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20. (Cont'd)

The optimum multisensor, multitarget time delay processor was studied in
detail. The optimum processor was first derived assuming that the observed
random waveforms (consist of coherent Gaussian broadband signal waveforms in
additive incoherent Gaussian, broadband noise) can be considered as Stationary
Parameter Long Observation Time Process. Here the observed waveforms can be
reduced to a finite dimensional, complex Gaussian observation vector. A
Maximum Likelihood multisensor, multitarget time delay processor is obtained
by reducing and solving the resulting vector likelihood equation.

The performance of the optimum processor is analyzed in terms of the
Cramer-Rao Lower Bound. Analytical closed form expressions are obtained for
the two-targets, two-sensors, and one-target, M-sensors (for any M) cases.
In addition, relation between time delay estimation and localization parameter
estimation is explored. Comparison between optimum and suboptimum implementa-
tion is considered. A joint time delay and spectral estimation processor is
presented. A method for improved time delay estimation using a post correlator
matched filter approach is also investigated.

To account for the moving target environment, a variable multisensor,
r, -multitarget time delay processor is derived. The basic derivation is obtained

by partitioning the observation interval into smaller subinterval. It was
shown that the length of each partitioned time interval must satisfy certain
constraint related to time delay doppler and signal bandwidth. The variable
time delay is modeled by a finite order polynomial over the whole observation
time interval. By estimating the time delay and delay rate at any given point
in time, the corresponding localization parameters and the target motion
parameters can be derived through a zero memory geometric transformation.
This is the integrated approach to multitarget signal/data processing.
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OPTIMUM MULTISENSOR, MULTITARGET LOCALIZATION AND TRACKING

4 CHAPTER 1

INTRODUCTION

If you want to hear anything more from me, give and take
I reason ... Nothing is surer than reason ... nothing is falser than the

senses. - - ADELARD OF BATH

We are concerned with the general problem of estimating the

target location parameters and the subsequent tracking of these

parameters based on a passive observation of target signal wave-

forms from multiple sensor arrays. The physical situations which

motivate our discussions are those arising in underwater sonar

(Sound Navigation and Ranging) signal processing. A target in our

discussion represents simply an acoustic source of interest. A

sensor array consists of one or more hydrophone elements. By loc-

alization we mean defining the target position vector (range and

bearing) w.r.t. a known reference point; e.g., the acoustic phase

center of an array. By tracking we mean defining the target posi-

tion vector as a function of time. We are interested in the opti-

mum passive localization and tracking algorithm (or processor)

I operating in a multiple sensor and multiple target environment. We
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OW
assume that each target emits a noise-like signal and that each

sensor observes a noise-corrupted version of the signal waveform.

4In all our discussion we emphasize the study on optimum signal

processing from the passive rather than active mode. A major dif-

ference between passive and active signal processing is that in the

U passive case the signal processor designer has no direct control

and knowledge of the actual received signal characteristics. Thus,

many advanced design techniques which are based on the optimum

* design of signal waveforms (e.g., methods of pulse compression)

used routinely in the active systems are not applicable. This Jack

of precise knowledge of the reference signal waveforms in the pas-

sive case results in a greater uncertainty in the estimated target

parameters. Despite the fact that passive processing suffers a

greater uncertainty in the resulting estimates, many situations do

arise where passive processing is either the only choice or is the

preferred approach.

Consider the case of locating the epicenter of an earthquake.

Since we have no prior knowledge of the location and the time of

occurrence of an earthquake, one must rely on the passive observa-

tion of the signal (pressure wave) as it arrives at each of the
40

seismic stations. Now consider the problem of localization and

tracking of underwater acoustic sources using sonar. If the

objective of the processor is to detect, localize, and track an

acoustic source with minimum counterdetection probability, then
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passive processing is mandatory. Furthermore, in the absence of

noise, the received waveforms contain the true target signature and

this could be a valuable aid in target classification. Perhaps a

situation which exemplifies this usage is the simple procedure used

by a physician in diagnosing a patient's health by listening at

various locations of the body using a passive receiver; i.e., a

stethoscope.

A more detailed explanation about the subject matter of our

study is given below. As shown in Figure 1-1, there are five major

elements in our investigation.

1. Multitarget Environment: We assume in our study that

there are J targets present within the operating environ-

ment of our sensors. We are particularly interested in

the case where J > 1; i.e., more than one target is

present. However, because of the general formulation of

the problem, the single target case (a subject of intense

study in the literature) can be obtained by letting J 1

in our general J target solution.

We assume that each target emits a known signal spectrum

for the purpose of our study. Of course, in reality, the

target signal spectrum must be estimated through a priori

knowledge or using on-line spectral estimation techniques.
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The assumption of a multitarget environment is warranted

and justified for the following reasons: (a) improved

sensor sensitivity due to advanced new sensor technology

greatly increases the operating range of a sonar system;

thus by virtue of the expanded coverage, the existence of

a multitarget environment is more likely than ever, and

(b) since sonar operations typically occur near high den-

sity shipping environments, the presence of multiple tar-

gets is a rule rather than an exception. In addition,

conventional optimum processor design based on a single

target assumption suffers considerably when operating in a

multitarget environment.

2. Multisensor Arrays. We assume that each sensor array con-

sists of multiple sensing elements (hydrophone) whose

received target waveforms are available for processing.

We assume that location of each sensor array is known

w.r.t. a well defined point of reference.

3. Optimum Estimation of Localization Parameters. We assume

that targets are stationary and we investigate the optimum

processor which yields the best estimate of each target's

range and bearing from a known reference point. We

explore in some detail the differences between a one-step

(direct) localization parameter estimation approach and a

two-step (indirect) time delay followed by localization
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K parameter approach. We also investigate various sub-

optimum approaches and evaluate their relative perform-

ances compared to the optimum processor.

4. Optimum Variable Localization Parameter Estimation and

Tracking. Here we assume that each target is moving with

a well defined trajectory and we seek an optimum localiza-

tion parameter estimation and tracking algorithm operating

in a multisensor, multitarget environment.

5. Weak Signal in Noise Environment. We assume that improved

sensor technology increases sensor sensitivity, resulting

in an improved capability to respond to a target which has

a weak signal level. Very often targets with very weak

signal levels are the targets of interest. Since signal

level attenuates inversely proportional to the square of

range, long range targets are, therefore, usually weak

signal level targets.

1.1 3SACKGROUND

The reasons for using sensor arrays to localize and track tar-

gets of interest are twofold. First, it is to gain spatial diver-

sity, whereby target signals are received simultaneously at dif-

ferent points in space; their spatial separations contain informa-
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tion on target location param-eters. Second, it is to improve the

signal-to-noise ratio (SNR) via spatial coherent integration of

sensor outputs. This process is known as array processing or beam-

forming. Subsequent to the array processing, the SNRs are further

enhanced by time domain processing for the purpose of detection,

classification, parameter estimations, and tracking.

The combined array and temporal signal enhancement process is

known as space-time processing. It can be pointed out here that a

A fundamental factor which limits the space-time processing gain is

given by the triplet BLT, where B is the signal bandwidth, L is the

array effective length, and T is the duration of time domain inte-

gration. Note that the overall processing gain directly limits the

performance bound on detection, classification, parameter estima-

tion, and tracking.

Implicit in any range and bearing estimation is the estimation

of time difference of arrival (TDOA), or simply time delays between

[.4 sensor pairs. These time delays contain all the available informa-

tion about the target parameters of interest. Thus the time delay

is the basic unit of information from which all other parameters of

interest are extracted.

The measurement of time delay is mechanized through a General-

ized Cross Correlation (GCC) function. The GCC is derived as a

Maximum Likelihood Estimator (MLE) operating between any two sensor
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arrays. Detailed discussion on the subject of the GCC can be found

in Knapp and Carter,' Carter, 2 Hahn and Tretter, 3 and Hassab and

Boucher.4

In the above literature, the GCC is optimized under a single

target assumption (or more specifically, a single coherent noise

U source). In the presence of multiple targets, or multipath

environment, there are multiple correlation peaks. The existence

of multiple correlation peaks causes performance degradation to the

* existing measurement system. The extent of this degradation is a

function of signal spectral characteristics, SNR, signal-to-

interference ratio (SIR), and the relative time delay separation.

In a multisensor, multitarget environment the primary cause of

performance degradation of the existing system is due to the mis-

match between the signal processor design and the environment in

which the signal processor must operate. Therefore, a logical

approach to minimize the loss of performance is to examine the

optimum structure of the signal processor under a multisensor,

multitarget environment. Knowing the form of the optimuim

processor, one can then explore various options for a practical

system realization.
6
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1.2 TECHNICAL OBJECTIVES

The primary objectives of this study are to (1) derive the

optimum time delay estimator under a multisensor, multitarget

environment, (2) evaluate the appropriate performance bound,

(3) investigate suboptimal processor realizations and methods of

improved multitarget parameter resolution, (4) extend the optimum

multisensor, multitarget time delay processor to include variable

time delay estimation, and (5) examine the problem of optimum

variable localization parameter estimation and tracking.

1.3 PREVIOUS WORK

Optimum signal processor design under a stationary multi-

sensor, multitarget environment has been studied by a number of

researchers, i.e., the work by Schweppe 5 on sensor array data

processing for multiple signal source, Schultheiss 6 on passive

sonar detection in the presence of interference, and Anderson and

Rudnick 7 on rejection of coherent signal arrival. In addition,

there are the works by Capon,8 Steinberg,9 Cox,10 McGarty,11

Rockmore and Bershad, 12 and Owsley and Swope 13. With the possible

exception of the work by Schweppe and Owsley-Swope, the primary

efforts of these studies were on determining the effect of inter-

ference on the existing (single target) processor. Using a Least

SJ
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Mean Square approach, Schweppe derived a decoupled beamformer.

However, his formulation ignored the effect of dependence of the

covariance matrix on the unknown parameter. On the other hand,

Owsley and Swope derived a single frequency multichannel focused

beamformer using a Weighted Least Square approach. However, Owsley

and Swope's formulation did not include the bias correction term.

Optimum signal processor design under a non-stationary multi-

sensor, multitarget environment has not been seen in the open lit-

* erature. However, a few papers have been published in this area

for a single target case. For example, Knapp and Carter 14 studied

the optimum GCC in the presence of source motion. Schultheiss and

Weinstein 1 5 calculated the lower bounds on the localization error.

Chan, Riley and Plant 16 investigated estimation of non-stationary

delay by modeling the time delay as a finite impulse response (FIR)

process. Finally, Friedlander 1 7 studied the joint time delay and

signal spectrum estimation using an Auto-Regressive Moving Average

(ARMA) model.

The study of passive estimation and tracking of variable tar-

get parameters has received considerable interest in the litera-

ture. Most of the early studies have been concentrated on single
0

target and single sensor array. However, the extension to multi-

target, multisensor environments has received increasingly more

attention. The complexity of this problem increases rapidly as the

S
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number of targets and sensors increases. There are two notably

different approaches in attacking this problem. The first approach

starts from the target dynamic tracking filter (or data processor)

and attempts to model the measurement processes. One approach

which has received considerable attention recently is the Joint

Probability Data Association Filter (JPDAF) discussed by

q Bar-Shalom,18 Bar-Shalom and Tze, 19 and Fortmann, Bar-Shalom, and

Scheffe. 20 Here the measurements were assumed to have a proba-

bilistic model. An underlying assumption for this approach is that

1the signal process which produces the measurements cannot be modi-

fied to account for the multitarget problem. Therefore, one must

rely on modeling the measurement process. In fact, using a linear

superposition assumption, Ng and Bar-Shalom presented a model of

unresolved measurement for multitarget tracking. 21 ,22 However, the

inability to change the signal process is a major limitation in

obtaining an overall satisfactory solution. This is true because

an optimum solution requires the implementation of an optimum sig-

nal processor.

The second approach, on the other hand, starts the investiga-

tion from the signal processor. Here one finds that the signal

processing gain increases in proportion to time. However, by

increasing the processing time one can no longer assume a

Stationary Parameter Long Observation Time (SPLOT) process, which

is the basic assumption used in mnany existing signal processor

4
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designs. Typically, one finds that under, a moving target assump-

tion, a signal processor must estimate both the static and dynamic

parameters. Failure to compensate for the parameter dynamic will

result in a substantial loss in coherent integration. Conse-

quently, it negates the very purpose of long integration time.

Studies in these areas are notably pursued by Carter and Abraham,23

M Schultheiss and Weinstein, 15 and Moura and Baggeroer.
24

0 1.4 TECHNICAL APPROACH AND ORGANIZATION

This study provides a fundamental examination of the optimum

signal prL-essor design for time delay estimation under the assump-

tion of a multisensor, multitarget environment. Using an MLE pro-

cedure, an optimum multisensor, multitarget time delay estimator is

derived. The resulting signal processor is reduced to its simplest

form for system realization. In addition, this study derives the

appropriate performance bound for the resulting estimator. Com-

parisons between optimum and suboptimum realizations are also dis-

cussed. The optimum multisensor, multitarget time delay estimator

is then refined to include the moving target environment. Finally,

the variable time delay estimator is applied to the problem of

variable localization parameter estimation and tracking.

0

S!
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The organization of this report is as follows: Chapter 2 dis-

cusses and formulates the multisensor, multitarget time delay esti-

mation problem. Chapter 3 derives the optimum time delay estimator

and an appropriate performance bound. In addition, the extension

of time delay estimation to localization parameter estimation and

power spectral estimation is considered. Chapter 4 provides some

discussion on suboptimum processor realization. Chapter 5 dis-

cusses alternate approaches for improved multitarget parameter

resolution. Chapter 6 extends the optimum time delay processor to

include variable time delays. Chapter 7 examines the problem of

optimum variable localization parameter estimation and tracking.

Finally, Chapter 8 presents the summary, conclusions, and recom-

mendations of the study.

1.5 STATEMENTS OF CONTRIBUTION AND SUMMARY

Under the assumption of a SPLOT process, the optimum multi-

sensor, multitarget time delay processor was derived from a Maximum

Likelihood (ML) viewpoint. The resulting processor was obtained by

reducing the vector likelihood equation via straightforward, but

somewhat tedious, manipulations to the simplest form. The optimum

multisensor, multitarget processor provided the basis for the
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subsequent detailed studies on time delay vector estimation,

localization parameter estimation, power spectral estimation,

suboptimum processor realization, and post GCC multitarget

parameter estimation.

However, under a target or source motion environment, the

* SPLOT assumption is no longer valid. Thus the optimum processors

derived for the stationary parameter case need to be refined to

account for the target motion. The approach we have taken was to

-. segment the observation interval into smaller subintervals. It was

shown that if the signal time bandwidth product satisfies a certain

criterion, one can again represent a time-compressed (or expanded)

waveform in terms of Fourier coefficients. Consequently, under the

approach just described, a variable time delay processor can be

derived from an ML viewpoint. The variable time delay processor

was then used to estimate variable localization parameters and tar-

get motion parameters. We also discussed a sequential fixed inter-

val time delay tracking processor which was proposed to be used in

target state tracking. Major findings of this study are summarized

below.

1. The optimum multisensor, multitarget time delay estimator

is a highly coupled, multi-channel signal processor. The

estimator's performance in terms of the Cramer-Rao Lower
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F Bound (CRLB) was evaluated for the following cases: one

target and two sensors, two targets and two sensors, and

one target and M sensors. For the one-target, two-sensor

case, the optimum multisensor, multitarget processor

reduces to the GCC studied by Knapp and Carter. 1 For the

two-sensor, two-target case, the resulting processor was

* studied in detail. A closed-form analytical expression

for the two-dimensional matrix CRLB was obtained. To the

best of our knowledge, this result is original and did not

appear in the open literature. The result of the study

shows that the optimum processor provides a significant

improvement over a conventional GCC processor. For the

one-target, M-sensor case, the matrix CRLB for the time

delay vector estimate was obtained. It is also believed

that this result is original and does not appear else-

where.

The results of this study indicate that for an M sensor

array, the M - 1 inter-sensor time delays can be obtained

from M - I correlations. This is a significant reduction

from Hahn's approach, 25 where a total of M(M - 1)

correlations are required. Additionally, the results show
I

that the variance of the time delay estimate between any

two sensors decreases with M, the total number of sensors.

I
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2. The localization parameter estimation was examined in

detail using a one-target, three-sensor array as an

example from two perspectives: (a) a one-step focused

beamformer approach where a direct range and bearing esti-

mate is sought, and (b) a two-step time delay to range and

bearing approach where time delay estimates are first

U sought and range and bearing estimates are obtained via a

geometric mapping. The study indicates that both

approaches yield an identical performance bound. However,

* for practical implementation considerations, the two-step

approach is generally preferred because of the symmetrical

property of the GGC function in the time delay variable.

Furthermore, the localization performance based on the

optimum (ML) time delay processor was compared to the con-

ventional approach, where the latter approach used two

GCCs in parallel, one for each time delay. The result of

this study shows that the optimum processor yields a one-

sigma localization error ellipse, which is approximately

one-half smaller than the conventional approach. This

improvement comes directly from a better bearing estima-

tion. The range variance is identical between the optimum

and the conventional approach.

40
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3. A major assumption used in the derivation of the optimum

multisensor, multitarget time delay processor was the

known target and noise spectra. To relax this constraint,

a joint time delay and spectral estimator was derived.

The result of this study shows that the time delay esti-

mate and the spectral estimate are uncorrelated. This

implies that for the unknown target spectrum case, a joint

time delay and spectral estimator can be implemented. The

spectral estimation process does not degrade the perform-

4 ance of the time delay estimate. Furthermore, it was

found that while the variance of the time delay estimate

decreases as an inverse function of the observation time,

the variance of the spectral estimate decreases as an

inverse square function of the observation time.

4. The optimum multisensor, multitarget time delay processor

is an order of magnitude more complex than the conven-

tional GCC processor. Therefore, for a practical imple-

mentation, a suboptimum realization should be considered.

One suboptimum procedure is to assume a low target signal-

to-background noise environment. It was found that the

resulting processor is significantly simplified. From the

multitarget viewpoint, the conventional GCC processor can

be considered as a suboptimum processor. The performance

of the GCC processor is compared to the optimum processor

as a function of time delay separation.

4
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At 5. Because of its simplicity, the conventional GCC processor

is implemented in many existing sonar systems. On the

other hand, the application of the optimum multisensor,

multitarget processor requires a major modification of the

conventional GCC approach. Therefore, an alternate

approach is to provide additional multitarget processing

at the GCC output. For this purpose, a post GCC multi-

target estimator (or more appropriately the matched esti-

mator) was investigated. In essence, the matched esti-

mator determines the best estimate of the unknown para-

meter vector from a reference function which matches the

observed noisy GCC output under a Least Mean Square (LMS)

criterion. The matched estimator was simulated. The sim-

ulation results were compared to the theoretical pre-

dictions as well as to the optimum processor. The results

of this study indicate that the matched estimator provides

comparable performance with the optimum processor.

6. The optimum multisensor, multitarget processor which we

have derived, studied, and discussed thus far was based on

the assumption of a SPLOT process. This assumption is

difficult to satisfy for a more general moving target

environment. Therefore, we further refined our study to

account for the effects of target motion.
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The approach we have taken was to model the time delay

motion by a finite order polynomial in time and partition

the observation interval into N equal subintervals. It

was shown that in order for the time-compressed waveform

to be Fourier-representable, N must satisfy a certain con-

straint. When this assumption is valid, one can again

express the multisensor, multitarget, multi-interval

observations in terms of a multidimensional Fourier

r coefficient vector. The result of using an MLE approach

yielded the multisensor, multitarget variable time delay

processor. This processor provided an estimate of the

time delay and its higher order derivatives at any time

within the observation interval. It was shown that for

time delay estimate, the minimum variance always occurs at

the mid-point of the observation interval.

7. The time delay orocessors we have discussed thus far are

batch processor; i.e., one must wait until the end of a

T-second observation before one starts any computations.
0 In many applications, this T-second solution delay is not

acceptable. Therefore, we have investigated and proposed

a sequential fixed-interval time delay processor. This

I processor obtains its current estimate by utilizing the

most current subinterval observation and the prior esti-

mates. We obtained an expression for the covariarce cal-

* culation.
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I 8. We next addressed the problem of variable localization

parameter estimation and tracking. Our approach was sim-

ilar to the stationary parameter case. We first estimated

the time delay trajectory using the variable time delay

processor. Localization parameters were then obtained via

a geometric mapping from the time delay estimate. For

target state estimation where we are interested in both

the target position and velocity components, the mapping

function utilized both time delay and time delay rate

estimates.

I

-I

6

I
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(CHAPTER 2

PROBLEM FORMULATION

Man cannot inherit the past; he has to recreate it.
-- A. KOESTLER, The Act of Creation

2.1 INTRODUCTIONI

In this chapter we discuss the mathematical description of the

sensor observations and formulate the general multisensor, multi-

4 target time delay estimation problem. The optimum signal processor

is sought via an MLE procedure. In general, we assume the target-

sensor environment consists of M sensors and J targets (or J arrival

paths). Target waveforms are assumed mutually uncorrelated. As an

introduction to the general multitarget, multisensor problem formula-

tion, we first consider the basic description of observables f-r a

single target case.

2.2 DESCRIPTION OF OBSERVABLES

Let M sensor arrays be distributed arbitrarily in space. These

4 M sensor arrays then produce M continuous waveforms which represent

the M spatial samples of a random field generated by the target signal

in additive ambient noise. Let the M waveforms be observed for a

duration of T seconds and let the received waveforms be written as:

21
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y(t, Zi) : ai si(t) + ni(t) ; i = 1, 2, ... , M (2.2-1)
t c [0, TJ

where ai, si(t), and ni(t) are the signal attenuation factor, signal

waveform, and the noise waveform, respectively, for the ith sensor.

We note that the observed waveform y(t, Zi) is a random function of

space and time, and Zi is the location vector of the ith sensor with

q respect to a known reference point. See Figure 2-1.

IY

X TARGET

•
WAVE FRONT

4. 0
' 4 SENSORS

018.950

Figure 2-1. Description of Passive Sensor Observation

4
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To simplify the analysis, the following assumptions have been

made:

1. Pure Time Delay Channel - The signal waveforms received at

each sensor are identical except for a pure time delay.

Thus, the signal waveform (for the single target case) of

the ith sensor can be written as si(t) = s(t + Di), where Di

is the propagation delay from the signal source to the ith

sensor. Therefore, Equation (2.2-1) can be rewritten as:

* y(t, 9i) = ai s(t + Di) + ni(t) ; i = 1, 2, ... , M (2.2-2)
t E [0, T]

From Figure 2-2, we see that the propagation time delay is

given by the relation

i c (2.2-3)

where

r = position vector of the signal source

9-i = location vector of the ith sensor

c = propagation speed of the medium.

2. Noise at each sensor is assumed additive with known spatial

and temporal correlation function.

S0
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y

X TARGET

ZSENSOR #i

x
0

018.954

Figure 2-2. Target-to-Sensor Geometry

3. The observation time T is much longer than the travel time of

the wavefront across the sensor array.

4. Both the signal process and the noise process are mutually

uncorrelated, zero mean, Gaussian, stationary in time, homo-

genous in space (Yaglom26 ), and have a known band-limited
-E

power spectrum.

We note that the set of observations y(t, 9i); i = 1, 2, ..., M;

t E[O, T] contains a complete description of the observables. How-

ever, it has infinite dimensions and is analytically intractable.

Therefore, we wish to represent the time-limited observation of the

waveform by a finite set of discrete random variables. Because of

I
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the time delays in the signal waveform, a convenient approach is to

represent the observation in terms of a Fourier series expansion as

27 1
discussed by MacDonald and Schultheiss, Knapp and Carter, and

Rockmore. 28 The resulting coefficients are almost uncorrelated for a

large bandwidth time product as demonstrated by Hodgkiss and Nolte. 29

Therefore, Equation (2.2-2) can be represented by a Fourier coeffi-

cient vector as:

k= k k ; k =±1, ±2, .o(2.2-4)

* where

•(al '2k "MkT (2.2-5a)

(J Ol ju± D2  JwkDM T
S ale  a2e ... aMe (2.2-5b)

2 )r

(nlk n2k ... Mk (2.2-5c)

are the vectors of observation, signal steering, and additive noise,0

respectively, for all sensor outputs at frequency wk (2,k)l.

Furthermore, the variables aik , 8k and nik are defined as follows:

T
Ik = y(t, Zi)  e , aw t t (2.2-6a)i k Tkf

0
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T -Jukt

8k- J 1 / s(t) e dt- T (2.2-6b)

0
T -Jmkt
T n i (t) e dt .nlik T 2.-c

!f 0

Note that for real signal and noise waveforms, the Fourier coeffi-

cients are conjugate symmetric; i.e., ci,-k = aik. Thus, for a band-

limited process one only needs to consider frequency components

k = 1, 2, ..., B, where B is the highest cut-off frequency of either

the signal or the noise spectrum. For a low pass power spectrum, B

can be identified as the one-sided bandwidth.

Since both the signal and noise are zero mean Gaussian pro-

cesses, it is easily established that ak is a zero mean G(ussian ran-

dom vector with covariance matrix:

Rk = E(-4K 2)

= Sk 'k Qk (2.2-7a)
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r
where is the complex conjugate transpose of 2k; Sk and Nk are the

discrete signal and noise power spectral density, respectively, at

frequency !k; and Qk is the normalized spatial covariance matrix of

the noise vector such that

tr(Qk) M (2.2-7b)

I
where tr( ) defines the trace of a matrix.

I Now writing

(Jr T T

as an MB dimensional complex column observation vector, we obtain the

first and the second order moments of a as:

E(a) = 0 (2.2-8a)

SE(a a*) = diag{Rk } (2.2-8b)

which is a block diagonal since for a large bandwidth-time product,

E(a< k : 0 for k

I
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- Now let

iiD :(D 1 D2. DM) T

be the propagation delay vector, then the probability density func-

tion (pdf) of 2 conditioned on D is complex Gaussian (Appendix A)

given by

p(2k r) --MIRkI' exp{.! Rk k } (2.2-9)

and since and a are uncorrelated for k Z 2, they are also inde-

pendent. Hence, one can write

:r l-Ip(2 I D)

k=1

B

= -MB 1  IRk 1"1 exp{-2 R 1 k2} (2.2-10)

k=1

* as the pdf of the complete observation vector a conditioned on the

propagation time delay vector D. Thus Equation (2.2-10) provides a

complete statistical description of the observation conditioned on

* the unknown time delay vector.

LI
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2.3 STATEMENT OF THE PROBLEM

In this section we formulate the general multisensor, multi-

target time delay estimation problem in terms of the observation

vector described in the previous section. We consider the problem of

optimum time delay estimation from M sensor arrays in the presence of

* J possible targets. The final objective of sensor array time delay

estimation is to provide optimum estimates of target localization

parameters (i.e., range and bearing). We assume that interarray sep-

-. aration is large compared to the size of each sensor array. Such an

arrangement is normally found in large aperture surveillance systems.
30

See, for example, the large seismic array described by Capon. A

1recent study by Carter2 has shown that for passive localization of an

acoustic source, the variance of the bearing error is inversely pro-

portional to the square of the base length while the variance of the

range error is proportional to the fourth-power of the ratio of the

true range to the base length. Thus, a long base length is desirable

in reducing the variance of the estimates.

4
Let the M sensor array outputs fron J acoustic sources be

written as:

0 J

y(t, Zi) = aij sj(t + Dij) + ni(t) ; t E (0, Ti (2.3-1)

j=1

- -
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where i = 1, 2, ..., M; ai is the signal attenuation factor for the

jth target to the ith sensor; D is the propagation time delay from

target j to sensor i; and s.(t) and ni(t) are the band-limited signal

and noise processes with the usual assumptions of zero mean,

Gaussian, time stationary, and spatially homogeneous. Fourier expan-

sion of Equation (2.3-1) yields the finite dimensional frequency

domain representation as:

= Wkk +Ek; k = 1, 2, ... ,B (2.3-2a)

0 where

k = (C k '2k Tk) (2.3-2b)

k= (kl 6k2 ... BkJ) T  (2.3-2c)

l= lk '2k %) T1kT  (2.3-2d)

and

Wk= (aije ' j; i 1, 2, ... , M (2.3-2e)
j 1,2,..., J

is a M x J complex "propagation delay" matrix, where M is the number

of sensors, J is the number of targets, and wk = (2Tk)+ is the dis-

crete frequency. Similar to the development in the last section, the

observation vector is Gaussian with the following statistics:

6
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E(2 ) 0 (2.3-3a)

E(~ ~ = ~0; if k ~2 2 -b

R k; if k (2.-3b

where

R k AWk Sk W~+ Nk Qk (2.3-3c)

and

Sk '-ak Sk*)(2.3-3d)

For uncorrelated sources, we have

Sk diag{S k1 l S k2, . (.-e

as a J x J diagonal matrix with element Skij as the signal power at

frequency wk of target j. Thus, the pdf of 2 conditioned on the

time delay matrix defined by

4 ~D = {Dij }; 1 2

j = 1, 2, J.. (2.3-3f)
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is

P(a ID) : -M IRk I- exp{-2 R 1 k} (2.3-4)

Finally, writing

T T ,8 (2.3-5a)

then the pdf of a, the complete observation vector, conditioned on D,

the multisensor, multitarget time delay matrix, can be written as

* B
p(21D) = jP(-q IO)

k=1

' I =Rk1 exp{- RMB }.-1 (2.3-5b)

k=1

Equation (2.3-5b) constitutes the basis for the derivation of the

multisensor, multitarget optimum time delay processor. An MLE is

obtained by maximizing the conditional pdf with respect to each ele-

ment of the propagation time delay matrix. Thus, symbolically one

can write

* DML Max Arg p(aID) (2.3-6)ML D

400



CHAPTER 3

OPTIMUM MULTITARGET PARAMETER ESTIMATION

It is demonstrable, that things cannot be otherwise than as they
are, as all things have been created f or some end, they must
necessarily have been created for the best end. -- VOLTAIRE

3.1 INTRODUCTION

In principle the optimum estimate of the time delay matrix D

4 is obtained by solving Equation (2.3-6) numerically. In general, a

direct implementation of Equation (2.3-6) results in a very complex

processor. However, without loss of performance, Equation (2.3-6)

can be reduced to its simplest form by mathematical manipulations.

The resulting processor is usually realizable.

In this chapter we investigate the fine structure of the opti-

mum multitarget time delay signal processor. Since time delays are

modeled as unknown constants, we seek an optimum estimator via an

MLE approach. We provide a performance bound for the resulting

estimator. We study in detail the two-sensor, two-target case.

For the three-sensor, one-target case we establish the relationship

between optimum localization parameter estimation and optimum time

delay estimation. Finally, we investigate the structure if the

optimum power spectral estimator when the target signal power spec-

trum is not known a priori.

