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Abstract

The mathematics required to calculate the asymptotic standard errors of

the parameters of three commonly used logistic item response models is

described and used to generate values for some common situations. It is

shown that the maximum likelihood estimation of a lower asymptote reduces

the accuracy of estimation of a location parameter. If one requires

accurate estimates of location parameters (e.g., for purposes of test

I-. linking/equating or for computerized adaptive testing) the sample sizes

required for acceptable accuracy may be so large as to make maximum

likelihood estimation infeasible in most applications. It is suggested that

other estimation methods be used if the three-parameter model is applied in

these situations.
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Introduction

The literature of Item Response Theory (IRT) (e.g., Lord, 1980) has not given

extensive treatment to the standard errors of estimated item parameters

for the commonly used models. A standard error is an indication of the

precision with which a parameter is estimated. A useful rule is that the

range of values from two standard errors below an estimate to two standard

errors above the same estimate has associated with it a probability of .95

that the true population value is in the interval. Thus the smaller the

standard errors are, the more precisely the parameters may be estimated.

| _Few statistical estimation procedures yield exact results; the estimation of

intervals is more common than point estimation. Even when point

estimation is used, the point is usually understood to represent the middle

of a distribution of possible values. An interval is often constructed by

placing a confidence interval, based on standard errors, around a point (see,

for example, Bradley, 1976.)

There have been few attempts at determining confidence intervals around

the parameters associated with item response theory. That may be because

the closed form formulae for those standard errors as a function of sample

size and parameters are complicated and difficult to apply.

Item Response Theory (Lord, 1980, for a thorough introduction; Hambledon

& Cook, 1977, for a survey) covers a wide range of aspects of test theory.

The key facet for the purpose of this report is that each item in a multi-

item multiple choice ability test can be characterized by specifying the

I- probability that an examinee of any given ability will answer the item

correctly. Furthermore, the equation which relates the probability of a

correct response to the ability of the examinee is assumed to be logistic.

The following equation is widely used to express the probability of a correct

-_ response to an individual item

P(correct) = c + - C
-1. 7a (O-b)

1+ e

4 where 0 = ability of the examinee, a = the discriminating power of the item

(higher values of a indicate that an item is more effective in discriminating
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between more and less able examinees), b the difficulty of the item (high

values indicate more difficult items), and c = the probability that an

examinee with no knowledge of the subject will answer correctly.

Two commonly used simplifications of the model exist; the first assumes

that the c parameters are all known (usually zero), and the second assumes

not. only that the c parameters are known, but also that the a parameters

(slopes) are all equal. The three variations of the model are usually referred

to as the logistic item response models.

In the simplest case, the computing of asymptotic standard errors of the

parameters of logistic item response models estimated through maximum

likelihood requires numerical integration of a complicated composite

function. Nevertheless, those standard errors may be directly, if tediously,

computed for any set of parameters and sample size. No data are required.

It is assumed that the models are appropriate for the data, and the data fall

within the ranges the model specifies. Since neither assumption is likely to

be exactly true in practice, the standard errors obtained by this method

represent lower limits for actual standard errors. Nevertheless, it is useful

to consider the minimum values obtainable for the standard errors for the

parameters of various models. If a test developer requires certain precision

in parameter estimates, the methods and tables of this report may be used

to select sample sizes large enough to allow such precision.

The purpose of this report is to demonstrate methods for calculating the

standard errors, to provide representative values of the errors and to

consider the implications which the magnitudes of the errors may have for

operational testing situations.

Estimation and Standard Errors

Consider the development of an item pool for computer adaptive or paper-

and-pencil testing. The simplest situation in which there is a problem of

item parameter estimation arises when one item is to be added to the pool.

4 For instance, a sample of examinees may be tested with an established test,
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plus one new item. The parameters of the items in the established test arc

known. In order to determine the parameters of the new item, one may use

the old items to estimate the abilities of the examinees, and then estimate

the parameters of the new item using the ability estimates of the

examinees.

LThe ability of the examinees can be estimated to any degree of accuracy

required, by adding old items to the test. The parameters of the single new

item may be estimated by nonlinear regression of the right/wrong responses

to the new item on the ability of the examinees. Ability must always h

U -estimated in practice, but since it may be estimated with any precis;-

required, given a large enough item pool, it will hereafter be assumed th

the abilities are known fixed values, thus making the calibration of a sinf

40 item a nonlinear regression problem.

