using the relation

30 T2
312 ar

30 _ 30 T
ar 811 ar

and Equation (3.5.1-10a-c)

QJ

= %
3T1 (v k M Vk) ka vk 3T, VE

in Equation (F-1) yields

B

¢ ) d
ZJ“’k eI @ v § %o
k=l

AA(r , 8) .

8
2 FLE ) 2
}:ka In1® o v S vt o 3

~
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(F-3)
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B
ot
3 2 | 3%,
“‘5?%2 LY ﬁkalmvx’é&;F
2=
B
_ 9 2
-5 InP g vy (F-4)
k=1
But
[ s ~ i I
-ju T ) ju T 7]
e TXT o 11 1] [ Xt g o
Ve Ly VE = 0 1 0 11 1 0 1 0
| 0 0 e Jrrf po 0 e g
[ -ju T -J (r+r_1
1 e“’kl e“’k 1772)
Joy T -juy, T
- | 1 o T2 )
Ju (t1+7,) Juy T
_e“’k 1772 k2 1 .
and
2 2 2
&V Iy R s :|°‘1k| + eyl +|°‘3in
Jw, T jrl )
Al(“i’k e K (g o e "
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* jwkTZ kafz )
(o o, ° + (o ay * |
j (T +T ) J (1- + )
+ %(agk alke WiT1 ™ T2 ) + (“§k alke W17 )+
(F-6)

Now using the fact that the first term in Equation (F-6) is not
parameter-dependent and that quantities in the parentheses are con-
Jugate symmetric, Equation (F-4) can be rewritten as

"2k %) © + (ag o) e

ALY ZB: Ik ‘lc.gk e
k=-8
* o5 Mk ejwk(T1+Tz){
= %;g—,.‘[: h(w) 1% 6(w; T, Tp) dw (F-7)
where
6lw; 1), T,) = T [( > ! * )

*  x Ju, (T+7,)
(ah o) e < L2, (F-8)
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APPENDIX G
CALCULATION OF LOCALIZATION UNCERTAINTY FROM THREE-SENSOR ARRAYS

This appendix calculates the localization uncertainty based on a
two inter-array time delay measurement.

From Equations (D-10a) and D-10b), the approximate (r >> L) time
delays to range and bearing relation are given by

8 = -sin'l {%t (rl + TZ)} (6-1)
2 2
L coS~ o
r‘ D - G-Z
C TZ - Tl ( )

where ¢ is the speed of sound, and L is the inter-array separation.

Letting Y = (e, r)7,

be written as

X = (rl, Tz), Equations (G-1) and (G-2) can

Y = £(X) (6-3)

where f(X) = (fl(i) fz(i))T is the vector function defined according
to Equations (G-1) and (G-2). Let Y* and X* be the nominal values, &Y
and §X be the deviations from the nominal; then a first-order expan-
sion about the nominal (R, B) yields
af*
§Y = 5y &% (6-4)

where it is defined that
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;r_
:-n - -
L i de ar
. W =
30 ar
-
a a
= (G-5a)
b -b
where
a = - ¢ (G'Sb)
2L cos B
2
b = — R c2 (G-5¢)
L cos™ B

,
\
.
b
»
4

since R >> L.

Now post-multipling Equation (G-4) by its transpose and taking
the expected value yields the desired covariance relations:

(aff) ( af* \T
CoOV(Y) = | 2o — .
Let
gl ol
11 12
cov(x) = (G-7)
o4 0l
12 11

AR A e ‘1
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then

- P - - —

02 o4
E al |11 122 b

cov(Y) =

gl g2
Y B ST nfl*
- -

SR S
0 2(0%1 - c%z)bz

and the determinant of COV(Y) is
[coV(Y)|= 4 a2 b%(a]; - of,)

The area of the one-sigma error ellipse is

7 [Cov(Y)|*

[& 7
'2 ab g 011 - 012
m(Re)® ‘/oa‘—a
T(_L;_ 11 -~ %2 -

L™ cos™ B

(V]
[}

The time delay covariance matrix for the optimum
(see Equation (3.5.2-16d))

(G-9)

(G-10)

approach is
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1 _1
7 |
Po = VAR(%; ) (6-11)
- % 1

and the conventional is

I . SIN |
T+ Z23/N
P, = VAR (%)) . (6-12)
S/N !
1/

Thus the corresponding area is

2
3 m(Rc)
S = — VAR(?) (G-13)
0 ‘E; LY cos™ B
and
1(ke)® N+ 3 SN TSN ype (2 (6-14)
S¢ EE T+ 2 5/N) ¢t

where VAR(rl) and VARC(rl) are the estimated time delay variances of
the optimum and the conventional processors, respectively.