33
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MF 3.2 THE LIKELIHOOD EQUATION

It was shown in Chapter 2, Equation (2.3-5b), that the pdf of

the sensor observation vector a conditioned on the time delay

matrix D is given by

B
q p(a D) =jp(akID) (3.2-la)

k=1

where

p(2_ D) = iMIRkI- exp{-2 R k1 2k (3.2-Ib)

The ij element of the time delay matrix D is given by (see

Equation (2.3-3f))

Dij = ; i 1 1, 2, ... , M (3.2-2)
Ic j 1 , 2, .. ,

where r. and Zi denote the vector locations of target j and

sensor i, respectively. The log-likelihood function of Equation

(3.2-la) is defined by

B

A(D) L log p(2 !D)

k=l

B

: -MB log(Ir) -ZAk(D)
k=1 (3.2-3a)

I

6I
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where

Ak(D) : logiRki +- R kl (3.2-3b)

and Rk is the covariance matrix of the zero mean complex Gaussian

vector 2 k given by (see Equation (2.3-3c))

Rk: Wk Sk W + Nk Qk (3.2-3c)

where for the uncorrelated source case,

Sk = diag{Sk1 , Sk2 , ..., Skj} (3.2-3d)

is a J x J diagonal signal power density matrix whose jth diagonal

entry denotes the discrete signal power density of target j at fre-

quency wk" Nk is the discrete noise power density, and Qk is the

normalized covariance matrix. Finally, the ij element of the M x J

"propagation delay matrix", Wk, is defined by

e (ae i 1, 2, ... , M (3.2-3e)k ai e  j 1, 2,..., J

where aij denotes the signal attenuation factor from target j to

* sensor i. Now writing

k= ( Yk2 ... 4J) (3.2-4a)

0
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where

- [ J~Dj J~Dj JDMj) T

S (aijejwk Ij ae wk2j ... a e jwk (3.2-4b)

is the attenuated signal steering vector of target j at frequency

wk . Using the fact that Sk is a diagonal matrix for uncorrelated

sources, we have the obvious identity:

UJ

Wk Sk k~ Ski 4.j -V-kj-
j=1

" Skj 'kj (3.2-4c)
j=1

where Pkj is defined by

kj kj "

Note that we have chosen to let

4j = eJokDjj 4j (3.2-4d)

or equivalently (to reference all time delays to the first sensor),

one can write

V : 4 I a a e (3.2-4e)

I
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where Aij is given by the relation

A Oi+1j - 1 =, 2, ... , M-1 . (3.2-4f)

Now Pkj is an M x M Hermitian matrix of rank one and is a func-

tion of the attenuation vector aj and the time delay vector A.

* The vectors aj and Aj are given by

aj (a1j a2j ... aMT (3.2-4g)

and

A. (AT (3.2-4h)

Note that given M sensors, there are M-1 independent time delay

pairs from a possible total of M(M-1) . The selection of this set

is not unique. However, for time delay estimation, it is reason-

able to assume a set with minimum total delay. This set (for a

line array) is given by the inter-sensor time delay vector:

1= ('1j '2j - TM.1j)T ; j=1, 2, ... J (3.2-4i)

where Tij = D i+, j - Dij.

Note that the Aij's can be expressed in terms of the -ij's. For

example:

S•
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Aij D i+l,j - D1j

=z Dn+lj - Onj
* n=1

i

L T nj

n=1

= uT j (3.2-4j)

where Ui is a column vector whose first i entries are one and the

remainder are zero.

Furthermore, by writing the mn element of the matrix Pkj as

pmn' and from Equation (3.2-4e), we can identify the relation

Jm (nl j -An-l, j)
pn j a mi j  e ;m =1, 2, .. ,M (3.2-5a)

n = 1, 2, ... , M

Now utilizing the relation in Equation (3.2-4j), we obtain

Jmn am u(UmiUn T -j (3.2-5b)

kj : m nj e

S:
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Thus we have shown that the observation covariance matrix can

be expressed as a function of inter-sensor time delays instead of

the actual propagation delays. Therefore, the direct observable

quantities are time delays instead of the propagation delays.

Using Equation (3.2-4c) in (3.2-3c), one obtains an alternate

expression for the observation covariance matrix:

Rk = - Skj Pkj + Nk Qk (3.2-6)
j=1

Equation (3.2-6) can also be summed in the following way:

Rk = Ski Pkl + Nkl Qkl

= - k2 Pk2 + 'k2 Qk2

- SkU PkJ + Nkj QkJ (3.2-7a)

0O where

N kj : ki + N k  1 , 2, .. ,J (3.2-7b)

• i=li j

S
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and

Qkj : Ski Pki + Nk Qk N kj (3.2-7c)

Note that Qkj can be regarded as an equivalent noise process and is

* independent of the parameter i. For simplicity we shall assume

the propagation attenuation coefficients are known and, for conven-

ience, assume they are equal to unity.

Finally, writing the incremental (intersensor) time delay

vector for all targets as

T T. TT (3.2-8)

a p-parameter column vector where p = J(M-1), the vector log-

likelihood function (Equations (3.2-3a) and (3.2-3b)) becomes

B

A(e) = -MB log(7r) - E A,(9) (3.2-9)

k=1

where

Ak(±) = logIRkI + RkI a (3.2-10)

kIk
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The MLE of e is one that maximizes the likelihood function A(e). A

necessary condition for the location of the maximum is given by the

vector likelihood equation

B

VA(E) _ Z Ak(() = . (3.2-11)

k=1

U where V is the gradient operator given by the column vector

T
V : ? 1  e ae-' "(3.2-12)

3.3 MULTIPLE PARAMETER ESTIMATION

It was shown in the previous section that the optimal estimate

of the time delay vector is hinged on solving the vector likelihood

equation. For the MLE, we have

B

f(s) VA(e) - VAk(.) (3.3-1)

k=1

where f(e) is a vector function. The likelihood function Ak(e) is

defined as in Equation (3.2-10).

0 In this section we examine the solution of the likelihood

equation in general and in Section 3.5 we explore in detail the

structure of the optimum multitarget, multisensor processor.

0

0
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Let e. denote the jth element of the time delay vector e, then

Equation (3.3-1) can be written as

B

A -- - - A(_) E 0 ; j 1 1, 2, ., p (3.3-2)

k=l

From Equation (3.2-10) we obtain

U

a I a R k

3e.AI 'kI 3e. I 21 (a -.*

k  (333)

where tr( ) denotes the trace of a matrix. Note that the evalua-

tion of the first term is a straightforward application of the

chain rule. The exact procedure can be found in Rockmore. 28  The

derivative of Equation (3.3-3) w.r.t. 9i is

a 2k /R' -1 a 2Rka2R 1
2(aRk I aRk + 1 Rk 2k )__2Rk

a2Ae (e) = tr _ R aeiae. + 4 e k (3.3-4)@Bias aj  1 1 k / a- eeai  i .(3

Using the linear property of the trace operator and the relation

-I ak

*R a 1  1R aeR k -
RR kI  __ R k

SeiD
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Equation (3.3-4) becomes

a 2Ak() 1 aRk  1 3 Rk 2Rk a2Rk

aeiae ~ k t- k ej + rk ae-0ae 0 aeiae~ _1C

(3.3-5)

Equation (3.3-5) is important in evaluating the performance bound

of an estimator. Substituting Equation (3.3-3) in

Equation (3.3-1), one obtains the set of necessary conditions for

the ML estimate:

1 tr k R -1 a R k ) a R ' ]2 ; i 1 9 . .9 Pfk() = - L1 
1 

k 
o, a, 

.k=1

(3.3-6)

Equation (3.3-6) is usually non-linear. The structure of the

optimum processor can be found by reducing the required mathema-

tical operations to simplest form. In principle, Equation (3.3-6)

can be solved by searching the p-parameter space for a simultaneous

null. A more efficient algorithm, however, is implementing a

4 closed-loop null tracker. Further discussion on this important

subject is beyond the scope of this study.

4 We remark that Equation (3.3-6) is the necessary condition for

the existence of a maximum. For sufficiency it requires not only

4
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the condition given in Equation (3.3-6) but also the following

(Bryson and Ho31):

22

a f(e) = a 1< 33-7)

By this we mean the square matrix a2A(e)/ae2 must be negative

-* definite.

3.4 ESTIMATOR PERFORMANCE EVALUATION

In this section we derive the multi-parameter CRLB and show

that the resulting estimate obtained from solving Equation (3.3-6)

satisfies the bound for a large observation time. Therefore, the

resulting estimate is efficient.

The CRLB for an unbiased estimate of the ith parameter is

given by Van Trees:
32

VAR(ei)ML (J1 ) (3.4-1)

where ( ) denotes the ith diagonal element of a matrix and J is

the Fisher Information Matrix whose ij element is defined by
6

Jij \ - eiae. / j 1 1, 2, ... ,P (3.4-2)

I3
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where A(e) is the log-likelihood function. Using Equations (3.3-2)

and (3.3-5) in (3.4-2), we immediately obtain

ii A B [r R1 3RkRI aRk1:- tr Rkl 9R k  k

k=1L

IR-1 a Rk + R (3.4-3)
* ~tr~k aeas aeiaei Rk) 2o (33

where eo denotes the true parameter value. Equation (3.4-3) can be

simplified as follows: Taking the derivative of the identity Rk1

Rk=I first w.r.t. e and then w.r.t. ei, one obtains the relation

R 1 2k R a RL 344
k3 3e a~ sai 39 ae9 as~) (34

Substituting Equation (3.4-4) in Equation (3.4-3), the latter can

be simplified to

~ (-13Rk - aRk\
.tr R - k R - (3.4-5a)

k =1

6 B
F t=a k 3 Rk

aae. ae - (3.4-5b)
k=1

Note that because tr(AB) = tr(BA), we have = Jji" Equation

(3.4-5b) agrees with the expression obtained by Bangs. 33  However,

the derivation presented here is somewhat simpler and more direct.

61
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Next we proceed to show that the MLE, iML, of e obtained by

simultaneously solving the set of equations in Equation (3.3-6) is

unbiased and achieves the CRLB.

Let ~f~) f1(e) f2 (t)... fp

and write the Taylor series expansion of f(e) about the true para-

meter value SO as follows:

f(e) f(f ) + (e 3)+ (a ) (3.4-6)

Since f(_ ML) = 0 by definition, we have after neglecting higher

order terms (smali random error assumption):

af(e
-f_ - ) (3.4-7)

Now assume the law of large number applies so that (for a suf-

ficiently long observation time) one can replace the derivative by

its expected value. Taking the expected value on both sides of

Equation (3.4-7), one obtains

-([ML) =2o "E f I@a Ef(.o)1 (3.4-8)
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(But from Equation (3.3-6)

tr aeakEfi(eo)] - tr R1kl)i( + tr 4 R )

B [ tr ( R -3R + a R k R-

k= (3.4-9)

Therefore, E(eML) = so, and ML is an unbiased estimator. Post

multiplying Equation (3.4-7) by its conjugate transpose and taking

the expectation yields

Erf (e )f* (20 y] E (2^L )9 (eIM ,)TI

E 30 (3.4-10)

Now recall that f(e) = VA(e), so one can write

E T0 :E
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2 2e

a A(s) a AG)3A(s)

= 2 A(G) A(S) 2A(G)
as2a1s9 2  as 2as P2

= -1(3.4-11)

3A(s) a A(G) 3As
aThs w hv e o a2 . . .. . . .. . .. 2ar

-i

Furthermore, we have the relation

E~f(% ) f*ej=E{VA(e) VTA(j)] J 3.4-12)

Therefore, substituting Equations (3.4-11) and (3.4-12) in (3.4-10)

yields

El s) T J-'E[Le)f*(s)1jj
1i2ML 2 -(ML

= (3.4-13a)

or VAR(Osi)ML = .J i (3.4-13b)

Thus we have shown that the multi-parameter MLE is an effi-

cient, unbiased estimator for large observation time.
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3.5 MULTISENSOR, MULTITARGET PARAMETER ESTIMATION

In this section we investigate the detailed structure of the

optimum signal processor for multiple parameter estimation. For

the purpose of target localization, the parameter set of interest

is time delays, range, and bearing. There are two possible

u approaches in estimating the localization parameters. The first is

via a geometric transformation from measured time delays; the

second is via a direct range and bearing signal processor. From

the results of this study, we will clarify the relative merits

between these two approaches. In Section 3.5.1, we derive the

optimum multisensor, multitarget time delay processor. In

Section 3.5.2 we discuss the various methodologies of obtaining

range and bearing. Finally, in Section 3.5.3 we briefly discuss

the problem of optimum time delay estimation with unknown target

power spectra.

3.5.1 Time Delay Estimation

It was shown in Section 3.3 that the MLE of the time delay

parameter vector e required the simultaneous solution of the vector

likelihood equation:

S3 A
3 - - -0; j 1, 2, ... , J(M -1)

k=1

* (3.5.1-la)

0
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where

3A (8) / R -1R~ke. = tr Rk k (3.5.1-b)3 3 3

We will explore the detailed structure of the optimum signal

processor by simplifying Equation (3.5.1-1a). Recall from

Equation (3.2-6) that

Rk = Skj Pkj + Nkj Qkj (3.5.1-2a)

where

Qkj = Ski Pki + Nk Qk /Nkj (3.5.1-2b)

i=1Q) k
i#j

and

Nkj = Ski + Nk . (3.5.i-2c)

i=1
i ~i

For notational simplicity we shall assume in Equation (3.5.1-la)

that there are J targets but with two sensors. The 9j's in this

case correspond to the time delay for each target. In the case of

more than two sensors, e. must be replaced by each element of the

inter-sensor time delay vector (Tij, T 2 ... , "M.I,j) of target j,

where Tij denotes the time delay between sensors i + 1 and i of

target j.
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RApplying the well-known matrix inversion Lemma

(HTR-IH + M-1) -I = M - MHT(HMHT + R) 1HM to , we obtaink'

Rk 1 (Ski Pkj + Nkj Qkj

k kj --i ~-ik

~-1 2
- ~kj ~ k P Qkj (3.5.1-3)

Nkji + Gkj Skj/Nkj

where Gkj = 1j Qkj k is defined as the effective array gain for

target j. The derivative of Rkl w.r.t. ej can be written ask

2Rl DPk aGk \ -ke hk 2 ~- Pj - @kj 1
_Q Ih kj Q - ak Pe Qkj (3.5.1-4a)

where we have defined

IhkjI 2 =- Sk ~ (3.5.1-4b)
1 + Gk Sk /Nki

2akj NkjIhkj 2  (3.5.1-4c)

Using Equations (3.5.1-3) and (3.5.1-4a), the first term in Equa-

tion (3.5.1-ib) can be written as follows:

k a Qkj 3S ( 9
Nkj

- Skj hkjI2 tr Qkj kj kj ((3.5.l-5a)

I'
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But this can be further simplified using the following relations:

tr( I ) =tr[ ( ! V* V

kj Qkj e e Q kj kj

=9 3G (3.5.1-5b)

and

tr rQkj Qkj kjaTj =tkj [ V Qkj as.i kj

I.+ Ykj k-*-j

G Gkj (3.5.1-5c)= Gkj ae.

Thus Equation (3.5.1-5a) reduces to

tr k- a Rk =Ski 
3Gkj 2. aGkjt(R as N kj Skj Ihkj2 Gkj ae

6 - aG
: ak i .(3.5.1-6)
kjls

6

6
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Using Equations (3.5.1-ib), (3.5.1-4a) and (3.5.1-5c) in

(3.5.1-la), the likelihood equation becomes

B /)p---

3A(e)..h 2 __- i
ae - hkj1 k j akj aej kj] Qkj 2

k=1

3Gk
akj J

0. (3.5.1-7)

33,4

Equation (3.5.1--7) reduces to that obtained by Bangs 3 ' for the

single target case. It should be pointed out that our development

up to here in many ways parallels Bang's work. However, there are

also major differences. We are interested in a multitarget

environment while Bangs' work dealt exclusively with single target.

We are interested in joint time delay vector estimation while

Bangs' work is primarily concerned with range and bearing

estimation. Thus, our work in this section can be considered as an

extension of Bangs' original work to include the multitarget,

6 multisensor environment.

For time delay estimation, the likelihood equation

6 (Equation (3.5.1-7)) can be further simplified as follows.
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Recall from Equations (3.2-4e and (3.2-4j) that the steering

vector for target j is

S • UT . JkT lj T-

e (1 eJ k UT  ee k UT -  . eu )T (3.5.1-8a)

where the attenuation coefficients aij were assumed known and for

convenience they were assumed to have unity.

Therefore, the mn element of Pkj is

kj : e - (3.5.1-8b)

but

__._ Uwk. _ I)T a- [eJmk (Um-I Un-)T-jI]

mn (U Tm

where @mn = (_ -- Un and imn. is defined as the mn element

of the matrix Di given by

@mn a (D mn

SI atij

T 1 -; i =1, 2, .. ,M-1
-1 - a'j1  m 1, 2, M

* n 1, 2,..., M

SL
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1 ; if n < i < m-i
' -1 ; if m <i n-i

0 ; otherwise-. (3.5.1-8d)

Note that for a system of M sensors, (D is an M x M matrix.

For example, let M = 3, then

1I 0 ; (P2 0 0 -1

1 0i1 0

.4 Define 1M as an M x M square matrix of ones, and Vkj as a diagonal

"steering matrix", whose diagonal elements correspond to the ele-

ments of the steering vector Vkj; i.e.,jw k 1V Q = diag i , , ... e (3.5.1-9)

Then the following relations can be easily established:

P V 1 V* (3.5.1-10a)Qj Qk M kj

and

j Jk ij i (( . 3.5.1-10b)
I

I

I
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Furthermore, using Equation (3.5.1-10b), Equation (3.5.1-5b) can be

written as

b"G

3T ij . k Vkj kj " )kj (3.5.1-1c)

Finally, using Equations (3.5.1-10a), (3.5.1-10b), (3.5.1-10c)

and replacing ej by Tij' the likelihood equation

(Equation (3.5.1-7)) can be simplified to

At)ij : Jk [hkjI2 Q Vkj (i - kj kj --KQk, @ i kkQk

k=l

0 (3.5.1-11a)

where

b~j a r-l V*j (3.5.1-11b)

bkJ = akj tr(Qkj Vkj i 5-

is the bias correction term and for i 1, 2, ... , M-1 and j = 1,

2, ..., J where M is the number of sensors and J is the number of

targets. Note that the J(M - 1) equations are coupled and must be

solved jointly for the stationary point. For long observation time

such that the frequency samples are dense over the frequency bands

of the signal and the noise, the summation in Equation (3.5.1-11a)

can be replaced by integration as follows:
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,, 
aA(T)

...T iw Ihi) 12 *(w) Q (W) V (W) $jb~w)'M]

vt(w) Q- (w) 2(w)/T - b (W w)

i1, 2, ... ,M-1
j 1, 2, ... ,d.

(3.5.1-12a)

Note that in obtaining Equation (3.5.1-12a) the relations

Tco< = t(w) and Ihk 12 = Tjh(w)12 have been used.

It is recalled that for the jth target

lj) 2 = S.(w)/N (w)
1 + g.(w) S.(W)/N.(w ) (3.5.1-12b)

2 .

aj(w) = Nj.(w) lh.(w)l 2  (3.5.1-12c)

b t [Vw() = aji(W) tr[Q ( ) ( D i(W) VV( )] (3.5.1-12d)

1

Q T(W) = N.(W) Si(w) + N(w)Q(w) (3.5.1-12e)

Lil

6~
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jj
Nj(w) := S(w) + N(w) (3.5.1-12f)

i =1

i #j

(3.5.1-12g)

Pj(W) = Vj(W) I1 V(W)

and

G.(W) = V!(W) Ql (W) Vj(W) (3.5.1-12h)

The optimum multitarget, multisensor time delay signal pro-

cessor is shown in Figure 3-1. There is a total of J(M - 1) pro-

cessing channels for the case of M sensors and J targets. For sim-

plicity we show a single processing channel. Note that the pro-

cessing channels are tightly coupled. The signal conditioning

filters depend on the time delay parameters from other processing

channels as well. This is an order of magnitude more complex com-

pared to a single target case. A number of suboptimal realizations

can be found as discussed in Section 4. Finally, we remark that

for convenience, we show the optimum processor (Figure 3-1) in the

continuous frequency domain. For practical considerations, the

discrete counterpart, Equation (3.5.1-11a), is normally used since

the correlation process can be mechanized easily via the Fast

0 Fourier Transform (FFT) algorithm.

S
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Using Equations (3.5.1-12b-f), we shall study the specific

structure of the optimum time delay processor for a number of

simple but important cases.

3.5.1.1 Case 1: One Target and Two Sensors (J = 1, M : 2).

For convenience we assume Q(w) = I; i.e., the noise processes are

equal in power and uncorrelated between sensors. Noise processes

Ubeing uncorrelated between sensors is a reasonable assumption since

in practice sensors are separated at least at a half wavelength

spacing.

The steering vector is v = (1 eJwT)T. The following relations

can be verified easily:

1 =(3.5.1-13a)Q '(W) = Q 1(w)=I

G(w) = v* Q-1 v 2 (3.5.1-13b)

b(w) = tr(Q "1 V DI V*) 0 (3.5.1-13c)

2 S(w)/N 2 (W)jh(w)I 2 S(w)/N(w (3.5.1-13d)

and
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F0  -1 [1 0 ]

(P L J ; V LO ejW j (3.5.1-13e)

Thus from Equation (3.5.1-12a), the likelihood equation is

Z(T) = .-. 4 jwlhl 2 a* V ¢I V* _i dw = 0 (3.5.1-14a)

This simple time delay processor is diagrammed in Figure 3-2.

This processor is identical to the one studied by Carter 35 and can

'0Q be shown as follows. From Equation (3.5.1-14a), we have

z( 101 0 -1 [1 o
Z(-T) =j f jw I 12 aL*[ _j] [a i] [ ] dw0 0 e jW 0 0 e~j d

= / jWm l= ( w) q(w) -ejw- d

T hi jw 2 GT e~!dw i

= f jWIhl 2 G12 (w) ejW dw

-00

Ih G12  ()e jW t dw

T R (3.5.1-14b)

aS1
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where G12 is the estimated cross power spectrum between channels i

(w) and a2 (M), and R12 (T) is the GCC function studied by Knapp

and Carter.1 A block diagram of this processor is shown in

Figure 3-2(b). Note that the null of Z(-) corresponds to the peak

of R12(t). Furthermore, the discrete form of Equation (3.5.1-14b)

is

Z(T) = jukjhk ~k B ~k ej (3.5.1-14c)

k=-B

S IhkI2C ' kc° k e (3.5.114d)
k=-B

From Equation (3.5.1-14b), we note that the GCC function is

directly proportional to the likelihood function. The optimum

estimate is determined by locating the peak of the GCC function or,

equivalently, the null of its derivative. We have shown in

Section 3.4 that the MLE is efficient for a long observation time.

We have also obtained a general closed form expression for the

CRLB. The CRLB for this case can be determined easily. From Equa-

-6 tions (3.4-1) and (3.4-5) we have

B aRc'I aRk -
VAE 3T 3rT @ (3.5.1-15a)

0 k=1
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Now combining Equations (3.5.1-4a) and (3.5.1-l0b), we obtain

aRk aPk (3.5.1-15b)
aT Sk a - jLJk Sk Vk $1 V*

3R
a - khk 2 Vk 1 V. (3.5.1-15c)

Thus

tr a 3,) = - hkI Sk tr(Vk V ) (3.5.1-15d)

= 2w 2 1k 2 Sk

and the CRLB is

.2 2 -1
VAR^),I( S k/N k  

(3.5.1-16a)
VA(, > 7I +2 S k/N k

> 2 r (2T fc( 1 c(w) w2d)
0 1 -CTW7(3.5.1-16b)

which is identical to the expression derived by Carter.2 Note

that T is the observation time and

40
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'~j9 2
c(W) S(W (3.5.1-16c)5(w) + N~wT)

is known as the magnitude square coherence (MSC) function for the

case of two equal-noise power channels.

3.5.1.2 Case 2: Two Targets and Two Sensors (J = 2, M = 2).

" Again assuming Qk I for simplicity. The parameter vector con-

sists of two elements; i.e., e = (T1' T2)  the time delays to tar-

get number one and target number two. The optimum estimates can be

Iq obtained by solving simultaneously the two likelihood equations:

3 A(Tj, r2) G 2d
Jw{1h 1 1 * Qj 1 Vi (D b1 

1M] V* Qi " T

3T fo

=0

(3.5.1-17a)

.4O

,I

3A(TIj T2) 2 M, * 5- w d
3 r2 : wl21 e-' Q2 V2 [i 2 bI]V2 2 _ - 2n

:0

(3.5.1-17b)
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where for notational simplicity, we have suppressed the frequency

dependency. The two likelihood equations can be further simplified

using the following relations:

12 S1/(S2 
+ N)

2

h11 = r + G1 S'1/(S2 + N) (3.5.1-17c)

S 1 /(S2 + N)al1 = 1 + G 1 SI1/(S 2 + N) (3.5.1-17d)

bl 1: al tr ( Ql1 ap

1 -a1 c2 tr2(V V1)* M (V2 V1)"1] (3.5.1-17e)

- (1 + S2/N) S2/N (3.5.1-17f)

C2  2c2 = 1 + 2 S2/N

G 2(1 + S2/N) c2 14*1  (3.5.1-17g)

and

01 = [ (3.5.1-17h)
I o -
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By exchanging indices between I and 2, we obtain a similar set

of equations for the second processor channel. Therefore, a

simpler form of the likelihood equation is:

W"1 A T 2 ) . 1T j d),: me d hli' Gxlx(w)

= 0 (3.5.1-18a)

* AT, 2 ) -T jJ e 2  dw [Jh 2  Gyly 2

0 1
- 1 2 -Jabr1

+ al c(1 + *h - j Q, al )e

=0 (3.5.1-18b)

where

3 - -n YY

= a _2

and
Xl(w) X (w)

G(W)) -

x1x2  T

~ YI(W) Y*(W)
GyY2 (W) T

* are the cross power spectra, respectively, for X and Y.
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Substituting Equations (3.5.1-17g and f) in Equation

(3.5.1-17c) yields the optimum two-target, two-sensor spectral

shaping filters:

Sh 12$/(S2+N) 2

= )(3.5.1-18c)
1 + S(2 2/~S2/N2/N V* 2)S/
+ 2 1 + -2  /N 2 SI/N

and similarly,

h21 S2/(S1+N) (3.5.1-18d)

( SI/N '. i'2) S2 /N• + (2 - 1 + 2 S1I/N2

Note that the filters 1hj1 2 and 1h21 are a function of the

rsteering vectors, and that the target of interest is treated as

part of the signal process and remaining targets are treated as

part of the noise process.

A block diagram of this dual channel processor is shown in

Figure 3-3. It is seen that the dual processor is tightly coupled.

* In Chapters 4 and 5 we discuss a number of suboptimum procedures

for simplifying the complex structure of this processor in light of

improved multitarget time delay resolution.

Using Equations (3.4-1) and (3.4-5), the CRLB of the time

delay estimates for the two-target, two-sensor case can '.e found as

follows:

,.
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VAR(i) 2 - M i 1, 2 (3.5.1-19a)
1 (1 - M1 2 ) ii

where M12 is the coefficient of mutual dependence given by

121M 12 12 (J J21/2 (3.5.1-19b)

(1 11122~

* and the quantities dii are defined by (Equation (3.4-5))

= ~ r ,'3R_
1 aRk1Ji tr 3Tik 3Tj " (3.5.1-19c)

* k=1l

From the relations

Rk : Skl Pk1 + Sk2 Pk2 + Nk I (3.5.1-19d)

and

3 k 2 _1 aPki 3Gki \
: Qki OT i  Nk Ti ki ki ; i = 1, 2

(3.5.1-19e)

one obtains after some straightforward but tedious algebraic mani-

41 pulations: (See Appendix B)

O 2 (SI/N)]2 + S2/N] 2Y dwJll f I + G 1 Sl/(S2+ N) I + 2 S 2/N I 1d
0 (3.5.1-20a)

S.
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-I". S/N Nf" T2 O 2 1
.12 7 1 1 + G1 S/(52+ N) 1 + 2 2/ "'N 12

0

(3.5.1-20b)

cO 2(/N)2 1 + SI/N 2

J22 : j f + G2 S(5 + N) 1 + 2 SI7N '2 dY2

(3.5.1-20c)

Therefore, using Equation (3.5.1-19) the CRLB of the optimum two-

sensor two-target time delay estimates is given by

VAR(t'I) - (1 -n M 2 J + GIS1/(2+N)j

1--+_ 2 S2/N/I dI (..12a
VAR(Tj2) > 2'7 2T ,2 ($2/N)2

1 - 2 2 2I1"

120

1 + 2/N 2 dw

1rT 2 Sy7T J d2 (3.5.1-21b)

0

27 U2(S N
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( where

G 1 = (1 + S2/N) 2 - (r+ 2 S27N Ivt v 2I] (3 .5.1-22a)

2  - i S1 /N v 1 (3.5.1-22b)

and the quantities yI, Y12 and Y2 are given by (Appendix B):

2 3

S2/N) A Cosn WA12  (3.5.1-23a)
-1 + S2/N n=O

- 21S 1 S2/N
2  " 2

Y12 = Cos w12 - 2 [i + GI S1 /(S 2 + N)] (1 + 2 S2/N) s~f2 w 12

(3.5.1-23b)

and

Y2 = 1 - (I 1 )/N E Bn Cos  WA12  (3.5.1-23c)
I 10

where AI,= 11 - T is the time delay separation between targets 1

and 2. An , Bn are defined by the following:

A 4 S+ G1 S/NS + [ 2/N - i (3.5.1-24a)
0 [1 + + N 1+ S/N]



73

"A1  -4 G1 S + N) ] S 2/N (3.5.1-24b)

A2 : 1 -A 0  
(3.5.1-24c)

A = -A1  (3.5.1-24d)

B0 = 4 [1 G2 $2/S N) ] + S1/N - 1 (3.5.1-24e)

B= -4 1 2 /N (3.5.1-24f)

B2 = 1 - 0  
(3.5.1-24g)

B3 = -B1 . (3.5.1-24h)

Note that if both targets have identical power spectra (S1 = S2 )

and identical time delays (1, T2) then it can be shown that

1 + 2 (S2/N)
YJ =  2 (3.5.1-25a)

(1 + 2 /N)

1 + 2 S1/N
* Y2 (1 + SI/N)2  (3.5.1-25b)

Y1= i . (3.5.1-25c)

S
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Therefore, using Equations (3.5.1-25a-c) in (3.5.1-20a-c), we obtain

= = J12 " Hence, M2 = J12/(dllJ 22 ) = 1. Thus, the time

- delay variance is infinite indicating the inherent inappropriateness

_ of a two-target formulation to a one-target problem.