A nonlinear regression problem such as that described in the previous

paragraph is easily solved by maximum likelihood methods. If the item

response model is a function of e. (the ability of person i) and set of item

parameters I , which gives the probability of a correct response to the

new item, r = 1,

Pi = P ( ri = 1li, L) (1)

then the likelihood of the observed responses for N independent examinees is

(with the subscript i omitted leaving P = Pi and r = ri)

e N
N r (1-r) (2)

and the loglikelihood is

. = r log (P) + (l-r) log (l-P) (3)
i= 1

and the maximum likelihood estimates of each parameter in the set , are

located where the partial derivatives

4
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N

• jjj r *i 1-I r (4)
• - = .: II - I') '((4)

The second partial derivatives of the loglikelihood have the form

N

2 ..)p 'P
. --- - - -

s t i s Pt

(5)

'(l-P) 4 ;:2 t s (i-i') ,'
s t 'tt

for any parameter , and t. In general, the inverse of the negative

expected value of the matrix of second derivatives of a loglikelihood is the

* asymptotic variance-covariance matrix of the estimates (Kendall and

Stuart, 1960, pp. 54-55). The density of 0 is taken to be c ( 0 ), and

. substituting P for r results in the expectation of (5). Then, through

simplification and integration, the equation becomes

-_ _t_ + ('- ). " (P) d

Equations similar to (6) for the three-parameter model in the finite sample

case are given by Lord (1980, p. 191). Evaluation of (6) requires only the

derivatives of P with respect to its parameters, and the specification of

. (z). Hereafter, 0 (9) will be taken to be Gaussian with mean zero and

I variance one.

5
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* The derivatives of 1) with respect to its parameters are extremely simple for

commonly used logistie item response models. These models are based off

the logistic function, which, in simplest form, is

1/ (1 exp -a (u- b ) ) (7)

Q* 1 -P*. (8)

The parameter a is a function of the slope of the resulting item

characteristic curve, and b is its location. For the so-called three-

parameter logistic model,

P = P(r = Ili))= c+( I-e)tP* (9)

which is equivalent to the equation given in the introduction, except that

S- the earlier equation contained the factor of 1.7 which changes the units to

approximate those of a normal distribution with mean zero and standard

- deviation of 1.

_The third parameter, c, is a (possibly) nonzero lower asymptote. In this

model,

P = (1-c) 1P*Q* (f0-b)
3a

-P (i-c.) P*(,* (-a) (0
:. 7p l P* (

4C

For the two parameter model, (t1)

P= P( r= 1[ () P*

and

'P = *d - (12)

6
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and

P'Q* (-a) (13)

The one-parameter model is the same as +he two-parameter model with the

"" value of a fixed, so the only derivative required is that for b, the location

parameter, and it is identical to that for the two-parameter version.

For any of these models, specified values of the parameters, and a given

sample size, these derivatives may be substituted in (6) to give a k x k (for
the k-parameter model) information matrix. That matrix ,nay then be
inverted to give the variance-covariance matrix of the parameters. The
square roots of the diagonal elements of the inverse are the asymptotic

standard errors of the parameters. In Appendix II are tables of those

standard errors for the various models as functions of the parameters. The

parameter values are chosen to represent the range encountered in testing

situations.

Approach

The equations for the maximum likelihood estimates of the parameters
(Lord, 1980), were used as a basis to derive equations for the matrix of

second partial derivatives. The matrices were inverted to obtain standard
errors under plausible assumptions (e.g., normality) and for a range of

commonly encountered parameter values. The errors were studied to derive
inferences about the sample sizes needed for various levels of accuracy.

Results
The results obtained through the use of equation (6) are shown for various

situations in Tables 1-15 (Appendix 11). These tables are presented for
reference purposes, since they span most situations found in practice. One

can interpolate between the values for intermediate ones. The reader is
invited to peruse the tables and draw inferences; certain salient aspects of

the tables are discussed below.

Before going into the details of Tables 1-15, a few remarks are in order.

First, all standard errors considered here are proportional to 1 / -7. Thus,

7



to obtain the asymptotic standard error of a parameter for any particular

test administration, one must divide the number in the appropriate table by

-T-R. For example, if there are 100 examinees, divide the tabled numbers

by 10; 2,500 examinees, divide by 50, etc. The numbers in the tables are

asymptotic, but samples of 100 or more should be reasonably well

represented by these asymptotic values.