Finally, from Equations (G-8) and (G-11), the optimum range and
bearing variance expressions are given by
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VAR(B) = 2(o§1 + c%z) al
_1 o 2 -
1’(—B'L < ) VAR( Ty ) (6-15)
VAR(R) = 2%, - afz) b2
4 A
= 3c2 (th%E‘E) VAR( 7)) (6-16)

and from Equations (G-8) and (G-12), the conventional range and bear-
ing variance expressions are:

2 R
A1 ¢ 1+ S/N
VAR.(B) = 7 (L cos B) (I’+ 2 S/N) VAR (1) (6-17a)
VAR (R) = 2¢2 ( R )4 (1 3 S/N) VAR (1,) (G-17b)
c Ccos 8) \T+23/N A

Using the relation given in Equation (3.5.2-16¢),

VAR(TI) |2 (l+3S/N)
VAR (7)) IAT+ZSA

the conventional range and bearing variance equation can also be
expressed as:

e () = 3 (g (rseSy) ey

_~f 1+ SN
'3(1—+—n7-

N) VAR(B) (6-18)
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and
VAR (R) = 3¢ [—R ) VAR(T:)
c! (L cos B -
= VAR(R) . (6-19)

Equations (G-18) and (G-19) show that for estimating range, the con-
ventional approach and the optimal approach have identical variance.
On the other hand for estimating bearing, the conventional yields a
variance which is three times the optimum at low SNR environment.
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APPENDIX H
GCC STATISTICAL PERFORMANCE IN THE PRESENCE OF INTERFERENCE

This appendix develops the appropriate expressions for the bias
and variance of the time delay estimate from a Generalized Cross-
Correlator (GCC) in the presence of interference.

Let the frequency domain representation of a T-second observa-
tion of waveforms from two-sensor arrays, A1 and AZ’ in the presence
of J targets be written as:

v

a1 = Yo B M (H-1a)

+ k=1, 2, ..., B (H-1b)

age = Yor B * Mgy 3

where B is the highest frequency components of the signal or the noise
processes, N1k and Moy are the Fourier components of the noise
processes at frequency W, = 27k /T. In addition, the complex vectors
By»> ¥y and Vo, are defined by

juy, D Juy, O jun, D

e “ 11, e *x 12, - wk 1J]; i=1,2 (H-1c)

Yok =

and

T
Ek = [Bkl, Bkz, s o ey BkJ] (H-ld)

where Dij is the propagation time delay from target j to sensor i and
Bkj is the Fourier component of the signal spectrum of target j. For
convenience, it is assumed that both the signal and noise processes

are zero mean and mutually uncorrelated. Thus, we have the relations
for the discrete signal and noise power spectra
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Skj; ifi=3j
* = -

Bi BLj (H-2a)

0 ;ifi#]
and

Nk; if 1 =3

ﬂik ngk = (H'Zb)
0;if i #j

where () denotes the expected value.

dithout loss of generality, let target j = 1 be the target of
interest, then the best estimate of Ty = Dyy - Dyp from a GCC (see
Equation (3.5.1-14b)) is to seek the null of the equation:

B

Juy T .
f(t) = }E: juk]hkiz @, B, e L 0 (H-3a)
k=-8

where Ihklz, given by

2
S /N
12 - kl k (H_3b)

N TE TS N,
e P e oM

is the optimum spectral shaping filter for a single target environ-

ment. Because of the observation noise, Equation (H-3) is a stochas-
tic algebraic equation. On average, however, the mean of the estimate
must satisfy the equation

B )
—_ w7
Flr) = Y dudn |2 a5 e %L g, (H-4a)
k=-B
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But from Equations (H-la) and (H-1b), one obtains

ok By = Vi S 5

J .
-Jmk-r.

- J -

- Z 3 @ (H-4b)
j=1
where

= . . H-4¢
T D2J DlJ ( )

is the actual time delay difference between sensor array A1 and A2 of
target j and

3

:

® X X
= diag{Skl, Seps + - es SkJ} (H-4d)

is a diagonal signal spectral matrix. Therefore, the mean estimate
must satisfy the eguation

T : 2. Juy T
k=-8
or using Equation (H-4b), we have
J B .
Juy (1-75)
- 37 2 H-5b
fla) = :E: :E: J“&’hk S¢j © 0. ( )
j=1 k=-B

Equation (H-5b) can be manipulated to yield

- PRI S SUPEE
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where

is the auto-correlation of target j.