Another observation is that letting the interference power be

zero (i.e., S2 = 0), Equation (3.5.1-20a) reduces to Equation

1 (3.5.1-16a), the time delay CRLB for the single target case. Note

that because of the following inequality:

W 2i ( 615/N) r 2 /N ]2 Y dw
" [ 1 1 I + S2/N 2

- + G1  1 /(S+) +2 (S 2/N d

< I + 2 S 1/N dw (3.5.1-26)
(1-12) 0

we conclude that the time delay CRLB of the two-target case (Equation

(3.5.1-21a)) is always larger than the time delay CRLB of a single

target case (Equation (3.5.1-16)). For convenience, let S = S1 be

the target power spectrum and I = S2 be the interference power

O spectrum, then one can define a degradation ratio of a two-target

CRBL over a single target CRLB as

0

S
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R J two-tar4 et CRLB
Rd I one-target CRLB

-2" W 2 ( S/N) 2 d

(1 
+ 2 S/Ny

f + 51 /(I1 + N) 1+ 2 I/N

L0
(3.5.1-27)

* Note that Rd > 1 and that Rd is a function of SNR, interference-to-

noise ratio (INR), and relative time delay separation.

*t For the purpose of illustrating the two-sensor, two-target CRLB

performance behavior, we assume a one-sided power spectrum of 100 Hz

bandwidth centered at 50 Hz. Furthermore, we assume that signal,

interference, and noise processes have identical bandwidths.

Figures 3-4 and 3-5 present the multitarget shaping function

Y and Y12  respectively, as a function of frequency for a number of

interference-to-signal ratios (ISRs). Two effects can be seen:

(1) the function yl(w) reduces the low frequency band contribution to

the CRLB while the function Y12 (w) reduces the high frequency band

7a contribution to the coefficient of mutual dependence; (2) as ISR

decreases, both y1(w) and Y12(w) approach unity. Figure 3-6 presents

the two-sensor, two-target degradation ratio (Equation (3.5.1-27)) as

a function of time delay separation for a number of ISR values. Note

that identical signal, interference, and noise power spectra of

100 Hz bandwidth are used. As shown in Figure 3-6, the degradation

ratio is oscillatory as a function of time delay separation, which is

w

0°
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plotted in terms of the noise inverse bandwidth. The oscillatory

behavior decreases as separation increases. Two major peaks are

observed. The first occurs when time delay separation approaches

zero and the other occurs at 4 times the inverse bandwidth. Note that

the first peak goes to infinity at zero while the second decreases as

ISR decreases. Thus, targets with identical spectrum and spatial

location yield the worst estimate since they are not separable in fre-

quency and(or) space. In order to see the effect of different signal

and interference spectra on the resulting estimate, we fix the ISR but

vary the interference spectrum. We choose a noise bandwidth of

5000 Hz (B = 5000). The results are presented in Figures 3-7

and 3-8. Two observations can be made: (1) degradation ratio is no

longer infinite at zero time delay separation with non-identical sig-

nal and interference spectra, and (2) comparison between Figures 3-6

and 3-7 shows that the degradation ratio as a function of time delay

separation is bandwidth independent.

3.5.1.3 Case 3: One Target and M Sensors (J : 1, M : M). For M

sensors and with Qk = I, the parameter set consists of M-1 inde-

pendent time delays. For convenience we select the intersensor time

delay as the minimum time delay set. If we denote this parameter set

bye: (T 1 , T2 1 ... IMI)T, then the optimum estimate of this time

delay set is given by the M-1 likelihood equation:

3A h Q i 1M) - = 0

S (3.5.1-28)
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for i 1, 2, M-1.

It was derived in Appendix C that the CRLB of time delay estimate for

every inter-sensor time delay is identical and is given by

VAR(Ti) > M2, ; i 1, 2, ..., M-1

k= 

(3.5.1-29a)

or in continuous form
I

S 2 ()/N2 (W) 2 -VAR(Ti) > 27 1 + M 5(M)/N( w w dw (3.5.1-29b)

Thus, the CRLB of any two adjacent sensors improves with

increased M, the total number of sensors. Furthermore, Appendix C

shows that tKL time delay estimate between any two sensors also has

the same CRLB. In addition, the covariance of any two time delay

estimates is

* - . VAR(r.i) ; if li-il 1

COV(;i,;j) = (3.5.1-30a)

0 ; if li-il > 1

In other words, the correlation coefficient is

I

4
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coV(T i , T.)

13 TVAR(;.) VAR(T1 3

i if i - = (3.5.1-30b)

0 ; if ji - jl > 1

Thus far, we have studied only the optimal time delay processing

of a multisensor array system. The objective of a passive sonar sys-

tem, however, is to localize an acoustic source of interest (i.e.,

obtaining its range and bearing). For passive localization, a mini-

* mum of three sensors (assuming omni-directional response) is needed.

However, for a far field assumption, two sensors can yield good bear-

ing information. In the following section, we study in some detail

the optimum processor structure for range and bearing estimations

from a three-sensor array.

3.5.2 Localization Parameter Estimation

In this section we examine in detail the optimum processor
"0

structure for estimating localization parameters (i.e., range and

bearing). We compare the performance of the optimum processor to the

conventional approach, where range and bearing are obtained from the
0

measurement of two time delay pairs. We discuss briefly the optimal-

ity of the direct range and bearing estimation approach and of the

indirect time delay estimation approach.

0
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Consider a general three-sensor array geometry shown in

Figure 3-9. We are interested in obtaining an optimum estimation of

range and bearing using outputs from a three-sensor array. From

Appendix D, we note that the range and bearing information is con-

tained in the two incremental time delays. Let T, denote the time

delay between sensor 1 and 2, and let T2 denote the time delay between

sensors 2 and 3. Then one can writep.

r - r2  + L2 - 2rL cos( -)

i D~ D (3.5.2-1)

r2 + L 2 2rL
=0T0 D= 2 2 cos(9-) r (3.5.2-2)

Y
X TARGET

i! CDI/ CD3

LC

w 018952

wI! Figure 3-9. A Three-Sensor Array System

)/
+/

l./

b/
4 D, C
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where Di; i 1 1, 2, and 3 are the propagation delays. The steering

matrix is

Vk : dagul "j k l  ejwk r2=diag e (3.5.2-3)

Therefore, Equations (3.5.1-10a) and (3.5.1-10b) become

P Pk = V k im Vt (3.5.2-4a)

aPk L_ Vt (3.5.2-4b)

where ei is any time-delay related parameter of interest, and the

fmatrix P is given by (see Equation 3.5.1-8d)

0-Ti (1 2

: I 0 -T2 (3.5.2-4c)

L(T 1  + T 2) r2  0

1 The likelihood equations for range and bearing can be obtained from

Equation (3.5.1-11a) as

4

4
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B

3r -I2 k Ik ' Vk I - r 1Mj k 4k ~-
k--1

0 (3.5.2-5a)

and

3A(re) [2 " 
- ]

k=lk

=0 (3.5.2-5b)

where from Equation (3.5.1-Iib) we have

b 1 ¢ v (P (3.5.2-5c)

b = a tr(Q 1 V LT V*. (3.5.2-5d)
k Q kae k/

For a single target in uncorrelated noise, it is easily verified that

the biases are zero, i.e., b r be  0. Furthermore, for convenience

we write ihkj = IhkI and k= I, i.e., assuming spectrally identical

but spatially uncorrelated noise power spectrum for each sensor.

Therefore, the range and bearing likelihood equations reduce to

B
Shk hk 2 W Vk - V 0 (3.5.2-6a)ar* .. 'Vk

!. k=1

, . . .L - - - - - i-- I - | " - m
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fB

IL : ~ h 2 LIDk Vk C :0 (3.5.2-6b)

k=l

where from Equation (3.5.1-4b) one obtains

2.h.1 Sk/Nk2

Ih 1+ 3k/Nk (3.5.2-6c)

Using the definitions of Vk, D and the resulting derivatives 3cD/3r and

94/@e, the likelihood equations can be manipulated to yield

• (Appendix F)

3A(r,e) = T a 2r J Ih(w) I G(w; r, T2 ) dw = 0 (3.5.2-7a)

A(r,e) : T_.2 3 2 G(W; Tr1, ) d : 0 (3.5.2-7b)

where

J - =l J 2 J +2

G (w; TL, L2) = G21(w)e + G32 (w)e + G-1(w)e)
.@ (3.5.2-7c)

and G. (w) = Taiat is the estimated cross-power spectrum between

sensor i and j. Now we define the joint parameter ambiguity function

by

(r, T2 ) T Jih(w)l 2 G(w; T1, ) dw

22

L
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= f jh(W)12  G2 l( )e + G3 2 (w)e

+ G31 (W)e W(T+T2)j d

= 21(Tj) + R32(T2) + R3 1 (Tj + T2) . (3.5.2-8)

Therefore, the optimum (ML) estimate of range and bearing is obtained

by seeking the simultaneous nulls of the likelihood equations:

=A(r,e) = T -L R( T ) T 0 (3.5.2-9a)ar 3r 1 2

3A(r,e) = T 1 0 . (3.5.2-9b)

Now relate the time delays to range and bearing by

[r f2(ri, 2) f ( Tl ' T 2 )  (3.2.5-9c)

Sf 2(T1, T2)] 2

and its inverse by

: f-l(r,e) (3.5.2-9d)

T2
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Then the joint estimation of range and bearing can be realized by an(
open loop processor described in Figure 3-10. In the literature,

this is known as a focused beamformer because the optimum estimate of

range and bearing is obtained when the beam is focused on the target.

Note that the optimum estimate of ranqe and bearing (r*, e*) must

correspond to the time delay pair (T*, T*) which defines the peak of

the joint time delay ambiguity function R(T1 , T2 ). Therefore, an

equivalent theoretical approach is to first seek the optimum time

delay pair (T*, T*) and then transform it to the corresponding range

and bearing. For practical applications, however, it is sometimes

more convenient and simpler to search and track in the time delay

parameter than the range and bearing parameters since the ambiguity

function is symmetrical and uni-modal (for high SNR) in the time delay

variables. More importantly, for a low SNR environment where a

T-second observation MLE processor fails to be efficient, the

symmetric property of the time delay ambiguity function allows a

simple tracking filter design which could provide optimum estimates

by increasing the effective coherent integration time.

Unfortunately, the resulting non-linear transformation from time

delays to range and bearing for the practical approach renders the

otherwise Gaussian noise process to be non-Gaussian.

Note the focused beamformer implementation shown in Figure 3-10

requires a two-dimensional (2-D) peak detector. However, a time

delay approach using only two I-D null detectors can be realized
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lo, without any loss of performance. This can be seen as follows. Rewriting

Equations (3.5.2-9a and b) in terms of the time delay variables and

using the chain rule of differentiation yields

ME [R( T T2 ) 3T, 3R(T I  T2 )  DT2  0Tr~ - Dr +  , -'" 2] :0

(3.5.2-10a)

R( 2(re) Tat I a R(r 2) a 2 1 =0
L at + asaT 2  : J

(3.5.2-l0b)

Using the siimple relations

L ~ L 2sin 2 e
I : - Cose 2rc and

L2  L 2 sin 2 9T2 Co - +O
2 - c 2rc

as shown in Equations (D-2a) and (0-2b), respectively in Appendix D,

we observe that the derivatives of T, and T2 w.r.t. range are zero

only for infinite range and the derivatives w.r.t. bearing are zero

only at the endfire direction. Therefore, for all other situations,

the necessary and sufficient conditions for Equations (3.5.2-10a) and

(3.5.2-10b) to be true are

3R(T, T2 )

aT1 0 (3.5.2-10c)



92

R( T1  T2 ) 0 0 (3.5.2-0d)

3T 2

Thus, using Equation (3.5.2-8) in (3.5.2-Oa-d) yields

aR( 1 t 2 ) T fR(t 1 ) + R31('t + "2)1

T a jh(w ) 2

~- TTN Jf
jWT1  jw(Tlc+, 2 )

[G21 ()e + G31 (w)e 1 dw

(3.5.2-10e)

and
PR(TI, T"2 )  T R 

T3TR2(-r1 2 T iR 32("2) + R31(t + T)

T a h()l2

r~r T2 f 2

JG32(w)e + G31 (w)e 21 d

* (3.5.2-10f)

.4

4
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where we have used the fact that

3R3 2 (T 2 ) aR21 (T1 )
1a. @3 32 0 .(3.5.2-109)

An optimum three-sensor array processor using two correlators is

shown in Figure 3-11.

We next calculate the CRLB for the optimum three-sensor a, y

processor. First we calculate the CRLB for the optimum time d ,

estimate and compare it to the conventional approach. Then th

for the localization parameters is obtained by relating it to trit time

delay estimate.

From Appendix C, we obtain the elements of the Fisher Informa-

tion matrix for optimum one-target three-sensor time delay estimation

as:

B 22 /N k

Jij -tr a 1 + 3 k (3.5.2-11)

k=1

-* From Equation (3.5.2-4c) we find

[0 -1 -110 0 -
_* .

a1 1 0 0 0 -] (3.5.2-12a)
3 I 1 0I 0-

......So | j



94

ot4 )
0 (U

LU -4 Z LuC-

jZ04i-I I  0
WJ 4. 0

N c N 0

I-..

0 Z

Ez .i

4- C4-lS

zI (A

ww

.-

mi,

00

w _j

C N N <1 0

crow 0
CL xx x (nE

0
z
0

WZ

ww
o0

-J E7

U44-

w<

Li..

SA



95

and therefore(

tr (~±...) -4(3.5.2-12b)

tr DO 9 ) =-2
3T1 3T 2 (3.5.2-12c)

I and

tr (p @ a -4 .(3.5.2-12d)

I2 _r2

From Appendix B, the CRLB for a two-parameter joint estimation is:

VAR( I) > 1 (3.5.2-13a)
(1 - 1~2) 11

VJAR( 2) > (1 2 M I (35.2-13b)-(1 m12) 223 3

where M12, the coefficient of mutual dependence, is given by
..q 12

M12 (J11 J22) (3.5.2-13c)

Now using Equations (3.5.2-11) and (3.5.2-12a-d) or Equation

(3.5.1-29a), we obtain

w2/'kk (5.-14)

VAR( I) = VAR( 2) [ 3 1 + 3 k(3.5.2
k 

Il
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Note that for the general case of M sensors it was shown in Appendix C

that the CRLB of the incremental time delay estimates is given by

VAR(Ti) > M ( k -k ; = 1, 2, ..., M-1
k=1

(3.5.2-15)

U
Thus, the time delay estimate improves with the increased number of

spatial sensor observations.

We now discuss the conventional approach to estimating range and

bearing. A conventional three-sensor array signal processor is shown

in Figure 3-12. In the conventional approach, only two cross-power

spectra are processed. For this case, the CRLB of the time delay

estimate is given by (see Equation (3.5.1-16a))

,, 2 1S2/N2 3521a
VARc (T) = VARc(T 2) > [ Wkk 1 ( (3.5.2-16a)

k=l1 + 2 S k/Nk

Therefore, the time delay variance ratio of the optimum to the conven-

-* tional is

( + 2/N2

VAR( 1 ) 2 k=1 (3.5.2-16b)4VARc( I : B ( 2N)1

2 k k

I

I
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and for a flat signal and noise power spectra, Equation (3.5.2-16b) is

simplified to

VAR( 1 2 1 + 3 S/N (3.5.2-16c)

Thus, at low SNR, the CRLB of the optimum processor is improved by a

factor of - (1.8 dB) with respect to the conventional approach.

Because the two time delays are correlated due to common noise

channels, a more meaningful approach is to compare the one sigma error

ellipse area between the optimum and the conventional. From

Appendices C and E, we obtain the two time delay covariance matrices

as

P 0 VAR( 1 )

-S/N

t c -S/N 1 VAR() (3.5.2-16e)

1 + 2 1/

where P and Pc denote, respectively, the optimum and conventional

4 covariance matrices. Therefore, the ratio of their area is

Ao  1TPo 1
A0
Ac 7 P c1

4
" " ,1 -
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: '/3 (1 + 2 S)_ VAR(_I)

3 ( + S)(1 +VAR(T 1 ) (3.5.2-16f)
4(1 + 3S/N)(1 + S/N) VAR(- 17

Using Equations (3.5.2-16d-e) in Equation (3.5.2-16f) yields the

desired result:

A o 3 S/N (3.5.2-16g)

C

Thus Equation (3.5.2-16g) states that in a low SNR environment

(f <<1), the error ellipse of the optimum approach has an area equal

approximately to one half the conventional approach. This represents

a substantial loss in performance by the conventional approach. On

the other hand, in a high SNR environment i) the conventional

processor approaches the optimum.

The CRLB on the localization parameters for the focused beam-

former can be obtained as follows. Defining the Fisher Information

matrix by

rr Fre
F:=

Fer Fee

I
then the CRLB for the range and bearing estimates is:

- ~ 1 1VAR(r) - 2 F
(1- 12) rr (3.5.2-17a)

I
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(3.5.2-17b)

where

F re

M12 (Fr '.e (3.5.2-17c)
(F rr F eel

Again from Appendix C, we find:

Frr -"tr @2
rar r0k ) + 3 Sk/Nk  (3.5.2-18a)

B22
Fro = -tr r Tek 1 + 3 Sk /N (3.5.2-18b)

k=1

and

B 2 S2 /N2

Fee a aei + S/Nk k ) (3.5.2-18c)

Now

I

-r alt a

_ i~lj=l

Ttr (3.5.2-19a)

i=l jl

I
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and using Equations (3.5.2-12a-d), we obtain

tr Lre A -4 ID "T1 + "'1 2 + a T2  'T + aT 2 a 2 T

Or asaaar ae ar a @ra

(3.5.2-19b)

and similarly

ar Trsr = 4fZ-\-2 + . ar r +  @- )21 (3.5.2-19c)

tr(. [( e-I 2 e () 2 (3.5.2-19d)

Using Equations (3.5.2-1) and (3.5.2-2) nd evaluating the deriva-

tives at the true range and bearing (R, B), we obtain the folowing:

t 2  
1 2L +sinB 2

a 3e - - R (3.5.2-20a)

IR,B

:' 3T (L2 sin(B 2 )

;..o T I R, B =" R(3.5.2-20b)

3rL I  I sin 2 B)

*8 IRB - sin B ci ~(3.5.2-20c)
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and

: - 2sin(B (n+ - (3.5.2-20d)

R,B c R

For simplicity we assume a special case where the sensor arrays are

co-linear with equal separation (L = L = L2 ) and the target is at

broadside. Thus, substituting Equations (3.5.2-20a-d) in Equations

(3.5.2-9b-d) yields:

tr as a 0 (3.5.2-21a)
* (r a R,B

33r I R,B c (3.5.2-21b)

and

Rr -12 (3.5.2-21c)
tr To- R,B C

Therefore, the CRLB of range and bearing evaluated at the true range

and bearing is given by:

2 2 1

VAR(r) > 2 t r k I2 + 3 S /N
(I1- M 2 ) k=1ar/ k 1 kk

(3.5.2-22a)

'S
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~(3.5. 2-22b1

And because of Equation (3.5.2-21a), range and bearing estimates are

I uncorrelated. Using Equation (3.5.2-14) these can be expressed in

terms of the variance of the time delay estimate as follows:

VARr)>3 VAR(T1 )

-Vtr/r)2 (3.5.2-23a)

VAR(e) >3 VAR (a 1 )

[40() k

(3.5.2-23b)

For the special case of a co-linear array and a broadside target, we

find

VAR(r) > 3c2 Igo VAR( 1) (3.5.2-24a)

VAR(e) >( 2 VAR(T ) (3.5.2-24b)

6]

6t g
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Taking the ratio of Equation (3.5.2-24a) to Equation (3.5.2-24b)

yields

VAR(r) > 12 - VAR(e) , (3.5.2-24c)
L

which relates the range variance to the bearing variance. Thus, we

obtain the well known results that the variance of the range estimate

Sis proportional to the fourth power ratio of the true range to base

line length, and the variance of the bearing estimate is inversely

proportional to the square of the base length.

Note that the range and bearing variances of the focused beam-

former approach (Equations (3.5.2-24a-b)) agree with Equations (G-15)

and (G-16) of Appendix G, which were obtained via a geometric mapping

from time delay measurements. Therefore, the one-step focused beam-

former approach and the two-step time delay approach yield identical

statistical performance.

Let S and S denote the area of the range/bearing one-sigma0 c

* localization error ellipse for the optimum and the conventional

approach, respectively. Then from Equations (3.5.2-24a) and

(3.5.2-24b) one obtains

S 0 T TVAR(r) VAR(e)

•:C l / R'c?
- ( c VAR( i ) • (3.5.2-25a)

LeL
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On the other hand, for the conventional approach, it can be shown

(Appendix G) that

(7TR 2c2 N (1 + 3 S/N)(1 + S/N)

\ L 3  (1 + Z S/N) VARc(TjI)

Therefore, using the relation given in Equation (3.2.5-16d), the

ratio of the error ellipse area is

S + 3 S/N(3.5.2-25c)

which has the same ratio as in time delay estimation (see Equation
I

3.5.2-16g). Thus Equation (3.5.2-25c) implies that the optimum pro-

cessor yields a one-sigma localization error ellipse which is approx-

imately one half (1i1/7) that of the conventional approach in a low

SNR environment. This improvement comes directly from a better bear-

ing estimation using the optimum approach.* Note, it can be shown

that the ranging performance is identical between the conventional

and the optimum approach. (See Appendix G.)

*It was pointed out by Dr. J. lannielo of the Naval Underwater Systems

Center that optimum range and bearing estimation can also be achieved
using the conventional approach. However, one must provide separate
and different spectral shaping filters for range and bearing
estimation.

-I - I - i -I*-I6' - - *i -•*
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3.5.3 Power Spectral Estimation

Our discussion thus far assumes that all target power spectra

are known. This is one of the strongest assumptions we have made in

studying the optimum signal processor. The resulting processors con-

tain spectral shaping filters which are functions of the known target

power spectra. In an actual implementation, the power spectra must be

1either known a priori or estimated. In this section we briefly exa-

mine the methodology of spectral estimation in a multisensor, multi-

target environment and the relations between power spectral estima-

0Q tion and time delay estimation.

Thus, we seek the estimate Skj , the signal power spectral level

of target j at frequency k. Recall from Equation (3.2-6) that the

spectral levels are contained in the observation covariance matrix

Rk. Let S be a column vector of all the unknown spectral levels.

Thus, S =(S11 $21 SB1 ; S12 22 SB2; ;

S S BJ)T is a JB dimension vector. Therefore, from
Equation (3.2-9) the likelihood equation for Skj is

3A(S) 3Ak(S)
= - 0; j = 1, 2, . . , J (3.5.3-1)

akj k 1 1, 2, . . , B

* Note that the likelihood equations are decoupled in frequency. This

implies that each equation can be solved separately. Now from Equa-

tion (3.2-10) we obtain
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Ak(S) / Rk ) * R1
tr R 1  kj + A skj (3.5.3-2)

where Rk and Rk are given by Equations (3.5.1-2a) and (3.5.1-3).

Hence, the derivative of Rk and Rk w.r.t. Skj is given by

aRk 

a-2 Pkj -kj kj (3.5.3-3a)

aRI  a - - -1
.. gk - (ski Pkj + Nkj qkj~kj QjPk k

S-' Skj kj N kj Skj/Nkj

-Nk. Skj k /1 -G)

as L - -~kj kkj Pk+ Gkj Skji Nkj (1 + Gkj Sk/Nk)J

-kj .k k/Nk (3.5.3-3b)
(1 + Gki Skj/Nki)

Therefore, the first term in Equation (3.5.3-2) can be written as

aRQkj kjlk

tr Rk1 as k tr 4

SN)kj2

1 GSkNk. kj -kj 4j Qkj -kj1 + G kj Skj/N kj
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S I 2-. kj kj a
- kj

Nkj 1 + Gkj Sku/Nkj

_ Gkj/Nkj

1 + Gkj Skj/Nkj (3.5.3-4)

Substituting Equations (3.5.3-3b) and (3.5.3-4) into (3.5.3-2), one

obtains

aSk I + Gk Skj/Nki (I + Gkj Skj/Nk) 2  2

SI/+( 
3 .5 .3 -5 )

Solving Equation (3.5.3-5) yields

* --1 2

Ys k 1k U Nk_ k = 1, 2, . . , B
Gkj j 1, 2, . . . ,,J.

(3.5.3-6)

6

Thus, in order to estimate the J target power spectra, a total of J8

equations must be solved if the optimum steering vector Vkj is known.

If it is not known, then the J(M - 1) time delay equations must be

solved simultaneously with the JB spectral equations. However, in

practice the target spectrum can be modeled with a considerably

smaller set of unknown parameters. Therefore, sampling the spectrum
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at appropriate frequencies should provide sufficient information to

estimate the unknown spectral parameters.

Note that Equation (3.5.3-6) is an unbiased spectral estimator. This

can be shown easily as follows.

Taking the expected value of Equation (3.5.3-6) yields

UN
* -1 2 kj

E(S k ) = EIYkj Qkj aI kj

G ~j

-V Q E(a C ( 3.5.3-7 )
72 Lk j Qkj -k Qkj 4kj "Gk
Gkjj

kj

But from Equations (2.3-3a) and (3.2-7a):

E(< ) : Ski -k (k + Nki QKj (3.5.3-8)

Substituting Equation (3.5.3-8) into (3.5.3-7) yields

* -I - -1

N V. Q_. Q ~-
E(Skj) : Ski + kj kj kj kj -kj Xkj Nkj

Gk

= Skj (3.5.3-9)

Next 4e briefly examine the optimum spectral estimator for the one-

target and two-target cases.
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3.5.3.1 Case 1: One Target, M Sensors (J=1, M=M). For a
* -1

single target, we have Nkj Nk, Qkj = Qk' and Gkj = Gk k Qk V-

Equation (3.5.3-6) becomes

Q_ I.Q1 J 2 Nk
Gk G k "(3.5.3-10)

Ik
Furthermore, by letting Qk I (i.e., noises are uncorrelated from

sensor to sensor), then Equation (3.5.3-10) can be simplified to

2t ^ I~ < Nk

Sk  - M2  k" (3.5.3-11)
M

Figure 3-13 shows the optimum one-target multisensor spectral

estimator.

3.5.3.2 Case 2: Two Targets, M Sensors (J=2, M=M). For the

two-target case, Equation (3.5.3-6) becomes

Sk2  - 1 (3.5.3-12a

kl kI2Lk2~~I2 Sk + Nk

k2 G2 Gk2 (3.5.2-12b)

k2
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Recall that

kI kS2  k N) (Sk2 .Y42 -.k + k

1 Sk2A Ik-(I + Sk2INk) IQS2 QR' V 2 Qk1[ + M Sk2/Nk

(3.5.3-13a)I

Similarly,

1 + M Sk/NkI ]
(3.5.3-13b)

Also

GkI Y 41QkI .41

r A

= (I + Sk2/Nk) !k1 QkI V 1 - Sk2 /Nk Q Q 1

S1 +M S k2/N k

(3.5.3-13c)

and

Gk2 = ( I + S42/N) Qk 2 + M Skl/Nk (-4k2 QkI4  2

(3.5.3-13d)
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* i* -1 =M No

For simplicity assume Q I, then 4k Q -1 Vk 1 M. Now

the following relations can be obtained:

M (I + Sk2 /Nk)
Gk 1 Mk2k) (3.5.3-14a)I M .k2/Nk

M (I + SklI/Nk) (3.5.3-14b)
Gk2 -,,

1 + M SkV!Nk

1 k 1 0 ( + S2/Nk) - xk/N
1 + M S k2/Nk

-4

(4-1 YI2) (Yk*2 a)2

(3.5.3-14c)

- 2 +2 * Skl/Nk-V-. 2 Qk 2  ( kl/'k) k 2 --k I + M S k1/N k

.q (-Yk1X-k2) (-Y.kl ) 2

(3.5.3-14d)

Substituting the above into Equation (3.5.3-12a-b) and simplifying

yields
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Ski A Ak2[A k2 I-'ki Ik Bk-2 42 -5- 2 N ki (3.5.3-15a)
S( A AB1 01

,k2 -- k1Ak 142 -k . J - N-  (3.5.3-15b)

where A and B are defined byki ki

I + M SkiINk
Aki - M , i 1 1, 2 (3.5.3-15c)

and

ki= Ski /N k *Iki2; = 1, 2 (3.5.3-15d1)
Ski/ k  I

I + M Ski/Nk

The optimum two-target M sensor spectral estimator is shown in

Figure 3-14.

We have already shown that the optimum spectral estimator is an

unbiased estimator. In the remainder of this section we briefly dis-

cuss the estimator performance bound. There are two cases of particu-

lar interest: (1) power spectral estimation with known time delay,

ind (2) joint time delay and spectral estimation.

3.5.3.3 Case 1: Power Spectral Estimation with Known Time

Deliy. Consider the two-target M sensor problem. The optimum power

spectral estimator is given in Figure 3-14. The spectral CRLB can be

lerived as follows.
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For each frequency wk, we have the relation

VAR(Ski) [FIj ; j = 1, 2 (3.5.3-16)

where F is the 2x2 Fisher information matrix whose jk. element is given

by

= E[ a2(S)
-j a skj k J

= tr R-1 3Rk -1 3Rk

aRklaRk k .

= -tr aRk a k ) (3.5.3-17)
kask SZ

where Equations (3.5.3-2) and (3.4-4) have been used. Using Equa-

tions (3.5.3-3a) and (3.5.3-3b), Equation (3.5.3-17) reduces to

4

-I 
1 

* 

(3- 

.32-
Qkj -Lkj Vk '4kj/ ki .. ,V

F., tr k

(1 + Gkj Skj/Nkj)

* "

4~ k Z.jI/

~ I'35 3 1a
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Note for j &, Equation (3.5.3-18a) further reduces to

Gk /Nk ]2

F [ kj/Nkj ] (3.5.3-18b)1J + Gk Skj/Nk
Gkj k

Thus, the spectral CRLB is

' VAR(S kj) (1-M2 )  j

1 1

I 2  Skj + G kj ; j 1 1, 2 (3.5.3-19a)
(-M12)

where

2  F12M12 =(F11 F 22)2

= Y. 2 Qk1 .Ykl'I (3.5.3-19b)(Gkl Gk2)

* is the spectral coefficient of mutual dependence. Note that for a

single target case, the spectral CRLB is



118

VAR( S2k) [ 2 S 

([aSk i

= tr 8~R k 3R k

= I

Sk +G (3.5.3-20)

where Gk = Q1 - is known as the array gain.

3.5.3.4 Case 2: Joint Time Delay and Spectral Estimation. For

simplicity, we assume a single target and two sensors. Therefore, the

unknowns are T, the time delay, and Sk' the spectral level at

frequency wk" Note that because the spectral likelihood equation is

independent for each frequency wk, we only need to consider the joint

estimate between T and Sk. Now let eI = T, and e2 = Sk, then the

joint time delay spectral CRLB evaluated at the true parameter values

is

VAR(ei) > (F-1)ii , i 1, 2 (3.5.3-21a)

where the ij element of the Fisher information matrix is given by

Fij -E (e i (3.5.3-21b)
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Now

Fa A
F -E

B k aR kI: tr 3T 3

k=1

B

2Z w 2 Ih2 S(3.5. 3-21c)

k=1.

where Equatior (3.5.1-15c) has been used. Also
1hk 2 = (Sk/N2)/(1 + 2 Sk/Nk).

rFrom Equation (3.5.3-18b) we obtain

a ( S,-r)
F22 -E( as2

G k/N k  )2

1 - ( + Gk Sk/Nk (3.5.3-21d)

Finally, the cross term is

I

I"
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aF12  E 2A( S,)

aT a~k

= -t 8Rk 1aRk

S= JwkAhk I Vk V k  M Vk) (3.5.3-21e)

where relations in Equations (3.4-2) and (3.4-5b) have been used.