A second point of note is that the slope parameter (a) used here is for a

logistic function. If the user is interested in transforming this to be

comparable to a normal ogive, divide the expressed values of the slope by

1.7. The transformation is necessary because the logistic curve

approximates the normal curve's shape, but not the size of its standard

deviation. The factor of 1.7 makes both the shape and size comparable.

*I Thus the slope values given in the tables correspond as shown below:

Logistic Slope Normal Ogive Slope

.25 .15

.50 .29

.75 .44

1.00 .59

1.50 .88

2.00 1.18

3.00 1.76

The tables shown can be used to aid in the determination of the sample size

required to yield desired accuracy. For example, suppose one is equating

tests and needs accurate estimates of item location (difficulty), and the

decision is made that one decimal place of accuracy is sufficient. This

implies that the standard error of location should be of the order of .05.

Good ability test items have slopes in the 1 to 1.5 range, and so using Table

I one can see that for items whose location is in the range -2 to +2 one will

need sample sizes of 2500 (calculated as ( 2.5 / .05 ) 2 ) for a worst case

situation. This is for the one-parameter model. For the two-parameter

* model a sample of 7500 is required (from Table 2: ( 4.33 / .05 ) 2 ), and for

the three parameter model one needs 67,000 (from Table 4: ( 12.94 / .05 ) 2).

- 8



Such calculations are easily carried out and point toward sample sizes

required a priori for minimally acceptable accuracy.

To better understand these results, compare the standard errors for the

three models for a common sample ( N = 2500 ). Shown in Figure 1 are the

standard errors for the three models when slope is 1.5 (a representative

value for most serious testing applications). Further, assume that the lower

asymptote is zero.

The overwhelming first impression given by examination of such figures is

that the use of an unrestricted maximum likelihood estimation for the

three-parameter model either yields results too inexact to be of much

practical use, or requires samples of such enormous size as to make them

prohibitively expensive. This problem arises for items that are easier than

average. This effect is a result of the huge covariance (computable from

equation 2) between location and lower asymptote. When an item is

relatively easy (b = - 1), there are few observations available to estimate the

lower asymptote thus making its standard error very large. The large

covariance between lower asymptote and location then causes this

uncertainty to be shared with the estimate of location. With more difficult

items the effect is lessened somewhat. The two-parameter model has

problems as well, but they are far less severe.

If plots similar to that in Figure 1 were constructed but the slope and the

lower asymptote varied:

1) the same general structure would continue to hold,

- 2) as slopes became more gradual the size of the standard errors

would get larger, and

* - 3) as the lower asymptote rose, the standard errors of the three-

parameter model would rise apace.

9
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Figure 1. Standard errors of the location parameters for

4 three logistic models, slope = 1.5, lower asymptote 0, n = 2500.
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1"o bettr understand the relationship that the slope and the location

(parameter for the three models have with standard error, examine some

three dimensional plots. Shown in Figures 2, 3, and 4 are the natural logs of

the standard errors (taken from Tables 1, 2, and 4) of location for the three

models. To facilitate comparisons among the models, the figures illustrate

the case where the lower asymptote is zero. When it is not, the one- and

two-parameter models do not apply, and the standard errors for the three-

parameter model, already large, get larger.

-- Consider again the question of how large a sample is needed in order to

achieve one decimal place of accuracy for each of the three models as

computed by maximum likelihood estimation. While the answer to this

question is contained in Tables 1, 2, and 4, it is seen more easily in a graph.

Consider Figure 5, in which are shown the standard errors for a rather good

item (slope = 1.5 ) which, in this instance, is assumed to have no guessing,

or, equivalently, to have a probability of zero associated with a correct

answer when attempted by an examinee of very low ability. Shown are the

standard errors for a sample of 10,000.

This is about as large a sample as is plausible with existing software for the

three-parameter model. The one-parameter model provides adequate

accuracy of item parameter estimation throughout the range of the test

from -3 9 to +3 0. The two-parameter model is adequate in the middle, but

slips at the extremes to standard errors of the order of 0.1. The three-

parameter model is dominated overall by the other two models, and is

adequate only in the middle of the test. The estimates are hopeless for easy

items. This is a benign finding, for it is on items such as this that the

guessing parameter is not required. This provides hope that a hybrid model

that computes a lower asymptote for difficult items and does not for easy

I ones may be useful when the assumption of no guessing seems implausible.

It is disquieting to find inadequate estimates with even this size sample.