(H-5¢)

(H-5d)

Denoting the total power for target j by

TED IR

k=-B

(H-6a)

the total received power by the sensor array as

J B
j=1

k=-8
and the normalized total correlation by

Af
o(r) ¢ 1L,

then Equation (H-5c) can be rewritten as

J
- 3_ -
(1) = Z ;g7 o5t - 15) =0
j=1

(H-6b)

(H-6c)

(H-7a)

A A Mk om tm) om - s _a .. _m J
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where

=P, (H-7b)
P /P

(H=7¢)
In general, Equation (H-7a) must be solved numerically; however, for
the case in which the interference is close to the true target of
interest, then one can write

pll(o
p5(t - 75) = 05(0) + p3(0)(x - 1)) + by (7 - 7y (H-8a)
where pj(O) and 03(0) denote the first and second derivative.
But
B
' - - 2 - -
p3(0) <[ D duIng| 0 (H-8b)
k=-8
and
B
" - 2 2
0"(0) = - Z ALY
=.B
B
T 2 2
=-<;T-fwk|hw| Sj(w) dw /Pj
0
= W. ., (H-8C
NJ/PJ )
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2
- pwr /N)(SI/N) 2
o T‘d'—z'?m W du (H-84)
- . 1
.
-
: where in the last equation the signals and noise are assumed flat and
p bandlimited.
; Therefore, using Equation (H-8a) in Equation (H-7a) yields
& J
Z 50Nt - 7y) = 0 .
F
’F“ Thus, the mean estimate of ] is
i J J -1
: el DIEION N ODEACC)
e j=1 j=1
b
S
u J J -
. W, 1] Z . H-8
Z jH " (H-8e)
j:l j:l

where

8

; %f W In(@) | $5(w) do - (H-8f)
0

=
n

Now using Equations (H-8e) and (H-7b) in Equation (H-8d) yields

(S;/M) ]
) (55/M) > (55/M) (H-9)
J"l J:l




"

v v v T YT TYTvYT YT TEY T oY v

—

——

R g TN TNy e W T T e LT BT W e Y . W W e W W T e T e
Y — kA v L Cliadn 3 Cadird g

307

Thus, the time delay estimate from a second expansion of the correla-
tion function is a weighted linear combination of time delays from
every target. For the two-target case, let the signal of interest be
S1 = S, interference 52 = I, then Equation (H-9) yields

~

. S I
3Ty Wt TET T2 - (H-10)
The bjas in general is

-~

bp=7m -7
J J -1
| 2 symitsy - | | D (s (H-11)
j=1 j=1
and for the two-target case
b, = 1 (10 - 19) (H-12)
1~ T+F35/T'\h2 1/-

We next derive the expression for the variance. Using the
linearization procedure, it is easy to verify that the resulting
variance of the time delay estimate from s2eking the null of the func-
tion f(t) is given by

f 2

~ (tqy)
VAR(T;) = —_1__2 (H-13a)
<af(11)
—
where ;1 is chosen such that
—— B jwk;I
ARD BE NN AR (H-130)
k=-B

SV LU VP W Ui S S DTS SR B W R e S R S
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L’“ But from Equation (H-3a) and (H-5a-d), we have
r.\
Hrp)? ZZ () duy) I 21, 1
k=-B 2=-8B
(e . . j(“’kﬁ”z)*l
_ %k 2k “1g %2y ©
¥ (H-14a)
E and
L
; —— X
L af(1y) juy, T
1 c 2y 2 e T
F o Tt Z (Gu )" ihy |7 agy oBy e y (H-14b)
k=-8
Now using the following relations
~ -jwkr.
. X, = = J
Ak By = Yok Sk Lok :E: %j e (H-152)

j=1

U %y Ug By T % By ¥y 3By * oy ay, af af,

* ooy af, af ap,

{
4 - 2

: T Bk 1g By ¢ Uy S Ui * M) G

o

:

: ~ 2 (H-15b)
: G S BT

)

b

\
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Equations (H-14a) and (H-14b) can be simplified to