"O But from Equation (3.5.1-13e), we obtain

tr(Vk (D V* Vk 1 M V) tr 1 0e F0 -11 jFl

0 i 0 e

E ~ ~[ : ej ] [ii J] BI e-j ] "

- 1 
-e-j-

= tr ler jJ

= 0. (3.5.3-21f)

Thus, F1 2  0, indicating that spectral estimates and time delay

estimate are uncorrelated. Hence, using Equation (3.5.3-21a) the

CRLB is given by



121

B
VAR() k h k Ihk Sk  (3.5.3-22a)

and

2

VAR(Sk) = Sk + !k (3.5.3-22b)

which is identical to the time delay estimate with a known spectrum

* and to the spectral estimate with a known time delay, respectively.

Thus, we conclude that joint time delay spectral estimation does not

degrade the time delay estimates nor the spectral estimates.

It is interesting and revealing to show the explicit dependence

of the time delay spectral performance on the observation time T. Let

S(w) and N(w) be the true continuous signal and noise power spectra.

Now recall from Equations (2-13d) and (3.5.1-13d) that Sk = E(

and lhk1 2
a 2= 'N 2/(1 + 2 Sk/Nk) , where k is the Fourier coefficient

of the signal waveform from T seconds of observation. Also recall the

relation that for sufficiently large T, we have TSk = S(wk),

TNk = N(wk) and lhkJ 2  2Th(k02  Consequently, Equations

(3.5.1-22a) and (3.5.1-22b) can ue manipulated as follows to yield

....6 | | - U U"m . .
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' B -

VAR(T) wk  h(wk) S(wk) -
k=1 T

T [ 2 ( +w S(A)/N() dw (3.5.3-23a)

A A(k)VR(Sk) L T k + G

1[S(wk) + 2 (3.5.3-23b)

where S( k) denotes S(w) evaluated at frequency w - (21Tk)l

Thus, Equations (3.5.3-23a) and (3.5.3-23b) indicate that while

the time delay variance is inversely proportional to T, the spectral

variance is inversely portional to the square of T. In other words,

the spectral variance is more effectively reduced by increasing the

observation time than the time delay variance.

0.
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CHAPTER 4

SUBOPTIMUM REALIZATION OF MULTISENSOR, MULTITARGET

VTIME DELAY PROCESSOR

One must learn by doing the thing: for though you think
you know it, you have no certainty until you
try. -- SOPHOCLES

14.1 INTRODUCTION

In Chapter 3 we derived the optimum (MLE) multisensor, multi-

target time delay estimator. The result yields a highly coupled

multi-chanrel processor. For practical applications, it is desired

to seek suboptimum realizations which can substantially simplify the

required implementation. In this section we examine the suboptimum

processor based on a weak signal in noise assumption. This is the

case of considerable interest since in passive signal processing, a

weak signal in noise represents the usual environment at which a

signal processor must operate.

-.4

4.2 WEAK SIGNAL IN NOISE SUBOPTIMUM PROCESSOR REALIZATION

Assuming that

S(W) /N(w) << I for j 1 1, 2, ... , J (4.2-la)

123

• . .I
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!py and using Equations (3.5.1-17c-g), Equation (3.5.1-12) becomes

2 .W)/N (W) S.(w)/N (W)
I )+ G1(W) Sj)/N (W) + M S.(w)/N(w) (4.2-Ib)

1 _ s (w) /N.j ()

a a (w) N j(w)lhji(W)l 2  1 + M Sj(w)/N(w) (4.2-1c)

il ~(W) N Nj(W) Si(w) Pi(w) + N(w) Q(w) (4.2-1d)

Q-1M NS(.)/N() (4.2-1e)

Nj(M) Si(w ) + N() (4.2-1f)

i-j

P (W) = Vj(W) 1 S(w) (4.2-ig)

Qbi() S (iW /N(W) tr Q Vj(W) 1i V( ) (4.2-1h)

and the simplified likelihood Equation (3.5.1-12) of estimating time

4 delay between sensors i and i + 1 due to target j becomes:

3A(z)

Zij(w) -~ ij )+N (.-f
i =1
i ~j
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I jw Ih.(W)j 2 a*(W) Q-1 (W) Viw 1W(P bi

V(W) Q 1(w) a(w) - T b'(w) dw (4.2-2)

Note that Equation (4.2-2) results in a substantial simplification of

* Equation (3.5.1-12). For the two-target and two-sensor case studied

in Section 3.5.1, the resulting two likelihood equations (3.5.1-17a)

and (3.5.1-17b) become:

aA(Tj, T 2 ) = W hw 112 a* Q-1 V ((D- 1  M

0

1dwV* Q- _a - T bI

-0 (4.2-3a)

A(TI, T 2 ) f S 2 Q-1

Tjh 2 i _* 2V 2(¢ - b2 
1M)

V Q-1 a - T b dw

2

- 0 (4.2-3b)
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where

!h 1 2 S1/($2 + N)2  (4.2-3c)1 1 + 2 S /N

Ih212 = S2/(S1 + N)2  (4.2-3d)
1 + 2 S2/N

Q-1 (4.2-3e)

@I : (4.2-3f)
1 0

b,= -(1 1 N)[wT~ - e
17=" 2 SI/N (I + 2 S 2/N emZ J(IT)

(4.2-3g)

Sb/N S2/N eJw( 2"T) -jw(r 2-l)
2 - +2 S/N 1+2S 2/) L-e j.

(4.2-3h)

Using Equations (4.2-3c) through (4.2-3h), Equations (4.2-3a) and

0 (4.2-3b) can be further simplified to

aA(T 1, '2) T Go 2 - + SI 2/N
2

aTI  f jW I G xlx 2 + (1 + 2 SI/N) (I + 2 S2/N)

(1+ 4.1 I al I2) e-jw T2 jW dw
T I Q-1l d

S- 0 (4.2-4a)
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;A(T1, 
2  ji2j 1h2 T S S2/N

2

2  2 Gxix 2  (1 + 2 S1/N) (I + 2 S2/N)

1+ 1 h2  1 Q-1t2) JWleJW 2 dw

-0 (4.2-4b)

U
T -1where x = (x1 x2) Q a, Gxlx2 is the estimated cross power spec-

trum, and v1 v2 are the time delay steering vectors. A block

diagram of this processor is shown in Figure 4-1. Note that given

two sensors, a single channel GCC under a multiple target environ-

ment is known to be biased. The coupling shown in Figure 4-1

provides the required bias correction. Note that the bias cor-

rection term is a function of SNR and INR. When the power spectra

are not known, the quantities SNR and INR must be substituted by

their estimated values. Thus, the optimum power spectral estimator

discussed in Section 3.5.3 is applicable. Finally, if the signal

spectrum and interference spectrum are separable (i.e., no over-

*O lapped region), the two channels become uncoupled.

* 4.3 A SINGLE TARGET ASSUMPTION SUBOPTIMUM PROCESSOR

For completeness we now incluae a study on the suboptimnum multi-

* target processor using a single target formulation. The resulting
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processor performance has been studied widely in the context of the

localization variables (i.e., range and bearing7'10'11,12,34,36

However, a direct study on the time delay variable has not been seen

in the open literature.

A single target processor can be obtained from the multitarget

u processor by setting the interference power spectra to zero. For the

two-sensor case, the resulting processor reduces to the GCC processor

discussed in Section 3.5.1. The time delay is obtained from the GCC

- by locating the peak of the GCC function (assuming that SNR is suffi-

ciently high so that a dominarit peak can be detected). In the

presence of interference the resulting estimates are known to be

biased. In addition, they affect the time delay variance perform-

ance. Here we shall quantify the performance in more detail.

Consider a general two-sensor, J target problem. Let the true

time delay to target j be Tj for j = 1, 2, ..., J. Then the fre-

quency domain representation from T seconds of observation time

can be written as

'Ik = ilk Bk + nlk (4.3-1a)

'2k = -2k k + n2k k 1, 2, ... , B (4.3-1b)

where the ccnplex vectors vIk, 2k and 6k are defined by

lk S
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SJ~k'ileJwkDi2 jwk Dij)
.i Vk ( e e.. e ; i 1 1, 2 (4.3-2a)

and

_61 B(k1 k2 .-. kJ) T (4.3-2b)

where Dij is the propagation time delay from target j to sensor i and

akj is the Fourier component of the signal spectrum of target j. The

peak of the GCC is obtained by locating the null of the function (see

Equation 3.5.1-14c)

f(T) jW* JwkT (4.3-3a)
Sk Ik al k e 
k=-B

where jhkj 2 , the spectral shaping filter, is given by

Sk/' 2

IhkI 2  k1 k (4.3-3b): I + 2 S klI/N k "

Note that without loss of generality we have let j = I be the target

of interest and let the remaining J - 1 targets be interferences. An

alternate selection of the frequency shaping filter is the multi-

target spectral shaping filter (see Equation (3.5.1-4b)):

I kI2 = Skl/Nkl (4.3-4a)
1 + G kl S kl/N kl

4

4



S

131

where from Equations (3.5.1-2c) and (3.5.1-3)

J

Nkl = Ski + N (4.3-4b)

j=2

and

Gl Yzkl kI-kik Q) -4

Ik -Nkl 4 Yk

SNkl (4.3-4c)

"k

for the two sensors with Qk

Therefore, a simpler form of Equation (4.3-4a) is

-2

Ihk 2 = Skl/Nkl (4.3-4d)k i + 2 Shl/N

For example, for the two-target case, Equation (4.3-4d) reduces to

02 S /(S + Nk)

h " (4.3-4e)
1 + 2 Skl/'Nk

-
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The basic derivation of the bias and variance is shown in Appendix H

(Equations (H-8e) and (H-17b)). The expressions for the bias and the

variance for the two-target case with identically flat signal, inter-

ference, and noise power spectra are given by Equations (H-12) and

(H-21a) as

S1i (T2  T 1 ) (4.3-5a)l:1 + S/I

and

2 1  [1 (al p(2A,) + a, p(2A 2) + 2a, a2 p(A. + A2))

VA( T 2(a (i) + a2 P(A2 ))
2 R(O)

(4.3-5b)

Swhere T is the signal-to-interference ratio and

a S/N (4.3-6a)
1 : + S N + I/N

a I/N (4.3-6b)a2 : + S /NI + rI/

AI = Ti - Tl (4.3-6c)

A2 = TI - T2 (4.3-6d)
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w2
" 2 co 2 T (4.3-6e)

"R(r) : ] COS w' dc 4.-e

W1

p(=) R(T)/R(O) (4.3-6f)

Note that in the limit as Al . 0, A2 - -, we have p(A2 ) - 0,

P(A1 ) . 1 and the steady state variance is

VAR (Ti)-- Iim VAR(TI)

A A1 .0

A2 ,

B2

Therefore, one can define a normalized variance as

VAR(T) a a

VAR.(TI) I a1

1 (a1 p(A 1 ) + 2a, a2 p(AI+ A2 ) + a2

2(al p(A) + a2 P(A2 )) 2

-* (4.3-8)

Note that Equation (4.3-7) does not reduce to the single target

* case because of the presence of spectral interference. This is cer-

tainly true for the case of two omni-directional sensor arrays since

interference power is not spatially attenuated as a function of time

* delay separation. However, for sensor arrays with large base length

I" - Odl
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separation, this condition is again satisfied since a small spatial

separation could produce a large time delay separation and insignifi-

cant spatial attenuation.

4.4 GCC PERFORMANCE IN THE PRESENCE OF INTERFERENCE

Performance of the GCC in the presence of interference is com-

pared to the optimum processor in the remainder of this section.

Figure 4-2 shows the interference of the expected value of the.GCC

due to signal only by the GCC from a second target with an identical

spectrum shape but a 3 dB smaller signal power. It can be seen

that (1) the two GCCs are merged to one (i.e., it fails to resolve

the target from the interference), and (2) the peak of the com-

bined GCC is biased. Figure 4-3 shows the same GCC in the form of

a 3-D interference pattern as a function of target-interference

time delay separation. (Note the combined GCC in Figure 4-2

corresponds to the curve with unity separation in Figure 4-3.)

Since the MLE is asymptotically an unbiased estimator, the optimum

processor has no bias for sufficient integration time. Therefore,

it resolves the multitarget ambiguity. This is the primary advant-

age of the optimum multitarget processor. Figure 4-4 shows the

bias characteristics of the GCC. Note that when the time delay

separation is small, the bias is proportional to the separation,

indicated by Equation (4.3-5a). Figure 4-5 presents the resulting

GCC variance. The GCC variance about the estimated mean is
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normalized by the corresponding variance with no interference

(Equation (3.5.1-16b)). Also shown in Figure 4-5 is the CRLB of

the optimum two-target processor. This optimum processor not only

resolves the bias but also has a smaller steady state variance.

Note that even with no time delay interference, the variance of the

GCC does not approach the bound because of the presence of inter-

ference in the frequency domain. Also note that with no time delay

separation between target and interference, the CRLB is singular,

reflecting the inherent inappropriateness of a two-target formulation

to a one-target estimation problem.
-0

Also shown in Figure 4-5 is the total Root Mean Square (RMS)

error of the conventional GCC processor in the presence of inter-

ference. Note that the CRLB of the optimum two-target processor

results in a significantly reduced total RMS error. Finally, we

remark that identical signal and interference power spectra are the

worst conditions. For different signal and interference spectra, the

optimum processor is well behaved even at zero time delay separation

(see Figure 3-7).



CHAPTER 5
-. IMPROVED MULTITARGET PARAMETER RESOLUTION

Ideas must work through the brains and the arms of good and
brave men, or they are no better than dreams. -- EMERSON

5.1 INTRODUCTION

U In Chapter 3 we studied the optimum multitarget multisensor

parameter estimator using the MLE procedure. In Chapter 4 we studied

a number of suboptimum realizations. We pointed out that the GCC

processor can be considered as a suboptimum processor in a multi-

target environment. The use of GCC in a multitarget environment

results in a poor multitarget parameter resolution; i.e., it yields a

single biased estimate when separation between targets is small. The

use of an Optimum Multitarget Processor (OMP) can provide a signifi-

cant improvement in resolution (as shown in Figure 4-5). Unfortu-

nately, the OMP also requires a major modification of many existing

systems where GCC processors have already been implemented. There-

fore in this chapter we investigate alternate procedures for improved

0 multitarget parameter resolution.

The particular approach to be studied is the post GCC multi-

* target processor. In this approach, additional multitarget process-

ing capability is provided at the GCC outputs. Thus with this

140
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approach, the GCC processor needs no modification. In effect, the

existing GCC processor can serve conveniently as a pre-processor of a

multitarget estimator.

This chapter is organized as follows. Section 5.2 derives the

post GCC multitarget processor. Section 5.3 presents the estimator

q performance bound. Section 5.4 discusses the simulation procedure

and results. Specifically, we compare the performance of the conven-

tional GCC processor, the post GCC multitarget processor, and the

-q optimum multitarget processor.

5.2 POST GCC MULTITARGET PROCESSOR

From Equation (3.5.1-14b), the GCC output can be written as

B juW -

R(T) =E I hk 2  lk qk e (5.2-1)
k=-B

where IhkI, mlk and I±k are defined as shown in Appendix H. Now

Equation (5.2-1) can be written as

R(T) =(T) + W(T) (5.2-2a)

where R(T) denotes the deterministic component and W(T) the random

component of the noisy GCC ouput. For practical application, Equa-

tion (5.2-1) is usually realized via a Fast Fourier Transform (FFT).
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(Thus the GCC output consists of a discrete set of observations.

Therefore, let At be the sampling time, then the discrete GCC output

can be written as

R(nkt) = R(nAt) + W(nAt) ; n = 0, ±1, ±2, ... , ±N/2 . (5.2-2b)

q
Using Equation (5.2-1), the deterministic and the random components

of R(nit) can be obtained. For example, taking the expected value on

both sides of Equation (5.2-1), the deterministic component is

B eJU nAt

R(nAt) = E hk 12 'lk 4k e (5.2-3a)
k=-B

But from Appendix I, we have the relation

oh1k 4~k : Ski e (5.2-3b)
i=1

where T i is the true time delay between two sensors for target i and

Ski is the corresponding target discrete power spectral density.

Substituting Equation (5.2-3b) into Equation (5.2-3a) yields

J B JiI 2 ju(nAt- i)

T(nAt) =E Ski hk 2 e
i=1 k=-B

Si pi(nAt - Ti)

i=1 (5.2-3c)
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.P where the ith target power Si and the normalized auto-correlation are

given by

B

S= 2 Ski (5.2-3d)
k=-B

B ( S.i h u ( n A t _ i ) ( . - e
pi (nAt - Ti) E k (Ski/Si) !hk 2 e . (5.2-3e)

k=-B

The covariance of the random component is given by (see

Appendix I)

Anm E[W(nAt) W(mAt) - W(nAt) W(mAt)]

B rj -jtmAt 2 j 1mAt junAt

1: Ihk  G11(k) G22(k) e + ee

k=-B

(5.2-4a)

where G11(k), G22 (k), and G12 (k) are the discrete auto-spectra and

discrete cross spectrum, respectively, given by:

0 3
G11 (k) = alk = Z Ski + Nik (5.2-4b)

G22 (k) = "2k aqk = ki + N2k (5.2-4c)
ii
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and

G12(k) = 3Tk lk = Ski e-J.- i
i~i (5.2-4d)

Now define the 2J unknown narameter vector by

! T
= (SI  ... SJ; T 1 .2 .. Tj) (5.2-5a)

and the assumed matching function by

hn(e) =Z Si pi(nAt - Ti) (5.2-5b)
i =1

then the observation Equation (5.2-2b) can be written as

R(nAt) = h n(9) + W(nAt) ; n = 0, ±1, ±2, ... , ±N/2 . (5.2-5c)

In matrix notation, this can be written as

., Z = h(e) + W - - (5.2-6a)

where

Z = [R(-NAt/2), ... , R(NAt/2)] T (5.2-6b)
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" h(e) h thN/2(a), ... , hN/2 (a)Jr (5.2-6c)

W = [W(-NAt/2), ... , W(NAt/2)]T  (5.2-6d)

are N+1 dimensional vectors.

Note that the noise vector is zero mean with matrix covariance

E(W WT) = A (5.2-6e)

where the mn element of A is given by Equation (5.2-4a). Using an

LMS error criteria, the best estimate of the unknown parameter

vector a is obtained by minimizing the function

J (S) Z. h(e)T [Z h(e)j . (5.2-7)

Thus the best estimate of e is given by

e = Min Arg J(e) (5.2-8a)
-

or equivalently the vector null equation

T
J(.) 

- h(e) .() 
(5.28b)

03

0
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p Note that because we are trying to find a best match of the observed

GCC output to an assumed reference function, the resulting estimator

is appropriately called the Matched Estimator.

5.3 ESTIMATOR PERFORMANCE EVALUATION

In this section we present the multi-parameter covariance matrix

bound for the post GCC multitarget processor. Rewriting the vector

null equation (5.2-8b) as

IT

= [-j -w - hCe)] =0, (5.3-1)

the Taylor series expansion of y(e) about to, the true parameter vec-

tor yields (ignoring the higher order terms)

aZ(e)
Y(e) = x(e0 ) + a- (e- 2-) . (5.3-2a)

Since by definition y(@)=O, we must have

ay(e) IY(20) =-T (=-to

I

= - A(s0) 5e_ (5.3-2b)

I

I
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where 6e- (e o) and

a0A(9o) = =

z -HT(eo) H([) (5.3-2c

In deriving Equation (5.3-2c), it was assumed that the first term is

negligible for sufficiently high SNR. Therefore, from Equation

(5.3-2b), one obtains the matrix covariance equation

COV[Y(yo)] = A(4) COV[e] A(4) . (5.3-2d)

But from Equation (5.3-1)

COV[y(e_)] = HT( 0o) A H(2.) . (5.3-2e)

Therefore, the estimator's matrix covariance is

4A 1 1
COV[e] : A (0) H 20) A H(eo) Al(eo)  (5.3-3)

4

4
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F5.4 SIMULATION

A computer program was developed on the VAX-11/780 at NUSC to

simulate the multitarget GCC output. For simplicity, a two-sensor,

two-target environment was chosen. The GCC output observation window

was set at ten times the reciprocal signal bandwidth. Both targets

are assumed to have a broadband flat spectra. One thousand Monte

Carlo iterations were used for each time delay separation. Simula-

tion results are plotted along with the theoretical performance pre-

dictions.

5.4.1 Simulation Procedure

Figure 5-1 diagrams the simulation procedure. The multitarget

GCC output observation vector (Equation (5.2-6a)) was generated by

adding observation noise sequence with prescribed covariance to the

noise-free GCC component. The noise vector was generated using the

following procedure: (1) calculating the multitarget GCC covariance

matrix from Equation (5.2-4a), (2) factoring the matrix into lower

and upper triangular matrices using the Gramm-Schmidt orthogonaliza-

tion procedure, and (3) multiplying the lower triangular matrix by a

white noise vector to produce the desired correlated observation

noise vector. Finally, the GCC observation vector was processed by

the matched estimator.

K,
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5.4.2 Discussion of Results

Since a detailed investigation of the matched estimator will be

shown elsewhere, 373 only a brief discussion of the simulation

results will be presented here. Figure 5-2 shows the bias character-

istics of a conventional GCC estimator; the target assumed a broad-

band, one-sided spectrum between 0 and B Hz while the interference

assumed a broadband, one-side spectrum between -Zand B Hz, the target

strength is at 0 dB and the interference is at -1 dB. Note the large

bias when targets are separated just below the reciprocal signal

bandwidth. In this region, targets are not resolved with the conven-

tional GCC estimator. Figures 5-3 and 5-4 show the normalized rms

(normalized by the time delay standard deviation of target only) per-

formance of a conventional GCC estimator, the post GCC matched esti-

mator, and the optimum multitarget estimator as a function of time

delay separation. While Figure 5-3 assumed identical broadband sig-

nal and interference spectra, Figure 5-4 assumed the interference

occupied the upper half frequency band but maintained the same inter-

ference power. Note that the conventional GCG rms was clipped at a

degradation ratio of 20 for time delay separation less than the

reciprocal signal bandwidth. Both Figures 5-3 and 5-4 show the

marked improvement of the matched estimator over the GCC estimator.

Note the close performance between the matched estimator and the

optimum processor.
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CHAPTER 6

OPTIMUM VARIABLE TIME DELAY ESTIMATION AND TRACKING

And remember men will scorn it, 'tis original and true, and
the obloquy of newness may fall bitterly on you.
-- SARAH WILLIAMS

6.1 INTRODUCTIONU

Our study on the optimum multisensor, multitarget parameter

estimation thus far has assumed that all targets are stationary in

space. The resulting set of observed signal waveforms yields a well-

known Stationary Parameter Long Observation Time (SPLOT) process.

The optimum multitarget estimator under this assumption was derived

and presented in Chapter 3. Note that for a stationary parameter

process, the resulting estimator (MLE) is asymtotically efficient.

Thus an optimum estimator can always be found for the stationary

parameter case by selecting an arbitrarily long observation window.

This, however, is not necessarily true for the variable parameter

case where, by increasing the observation window, it may also be

0O necessary to increase the order of the dynamic model. In addition,

the variable time delay dynamic causes an incoherent signal integra-

tion which results in a reduced signal processing gain when the sta-

* tionary optimum processor is used.

154
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In reality, targets are more likely moving than stationary; we

therefore devote this and the next chapter to addressing this impor-

tant problem. In our discussion we shall differentiate the estima-

tion process from the tracking process as follows. The estimation

process is an open loop, batch process whereby the best estimate of

the unknown parameter is derived from T seconds of observation. On

the other hand, the tracking process is a sequential process whereby

the best estimate of the unknown parameter is given continuously as a

function of time.

_4 The variable time delay estimation of a single target environ-

ment has been studied by a number of researchers. For example, Knapp

and Carter 14 studied the optimum GCC in the presence of source motion

and concluded that the optimum processor requires a time compression

and expansion operation. Schultheiss and Weinstein 15 studied the

lower bounds on the localization errors of a moving source observed by

a passive array. Chan, Riley and Plant 16 investigated the estimation

of nonstationary delay by modeling the time delay as a finite impulse

response (FIR) process. Friedlander 17 studied the joint time delay

and signal spectrum estimation using an ARMA modeling approach. InI

this chapter we study the problem of variable time delay estimation

and tracking with a strong emphasis on practical estimator

realization. In addition, our formulation includes the general

multisensor, multitarget environment.
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(This chapter is organized as follows. Section 6.2 develops

the likelihood equation. Section 6.3 presents the variable time

delay estimator. Section 6.4 derives the estimator performance

bounds. Finally, Section 6.5 discusses the problem of variable

time delay tracking.

6.2 THE LIKELIHOOD EQUATION

Let the M sensor array outputs from J moving acoustic sources

be written as (see Equation (2.3-1)

J

y(t, .i) = aij sj (t + Dij(t)) + ni(t); te[O, T] (6.2-1)

j=1

where i = 1, 1, ..., M; aij is the known signal attentuation factor

and for convenience assumed unity; D ij(t) is the variable propagation

time delay from target j to sensor i; and s.(t) and ni(t) are the

band-limited signal and noise processes with the usual assumptions of

zero mean, Gaussian, time stationary, mutually uncorrelated, and

spatially homogeneous. Note that it is the time dependence of the

propagation delays that renders the observed waveforms non-

stationary.

Now let the time delay variation over a T-second observation

be modeled by a Pth order Taylor polynomial:
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• ! D( P )  tP

D(t) = D + Dt + . P (6.2-2)

where D(P) denotes the Pth order derivative of (t) evaluated at

At =0.

We segment the T-second observation into N equal subintervals

* (Figure 6-1) and let At = T/N. Furthermore, let DMAX be the maximum

time delay rate and B be the signal bandwidth. Then from the develop-

ment shown in Appendix J, we can select At to satisfy the relation.

8 At < 1 (6.2-3a)
- 4 BDMA X

so that the resulting loss in coherence is neligible. Furthermore,

the time delay variation within the At-second interval will be

essentially linear. Therefore, using the results from Appendix J,

the frequency domain representation of the observed waveform from

the ith sensor and the nth interval is

_ 1t "Jw kt
aikn t y(t, _i) e dt

(n-1 )At

nAt 1 jwkt
At sj(t + Dij(t)) +ni(t e dt

(n-1 )At jl

L - -'
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-~jWkDij(t n)

-kjn iknik

W1kn -0 + nik (6.2-3b)

where wk =27rk/At, t n = (n - 1/2) At and

Ylhkn = e 1w i~l . . ej' D'j N), (6.2-3c)

* -kn (akln Tkn (6.2-3d)

D (t)

o TRAJECTORY

TIME -

021 b,

Figure 6-1. Polynomial Model of Variable Time Delay
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In addition, $kjn and nikn are defined by the relations

n at  "JW 
t

n sj e dt (6.2-3e)
kjn At -i t

(n -i)At

A CnAtjk

nikn nAt ni(t) e dt (6.2-3f)

(n-i )At

Note that D.(t ) is D (t) evaluated time t When D. (t) is
I n 13 n' 1

modeled by a Pth order polynomial, D. (t ) contains P + 1 unknown
ijn

r coefficients. Furthermore, Bkjn and nikn are zero mean, complex

Gaussian variables whose covariances are given by

(Skjn; if k=k', j=j', and n=nl

E(k ,n) :
kjn k j'n'

(0; otherwise (6.2-3g)

and

ENikn; if ii', k=k', and n=n'

E (flikn fli'k'flI)

* (0; otherwise . (6.2-3h)

Thus we have utilized the assumption that target waveform and noise

waveform Fourier coefficients are uncorrelated for different targets,

different frequencies, and at different observation intervals.
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Now define the M sensor observation vector, n' at the nth

observation interval as

2k -('1kn a2kn 'Mkn ) T;k=1, , B. (6.2-4a)

Then one can write

2a W = n+1k (6.2-4b)

where

~12k n

Wk = (6.2-4c)

knk

ADn = '11kn r'2kn ... 'k)T(6.2-4d)

Note that 2 n is a zero mean, complex Gaussian vector whose covariance

matrix is

Rkn =E(2 n 4n)

S= Wk Sk W* + Nk~ (6.2-4e)

knkk
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where it is defined as in Chapter 2 that

Sk = E( n ) = diag {Ski . . .SkJ'

NkQk = E(n2kn In )  (6.2-4f)

Note that Sk, Nk and Qk are independent of the observation intervals

*for known signal and noise spectra.

Furthermore, writing

E 2n :' (-21n' -42n' " , _Bn)* (6.2-5a)

and denoting the set of M sensors, J target, and P order polynomial

unknown parameter vector as e, then the pdf of is given by

B

P(anle) I-BMI - I IRknV- exp{-' R- -kn" (6.2-5b)
k=1

Finally, writing

a : (c__, _t, . . , a)* (6.2-5c)

we have the pdf of the complete observation vector as

N

P(-eH) I P(nle) (6.2-5d)
n=1

I
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since observations are independent between intervals.

Substituting Equation (6.2-5b) into (6.2-5d) yields

= B N 8
p( n'e) IR kn' exp- n R1kn (6.2-6a)

n=1 k=1

* The corresponding log-likelihood function is

A(e) = log p(clje)

N B

= -BMN log (T) -L Akn(e) (6.2-6b)

n=1 k=1

where

Ak(e) = logIR R1 (6.2-6c)kn kn k kn 2kn

Note that Equation (6.2-6c) is a direct generalization of the devel-

opment shown in Chapter 3 from a single observation interval to a mul-

tiple observation interval. The likelihood equation is given by

SN B

VA(_) = - E _E VAkn(e) = 0. (6.2-6d)

n=1 k=1

Note that for n = 1, Equation (6.2-6d) reduces to Equation (3.2-11)

in Chapter 3.

I
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6.3 VARIABLE TIME DELAY ESTIMATION

We noted in the previous section that the multi-interval, multi-

sensor and multitarget likelihood equation is simply a generalization

of a single observation interval case. Therefore, many of the results

developed in Chapter 3 are either applicable or can be generalized.

U In this section we examine in some detail the variable time delay

estimator.

* We can write

Wkn : (Ykin' Yk2n" " , k (6.3-la)

in Equation (6.2-4c) where the complex column steering vector at

interval n is given in accordance with Equation (3.5.1-8a) by

/ .cT tn)  _T(tn) T_ (t
Vkjn = 1i e .k13ne ,et e k.41,iljn

(6.3-ib)

0 where

=j(tn) = (Tlj(tn) T2j(tn) TMij(tn)) (6.3-1c)

and lij(tn) = Di+l,j(tn) - Di,(t n )

Tij + Tij tn + + ( (Ij/P!) t (6.3-Id)
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Note that T .(tn) is the variable time delay difference between

13 n

sensors i and i + 1 of target J, and Tij, Tip' Tij . . are the time

delay, delay rate, and delay acceleration, etc evaluated at t = 0.