Note that even with 100,000 observations all parameters are still not

estimated to within the broad levels of acceptability proposed. Further,

note the size samples that would be required for any model to provide

estimates of difficulty acceptable to the two to four decimal places often

reported.

I 11
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Discussion

The lesson to be learned from this is that an investigator should try to fit

the simpler models first, and only if they are found to be inadequate to

move on (with the caution made appropriate by consideration of errors) to

the more complex ones. If the more complex models are required, it would
seem that a method of parameter estimation other than unrestricted

maximum likelihood ought to be used.

Why does the three-parameter model do so badly at the lower (easy) end?

rm - The explanation is straightforward intuitively. The standard error of a

parameter is a function of the square root of the number of observations

available for the parameter that is to be estimated. There are very few

observations low enough to provide information at the lower tail of an easy

- item. This means that the lower asymptote will be poorly estimated. The

error of estimation of the lower asymptote is strongly related to the error

of estimation of the location parameter (as the asymptote rises, the

difficulty shifts to the right), thus uncertainty in the asymptote reflects

itself in the uncertainty in the location estimate. The slope estimate is also

affected, but not as severely.

The standard errors at location 0 are the same for both the one- and two-

parameter models. This seems odd at first since the smaller

parameterization ought to leave more observations to estimate the location.

After some thought the reason for this becomes clear - the slope is

irrelevant to the location at this point since no matter what the slope, it

-O still must go through the point 0. A more rigorous proof of this is found

Appendix I.

These findings suggest two lines of consideration. The first concerns the

* conditions under which the standard errors of the parameters are important;

and the second is, under those conditions, what strategy should be followed

to keep them as small as possible.

16



The enormous size of the standard errors for the three-parameter model

when estimated by unrestricted maximum likelihood is not niways ;I

problem; it all depends upon whether or not the individual parameter

estimates are to be used. One reason for the high standard errors is the

covariation among the parameters. It is possible that such poorly estimated

parameters will still yield an item characteristic curve that fits the

observed data rather well (i.e., the Hessian is nearly singular). This is a

well-known problem in other contexts. For example, suppose we have a set

of data that are well described by the function,

5 y= a+ bx+ cx 2 + dx 3 +... = F (x)

and we are trying to estimate the parameters a, b, c, d, .... Further, these

same data are also well described by a Fourier series (with a different set of

parameters), and a set of spline functions. Each of these formulations

describes the data, although some of them yield parameter estimates that

are highly unstable (i.e., that may have multicolinearities that yield tradeoff

effects). Nevertheless, if the data are well described by the tunction,

certain characteristics of the function (e.g., the value of a derivative of F
LLat some point x 0 ) can be estimated well. Consequently, it is not necessarily

true that because the parameters of a fitted function are not well estimated

that certain other characteristics of the function are unstable. In the case

of the three-parameter logistic model it seems that the parameters by

themselves may not be useful, but certain characteristics (such as the

information function or estimates of ability) may still be relatively stable if

the model fits reasonably well.

An examination of the tabled results suggests that one cannot use

unrestricted maximum likelihood in the estimation of the three-parameter

- model with samples of less than gigantic proportions if one is using the

parameters of the model separately for some purpose. If, however, one is

using those parameters in conjunction with one another to consider the item

characteristic curve (ICC) or an item information curve, as for test

0 construction, the model can be useful. The rest of this discussion deals with

17



the situation where the parameters are needed separately e.g., test

equating/linking or computerized adaptive testing.

This paper has been concerned solely with the problems of the standard

errors of the parameters of three logistic item response models when the

model fits, but has not considered bias when it does not. If the situation is

such that the data have zero as a lower avmptote, uniform slopes, and the

ICCs differ only in location, a one-parameter model is the most suitable. If

the items are reasonably discriminating (a = 1),maximum likelihood methods

can estimate difficulties rather well (standard error less than 0.05) with

- 2,500 observations. If the user can tolerate standard errors of 0.1 or so, a

sample of 500 is sufficient. With samples of less than 500, even with the

one-parameter model, the inferences drawn about item difficulties based

upon anything more than their integer value may be misleading due to the

- size of the standard errors. Certainly the practice of presenting item

difficulties to more than one decimal place seems only very rarely to be

justified. If the items are less discriminating (a = 0.5),one requires about

1,000 observations to obtain standard errors of the order of 0.1. This is

under the best of circumstances. If slopes are not homogeneous, the

standard errors get worse, although not dramatically so. As proved in

Appendix I, the standard errors of the location parameter for items near the

center of the ability distribution for the two-parameter model are not very

much worse than for the one-parameter model. As the items get more

extreme, the standard errors increase. Note (Table 3) that the standard

errors of the slopes are not too bad, usually well within the bounds of

acceptability when the sample size is sufficient to give acceptable location
estimates.