B -
- Juw T |
2 1,2
A E of Im 1* 1Yy Se Y1+ N)Z - (Y S v e C )
(r)" =8
(H-16a)
B .
at(1q) -~ Juy, T
- Z i I 1 Yy 5 gy e L (H-16b)
k=-B

Substituting Equations (H-16a) and (H-16b) in (H-13a) yields the
desired expression for the variance of the T estimate:

B

45 2 :
Z a I | Yk S Uy * IS - (g S Vg e
VAR(Tl) = =

- jwkrl
Z‘ cln 2, § up) @ <

J"*"1)21

J

(H-17a)

I PO
/2[h| [(v v N2 -y Sy erTl)]dw

- ?rl s .
f s oo~ dumy (H-17b)
g hff Y Suse de

Recall that

llsl’f“"’N*ZSj (H-18a)
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~ (DT
vy Sy ’ Z 5. e (H-18b)

where Aj & T - Tj’ then Equation (H-17b) can be rewritten as

/(~+Z‘s) <ES-ejmj>2 w:|h|4
&7

VAR(7)) = 3T B

(H-19)
For the special case where

S,w1<w<w2and “wy S w < -y

SJ(U)) =
0 ; otherwise

N; W <w<w and Wy < W < -y
N(w) =

0; otherwise

Equation (H-19) reduces to

2
U ETTS > R
~ 2n J 1
VA =
R(t) = 3= ( Z 3 R(Aj))z

P PO AP N A D WP I IO U S G R S
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‘l( (H-20a)

where

a; = S; (N + Zsj) (H-20b)
J

wz
R(T) = f wz cos wt dw (H-20c)
wl
p(t) = R(t)/R(0) (H-20d)
1;ifr=20
- (H-20e)
2 “
1 2w €OS WT (wr)™ -2 sin T] . if T # 0.

For the two-target case, Equation (H-20) becomes

2 2
VAR(;l) _ % 1 -[a] °(2Al) *a, p(2A2) + 23,2, Z(A1 + AZ)] R‘l(g).
2[31 Q(Al) + 52 Q(Az)] '
(H-21a)
—— — e ol

. —y Pr—— - — g n T - .‘ﬁc-*-vT
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Note that
R e T (H-210)
o IN (H-21c)

q = TF3/N+ I/N

where we have let S1 =S, 52 = [ be the signal and the interference
power spectrum, respectively. If the interference is far away from
the target in time delay, Equation (H-21) becomes

VARaj;I) = lim VAR(;I)
840
Az-un

2

o R

g G R7L(0) . (H-22)
2a1

Therefore, the normalized variance is
VAR( 7, ) < a2 )
~ = 2
VARQ(rl) 1l - ay

1 - (% p(28)) + a5 p(28,) + 2aya, p(8) + 8,)

(H-23)
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Appendix 1

CALCULATION OF MULTITARGET GENERALIZED CROSS-CORRELATION COVARIANCE

The calculation of the covariance matrix resulting from discrete
observation of the Generalized Cross-Correlation (GCC) function in
the presence of multitarget interference is presented. The results
presented here are obtained from a frequency domain formulation.

Let the noisy observed waveforms from two sensors in the
presence of J targets be represented by

J

yp(t) = D si(8) + ng(t) (1-1)
i=
J

yo(t) =Z s;(t +0;) + ny(t) (1-2)
=1

where si(t) is the ith target signal waveform and nl(t), nz(t) are
the noise proces<es. It is assumed that signals and noises are
zero mean, mutually uncorrelated, band-limited Gaussian processes.

Let the waveforms be sampled at a sampling rate of At seconds
such that T = N At seconds of the waveforms are observed. Discrete

Fourier transforms of Equations (I-1) and (I-2) yield the equivalent
frequency domain representation as

J
Yy T E Bes * Mx (1-3)
i=1
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J jukD
_ i
) ‘Z By @ * Mok (1-4)
i=]
where
W, = 2nk/T

N
G = %Z yz(nAt) e'J(Z"nk/N) : L=1, 2
n=1 (I-5)

N
ski = ]lqz si(nAt) e'J(Z""k/N) ; i=1,2, «o. d (1-6)
n=1
and
N -
Nk = %an(nA‘c) e'J(ka/N) ; g=1,2. (1-7)
n=1
The GCC is obtained from the following:
B jukr
e = D oy o Il (1-8)
k=-B

where |Hk|2 is the spectral shaping filter.

Equation (I-8) is usually implemented via inverse FFT. Conse-

quently, discrete observations of the GCC R{t), R(nAt), are obtained.