Now define the ith order polynomial coefficient vector for the

M - 1 variable time delay of the jth target by

UT i) ') T(i) .(i),j)Ti i :0, 1 . P
1j :( T2j M-1, MI

j :, 2, ,J (6.3-2a)

and the complete q = J (M-1)(P+1) parameter vector for M sensors, J

targets, and P order polynomial by

9 T= T0)()()(P)(0)(P

.tT= (T(_)°  ..._i _();To) ... . T .o ., .j .

(6.3-2b)

Using Equations (6.2-4f) and (6.3-la) in (6.2-4e), one can

rewrite the covariance matrix Rkn as

0 3

Rkn = Skj Pkjn + Nk Qk (6.3-3a)
j=1

where we have defined as in Chapter 3 the relation

Vkn =V V* . (6.3-3b)
Pkn Vjn-n
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INote the close similarity between Equations (6.3-3a) and (3.2-3c).

In fact, with minor modification, the developments presented in

Chapter 3 are directly applicable. Cirrying out the mathematical

manipulation as shown in Section 3.5.1, the optimum estimate of the

parameter vector t is given by (see Equation (3.5.1-7)' the simul-

taneous solution of

A(e) N B G --1

ae &j' -4n-in (fk' ijn k3jn ~ k )kjn kjn -knn=1 k=1

- aGkjn
I- akjn ae.

= 0; for every e i E 2. and j = 1, , (6.3-4a)

where Qi is the parameter set associated with target j defined by

relation Qj = (T i) ; i = 0, . , P). Furthermore, the various

quantities appearing in Equation (6.3-4) are defined as follows:

S-/2

Ihkn12  S kJ kj (6.3-4b)

AI i + Gkjn Skj Nkj

kj= Nkj Ihkjn 2  (6.3-4c)

Gkjn kjn kjn -kjn (6.3-4d)

.-I + Nk k /Nkj (6.3-4e)
Qkjn = Ski 'kin+k j

i=1

4 i ,i

6
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(t and

Nkj : Ski + Nk (6.3-4f)
i =1

i j

Now combining Equations (6.3-Ib) and (6.3-3b), one obtains the im

element of the matrix Pkjn as

P km = eJWk(U2-1 - -m-1 ) T -j(tn) (6.3-5a)kjn :(.-a

Therefore, for any parameter ei belonging to the target j parameter

set 2j, we have

pm

n m  Zm
jw _e _JT qi kjn

- Jwk P kjn (6.3-5b)

where

m )T
(D = (U- -Z Um- Tj(tn) (6.3-5c)

Recall the definition of the vector Ui, a column vector whose

first i entries are one and the remainder are zero. Hence the deriva-

tive D m w.r.t. e. can be evaluated as follows.
n(0

Let E 0) (i.e., the constant delay terms), then we haveLet e T j .



167

30 ¢(n 1; if m < i < X-1
n '1; if z < i < m-1

1 (0; otherwise

- ¢i " (6.3-5d)

This is identical to that obtained in Equation (3.5.1-8d). Further-

more, if we let ei E T p ) (i.e., the pth derivative terms), we

obtain

t /p!; if m < i < Y-1

Zm nHn :-tn/P!; if 9, < i < m-1

0; otherwise. (6.3-5e)

Now let 0n be the matrix whose Zm element is Cn ' then we have the

following relations

A n t P p ; n tPnnpT  n n = n i (6 3 -5f)

I where eaP) = 17 p . Note the above relation is independent of j.

Now combining Equations (6.3-5b) and (6.3-5f), one can write

Pkjn  n 
(.3-6a)_7 jwk vkjn -TP V jn .

1 1
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where Vkin denotes a diagonal matrix and is related to the vector-Vk n

by the simple relation

Vkjn Ikjn (6.3-6b)

where I is an M x M identity matrix.

In addition, one can write

Gkjn a --1,, -T h (-jkjn kin -kjn )

=W tr QkjnV

:wk rykin Vkn Vjn• (6.3-6c)

~Finally, using Equations (6.3-5f), (6.3-6a), and (6.3-6c) in (6.3-4a)

yields the desired form of the likelihood equation

T (e) N B tP [I 12 ~-1n n D bin1
'4 - n k k

1
n  4n Qjn kjn i iM)

V* E- kj1
kjn kin 2kn in

0 0; i 1, ... , M-1 (6.3-7a)

p=0, ...,P

j=l ... ,J

4
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where the bias term is given by

E k f tr ( -1 0 V*).(3-b
in akj n  kjn kjn i kjn). (6.3-7b)

Note that by setting N = 1, P = 0, it can be readily shown that Equa-

tion (6.3-6a) reduces to Equation (3.5.1-11a), the stationary time

q delay, single interval case that we have studied in Chapter 3. In

general, simultaneously solving the set of equations as shown in

Equation (6.3-6a) yields the optimum estimate of the unknown param-

eter set. Optimality here assumes that our Fourier representation of

the time-compressed waveform as shown in Appendix J is valid. In the

following section we will examine the performance bound and the

processor structure of this estimator.

6.4 PERFORMANCE BOUND AND ESTIMATOR REALIZATION

In this section we investigate the appropriate performance bound

of the multisensor, multitarget variable time delay estimator. We

then study the structure of the estimator for a few simple but impor-

tant cases. Performance comparison is made between the variable time

delay estimation and the stationary time delay estimation.
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!PU' 6.4.1 Variable Time Delay Performance Bound

For a sufficiently long observation time or sufficiently high

SNR, an appropriate bound for the variable time delay estimator is the

CRLB. The CRLB is given by

VAR(ei) > (J 1 )ii (6.4.1-1a)

where ( )ii denotes the ith diagonal element of a matrix and J is the

Fisher Information Matrix whose ij element is given by

j A E( i 1, ... , q (6.4.1-1b)
j =l, ...,q

where A(e) is the log-likelihood function given by Equation (6.2-6b).

Using Equation (6.2-6b) and carrying out the same mathematical

manipulations shown in Section 3.4, one obtains

J tr 3R kn P k n  (6.4.1-2a)
-On=1 k=1 -) =

where the observation covariance matrix is given in Equation (6.3-3a)

and the partial derivatives are given by

40

9R Skj aej (6.4.1-2b)

39 .
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@Rkn = 'h 2 ~-I( Pken- a kjn ,ei -
i  -1hk 2Qkjna k Pk &Qkjn " (6.4.1-2c)

6.4.2 Estimator Realization

In this section we study the structure of the variable time delay

estimator for a number of simple but important cases. We are working

primarily with Equations (6.3-6a) and (6.4.1-2).

6.4.2.1 Case 1: One Target and Two Sensors with Delay Rate

(J = 1, M = 2, p 1, N > 2). For convenience we assume Qk = I;

i.e., the noise processes are equal in power and uncorrelated between

sensors. The unknown parameter vector is e = (T, )T. The variable

time delay is given by

T (tn) = T + i tn (6.4.2-la)

where

0 tn  (n - 1 At; n 1, .... N. (6.4.2-Ib)

The steering vector at tn is 4n ( eJ WkT(tn))_ In addition, the

followin o relations. can be verified eily using Equations (6.3-4b)

to (6.3-4f) (suppressing the j index for simplicity).

0

0'
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Q QkI I (6.4.2-ic)

Gkn = Y.kn Qkn 4n : 2 (6.4.2-Id)

S 2 A

Ihkn 2  1 + 2 Sk/Nk h k2 (6.4.2-1e)

akn = N kn ak (6.4.2-1f)0i o1 1
11 [ ]; Vkn = ejwk T(tn) (6.4.2-1g)

and the bias term is zero since

-k - tr( -
n k Qkn r k ikn)

0 O. (6.4.2-Ih)

Hence, letting e 0) = T, 8(1) = t in Equation (6.3-6a) and using the

relations shown from Equation (6.4.2-Ic) to (6.4.2-ih) yields the

*,• likelihood equation for the optimum estimate of T and t. They are

given as follows:

A(e) N BSn- k-i Jwk {hk 1 2 (n Vkn I V*n kn : 0 (6.4.2-2a)
n=1 k=1

0.

I
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N B

at 2  2 Jk tn Ihk1 I n kn "l V kn = 0 (6.4.2-2b)
n=1 k=1

The above equations can be further simplified by noting that

Vkn 01 Vkn = jwkt(tn) -j rk(tnl
0 e 1 0 e

0 -e
0 n (6.4.2-2c)Lejwk T (tn )  0

and writing

4 n : (6.4.2-2d)

Lc2kn]

so that

JwkT(tn) -Jwkt (tn)
In Vkn "l Vk 2n 1kn : a 2kn - kn 2kn e

(6.4.2-2e)

*.

Using Equation (6.4.2-2e), the likelihood equation can be rewritten

as

01
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'. B N
B N~j _k(T+ttn)

aT j(1)k I ctlkn c 2kn e
k=-B n=1

UI B N
a @-lkn *kn e

k=-B n=1

ru a R(T,
@T

0 .(6.4.2-3a)

where R(T, t) is generally called the broadband ambiguity function

and is given by

B N
R(T, +) = E Y hk12 jok (T+ttn

)
B N h lkn x2kn e (6.4.2-3b)

k=-B n=1

Similarly, we have

R(T,) = 0 (6.4.2-3c)at t(r) 0

Thus the optimum estimate of T, t is given by the pair (t, t) which

peaks the ambiguity function R(T, t). If the frequency samples are

* sufficiently dense, then the broadband ambiguity function can be

written as

S

0m
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B N_ _ B JW(T+tn

o tjn(w) a*,n(w) lh(w~)I12 e tnR(, =mn~) ~n J(2I e dw (6.4.2-4)

-B n=1

Figure 6-2 diagrams one possible implementation of this processor.

Note that frequency samples from each subinterval are phase-

compensated and then summed. Note the similarity between Figures 6-2

and 3-2.

We next examine the performance bound of this estimator. The

parameters of interest are el = T and 92 = t. The covariance matrix

can be evaluated using Equation (6.4.2-2). The detail of the deriva-

tion is given in Appendix K. The main results are given below:

VR; 7(N 2 -1) 1 - (6.4.2-5a)

VAR(t) [N 2_ 1 T (6.4.2-5b)

and

-COV(t,) [ N 2] 1 (6.4.2-Sc)

where

IIB S2 /N2

X 2 2 kk (6.4.2-Sd)-At! Fa k 1 + 2 S k/Nk  (642-d

k=-B

. ..II -" I " "l ... "a -j 'l . .
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-B

SJB2 S2 M/N2(W) dw (6.4.2-5e)
: I + 2 S(w)/N(w) "

Note that the above equations indicate that the number of observation

subintervals, N, must be equal to or greater than two for the result-

ing estimate to be meaningful. Note that the estimates, T and t,

allow the time delay to be estimated at any point within the observa-

1 tion interval [0, T]. Thus at any time t E [0, TI, the estimated time

delay is given by

T(t) T - + t t; t E [0, T] (6.4.2-6)

Since T, t are unbiased, T(t) is also unbiased. Furthermore, the

Ivariance of the resulting estimate is

VAR(-(t)) : VAR(T) + t VARf ) + 2t COV(, t)

E8rN2  ][(1 1 34t) + 3)2] (6.4.2-7)

where Equations (6.4.2-5a) to (6.4.2-5c) have been used.

Note that VAR(T(t)) is quadratic in t. It is easy to verify that

the variance is minimum at t =.T; i.e., the midpoint of the obser-

0 vation interval. Finally, if N is substantially greater than one,

then Equation (6.4.2-7) can be approximated by

0
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VAR(r~) 87rL 3( + 3( t)2] (6.4.2-8a)

and when evaluated at the midpoint of the interval, Equation (6.4.2-7)

yields the minimum variance

F 
21T

VAR(T(t)) = (6 .4.2-8b)

This is equal exactly to the CRLS for the stationary target case (see

Equation (3.5.1-16a)).

Thus one can conclude that the presence of time delay rate (or

doppler) degrades the performance of time delay estimate w.r.t. the

stationary time delay case. Therefore, defining the Doppler

Degradation Ratio (DDR) as the ratio of the time delay variance of the

variable time delay case to that of the stationary time case, one

obtains, by using Equations (6.4.2-7) and (6.4.2-8b), the following:

DDR VAR(T(t))

VAR(T( ))

[) 1 ()+312 (6.4.2-9a)
N2 - 4N T

For N >> 1, we have the following approximation:

4+ DDR T T (6..2-9h
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On the other hand, if the stationary processor is used directly

over T seconds of observation in the presence of time delay doppler,

the question is what would be the resulting performance of the time

delay estimate. We note in Appendix J that time delay doppler causes

an effective additional phase shift and signal attenuation on the

resulting Fourier coefficient representation. In the development

* presented in Section 6.2, we accounted for the additional time delay

but not the signal attenuation. The reason was that by subdividing

the T-second observation into smaller subintervals, the resulting

- loss in signal coherence is negligible. However, if we attempt to

process the T-second observation without subdivision, the loss in

signal coherence must be accounted for. This can be accomplished as

follows and the resulting performance bound is easily obtained.

Let D, and D2 be the propagation time delay rates as observed by

sensors 1 and 2, respectively. Then the Fourier representation of

the observation is given by

jwkDl(T)

ck :Bk ale + nlk (6.4.2-10a)

T

ek a2 ekD2() + 2k k 1, ... , B (6.4.2-10b)

where aI and a2 are the signal attenuation coefficients given,

respectively, by aI = sinc(wk D1 T) and a2 = siDc(w k D2 7),
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whee snc( sin()where sinc( ) : - (see Appendix J). Hence writing Equations

(6.4.2-10a) and (6.4.2-10b) in vector notation yields

= kk + k = 1, .... B (6.4.2-11a)

where the steering vector Vk is given by

(a e m D ,1 ( T)  J T)D () T .

S=aI e jwk a2 e . (6.4.2-11b)

* The observation covariance matrix is

Rk =E

= Sk Pk + Nk Qk (6.4.2-12a)

where

Pk -k-k Vk 12 (6.4.2-12b)

Note that 12 is a 2 x 2 matrix of one and the diagonal matrix Vk is

defined by the relation Vk = I The parameter of interest is the

time delay T defined by the relation T = D2( ) - Dl(!). The

variance or the stationary time delay estimate is given by (see

Equation (3.5.1-15a)).
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SVARs( tr T (6.4.2-13a)
k=1

Following the procedure shown in Section 3.5.1, we obtain

( ak aRk ) 2 jh2 S tr( k  Vk)tr 3T aT k k k rk k

I
: Ia+ a2) w k Ihk Sk (6.4.2-13b)

since it can be verified that

tr(Vk (D 2 ) -(a2 + a2) . (6.4.2-13c)

Substituting Equation (6.4.2-13b) in (6.4.2-13a) yields

S[ 2/N2

VAR (T) .> a 2 2 Sk/Nk 

5_ L a a2) k T+ 2 S k/Nkj
k='l

" 2_ (6.4.2-14a)

where

B (a,2 a2 2  1 2 /Nk 27

S- 2 wk +2 Sk/Nk T
k=-B

.. ...S- m -" '
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'" " B a- 2 S2 ()/21
a N( dw (6.4.2-14b)

-B

and

a 2 [sinc2(W D1 T) + sinc (W 02 ]. (6.4.2-14c)

Hence the DOR (i.e., the ratio of Equation (6.4.2-14a) to (6.4.2-8b))U
is

VAR s()

VAR(T(T))

>1 . (6.4.2-15)

since < X. Assuming D = D1 = D21 Figure 6-3 shows the DOR for the

variable delay approach and the stationary time delay processor

approach.

6.4.2.2 Case 2: One Target and Two Sensors with Variable Time

Delay (J = 1, M = 2, p = P, N > 2). In 3ection 6.4.2.1 we studied the

* one-target, two-sensor case with linear time delay rate. The studies

on the performance bound showed that the variance of the estimates

improve with T for time delay and T3 for time delay rate. Therefore,

S

6
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increasing the observation time improves the estimates. However,

increasing the observation time will also be likely to increase the

order of the model. In this section, we extend the study to a more

general case where the variable time delay is modeled by a Pth order

polynomial in time.

Let the variable time delay function be modeled as

l
T(P) tP

T(t) = T + it + . +P-(Pt

= hT(t) e (6.4.2-16a)

where

h(t) = (1 t t2/2 . . tP/P!)T (6.4.2-16b)

and e is the parameter vector given by

=(T T...( ) T (6.4.2-16c)

Using Equation (6.3-7a), the likelihood equations consist of

* solving P + 1 simultaneous equations given by (the subscript j has

been suppressed for notational simplicity since j = 1)

T (k= I h -_n Vkn "li Vk n n= (6.4.2-17)n=1 k=1

for p = 0, 1, ., P.
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(Using Equation (6.4.2-2e), Equation (6.4.2-17) can be simplified to

B N )1' 2 JwkT(tn)Z--- ~ ( fhkj 1kn ctkn e

;-7 k=-B n=l

B N JwkhT tn)e

STI-k:Bt' nZhki2 a1kn ct2kn e

:0 (6.4.2-18)

for p 0 0, 1, ., P and tn = (n 1 t.

Note that although T(t) is Pth order over the observation

interval T, At was chosen so that the variation of time delay is

nearly linear over At. Hence, results derived in Appendix J are

applicable. A signal processor which realizes Equation (6.4.2-18) is

given in Figure 6-4. Note the close similarity between Figures 6-4

and 6-2.

I
We next examine the performance bound of this estimator.

Using the results from Section 6.4.1, the ij element of the
4 Fisher Information Matrix is

Jij = E tr(-e k e kn

Sn=1 k=1 i

4
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N B ( R-1 _Rtr i-17 j_-1) (6.4.2-19a)

4Now utilizing Equations (6.3-5f), (6.3-6a), and the relation

Rkn = Sk Pkn + Nk Qk' (6.4.2-19b)

1U one obtains

@Rkf apk (k Jwk i!-Vn VSn (6.4.2-19c)

at- at a 1 fRkn 2 1 Pkn -1

att

~where Qk 1 , i.e., noise processes, are uncorrelated and

= 2 k/ k  (6.4.2-19e)

0

Substtuting Equations (6.4.2-19c) and (6.4.2-19) in (6.4.2-19a)

yields
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N B t ni 2 12
=ij :k.w (i - 1)! (j - 1), IhkI Sk tr(Vkn I Vn)

n=1 k=1

B S 2/N 2Z 2 k k
Cij L k 1 + 2 Sk/Nk

o -cX .ij X At- (6.4.2-20a)
ii 27r

where A is as given in Equation (6.4.2-5d) and Cij is defined by

N ti+j-2
ij = (i - I )! (j - 1)! (6.4.2-20b)

n=1

Let C be a matrix whose ij element is Ci, then it can be shown

that

C = HTH (6.4.2-21a)

where H is an Nx(P + 1) matrix given by

-.4

1 t1  t 2/2 . tip 

1 2  t2/2

4 H : (6.4.2-21b)

I tN  t 212 t P/P!

1 N N N
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(Note that the matrix H relates the N subinterval midpoint time delay

to the parameter vector of interest. Namely,

T= H e (6.4.2-21c)

where the vector t is defined by

= (T(tj )  T( t2 )  . . . T( tN)) T  .( .2-21d)

Therefore, using Equation (6.4.2-20a) the covariance matrix of the

parameter vector e is bounded below by

COV(e) > j-

2rN (H TH)
- I1

> T (6.4.2-22)

For p = 1, Equation (6.4.2-22) reduces to Equations (6.4.2-5a),

(6.4.2-5b), and (6.4.2-5c).

Furthermore, if e is the estimated parameter vector, then the

estimated time delay at any time within the interval [0, T] is (see

Equation (6.4.2-16a)).

-(t) = hT(t) e . (6.4.2-23)
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Hence, the variance of the resulting time delay estimate is

VAR(T(t)) : hT(t) COV(e) h(t)

2TrN h T(t) (H TH) -1  h(t)
= (6.4.2-24)XT

6.4.2.3 Case 3: One Target and Three Sensors with Variable Time

Delay (J = 1, M = 3, p = P, N > 2). We studied the problem of esti-

mating localization parameters of a stationary target in Sec-

tion 3.5.2. We discussed at length the rationale for the two-step

approach; i.e., first estimate the time delz', between sensor arrays

and ther map the estimated time delays to the localization parameters

via the target array geometry. We studied the optimum multisensor

time delay processor and examined the resulting estimator performance

bound. In this section we extend our investigation to the moving

target case. Our immediate concern, however, is on the two-variable

time delay estimation from a three-sensor array.

Let the two variable time delays (see Section 3.5.2) be modeled

by a Pth order polynomial as

T1 (t) = TI + iI t + 
+ (T (P)/P!)t

P

= h T) M (6.4.2-25a)
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2(t )  T2 + *2 t + + (TP)/P!)t

= hT(t) _2 (6.4.2-25b)

where

h(t) = (1 t t2/2 . . tP/P!) T  (6.4.2-25c)

fti = (Ti ti i . .. tjP))T; i 1, 2 (6.4.2-25d)

;-. and the 2(P + 1) parameter vector of interest is

e: (e T)T (6.4.2-25e)

Note that, ei' the ith element of e is given by

if i < P + 1

i-P-2). if i > P + 1 (6.4.2-25f)

.0

for i 1, 2, 2(P + 1).

From Equation (6.3-6a) the likelihood equations are

A(e) A(e)

ei ~i-l
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( N B tai
jk 7 n hk2 k1n kn "I V*n -kn

n=l k=l

-0 (6.4.2-26a)

for i < P + 1; and

A(e) aA(e)

39 i 3T (i-P-2 )

N B t(i-P-2)
SJk i P - 2) hkI2 4n Vkn "2 V*n -kn

n=l k=l

-0 (6.4.2-26b)

for i > P + 1.

Now using Equations (3.5.1-8d), (3.5.2-3) and (3.5.?-6c), the

matrices Vkn, 01 and 02 are given by

SdjwkT.(tn) JwkT 2 (tn)IVkn = diag Ie 1 e (6.4.2-26c)

D1 - 0 0 (6.4.2-26d)
1 0 0
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1 0 0 -1 (6.4.2-26e)
1 1 0

and

| ~~~ lh1 =S/N2

Sh/2 k (6.4.2-26f)k I1 + 3 S k/Nk o

Therefore, the following relations can be shown:

-n Vkn 1 Vkn kn :Ak - A*n, (6.4.2-27a)

where

A =J~kTl(t n ) J~k(Tl(tn)+T2(tn))
Akn : kn *2kn e n + O1kn 'kn e

(6.4.2-27b)

and

"0 4n Vkn D2 Vkn 2kn = Bkn - n(6.4.2-27c)

where

jwk(Tl(tn)+T2(tn)) JwkT2(tn)
kn clk n *3kn e + a2kn "*3kn e

(6.4.2-27d)
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Thus substituting Equations (6.4.2-27a) to (6.4.2-27d) in Equations

(6.4.2-26a) and (6.4.2-26b) yields the set of simplified likelihood

equations

9A(e) B NaAe 1: E 12 a Jwk~l(tn )

U -1 (i1 k hj (axlkn 2kn e
T1  3T 1 k=-B n=1

a* + k k Jwk(T1(tn)+T 2 (tn))4 + a1kn a3ke

0; for i = 1, . . , P + 1 (6.4.2-28a)

and

3A(e) B N 3wkT2(tn)

3T (T~i-P-2)= 
3T(i-=P-2) k Ihk2 (a2kn akn e

2 2 k=-B n=1

+ Ik n 13kn eJwk(T (tn)+T2(tn))

0; for i = P + 2, . , 2P. (6.4.2-28b)

The above two sets of equations can be combined into one as

follows. We note that a2kn alkn 3jwkT2(tn) is not a function of

T for i : 1, , P + 1 and that aIkn e jwkT(tn) is not1 a2kn

a function of T-2 for i = P + 2, , 2P. Therefore, we can

add these two terms, respectively, to Equations (6.4.2-28a) and
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P(6.4.2-28b). Now we can define the 2(P + 1) parameter ambiguity

function by

B N JWkTl(t n )

! R(e) k=-Bn lhkJ2(1 ~I kn c2kn e
k=-B n=1

J" kT2(tn)

+a tk e ew T t )T2t
+ O2kn 3kn

+ alkn a~kn ejwk( l(tn)+t2(tn))).

*I (6.4.2-29)

Therefore, combining Equations (6.4.2-28a), (6.4.2-28b) and

(6.4.2-29), we find that the optimum estimate of e is given by e which

peaks the ambiguity function R(e), or equivalently the corresponding

null of DR(_e)/De; or more specifically one can write

@R(e)
= 0; for i = 1, 2, .... 2P (6.4.2-30)

ae
i

* where ei is as given in Equation (6.4.2-25f).

We next derive the performance bound of this estimator. From

* Equation (6.4.1-2), the ij element of the Fisher Information Matrix

is



196

/3R1 3R \
tr • e ' ; 1 . , 2 (P + I)n=1 k=1 1, . . , 2 (P + 1)

(6.4.2-31a)

* ij) if i <P + 1, j <P + 1
(1
j ;2 if i <P + 1, j > P + I

j(21)1,j P+ (6.4 .2- 31b)j ;1 if i > P + I, j < P + i 6423b

j22

J(22) if i > P + 1, j > P + 1

Thus the Fisher Information Matrix can be partitioned into four sub-

matrices as

(11) j (12)
J : - (6.4.2-31c)

j (21) 11 j(22)

Using Equations (6.4.2-25f) and (6.4.2-31b), and the procedures shown

in Section (6.4.2.2), elements of each submatrix can be evaluated as

S0 follows:

N B R- 1 Rk
jYll) t-r' kn Rkn
ij En E t 9r~ iI •TU1

* n=1 k=1 " 1 1

, S Ti1 TjI

S
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N B ti+j-2
2n h 2 S t ( Z V

"":"=" (i- 1)! (j- 1)! hkI Sk tr(Vkn € VIn)
n=1 k=1

B 2 2
= ~)Z Sk/Nk:C(II ) 2 kk
I j E k T ---- 3Sk/Nk

k=-B

i ()3 --L (6.4.2-32a)

where

tr(Vkn Vn) -4 (6.4.2-32b)

N (6.4.2-32c)

n=1

B 2 2

SSk/Nk- - B -k 1 + 3 Sk/N k
k=-B

B 2 2
JW2 SMAW T (6.4.2-32d)w- 2 i + 3 S(w)/N(w)(6423d

B

Furthermore, let C(II ) be a square matrix whose ij element is C

0 i
then it can be shown that

C(11) = HT H1  (6.4.2-32e)
1
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where H1 is an N x (P + 1) matrix given by

1 1  1 12

1 t2  t 2/2 ... tPP

H =(6.4.2-32f)

U
1 t N tN/2 ... tN/P

Hence, one can write

d(ll) = (H TH) X At (6.4.2-32g)

Similarly, one obtains

N B /akj(22) = tr - aRkn - R kn

ij E E3T i-P-2 ) 3T (j-P-2)

n=1 k=1 2

N B t(i+j-2(P+1)) 1
..= - '. -- WL(i-P-2)! (j-P-2)! Ihk Sk tr(Vkn Vn)

n=1 k=1

ij X * (6.4.2-33a)ii T
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where

N ti+j-2(P+1)
( 22) L n

Cij (i P - 2)! (j - P - 2)!

n=1

e, (6.4.2-33b)

where i' = i - P - 1 and j' = j - P - 1.

Thus if C(22) is a matrix whose ij element is given by C( 22 )

- ij '

then one can write

C(22 ) = C(1
1 )

= HTH . (6.4.2-33c)

Therefore, one can also write

j(22) = j(11) (6.4.2-33d)

Finally, we note that since J must be symmetric, we have

j(21) : (j(12 ))T (6.4.2-34)

The submatrix j(12) can be evaluated as follows:
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N B aR -l R
j( 12) tr kn Rkn(6423a

n:1 E k: 3T i-1) 3T (j-P-2)

n=1 k=1 tr a 2  2

where

kn Ih 2  kn

(~i-1) k 2 a(i-1)

11

SJ-k [iT1) !hk Vkn Vn (6.4.2-35b)

3Rkn aPkn

3 (j-P-2) : Sk (j-P-2)

22
I j -P -2 ]

= J k (j P - 2)! Vkn D2 V (6.4.2-35c)

Hence one can write

N B i+j-P-32 n12) _ S=r(" (D tn 2
ij = wk (i-Z)! (j-P-2)! Ihkl Sk tr(Vkn 1 Vn)

n=l k=l

- 1 xAth (6.4.2-35d)

since tr(Vkn (D (2 V*n) = -2.

Now

* C 12 1 = C I )
ij 6ij
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where j' : j - P - 1. We can also write C(1 2 ) , the matrix whose ij

element is C 12 , as

C(12 ) = HTH. (6.4.2-35e)

Finally, the submatrix j(12) is given by

j(12) = (HTH) X At (6.4.2-35f)

Thus combining Equations (6.4.2-32g), (6.4.2-33a), and (6.4.2-35f),

the Fisher Information matrix is

T

J = A X3 2Tr (6.4.2-36a)

where the relation T NAt has been used and the matrix A is given by

2H TH H T H

I

Therefore, the covariance bound is

* COV (e)> J-

> ( 21TN A-'1642-7'
__ -Tf ) (6 .4.2-37a)

...



h
° - 

- _- - - --------------- . .. . , o_ -.---- - . - .-i - • . , . ; ... • -- - - •

202

-r S2/ 2  -1K
> A-1 2 L W z Sk/N k  (6.4.2-37b)

k=1l _ k/

Note for a fixed time delay with one observation interval, we

have H = 1, and Equation (6.4.2-37b) is easily shown to be identical

to Equation (C-24a) for the three-sensor array case.

T
Note that if e = (9 1 2)T is the estimate obtained from solving

Equation (6.4.2-30), then the time delay estimates at any point

within the interval [0, T] are given by

l 1)= hr4tms1 I(6.4.2-38a)

0T T J H
LT 2(tJ L O T 

:hT(t)J [-2J

end the matrix covariance is

Tit [h(t 0T[t 0
I1 co 1,o

" CO ( t

0 4.J

(6 .4.2-38 b)
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6.5 VARIABLE TIME DELAY TRACKING

In the previous sections, we studied the problem of variable

time delay estimation using the following procedure:

1. modeling the time delay variation over a T-second observa-

tion interval by a Pth order polynomial,

2. partitioning the observation interval into N equal sub-

interva ls,

3. obtaining the Fourier representation of the observed wave-

forms for each subinterval, and

4. estimating the polynomial coefficients from the combined

observation vector of each subinterval.

A criterion in selecting N was presented. It was shown in Appendix J

that when N satisfies this constraint, the resulting loss of signal

coherence due to time delay rate is minimal. Furthermore, when this

constraint is satisfied, the time delay variation over each sub-

interval is essentially linear.

If targets are to be tracked over a time interval which is con-

siderably longer than T seconds, then the above mentioned procedure
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need modification. There are two possible approaches: (1) increase

T to accommodate the total observation interval by increasing the

order of the polynomial, or (2) select a suitable choice of a fixed

observation window and the order of the polynomial; as time

increases, the fixed-length observation window and the assumed poly-

nomial model will also move in time. A major drawback of the first

approach is the solution delay. One must wait until the end of the

observation interval before one can start the estimation procedure.