If the lower asymptotes cannot be thought of as homogeneous (i.e., largely

invariant from item to item), serious problems arise. Then acceptably small

standard errors of the location parameter are unobtainable unless the

samples are very large indeed.

As shown in Figure 5, 10,000 observations were barely adequate, and even

with that many observations, estimates of the rather easy items are poor (if

18



-2, standard error - .3). If accuracy at that end is required, the sample

p must be near 1W0,000.

At the current state of program development there is no computer program

available that will fit the three-parameter model by the method of
- unrestricted maximum likelihood with 100,000 examinees.

From the above, a reasonable strategy for fitting item response models to

data (when accurate individual parameters are required) is as follows,

assuming the use of unrestricted maximum likelihood:

(1) Try the one-parameter logistic model first. If it fits, stop. If it

does not fit, examine those items that fit poorly with

*g appropriate diagnostic statistics and plots to understand why the

lack of fit occurred.

(2) If only a few items (a small proportion) do not fit, and they do

not form a coherent grouping in terms of the subject matter of

the test, consider omitting them from the test and continuing. If

this is possible, s'op. An examinee pool of 500 to 1,000 will

suffice to give one decimal accuracy to parameter estimates.

(3) If so many items do not fit that they can not be omitted, the

diagnostics should indicate whether the problem is one of slopes

or of lower asymptotes. If there is strong reason to believe that

the lack of fit is caused by heterogeneous slopes, use the two-

parameter formulation and increase the sample size. If it is

possible to sample individuals at the extremes of the ability

distribution more heavily, this will aid in the accuracy of the

* _estimation.

(4) If the lack of fit is caused by both heterogeneous slopes and

nonzero lower asymptotes, test to see if a uniform nonzero lower

* asymptote will correct the lack of fit. If so, specify it and apply

procedure in (3).

19
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(5) If it is necessary to use the three-parameter model with

Pestimated rather than assigned asymptotes, consider chang-

ing the instructions to limit guessing, modifying the test,

using a faster computer, and/or most importantly, using a

different estimation scheme.

Conclusions

The problems associated with trying to get accurate unrestricted maximum

likelihood parameter estimates with the three-parameter model seem to be

enormous. They are so serious that almost any other strategy seems

Upreferable. If one needs accurate estimates of location parameters, and

variations of the one- or two-parameter logistic model do not fit

successfully, the accurate estimation of location of easier-than-average

items will require samples that are large,- than are available under most

circumstances.

Clearly, unrestricted maximum likelihood estimation in its most basic

version is not a viable method for the estimation of item parameters in the

three-parameter model. It appears that two solutions are viable. One is a

Bayesian scheme in which highly restrictive prior probabilities constrain the

variability of the parameter being estimated. Such methods are already in

practice and seem to offer some hope. LOGIST (Wood, Wingersky, and Lord,

1976) does this in an informal way by using rectangular prior distributions to

restrict the lower asymptote and the slope. When an item appears to be too

easy to estimate its lower asymptote effectively, LOGIST groups it with

others of the same type and assigns it a lower asymptote based upon the

average of the asymptotes of a number of other items. Swaminathan and

Gifford (1981) discussed the results of a more formal Bayesian approach

which seems to accomplish the same ends more gracefully and more

- efficiently.

Another approach, suggested by Winsberg (1981) is quite different, and rests

on a property of spline functions. She points out that the parameters of

most continuous functions have a global effect. That is, the changing of a

20
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lower asyniptote at one L-u of the funcetion v~in 1iiv(' n pro found effect on)

thle estimation of another- mirameter at the other end. This need not be the

ease with spline funcetion[s. If the item oharneteWrist ic curve is fit with R set

of spline functions, thle property of splines ensures that the effect of a

change of a parnmeter is local. Thus ii poorly estimmted lower, asymptote

will leave the middle of thle curve, that which contains the dnra meters of

interest, rock steady. This more dritniatie radical departure fr-om

- traditional practice needs careful study before a judgment can be reached as

to its suitability.

I - As always in a complex, situation, limited research cannot hnswer the

question, "What is the best way?" But an answer to tile "worst way" does

seem to be clear. Unrestricted maximum likelihood estimation for the

three-parameter model is not a technique that is likely to give useful results

I when it is imp3rtant to have accurate estimation of individual parameters.