For simplicity, let R{n) = R(nAt), then we can write

v -
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B

R(n) = Z o, By ]Hkl2 ed(2mk/N) (1-9)
k=-8

We are interested in the auto covarijance of R(n) and R(m), A
for any n and m. In general, one can write

nm’

A = R(n) R(m) - R(n) R(mJ . (1-10)

Now substituting Equation (I-9) into (I-10) and simplifying
yields

8

B
Ao = kZB ZB{(%k B Mp Bp " Mk Bk Ue B )
T =~

I 12 [Hy |2 od(2n/N) (knvim) (1-11)
k L

Since e for all i and k are zero mean complex Gaussian random
variables uncorreiated for different freguency w, , Oone can write

(using the fourth order product moment formula)

Mg By Yy By T A By 3y By oy a, afy afy +

4
(1-12)
Yy By By oy -

q Substituting Equation (I-12) into (I-11) yields

3

F

¢

!

X

3
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B B ‘
:A:B ZBz(alk 9 Bk By * o1k By By %1
= ==

!

Now using Equations (I-3) and (I-4), the quantities inside the
parentheses in (I-13) can be evaulated as follows:

J J
<Z Si * N > 25t N2k> Scag, (1-14)
-J

N
i= i=1
%P > (1-15)

Mk Mg By Sy

J
Mk By By %y ’(Z; Ski €
i=

here S, i = 81, Ny = gy, and Ny =l

Finally, substituting Equations (I-14) and (I-15) into (I-13)
yields

J

4 3 _
(Z S¢i * N1k> (E Sei * N2k> { |H, | oJ(2mk/N)(n-m)

=1

>

=-8

8 J : 2
-jw, D, ,
N Z <Z 5, Juy 1> IHkI4 oJ(2mk/N) (n+m) (1-16)

For a single target case with identical noisc power spectral
density, Equation (I-16) yields
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W .5 | (2mk /N) (n-m)
= 2 _j(2nk/N}(n-m
D> 1S * )% e
k=-B
-j2w D 4
+ Sg e J2uy eJ(Zﬂk/N)(n-m);IHU
B
2 2 4 _j(2nk/N)(n-
- Z (S + 2SN + No) [H | g3 (2mk/N) (n-m)
k=-8
B
4 2 _j(2nk/N)(n+m-2D/At
+ Z H 17 sg g3 (2mk/N)( /t) (1-17)
k=-8
B -
= 7= f (2 + 25N + N2) |H|* eduln-m)at 4,
-B
B .
+/ |H|4 52 egw((n+m)At-ZD) dus (1-18)
-8
where S, N, and H denote the continuous power spectra.
! For the case of uniform spectral shaping, i.e., |H|2 =1, we
;. obtain
I "7(131) = pgg{n - m) + 206y(n - m) + ppu(n - m) + ogci(n +m) - 2D/4t]
b.. (1-19)

e Wl e o - = A - - - - [ T N
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L

where if ¢Xx(w) is the power spectrum of X, then oxx(r) is given by

2 jwr dw .

°xx (1-20)

Pyx (T

c3*-~su,

For a two-target case with equal noise power spectra, Equation
(I-16) reduces to:

L. 8
4
Mol = D0 (S + S+ )7 [t @M m)
f k=-B
o

B . 2
~Juy Dy 'J”knz) 4 _j(2mk/N
* 2 (Skl e * Sk e | * edteme/ M )

(I-21)

42 .2 , 2
[Hy | ([Skl ¥ S+ N+ 205180 + SN *+ SioMy)

. -j2uw, D
g (2nk/N)(n-m) [551 e T

-Juy (Dg+D;)
+ Zsklskz e
' o
-j2w.D,] .
N 522 . Jew Uo eJ(an/N)(n+m):. (1-22)
®
g
o

o PP " . AL
- e .
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Hence the continuous approximation is given by

B
f Hi® ‘[s + s + N+ 2(5)5, + SN + SZN)] gJuw(n-m)at
/8

-j2wD -jw(Dy+D,) -j2wD
2 ~devh 172 2 - 2]
E» jw( +m)At)
' gJuin dw .