For many real-time applications, this kind of solution delay is

unacceptable. Therefore, our major emphasis in this section is on the

second approach where observations from a T-second sliding window

will be used for parameter estimation. Furthermore, we will study the

recursive sequential nature of the algorithm which incorporates

estimates from the previous cycle.

6.5.1 Sequential Fixed-Interval Time Delay Tracking

Consider a simple two-sensor case with observed variable time

delay. Note that the general multisensor, multitarget case can be

similarly treated with more complicated notation. Figure 6-5

illustrates the problem of our interest. Suppose that time delay

variation over an observation interval [0, T] can be modeled by a Pth

order polynomial. Thus one can write the time delay as
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tPt) 2 0P

0 00 T0

= h T(t) (6.5-la)

where

hT(t) = (1 t t2/2 . . . t P /P!) (6.5-1b)

2= (T t 0 %.. . T 0P) . (6.5-1c)

-. Note that the subscripts denote the time at which the polynomial

coefficients are evaluated.

T(t)

VARIABLE TIME DELAY

NEW OBSERVATION

021 6S0

Figure 6-5. Sequential Fixed-Interval Time Delay Tracking

40
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Assume that there are N subintervals and let n = 1, 2,

be the observation vector of Fourier coefficients for each sub-

interval. Then the best estimate of f0 is obtained by maximizing the

density function p(_% _%_- . . . ai ) as discussed in the previous

ILI sections. Now suppose a new observation vector _*+1 is available.

Again we wish to estimate 91 over the interval [At, T + At]. Now

suppose the best estimate of eI is found and a new observation vector

2!N+ 2 is available, what is the best procedure in estimating 
f2 over

the interval [2At, T + 2At]. Here we study this fixed-interval

recursive time delay tracking algorithm in some detail.

1I

First we write the parameter vector on as

(TT(P) )T (6.5-2a)
~~--nf tn n n " n

so that the time delay variation over the interval [nAt, T + nAt] can

be written as

(t) = t + 1 (t - nAt) + + P)(t - nAt)P/P! (6.5-2b)

I Furthermore, denoting the time-dependent state vector en(t) as

n~t = (n(t) Tn(t ) . . . n )T (.-c

then from Equation (6.5-2b) one obtains the state propagation

equation

4
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en(t) = H(t - nAt)e (6.5-3a)

where

m2

1 t t22 . . . tP/P!

0 1 t tP-1I/(p-I)!

00 1 . tP-2 /(P-2)
* H(t) (6.5-3b)

- 0 0 0 .. 1

Assume that the best estimate of 20 is 20 obtained using methods

discussed in Sections 6.3 and 6.4. In addition, let M0  COV(e) be

the covariance matrix. Now consider the problem of estimating tj from

the observation set ( 0 2, a3 ' "N+l
). We shall consider a

Maximum A Posterior (MAP) estimate obtained by maximizing the a

posteriori density function p(e1O, a2, a3  . . . + ). But one

can write

SP(a2' " " ' 2N+11111 10) P(81%)
11, 2 2' . . . N+ )1 P( 2--O' 2' . . . I N+I)

(6.5-4a)

However, maximizing the left-hand side of Equation (6.5-4a) w.r.t.

9 is the same as maximizing the numerator on the right-hand side

of Equation (6.5-4a) since the denominator is not a function of e1.

i"
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kgy Furthermore, the set of observations (-2, -3 1 ,N+I ) does

not depend on 20" Hence the quantity one wants to maximize is

SL(etl ) = log{p(_2 ,  ,  2N+1je_) p(12).(6.5-4b)

Now from Equation (6.2-6a), we obtain

N+1 B
-2BN R * R-1

P(22, . . . N+lI-el) = T B -f JRkn exp nkn kn }

n= k(6.5-4c)

* But from Equation (6.5-3a), the best estimate of el in the absence of

new observation is

(At) H 20 (6.5-4d)

where H = H(At). Since the change of the state over one subinterval

will be small, we model _I by the relation

11 = H 20 + el (6.5-4e)

where e is a random Gaussian error vector with mean E(eI) = 0, and

covariance E(eI e1) T El. Thus using Equation (6.5-4e), one can

write.

8Peo) = (2 )(P+ I )/2 1P1 -1
/2 exp{- '(@I - e)T p-1  -

(6.5-4f)
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where

-e :E(ele_) : H (6.5-4g)

P = E[el - ) (e1 - IT ]

= H M0 HT + E1 . (6.5-4h)

Substituting Equations (6.5-4c.) and (6.5-4f.) in (6.5-411) and simpli-

fying, then the maximum of L(e_) is obtained by solving the set of
necessary and sufficient conditions

3L( ) (e - el) : 0 (6.5-5a)
ae1  -1e-1

2 Le)< 0 (6.5-5b)

where

N+1 B
A(e) -E E Akn (11l) (6.5-5c)

n=2 k=1

and

-1

Akn(z1) log IRknI + 4n Rkn 2n (6.5-5d)

as was defined in Equation (6.2-6c).

I

I,
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By repeated application of steps from Equations (6.5-4a) to

(6.5-5d), one obtains the necessary conditions for the estimate of

the state vector e at t : i At as

( - (e. i = 0 (6.5-6a)
ael 1 -i i

a2L (ei )

S<0 (6.5-6b)

for i 0, 1, 2, . .

0 where

N+i-1 B

A(-i) E A kn (e) (6.5-6c)

n=i+l k=1

Akn ( i) log IRknI (6.5-

e +kn kn -kn (6.5-6d)

ei = H ei_l + e i  (6.5-6e)

= E(eijIti-) = H 8 i1 (6.5-6f)

HTP.i = Ef(e. - e.) (8. 9-

Mi I H+ Ei  (6.5-6g)

and furthermore

-
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E. : E(ei eiT (6.5-6h)

and

M. : COV (ei) . (6.5-6i)

Note that in Equation (6.5-6a), since 9i zei' A(ei) can be linearized

about ti to yield

3k(ei) = --)+  - - p Z
~i+( ae- -i - e i) :0 (6.5-7a)

• or solving yields

S(ii) f (ei) (6.5-7b)

where

=f(-; -P:1  (6.5-7c)H '-i"1 ae1i 1

ii

afT_ 2A( i )

99- - (6.5-7e)

8-i 8 i

39
which is known as the Hessian.

O

S I I I- I 1 I i I m - I
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Finally, using Equation (6.5-5c) and results from Section 3.3,

we obtain the following explicit expressions for the first and second

vector derivative of A(ei) w.r.t. e1 .

3A(e.i) N+i-I B Akn(ei)

n~i+l k=1

Ekn 9 i  
+L'-Rn ei kn (6.5-7f)

n~i+l k=1

-•and

2 A(e N+i-1 B 32Ak(ei )

___ n=i+l k=1

N+ilB[ 1- 3Rkn -1(RI 1 Rk
= L2..tr (Rkn Re kn as tr nkn ae Do
n=i+l k=1 L k

32R-1

V-n aei 3ej -kn (6.5-7g)

where ei, e. are the i, j element of the vector ei.

Lastly, if e is the estimate at the instant t nAt, then from-n

Equation (6.5-3a), the best estimate of e at any time inside the

interval [nAt, (n+N) AtI is

L
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an (t) =H(t -nAt) On (6.5-8a)

and the covariance is

COV(e, (t)) =H (t -nAt) COV(n) H-I(t -nAt) (6.5-8b)



P' CHAPTER 7

OPTIMUM VARIABLE LOCALIZATION PARAMETER ESTIMATION AND TRACKING

Render unto man the things which are man's and unto the
computer the things which are the computer's.

-NORBERT WEINER

7.1 INTRODUCTION

We have studied in some detail in Chapter 6 the problem of multi-

* sensor, multitarget variable time delay estimation and tracking.

Since the ultimate objective is to estimate and track the localiza-

tion parameters (e.g., target range and bearing), we therefore devote

this chapter to addressing this important issue. The approach that we

are undertaking is very similar to the stationary parameter case we

have studied in Section 3.5.2, where for a multisensor array, the

stationary target range and bearing are obtained by a geometric

mapping from estimated time delays. Thus for the variable localiza-

tion parameter case, our approach is to estimate the variable param-

eters by a geometric mapping from estimated time delays and time delay

rates, where the latter are obtained using techniques presented in

Chapter 6. The choice of a two-step (or indirect) approach to the

variable localization parameter case is determined by the same set of

arguments presented for the stationary parameter case. The pertinent

arguments have been discussed in Section 3.5.2.

214
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The study on passive estimation and tracking of variable target

parameters has received considerable interest in the literature.

Most of the early studies have been concentrated on the single target

and single sensor array. However, the extension to a multitarget,

multisensor environment has received increasing attention. The com-

plexity of this problem increases rapidly as the number of targets and

5sensors increases. There are two notably different approaches in

attacking this problem. The first approach starts from the target

dynamic tracking filter (or data processor) and attempts to model the

measurement processes. One theory which has received considerable

attention recently is the Joint Probability Data Association Filter

(JPDAF) discussed by Bar-Shalom,18 Bar-Shalom and Tse, 19 and

Fortmann, Bar-Shalom and Scheffe.20  Here the measurements assume a

probabilistic model. An underlying assumption for this approach is

that the signal processor which produces the measurements cannot be

modified to account for the multitarget problem. Thus one must rely

on modeling the measurements. In fact, using a linear superposition

assumption, Ng and Bar-Shalom presented a model of unresolved

measurement for multitarget tracking. 21 ,22  However, for this

approach the inability to change the signal processor is a major limi-

tation in obtaining a satisfactory solution to the actual problem. Ir

fact, the intimate relation between the signal processor and the data
0

processor designs was pointed out by Fortmann, Bar-Shalom and

Scheffe.20 They showed that the selected parameter in the signal

processor directly affects the performance of the tracking filter.

Or more generally, given a particular target-sensor environment, the
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structure of the signal processor and its relationship with the data

processor will ultimately determine the overall performance of the

system.

The second approach, on the other hand, starts the investigation

from the signal processor. Here one finds that the signal processing

gain increases in proportion to time. However, by increasing the

processing time, one can no longer assume a SPLOT process, which is

the basic assumption used in many existing signal processor designs.

-0 Typically, one finds that under a target motion assumption, a signal

processor must estimate both the static and motion parameters. Fail-

ure to compensate for the parameter dynamic will result in a substan-

tial loss in coherent integration. Consequently, it negates the very

purpose of long-time integration. Studies in this approach are nota-

bly pursued by Carter and Abraham 23 in estimating source motion from

time delay and time compression measurement. Also, Schultheiss and

Weinstein evaluated the CRLB of estimating the differential Doppler

shift. 15 Moura and Baggeroer investigated the problem of space-time

tracking by a passive observer.24 These studies, however, deal only

with the single target (or source) problem.

The approach being undertaken in this chapter can be considered

as an extension of the second approach. However, we address a more

general problem and we do not limit the parameter dynamic to a simple

rate variation. In addition, we also discuss the tracking methodo-

logy. In short, it is strongly believed that the two approaches
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mentioned above will ultimately converge and result in an integrated

signal-data processor. The integrated processor will combine the

signal processor and the data processor in such a manner as to achieve

the best possible processor structure. It should be pointed out

that the study on the relationship between digital signal processing

(used in signal processor design) and control and estimation theory

(used in data processor design) was first discussed by Willsky.4 it

is hoped that our study in this chapter will help advance the concept

of integrated signal-data processor design.

4 This chapter is organized as follows. Section 7.2 discusses

the methodolgy in variable localization parameter estimation and

Section 7.3 investigates the problem of localization parameter track-

ing. Finally, in Section 7.4 we present our approach to target state

estimation and tracking.

7.2 VARIABLE LOCALIZATION PARAMETER ESTIMATION

4 Our approach to variable localization parameter estimation is

the following:

4 1. Apply the optimum multisensor, multitarget variable time

delay estimator as presented in Chapter 6;

2. Evaluate the time delay estimate at any desired time within

the observation interval ro, TI ; and
4
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Irv3. Map the time delay estimate to the localization parameters

(range and bearing) using the target sensor geometry.

For the purpose of demonstration, consider a single target,

three-sensor array system shown in Figure 7-la and 7-lb. Figure 7-la

shows a target travelling at a constant course and speed. (Note

this assumption is unnecessary for the approach discussed here.)

1 Figure 7-1b, on the other hand, shows a typical time delay variation

as a function of time over a 10-minute interval. Note that over this

interval the time delay variation can be modeled adequately by a

0 second order polynomial. For a smaller observation interval (e.g.,

5 minutes), it can easily be modeled by a first order polynomial.

To illustrate our procedure, we assume that the observation in-

terval is [0, T], where T = 5 minutes. Thus at the end of the 5-min-

ute interval, we want to know the target range and bearing. Our

procedure is as follows. First, we partition the interval [0, TI

into N equal subintervals, where N is chosen according to Equation

(6.2-3). We next apply the variable time delay estimator as dis-

* cussed in Section 6.4.2.3. Let the resulting estimated time delays

at time t c [0, TI be given by (see Equation 6.4.2-38a))

T T
*~~~~ (t) h()

L J L Jt L7.2-J
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y

U

a. TARGET SENSOR ARRAYS GEOMETRY

12:

10-

6

!0

4

* 2-

0 .

1. TIME( -100)

0 b. TIME DELAY VARIATION AS A FUNCTION OF TIME
021,612

Figure 7-1. Single Target, Three-Sensor Array Variable
Localization Parameter Estimation

S
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where h (t), 1' and 42 are defined accordingly in Section 6.4.2.3.

We next map the estimated time delays to range and bearing using

Equations (D-lOa) and (D-lOb). Hence we obtain

B(t) :-sin -1  I (f1(t) + 2(t))) (7.2-2a)

R Lt 2 cs2 B) (7.2-2b)

where L is the interarray separation and C is the propagation speed

-. of the medium.

We next evaluate the performance bound of the localiaation pa-

rameters about the true values. Let R(t), B(t) be the true range

and bearing, then from Equation (G-8) in Appendix G, one obtains

VAR(Bt 2 ( co s(t)) 2 VAR( 1 (t)) + COV(' 1(t)' '2(t))

(7.2-3a)

* VAR(R(t)) = 2C2 (L cosB(t) VAR(f1(t)) - COV('I(t), Y2t))

(7.2-3b)

* But from Equations (6.4.2-38a and b), we have
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(F(t)1. [hT(t) (t) 0
COV + -- COV -+ - (7.2-4a)

2 (  L O T 0

and from Equation (6.4.2-37b) we have

COV(e) = A- L )k 7 37 k/N k  (7.2 4b)
k=1

where A is given in Equation (6.4,2-36b). Now writing A as

2A A

A + (7.2-4c)

where A = HTH, and using the well known relation in matrix algebra

[ [ ( CE DC(E - OB1

..... - ..-------- , (7.2-4d)

D -E-ID(B- CE-1D) -I  (E - DBC

the matrix inverse of A is given by

I - A- A-1
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Substituting Equations (7.2-4b) and (7.2-4e) in (7.2-4a) yields

[:2: h [h(t)A- h(t)_7 (t)AjflhIt)
1 h (t)_ 1ht) T (t)A-lL,4 )

3 1 Sk/Nk] (7.2-5)

k=1wkT+3Sk/k

Finally, using Equation (7.2-5) in (7.2-3a) and (7.2-3b) yields the

desired expressions

VAR (B(t)) = L cos t) (t)A-lh(t VAR(T 1 ) (7.2-6a)

VAR (R(t)) = 3c2 (L cos B(t')2 hT(t)A-lh(t VAR(tI) (7.2-6b)

where

B 2 2~N )1_Sk/Nk .2

VAR ( = B k 1 + 3 Sk/Nk ; -k =2T (7.2-6c)

is the variance of an optimum time delay estimate from a three-sensor

array (see Equation (C-26), Appendix C).

0A

Now let VAR s(B) and VAR s(R) denote the bearing and range

variance for the stationary target case. Then from Appendix G Equa-

tions (G-15) and (G-16), we obtain
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VAR(B(t)) ,co ) [hr (t) h(t N (7.2-7a)

VAR S(B) I CO

VAR(R(tl)) =.t [ o B(0 J [h(t) 1hftj N (7.2-7b)
VAR s(R) R 0cos -_ t)A _

IS

where B(O) = B(t:O), R(O) = R(t:O), and N TAt'

Note that if time delays are stationary, then the right-hand sides of

Equation (7.2-7a) and (7.2-7b) are unity. Since we have B(t) = B(O),

-E R(t) = R(O), h(t) = 1, HT = [1 1 . . . 11, so

hT(t) A-1h(t) N = (HTH) -I N = 1 . (7.2-7c)

Thus, as expected, the performance of the variable parameter case

reduces to the stationary performance case.

We next examine the localization performance when time delays

can be modeled by a first order polynomial in time. Thus using the

definition shown in Equations (6.4.2-5c) and (6.4.2-32f) we obtain

0 A = TH=1 1 1 ] "1 t

1[ t2  tN] t1

1 tN
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NN

i =1

(7.2-8a)

Sti --ti2

i=1

Hence one obtains after some algebraic manipulation

N N

Nt2 - 2t ti + -ti2

h hT(t) A-lh(t) = i-i i=1

( N t)~ )2

t2 - 2t T + t2  (7.2-8b)

N (2 - T2)

where

N1 tt
S - ' t i (7.2-8c)

-0 i =1

i=1

and

St 2  (N21- 1) At2  (7.2-8e)

im d-12
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F' Note that Equation (7.2-8b) has a minimum at tmin T T; i.e., at the

midpoint of the observation interval. At t = t, Equation (7.2-8b)

reduces to

hT(f) A- h(T) 1 . (7.2-8f)

Now substituting Equation (7.2-8b) in (7.2-7a and b) yieldsU

VAR(B(t)) [cos B(O) t - 2tt+ t
VARs(B) Lcos B(t)] ( _2 (7.2-9a)

VAR(R(t)) R~t cosB(O)l t2 -2t + t

VAR S(R) R O) cos B(t" (j - 2  (7.2-9b)

Thus from Equations (7.2-9a and b) one concludes in general

that the performance of the localization parameter estimates for the

variable parameter case degrades w.r.t. the stationary parameter

case. The degradation, however, is minimal at the midpoint of the

interval.

In the examples that we have considered thus far, we discussed

only the single target localization parameter estimation. The multi-

target case, in theory, presents no insurmountable difficulties

because our approach relies primarily on the time delay prcessor.

All localization parameters are obtained via a geometric mapping from

time delay measurements.
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IF 7.3 VARIABLE LOCALIZATION PARAMETER TRACKING

Our approach to variable localization parameter tracking is

mechanized via a geometric mapping from time delay estimates obtained

from the variable time delay tracking processor. In particular, we

employ the method of sequential fixed-interval time delay tracking as

presented in Section 6.5.1.

Recall from Section 6.5.1 that the method employs a T-second

-4 sliding window over the incoming signal waveform. Over the T-second

interval an appropriate variable time delay model is used. A state

vector consisting of the time delay and its higher order derivates is

evaluated at the beginning of the T-second window. This parameter

state vector is estimated sequentially at every At = seconds and

the estimate is obtained based on the current T-second observation

and the previous estimate. Knowledge of the time delay state vector at

any point allows the estimated time delay to be evaluated at any other

point. In particular, one can evaluate at the most current observa-

tion subinterval. Thus let 4 be the estimated time delay state
.4

vector for the one-target, three-sensor case. Then one can write

I -2n1
"n =(7.3-la)

12n2
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(where

(P) T
- i ( T ni ni ) ; i = 1, 2 . (7.3-1b)

Therefore, the time delay estimates at t = T + nAt are

, ini(T) = hT(T) -ni i = 1, 2 (7.3-2)

Therefore, the estimated range and bearing at the most recent

observation interval are (using Equations (7.2-2a and b))

Bn (T) = -sin L (T) (T) (7.3-3a)n 1[-('nl + %2()7.-a

i 2,

Rn (T) 7 T) _nn(T) (7.3-3b)

for n 1, 2

7.4 TARGET STATE ESTIMATION AND TRACKING

"A

In the previous sections we considered the problem of estima-

tion and tracking target localization parameters. In this section

we briefly study a method of target state estimation and tracking.
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The state of a target is defined by the target's location and

velocity components. Thus the target state vector consists of a

target's location and velocity vectors. Therefore, target state

estimation and tracking is concerned with simultaneously estimating

and tracking a target's location and velocity components.

* In the literature, the problems of target state estimation have

been well treated. The usual approach is to formulate the problem in

such a way as to yield a Kalman filter-type solution. For example,

the target motion is modeled by a dynamic equation of the form

= f~, +G ; n =0, 1, .. (7.4-1a)X n 1 QX + -n

where .nis the target state at time t =(n + l)At, f(Xn) is a vector

function of the state, G is a matrix, and W nis a process noise

vector. The best estimate of the state X is sought subject to a

measurement equation of the form

Zn = (Xn) + VIn.4b

where Zn is the measurement vector consisting of time delays, range,

bearing or frequency, etc; h(Xn) is a vector function relating the

measurement to the state; and Vn represents the measurement noise

vector.
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When f( ) and h( ) are linear and the noise processes are Gaus-

sian, Equations (7.4-ia and b) are solved optimally by the celebrated

Kalman filter. When either f( ) or h( ) is nonlinear, which is usually

the case for target state estimation and tracking, an Extended Kalman

Filter (EKF) is used where all nonlinearities are linearized about

the best state estimate. However, the EKF is no longer the optimum

solution and, in fact, convergence can no longer be guaranteed (see

g Gelb 41). The general continous time eauivalence of Equations (7.4-la

and b) was studied by Kushner and Stratonovich.42  While assuming only

a Gaussian noise process, Kushner and Stratonovich derived a partial

differential equation governing the time-dependent state's probabil-~0

ity density function (see McGarty42).

We mentioned earlier that the EKF linearized all nonlinear func-

tions about the best estimate of the state. This linearization is

probably adequate for small process and measurement noises. However,

we are interested in a low SNR environment where the signal pro-

cessor is required to have a long integration time such that the effect

of target dynamics must be considered. Under this assumption, we

present a method of target state estimation and tracking from the

signal processor viewpoint. Thus our approach is to estimate the

target's localization and motion parameters from the estimated

variable time delay procesor.
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7.4.1 Target State Estimation

We are interested in estimating the target state (for example,

range, bearing, range rate, and bearing rate) over a T-second

observation. In this approach, we do not require the target to travel

on a constant course and speed as is usually the model assumed by the

Kalman filter formulation. But instead, we assume that the variable

time delay due to target motion can be modeled by a finite order poly-

nomial in time. Therefore, the variable time delay processor dis-

cussed in Section 6.3 is applicable. Figure 7-2 shows the target

0 geometry and the appropriate state variables.

y

/ '.TARGET TRACK

0 i
02.5

Fiue72/emtyo agtSaeEtmto

0-
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Let the target state variable in the polar coordinate be repre-

sented by

* T

Y = (r, e, r, e) (7.4-2a)

and in the rectangular coordinate by

R = (X, Y, XY)T (7.4-2b)

Note that there exists a unique mapping between the two state variable

q representations. Let the mapping operator T( ) be defined such that

= T(Yp) (7.4-2c)

and

-T1 (7.4-2d)

Now from Appendix D, we have the geometric relations between time

delay measurements and the localization parameters;

r = fl(T 1 , T2 ) (7.4-3a)

e = f2(TI, T2 )  (7.4-3b)

where f( ) and f2 ( ) are given in Equations (D-8a) and (D-8b).

Therefore, one can write the range rate and bearing rate as

I4
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af1  af1
r -2 1 1 +-2 T 2

f3 (T, T2 l' 2 ) (7.4-3c)

af 2  af2.

- t + T

f4 (Tl, T' 'T 2) " (7.4-3d)

We can define the partial time delay vector X by

TX :(T1 T2  I 
Tl (7.4-3e)

Then the target state vector can be related to the partial time delay

vector X by

: f(X) (7.4-3f)

where

A f( ) (fl() f2 ( ) f 3 ( ) f4( ))T (7.4-3g)

Therefore, the best estimate Y is given by

4
YP = f(x) (7.4-4a)

and the covariance of this estimate is given by
I

4
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COV (1p) F cov(x) F-1  (7.4-4b)

where the matrix F is given by

af
F = m- (evaluated at some desired X*) (7.4-4c)

The partial time delay vector X can be obtained using results

from Section 6.4.2.3. Thus from Equations (6.4.2-25a and b), we have

the vector X(t); i.e., the vector X evaluated at any time t E [0, T]

is given by

hT(t) 0 T

0oT l W htt) e~2

X(t) h
hT(t) 

0T [2]

- h(t) e (7.4-5a)

where e = [el _2T is the time delay state vector at time t = 0, and

h(t) is the derivative of h(t) w.r.t. the time variable.

Hence, the best estimate of X(t) is given by

X(t) : h(t) e (7.4-5b)
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and the covariance of X(t) is given by

-T

COV(X(t)) = h(t) COV(e) h (t) (7.4-5c)

where COV(t) is given in Equation (6.4.2-37b).

Thus by estimating the time delays and the delay rates, the

5target state vector can also be estimated. Finally, the performance

bound can also be evaluated at any point within the observation

interval.

7.4.2 Target State Tracking

Our approach to target state tracking is to extend the results in

variable localization parameter tracking to include the target motion

parameters. Again we use the sequential fixed-interval time delay

tracking processor discussed in Section 6.5.1.

Here we assume that the time delay tracking processor yields the

time delay state vector en at t = nAt. Therefore, from Equation

(7.4-5a), the best estimate of X (T) at time t T + nAt is given by

_n(T) : h(T) en (7.4-6a)

S ' - | -" -
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Therefore, replacing X by Xn(T) in Equation (7.4-4a) yields the tar-

get state estimate as a function of time, namely

Yp (tn) = f(Xn(T)) (7.4-6b)

where tn = T + nAt is the time of the most recent observation

subinterval.
I

-4
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CHAPTER 8

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Behind an able man there are always other able men. -- (Chinese

Proverb)

!q

We have studied in detail the methodologies of optimum signal

processing for passive time delay estimation in a multisensor, mul-

titarget environment. Our investigations were motivated by (1) the

inherent inability of the existing time delay estimator to resolve

estimation bias in a multitarget environment, and (2) the apparent

lack of research and understanding in this area. In the litera-

ture, the studies of interference were confined to studying the

effect of interference on the existing processor and the methods of

interference suppression. The location or direction of inter-

ference was usually assumed known. Our study as presented here,

however, treats the interference as another target of interest.

We pointed out that the traditional approach is optimum for a

single target only. In the multitarget environment, the existing

approach is biased due to the inherent mismatch between the single

target signal processor design and the multitarget operating envi-

ronment. We argue that for a high performance sonar system, it is

236
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important to have an unbiased processor since measurement bias can-

not be easily removed with further post-estimator processing.

The optimum multisensor, multitarget time delay processor is

derived from a Maximum Likelihood viewpoint. The actual processor

is obtained by reducing the likelihood equation via straightforward

Ubut somewhat tedious manipulations to the simplest form. The gen-

eral multisensor, multitarget processor is applied to a two-sensor,

one-target case. The resulting processor is shown to be identical

to the GCC studied by Knapp and Carter.' We next studied the two-

sensor, two-target problem. We showed the optimum two-sensor, two-

target processor and presented the CRLB. We then extended our

study to address the estimation of localization parameters. Much

of our attention had been spent on the discussion of a basic three-

sensor ranging array. We showed that for passive ranging and

directional finding, an optimum processor is the focus beamformer

which yields a direct estimate of range and bearing. We argued

that an alternate approach is to measure the inter-sensor time

delay and then geometrically map the time delay measurements to the
0

corresponding ranges and bearings.

The focus beamformer approach can be called the one-step

approach, whereas the alternate time delay approach can be called

the two-step approach. It was shown in Section 3.5.2 that both

approaches yield identical performance in terms of the CRLB. How-

0 ever, there are major differences between the two approaches:

0



238

(1) the focus beamformer requires searching over a range! bearing

space of a correlation function which is asyimmetric with respect to

the range and bearing variables; on the other hand, any correlation

over the time delay variables is always synmmetrical; (2) for track-

ing purposes, the focus beamformer approach requires a two-

dimensional error detector design whereas the time delay approach

5 v-an be implemented using two one-dimensional error detectors; and

(3) arguing from the Law of Large Numbers, both approaches yield

Gaussian measurement noise. However, for the time delay approach,

the resulting range and bearing estimates could be biased and have

non-Gaussian statistics if a direct non-linear geometric mapping

from time delay measurements is used. For a practical implementa-

tion, the two-step time delay approach is preferred because the

syrmmetry of the correlation function over the time delay variables

yield-. simple and efficient tracking logic. This is especially

advantageous for a low SNR environment where the increased smooth-

ing time required (to make the estimator efficient) can be achieved

via a simple feedback design. Finally, for the three-sensor rang-

ing array, the potential bias and non-Gaussian statistics can be

minimized if mapping to intermediate variables is used instead of

range and bearing; for example, mapping to cosine bearing and

inverse range since they are linearly related to time delay mea-

surements.

We also investigated the general optimum inter-sensor time

delay vector estimator. Our study showed that given M sensors, the
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M-1 time delay can be obtained with M-1 correlators. This is in

1marked contrast with Hahn's approach 25 where a total M(M-1) Z corre-

lations are required. In addition, we presented a simple expres-

sion of the CRLB of time delay vector estimation under a single

target assumption. Finally, in our study of the three-sensor rang-

ing array, we pointed out the improved performance of the optimum

uformulation versus the conventional approach.

We stated that one of the strongest assumptions we made in

0 studying the optimum time delay processor is the assumption of

known target power spectrum. Therefore, we briefly addressed the

problem of power spectral estimation. We studied the optimum spec-

tral estimator for the two-sensor, one-target case and the two-

sensor, two-target case. We briefly studied the problem of joint

time delay and spectral estimation. A somewhat surprising result

is that time delay estimates and spectral estimates are uncorre-

lated. This implies that the joint time delay/spectral estimation

does not degrade the resulting estimator performance when assuming

either is known. Furthermore, we found that while the time delay
CRLB decreases as the inverse of observation time, the power spec-

tral CRLB decreases as the inverse square of observation time.

We next addressed the problem of practical implementation of

the optimum multisensor, multitarget time delay processor. We
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noted that one approach is to assume a weak signal in noise envi-

ronment. Here the intricate structure of the optimum multisensor,

multitarget time delay processor is drastically reduced to a man-

ageable form. We also discussed a single target assumption

approach as a suboptimal processor in a multitarget environment.

We provided a numerical illustration of the single target processor

behavior in the presence of interference. Performance of the

single target processor was compared to the optimum multitarget

processor. We noted that in the presence of interference, the

* single target processor, in general, was biased and had a larger

variance except when the target interference time delay separation

is small; i.e., less than a correlation pulse width. Within this

region, however, the optimum multitarget processor has a variance

which grows without bound as the separation decreases for the case

of identical signal and interference spectrum. This reflected the

IM inappropriateness of using a multitarget formulation in a single

(merged) target environment.