This conclusion seems incontrovertible.

2
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Appendix I

Equation (13) specifies

)- P*(2* (-,a)

- for both the one and two parameter models. Substituting this into equation
(6) yields

0.

-E N Na 2 f p*Q*~ (0) dO B (Al1)

This is the diagonal clement of the expected Hessian. For the one-

parameter model ii-1B is the standard error of b. For the two-parameter
model there will be some effect of the covariance term. This term (from 6)
is

-E (a N (0-b) P*Q* qu(0) dO.

This can be rewritten as

0-

- 2 -a N 0 p*Q* P(0) dO - b P*Q* (0 d (A2)

... 6) dell

00

i~~ Thsi2iedaoa lmn fth xetdlesa.Frteoe
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1 lis lie product of an odd function,,, and an even function, P*Q*

(I, for any symmetric ability distribution This is then an odd function

of which integrates to zero. Thus equation (A2) simplifies to:

E . N p*Q* 4 (0) dO
-b -N (A3)

So when b = 0 this covariance vanishes making the standard errors of b for

the one and two-parameter models identical. Through continuity

arguments, as b approaches zero the standard errors of the two models draw

closer. Similarly, as a gets smaller so does the covariance and again the

I -difference between the standard errors diminishes.

I2

I
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Appendix II

Directory of Tables

Parameter Value of Table

Model being described lower asymptote number Page

I-PL location 0 1 27

2-PL location 0 2 27

slope 0 3 28

3-PL location 0 4 28

slope 0 5 29

lower asymptote 0 6 29

- location 0.1 7 30

slope 0.1 8 30

lower asymptote 0.1 9 31

location 0.2 10 31

slope 0.2 11 32

lower asymptote 0.2 12 32

location 0.3 13 33

slope 0.3 14 33
6 lower asymptote 0.3 15 34

*2

p.-
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Table 1. Minimal asymptotic standard errors for

-l locations, one-parameter model, lower asymptote at 0.

Locations (W)

-3 -2 -1 0 1 2 3
_ Slope

0.25 8.61 8.30 8.12 8.06 8.12 8.30 8.61

0.50 5.16 4.57 4.23 4.12 4.23 4.57 5.16

S- 0.75 4.31 3.44 2.98 2.83 2.98 3.44 4.31

1.00 4.09 2.94 2.37 2.20 2.37 2.94 4.09

1.50 4.21 2.50 1.78 1.59 1.78 2.50 4.21

2.00 4.54 2.30 1.49 1.28 1.49 2.30 4.54

* 3.00 5.10 2.08 1.19 0.98 1.19 2.08 5.10

Table 2. Minimal asymptotic standard errors for

locations, two-parameter model, lower asymptote at 0.

Locations (0)

-3 -2 -1 0 1 2 3

Slope

0.25 26.85 18.34 11.40 8.06 11.40 18.34 26.85

0.50 15.45 9.75 5.81 4.12 5.81 9.75 15.45

0.75 12.20 7.00 3.98 2.83 3.98 7.00 12.20

1.00 10.84 5.67 3.08 2.20 3.08 5.67 10.83

1.50 9.77 4.33 2.20 1.59 2.20 4.33 9.77

2.00 9.32 3.63 1.76 1.28 1.76 3.63 9.32
3.00 8.65 2.86 1.32 0.98 1.32 2.86 8.65
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frabie 3. Minimal asymptotic standard errors for

."lopes, two-plira Iln ietcr model, lower asymptote lt 0.

Locations (J)

-3 -2 -1 0 1 2 3

Slope

0.25 2.18 2.11 2.06 2.05 2.06 2.11 2.18

0.50 2.68 2.39 2.23 2.18 2.23 2.39 2.68

i 0.75 3.45 2.82 2.48 2.38 2.48 2.82 3.45

1.00 4.47 3.35 2.80 2.63 2.80 3.35 4.47

1.50 7.30 4.72 3.60 3.28 3.60 4.72 7.30

2.00 11.31 6.47 4.57 4.06 4.57 6.47 11.31

3.00 23.43 11.11 7.01 6.00 7.01 11.11 23.43

Table 4. Minimal asymptotic standard errors for

locations, three-parameter model, lower asymptote at 0.