(1-23)

Now for uniform spectral shading lHl2 = 1 and using the defini-
tion of Equation (I-20) in (I-23) yields

T
@

(i) = pslsl(n - m) + OSZSZ(n - m) + ONN(n = m)

,1ﬁi"v-

+ 2[95152(n -m) + oslN(n -m) + "SZN(” - m)]

+ pslsz [(n + M) - ZDI/At] + 295152 [(n + M) - (Dl + Dz)/At]

+ pszsz [(n + M) - 20,/4t] . (1-24)

YT
e .
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APPENDIX J
FOURIER REPRESENTATION OF A TIME-COMPRESSED WAVEFORM

If a signal waveform, s(t), emitted by a moving target is
observed by a stationary (or moving) sensor array, the observed
signal waveform is compressed if the target is closing or is ex-
panded if the target is opening. Let the propagation delay from
target to sensor vary linearly with time such that

D(t) = D + Dt (J-1)

where D is the initial delay and D is the delay rate. Note that
f where V is the relative velocity along the line of sound

(LOS) and C is the propagation speed of the medium. Because of

the time-vaFying delay, the observed waveform at the sensor array

output is s(t + D(t)). 1In this appendix, we develop an appropriate

frequency domain representation of this waveform.

Let s(t) be a zero mean, band-limited, Gaussian process, then
s(t) can be represented in terms of Fourier expansion by

B .
kat

k=-B
where
T 'jwkt
@ = fs(t) d dt , (3-3)
0
W, = (2nk)%, T is the observation interval, and B is the bandwidth.
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Now for the time-compressed waveform, let &k be the corresponding
Fourier coefficients. One can then write

-jw, t
k d

.
& =-1|- fs(t +0(t)) e t. (3-4)
0

But from Equation (J-2), one obtains

B .
t+D(t
e o) = 3 gy 2

: Jug (8+D)
= Z a, e (J-5)
=8

where Equation (J-1) has been used and that we have defined
B=1+¢
as the time compression ratio.

Substituting Equation (J-5) into (J-4) and interchanging the
summation and the integration operation yields

. < Jugd |1 3(Bupmw )t
G D e blp [ gt . (3-7)
2=-B 0

It can be shown that
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T .
J(Bw,-w, )t
% ~[e 27k dt

0
_ eJ(sz-wk)% Sin(sz - wk)%
(Bw, - w )T
[
-je, . : -
sinc(ek) e K3 if L=k
0 ; if Q#kand B = 1 (J-8)
where
Wy vT
8 = (3-9)
2C
sin( )

and sinc { ) =

Therefore, substituting Equation (J-8) into (J-7) yields

| e (Do)
o = sinc(ek) e o
_ . .
Juw, (=)
= sinc(ek) e k™2 J o - {J-10)

Thus Equation (J-10) shows that the effects of time compres-
sion on the Fourier coefficients are: (1) an effective time delay
evaluated at the midpeint of the processing interval; and (2) an
effective coherent reduction in signal amplitude which is a func-
tion of the net change in time delay over the same interval. Thus
if coherence is to be maintained such that 1 > sinc(ek) > 0.9 for
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all frequency Wy s then the following condition must be satisfied;
namely, T must be chosen such that
T < (3-11)
4DB
where b is the time delay rate and B is the signal bandwidth as
defined earlier.

On the other hand, if Fourier coefficients are to be uncor-
related, it can be shown29 that T must be chosen such that

T z% . . (3-12)

Combining Equations (J-11) and (J-12) yields the desired constraint

8 <BT <i.. (3-13)

4D
Thus when the observation interval T satisfies Equation (J-13),
the time-compressed Fourier coefficients are given by Equation
(J-10) and adjacent Fourier coefficients are uncorrelated.
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APPENDIX K

VARIABLE TIME DELAY CRAMER-RAO LOWER BOUND
FOR TWO-SENSOR, ONE-TARGET CASE

The time delay variation is assumed linear. Therefore, the

parameter vector is e = (t, T)T. In general, the Cramer-Rao Lower

Bound (CRLB) is given for the two-parameter case by

VAR(e.) > —1 >

Vs -m

jl- : i=1, 2 (K-1)
12) id

where M12 is the coefficient of mutual dependence given by

J
_ 12
M12 2 —_— (K-2)

T
(317 91007

and Jij is given by (see Equation (6.4.1-2))