In a multisensor, multitarget environment, an optimum proces-

sor remains optimum so long as the actual number of sensors and

targets matches the number assumed in the optimum processor design.

A mismatch in either the number of targets (addressed in this

study) or the number of sensors (caused perhaps by element failure)

will automatically degrade the processor performance. Therefore, a

key element in using the optimum multitarget processor is the cor-

rect detection of the number of targets.
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The optimum multisensor, multitarget processors which we have

derived, studied and discussed thus far were based on the assump-

tion of a SPLOT process. This assumption is difficult to satisfy

for a more general moving target environment. Therefore, we

further refined our study to account for the effects of target

motion.

I
The approach we have taken was to model the time delay motion

by a finite order polynominal in time and partition the observation

interval into N equal subintervals. It was shown that in order for

the time-compressed waveform to be Fourier representable, N must

satisfy a certain constraint. When this assumption is valid, one

can again express the multisensor, multitarget, multi-interval

observation in terms of a multi-dimensional Fourier coefficient

vector. The result of using an MLE approach yielded the multi-

sensor, multitarget variable time delay processor. This processor

provided an estimate of the time delay and its higher order deriva-

tives at any time within the observation interval. It was shown

that for time delay estimate, the minimum variance always occurs at

the midpoint of the observation interval.

The time delay processors we have discussed thus far are

batched processor; i.e., one must wait until the end of a T-second

observation before one starts any computations. In many applica-

tions, this T-second solution delay is not acceptable. Therefore,

4 we have investigated and proposed a sequential fixed-interval time

I
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delay processor. This processor obtains its current estimate by

utilizing the most current subinterval observation and the prior

estimates. We obtained an expression for the covariance calcula-

tion.

We next addressed the problem of variable localization para-

meter estimation and tracking. Our approach was similar to the

stationary parameter case. We first estimated the time delay tra-

jectory using the variable time delay processor. Localization

-* parameters were then obtained via a geometric mapping from the time

delay estimate. For target state estimation where we are inter-

ested in both the target position and velocity components, the map-

ping function utilized both time delay and time delay rate esti-

mates.

Although we have studied a very broad area covering technical

issues in signal processor design, parameter estimation and target

state estimation and tracking, there are many questions, however,

which remain unanswered. Therefore, we suggest them as topics for
"0

further investigation.

Our study presented here concentrated on the multisensor
0

multitarget signal processing. However, closely related to the

multitarget situation is the multipath environment encountered in

many underwater sonar signal processing situations. Since multi-
ppath signals are correlated, one cannot simplify the signal
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'S" processor as we did for the multitarget case, where target signals

are rightfully assumed uncorrelated. Thus, in terms of signal

processor design, the multipath processor is somewhat more complex

w.r.t. the multitarget processor.

The post correlator matched estimator we have studied assumes

a known signal and interference power spectra. However, knowledge

of the target spectrum is seldom exact. Therefore, it is important

to investigate the robustness of the estimator when a mismatch

exists .

Finally, our approach to localization parameter estimation and

tracking, or more generally, target state estimation and tracking,

starts from a signal processing design viewpoint. Traditional

approaches are mostly formulated in terms of a Kalman filter.

Therefore, it will be of utmost interest to compare the performance

of these two approaches in terms of solution accuracy, computation

requirements, effects of maneuvering target handling capability,

and tracking threshold.



APPENDIX A

DEFINITION OF COMPLEX GAUSSIAN PROBABILITY DENSITY FUNCTION (pdf)

This appendix briefly describes the meaning of a complex

Gaussian probability density function (pdf). A thorough treatment

of this subject can be found in Goodman.
43

Let X(t) be a zero mean wide-sense stationary white Gaussian
random process with correlation function E[X(t) X(T)] = C26(t - T),

then its Fourier coefficients from a T-second observation are given

by

* T
= X(t)e kTdtXk =T

0

= Ik " J Qk k = 1, 2, ..., B (A-i)

where Ik and Qk are known as the in-phase and quadrature phase com-

ponents. It can be easily verified that Ik and Qk are Gaussian

distributed with the following statistics:

E(Ik) = E(Qk) = E(Ik Qk) = 0 (A-2a)

E(Ik) = E(Q) 2)

TLet Zk (I k Qk)  then the bivariate real Gaussian pdf of Zk

is given by

P(Z = (2 " IRk '  exp{- Z (A-3a)

244
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r where

R E (-k 4 ZT) =1 a 0] (A-3b)

Now a complex Gaussian uni-variate pdf of Xk is defined by

P(Xk) 1 -I-I exp{-X* c-1 Xk} (A-4a)

where

Ck = E(Xk X) 2/T (A-4b)

It is straightforward to verify that IRkI = 
2 1c and

C- - 1
k k Xk = Zk Rk Zk/2, hence one can write

I 2 + 2r 2 k + k

P(Xk) P(-) Z (r2)- exp - - (A-5)

Therefore, in general let X be a complex Gaussian B-dimensional

vector such that

X = - j Q (A-6a)

-I with

E(I IT) : E(j QT) = V12 (A-bb)

E( T) T -E(t IT) = -W12 (A-6c)

Now define a 2B-dimensional real vector as

: (I T T)T (A-7)

4
L
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p Then it can be shown that P(X) is a complex Gaussian pdf defined by

P~)=P(i) =7-BI1c exp{-X* c- X) (A-8)

where

c=E(X X*) = V + j W (A-9)



APPENDIX B

CALCULATION OF CRAMER-RAO LOWER BOUND FOR TWO-SENSOR, TWO-TARGET CASE

This appendix calculates the Cramer-Rao Lower Bound (CRLB) for

the two-sensor, two-target case. Using Equations (3.4-1) and

(3.4-5), the CRLB of the time delay estimates are:

VAR(Ti) > [d'l]ii i 1, 2 . (B-1)

Now the symmetric Fisher's Information matrix J can be written as

1- _ , _ _ __ _ _

11 ~ 2 1221

i 1~2 ~ 2J 11 22 -L12) -JuJ

Therefore

A1

VAR(Ti) > ; i : 1 2 (B-2)
1 I-M2 ) Ji

where

M 1 2 1 2 ' 112 3 J22)

is defined as the coefficient of mutual dependence. The quantities

Jij are defined by Equation (3.4-5) as:

247
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B -

~ iz tr aRk' 3R k i 1, 2(B3
ijai ' j 1, 2

k=1 1

In what follows, we present a detailed calculation of the quantity

'iij" Using the relations given in Equations (3.2-6) and
(3.5.1-4a); i.e.,

Rk -Skl Pkl + Sk2 Pk2 
+ Nk I (B-4)

and

aRk 2 &-1 (aPki aGki --1

- -
= hki Qki 3 Ti i a Pki Qki i 1, 2 (B-5)

we obtain

(r aRk aR k h- 'R 2  tr(-1 !Ui~~ -- ___

tr i a Tj Skj I kii r 1Q -i Qki 8T

- aGk ~. ~ - P~2 (B-6)
"aki aTi tr PkiQki T.!]

The trace of the quantities inside the parentheses can be evaluated

3s follows. From Equation (3.2-7c), we find

* Nk1(Sk2 Pk2 + Nk I)
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=Nk1 Sk2/Nk ~
Nk I + 2 Sk2/Nk Pk2

- Ii -ak2 ak2 e
Nk1

a k(B-7)

where

where

S k2 /N k
ak2 = -F i k/N k  (B-8)

and similarly

- Nk2 k (B-9)Q 2 Nk-akl1 e I~T - a k1

where

a• Skli/ Nk (-0ak1 = I + 2 Sk1l/N k  "(-O

~--1
* Note that ki is a Hermitian matrix with identical diagonal ele-

ments. Therefore, letting

S"
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r ".
qk i* qi

1 Lq2 1li

we have

- q 0 -ej1 0J-k

Qki aT.-cj Ll qI JWkrJ

" [ [1
Lq12 e qm Ij  L e '  0k 1:

*u F uTi -jwk j(B11

L"1i e -q12  e'J* k
TJ] (B-i)

and after some algebraic manipulation, we obtain from Equation

(B-11)

FA'J A..
Ql aPki -- 1 aPkj 2 11 12 B12
ki Ti Qki ar " J LiJ (B12)

L12 11

where

A' . 2 jk( i+-rj) 2 -jwk(Ti-rj

A : (q12) e -(q~l) e

A' eq1 [q lk e(Ti +1 )_ * e jJ (Ti Tj)
12 L12 eq 12

S.

S
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Thus

tr Qki (AH + A'H

=-2wk Re {Ajf} (B-13)

where Re { } denotes the real part.

Now using Equations (B-7) and (B-8), we obtain

tr 51 P 2] 2(k 2 (1 - ak2)

[ ak2 k 2  ]

12 o 2 A1 (B-14a)
(1 - ak2 )

IaP k22 2(N\ 2 ak)2
tr )k2- 2 ') (1 - a 2

6 [ 2
I - ak2  cos 2kAl2  (B-14b)

aki)

--I aP kI i aPk2\ 2(' N kl
tr-k--/ (1 - 2 ak2) CoswkA12  (B-14c)

67
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where

A12 
1 -' 2

is the time delay separation.

On the other hand, we have

ki k [1 "Jkmi

[1  1 2

Qki Pki = 
ii* ~T 

i
Lq12 qjl, e~m' 1

q12 + q1 1 e q12e + q11

[B~i B121

12  B11 (-5

I

I
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Thus combining Equations (B-II) and (8-15) we obtain

B I

tr/ -1' 'k - pk u 12ki aT.) = jwk tr i*

tr\Q~ ~k ([ 12  11]

* ~1e juTi- qi e-J~

(Bq 12 1 -

112i* " i * i "- kTC
- ~ 1 "(12 q~ 1 ql2e

juk[Cij - Cij]

= 2 k Im{C i } (B-16)

where

O

2 -Jmji .BI q 12~i 2 1

2jk' + (q' )2 k + 2 q1 q1 e i ' , (B-17)

(q11) e1
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Im { } denotes the imaginary part,

and Aij ; -ij -Ti +  j

Now from Equations (B-7) and (B-8), the following are

obtained:,2
ck2 (1 - ak i (B-18a)

C22  ( - ak 1 e (B-18b)

and

IN 2  2 a k2  jw 12) 2 uO 2
k ( I 2  (I1 a2 eJ )2 e (B-18c)12z Nk \T-kz) a - k2

Now substituting Equations (B-18a-c) into (B-16) yields

1Pkl\ ( 1 )
tr2kukl Qk - 2ak2 (1 ak2)

2 sin uA 12  1 - a2 sin 2

(B-19a)

* I.



255

2pk21 Nk 2
tr kk2 2 -k2 2,'2 )) a aki)

-2u,( k (1

(2 sin wkAl 2  1 - ak2 2wk'L2)

(B-19b)

and

A 1 5-1 ap 2 'kl\
tT-kl Q k 2  - (1 - 2 ak2 ) 2 sin wkA12 (B-19c)

In addition, from Equations (3.5.1-5b) and (B-11), we have

ki tr (-l "ki)3T-- :t Qki -T,-

Jwk (q 2 e j Ti - qi* eJwki) (B-20)=w " 1212

-I

and for i = 1

23GkI a ( Nkl s (B-21)

aG I

: -k !si k l
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Finally, substituting Equations (B-14a-c), (B-18a-c) and (B-19a-c)

into (B-6) we find:

/ R1I 3R \p2]
tr(- kk = 12 h k1 k12

a)a Gkl tr P

ak t QkI k1 '5ki at1  /

w Ski hkl (1N- k1k2) (B-22a)

A where

Y1 I - El cos 2wkA 12  E2 sin 2 WkA12

+ E3 (sin wkAl2 ) (sin 2wkA12) (B-22b)

with

a2
ak 2

E k (B-22c)
.41 ((1- ak2)2

E 4 akl (1 - ak2 ) k) El (B-22d)

E 2akl a k 2  ( Nk1) (-22e)

(1 - ak2) 2  Nk

I
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Similarly, we have

tr a / k2\Nk/ (1 - ak) Y2 (B-23)

where is obtained by exchanging indices between 1 and 2 from yI.

Finally, the cross term is

( tr- Rk l 3Rk  Ih 2  tr 5-1 a
'kl --1 'Pk2

r-: 2 Sk2 " \k1 - k1 a22

k1 -- k2a Gkl t(-- Q k

a" akl 1 kl 1

=2~ 2  2hl (1 - 2 a k 1 Y12  (B-24a)

where

Y12= cos WkAl 2 - 2 aki ak2 (-) sin 2 (B24b)

Thus, the elements of the Fisher's Information matrix are:

J = 2 2 Sk2 l Nkl ) (1 a )2 YI (B-25a)E k k1 Nk I ak2)
k=1
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B N 2 (

1 2 E ca~ 2  hk12 (k') (1 2ak2  1  (B-25b)
k =1

- 2 Sk 2 '2 )k (1- aki) 2 Y B2
22 k=1w k N

Using the definition of Ihkii 2, Nki an ki in Equations

(3.5.1-4b), (3.5.1-2c), (B-8), and (B-10), Equations (B-25a-c) can
be expressed in integral form for a sufficiently long observation

time T as follows:

TJ \( + G171/(S2 + N))(~~N + 1 2w S2-6

0

Tc S1S2/ N 
2

1~2 :f W + - + N)) 1\ ) 7Y12 d B2b

and C 
/ 21 

+ S /

22 TJ* (1 + Gj S2/(Sj + N) ) + 2 d2 (B-26c)Y

where

/M21) [2 ( S2 /N) e"jWA2 (B-26d)

2+

I2
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G (1 + S1/N) 2 - +S S/N 11 + ejw1212 (B-26e)

01 A somewhat simpler expression for yl, Y12, and f2 can be obtained

as follows. From Equation (B-22a-e) we obtain

2 N 2

E= ( k2  ( +2 /N) ( r -/N (B-27a)
ak2) ( + S2 /N 2

\1 + 2 52/N ]

E 4 akl (1 - ak2) (T)E 1 = WI E1  (B-27b)

where

W S1/N 1 + S2/N 1
= 4 ' + G1 S1/(S2 + N) I + 2 S2/N (B-27c)

and

2 aki k2  "kl 2 EIN: W2 EI  (B-27d)
•E3  (1 a k2)4 NN k - aki ak2 Nk  E1

where

2 +----S + N) I- 4-2/-S= 2 1 + G1 S1/( N)[ 2 2/N

(B-27e)
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Hence Equation (B-22b) can be written as

Y1 = 1 - E1  cos 2wk 2  W sin 2 WkAi2 W2 sin WkAi2 sin 2 A12 )

3

= 1 - EI L A, kn 12 (B-28a)

n=O

where

A 4 Sl/N 1 + S2/N 1

A0  1 Li + G1 S1/(S2 + N 11+ 2 S2/N -1
(B-28b)

S4/N ] S2/N ]

L1 + G 1 S 1/(S2 + N) 1 + 2 S2/N

A2  1 -A 0

A A1 .

Similarly, one obtains

3

Y2 1 - E2  Bn cos n WkAi2  (B-28c)

n=O

0"

S
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flYm where

a S2/N iF1 + S /NJ B2dBo
8a + G2 S2/(S1 + N 1+2S/N - 1

T+ r=21((B-28d)

[ S2/N iF 1/N 1
B1 = -4 1 + G2 S2 /(S + N)I + 2 SN

* B2 = 1 - B0

B3  = -B1

Finally, from Equation (B-24b)

Cos 2 ~S 1/N 2 Ns n2 u AY12 C" 2 G1 S1 /(S 2 + N) 1 + 2 /N 3sin2 Wk1 2 "

(B-28e)

6

6,

6

!"
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APPENDIX C

CRAMER-RAO LOWER BOUND OF TIME DELAY ESTIMATION FROM MULTISENSOR ARRAY

In general, the Cramer-Rao Lower Bound (CRLB) is given by

VAR (i) 1 ii (C-1)

.1 where J is the Fisher Information matrix whose ij element is

defined by (Equation (3.4-5)).

• Jij : tr e k 30 . (C-2)

k=1

Under the assumptions of (1) single target, (2) spatially incoher-

ent noise processes and (3) identical sensor array noise power

spectrum, the CRLB can be evaluated easily.

From Equations (3.5.1-2) and (3.5.1-4) we obtain

Rk = k P k + Nk Qk' (C-3)

-. where Nk Qk = Nk using assumptions (2) and (3), and the relation

3Rk 1  2 Pk

k 1 2 a k (C-4)

262

6
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where

2 k Sk/N k  (C-5)

and M is the number of available sensors.

From Equations (3.5.1-l0b) one obtainsI
ap ak a( *

aeJi Vk ai vk (C-6)

where Vk, the steering matrix, is given by

V : d iag e ju D e k  . e M ... e C -7 )

and the mn element of the matrix 10.. is38i

II

a- i a" . (Dm Dn " (C-8)

3 mn 3

Now since

aRk S aPk (C-9)

4 ae Sk aiT

3

I!

I'
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from Equation (C-3) and using Equation (C-4) in Equation (C-2), one

obtains the expression

tr ( aik = S 2hk j tr (Tk k)
as 9k I N i ae.

Ssk I  2  2 tr V i V* v k a vk  (C-10)

k I 'k (k ae7 k Vk e k (-a

Now using the relation Vk Vk = I and tr(AB) = tr(BA), Equation

(C-10) becomes

tr aR kl 3R k I  h122 2 21(1)

tr y i 39 -Sk lhk 2 k tr Vasi a(

Therefore

B

S. = h' 2 W 2 ' o t
i :" Sk hk k a i  ej)

k=1

B 2  2

. =-tr at 3. ) MS/N (C-12)
2 k k ( i

Knowing Jij's for all i and j, Equation (C-1) can be used to calcu-

late the CRLB. Using Equations (C-1) and (C-12), we shall estab-

lish the following relation.

0
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Given M sensors under a single target, spatially incoherent

and spectrally identically distributed noise environment, the CRLB

for the incremental time delay are identical and equal to

B S2 /N2

VAR(Ti) M E 2 k  i 1 , 2r , M-I
k=1 4 1 + M Sk/k) (C-13a)

Furthermore, denote the time delay between any two sensors by D,

then

A

• VAR(DML) = VAR(Ti) for all i. (C-13b)

Thus, Equation (C-13a) implies that under optimal signal

processing, the time delay estimation between any two sensors

improves when the number of sensors is increased.

We shall establish Equations (C-13a) and (C-13b) through the

following intermediate steps:

(1) Let Ti' Tj be any two elements of the incremental time

delay vector, then

- t r a O o ) -2 i ( M - j ) ; j > i

OTi 3Tj / -2 j (M-i) ; i >-

0Q

S

S,
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(2)

VAR(i) _> d1ii

, 'B , 2 / N 2  -
M 2 k k

k=1 k k
;for i =1, 2, .. ,M-1

(C-15)

. (3) Define m = D - Vn, and ti :i+ -Di; then

VAR(Dn) = VAR(Ti) for all m, n, and i. (C-16)

From Equation (C-8), the mn element of the matrix D is given by

cmn ={Dmn -7

C
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Therefore, the matrix ¢ can be written as

M-1

0 -1 -(l+2) . . . ... -

M-2
Ti 0 -T 2 . .. .. .. ... "E T

i =1

(T 1+r2) "r2 0 . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .".M-1

M-1 M-2

T i . . ... ......... M-I 0
i=l i=l

(C-18)

Note that D is a skew symmetric matrix (i.e., € = T); all ele-

ments in the main diagonal are zeros; the incremental time delays

occupy the first diagonal; and that any elements above the first

diagonal can be obtained by summing the elements to the left and

below.



268

Now it can be verified that

Oix- ix(M-i) 19

t. i i I 0(M-i)x(M-i)j

where Oiidenotes an ix 1 matrix of O's and l(M-i)xi dntsa
(M-i)xi matrix of l's.

Therefore, for j > i, we have

A jxi - jx(M-j)

tr( L. ) tr - j-- -- - - -

0jxj jx(M-j)

M-)xj MjX -)

(C-20a)

-. where

A xi ix(j-i) C2b

1 (j-1)xi 0(j-i)x(j-i)j
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8jx(j - Iix( M(J)C-- . .... . .(c-2oc)
ijx(MJ(i)

L(j-i)x( M-i)J

Thus, using Equations (C-20b) and (C-20c) fi, Equation (C-20a) and

carrying out the necessary matrix operation, one finds

U
tr -2i(m-j) ; j >i (C-21a)

"* and by symmetry argument, we obtain

tr( ): -2j(m-i) ; i >j . (C-21b)

aT i 3T

This proves Equation (C-14).

Next we want to show Equation (C-15).

Combining Equations (C-2), (C-5), (C-12) and (C-14), we obtain

j 2 k k  A (C-22)
. k

pk-
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where A is a matrix given by

(M-1) (M-2) . .. 1

(M-2) 2(M-2) . . . 2

•• . . . {i(M-j) ; j>i i C

.. j(M-i) ; i > j

1 2 ... (M-1)

Thus the inverse of J is
I

J-1 = A- [2 2 ( Sk/N k  (C-24a)
k=1

and therefore the diagonal elements of d-1 are

B S 2/N 2  \J
[J1]ii ( A'] [ 2 1 + k k

k=1

'"i 1 , 2, , M-1

(C-24b)

4

I4
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By inspection, the matrix A-1 is given by the M x M matrix

,.2 -1

-1 2 -1 0
A- M-1 2 -1 (C-25a)

0 -1

or the ij element is given by

U2 A'I t ; i =j

Ai " ; 1i-j) = . (C-25b)

0 ; i-ij > I

This can be verified by a direct multiplication to show that A-A =

1. Therefore, using Equation (C-25b) in Equations (C-24b) and

(C-15) yields the desired result:

VAR (ei)> [J'l.i

2 ki

This proves Equation (C-15).

0

-0
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It is easy to see that

; -VAR (Ti)/ 2  ; if li-jl : 1
dO 0 ; if li-ij > 1

Finally writing

mn-i

Dmn= M-1 (C-28)
i :n

as the time delay between sensors n and m, the maximum likelihood

estimation (MLE) of Dmn~is linearly related to the MLE of Ti .
Hence, the variance of Dmn is given by

VAR (Dm) = ] ^ E I . (C-29)
i=n j=n

Using Equations (C-26) and (C-27) in (C-19) yields

VAR(Dmn) : (m - n) VAR(Ti) - (m - n - 1) VAR(T i )

VAR( i) • (C-30)

Thus the optimum MLE of time delay between any two sensors yields

the same Cramer-Rao Lower Bound.

0A



APPENDIX D

FUNCTIONAL RELATIONSHIPS BETWEEN TARGET LOCATION VECTOR AND

MEASURED TIME DELAY VECTOR

This appendix develops the two-dimensional mathematical rela-

tionships between target location parameters and time delay para-

meters of a general three-sensor array.

Figure D-1 shows the general array and target geometry. In

principle, measurement of time delays between sensors A1, A2 and

A2, A3 provides the necessary set of relations to obtain target

range and bearing. Using the Law of Cosine, these relationships

can be obtained as

y
X TARGET

CD1
DoD0CD

CD2

r

A3

0 L2

Al A2

018.953

Figure D-1. A General Three-Sensor Passive Ranging Array System

273
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T 1  D2 0-01

r -r
2 + L + 2rL 1 cos e

= c (D-la)

and
2 D D3 -D2

4r2 + L - 2rL2 cos(e- ¢) - r+=2 L c (D-lb)

where Di, i = 1, 2 and 3 are the propagation time delays and @ is

the offset angle of one sensor with respect to the baseline formed

by the remaining two sensors.
I

For the case where r >> L1, and r >> L2, Equations (D-la) and

(0-ib) become

Ti + ( - + 2 + 2 cos e

2 .2
L1  1)sin2 e

- - cos e - 2rc-- (D-2a)

.* and similarly

L2  L 2sin2
T2  2 - Cos a + 2r (D-2b)

However, the exact expressions for the location parameters as a

function of time delays can be found using Equations (D-la) and

(U-1b) as follows.

I

I
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-m After rearranging, squaring and simplifying, Equations (0-1a)

and (D-ib) reduce to

. (cT1)
2  L 12 = 2r(cT1 + 

L, cos e) (D-3a)

)\ (CT2)2  L2= -2r(cT, + L2 cos(e - *) (D-3B)

We first solve for e, the bearing and then solve for r, the range.

Dividing Equations (D-3a) and (D-3b) yields

cT1 + Li cos e (Ctl) 2 - I
= -k (0-4a)

CT2 + L2 cos (e - -) (cT2)2 - L -

so one can write

L1 cos e + KL2 cos(e - €) = -(cT 1 + KcT2) (D-4b)

and from which one obtains

e +C~os -1 (CTr + KC 2(D-5a)

where

A sin KL2 sin €

A cos L : + KL2 cos . (D-5b)

1
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Therefore, from Equation (D-5a), one obtains

Co 0 Cos[+ Co- cr1 + KCT 2

(cT, + KcT 2 ) (L1 + KL2 cos *)

A
2

A2 KL2 sin ¢ (D-5c)

where

A2  = (L1 + KL2 Cos 2 + (KL2 sin )

= (L1 + KL2)2 (1 a) (D-5d)

where

2KL L2 (1 -cos c)
a 2 (D-5e)

(LI + KL2

Now substituting Equation (D-5c) into (D-3a), one obtains the range

solution as

(CTI)2 _ L2

r = 2(cTl + L, cos e)

[(cT 1 )2 - L2](L I + KL2) (1 - a)

2{CTI(L 1 + KL2 )(1 - a) - LI(CT 1 + KCTr2 )(1 - - 7}

where

= 1- at - y2 KL1 L2 sin
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where

L -2L 1  o KL 2  

{D-6b)

KL2(1 - cos *)

CT L1 K+ KL2  

(D-6c)
cT1 + Kc'r2

From the relation (D-4a)

CTl 2

L2K1(-)71 2 2 
(D-6d)

L2

Equation (D-6) can be simplified to

L, [I (CT1) + L 1 (2)]
r 1 2 (1 -) (D-7a)2 T-"2 W + r{w)

where

(C + CT1  r c ~l \ IC T 2  1 2  si
K2 1 12 L2

(D-7b)

is a function of the offset angle .

I



0

278

Now further algebraic manipulation shows that

cr1  CT1 r2KL L2( - cos,0 KL2 (1 Cos ~

.. =-( 2 (I> - cos *) c'rI  (D-7c)

and
cr 2 1 c 1 2KL 2(1 - cos *) cT2 K(I- cos )

7 L2 I  - \ L (a 2 (L + KL2)2

L I + KL2)+

L, - Cs ri) [2 Lc

(L1 + KL2 ) L2 1 - cT2 (L1 + KL2)]

(D-7d)

Combining Equations (D-7c) and (D-7d) yields

Cos) [cTI(LI -KL2) + 2KL 2 CT, KcT 2(LI + KL2)]
(L I + K2

S Cos2 (LI + KL2 ) (CT 1 - KCT 2)

(LI + KL2)

T - KC 2  (1 -cosO)

+ KL2 (D-7e)
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Thus Equation (D-7b) becomes

C 1 - K c -2

cL( + K-1 cos ) a y2 sin (D-7f)L1 +K 2

Note for a colinear array system (i.e., b = 0), we have a 0, r(O)

0 0, and the range and bearing equations are given by

L [ TI + L 22 [1 2)

2[(5 C")]CT

and

ecos- (I CT + KcT2  (0-8b)

In addition for L 1  L2 = L and r >> LI, using Equations (D-2a) and

(D-2b), it can be shown that

-1r c(TI +T 2 )1

= cos - - L (D-9a)

L2 sin 2 e (D-9b)r -Cj ----- 2 _ j (Di .

If e is defined w.r.t. the broadside direction, Equations (D-9a)

and (D-Yb) can be written as
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o -sin-' [L1 ('Tl + T2)j (D-10a)

r Cos e (D-l0b)



APPENDIX E

STATISTICAL CORRELATION BETWEEN TIME DELAY ESTIMATES

WITH COMMON INPUT CHANNEL

If time delay estimates are obtained from two Generalized

Cross-Correlators (GCC) whose inputs contain a common noise channel

(Figure E-1), then the resulting time delay estimates are correla-

ted. This appendix calculates the resulting correlation from a

frequency domain approach.

Let the frequency domain (Fourier) representation of a

T-second observation of waveforms from sensor array A1, A2, and A3

with signal propagation delays D1 , D2 and D3, respectively, be

written as:

' k :Bk e + nCk (E-la)

J< 2

S2k Bk e + n2k (E-lb)

JwkD3
a3k =Bk e + n3k ; k 1 , 2, .. ,B (E-ic)

6 with Sk = E(Bk) and Nik = E(niknik) for all i as the discrete

signal and noise power spectra, respectively, at frequency

= 2nk/T. For convenience we assume that interarray noise

processes are uncorrelated. The time delay T, = D2 - DI and T =

• D3 - D2 can be obtained by seeking the null of the GCC functions

(Equation (3.5.1-14c)).
B

fl(TI ) = B h h ejwkT il (E-2a)
E jwk hIk h2k 01ik '2ke

* k=-B

281
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and

B

f 2 T2)juk 2 (E-2b)
f 2) -- .~ jw, h2k h3k '2k '3k e

k--B

where B is the uppermost frequency of either the signal or the

noise and h ik is the frequency shaping filter whose frequency

response isU
2 S /N 2

Ihik I 2 Sk/Nik (E-2c)

Let T, and T2 be the estimated time delay, then the quantity

of interest is the covariance between and ' i.e., COV( 1, '2 ).

The Taylor series expansion of fl(T 1) and f2 (T2) about the true

time delay T0 and To yields1 2

f afl(Tj) 0- T) + (E-3a)

fl(Tl) =fl(T ) + 3TI  (T1 - .j(

and

f (T = (TO) + 2T (T- T 0) + . (E-3b)

222 2220

L0

T2  2 r

. .... 0 f'•t
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Neglecting the higher order terms (small error assumption) and set-

ting fi(T 1 ) = f2 (T2 ) :0 in Equations (E-3a) and (E-3b), one

obtains

0) afl (To) 0

"- 3T, (Tj - T ) (E-4a)

af2(T2 )
f "2( =) - 3T_ (T - _r2 (E-4b)

~2 (2

We shall make the following assumptions as a result of a long

observation time process: (1) the expected value of the derivative

is equal to the derivative of the expected value, and (2) the

derivative is uncorrelated with time delay. Then from Equations

(E-4a) and (E-4b), one obtains

- afol0

7 (TI' - T~ (E-5a)

- afo

2f -( T - T)(E -Sb)

where for simplicity we denote the expected values of fl(-T) and

f2 (T ) by fo and fo. Thus, the product of the means is

0 0 __ _ __ _

0 - af Iaf 2-0
a T 23 (T (-6

0 7 T T
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On the other hand, the mean of the product is

f f 0 - f

1 2 Tai 2 1)(T

Therefore, the covariance is

*CVt, 2) =C 1  2 2 (rr) - -ro) (T 2 -02

1 2 1 2(E-'

From Equations (E-2a) and (E-2b), the quantities in Equation

(E-8) can be evaluated as follows.