Locations (o)

-3 -2 -1 0 1 2 3

Slope

0.25 742.58 587.32 465.51 367.21 285.11 213.70 149.01

0.50 179.36 113.17 73.40 47.59 29.17 15.83 15.97

0.75 94.02 48.31 26.62 14.91 7.94 7.00 14.84

1.00 63.77 27.54 13.37 6.79 3.86 5.86 12.87
4 1.50 38.51 12.94 5.31 2.54 2.24 4.48 10.54

2.00 26.85 7.70 2.90 1.52 1.76 3.69 9.54

3.00 16.02 3.90 1.48 1.00 1.32 2.86 8.65

4
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Table 5. Minimal asymptotic standard errors for

C- slopes, three-parampter model, lower asymptote at 0.

-ocations (t2

-3 -2 -1 0 1 2 3

Slope

0.25 12.59 12.16 11.91 11.82 11.90 12.16 12.58

0.50 8.10 7.27 6.79 6.63 6.76 7.21 8.01

0.75 7.39 6.12 5.42 5.17 5.33 5.95 7.14

1.00 7.77 5.93 4.97 4.62 4.80 5.59 7.24

1.50 10.18 6.65 5.02 4.44 4.67 5.89 8.82

2.00 14.27 8.09 5.57 4.75 5.12 7.00 11.98

3.00 27.03 12.27 7.44 6.16 7.08 11.16 23.47

Table 6. Minimal asymptotic standard errors for

lower asymptotes, three-parameter model, lower asymptote at 0.

Locations (0)

-3 -2 -1 0 1 2 3

Slope

0.25 99.75 75.56 58.03 45.19 35.70 28.59 23.20

0.50 53.22 30.25 17.98 11.19 7.27 4.92 3.44

0.75 44.79 19.68 9.41 4.88 2.71 1.60 0.99

1.00 41.90 14.81 5.94 2.65 1.30 0.68 0.38

1.50 37.64 9.58 2.96 1.05 0.42 0.18 0.08

2.00 32.37 6.52 1.66 0.49 0.16 0.06 0.02

3.00 21.90 3.10 0.56 0.12 0.03 0.01 0.00
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Fable 7. Minimal asymptotic standard errors for

locations, three-parameter model, lower asymptote at 0.1.

Locations (9)

-3 -2 -1 0 1 2 3

Slope

0.25 806.23 642.56 514.33 410.88 324.20 248.10 177.90

I 0.50 194.13 124.27 82.40 55.29 35.82 20.91 19.00

0.75 102.12 53.70 30.79 18.46 10.88 8.52 18.50

1.00 69.79 31.23 16.14 9.12 5.54 6.83 17.34

1.50 43.21 15.59 7.17 3.96 2.96 5.30 15.47

2.00 31.22 10.06 4.40 2.50 2.20 4.39 14.09

3.00 20.37 5.96 2.52 1.54 1.59 3.33 11.77

Fable 8. Minimal asymptotic standard errors for

slopes, three-parameter model, lower asymptote at 0.1.

Locations (11)

-3 -2 -1 0 1 2 3

Slope

0.25 13.64 13.27 13.10 13.15 13.42 13.94 14.72

0.50 8.72 7.91 7.51 7.51 7.93 8.86 10.49

- 0.75 7.94 6.68 6.07 6.03 6.61 8.03 10.83

1.00 8.35 6.51 5.67 5.59 6.34 8.33 12.69

1.50 10.99 7.44 5.97 5.79 6.90 10.27 19.16

2.00 15.51 9.29 6.93 6.58 8.10 13.20 28.75

3.00 30.06 14.83 9.84 8.96 11.44 20.94 56.09

30



Table 9. Minimal asymptotic standard errors for

lower asymptotes, threc-parnmeter model, lower asymptote at 0.1.

Locations ()

- -3 -2 -1 0 1 2 3

Slope

0.25 97.53 74.45 57.73 45.52 36.50 29.77 24.70

0.50 51.95 29.98 18.23 11.72 7.98 5.75 4.37

U.. 0.75 43.94 19.82 9.90 5.49 3.37 2.29 1.70

1.00 41.52 15.32 6.61 3.32 1.93 1.28 0.96

1.50 38.55 10.81 3.91 1.78 1.00 0.67 0.52

2.00 34.97 8.45 2.82 1.24 0.70 0.49 0.39

3.00 28.12 6.05 1.92 0.85 0.50 0.37 0.32

- Table 10. Minimal asymptotic standard errors for

locations, three-parameter model, lower asymptote at 0.2.