NS R aR
J =22tr - ko _kn (K-3)
ij aei aej :
n=1l k=1 8 =8,
f‘ For the two-sensor, one-target case, the covariance matrix
Rkn is given by

| Ren = Sk Pin * N O (K-4)
:C
f where Qk = [ for the reason given in Section 6.4.2 and
- Pen = Vin 1m Vin (K-5)
éc
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with
1 0
Ve, = j“’k(ﬁ;tn) (K-6)
0 e
Now using Equation (6.3-6a), it can be shown that
aR aP
kn _ kn _ .
3t - % 3t - e Sk Vin %1 VEn (K-7)
aR aP
kn _ kn _ . -
aT ot
and from the relation (see Equation (3.5.1-4a))
Ren 2 -1 [Fn 2 Gy, -1
U N R (k-9)
where
s, /N2
Ih |2 = KX (K-10a)
k T+ 2578, '
3G
_Kn _ 3 -1 = -
%8, h % ; (VEn Q an) 0. (K-10b)

One obtains the following derivatives:
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R L
n 2
9T = -Juy ]hk] Ven &1 V£
-1

R

kn _ . 2

S 1™ Vien @1 Vi, -

Hence, combining Equations (K-3), K-7),

(K-12), one obtains

NS R aR
- B3 (e
11 aT T
n=1 k=1
N B
= - :E: wi Ihkl Sk tr(an 2] V;n)
n=1 k=1
B
- 2 2
'?'NZ“’k Ihkl Sk
k=1
2

since tr(Vkn Ql Vﬁn) = -2,
Similarly, one obtains
-1

N 8B
‘J12 : ZZ” ‘l'
=1

n=1 k

7¢
Q
el

8

N
n=1 k=1

2 2 2
E we I 1SSt (v, of v

W LTE VTS WY T ¥ T W W T w—w W W e vmg, Sy WOV W Twe v, T U w s ow o ow e = - oo

(K-11)

(K-12)

(K-8), (kK-11), and

(K-13)
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N B

_ 2 2

- {2 :E: t, }E: o I 1?5, .
n=1 k=1

where t, = (n - %)At is as defined in Section 6.4.2.

The J22 term can also be obtained as

N & R R,
J = tr - —
2= 22 0k

2. 2. .2 2
we T © Syt eV, o7 Vi)

M-

[\:’42
g

2 2
W ]hkl Sy -

vvvvvv

(K-14)

(K-15)

Thus using Equations (K-13), (K-14), and (K-15), the Fisher

Information matrix J is given by

1 e
J:
12 Joo
B N
Cox,
n=1

2 1 (2
N N 2 2 Inl® s,
2. A
by :E: tn

(K-16)
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Thus the coefficient of mutual dependence is

2
1o

911 922

=

3
=2|n =
—

3N

3
1]
—

(at N2/2)2
= At Ne(anl - 1)/12

2
= -—%ﬂ-—— . (K-17)
an? - 1

Therefore, the variance and covariance of the parameter vector

2 B s2/N2
(AN - 1) foy E w? LI (K-18a)
2 1 K TF S,
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(K-18b)

where = denotes the continuous frequency approximation and T = NAt.

Similarly, we obtain

: 1 1
VAR (1) =
2  J..,
1 - M, Y22
-1
: 2 513/”:3
» 2 Z“’k i + 25, /N,
=(4N -1) k=1
N -1 N
2t
n
n=1
B 2.2 -1
_<4N2-1) 12 Z SN
NC -1 (aN% - 1)N at? I+2$/Nk
-1
12 2 ZB: S/N (K-19a)
= Wy K-19a
[(NZ_ 1IN At ] = T+ 25 /N, 25 /N

. 1
- [ 12(2m)N 3 / 2 5%(w) /N2 i
[ N?-lJ T T+ 25 (/N (u)~ % (K-190)

NP |
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and finally, the covariance is

J

COV(T,:[) = - 12 2
Ji1 92 - 912
2
Y ETER B
713
-1
B 2.2
) sz S /Ny
) O TF 25, /N

n=1
-1
B 2,2
=_(3N2 )( 2 ) Zzwz S/ Ny
N -1/ AN at et Tk TSN,
-1
B 2,2
S /N
6 2 N
- . 2 W (K-20a)
!:(NZ - 1)AtJ ; K1+ 25/N
-1
[ 2 7 2 2
- _l6(2m)N 2T2 2 S"(w) /N (w) (K-20b)
LNz 1 “ T+ 25w /N(w)

Note that Equations (K-~18), (K-19), and (K-20) indicate that
for N = 1, the variances and covariance are unbounded. Thus for
a meaningful joint estimation of 1 and %, the number of observation

intervals must be equal or greater than two.
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