1 = E (ju) 2 h,, h* S (E-9a)
1i, k=-B

a2 h2k h3k Sk

k=-B

O
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B

jW< ~ 2 k Sk (E-9c)
k=-B

B

= h k h3k Sk (E-9d)
k=-B

and

B B
00 * *

*~f fo= .~ (ju )(jwt) hk h*k h2  h3~
k=-B 9,=-B

S +w T 0)

'Ik '2k a'2Z '3, e (E-1O)

But

a'lk '2 lk'2 a9 k 2 k a 3 + "lk 2 2 a2k '3Z

+ aIk '39. '2k a 2.

-j(WkT~~ ~ ~ 00wT0 m To-o

S2 e -  1 +  2  + S e 1 2 +6

•ju 0- 0o

+ Sk(S k + N2k) e 1 2 k-Q ' (E-11)
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where 6k-z is the Kronecka delta defined by 6k-9 1 if k = 9; and

6k-9 : 0 if k p z.

Now substituting Equation (E-II) into Equation (E-1O) yields:

B B

fo fo (juwk) (j, hi hk * 2 h 3  
2

k=-B L=-B

B

Lie k 1k h3k h2k1 5k
k=-B

B

- I2 k h1k h3k h2kI Sk(Sk + '20)
k=-BBi B

kh=-B 2k Sk ( -B 2k 3k Sk)

B

- wk h1k h3k h2k1 Sk '2k
k=-B

B

f1k "3k frl2kI 3k N2k (E-12)
k =-B
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Finally, using Equations (E-9a) through (E-12) in Equation (E-8)
> yields

B

k~ '1hk '3k 1h2kj Sk '2k

k=-B* COV(Tl,T 2) B

k)=-( (E-13)

Z~k E1 , ~hkS

Equation (E-13) can also be expressed in continuous frequency

domain as

B 2h (w)h*(w) h2(W) 2 S(2)N2 (W) dw

h1  h 3 2  2

w2 h h (w)S(w) dw w 2h2 (w)h*(w)S(w) dw

K (E-14)

Note that if either the definition of T, or T2 is reversed, the

sign in Equation (E-13) and (E-14) is also reversed.

Finally, it can also be shown similarly that the variances of

the estimates are given by:

2
0 -0

VAR() - 2

L -
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B

O w N fhkl I12k I'Sk(Nlk + '2k) + NIk 'Zk2

k=-B

2 
2

E k h 1k h 2kS

(k-B

1B

2w0 2 1h(w) 12 Ih2 (w) 1
2 [S(N 1 + N2) + NN 2] dw

T (B2
w. 22l )*d

I T~( 2 ( w() S (w)d

0 (E-15)

Similarly, one obtains

B

w 2 jh2(W)I 2 fh3 (w)12 [S(N 2 + N3) + N2N3] dw

* VAR(T2) 2 2f 0
T *

32(w) h3(w) S(w) d (E-16)

"0

A substantial simplification can be obtained for the case of

bandlimited flat signal and noise power spectra.
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Let

-. ! (S if wl < w < w

S (W) = 1

(0 otherwise

i N if w <w w2 and for all i

O otherwise

be the signal and the noise power spectra and assume identical fre-

I9 quency spectral filters for all channels, then the covariance

expression of Equation (E-14) reduces to

COVer 1 r2  27 w ~2 dw)
T

9 and the variances reduce to

I

I
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VAR(TI) VAR( 2 )

2rn (SN)2 B -1

T I + 2 S 2 dwJ
I" 0

| 2 f1 , 2 (S/N) 2  3 3
T 3 (l + 2 S/N) (W2 (E-18)

Comparison between Equations (E-18) and (E-17) shows that

S/N VAR( I )A

COV(T T2 ) : 7 2 S/N (E-19)

.1

0

K
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APPENDIX F

DERIVATION OF EQUATION (3.5.2-7a)

. -From Equation (3.5.2-7a) we have

3A (r,e) =  jwk I (F-)Tr1: h0kI'k I' Vk IF V* -ak(FI

k=1

Using the relation

as _ as at1  30 3T2+ (F-2)S3r 3T, +r ' 2 3r

and Equation (3.5.1-10a-c)

Ti (Vk 1M V) = j k Vk  V(F-3)

in Equation (F-1) yields

_ B

aA(r, e) 2 h3i 2  V3 
Dr k=l kT k

~j ~k IhkI - T-2 Vk 2k ar
k=1

B
a l k I  h 12 1M v* T
a - hj 2k Vk l~ k

292

r
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SIkI2 'k 'M -a-k

k =1

But

e JUkl 0 0 1 1 1 e U j 0 0

VklM V* 0 1 0 1 11 0 1 0

0 0Oe '2 11 1 0 0 Ue

1e e

= ~ e3'%(t+ 2)(F-5)

and

2 Vk 'M -'' I cl2kf I a3kI

(ah (11k + (l2k (11k e1
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~ ~ ej'kT2) + ~k eJ'k T 2
+ ( k  keJk2) k a2ke kt*

": I~ eJm( 1+r2 )e~m (I+2 ) ) *

('3+ (k 'lk + ( Ok c k i

(F-6)

Now using the fact that the first term in Equation (F-6) is not
parameter-dependent and that quantities in the parentheses are con-

jugate symmetric, Equation (F-4) can be rewritten as

3A(r,e) a B hjk I  jkT23r E hk2 lk ke + °k '2ke
k=-B

JUk (T1 +T2))
ak ' l k e

T I lh (w) 12 G(w; Tl,2 ) d (F-7)

where

G(w; Tl, T2 ) = T [(a2k alk) e + 2 2k e

,"~~ ~ ~~ . m :+2)]
+ (O3k alk) e1. (F-8)

I



APPENDIX G

CALCULATION OF LOCALIZATION UNCERTAINTY FROM THREE-SENSOR ARRAYS

This appendix calculates the localization uncertainty based on a

two inter-array time delay measurement.

From Equations (D-lOa) and D-lOb), the approximate (r >> L) time

delays to range and bearing relation are given by

9 : -sin "I {L (Tj + T2 )" (G-1)

L 2  Cos" e
r c 2  I  (G-2)

where c is the speed of sound, and L is the inter-array separation.

Letting Y : (e, r)T, X = (T1 , T 2 ), Equations (G-1) and (G-2) can

be written as

Y = f(X) (G-3)

where f(X) = (fl(X) f2(X))T is the vector function defined according

to Equations (G-1) and (G-2). Let Y* and X* be the nominal values, 6Y

and SX be the deviations from the nominal; then a first-order expan-

sion about the nominal (R, B) yields

* 3af*

SY 6X (G-4)

where it is defined that

295

0I
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aft aft

f* ae* ar*

a a]

b -b 
(G5a)

where

I a - 2LcsB (G-5b)

b= 2 R2c (G-5c)S L2 Cos 2 B

since R >> L.

Now post-multipling Equation (G-4) by its transpose and taking

the expected value yields the desired covariance relations:

COV(Y) - (a-* COV(x) ( T "( ax ax - (G-6)

Let

I COV( x) (G[-7)2

(v72 a2
12 li

4'

kr
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then

a a "2 a2
a a 12 a b

COV(1 )

b(Y -b o2 a2 :1
L12 11 L

2'2 2 20 ]9 2(or,1+ cF1 2 )a2 0

0 (a 1 2 )2
1 0- (G-8)

and the determinant of COV(Y) is

COV(Yfj= 4 a2 b2 (a 1 - 4 (G-9)

The area of the one-sigma error ellipse is

S = IC0V(Y)j

- -2 ab 7r 4

L3 cos 3  12 (G-1)

The time delay covariance matrix for the optimum approach is

(see Equation (3.5.2-16d))
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Po = VAR( 1 ) (G-11)

and the conventional is

S/N

S+2S/N 1

Thus the corresponding area is

so = 3 L(Rc) 2  VAR(f) (G-13)
T L Cos I3 B

and

s = 2- -(1-+ 3 S/N (l + S/Ni VAR( I) (G-14)
" L3 cos 3 B (I + 2 S/N) C

where VAR(TI) and VARc(Tl) are the estimated time delay variances of

the optimum and the conventional processors, respectively.

* Finally, from Equations (G-8) and (G-11), the optimum range and

bearing variance expressions are given by
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2 2 2VAR(B) 2(all + a 12) a

1( )2 VAR(T1) (G-15)

VAR(R) = 2(a2 11 o'2 b

3c2  Cos T-*) VAR(T1) (G-6

and from Equations (G-8) and (G-12), the conventional range and bear-

ing variance expressions are:

VAR~ B 1 C (L I B) (I S./N) VAR Qri) G1a

VA2 RR )4 (1+ 3 S/N)
VRC() 2/ o -- F /N VAR C(Ti) G1b

Using the relation given in Equation (3.5.2-16c),

VAR(,t 1 ) 21
2-+- 3s/N~

VAR C(T1)

* the conventional range and bearing variance equation can also be

expressed as:

*VAR C(B) =(L cos 8) (1 + 3S/) VAR(Tj)

= 3 (1 3 )VAR(B) (G-18)

0
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and

VARC( = 3c2 (L cos B) .VAR(-

= VAR(R) . (G-19)

Equations (G-18) and (G-lq) show that for estimating range, the con-

ventional approach and the optimal approach have identical variance.

* On the other hand for estimating bearing, the conventional yields a

variance which is three times the optimum at low SNR environment.

O

'O



APPENDIX H

GCC STATISTICAL PERFORMANCE IN THE PRESENCE OF INTERFERENCE

This appendix develops the appropriate expressions for the bias

and variance of the time delay estimate from a Generalized Cross-

Correlator (GCC) in the presence of interference.

Let the frequency domain representation of a T-second observa-

tion of waveforms from two-sensor arrays, A, and A2, in the presence

of J targets be written as:

t k k k + nik (H-la)

2 -k + k2k ; k=, 2, ... , B (H-ib)

where B is the highest frequency components of the signal or the noise

processes, nlk and n2k are the Fourier components of the noise

processes at frequency wk = 2Trk/T. In addition, the complex vectors

, Vlk and V2k are defined by

V ik : e e , e j k i 2
. e i j] i = 1 , 2 (H- c)

and

- B6k : [ kl ,  Bk2, . , BkJ] T  (H-id)

where Dij is the propagation time delay from target j to sensor i and

Bkj is the Fourier component of the signal spectrum of target j. For

convenience, it is assumed that both the signal and noise processes
are zero mean and mutually uncorrelated. Thus, we have the relations

for the discrete signal and noise power spectra

301



S

302

SkJ; if j
-k *j (H-2a)6ki 8kJ

(0 ; if i 0j

and

k; ifi j

i k = k (H-2b)
O ;if i j

where () denotes the expected value.

*Q ,ithout loss of generality, let target j 1 1 be the target of

interest, then the best estimate of TI = D21 -1, from a GCC (see

Equation (3.5.1-14b)) is to seek the null of the equation:

B
f(T) jwk j hk 2 0'1k 4k e 0 (H-3a)

k =-8

where IhkI2, given by

Ih2 1 2 SkI k (H-3b)k I + z S k /Nk

is the optimum spectral shaping filter for a single target environ-

ment. Because of the observation noise, Equation (H-3) is a stochas-

tic algebraic equation. On average, however, the mean of the estimate

must satisfy the equation

B

2= hk k e = 0. (H-4a)

k=-B
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But from Equations (H-la) and (H-lb), one obtains

alk aNk l.ik Sk k

= Skj e" j kT  (H-4b)

j=1

whereI

Tj D 2j -0 1j (H-4c)

is the actual time delay difference between sensor array A1 and A2 of

I target j and

5k k =k

diag{S k, Sk2, . .. , SkJl (H-4d)

is a diagonal signal spectral matrix. Therefore, the mean estimate

must satisfy the eouation

BB

tT= Z ijklhk 2 Vik Sk 2-2k e 0 (H-5a)

k=-B

or using Equation (H-4b), we have

3 B JWk(T-TJ)

jhk12 Skj e (H5b)

j=1 k=-B

Equation (H-5b) can be manipulated to yield

4

I
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j=

~~where 1

R () B 12 S ej(U kT (-
Rj(: A_ k  Skj e(-d

I k:-B

is the auto-correlation of target j.

Denoting the total power for target jby

B
pj : Skj, (H-6a)

k:-B

the total received power by the sensor array as

P P Pj + N; N : Nk ,  (H-6b)

j=1i k :-B

and the normalized total correlation by

P(T) A fp , (H-6c)

then Equation (H-5c) can be rewritten as

()aLpj (T - -j) 0 (H-7a)

j=l
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p'y where

a. P./P (H-7b)

and

Pj(T): Rj(T)/P. (H-7c)

In general, Equation (H-7a) must be solved numerically; however, for

the case in which the interference is close to the true target of

interest, then one can write

j(T- ) p() + p(0)( - (- Tj 2 (H-8a)

where pj(O) and p'j(O) denote the first and second derivative.

But

MB

p 0 =k (H-8b)

)[ k kj)/P 0

and

- w S(P 2) d 2  S/P

T f 2WjhwP 2 %(w) d() /Pc

0

-W w/P. (H-8c)
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T(S /N)(SIIN) 2
,W 2 dw (H-8d)

:." P(1 + 2 S1/N)f

W

where in the last equation the signals and noise are assumed flat and

band limited.

Therefore, using Equation (H-8a) in Equation (H-7a) yields

a P '(0)(-r - rj) = 0 .

j=1

* Thus, the mean estimate of TI is

TI  aj P'(0)Tj aj p (0
j =1 j =1

j j i(H-8e)

where

L, B
. = T w2Ih(w) 12 Sj(w) dw (H-8f)

0

Now using Equations (H-8e) and (H-7b) in Equation (H-3d) yields

T (SjlN) i  (SjlN) (H-9)
"i ~j =i =

J L



307

Thus, the time delay estimate from a second expansion of the correla-

tion function is a weighted linear combination of time delays from

every target. For the two-target case, let the signal of interest be

S1 = S, interference S2 = I, then Equation (H-9) yields

.4 + I
TI r Ti + T 2 (H-10)

The bias in general is

(Sj/N)(T i - TI  (S /N) (H-I1)
Sj =I j =i

and for the two-target case

i= 1 (H-12)

We next derive the expression for the variance. Using the

linearization procedure, it is easy to verify that the resulting

variance of the time delay estimate from seeking the null of the func-

tion f(T) is given by

VAR(. - ) (H-13a)

af(T1 )

where T is chosen such that

B

= j 2ak elk e O. (H-13b)

k=-B

i'A
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But from Equation (H-3a) and (H-5a-d), we have

B B
%Tj (j i w ) I h kI2IhzI2

k=-B 1=-B

'11k czlk cz12 cZ 4 U +

(H-14a)

and

3f(T) B 2____2_ jlk Tl
* - k=E (i k)I

2 
c'1k 42k e(H-14b)

Now using the following relations

a 1k 74k = -Y-lk Sk -K.2k = j Ski eNJ (H-15a)

~j=1

a'lk 4~k "12.ah alk 4k 1Z, qZ2 + 71k aD.z k 4z

1 ak cI2 a2k al Z

"1ak a~k O12, alt, + (ilk Sk -4k + NO) k+,

(V. - 2 (H-15b)
-Ik Sk '-k k-2,
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T Equations (H-14a) and (H-14b) can be simplified to

B 4 2

f- = :  w IhkI f ( v l k Sk Vtk + Nk " (Vik Sk -. ke 2

(H-16a)

_ a - klhk2 1 lk SkYh e (H-16b)

k:-B

Substituting Equations (H-16a) and (H-16b) in (H-13a) yields the

desired expression for the variance of the T, estimate:

B J~l)

()k= ki (Yk Sk Yk k) (Vik k !k
=k=-B

(H-17a)

21T w2IhI4 k S + N)2  -Jw' ()21

(fw2 Ih2 VS j e j1dw, (H-17b)

Recall that

S + N = N + S (H-Iea)

L
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- jLWyr jWA.
VS V e = S e (H-18b)

where Aj -1 -Ti. then Equation (H-17b) can be rewritten as

f 2 f(N + ja Sj)2 -( jSj eJwwJ) 2  I2h 4 dw

VAR(T1  [f I Si ejwAj w2!hI2 dw]

*(H-19)

For the special case where

<'w and w2 W< I

s3 )
0 ; otherwise

N; w, w - w2 and -w2  w < -l

N(w) =

0; otherwise

Equation (H-19) reduces to

N 2R(0) - 3 Si S. R(A.i + A.)
(Nr i j) j

VAR(TI) 7- S R(A) 2

SJ
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- :1a aia p(A1 + A 1 Rj(O (H-20a)

where

a S + -1 (H-20b)

R(T) f ci2 COS WT dw (H-20c)

P(T) R(T)/R(O) (H-20d)

I ; if T = 0

(H-20e)

1 2 C WT + (wi 2 sin WT ; if T 0.

For the two-target case, Equation (H-20) becomes

1 2 2VAR(1) -[a1 p(2A,) + a2 p(2A 2 ) + 2a1 a2 P(AI + A2 )] 1

* 2[a 1 P(Al) + a2 P(2)2 R-(0)"

(H-21a)

- S
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Note that

a S/N (H-21b)
1 + S/N + I/N

aN I/N (H-21c)a2 :- 1 + / N + I/N

where we have let S1 = S, S2 = I be the signal and the interference

power spectrum, respectively. If the interference is far away from

the target in time delay, Equation (H-21) becomes

VAR.(,ri) =lira VAR(-rI)

2 2 aR (0 ) . (H -2 2 )

rk 2a 1  R(

Therefore, the normalized variance is

VAR(Tj) 
a a

VAR,,(T a

1 a2p(2A ) + a 2 p(2A2) + 2aja22al p(A,) + a2  CA 2 ))

(H-23)

I.



Appendix I

CALCULATION OF MULTITARGET GENERALIZED CROSS-CORRELATION COVARIANCE

The calculation of the covariance matrix resulting from discrete

observation of the Generalized Cross-Correlation (GCC) function in

the presence of multitarget interference is presented. The results

presented here are obtained from a frequency domain formulation.

Let the noisy observed waveforms from two sensors in the

presence of J targets be represented by

4 3

[: Yl(t) : si(t) + hi(t)(I)

i =1

Y(t) = si(t + Di) + n2 (t) (1-2)
i =1

where si(t) is the ith target signal waveform and nl(t), n2(t) are

the noise processes. It is assumed that signals and noises are

zero mean, mutually uncorrelated, band-limited Gaussian processes.

K.I Let the waveforms be sampled at a sampling rate of At seconds

such that T = N At seconds of the waveforms are observed. Discrete

Fourier transforms of Equations (I-1) and (1-2) yield the equivalent

frequency domain representation as

clk =-'ki + n1k (1-3)

i=1

313
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a2k =  Bki e + n2k (1-4)

where

wk = 2rk/T

a = I y (nAt) e-j(2 nk /N ) 1

n=1 (1-5)

N
";0 ='L si(nZ~t) e-J(2ink/N )

Bki ; i = 1, 2, ... J (1-6)

n=1

and

N n (nt e-j(27mk/n)
a =kn(nAt) N E z 1 1, 2 . (1-7)

n=1

The GCC is obtained from the following:

B
r R(t) 1: k a IkI HkI' e" (-8)

- k=-B

where IHkI 2 is the spectral shaping filter.

Equation (1-8) is usually implemented via inverse FFT. Conse-

quently, discrete observations of the GCC R(T), R(nAt), are obtained.

For simplicity, let R(n) = R(nAt), then we can write

S a-|I l ~ - m
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R(n) ~ ~alk a!k JHkI 2  J(2lnk/N) (1-9)

k=-B

We are interested in the auto covariance of R(n) and R(m), Anm'

for any n and m. In general, one can write

Anm = R(n) R(m) - R 7 R-m) . (I-10)

Now substituting Equation (1-9) into (1-10) and simplifying

yields

B B

- AnmZ~  k k O'1 It - alk qk a1Z I Z)

k=-B L:-B

Hk12 IH9 12 eJ(2r/N)(kn+9jm) (I-ii)

Since aik for all i and k are zero mean complex Gaussian random

variables uncorrelated for different frequency wk' one can write

(using the fourth order product moment formula)

'lk aqk '1Z qZ al 'k ak a19 a2 Z qZ ak "19. 4k a29. +

1k az a.k . (1-12)

Substituting Equation (1-12) into (1-11) yields

L - - - - - - - - -
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B B

Anm E E Z (71k Clz k czo + 7lk 4z L2k 3! 1)

k=-B L=-B

IHkl 2 IH, I2 ej(27r/N)(kn+9m) .  (1-13)

Now using Equations (1-3) and (1-4), the quantities inside the

parentheses in (1-13) can be evaulated as follows:

I

~1k~12 ~2 ~*2 Si +Njk) (~ Sk + Nk) k+ (1-14)

al1k 42 42k alZ S ki edui 6k- 2. (1-15)

where Sk aki, Nik n1k, and N~k = n2k

Finally, substituting Equations (1-14) and (1-15) into (1-13)

yields

B Njk / J 4 j(27rk/N(n-m)
Anm= E Ski + Ni Ski + N2 k) IHk

-=4 i= :=I

.B (J j i eJwkDi)2 I Hk4 ej( 27k/N)(n+m) (1-16)E E Ski Ik-6

For a single target case with identical noise power spectral

density, Equation (1-16) yields
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I, B

A(1 : (S N 2 ej(2tk/N)(n-m)
nm k Nk)

k=-B

+ S2 e-J2uk D eJ( 2 1k/N)(n-m) IHk1 4

B
S (S2 + 2SkNk + N) Hk14 ej(2 1rk/N)(n- m )

k k-k=-B

B

+ (S + S 2 N ej(21k/N)(n+m-2D/At)ESi k (1-17)

k=-B

= - _ BB (S2 + 2SN + N2  ,H 14 eJ( n m A  (

-B

I +f IHI 4 s 2 ejw( (n+m) At'-2D) dw (1-18)

where S, N, and H denote the continuous power spectra.

For the case of uniform spectral shaping, i.e., IHI2 - 1, we
tl obtain

A 1m Pss(n - m) + 2PSN(R - m) + PNN(n - m) + PSS[(n + m) - 2D/At]

6I (1-19)

I
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where if 0XX(w) is the power spectrum of X, then oXX(T) is given by

B

PXX(T) = T5 f Dxx' w) ej W T dw (1-20)

-B

For a two-target case with equal noise power spectra, Equation

(1-16) reduces to:

kB
(2) B 1 (Sk e k -kD 2  4e(21rk/N)(n-m)

+ B e + Sk2 e 2 IHk4 ej( 2 1r/N)(+I)

k=-B

(1-21)

B

1~~~ ~ .JfS S 2+2 k

= 2 IN~ kfs1 * k2 k +(Sk1Sk 2 + SkiNk + Sk2Nk)I

ej(27rk/N)(n - m) + S21 ej 2 ukDl

+ 2SklSk2 e

+ S 2 e'J2JkD2 ej(21 k /N)(n +m ) . (1-22)

K~k2
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Hence the continuous approximation is given by

B

A(2) T _ H I4 IS'+ S' + N2 + 2( 1 S2 + S N + S2 N)I ejw( n m)At

-B

+ [S2 ejw 1  + 2S S2 e -jw(D 1+02) + S2e -j2w021

11 I-2 3

Iejw(nlm)At) dw (1-23)
2

Now for uniform spectral shading IH12 = 1 and using the defini-

tion of Equation (1-20) in (1-23) yields

(2)
A m S (n - m) + (n - m) + ONN(n - m)

+ 2[PSS(n - m) + pSIN(n - m)+ pS2N(n m)j

+ PSIS2 [(n + M) - 2DI/At] + 2pS S2 [(n + M) - (DI + D2 )/At]

+ PS2S [(n + M) - 202/At] (1-24)
22

l 2



LAPPENDIX J
FOURIER REPRESENTATION OF A TIME-COMPRESSED WAVEFORM

If a signal waveform, s(t), emitted by a moving target is

observed by a stationary (or moving) sensor array, the observed

signal waveform is compressed if the target is closing or is ex-

panded if the target is opening. Let the propagation delay from

target to sensor vary linearly with time such that

D(t) = D + Dt (J-1)

where D is the initial delay and 0 is the delay rate. Note that

D= where V is the relative velocity along the line of sound

(LOS) and C is the propagation speed of the medium. Because of

the time-varying delay, the observed waveform at the sensor array

output is s(t + D(t)). In this appendix, we develop an appropriate

frequency domain representation of this waveform.

Let s(t) be a zero mean, band-limited, Gaussian process, then

s(t) can be represented in terms of Fourier expansion by

kts(t) : k  (J-2)

k=-B

E where

T-Jk t

k s(t) d dt (J-3)

0

wk = (2k)4, T is the observation interval, and B is the bandwidth.

320
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Now for the time-compressed waveform, let ak be the corresponding
Fourier coefficients. One can then write

TT j -J kt

0k T fs(t + D(t)) e dt. (3-4)
0

But from Equation (J-2), one obtains

B jWz(t+D(t))

s(t + 0(t)) a e

Z=-B

B
• B jw( t+D)

-L e (J-5)

Z- B

where Equation (J-1) has been used and that we have defined

B =1 V

as the time compression ratio.

Substituting Equation (J-5) into (J-4) and interchanging the
summation and the integration operation yields

BW D f1 ji(Bw -wk )t
ak a z e j  T e dt1 . (J-7)

0:-B 0

It can be shown that
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4I f eJ(WC-k)t dt

r0

T T-ei(BmW-wk) sin(w Z- wk)T)e 
\(m-k)T

-je k if Z k

sinc(ek) e

0 if Z k and z 1 (J-8)

where

wk VT

2C: (J -9 )k 2C

and sinc ( ) = sin(

Therefore, substituting Equation (J-8) into (J-7) yields

rk sinc(ek) eiw( ) ("k

[: inc(ek) e k k " (J-10)

Thus Equation (J-10) shows that the effects of time compres-
6 sion on the Fourier coefficients are: (1) an effective time delay

evaluated at the midpoint of the processing interval; and (2) an

effective coherent reduction in signal amplitude which is a func-

tion of the net change in time delay over the same interval. Thus

if coherence is to be maintained such that 1 > sinc(ek) > 0.9 for
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all frequency wk, then the following condition must be satisfied;

namely, T must be chosen such that

1
T < (J-11)

40B

where D is the time delay rate and B is the signal bandwidth as

defined earlier.

On the other hand, if Fourier coefficients are to be uncor-

related, it can be shown29 that T must be chosen such that

8T> (J-12)

Combining Equations (J-11) and (J-12) yields the desired constraint

8 < BT <i-- . (J-13)

4D

Thus when the observation interval T satisfies Equation (0-13),

the time-compressed Fourier coefficients are given by Equation

(J-10) and adjacent Fourier coefficients are uncorrelated.

0

6.



APPENDIX K

VARIABLE TIME DELAY CRAMER-RAO LOWER BOUND

FOR TWO-SENSOR, ONE-TARGET CASE

The time delay variation is assumed linear. Therefore, the

parameter vector is e = (T, T)T. In general, the Cramer-Rao Lower

Bound (CRLB) is given for the two-parameter case by

I

VAR(ei ) > 1,2 (K-1)
(I M12) ;1

where M12 is the coefficient of mutual dependence given by

M = 12 -(K-2)
121M12 :(3l 11J12 )  

(K-2

and Jij is given by (see Equation (6.4.1-2))

- - (_ I R knN kn K-3)

Jij L tr o i . (K
n 1 k =1 9 = 0

6• For the two-sensor, one-target case, the covariance matrix

Rkn is given by

Rkn = Sk Pkn + Nk Qk (K-4)

where Qk = I for the reason given in Section 6.4.2 and

Pkn = V 1 Vn (K-5)kn kn M kn

324
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with

1 0

Vkn jwk(T t) (K-6)

0 e

Now using Equation (6.3-6a), it can be shown that

n SRk aPkn (K-7)
T Sk Jwk Sk Vkn '1 Vn

k Sk n -jwk Sk tn Vkn l VI (K-8)

aT aT

and from the relation (see Equation (3.5.1-4a))

3R-1 kn 2 -1 aPkn 2 aGkn 1aei :1 _k i QkI aii a a n  ei P kn QkI (K-9)

where

jhkI 1 + 2Sk/Nk (K-lOa)

3Gkn *- Qk V) =0 (K-lOb)
a. .i k kVkn •

- One obtains the following derivatives:

w-
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p-" aR1  J k l k 1kn 
2

S=-JWk tn hkI Vkn 1 Vn" (K-12)

aT

Hence, combining Equations (K-3), K-7), (K-8), (K-I), and

(K-12), one obtains

N B t1

• :- ' ~~~~n~ k=1 h 1 S rVn Vn

n=l kl

B
2N Lw 2hk 2 Sk (K-13)

~k=l

since tr(Vn 2 V)* -2.kn I1 kn

Similarly, one obtains
*O

N B /3R1l 3R
J E tr kn kn
12 3..L. t

n=l k=l at

N B

-2 Ihk12 Sk tn tr(Vkn D2 Vn

n=l k=1

.0

S. " l ' M = d- m "m t I
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( =tn fWk Ihk S k (K-14)
n=1 k=1

nwheretn (n - )At is as defined in Section 6.4.2.

The J22 term can also be obtained as

j 22 E tr kn kn

n=1 k=/ @T 3T

N B
:w2 1hk 2  k 2 tr(Vkn D2 Vn

n=1 k=1

: 'h Sk  (K-15)
Sn=1 k=1

Thus using Equations (K-13), (K-14), and (K-15), the Fisher

Information matrix J is given by

11 '"12

LJ12 J22J

N

N t n

BB
N2w• 2hk2  k (K-16)

2 k=1

n
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Thus the coefficient of mutual dependence is

2
12 Ji J22

n=1N

n4

1

(At N 212) 
2

-At
2 N2 (4N2 _ 1)112

AN 2  
(K-17)

4N2  -1

is Therefore, the variance and covariance of the parameter vector

VAR(Z = 1 2 J1-
1 - M12  11l

112

I
=(4N 1) (N~w 1 +~ k) (K-18a)

N

k

0 
| m -"
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2T r ( 4N 2( o2 S 2 M/N 2 (W) \-
N2  1 T I I + 2S(w)/N(w) d) (K-18b)

where = denotes the continuous frequency approximation and T : NAt.

Similarly, we obtain

VAR (T) 1 1

B B 2 2/N2

-k 1 + 2Sk/Nk

(4N 2 -1) k=1

n=I

BB S2/N2  -1
S12 w12 2 k-1a

LN2 - 1N 2  klk I

12(2)N 2  23 2 S2 2 -1

N2 _ k 1 + 2S w/N (K19a

2T 1 1 dwNI -Sw/~)

j
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pand finally, the covariance is

J 12
COV(TT) -

'11 22 1 ~2

2 I2

tn

n=1
B S S

2 /N 2

6 (2 I + 2 Sk/Nk

n 
-1

: N2 _ T2 2  /N 2  (K-20b)

[N 2 1 1 i + 2S(w)/N(w)
0

Note that Equations (K-18), (K-19), and (K-20) indicate that

for N = 1, the variances and covariance are unbounded. Thus for

a meaningful joint estimation of T and t, the number of observation

intervals must be equal or greater than two.
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