Locations (0)

-3 -2 -1 0 1 2 3

Slope

0.25 878.74 705.10 569.00 459.07 366.54 284.60 207.77*0
0.50 210.96 136.60 92.05 63.17 42.23 25.60 22.18

0.75 111.23 59.47 34.93 21.68 13.36 10.10 21.56

1.00 76.42 34.95 18.63 10.97 6.90 7.82 20.38

1.50 48.07 17.87 8.51 4.88 3.60 5.98 18.14

2.00 35.36 11.76 5.31 3.09 2.62 4.92 16.32

3.00 23.72 7.10 3.06 1.88 1.86 3.71 13.31
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[able I1. M iriiatl asymptotic standard errors for

slopes, three-parameter model, lower asymptote at 0.2.

Locations (0)

-3 -2 -1 0 1 2 3

Slope

0.25 14.83 14.52 14.44 14.63 15.08 15.85 16.96

0.50 9.42 8.63 8.29 8.43 9.08 10.39 12.64

I - 0.75 8.57 7.29 6.73 6.83 7.69 9.63 13.41

1.00 9.01 7.12 6.32 6.38 7.44 10.09 15.90

1.50 11.87 8.18 6.70 6.66 8.16 12.51 24.13

2.00 16.81 10.26 7.81 7.57 9.57 16.05 36.12

3.00 32.79 16.46 11.11 1.0.31 13.46 25.25 69.65

Table 12. Minimal asymptotic standard errors for

lower asymptotes, three-parameter model, lower asymptote at 0.2.

Locations (0)

-3 -2 -1 0 1 2 3

Slope

0.25 94.54 72.66 56.80 45.21 36.65 30.28 25.49

0.50 50.27 29.36 18.15 11.92 8.32 6.17 4.84

0.75 42.68 19.62 10.06 5.76 3.67 2.59 1.99

1.00 40.61 15.39 6.87 3.60 2.18 1.51 1.16

1.50 38.53 11.27 4.27 2.04 1.19 0.83 0.66C
- 2.00 35.92 9.13 3.20 1.47 0.87 0.62 0.51

3.00 30.56 6.92 2.28 1.05 0.64 0.48 0.43

I
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'Table 13. Minimal asymptotic standard errors for
locations, three-parameter model, lower asymptote at 0.3.

Locations (0)
-3 -2 -1 0 1 2 3

Slope
0.25 963.82 777.77 631.94 513.96 414.20 325.12 240.41
0.50 230.61 150.78 102.90 71.79 49.02 30.48 25.70

* - 0.75 121.78 65.97 39.43 25.04 15.88 11.82 24.79
1.00 84.01 39.04 21.23 12.83 8.26 8.92 23.52
1.50 53.45 20.24 9.84 5.78 4.26 6.73 20.85

2.00 39.76 13.46 6.18 3.66 3.06 5.51 18.59
* 3.00 27.10 8.22 3.58 2.21 2.15 4.15 14.92

Table 14. Minimal asymptotic standard errors for
slopes, three-parameter model, lower asymptote at 0.3.

Locations (6)
-3 -2 -1 0 1 2 3

Slope

0.25 16.24 15.98 15.99 16.31 16.96 17.98 19.44
• 0.50 10.25 9.46 9.18 9.44 10.32 12.01 14.86

0.75 9.30 7.98 7.46 7.69 8.80 11.23 15.96
1.00 9.77 7.81 7.02 7.21 8.55 11.82 19.01
1.50 12.89 8.99 7.46 7.53 9.39 14.67 28.88

* _ 2.00 18.28 11.29 8.70 8.56 11.00 18.77 43.10
3.00 35.78 18.15 12.38 11.65 15.41 29.36 82.36
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lable 15. NMinimal asymptotic standard errors for

lower isymptotes, three-parameter model, lower tsymptote at 0.3.

Locations C

-3 -2 -1 0 1 2 3
Slope

0.25 90.78 70.16 55.22 44.29 36.22 30.21 25.70

0.50 48.16 28.42 17.79 11.86 8.42 6.36 5.08

0.75 41.00 19.13 9.99 5.84 3.81 2.74 2.15

1.00 39.22 15.16 6.93 3.71 2.31 1.63 1.28

1.50 37.79 11.35 4.42 2.16 1.29 0.92 0.74

2.00 35.87 9.39 3.37 1.59 0.95 0.69 0.58

3.00 31.52 7.33 2.47 1.16 0.71 0.55 0.49

0 _
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